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Abstract 
The fundamental difference between electron and ion masses is at the origin 
of the different technologies used for electron and ion linear accelerators. In 
this paper accelerating structure design, beam dynamics principles and 
construction technologies for both types of accelerators are reviewed, 
underlining the main differences and the main common features. 

1 Historical background 
While the origin of linear accelerators dates back to the pioneering work of Ising, Wideröe, Sloan and 
Lawrence in the decade between 1924 and 1934 [1], the development of modern linear accelerator 
technology starts in earnest in the years following the end of World War II, profiting of the powerful 
generators and of the competences in high frequencies developed for the radars during the war. 
Starting from such a common technological ground two parallel developments went on around the San 
Francisco Bay in the years between 1945 and 1955. At Berkeley, the team of L. Alvarez designed and 
built the first Drift Tube Linac for protons [2], while at Stanford the group of E. Ginzton, W. Hansen 
and W. Panofsky developed the first disc-loaded linac for electrons [3]. Following these first 
developments ion and electron linac technologies progressed rather separately, and only in recent 
years more ambitious requirements for particle acceleration as well as the widening use of 
superconductivity paved the way for a convergence between the two technologies. The goal of this 
paper is to underline the basic common principles of ion and electron RF linacs, to point out their 
main differences, and finally to give an overview of the design of modern linacs. 

2 Special relativity, particle velocity and synchronicity 
The basic difference between electrons and ions is their rest mass. The mass of an electron at rest is 
9.1 × 10–31 kg (corresponding to 511 keV/c2), while a proton has a mass of 1.6 × 10–27 kg 
(938 MeV/c2), i.e. a factor about 2’000 (exactly, 1’836) difference. Heavy ions used in linear 
accelerators have even greater masses. 

Because of their difference in mass, electrons and ions will react differently to an externally applied 
electric field. An RF linear accelerator is basically a linear array of small space intervals (‘gaps’) 
where a time varying electric field has been generated. The field can be made synchronous with a 
particle beam in such a way that the particles see in each gap a field in the same longitudinal direction. 
The change in momentum of a particle inside the beam is determined by the well-known dynamics 
equation: 

 [ ( )] ( )dq E v B mv
dt

+ × =   

In absence of a magnetic field, the force produced on the particle by the electric field increases 
its momentum mv. The velocity however can not increase indefinitely, being limited to the speed of 
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light c. When the velocity of a particle approaches c, its momentum will keep increasing, the velocity 
will remain v ≈ c while its relativistic mass m will increase, accordingly to the relation  

 2 2
0 0 01 ( ) / 1m m v c m mβ γ= − = − =   

where β = v/c, γ = (1–β2)–1/2  and m0 is the Newtonian mass (mass in the rest frame). 

To compute how the velocity increases during acceleration, we have to recall that the kinetic 
energy W of a particle is equal to its relativistic total energy minus the rest energy: 

 2 2 2 2 2 2 2
0 0 0 0(1 1 ) (1/ 1 1)W mc m c m c m c m cβ β= − = − − = − −   

This relation can be used to express the relativistic velocity β=v/c as a function of kinetic 
energy: 

 2 2
2

0

1 1/( 1)W
m c

β = − +  (1) 

For small energies (W<<m0c2), β follows the classical relation for kinetic energy:  

 2
2

0

2W
m c

β =  (2) 

Plotting relation (1) for electrons (m0c2 = 511 keV) and for protons (m0c2
 = 938 MeV) we obtain the 

curves of Fig. 1. 
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Fig. 1: Relativistic particle velocity (squared) as function of kinetic energy (protons and electrons) 

In this plot the horizontal scale shows the beam kinetic energy, but it could easily be interpreted 
as the distance along a linear accelerator: the energy in a linac increases more or less linearly with the 
length (typical gradients are 10 to 15 MeV/m for electron linacs and 2 to 10 MeV/m for proton linacs).  

The electrons (upper curve) come close to the speed of light already after few MeV of energy, 
corresponding to about the first meter of acceleration. For the rest of the acceleration process, their 
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velocity will not change. This already suggests that an electron linac will be made of an injector 
covering the initial distance, where the velocity rapidly increases to c, followed by identical 
accelerating structures covering the rest of the accelerator length. 

Instead, in a proton linac (lower curve) the particles will increase slowly their velocity, initially 
following classical mechanics [dotted curve, corresponding to equation (2)] up to an energy of a few 
MeV. As the energy increases further, the mass starts to increase, accordingly to relativistic 
mechanics, while the velocity increases more and more slowly. Only from an energy of a few GeV the 
velocity saturates towards c, well beyond the energy range of most proton linacs. We can already 
conclude that a proton linac (and a heavy ion linac) will have to adapt to the increase in particle 
velocity, and will therefore be made of sections of different type. 

