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A. LOGICAL DEVICE FOR SMOOTHING OF BINARY SIGNALS

It has been shown (1) that the synthesis of an arbitrary sequential switching circuit

results in a network of logical elements arranged with feedback paths. The feedback

network can be shown to behave properly if, at a certain location within each feedback

loop, there is an element having smoothing action on the binary signals which come into

it. Such a smoothing element gives a change in its binary output signal only if a change

in. the input signal persists over a time longer than some fixed critical time. A
smoothing element may be contrasted with an element having only delay properties, for
the delay element would reproduce exactly, at its output, all input changes in signal

value.

Figure VIII-1 contrasts the effect on a binary signal of a delay element and of a
smoothing element. It is of theoretical interest to determine the relationship between

smoothing and delay. The circuit of Fig. VIII-2 demonstrates that a smoothing element

can be constructed of a delay element, and of a "majority" element whose output signal

is reintroduced as one of its inputs around a feedback loop having arbitrarily short delay
time.

The importance of the circuit derived is that smoothing elements are thus shown to

be no longer necessary as building blocks of sequential circuits. Instead they may be
replaced by delay elements from which other circuits having the terminal properties of
a smoothing element may then be constructed. In addition, delay elements are much
easier to represent algebraically than are smoothing elements.
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Fig. VIII-1. The effects of delay and smoothing upon an arbitrary binary signal
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Fig. VIII-2. Representation of a smoothing element. The majority
circuit, M, has a zero (unity) output if, and only if, two
or three of the three inputs have a zero (unity) value

B. SOME REMARKS ON SCATTERING FROM EDDIES

In a paper with the same title to be published in the Proceedings of the I. R. E. , the

author gives a simple demonstration of the gaussian character of electromagnetic radia-

tion scattered from refractive index fluctuations associated with pressure fluctuations in

a turbulent atmosphere. The argument makes explicit use of the Central Limit Theorem

of probability theory applied to dependent summands, unlike an earlier derivation (1).

It appears that coupling between eddies of nearly like sizes should appreciably

enhance the average scattered power calculated by Villars and Weisskopf (2, 3). Since

their calculations lead to values of the average scattered power which are considerably

smaller than the experimentally observed values, the difficulty of the problem of deter-

mining the range of eddy coupling is especially cogent.
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C. A DISCUSSION OF RATES FOR RANDOMLY VARYING CHANNELS,

INCLUDING AN UNSOLVED CASE

Consider a channel the instantaneous state of which depends on an index which is a

random variable. (Communication under fading conditions is a physical realization of

such a channel. ) Thus, for example, the binary channel with transition probabilities
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a 1-P

is generalized to

i a(s) I-a (s)

where the transition probabilities are now functions of the random variable s, the "state

of nature." We shall assume that the noise has no memory on the transmitted symbols,

so that we should be able to calculate quantities on a per-symbol basis.

We shall confine our attention to the case of "uncorrelated fading," i.e., the suc-

cessive states of nature are independent. A natural first problem is that of finding the

rate of transmission of information in each of the four situations schematically repre-

sented as follows:

S
Case I.

ST--C--RCase II. 4\
T- C- R

S
Case III. /4

T- C-R

S
Case IV. / \

T- C-R

The symbol T stands for transmitter, R for receiver, C for channel, and S for "state

of nature." Case I represents the situation in which neither the transmitter nor the

receiver knows nature's state (the parameter s), so that S is effectively just more noise

in addition to that already included in C. In Case II, the receiver, but not the trans-

mitter, knows nature's state (which conditions the channel transition probabilities). In

Case III the transmitter, but not the receiver, knows nature's state, and in Case IV both

the transmitter and the receiver know nature's state. Expressions for the rate (and

capacity) in Case I and in Case IV are almost self-evident (see below). What is sur-

prising is that, although an expression for the rate in Case II is easy to find, an expres-

sion for the rate in Case III has yet to be established.

Let us denote by p(s,x, y) the probability that nature chooses the state s, that x is

transmitted, and that y is received. We assume that p(s,x, y) can be factored as

p(s,x, y) = p(s) p(x/s) p(y/s,x)

i. e., nature chooses the state s without reference to any action at the transmitter, x

is chosen at the transmitter with a probability which may depend on nature's choice of
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state if known, and y is received with a probability which is a function both of nature's

state and the transmitted symbol. The trivariate distribution p(s, x, y) can be summed

to give various bivariate and conditional distributions. For example

p(y) = p(s, x, y)

SX

p(x/y) = p(s, , y)/ p(s, x,y)

S SX

By the notation <f(s,x, y)> is meant the average

<f(s,x,y)> = > p(s,x,y) f(s,x,y)

SXY

where the sum is over all triples of nature's states s, transmitted symbols x, and

received symbols y. In terms of this notation, we can justify the following expressions

for the rates in Cases I, II, and IV.

