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Abstract

Warped configurations admitting pairs of gravitating defects are analyzed. After devising

a general method for the construction of multidefects, specific examples are presented in the

case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse

physical situations such as (topological) kink-antikink systems, pairs of non-topological soli-

tons and bound configurations of a kink and of a non-topological soliton. In all the mentioned

cases the geometry is always well behaved (all relevant curvature invariants are regular) and

tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk

coordinate. Particular classes of solutions can be generalized to the framework where the

gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination.

After scrutinizing the structure of the zero modes, the obtained results are compared with

conventional gravitating configurations containing a single topological defect.
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1 Formulation of the problem

Solitons represent an important class of phenomena both in classical and quantum field

theory. Solitonic solutions include monopoles, skyrmions, vortices an kinks [1]. It is well

known that in (1 + 1) dimensional field theories (static) topological solitons can arise in

combination with an appropriately non-linear interaction potential [2, 3]. These solutions

are customarily called kinks and they may arise either in the case of polynomial potential or

in the case of sine-Gordon potentials [1, 4, 5]. In (1 + 1) dimensions, spatial infinity consists

of two points (i.e. ±∞) and the kink solution typically interpolates between two minima of

the underlying potential. The topological charge of the kink is positive. If the kink solution

exist, there will also typically exist the related antikink solution whose topological charge

will be opposite to the one of the kink. In recent years general methods have been devised for

the analysis of the complicated nonlinear problem arising in the case of (1 + 1)-dimensional

multidefect systems [6, 7, 8, 9, 10].

It is also well known that, in (1+1), dimensions non-topological solitons can occur. These

objects have vanishing topological charge since the field profile vanishes for large absolute

value of the spatial coordinate [11].

It is finally known that, with the appropriate field content, multidefects do arise in (1+1)

dimensions [2, 3, 8, 10]. These solutions include, for instance bound states of a kink and of

an antikink and the so-called trapping bag solutions [3, 12] where a non-topological profile

is supplemented by a kink (or an antikink) profile.

There are mathematical and physical analogies between the defects of (1+1) dimensional

field theories and the gravitating solitonic solutions of five-dimensional gravity. In the latter

case the rôle of the spatial coordinate is played by the fifth dimension parametrizing the

field profile in the bulk space-time. Along this perspective it is known that gravitating kink

solutions may arise, for instance, in the context of five-dimensional Einstein-Hilbert gravity.

Different groups analyzed single kink solutions in higher-dimensional geometries. In partic-

ular examples are known both in flat five-dimensional space-time [13] (see also [14]), and in

five-dimensional (warped) space-times [15, 16, 17, 18, 19, 20] (see also [22, 23] for an inter-

esting perspective). While the compatibility of these configurations with higher-dimensional

Einstein-Hilbert gravity has been ascertained, interesting generalizations contemplate the

coupling of the scalar degree of freedom to the curvature [24, 25, 26], the inclusion of Gauss-

Bonnet self-interactions [27, 28, 29, 30, 31], the addition of more than one internal (warped)

dimension (see, for instance, [32, 33, 34]). While the features of the geometry may be di-

verse, it is certainly plausible (even if not mandatory) that gravitating kink solutions lead to

five-dimensional anti-de Sitter geometry ( AdS5 in the following) for large absolute values of

the bulk coordinate. In a related framework it is also possible to obtain kink profiles whose

related geometry leads, for large absolute values of the bulk radius, to five-dimensional

Minkowski space-time. Moreover, single defects with non-topological features have been

studied in [35]. It should be stressed that gravity is an essential ingredient for all the five-
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dimensional solitonic solutions mentioned in the present paragraph. By contrast, in (1 + 1)

dimensions, gravitational interactions are absent. This simple observation is the root of the

physical differences occurring in the structure of the zero-modes of the system.

Indeed, gravitating solutions containing a single defect are rather intriguing since they

may be used to localize fluctuations of various spin in five-dimensional gravity. They con-

stitute a viable example of (static) brane models where the thickness of the brane does not

vanish as it happens, instead in the Randall-Sundrum set-up [36, 37]. The problem of local-

ization of the fluctuations of single-defect models has been addressed in a number of ways.

