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Abstract
High-voltage engineering covers the application, the useful use and proper
working of high voltages and high fields. Here we give some introductory
examples, i.e., ‘septa’ and ‘kicker’ at the Large Hadron Collider (14 TeV), the
Super Proton Synchrotron (450 GeV) and the Proton Synchrotron (26 GeV) ac-
celerators as found at the European Orginization for Nuclear Research (CERN)
today.

We briefly cover the theoretical foundation (Maxwell equations) and aspects
of numerical field simulation methods. Concepts relating to electrical fields,
insulation geometry and medium and breakdown are introduced. We discuss
ways of generating high voltages with examples of AC sources (50/60 Hz), DC
sources, and pulse sources.

Insulation and breakdown in gases, liquids, solids and vacuum are presented,
including Paschen’s law (breakdown field and streamer breakdown). Appli-
cations of the above are discussed, in particular the general application of a
transformer.

We briefly discuss measurement techniques of partial discharges and loss angle
tan(δ).

The many basic high-voltage engineering technology aspects — high-voltage
generation, field calculations, and discharge phenomena — are shown in prac-
tical accelerator environments: vacuum feed through (triple points), break-
down field strength in air 10 kV/cm, and challenging calculations for real prac-
tical geometries.

Exceptionally, the series editor decided that this contribution could be published in the form of a
reproduction of the author’s transparencies.
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Introductory examples

Theoretical foundation and numerical field 
simulation methods

Generation of high voltages

Insulation and Breakdown

Measurement techniques
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Introduction E.Gaxiola:
Studied Power Engineering
Ph.D. on Dielectric Breakdown in Insulating Gases;

Non-Uniform Fields and Space Charge Effects
Industry R&D on Plasma Physics / Gas Discharges
CERN Accelerators & Beam, Beam Transfer,
Kicker Innovations:
• Electromagnetism
• Beam impedance reduction
• Vacuum high voltage breakdown in traveling wave 

structures.
• Pulsed power semiconductor applications
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CERN Septa and Kicker examples

• Large Hadron Collider
14 TeV

• Super Proton Synchrotron
450 GeV

• Proton Synchrotron
26 GeV

Septum: E ≤ 12 MV/m         T = d.c.
l= 0.8 – 15m

Kicker: V=80kV
B = 0.1-0.3 T   T = 10 ns - 200µs
l=0.2 – 16m

RF cavities: High gradients, E ≤ 150MV/m
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PS septa SEH23

Voltage: 300 kV

SPS septa ZS
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• SPS injection kicker magnets

30 kV

spacers

beam gap

magnets

ferrites

CAS on Small Accelerators

Courtesy: E2V Technologies

Magnets

• SPS extraction kickers

60 kV

72 kV30 kV

Power Semiconductor Diode stack
Thyratron gas discharge switches

Generators
Pulse Forming Network

E. GAXIOLA
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• Maxwell equations for calculating
Electromagnetic fields, voltages, currents
– Analytical
– Numerical

CAS on Small Accelerators

Breakdown

Electrical
Fields,

Geometry
Medium

Insulation and
Breakdown

High fields
Field enhancement 
Field steering

Charges in fields
Ionisation
Breakdown

Gas
Liquids
Solids
Vacuum
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-CSM (Charge Simulation Method): (Coulomb)

Electrode configuration is replaced by a set of discrete charges

- FDM (Finite Difference Method):

Laplace equation is discretised on a rectangular grid

- FEM (Finite Element Method): Vector Fields (Opera, Tosca), Ansys, Ansoft

Potential distribution corresponds with minimum electric field energy 
(w=½εE2)

- BEM (Boundary Element Method): IES (Electro, Oersted)

Potential and its derivative in normal direction on boundary are sufficient

NUMERICAL FIELD SIMULATION METHODS

CAS on Small Accelerators

Procedure FEM
1. Generate mesh of triangles:

2. Calculate matrix coefficients:

3. Solve matrix equation:

4. Determine equipotential lines and/or field lines
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Procedure BEM
1. Generate elements along interfaces

2. Generate matrix coefficients:

3. Solve matrix equation:
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Generation of High Voltages
• AC Sources (50/60 Hz)

High voltage transformer (one coil; divided coils; cascade)
Resonance source (series; parallel)

• DC Sources
Rectifier circuits (single stage; cascade)
Electrostatic generator (van de Graaff generator)

• Pulse sources
Pulse circuits (single stage; cascade; pulse transformer)
Traveling wave generators (PFL; PFN; transmission line transformer)

CAS on Small Accelerators

Cascaded High voltage transformer

1: primary coil
2: secondary coil
3: tertiary coil

900 kV
400 A

Courtesy: Delft Univ.of Techn.