Case I. R I = log
p (x)

p(x/sy)
Case II. RII = log p(x)

p(x/sy)
Case IV. RIV = log p(x/s)

(All logarithms are to the base two.) The corresponding capacities are obtained by

maximizing R I and RII with respect to the a priori distribution p(x), and RIV with respect

to the conditional a priori distribution p(x/s). Before discussing the difficulties of

Case III, we shall give some examples which illustrate the above theory. Detailed cal-

culations are omitted.

Example I. Binary Symmetric Channel.

The channel

q p

p q

is written

q p 1 0 0 1
=q +p (1)

p q 0 1 1 0
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i.e., zeros are received as zeros and ones are received as ones with probability q

(this state is designated as state a), and zeros are received as ones and ones are

received as zeros with probability p (this state is designated as state P). H(x) denotes

the entropy - p(x) logp(x); p0 is the probability with which a zero is transmitted; the
X

corresponding probability for the state a is p o, for the state p is p op; Max denotes

the maximum of the expression that follows with respect to a. For this example, we

find that

R I = H(p + (q-p)po) - H(p)

with the corresponding capacity

CI = Max R I =1 - H(p)

1
attained for p = ', a familiar result. When the receiver but not the transmitter knows

nature's state, we have

R II= H(P o )

the capacity in this case is

C Max R =1II p II

1
attained for po = In this case the state information removes all the equivocation.

See Shannon's "correction channel" argument (1). When both the transmitter and the

receiver know nature's state, we have

R I V = q H(poa) + p H(pop)

The corresponding capacity is

CIV= Max R 1IV Poa' P IV

1
attained for Poa = op =2 i. e., both channel a and channel P are symmetric, and

attain capacity for an a priori probability of zeros equal to 1/2.

Example II. Binary Asymmetric Channel.

The channel

q p

0 1

is written

q p 1 0 10 111

0 1 0 1 0 1
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i. e., in state a, which has probability q, zeros and ones are received without error,

while in state P, which has probability p, both zeros and ones are received as ones.

(Channel a is noiseless, but channel p is "completely noisy." ) For this example we

find that

R I = H(qpo) - poH(p)

The corresponding capacity is

C I = Max R I = log(l + 2 -H(q)/q)
Po

attained for

o = [q(l + ZH(q)/q)]
- 1

If the receiver but not the transmitter knows nature's state, we have

RII = qH(po)

with capacity

CII = ax RII = q > C
o

attained for p =1 This last result means that since the channel is noiseless with
o2

probability q and the receiver knows when it is noiseless, q bits can be sent through

the channel if zeros and ones are selected at the transmitter with probabilities appro-

priate to a noiseless channel. In Case IV we have

RIV = qH(po )

with capacity

C = Max RIV q
IV P R IV

attained for p Note that the expression for RIV does not contain Pop, so that p
attained for Poa IV O op

can have any value between 0 and 1 without changing the rate. This is reasonable,

since, whenever the channel is in state p, ones are received regardless of what is sent;

the only possible advantage of a particular choice of p would be to help the receiver

guess the state of the channel, which it presumably knows already.

Example III. Ternary Channel.

The channel

2/3 1/6 1/6

1/6 2/3 1/6

1/6 1/6 2/3
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is written

2/3 1/6 1/6 1 0 0 1/2 0 1/2 1/2 1/2 0

1/6 2/3 1/6 = 0 1/2 1/2 + 0 1 0 + 1/2 1/2 0

1/6 1/6 2/3 0 1/2 i/2 1/2 0 1/2 0 0 1

i.e., one of the transmitted symbols is always noisefree, while the other two are indis-

tinguishable. In state a(p, y), which has probability 1/3, the symbol corresponding to

the top (middle, bottom) row of the channel matrix is noisefree.

For this example, we find that

R I  3 6- [(1 + 3po)log(1 + 3po ) + (1 + 3pl)log(1 + 3p 1 )

+ (4 - 3Po - 3p )log(4 - 3po - 3pl)]

The probability of the symbol corresponding to the top row of the channel matrix is des-

ignated by po, that of the symbol corresponding to the middle row by p 1 ' that of the sym-

bol corresponding to the bottom row by p 2 = 1 - Po - 1 . The corresponding capacity is

C= Max R =
I po,P 1 I3

1attained for po = p 1 = pZ =3, as demanded by the symmetry of the average channel. If

the receiver but not the transmitter knows nature's state, we have

H(p o )  H(p 1) H(P o + p1 )

RII 3 + 3

with capacity

C Max = H( ) > CII Po' p 1 3II

1
attained for po = = 2 = . When both the transmitter and the receiver know nature's

state, we have

H(poa) H(p l) H(p2Y)

R + -- +
IV

3 3 3

The corresponding capacity is

C p Max RIV =1
IV =Poa' Plp P 2y

attained for

1
Poa = p = 2y

Pla + P2 p = POP + P? = Po + Pl = 2
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This last result means that when both transmitter and receiver can track nature's state,

the transmitter should use the ternary channel as a noiseless binary channel by using

the noisefree symbol of the moment as one symbol and the noisy pair of the moment as

the other symbol. Of course, the noisefree symbol should be sent with probability 1/2,

and the noisy pair with total probability 1/2, with the latter probability distributed in

any way between the noisy symbols.