In [19, 20, 21] a fully gauge-invariant formalism has been proposed and, subsequently, useful

gauge-dependent approaches have also been developed [39, 40] (see also [41]).

The problem to be discussed in the present paper can be formulated in analogy with

the case of (1 + 1)-dimensional field theories. While we do know that multidefects are

present in (1 + 1) dimensions, it would be interesting to know if multidefects may arise in

warped geometries. Consider, therefore, the simplest five-dimensional framework allowing

for gravitating multidefects and described by the action 2

SEH =
∫

d5x
√

|G|
[

− R

2κ
+

1

2
GAB∂Aϕ∂Bϕ+

1

2
GAB∂Aχ∂Bχ−W (ϕ, χ)

]

, (1.1)

where κ = 8π/M3
5 , GAB is the five-dimensional metric tensor andR the five-dimensional Ricci

scalar. In Eq. (1.1) φ and χ are two scalar degrees of freedom and W (φ, χ) is the potential

containing both the self-interactions of φ and χ as well as their mutual interactions. It will

be shown that solutions containing pairs of gravitating defects are a common feature of the

theory defined by Eq. (1.1) and can be obtained with an appropriate (but rather general)

constructive procedure. The discussion presented here is limited to pair of defects, however,

it seems rather plausible to extend the discussion to an even larger number of fields.

It was recently pointed out that kink-antikink solutions as well as trapping bag solutions

may arise in the presence of suitably tuned Gauss-Bonnet corrections to the Einstein-Hilbert

action [38]. In the present analysis those considerations will be extended and it will be shown,

in particular, that Gauss-Bonnet corrections are a useful addition but they are not crucial for

the existence of gravitating multidefects. After discussing the physical properties of the new

solutions containing pairs of defects it will be also interesting to develop the gauge-invariant

approach proposed in [19, 20, 21] to include the case of configurations containing more than

one defect.

The plan of the present paper is then the following. In sec. 2 the framework of the

present analysis will be explained. In sec. 3, after developing a rather general method

for the integration of the system, kink-antikink configurations will be specifically analyzed.

Section 4 deals primarily with bound systems of topological and non-topological solitons.

The analysis of the zero modes of the system is contained in sec. 5. Section 6 contains the

concluding remarks and a summary of the main findings of the present investigation.

2Latin (uppercase) letters run over the higher-dimensional space-time while Greek (lowercase) indices are

defined over the four-dimensional space-time.
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2 The general framework

Consider first the case of five-dimensional Einstein-Hilbert gravity characterized by the action

(1.1). The field equations derived from Eq. (1.1) simply become:

RAB − 1

2
GABR = κTAB, (2.1)

GAB∇A∇Bφ+
∂W

∂φ
= 0, (2.2)

GAB∇A∇Bχ+
∂W

∂χ
= 0, (2.3)

where RAB is the Ricci tensor and ∇A is the covariant derivative constructed from the

five-dimensional metric GAB. The energy-momentum tensor of the system, TAB, is given,

according to Eq. (1.1) by

TAB = ∂Aφ∂Bφ+ ∂Aχ∂Bχ−GAB

[

GMN

2
∂Mφ∂Nφ+

GMN

2
∂Mχ∂Nχ−W (φ, χ)

]

. (2.4)

Consider now, in particular, the five-dimensional (warped) line element

ds2 = a2(w)[ηµνdx
µdxν − dw2], (2.5)

where w is the bulk coordinate, a(w) the warp factor and ηµν the four-dimensional Minkowski

metric. In the case described by Eq. (2.5), Eqs. (2.1), (2.2) and (2.3) become, respectively,

H′ + H2 = −κ
3

[

φ′2

2
+
χ′2

2
+Wa2

]

, (2.6)

H2 =
κ

6

[

φ′2

2
+
χ′2

2
−Wa2

]

, (2.7)

φ′′ + 3Hφ′ − a2∂W

∂φ
= 0, (2.8)