HIGH-VOLTAGE ENGINEERING
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L R

C

Equivalent 
Circuit:

C

L

L

L

cap.
deler

test
ν

Resonance Source

+ Waveform: almost perfect sinusoidal

+ Power: 1/Q of “normal” transformer

+ Short circuit: Q→0 results in V→0

- No resistive load
2
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900 kV
100 mA

Courtesy: Eindhoven Univ.of Techn.
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Cascaded Rectifier
(Greinacher; Cockcroft - Walton)

max2nVVDC =
Cn

Cn`

Dn
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C2`
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nn`

22`

11`

amplitude: Vmax

VDC

Reduce δV (~n2) and ∆V (~n3) by:
larger C’s (more energy in cascade)
higher f (up to tens of kilohertz)

Voltage: 2 MV

Courtesy: Delft Univ.of Techn.
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G
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Single-Stage Pulse Source
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if C1 >> C2 and R2 >> R1
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discharge time: τ2=R2C1
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τ1 (front)
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Standard lightning surge pulse: 1.2 / 50 µs

60 kV
1 kA

Courtesy: Eindhoven Univ.of Techn.
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Cascade Pulse Source
(Marx Generator)
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Total discharge capacity: 1/C1=∑1/C1’
Front resistance: R1=R1”+∑R1’
Discharge resistance: R2=∑R2’

R1: front resistor

R2: discharge resistor
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100 mA

Courtesy: Kema, The Netherlands
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Eigen frequencies from characteristic equation:

Approximation: transformer almost ideal: k=M/√(L1L2)→1

slow oscillation fast oscillation

Voltage: 300 kV
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charge cable load cableS

R

VDC

Z

Pulse Forming Line / Network

Transmission Line Transformer

S

Z
VDC cables 

parallel cables in 
series

amplitude: ½VDC

duration: 2L/v

Courtesy: Eindhoven Univ.of Techn.150 kV
1 kA

80 kV, 10 kA, T=20ns - 10µs
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Insulation and Breakdown
• In Gases Ionisation and Avalanche Formation

Townsend and Streamer Breakdown
Paschen Law: Gas Type
Breakdown Along Insulator
Inhomogeneous Fields, Pulsed Voltages, Corona

• Insulating Liquids

• Solid Insulation
Breakdown types, Surface tracking, Partial discharges, Polarisation, tan δ

• Vacuum Insulation
Applications, Breakdown, Cathode Triple-Point, Insulator Surface Charging, Conditioning

CAS on Small Accelerators800kV South Africa

400kV
400kV Geertruidenberg,
The Netherlands

HIGH-VOLTAGE ENGINEERING
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Townsend’s 1st ionisation coefficient α
One electron creates α new electrons per unit length

A + e → A+ + 2e

ne(x=d) = n0eαd

α/p = f (E/P)

1st free electron
• Cosmic radiation
• Shortwave UV
• Radio active isotopes

Free path, effective cross-section

In air:
≈ 2.5 x 1019 molecules/cm3

≈ 1000 ions/cm3

≈ 10 electrons/cm3

E

1st

electron

New 1st

electron
Secondary γ

Photon or ion

Avalanche
-----+

+

+

+
+

• Electro-negative gasses
Attachment η of electrons to ions

electrons: ne(x=d) = n0e(α -η)d

negative ions:
]1[n)( )(o −

−
== −

−
dedxn ηα

ηα
η

α-η vs. E/p
1.) air
2.) SF6

Reference [3]

Avalanche ≠ Breakdown;
creation of secondaries

Townsend’s 2nd ionisation coefficient γ
one ion or photon creates γ new electrons
at cathode ne = γn0(eαd-1)

Breakdown if:  # secondary electrons ≥ n0
αd ≥ ln(1/γ + 1)

steep function of E/p eαd very steep (E/p)critical and Vd
well defined γ of  weak influence