The need to adapt the accelerating structure to the velocity of the accelerated beam comes from 
the condition of synchronicity between the particles and the accelerating fields, required to have a 
maximum transfer of energy to the particles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Synchronism condition for a 4-cell accelerating cavity (LEP-II) 

As an example, we can consider the 4-cell superconducting accelerating cavity of Fig. 2, which 
can be used in a high-energy electron or proton linac. The cavity is operated in the so-called π-mode, 
meaning that the fields have a phase difference of 180º between subsequent cells. The arrows in Fig. 2 
represent the orientation of the electric field on the axis at a certain time, accordingly to the sinusoidal 
field distribution shown in the lower part of the figure. The curve and the arrows represent the field at 
a given time; the fields will oscillate in time at the frequency of the cavity, and after half of the RF 
period (T/2) the direction of the field in the gaps will be reversed. The particles enter the cavity 
already grouped in bunches (the “bunching” is performed in the initial section of a linac), spaced 
exactly by an RF period T. The maximum energy gain in a multi-cell structure corresponds to the 
condition that a particle inside the bunch travels from one gap to the next in a time equal to T/2. In this 
case the particle will see an accelerating field in all the gaps. For a particle travelling at the relativistic 
velocity β, the time to cross one cell is τ = l/βc. The condition τ = T/2 gives the required cell length 
for a π-mode structure:  

 
2 2
cl Tβ βλ= =   
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From this synchronism condition, it is clear that an electron linac, where the particles have 
β = 1 apart from a short initial section, will be made of a sequence of identical accelerating structures, 
with cells of the same length l=λ/2. The case of the proton linac is totally different, because β 
increases slowly by orders of magnitude, and the cell length has to follow a precise β profile. For 
example, in the CERN proton linac (Linac2) the value of β and of the basic cell length increase by 
about a factor 200 between the injection at 90 keV and the end of the linac at 50 MeV. In order to 
keep the synchronism without using too short (mechanically difficult) or too long (inefficient) 
accelerating cells, a proton or ion linac usually includes different types of structures, operating on 
different modes and sometimes at multiple frequencies. 

3 Accelerating structures 
The accelerating structures for electrons and for ions are usually different, but can be derived from the 
same fundamental RF element, the cylindrical waveguide. This is a simple metallic pipe, inside which 
we can excite, by means of an appropriate coupler, an RF wave of given frequency and wavelength 
(Fig. 3). 
 
 
 
 
 
 

 

 

 
Fig. 3: The cylindrical waveguide 

In order to use this structure for the acceleration of particles, we need to excite a longitudinal 
electric field on the axis, which can then transfer energy to the beam. From basic RF theory [4] we 
know that in such a waveguide can be excited well defined “modes” (electromagnetic field 
configurations), at frequencies beyond a “cut-off” frequency characteristic of each mode. Modes with 
longitudinal electric field on axis are in the family of “TM-modes” (Transverse-Magnetic). The main 
candidate to be used for particle acceleration is the simplest TM mode, the TM01, whose field 
configuration (i.e. a snapshot taken at a certain time t) is shown in Fig. 4. The mode will propagate in 
the waveguide, meaning that the field pattern of Fig. 4 will travel in the z direction, and the position of 
field maxima and minima will continuously change with time. In this respect, this travelling wave 
mode is different from the standing wave mode of Fig. 2, which will be analysed later in this section. 

 
 

 

 

 

 

 

 

Fig. 4: TM01 mode in a cylindrical waveguide 
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The wavelength in the direction of propagation λp (distance between two subsequent maxima or 
minima of the field) depends on the dimensions of the waveguide and on the excitation frequency. 
This can be understood remembering that that the propagation within the waveguide is the result of 
multiple reflections of the wave on the metallic walls of the cylindrical pipe. High frequencies will 
have short wavelengths, and at the limit of wavelengths much smaller than the dimensions of the 
waveguide their propagation will not be influenced by the waveguide (the wave does not “see” the 
waveguide). On the contrary, free space wavelengths comparable to the size of the waveguide will be 
influenced by the guide and at the limit of very long wavelengths (or small frequency) the wave will 
not be able to propagate. This behaviour is summarised by the so-called “dispersion curve” of the 
waveguide, shown in Fig. 5, which can be calculated solving the wave equations in the bounded 
medium. 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Dispersion curve of a generic waveguide 

The dispersion curve completely characterizes the behaviour of the waveguide. It gives the 
basic relation between the frequency of the propagating wave and its propagation constant kz (also 
called wave number) along z, kz = 2π/λp, which is in turn related to the propagation wavelength, and 
allows to calculate the propagation velocity. In this context, ϕ=kzz is the difference in phase of the 
wave between two points at distance z along the direction of propagation. The straight lines 
correspond to the free space case, ω=2πc/λ, and at high frequencies the dispersion curve tends to the 
free space curve. Waves with frequencies below cut-off (ω<ωc) cannot propagate, with ωc depending 
only on the transverse dimensions of the waveguide. The phase velocity of a propagating wave at 
frequency ω, defined as the apparent velocity of a maximum (or minimum) of the wave in the z 
direction, is:  

 

From the curve of Fig. 5, we can see that phase velocity at ω is the tangent of the angle between 
the corresponding point on the curve and the k-axis. Above cut-off, phase velocity decreases from 
vph= ∞ at cut-off towards vph=c, in the limit case of ω→∞ (free space). Since the phase velocity is 
always higher than the speed of light we have to conclude that we can never achieve synchronism 
between the wave and a particle beam. This means that we cannot accelerate particles in a standard 
cylindrical waveguide. It is important to observe that the phase velocity is only an “apparent” 
quantity, and there is no RF power or any information traveling at this velocity. This is why phase 
velocity can be higher than c, without violating the relativity principle. Real quantities, like the energy 
or the information carried by variations of the wave will travel at the “group velocity” vg = dω/dkz, 

ph p z/ /v T kλ ω= =

kz

ω

0

tg α = ω/kz = vph

 vph>c 

 vph=c 

ωc 
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represented by the tangent to the dispersion curve of Fig. 5. It is easy to see that group velocity will 
range from vg = 0 at cut-off to vg = c in the limit of very high frequencies.  