χ′′ + 3Hχ′ − a2∂W

∂χ
= 0, (2.9)

where the prime denotes a derivation with respect to the bulk coordinate w and, within this

notation, H = (ln a)′. By linearly combining Eqs. (2.6) and (2.7) the following useful pair

of equations can be readily obtained:

φ′2 + χ′2 =
3

κ
(H2 −H′), (2.10)

a2W = − 3

2κ
(H′ + 3H2). (2.11)

Needless to say that Eqs. (2.10) and (2.11) are fully equivalent to Eqs. (2.6) and (2.7). In

the presence of more 3 transverse dimensions, the line element (2.5) can be generalized as

ds2 = a2(w)[dt2 − dx2
1 − dx2

2 − ...− dx2
d − dw2], (2.12)
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where the ellipses stand for the d (transverse) spatial coordinates while w still denotes the

bulk coordinate. The overall dimensionality of the space-time D will then be given by

D = d + 2. Consequently, in the case of the line element of Eq. (2.12), the analog of Eqs.

(2.10) and (2.11) will be

φ′2 + χ′2 =
d

κ
(H2 −H′), (2.13)

W (φ, χ) = − d

2κa2
(H′ + dH2). (2.14)

Another type of generalization of the system under discussion concerns the addition of

quadratic corrections to the Einstein-Hilbert term. In this case the total action is given by

S = SEH + SGB, (2.15)

where

SGB = −α′
∫

d5x
√

|G|R2
GB, (2.16)

is the Gauss-Bonnet action3 written in terms of the Euler-Gauss-Bonnet combination 4, i.e.

R2
GB = RABCDR

ABCD − 4RABR
AB +R2. (2.17)

In four space-time dimensions, the Gauss-Bonnet combination (2.17) is a topological term

[42, 43] and it coincides with the Euler invariant. This observation implies that, in four

space-time dimensions, the contribution of the four-dimensional analog of Eq. (2.16) to the

equations of motion can be rearranged in a four-divergence [42].

In more than four space-time dimensions, the contribution of the Gauss-Bonnet combi-

nation leads to a ghost-free theory [46]. In particular, the variation of the Gauss-Bonnet

action (2.16) brings, at the right hand side of Eq. (2.1), a new term which can be written

as 2κα′QAB where

QB
A =

1

2
δB
AR2

GB − 2RRB
A + 4RACR

CB + 4RCDR
CBD

A − 2RACDER
BCDE . (2.18)

is the so-called Lanczos tensor [42, 43, 44, 45] (see also [51] for an interesting review on

Gauss-Bonnet gravity and Einstein-Lanczos equations).

The relevant featture to be appreciated is that the inclusion of the contribution provided

by Eq. (2.18) generalizes Eqs. (2.10) and (2.11) to a form which is, however, still tractable:

φ′2 + χ′2 =
3

κ
(H2 −H′)

[

1 − 4α

a2
H2

]

, (2.19)

W (φ, χ) = − 3

2κa2

{

(H2 −H′) + 2(H2 + H′)
[

1 − 2α

a2
H2

]}

, (2.20)

3In Eq. (2.16) α
′ is a constant with dimensions, in natural gravitational units 2κ = 1, of an inverse length.

It is practical, at the level of the Einstein-Lanczos equations, to define an effective coupling α = 2κα
′ (see,

below, Eqs. (2.19) and (2.20).
4The Euler-Gauss-Bonnet (or simply Gauss-Bonnet for short) combination [42, 43, 44, 45, 46, 47, 48, 49,

50] arises in different higher-dimensional theories and it does also appear in the low-energy string effective

action as first correction in the string tension expansion.
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where α = 2κα′. Note that α has dimensions of a squared length. Equations (2.19) and (2.20)

supplemented by Eqs. (2.8) and (2.9) (which are not affected by the quadratic corrections)

form a closed set of equations which will be denoted, for short, as the Einstein-lanczos

system.