E. GAXIOLA
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Paschen law / breakdown field

1: SF6
2: air
3: H2
4: Ne

• Townsend breakdown criterion αd = K:
with A=σI/kT

B=ViσI/kT

Ed and Vd depend only on p*d p: pressure d: gap length

ln(Apd/K)
B

p
Ed =

ln(Apd/K)
BpdVd =

Typically practically
Ebd= 10 kV/cm
at 1 bar in air

• Small p*d, d<< λ: few collisions, high field required for ionisation
• Large p*d, d>> λ: collision dominated, small energy build-up, high Vd

Reference [2] Vbd,Paschen min, air ≈ 300 V

CAS on Small Accelerators

Streamer breakdownE0

E0

E0 + Eρ

Space charge field Eρ ≈ E0
• Field enhancement

extra ionising collisions (α↑)
• High excitation ⇒ UV photons
when 1 electron grows into ca. 108

then Eρ large enough for streamer 
breakdown (ne ≈ 2·108 in avalanche head)

Result:
• Secondary avalanches, directional effect (channel formation)
• Grows out into a breakdown within 1 gap crossing (anode and/or cathode directed)

Characteristic:
• Very fast 
• Independent of electrodes (no need for electrode surface secondaries)
• Important at large distances (lightning)

HIGH-VOLTAGE ENGINEERING
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Townsend, unless:

• Strong non-uniform field
(small electrodes, few secondary electrons)

• Pulsed voltages
– Townsend slow, ion drift, subsequent gap transitions
– Streamer fast, photons, 1 gap transition

• High pressure
– Less diffusion

Eρ high
– photons absorbed

in front of cathode
– positive ions

slower

• Townsend: αd ≥ ln(1/γ + 1) ≈ 7...9
(γ ≈ 10-4...10-3)

• Streamer: αd ≥ 18...20

Laser-induced streamer breakdown in air.

Courtesy: Eindhoven Univ.of Techn.
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Breakdown along insulator 
• Surface charge
• (Non-regular) surface conduction
• Particles / contaminations on surface
• Non-regularities (scratches, ridges)

⇒Field enhancement
⇒ Increased breakdown probability

Prebreakdown along insulatior in air.
Courtesy: Eindhoven Univ.of Techn.

Reference [2]

E. GAXIOLA
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Breakdown at pulse voltages;
time-lag

ts, wait for first elektron
tf, breakdown formation
• Townsend or Streamer

Short pulses, high breakdown voltage

Reference [2]

CAS on Small Accelerators

Non-uniform fields; Corona

Breakdown conditions:
• Global Full breakdown
• Local   Streamer breakdown

Partial discharge

Non-uniform field:
• Discharge starts in high field 

region
• ....and “extinguishes” in low 

field region

Reference [2]

HIGH-VOLTAGE ENGINEERING
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Corona
- Power loss; EM noise
- Chemical corrosion
+ Useful applications

10 ns

20 ns

30 ns

40 ns

Transmission line transformer
Courtesy: Eindhoven Univ.of Techn.

Pulsed corona discharges:
• Fast, short duration HV pulses
• Many streamers, high density
• Generation of electrons, radicals, 

excited molecules, UV
• E.g. Flue gas cleaning

Solid insulation
Breakdown field strength:
• Very clean (lab): high
• Practical: lower due to imperfections

– Voids
– Absorbed water
– Contaminations
– Structural deformations

Requirements:
• Mechanical strength
• Contact with electrodes and 

semiconducting layers
• Resistant to high T, UV, dirt, 

contamination, rain, ice, 
desert sand

Problems:
• Surface tracking
• Partial discharges

– In voids
(in material or at electrodes, 
often created at production).