In order to use the waveguide for particle acceleration we have to “slow down” the wave, i.e. to 
find a geometrical modification which can bring for some frequencies the phase velocity down to c or 
below. Considering that wave propagation occurs via multiple reflections, the most obvious way to 
produce a “slow-wave” structure is by adding to the cylindrical waveguide some discs, as in Fig. 6. It 
is first of all important to notice that we have now a “periodic” structure, with period (cell length) l, 
and very likely the waves most affected by the discs will have propagation wavelength equal to 
multiples of l:  λp ~ l. 

 

 
Fig. 6: Disc-loaded waveguide 

On the contrary, waves with λp = ∞ or λp = 0 will not “see” the discs: for λp = ∞ (cut-off) the 
discs are a small perturbation, while for λp = 0 the wave is confined between the cylinder walls and 
does not interact with the discs. Therefore, we can already observe that the dispersion curve of the 
disc-loaded system will be identical to that of the standard cylindrical waveguide at the two limits 
k ~ 0 and k → ∞. Instead, when the distance between discs is equal to half the propagation wavelength 
(kz=2π /2l), we can expect that the wave is confined between two discs, and the cell behaves like a 
small resonator. What actually happens for λp = l/2 (kz = π /l) is that two frequencies are possible, 
corresponding to the two solutions shown on the left side of Fig. 7. In one case, the electric field is 
heavily perturbed by the discs, and the frequency will be lower than for the standard waveguide. In the 
other case, the magnetic field is perturbed, and the frequency is higher. For continuity, we can now 
draw the dispersion curve of the disc-loaded waveguide (right side of Fig. 7). The dispersion curve is 
split in two branches, separated by a “stop-band”. Observing the lower branch of the dispersion curve, 
it is clear that at a certain frequency it will cross the “free space” curve corresponding to v = c: all 
frequencies above this one will present a phase velocity v < c. The conclusion is that a disc-loaded 
waveguide presents a range of frequencies with phase velocity v ≤ c, and can be used for particle 
acceleration. The range of possible frequencies depends on the diameter of the waveguide and on the 
distance between discs. 

 

M. VRETENAR

184



 

 

 

 

 
 
 
 
 
 
 
 
 

Fig. 7: Electric field distribution of k = π/l modes and dispersion curve for a disc-loaded 
waveguide 

The travelling-wave linac generally used for electrons at β = 1 (Fig. 8) is a disc-loaded structure 
designed to have phase velocity v = c for a given operating frequency. It is equipped with an input and 
output coupler, to inject the RF wave coming from a power source, and to extract at the end of the 
structure the remaining RF power. Electrons at β = 1 entering the structure when the electric field is at 
its maximum (i.e. the beam needs to be “bunched” and to be injected at the correct phase) will travel 
along the linac with the same velocity as the wave, seeing the maximum accelerating electric field all 
along the structure. The result will be an increase of their kinetic energy. The beam energy comes 
from the RF wave: part of the RF energy of the wave will be dissipated in the structure walls, usually 
made out of copper, part will be absorbed by the beam, and the rest will be extracted via the output 
coupler, to be absorbed in a matched load at the end of the structure. Usually, the length of a standard 
linac structure is such that about 30% of the input power goes to the load. 

beam

 
Fig. 8: Travelling-wave linac structure 

Travelling-wave structures are designed for a fixed phase velocity, and can not be used for ions 
at β < 1 and increasing velocity. Even if the structure could be designed for a phase velocity 
corresponding to the initial β of the particles, when gaining energy the beam velocity would increase 
and the synchronism with the wave would be lost. However, up to a certain limit a travelling-wave 
structure designed for β = 1 can accept an electron beam with β < 1 and rapidly increasing velocity, as 
we will see in the following. 
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For protons and heavy ions, instead of matching the phase velocity of a travelling wave to the 
particle velocity, we can realize the synchronism between moving particles and field by keeping the 
phase of the wave constant, and changing its space distribution accordingly to the synchronism 
condition. This is obtained in standing-wave structures, which can be basically described as travelling-
wave structures closed at the two ends with metallic walls (Fig. 9). We have already seen an example 
of standing-wave structure in the case of the superconducting cavity of Fig. 2.  

 

 

 

 

 
Fig. 9: Standing-wave linac structure (with an example of electric field distribution) 

A wave injected into this structure will be reflected by the metallic walls at the two ends, and 
the resulting field distribution will be the result of the superposition of two waves travelling in 
opposite directions. For each of these two waves, the dispersion curve of the loaded waveguide 
(Fig. 7) is still valid, but now not all the frequencies on the curve will be possible. For most of the 
excitation frequencies, the phase difference of the two superimposed waves, which depends only on 
the distance between the two end walls, will continuously change, and the sum of these waves will be 
zero. Only for frequencies where the phase of the waves at each reflection are identical (or 180º apart) 
the interference will be constructive and the two waves will build up a field inside the structure. The 
condition for the establishment of a “resonant mode” is that the length of the structure L contains an 
integer number of half-wavelengths: L = nλp/2. In the dispersion curve the allowed “modes” will then 
correspond to   

 z p2 / / ( 0,1,...)k n L nπ λ π= = =   

where n is the mode index. As an example, Fig. 10 shows the dispersion curve of a 7-cell disc-loaded 
structure with its 7 allowed modes. Remembering that the main branch of the dispersion curve (Fig. 7) 
extends from kz = 0 to kz = π /l, we can already observe that the number of permitted modes will be 
equal to the number of periods (cells) in the structure: the highest mode corresponds to πN/L=π/l or 
N=L/l. The longitudinal electric field resulting from the superposition of the two travelling waves will 
have a maximum or a minimum on the end walls (the only case where transverse components of the 
field are zero on the metallic boundary). The sum of two waves travelling in opposite direction along 
the z axis with propagation constant kz will have amplitude proportional to:  