Finally, as in the case of Einstein-Hilbert gravity, the Einstein-Lanczos equations (2.19)

and (2.20) can be further generalized to include d transverse dimensions. In fact Eq. (2.12)

implies that Eqs. (2.19) and (2.20) are generalized to:

φ′2 + χ′2 =
d

κ
(H2 −H′)

[

1 − 2α(d− 1)(d− 2)

a2
H2

]

, (2.21)

W (φ, χ) = − d

2κa2

{

(H2 −H′) + [(d− 1)H2 + 2H′]
[

1 − α(d− 1)(d− 2)

a2
H2

]}

,(2.22)

In the limit when one of the two scalar degrees of freedom is absent it is known that

gravitating defects are present and may even lead to realistic warped geometries with well

defined AdS5 limit for large value of the bulk coordinate. For instance in [15, 16] and

in [17, 18, 19, 20] kink solutions have been presented in the context of Einstein-Hilbert

gravity and in the presence of either polynomial or generalized sine-gordon potentials. Single

kink solutions may also be obtained in Gauss-Bonnet gravity [27, 28, 29]. The aim of the

subsequent sections will be to show that bound systems of two gravitating defects may also

arise naturally in the framework of the present section. Furthermore, particular attention

will be given to the case where the five-dimensional geometry possesses the desired AdS5

limit.

3 Soliton-antisoliton systems

Consider, to begin, the case of five-dimensional Einstein-Hilbert gravity with one non-

compact extra-dimension denoted by w. In this case a general ansatz for the soliton-

antisoliton system can be written as

φ(w) = v
√

1 + g(w), χ(w) = v
√

1 − g(w), (3.1)

where v is a dimension-full constant (i.e. [v] = L−3/2) and g(w) is a dimensionless function

of the bulk radius satisfying the following set of properties:

• g(w) is a continuous and differentiable function of w;

• g(w) is a monotonic function of w;

• the derivatives of g(w) are also continuous at least up to the second derivative (i.e.

g′(w) and g′′(w) are continuous functions of w).
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Since the ansatz (3.1) must describe a bound system of a kink and of an antikink it must

also be required that

lim
w→±∞

g(w) = ±1. (3.2)

The numerical value of the limit is just a reflection of the parametrization (3.1) but it is

important, for more general parametrizations, that g(w) goes to a constant for large values

of the bulk coordinate. Finally, it is obvious that since g(w) is monotonic, g′(w) will never

vanish for any finite value of the bulk radius.

Inserting Eq. (3.1) into Eqs. (2.10) and (2.11) a necessary condition on the functional

form of g′(w) can be obtained:

(

dg

dw

)2

=
6

κv2
(1 − g2)(H2 −H′). (3.3)

Once the geometry is specified, Eq. (3.3) allows to obtain the explicit form of g(w). Then,

by fixing the integration constants it is possible to satisfy the conditions required for the

existence of a kink-antikink solution.

Consider then, as an example, the simple case when the warp factor is given by

a(w) =
1√

x2 + 1
, x = bw, (3.4)

where b is a dimensionfull constant which will eventually fix the thickness of the configuration.

Using Eq. (3.4) into Eq. (3.3) the following differential equation can be readily obtained

dg

dx
= ±

√

6

κv2

√
1 − g2

x2 + 1
, (3.5)

whose solution is

g(x) = ± x√
x2 + 1

, kv2 = 6. (3.6)

The plus sign at the right hand side of Eq. (3.6) will be conventionally chosen. This choice

is, indeed, rather general and it implies that, according to Eq. (3.1), φ(w) describes a kink

while χ(w) describes and antikink. In fact, defining the topological charges as

Qφ =
1

2π

∫

+∞

−∞

∂φ

∂w
dw, Qχ =

1

2π

∫

+∞

−∞

∂χ

∂w
dw, (3.7)

we will have, according to Eqs. (3.1) and (3.6), that πQφ = v/
√

2 > 0 and that πQχ =

−v/
√

2 < 0. If g(x) → −g(x), the transformed ansatz is still a solution of Eq. (3.3)

(corresponding to the lower sign in Eq. (3.6)) and it implies that φ → χ and that χ → φ.