Anorganic
Natural

Synthetic

Quartz,mica,glas
Porcelain

Al
2
O

3

Disc insulator
Feedthrough

Spacer

Paper + Oil
Cable

Capacitor

Synthetic
Organic

Polymerisation

Polyethelene
HD,LD,XL – PE

Teflon
Polystyrene, PVC,

polypropene,etc

Spec. properties:

Moisture content
high T

losses
bonding

Epoxy
Hardener

Filler
Moulding in mold

Types of solid
insulation materials

E. GAXIOLA
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Surface tracking
Remedies:
• Geometry
• Creeping distance (IEC-norm)
• Surface treatment (emaillate, coating)
• Washing

Vacuum insulation

Applications:
• Vacuum circuit breaker
• Cathode Ray Tubes / accelerators
• Elektron microscope
• X-ray tube
• Transceiver tube

What is vacuum?
• “Pressure at which no collisions 

for Brownian “temperature”
movements of electrons”

• λ >> characteristic distances
• E.g. p = 10-6 bar, λ = 400 m

Advantages:
• “Self healing”
• No dielectric losses
• High breakdown fieldstrength
• Non flammable
• Non toxic, non contaminating

Disadvantages:
• Requires hermetic containment 

and mechanical support
• Quality determind by:

– electrodes and insulators
– Material choice, machining
– Contaminations, conditioning

HIGH-VOLTAGE ENGINEERING
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Characteristics of vacuum breakdown
No 1st electron from “gas”
• Cathode emission

– primary: photoemission, thermic emission, field emission, Schottky-
emission

– secondary: e.g. e- bombarded anode → +ion collides at cathode → e-

No breakdown medium
• No multiplication through collision ionisation
• Medium in which the breakdown occurs has to be created

(“evaporated” from electrodes, insulators)

Important: prevent field emission
• Keep field at cathode and “cathode triple point” as low as 

possible
• Insulator surface charging, conditioning

CAS on Small Accelerators

14

01

ConditioningInsulator surface
charging

Conditioning
effect lost
when charge
compensated

Breakdown vs.field cathode-triple-point

# Conditioning 
breakdowns needed
to reach 50kV hold 
voltage

Courtesy: ESTEC / ESA

Ref [12]
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Insulating liquids

• Transformers
• Cables
• Capacitors
• Bushings

Requirements:
• Pure, dry and free of gases
• εr (high for C’s, low for trafo)

(demi water εr,d.c. = 80)
• Stable (T), non-flammable, 

non toxic (pcb’s), ageing, 
viscosity

Courtesy: Sandia labs, U.S.A.

• No interface 
problems

• Combined 
cooling/insulation

• “Cheap” (no mould)
• Liquid tight housing

Applications:

CAS on Small Accelerators

Breakdown fieldstrength:
• Very clean (lab): high 1 - 4 MV/cm (In practice much lower)
• Important at production:outgassing, filtering, drying
• Mineral oil (“old” time application, cheap, flammable)
• Synthetic oil (purer, specifically made, more expensive)

– Silicon oil (very stable up to high T, non-toxic, expensive)
• Liquid H2, N2, Ar, He (supra-conductors)
• Demi-water (incidental applications, pulsed power)
• Limitation Vbd:

– Inclusions: Partial discharges Oil decomposition → Breakdown
– Growth (pressure increase) 
– “extension” in field direction”

• Particles drift to region with highest E → bridge formation → breakdown

+

-

+

-

+

-

HIGH-VOLTAGE ENGINEERING
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Transformer:
• Mineral oil: Insulation and cooling

• Paper: Barrier for charge carriers and chain formation
– Mechanical strength

• Ageing
– Thermical and electrical (partial discharges)
– Lifetime: 30 years, strongly dependent on temperature, short-circuits, over-

loading , over-voltages
– Breakage of oil moleculs, Creation of gasses, Concentration of various gas 

components indication for exceeded temperature 
(as specified in IEC599)

• Lifetime
– Time in which paper looses 50 % of its mechanical strenght
– Strongly dependent on:

• Moisture (from 0.2 % to 2 % accelerated ageing factor 20)
• Oxygen (presence accelerates ageing by a factor 2)

CAS on Small Accelerators

Partial discharges
• UV, fast electrons, ions, heat
• Deterioration void:

– Oxidation, degradation through ion-impact
– “Pitting”, followed by treeing

• Eventually breakdown

Acceptable lifetime? Preferably no partial 
discharges.