 2cos 2cos 2cos ( 0,1,.., )z zjk z jk z
z

n ne e k z z z n N
L Nl

π π−+ = = = =   

i.e. a standing wave with period Nl/n. The sinusoidal solutions are shown on the right side of Fig. 10, 
together with the corresponding electric field distribution for some of the modes. The phase difference 
of the mode amplitude between adjacent cells Δφ = π n/N ranges from 0 (n = 0) to π (n = N) and is 
used to identify the mode. 
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Fig. 10: Dispersion curve and field patterns for standing-wave linac structure 

For particle acceleration, the most commonly used modes are the 0, π/2 or π. In the case of the 
π-mode, the electric field has a maximum at the centre of each cell, and changes sign from one cell to 
the next. The condition for acceleration has been already calculated in Section 2: cell length must be 
l = βλ/2. The conclusion is that a standing wave structure can be matched to any possible value of β, 
simply changing the cell length. Standing-wave linacs are ideal structures for the acceleration of 
protons and heavy ions, and for the initial acceleration of an electron beam. Inside a single 
accelerating structure the cell length can be easily increased proportionally to the increase in β, 
allowing to maintain the synchronism. 

In practice, we have to make two more remarks on the use of standing wave structures for ion 
linacs. First of all, not only the π-mode can be used for acceleration. The 0-mode can be used as well, 
with synchronism condition l = βλ, and some particular structures even make use of the π/2 mode. 
Secondly, in a standing-wave linac the particle see the electric field only in the centre of the cells. It is 
therefore important to concentrate the field in this region, by adding “noses” to the discs separating 
the cells. But reducing the dimension of the central aperture the wave propagation would be more 
difficult, hindering the operation of the structure. To avoid this problem, “slots” can be opened in the 
cell walls, to restore the correct propagation. Figure 11 shows a 3D view of a standard cell for a π-
mode standing-wave linac for protons. In a standing-wave linac, the RF power is introduced via an 
input coupler usually placed in the middle, as can be seen in the comparison table of travelling and 
standing wave structure given in Fig. 12. 

 
Fig. 11: An example of standing-wave linac structure 
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Chain of coupled cells in SW mode. 
Coupling (bw. cells) by slots (or open). On-

axis aperture reduced, higher E-field 
on axis and power efficiency. 

RF power from a coupling port, dissipated 
in the structure (ohmic loss on walls).

Long pulses. Gradients 2-5 MeV/m

Used for Ions and electrons at all 
energies

Standing wave Traveling wave

Chain of coupled cells in TW mode 
Coupling bw. cells from on-axis aperture. 
RF power from input coupler at one end, 

dissipated in the structure and on a load.
Short pulses, High frequency.
Gradients 10-20 MeV/m

Used for Electrons at v~c

Comparable RF efficiencies  
Fig. 12: Summary of properties of standing-wave and traveling-wave linac structure 

An interesting example of a 0-mode structure for protons at relatively low energy (from about 3 
to 90 MeV) is the Drift Tube Linac (DTL, Fig. 13). In this structure, the aperture on the beam axis has 
been greatly reduced in order to increase the efficiency, and thanks to the particular configuration of 
the fields the walls between cells have been completely removed, to maximise coupling between cells 
as well as power flow inside the structure and to minimise wall losses. What remains inside the 
structure are “drift tubes”, which can be made large enough to contain a focusing quadrupole, for the 
transverse beam focalization that is particularly important at low energy. The drift tubes are kept in 
position by supports (“stems”) from the top of the structure. Tuning plungers allow keeping the 
structure on resonance in presence of fluctuations of temperature or pressure, while “post-couplers” 
provide a stabilization of the fields against mechanical errors. Figure 14 shows the electric and 
magnetic field densities inside a DTL structure.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Drift tube linac structure 
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Fig. 14: Electric and magnetic field distribution inside a drift tube linac structure 

4 Beam dynamics 

4.1 Longitudinal 

We have seen that, in order to achieve the maximum acceleration, bunches of particles must be 
synchronous with the accelerating wave. This means that they have to be injected in the linac on a 
well defined phase with respect to the accelerating sinusoidal field, and then they have to maintain this 
phase during the acceleration process. However, usual linac beams are made of a large number of 
particles with a certain spread in phase and in energy. If the injection phase corresponds to the crest of 
the wave (ϕ = 0º in the linac definition) for maximum acceleration, particles having slightly higher or 
lower phases will gain less energy. They will slowly loose synchronicity until they are lost. The 
important principle of phase stability, strictly valid only for particles not yet relativistic, provides a 
means to keep the particles longitudinally bunched during acceleration. If the injected beam is not 
centred on the crest of the wave but on a slightly lower phase, a “synchronous phase” ϕs whose typical 
values are between –20º and –30º, particles that are not on the central phase will oscillate around the 
synchronous phase during the acceleration process. The resulting longitudinal motion is confined, and 
the oscillation is represented by an elliptical motion of each particle in the longitudinal phase plane, 
the plane (Δϕ, ΔW) of phase and of energy difference with respect to the synchronous particle. The 
relation between the synchronous phase in an accelerating sinusoidal field and the longitudinal phase 
plane is represented in Fig. 15. 