In other words, if g → −g the kink turns into an antikink and viceversa. By choosing the

upper sign in Eq. (3.6) we can also write the differential relation appearing in Eq. (3.5) as

dg

dx
= (1 − g2)3/2. (3.8)
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Equations (2.8), (2.9) and (2.11) allow then to compute the specific form of the potential

first as a function of g and then as a function of φ and χ. Using Eqs. (3.4), (3.6) and (3.8)

and recalling Eq. (3.1) we will have that, as a function of g

W (g) =
3b2

2κ
(1 − 5g2), (3.9)

∂W

∂φ
(g) = −b

2

4
v
√

1 + g(1 − g)(1 + 11g), (3.10)

∂W

∂χ
(g) = −b

2

4
v
√

1 − g(1 + g)(1 − 11g). (3.11)

Equations (3.9), (3.10) and (3.11) allow to determine the explicit form of the potential which

is

W (φ, χ) =
9b2

2κv2
(φ2 + χ2) − 15b2

4κv4
(φ4 + χ4)

+ (φ2 + χ2 − 2v2)
[

11b2

16v4
(φ4 + χ4) − b2

2v2
(φ2 + χ2)

]

. (3.12)

It can be explicitly verified, as a useful cross-check, that Eq. (3.12), once inserted into Eqs.

(2.6)–(2.9), solves the system provided the warp factor is given by Eq. (3.4) and the field

profiles are the ones of Eq. (3.1).

The obtained result can be generalized to the case of d transverse dimensions (i.e. Eqs.

(2.12)). The calculation follows, in this case, exactly the same steps discussed for the previous

five-dimensional example. Less obvious, even if solvable, is the generalization of the obtained

results to the situation where the Gauss-Bonnet self-interactions are present.

Let us show, as a premise, that the ansatz of Eq. (3.1) is not a solution of the five-

dimensional Einstein-Lanczos system, i.e. Eqs. (2.19) and (2.20) supplemented by Eqs.

(2.8) and (2.9). Equation (3.4) can be generalized to the following form

a(w) =
a0√
x2 + 1

, (3.13)

with a0 = 2
√
αb, as required by the compatibility of Eq. (3.13) with Eq. (2.19). Thus,

inserting Eq. (3.4) and Eq. (3.1) into Eq. (2.19) the following differential condition on g

can be obtained:
(

dg

dx

)2

= β2
1 − g2

(1 + x2)3
, β2 =

6

κv2
. (3.14)

Now, in the case β = π/2 the solution of Eq. (3.14) is

g(x) = sin
(

π

2

x√
x2 + 1

)

. (3.15)

Equation (3.15) certainly satisfies the conditions required for the existence of a kink-antikink

solution. However, the compatibility with Eq. (2.20) as well as with Eqs. (2.6) and (2.7)

cannot be achieved.
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It can be actually shown [38] that the correct ansatz leading to a consistent solution of

the EInstein-Lanczos system is given, in this case, by the following expressions

φ(w) =
v√
2

(

1 +
x√
x2 + 1

)3/2

, (3.16)

χ(w) =
v√
2

(

1 − x√
x2 + 1

)3/2

, (3.17)

having chosen the warp factor in the form (3.13) with a0 = 2
√
αb and with κv2 = 4/3. In

this case the potential W (φ, χ) can be written as

W (φ̃, χ̃) =
3v2

2α
(φ̃2 + χ̃2)2 − 3v2

α
(φ̃2 + χ̃2) +

15

16

v2

α

+
7

2

v2

α
(|φ̃|2/3 + |χ̃|2/3 − 1)(1 − φ̃2 − χ̃2)2, (3.18)

where, for notational convenience, the canonical fields φ̃ and χ̃ have been introduced (note

that φ = 2 v φ̃ and χ = 2 v χ̃). The solution expressed by Eqs. (3.16) and (3.17) is qualita-

tively similar to the one of Eq. (3.1) but it is, at the same time, mathematically different.