• High sensitivity measurements on often large 
objects

• Qapp ≠ Qreal, still useful, because measure for 
dissipated energy, thereby for induced damage

• relative measurement

Measurement techniques

AC voltage phase resolved
discharge pattern detection Type of defect

E. GAXIOLA
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Partial discharges

Cc

a
b

c

Rdamp

AC
source

Test object

Zm, often RLC

• Qapp gives it (Qapp = ∫ itdt)
• Cc gives it if Cc>>Cobject

• Calibration through injecting known charge

• Measure with resonant RLC circuit:
– Excitation by short pulse it
– No 50 Hz problem
– V = q/C exp(-αt) { cosβt - α/β sinβt }

α=1/(2RC)  β=[1/(LC) - α2]-1/2

it

V

a
b

c

V

a
b

c

a >> b << c

V- δV

a
b

c

V-∆V

∆V

Qtot = Q Qtot = Q - c∆V

V-δV

0

Before After

High sensitivity measurement because b/c << 1

Before: Q = aV + b (V - ∆V) + c ∆V
After: Q - c ∆V = (a + b)(V - δV)    

So: c ∆V = a δV + b (δV - ∆V) + c ∆V
δV = ∆V b/(a+b) ≈ ∆V b/a 

Apparent charge:
Ctot δV = (a + bc/(b+c)) δV

≈ (a+b) δV ≈ aδV

insul

voidr

real

app

d
d

c
b

Vc
Vb

Vc
Va

Q
Q .εδ ≈=

∆
∆=

∆
=

i

test 
object

R3C4
R4

CHV

Shielding

i

jωCV

1/R.V

δ

Loss angle, tan(δ)
Sources:
• Conduction σ (for DC or LF)
• Partial discharges
• Polarisation

Schering bridge:
• i=0, RC=R4C4
• Gives: tan(δ)

– parallel: 1/ωRC
– serie: ωRC 

Tan δ:
• “Bulk” parameter
• No difference between phases

PD:
• Detection of weakest spot
• Largest  activity and asymmetry

in “blue” phase (ridge discharges)

HIGH-VOLTAGE ENGINEERING
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Summary
Seen many basic high voltage engineering technology 
aspects here:
– High voltage generation
– Field calculations
– Discharge phenomena

The above to be applied in your practical accelerator 
environments as needed:
– Vacuum feed through: Triple points
– Breakdown field strength in air 10kV/cm
– Challenging calculations for real practical geometries.

CAS on Small Accelerators
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Maxwell equations in integral form 
 
      Electrostatic 

.omslQdVdAD ==⋅ ∫∫∫∫∫ ρ   .omslQdAD =⋅∫∫  (1) 

dt
d

dAB
dt
ddlE omsl.φ

−=⋅−=⋅ ∫∫∫  0=⋅∫ dlE  (2) 

 
      Magnetostatic 

0=⋅∫∫ dAB     0=⋅∫∫ dAB  (3) 

∫∫∫ ⋅
∂

∂+=⋅ dA
t
DJdlH )(  .omslIdlH =⋅∫  (4) 

 
 

Maxwell equations in differential form 
 
    Electrostatic   No space charge 

ρ=⋅∇ D    ρ=⋅∇ D    0=⋅∇ D  (5) 

t
BE

∂
∂−=×∇   0=×∇ E    0=×∇ E  (6) 

 
    Magnetostatic   In area without source 

0=⋅∇ B    0=⋅∇ B    0=⋅∇ B  (7) 

t
DJH

∂
∂+=×∇   JH =×∇    0=×∇ H  (8) 

Appendix I

CAS on Small Accelerators

Finite Element Method (FEM)
Field energy minimal inside each closed region G:

Assume U satisfies Laplace equation, but U' does not, then

WU' - WU ≥ 0:

dVUdVEW
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2
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2
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Field energy for one element (2-dim)

Potential is linear inside element:

on corners:

Potential can be written as: Field energy in element (e):

α’s are linear in x and y ⇒ ∇α is constant: Sij=(∇αi·∇αj) A(e)
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Total field energy of n elements
All elements together:

free: potential values to be determined

prescribed: potential according to boundary conditions

Partial derivatives of W to Uk are zero for 1≤k≤m (m equations):
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ibed    prescrfree      
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Boundary Element Method (BEM)
Boundaries uniquely prescribe potential distribution

P0=(x0,y0) inside Γ:

Problem: u(x,y) and q(x,y) not both known at the same time

0:equation Laplace =∆u

(Neumann)),(:border

)(Dirichlet),(:border

2

1

n
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Green II (2-dim):

Choose v(x,y)=ln(1/r) ∆v(x,y)=0 for P≠P0(x0,y0)