 
Fig. 15: Longitudinal motion of an ion beam 
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It is interesting to observe that the frequency of longitudinal oscillations, i.e. the number of 
oscillations in the longitudinal phase plane per unit time depends on the velocity of the beam. A 
simple approximate formula for the frequency of small oscillations ωl can be found for example in [5]: 

 
( )0 s2 2

0 2 3

sin
2l

qE T
mc

ϕ λ
ω ω

π βγ
−

=   

Here ω0 and λ are the RF frequency and wavelength, E0T is the effective accelerating gradient 
and ϕ is the synchronous phase. The oscillation frequency is proportional to 1/βγ3: when the beam 
becomes relativistic, the oscillation frequency decreases rapidly. At the limit of βγ3 >> 1, the 
oscillations will stop and the beam is practically “frozen” in phase and in energy with respect to the 
synchronous particle. For example, in a proton linac 1/βγ3 and correspondingly ωl can decrease by 2 
or 3 orders of magnitude from the beginning of the acceleration to the high energy section.  

Another important relativistic effect for ion beams is “phase damping”, the shortening of bunch 
length in the longitudinal plane. It can be understood considering that, as the beam becomes more 
relativistic, its length in z seen by an external observer will contract due to relativity. A precise 
relativistic calculation shows that the phase damping is proportional to 1/(βγ)3/4:  

 3/ 4( )
constϕ
β γ

Δ =   

When a beam becomes relativistic, not only its longitudinal oscillations slow down, but also the 
bunch will compact around the center particle. 

In an electron linac instead, after the initial section βγ3 → ∞ and phase stability does not apply. 
There is no movement in the longitudinal phase plane, and during acceleration, the beam remains at 
the injection phase. The phase length Δϕ of an electron bunch tends to zero, and at the relativistic limit 
an electron beam will be compacted around the central particle. As a consequence, acceleration of a 
relativistic electron beam can take place on the crest of the wave. The beam will remain bunched, and 
acceleration will be the highest. 

An important feature of electron linacs is the capture condition of an electron beam not yet 
relativistic into an accelerating structure designed for βc = 1. The beam is not “synchronous”, and the 
phase of a particle injected with velocity β = β0 at phase ϕ0 into a travelling wave structure will change 
with β accordingly to the relation [5, page 191]:  

 
2

0
0

0 0

12 1sin ( ) sin
1 1g

mc
qE

βπ βϕ β ϕ
λ β β

⎡ ⎤− −= + −⎢ ⎥+ +⎢ ⎥⎣ ⎦
  

At the relativistic limit (β = 1) the phase is increased by: 

 
2

0

g 0 0

12(sin )
1

mc
qE

βπϕ
λ β

⎡ ⎤−
Δ = ⎢ ⎥+⎢ ⎥⎣ ⎦

  

This expression shows that a non-relativistic electron bunch injected into a β = 1 structure will 
increase its phase, converging asymptotically to a well defined phase shift depending on the injection 
energy and on the accelerating field. In the limit case of injection phase –90º (the minimum to ensure 
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acceleration), the condition for having the beam converging to the crest (0º, maximum acceleration) 
corresponds to taking Δ(sinϕ) = 1 in the previous relation and is called the capture condition:  

 
2

0

0 0

12 1
1g

mc
qE

βπ
λ β

⎡ ⎤−
≤⎢ ⎥+⎢ ⎥⎣ ⎦

  

For a given gradient E0 this expression gives the minimum β0 that can be accepted by the 
structure, or for a given β0 at injection it gives the minimum gradient to be applied in order to capture 
the beam. For example, taking E0 = 8 MV/m, a 3 GHz structure has a minimum capture energy of 
150 keV. Figure 16 shows how the phase of the injected bunch changes during acceleration, 
combining the phase shift towards the crest of the wave and the decrease of phase spread (phase 
damping).  

 

E 

I 

injection
  β < 1

acceleration

φ

  β = 1  
Fig. 16: Longitudinal motion of an electron beam 

4.2 Transverse 

Transversally in a linac, the beam will be subject to an external focusing force, provided by an array 
of quadrupoles or solenoids. This force has to counteract the defocusing forces that either develop 
inside the particle beam or come from the interaction with the accelerating field. The main defocusing 
contributions come from: 

Space charge forces  

Representing the Coulomb repulsion inside the bunch between particles of the same sign. In the case 
of high intensity linacs at low energy, space charge forces are one of the main design concerns. 
However, at relativistic velocity the space charge repulsion starts to be compensated by the attraction 
due to the magnetic field generated by the beam, and finally disappears at the limit v = c. It is quite 
simple to calculate the electric and magnetic field active on a particle at distance r from the axis of an 
infinitely long cylindrical bunch with density n(r) travelling at velocity v (Fig. 17):  
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Fig. 17: Forces acting on a particle inside an infinitely long bunch 

The overall force acting on the particle is directed radially, and has intensity: 
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The overall space charge force is then proportional to 1/γ2 and will disappear for γ  → ∞. 