Even if the geometry is given, in both cases, by a warp factor that tends to AdS5 for large

absolute value of the bulk coordinate, the AdS5 radius is different in the two cases given,

respectively, by Eqs. (3.4) and (3.13) the difference being given by a0 = 2
√
αb. Finally, the

solution (3.16) and (3.17) holds for φ > 0 and χ > 0. However, also φ → −φ and χ → −χ
is a solution of the system as it is clear from the absolute values appearing in Eq. (3.18).

In Fig. 1 the kink-antikink solutions are illustrated for the cases of the Einstein-Hilbert

kink (see Eqs. (3.1) and (3.6)) and of the Gauss-Bonnet kink (see Eqs. (3.16) and (3.17)).

In Fig. 1 the dashed line denotes the antikink while the full line illustrates the kink. It

should be stressed that the main objective of this paper is not to find single gravitating

kinks (or single antikinks) but rather to find solutions where two field configurations are

simultaneously present with two opposite topological charges.

While the solutions reported in Fig. 1 are interesting by themselves, it is worth stressing

that, in the present section, a rather general method for constructing multidefects solutions

has been proposed. The same method will also be exploited in the forthcoming sections in

order to generalize the present considerations to the case of bound systems of topological

and non-topological solitons.

As a final remark, it should be stressed that the solutions discussed in the present section

can be generalized to the case where there are, generically, d transverse dimensions. In fact,

owing to the form of Eqs. (2.13)–(2.14) and of Eqs. (2.21)–(2.22), the same analytical steps

can be successfully carried on.
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Figure 1: The Einstein-Hilbert (EH) and the Gauss-Bonnet (GB) kink-antikink systems are

illustrated, by fixing, conventionally v = 1 in natural gravitational units 2κ = 1. The full

lines denote the kink profiles while the dashed lines denote the antikink profiles.

4 Topological and non-topological solitons

In the present section a general class of solutions containing pairs of defects will be presented.

The new feature of this class is that, for some values of a discrete parameter, the solutions

describe a system containing simultaneously, a topological and a non-topological defect. In

the same class of solutions, it is also possible to find configurations that can be interpreted

as a classically bound system of two non-topological profiles.

Consider, for this purpose, the following form of the warp factor:

a(w) = [x2ν + 1]−
1

2ν , x = bw, (4.1)

where ν is a natural number. Following a similar procedure of the one presented in the

previous section consider also the following ansatz for the field profiles:

φ(w) = v{[1 + h(w)]3/2 + [1 − h(w)]3/2}, (4.2)

χ(w) = v{[1 + h(w)]3/2 − [1 − h(w)]3/2}, (4.3)

where h(w) is a continuous function sharing, for a topological soliton, exactly the same

properties of g(w). In particular, for a topological soliton, it will be required that

lim
w→±∞

h(w) = ±1. (4.4)
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The analog of Eq. (4.4) in the case of a non-topological profile will instead be:

lim
|w|→∞

h(w) = ±1. (4.5)

In spite of a superficial similarity, Eqs. (4.4) and (4.5) imply, indeed, different boundary

conditions. In the case of Eq. (4.4) the function h(w) goes either to −1 or to +1 provided

w goes, respectively, either to −∞ or to +∞. For the boundary conditions expressed by

Eq. (4.5), the function h(w) goes to the same value as soon as |w| → ∞. This value can be

either +1 or −1 since, as it will be discussed in a moment, the change h→ −h still leads to a

viable solution. It is important to remark that, as a consequence off the different boundary

conditions at infinity, the function h(w) is either monotonic (topological profile) or non-

monotonic (non-topological profile). In this sense h(w) shares exactly the same properties

of g(w) only in the case of topological configurations.