The reader will note the inequalities

R I  R II RIV

C I  CII < CIV

which are immediate consequences of the fact that the entropy cannot increase when

averaged (2).

We proceed now to a discussion of the problem of determining the rate in Case III,

when the transmitter but not the receiver knows nature's state. We have not yet suc-

ceeded in finding an expression for the rate (much less the capacity) in this case. The

difficulty lies in the fact that when the transmitted symbols depend on nature's state, the

received symbols contain information not only about possible transmitted messages but

also about nature's state, and it is not clear how to separate these two components. In

Case IV this difficulty does not arise, since in this case the receiver learns of nature's

state directly through its private noiseless channel.

Case III is further complicated by the fact that maximizing with respect to the con-

ditional a priori distribution p(x/s) is not the only way the transmitter can enhance its

rate. There seems also to be the possibility of maximizing the rate with respect to a

set of noiseless transducers. This can be seen by considering Example I above, the

symmetric binary channel. If the transmitter is driven by a message source with
1

Po = 2, and if the transmitter knows nature's momentary state, it can produce error-

free information at the receiver at the rate of one bit per symbol by simply reversing

the designation of zeros and ones whenever the channel is in state P, without the

receiver needing to know nature's momentary state.

Any expression for the rate RII in Case III must satisfy two limiting conditions:

1. If the transmitter ignores nature's state, so that p(x/s) = p(x), then RIII must

reduce to the expression given above for R . 2. If the transmitter takes a unique

action for every given state of nature, i.e., if for every s, p(x/s) is zero for all

x but a given x(s), then RIII must vanish, since in this case all the information

conveyed by the transmitted symbols is about nature's state and none is about pos-

sible messages.

An expression for RIII which satisfies these two limiting properties is
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ill=  og p(x/y)
R p(x/s)p(s/y)/

S

Unfortunately, not only has no adequate justification for this expression been given, but

an apparent counterexample seems to be available.

Consider Example I (the symmetric binary channel) for the special values

2 1
q =3' Poa = ' Pop = 1  (2)

Then it is easily verified that 1/3 of the received digits are zeros and that 2/3 are ones.

The received zeros always come from the zeros of some message; half of the received

ones come from the ones of some message, the other half result from the fact that the

channel is in state P, where only zeros (which are received as ones) can be transmitted.

Thus the received text is made up of runs of ones interspersed with runs of zeros. To

uniquely specify the transmitted sequence corresponding to a given received sequence,

we need know only how many ones in each run of ones are "meaningful," i. e., corre-

spond to the transmission of a one in the state a, and how many are "spurious," i.e.,

correspond to the compulsory transmission of a zero in state p. There is no need to

locate the "meaningful" ones in the runs.

The probability of a run of r ones followed by a zero is

p(r) = (_)r()

The probability of m "meaningful" ones in a run of r ones (followed by a zero) is

(r)m (l)rm = (r)(1)r (3)

The average entropy per symbol required to specify the number of "meaningful" ones

in the runs of ones of the received text is thus

0 p(r) H(r)

r=O (r+) (4)r=0

where H(r) is the entropy of the binomial distribution in Eq. 3. A calculation shows that

the sum in Eq. 4 is 0. 298.

If the usual notions of additivity of information apply to Case III, we should have

(message information in received text)

+ (correction entropy) = (entropy of corrected text)

or, in particular,
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RII I + 0. 298 = 0. 667

i.e.,

R 0. 369

However, if we substitute the values in Eq. 2 in the formula

p(x/y)
R =logRII= g p(x/s)p(s/y)

S

we obtain

2 I 2
R = + (-1) log() = 0.471

This discrepancy in the two values of RIII constitutes the counterexample.

The adjective "apparent" which appears in the phrase "apparent counterexample"

reflects the author's uncertainty as to the applicability in Case III of the usual notions

of additivity of information and "correction channels." Moreover, there is the possi-

bility that some other correction scheme might require less entropy, although it is hard

to see how this could be.

Thus the problem of deriving an expression for the rate (and the capacity) in the

situation in which the transmitter knows more about the noise than the receiver is as

yet unsolved, and the author hopefully awaits suggestions (or a solution!) from some

reader of this note.
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