RF defocusing forces  

Which represent the transverse defocusing experienced by a particle crossing an accelerating gap on 
an RF phase that is longitudinally focusing. We have seen in the previous section that for longitudinal 
stability the beam will cross the gap while the field is increasing (ϕs < 0). Figure 18 shows a schematic 
configuration of the electric field in an accelerating gap. In correspondence to the entry and exit 
openings for the beam, the electric field has a transverse component, focusing at the entrance to the 
gap and defocusing at the exit, proportional to the distance from the axis. Because the field is 
increasing, the defocusing effect will be stronger than the focusing one, and the net result will be a 
defocusing force, proportional to the time required by the beam to cross the gap. Again, this effect is 
proportional to 1/γ2, and will disappear at high beam velocity. 

 

 

 

 

 

 

 
Fig. 18: Electric field line configuration around a gap and position of the bunch at maximum field 

The conclusion is that the beam must be transversally in equilibrium between an external 
focusing force and some internal defocusing forces. This equilibrium will result in an oscillation in 
time and in space of the beam parameters, with a frequency that will depend on the difference between 
focusing and defocusing forces. Instead of defining the frequency of oscillation with respect to time, it 
is convenient to characterise the oscillation in terms of the phase advance per focusing period of the 
oscillation σt, the focusing structure being periodical. Alternatively, we can use the phase advance per 
unit length kt. Clearly, if L is the period length of the focusing structure, kt = σt/L. In an ion linac, σt 

should always be < 90º, to avoid instabilities, but should always be higher than some 10–20º, in order 
to avoid that the amplitude of the oscillations becomes too high and the beam size becomes too large. 
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We can find an approximate relation for the phase advance as function of focusing and 
defocusing forces in a simple case. First of all, one has to limit the analysis to beam oscillations in a 
simple F0D0 quadrupole lattice (focusing-drift-defocusing-drift) under smooth focusing 
approximation, i.e. averaging the localised effect of the focusing elements. Then, adding together the 
focusing and RF defocusing contributions to phase advance as derived for example in [5, 7.103] and 
subtracting the space charge term as approximately calculated in the case of a uniform three-
dimensional ellipsoidal bunch [5, 9.51] we obtain for the phase advance per unit length:  

 
( ) ( )22
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Here Nβλ is the length of the focusing period in units of βλ. The first term on the right side of 
the equation is the focusing term: Gl is the quadrupole strength, expressed as product of gradient G 
and length l of the quadrupole. The second term is the RF defocusing: E0T is the effective accelerating 
gradient, λ the RF wavelength and ϕ the synchronous phase. For ϕ <0, corresponding to longitudinal 
stability in the linac definition, sin(−ϕ) is positive and this term is negative, i.e. defocusing. The third 
term is the approximate space charge contribution: I is the beam current, f is the ellipsoid form factor 
(0 < f < 1) and r0 is the average beam radius. The other parameters in the equation define the particle 
and medium properties (charge q, mass m, relativistic parameters β and γ, free space permittivity ε0). It 
must be noticed that this simple equation shows, although in an approximate simplified case, how the 
beam evolution in a linear accelerator depends on the delicate equilibrium between external focusing 
and internal defocusing forces. Even if real cases can be solved only numerically, the parametric 
dependence given by this equation remains valid, and allows to determine how the dynamics will 
change with the particle β. 

We immediately see that at low velocities (β << 1, γ ~ 1) the defocusing terms are dominant. In 
order to keep the beam focused with a large enough phase advance per unit length one has to increase 
the integrated gradient Gl and/or decrease the length of the focusing period Nβλ, i.e. minimise the 
distance between focusing elements. This is for example the case of the Radio Frequency Quadrupole 
(RFQ), the structure of choice for low energy ion beams (from β  ≈ 0.01 to β ≈ 0.1). The RFQ 
provides a high focusing gradient by means of an electrostatic quadrupole field, with short cells at 
focusing period βλ. At higher energy, standard electromagnetic quadrupoles have a sufficiently high 
gradient and a structure alternating accelerating gaps and quadrupoles can be used. The typical 
structure for protons at >3 MeV is the Drift Tube Linac (DTL, Fig. 14), which has 2βλ focusing 
period when focusing and defocusing quadrupoles alternate inside the drift tubes. Going further up in 
energy, the defocusing terms (∝1/β 3γ 3, 1/β 2γ 3) decrease much faster than the focusing term (∝1/βγ). 
The focusing period can be increased, reducing the number of quadrupoles and simplifying the 
construction of the linac. At energies beyond about 50 MeV, modern proton linacs usually adopt 
multi-cell structures operating in π-mode spaced by focusing quadrupoles, like the ones of Fig. 12 left 
(normal conducting) and Fig. 2 (superconducting). For example, in the CERN Linac4 design (90 keV 
to 160 MeV beam energy) the focusing period increases from βλ in the RFQ to 15βλ in the last π-
mode accelerating structure. 

Heavy ions differ from protons for the fact that usually ion currents are small and the space 
charge term can be neglected. Immediately after the RFQ, the focusing period can be some 5–10βλ. 

In the case of electron linacs transverse dynamics becomes simpler. The two defocusing terms 
disappear, and phase advance is zero independently from the focusing term. The consequence is that 
the beam does not oscillate in the transverse plane. However, some external focusing is usually 
required to control the beam emittance and to stabilise the beam against instabilities like wakefields 
and beam breakup. The length of the focusing period is not very important in this case, and usually 
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focusing elements are spaced by several meters. Moreover, as focusing elements are often used 
solenoids placed around the accelerating structure, because of the low gradients required for the 
focalisation, which make effective even solenoids with large apertures.  