Exclude region σ around P0 by means of circle c
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Discretisation:

In matrix notation:
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Appendix II  Electrical Fields 
 
Vacuum and matter 
Dielectric displacement D   Electric field strength E 
Magnetic induction B   Magnetic field strength H 
Ohm’s law: relation between current density J in a conductor and specific conduction σs (=1/ρs) 
and electrical field E 

( ) EJHHMHBEEPED srr σµµµµεεεε ===+===+= ;; 0000  (9,10,11) 
Polarisation P 
Magnetisation M 
 
(Static) boundary conditions for normal (index n) and tangential (index t) field components in 
terms of surface charge and surface current: 
  .omslQdAD =⋅∫∫  ⇒  D1n - D2n = σ (12) 

  0=⋅∫ dlE   ⇒  E1t - E2t = 0 (13) 

  0=⋅∫∫ dAB   ⇒  B1n - B2n = 0 (14) 

  .omslIdlH =⋅∫   ⇒  H1t - H2t = J* (15) 
 
 
Conservation of charge / continuity of current 
Ampere’s law (8) in differential form gives: 

( ) 0=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂+⋅∇=×∇⋅∇

t
DJH   ⇒ 0=

∂
∂

+⋅∇
t

J
ρ

 (16) 

Gauss Theorem  gives the integral form: 

0)( =⋅
∂
∂+∫∫ dA

t
DJ  or 0. =

∂
∂

+⋅∫∫ t
Q

dAJ omsl  (17) 

 
 
Electrical potential 
 
(6) Gradient or (scalar) potential U: 

∫
=

⋅−=⇒∇−==×∇
x

Ux

dlExUUEE
)0('

)( define0  (21) 

UUE ∆−=∇⋅∇−=⋅∇  so 
ε
ρ−=∆U  (Poisson) (22) 

   Without space charge: 0=∆U  (Laplace) (23) 
 
Equations define every position in space between potential and charge distribution, given the 
boundary conditions. 
Definition of potential only valid in the absence of varying magnetic induction. If ∂B/∂t ≠ 0 no 
more (scalar) potentials, only voltage differences, which have become dependent on the path 
(non-conservative field): 
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or 

 
 
 

 
Analytical methods 
 
Gauss’ law in integral form (1), charges  E-field (and potential) for configuration. 
Potential equations (22) or (23) for given boundary conditions  potential and E-field. 
 
 
 Fields from charges  Fields from Potentials 
 
Q and Gauss’ law  ⇒ E 
 
Integration of E  ⇒  U 
 
U on boundary   ⇒ V 
 
V and Q   ⇒ C 
 

 
Laplace / Poisson + boundary (V)⇒ U 
 
Differentiation of U  ⇒ E 
 
E and Gauss’ law  ⇒ Q 
 
Q and V   ⇒ C 

 
 
Fields from charges 
 
Gauss’ law, electrical field coupled to charge. 
Two concentric spheres: 

 

 

 
Potential in infinity zero  

r4
QrU

rεπε 0

)( =

Capacity of sphere with radius r0: 

00
0 )(

r4
V
Q

rU
QC rεπε===  (29) 

  

dAB
dt
ddlEdldl
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EE  (24) 

[ ] [ ] 0VVVV C viaC via 21
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Field maximum on sphere surface: 

0
2

00
0max )(

r
V

r4
QrEE

r

===
επε

 (30) 

 
Concentric metal spheres 
 
 

 

 
Maximum field on surface inner sphere: 
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)(

211
1max /rr1r

VrEE −
==  (33) 

 
Concentric cylinders 

 
Two concentric cylinders with inner radius r1 and outer radius r2: 

)ln(
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)()( 2
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 (34) 
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)/ln( 121
max rrr

VE =  (36) 

 
 
Fields from potential equations 
 
Poisson equation or (without space charge, ρ = 0) Laplace: 

0U 

U

=∆

−=∆

:Laplace

:Poisson
ε
ρ

 (37) 

 
General solution + boundary conditions  specific solution. 
Differentiation gives E-field, applying Gauss gives the charge. From charge and voltage  
capacity. 
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Laplace equation in Cartesian, cylindrical or spherical coordinates: 
 

Cylindrical 
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Concentric spheres 
 
Two concentric metal spheres. Only r-dependent (38): 
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 Result: spherical equipotential surfaces. With boundary conditions on inner sphere U(r1) = V 

and on outer sphere U(r2) = 0: 
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Charge on the sphere Q and C = Q/V: 
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Cylinder in a uniform field 
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Maximum field 2·E0 at (r,θ) = (a,0) and the tangential field is zero on r = a. 