5 Linac technologies 

5.1 Particle sources 

One of the few aspects of linac technology where electron and ion linacs drastically differ is in the 
technology of the source of particles. The same fundamental problem, the extraction of charged 
particles from matter, is solved in completely different ways in the case of light electrons to be 
extracted from the external atomic layers and in the case of heavier particles to be extracted from the 
nuclei.  

Electron sources have to give energy to the free electrons inside a metal to overcome the 
potential barrier at the boundary. The energy can be provided by heat, via the standard thermoionic 
effect, or by an intense localized laser pulse. 

An ion source instead has first of all to separate the electrons from the nuclei creating a plasma. 
Then the plasma conditions have to be optimized in terms of heating, confinement and loss 
mechanisms in order to produce the desired ion type. The final step in the process is to remove ions 
from the plasma via an aperture and a strong electric field. The sources differ for the process used to 
produce the plasma (electrical discharge, RF fields, electron cyclotron resonance excitation, etc.) and 
for the type and shape of the extraction field. 

5.2 Low-energy injectors 

After the source, both electron and ion linacs include a low-energy injector, which in modern linacs 
tends to be a quite sophisticated and critical section, especially when high currents are required. This 
is the only section in a linac where the requirements for electrons and ions are quite similar. The 
injector has to basically to perform three tasks: 

– Compact the beam particles into bunches at the required accelerating frequency (both electron 
and ion sources deliver a continuous beam pulse). 

– Transport over a distance of a few meters a low-energy beam, usually of high current and 
subject to strong space charge defocusing forces. 

– Accelerate smoothly the beam from the extraction energy of the source (usually 10 to100 keV) 
up to the input energy of the main accelerating structure (usually between 1 and 5 MeV), in an 
energy range where beam velocity considerably increases. 

The first function, called bunching, is achieved by dedicated RF gaps (“buncher” cavities) 
operated on the longitudinally focusing phase (ϕs = –90º), followed by a drift distance. The bunchers 
can be operated at different frequencies to maximise the beam transmission of the injector. An 
alternative for ion beams is to apply a distributed adiabatic bunching inside a special accelerator 
containing many bunching and accelerating cells, the Radio Frequency Quadrupole (RFQ). RFQ’s are 
nowadays commonly used for ion linacs, where the source current is intrinsically limited and beam 
transmission through the pre-injector should be as close as possible to 100%.  

Focusing in an electron pre-injector is usually provided by an array of solenoids placed around 
the beam line. For ion beams subject to severe space charge forces, a stronger focusing is needed 
together with the shortest possible length of the focusing period. Again, the RFQ structure can provide 
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a electric focusing quadrupole field, which contrarily to magnetic focusing is independent from beam 
velocity and more effective at low energy, distributed all along the structure length.  

Acceleration can be easily provided by the bunching gaps, some of which can be phased 
towards the accelerating synchronous phase. Again, this is easily realised in the RFQ, by simply 
modulating the length of the bunching and accelerating cells. In high-current ion linacs the injector is 
completed by one or more bunching cavities between the RFQ and the main linac, needed to preserve 
the beam bunching during the transport to the next accelerating structure.  

As examples of pre-injectors, Fig. 19 shows two schemes from CERN. The CTF3 electron 
injector includes as many as five bunching cavities following the electron gun. Then, bunching is 
completed in a travelling-wave structure that performs the first acceleration as well. Focusing 
solenoids surround the injector. In the RFQ2 high-current proton injector instead bunching 
acceleration and focusing are performed in a 1.8 m long RFQ at 200 MHz. Two focusing solenoids 
after the source prepare the beam for injection into the RFQ and two bunchers after the RFQ preserve 
the bunching before the injection into the following DTL. 

 

 

 

 

 

 

 

 

 

 
Fig 19: The CTF3 electron injector (left) and the RFQ2 proton injector (right) at CERN 

5.3 Accelerating structure technology 

We have seen that the standard accelerating structures used in linear accelerators are disc-loaded 
travelling wave structures for electrons and coupled cell standing wave structures, which can be used 
for all type of particles. In the project of a linear accelerator the first problem for the designer is the 
choice of the frequency, which has to take into account many factors coming from beam dynamics, 
Radio Frequency and mechanical considerations. The important parameters of a linear accelerator 
scale differently with the frequency. First of all, accelerator dimensions and cell length are 
proportional to the wavelength λ. Other important factors scaling with the wavelength are the 
machining tolerances, which can have a considerable impact on the cost of an accelerator. In the beam 
dynamics section, we have seen how the RF defocusing scales with 1/λ. Other important parameters 
are the RF power efficiency, usually called the shunt impedance, which in first approximation scales 
as f , and the maximum electric field achievable before breakdown, which accordingly to an 
empirical law scales as well with .f  
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Table 1: Scaling with frequency of some basic linear accelerator parameters 

Parameter Scaling 

RF defocusing f∼  

Cell length (~βλ) 1/f∼  

Peak electric field f∼  

RF power efficiency (shunt impedance) f∼  

Acc. structure dimensions 1/f∼  

Machining tolerances 1/f∼  

From a rapid analysis of these parameters, it is clear that high frequencies are economically 
convenient. At higher accelerating frequency the linac is shorter, makes use of less RF power and can 
reach higher peak and average accelerating field. However, limitations to the frequency come from the 
availability and price of high frequency RF power sources and from the mechanical construction 
costs.  Higher frequency means smaller dimensions but also tighter and more expensive machining 
tolerances. Additionally, in ion linacs the beam dynamics sets a upper limit to the frequency in the 
injector section, where RF defocusing is strong. 

Electron linacs usually adopt higher frequencies than ion linacs, in the range between 3 and 
30 GHz, because they are not limited by RF defocusing and because disc-loaded structures have larger 
dimensions and lower machining tolerances than standing-wave structures at the same frequency. The 
standard commercial frequency for electron linacs is 3 GHz. 

Proton linacs need to start with relatively low frequencies in the RFQ and injector section, 
ranging in modern linacs from 200 to 400 MHz, in order to reduce the effect of RF defocusing and to 
make possible the construction of the extremely short first RFQ cells (βλ long). After the injector and 
the first accelerating structure (usually a DTL), it is sometimes convenient to double the frequency. 
Standard medium-high energy sections of modern proton linacs operate at frequencies between 400 
and 800 MHz, which usually result from a compromise between focusing requirements, cost and 
dimensions. 

Heavy ion linacs tend to use even lower frequencies (30–200 MHz). The choice of the initial 
frequency is dominated by the low particle velocity in the first sections. For example, the first cell of 
the CERN lead ion RFQ (100 MHz, Pb27+ ions at 25 keV/u input energy) is only 7 mm long (βλ). 
Lower ion charge to mass ratios require even lower frequencies. However, in heavy ion linacs as well 
it is convenient to double (or even triple) the basic frequency as soon as the ion velocity has reached a 
sufficiently high value. 

As for the construction technology, the structures that we have considered have to carry large 
RF currents with minimum power loss, and are usually made out of copper. Alternatively, structure 
with low duty cycle, where the high thermal conductivity of copper is not required, can be made of 
copper plated steel. The thin copper layer usually covers few penetration depths of the RF current. 

Schematically, a linac accelerating structure is an assembly of precisely machined copper or 
copper plated parts, each making one cell or part of a cell. Joining together these parts to form an 
adequate RF and vacuum envelope is an art by itself. Furnace brazing is commonly used for small 
high frequency cells made out of copper, while combinations of welding and gasket mounting are 
used for larger parts at lower frequency. 
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5.4 RF technologies 

The Radio Frequency power source can be an important cost driver in a linac project, and has to be 
carefully selected. In general, linacs have the advantage of being pulsed machines, with duty cycles 
usually below 10%. On the other hand, the beam passes only once through an accelerating section, 
and in order to reduce the linac length and cost often high accelerating gradients are required, which 
translate into high values of the peak power required from the RF system. The result is that linac RF 
systems have the particularity of requiring high peak powers, but relatively low average powers as 
compared to other RF systems. Klystrons are commonly used as RF power sources for high 
frequencies (≥300 MHz). They are the typical RF source for electron linacs, and are more and more 
used as power source for proton linac projects. Low frequency proton and ion linacs use instead triode 
or tetrode based amplifiers as main RF power source, which can be effectively used up to about 400 
MHz. 

 

 

 

 

 

 

 

 

 

 

Fig. 20: A 3 GHz klystron amplifier for the LPI electron linac (left) and a 200 MHz triode-based 
amplifier for the Linac3 ion linac (right), both used at CERN 

5.5 Modern trends 

Unquestionably the most important development of recent years in the field of linear accelerators is 
the remarkable progress in superconducting cavity technology, which is leading to a wider application 
of superconductivity to linac projects. This development went in parallel with a general increase in the 
accelerating gradients, for both normal conducting and superconducting structures, and of the 
operating frequencies. 

While superconducting accelerating structures were once limited to heavy ion linacs, where 
short superconducting structures are particularly suited for accelerating different types of ions in CW 
mode, and to electron linacs operating in CW mode, nowadays high-gradient multi-cell standing wave 
structures like the one in Fig. 2 are widely used in linacs for both electrons and protons. The vigorous 
TESLA R&D programme at DESY [6] has defined construction and preparation technologies for 
superconducting cavities that allow achieving high accelerating gradients. In modern linac designs, 
safe design values for the gradient of β = 1 cavities are now in the order of 25 MV/m, a value that 
scales down to some 19 MV/m at β = 0.65 [7]. Moreover, the improvement of RF control and cavity 
stiffening techniques now allow to effectively operating in pulsed mode a superconducting RF system 
even in presence of the large cavity detuning from the forces generated by the accelerating field. 
Whereas the TESLA development at 1.2 GHz is directed to electron linear colliders, a lot of parallel 
work went on for multi-cell cavities for protons, usually at lower frequency (700–800 MHz), with 
considerable synergies between electron and proton developments. Superconducting cavities are now 
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used for the high-energy part of the new SNS 1 GeV linac at Oak Ridge and are proposed for almost 
all high-energy linac projects worldwide. 

In parallel, the technology of Normal Conducting linacs has also evolved towards higher 
gradients, and in particular a lot of effort went into better understanding of breakdown phenomena [8]. 
While proton linac nowadays commonly start from frequencies around 400 MHz and some projects 
even go in the GHz range for the high energy section, for electron linacs are now exploited 
frequencies that few years ago were considered almost unreachable, as for the 30 GHz acceleration 
frequency in the CTF Test facility [9]. 
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