        

xErEU 00 cos −=−= ϑ  (48) 
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Fields from transformations 
 
Graphical method 
 
The graphical method uses properties as described more extensively in Alston [4]. 
Example: 
1. Draw E-lines and U-lines in uniform area. 
2. Divide U in equal partitions 
3. Choose a “mesh factor”. 
4. Draw the “guessed” U-lines in the non-uniform area, which fit continuously to those in 

the uniform area. 
5. Now draw the E-lines such that the mesh factor is respected. 
6. Correct where necessary the U-lines, repeat the procedure with the E-lines, and refine if 

needed. 
 
 
 
 
 
 
 
 
 

For areas with different dielectrics εr, the mesh factor changes (see example above). Since the 
field lines  are drawn on equal flux distances δψ we in fact draw D-lines. 
On an interface between dielectrics we in addition get dielectric refraction. 
 On the interface Et and Dn are continuous  

ε
ε

α
α

2

1

2

1

tan
tan

r

r=  (55)  

 
The field becomes non-uniform, with field enhancement at point P. 
 
For rotational symmetry we have to replace de constant lz 
by 2πr: 
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Conformal mapping 
 
Conformal mapping is a mathematical method to determine E-fields in two dimensional, 
z-independent cases (see Binns [5] or Feynman [6]). We consider a complex analytical function 
f(z) of the complex variable z; i.e. a function for which in an area both f(z) and its derivative 
f′(z) exist. Complex function theory shows the transformation defined by f(z) to be conform, 
except for those points where the derivative f′(z) equals zero (see e.g. Kreyszig [7]). Conformal 
mapping assumes the transformed angles to be “conform”. We will use this property to 
transform a E-U field to a different pattern which again we can interpret as a E-U plot. 

A mathematical help surface, the w-surface with coordinates u and v, is projected onto the 
“technical” z-surface, with coordinates x and y, for which we want to obtain a field. 
Consider the coordinates: z = x + jy and w = f(z) = u + jv, with x and y on the technical surface 
and u and v on the mathematical surface. 
For a function f(z) with which the z-surface is projected onto the w-surface we can show:  

y
v

y
ujzfand

x
vj

x
uzf

z
zfzzf

z
zf

∂
∂+

∂
∂−=

∂
∂+

∂
∂=⇒

∆
−∆+

→∆
= )(')(')()(

0
lim

)('  (59) 

The first for ∆z→0 for ∆y=0 and ∆x→0. The second for ∆x=0 and ∆y→0. Both derivatives are 
equal for an analytical function: 
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The so called Cauchy-Riemann equations. 
It can be shown, for all functions that satisfy these criteria to be analytical. Both the function 
u(x,y) as well as v(x,y) fulfill the Laplace equation, as can be seen when applying Cauchy-
Riemann: 
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We can interpret u as potential and v as field or vice versa. We now choose in the w-surface the 
simplest field projection meeting the Laplace requirement, e.g. equipotential lines u = cst and E-
lines v = cst. Every transformation of the z-surface gives a projection meeting Laplace’s 
equation, and which we can interpret as field projection. The projection of u = cst is again to be 
interpreted as equipotential line, and the projection of v = cst as E-line, or vice versa.  
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The generated field projection only depends on the transformation function w = f(z). See Binns 
[5] or Bewley [8] for a more systematical method for determining such functions, the so called 
Schwartz-Christoffel transformation method. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Shown here is an example for the function w = f(z) = z2. 

 
 

Transformation of u = cst and v = cst gives the contours: 
 
 

These are hyperboles crossing each other under a 90° angle. 
To be interpreted as two electrodes in one quadrant, under an angle of 90°: x- and y-axes 
together form one electrode (projection of v = 0), the other electrode is the projection of any 
other line with v = constant. 

 
  

2jxyyxjyxjvu +−=+=+ 222)(  (62) 

cst=xy=vandcst=yxu 22 −=  (63) 
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