Working in the framework of five-dimensional Einstein-Hilbert gravity, Eq. (2.10) al-

lows the determination of h(w) whose functional form must obey the following differential

condition
(

dh

dx

)2

=
(

2ν − 1

3κv2

)

x2ν−2

x2ν + 1
, (4.6)

whose solution is

h(x) =
2

π
arctan (xν), κv2 =

π2

12

2ν − 1

ν2
. (4.7)

Equation (4.7) implies that if ν is an odd integer, h(x) will necessarily interpolate between

−1 and +1 (as required in the first set of boundary conditions written in Eq. (4.4)). If, on

the contrary, ν is an even integer, h(x) will always go to +1 as soon as |x| → ∞ (as required

in the second set of boundary conditions written in Eq. (4.5)). Furthermore, in the case of

even-ν, h(x) will have a global minimum in x = 0. As already anticipated in the previous

paragraph, the form of the differential condition (4.6) implies that if h(x) is a solution, also

−h(x) will be a solution. If h→ −h, Eqs. (4.2) and (4.3) imply that φ→ φ and χ→ −χ.

The difference between the solutions with odd-ν and the ones with even-ν implies also

different physical properties which will be one of the themes of the forthcoming discussion.

The potential satisfying Eqs. (2.8), (2.9) and (2.11) (or, equivalently, Eqs. (2.6)–(2.9)) can

be written as

W (φ, χ) =
3b2

2κ
[sin2 σ]

ν−1

ν [(2ν − 1) − (2ν + 3) sin2 σ] + [|φ̃+ χ̃|2/3 + |φ̃− χ̃|2/3 − 2]A, (4.8)

where, as usual, φ = 2vφ̃ and χ = 2vχ̃. The functions σ(φ̃, χ̃) and A(φ̃, χ̃) appearing in Eq.

(4.8) are defined, respectively, as:

A(φ̃, χ̃) =
18b2 v2 ν

π2
cosσ{σ[sin2 σ]

ν−2

2ν [(ν − 1) − (2ν + 3) sin2 σ]

+
ν

2
cosσ[sin2 σ]

ν−1

ν }, (4.9)

σ(φ̃, χ̃) =
π

4
[|φ̃+ χ̃|2/3 − |φ̃− χ̃|2/3]. (4.10)
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Figure 2: The trapping bag solutions arising in the case of odd values of ν are illustrated

for few typical cases and by choosing, as in Fig. 1, v = 1. The full lines refer to the case

ν = 1 while the dashes lines to the case ν = 3. It should be appreciated that the topological

(plot at the right) and the non-topological (plot at the left) profiles are both simultaneously

present for each odd value of ν.

Let us now scrutinize the physical properties of the obtained solution. From Eq. (4.1),

(both for even and odd values of ν), the warp factor always tend to AdS5 for |w| → ∞ i.e.

lim
w→±∞

a(w) =
1

b|w| . (4.11)

The limit (4.11) reproduces the asymptotic behaviour of the warp factors considered in Eqs.

(3.4) and (3.13). Furthermore, in the cases of Eqs. (3.4), (3.13) and (4.1) the geometry is

always regular since all the curvature invariants are never divergent at finite values of the

bulk coordinate and they go to a constant in the limit |w| → ∞ as implied by the AdS5

limit of the warp factors.

As previously argued in connection with the properties of h(x) the features of the solutions

differ depending on the even or odd values of ν. Consider the first few odd values of ν, i.e.

ν = 1, 3, 5... . The analysis of these situations will allow to gain intuition on the more general

case. In Fig. 2 the behaviour of φ(w) (left panel) and of χ(w) (plot at the right) is illustrated

as a function of the dimensionless bulk coordinate x = bw for ν = 1 and ν = 3. Even if φ

and χ are solutions, for a given value of ν, of the same system of equations, the properties

of the obtained defects are different. In particular, for odd values of ν, φ always describes a

non-topological profile. More specifically, Eq. (4.2) imply

lim
w→±∞

φ(w) = 2
√

2v. (4.12)

Note that in Fig. 2 (as well in all the other figures) the value of v has been set to 1 in natural

gravitational units 2κ = 1.
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Figure 3: The bag-bag solutions arising in the case of even values of ν are illustrated for

ν = 2 (left plot) and for ν = 4 (right plot). The value of v is, as usual, set to 1 in natural

gravitational units.

For the same odd values of ν, the corresponding solution for χ(w) describes instead a

topological soliton. In this case (see Fig. 2, right plot) the field profile interpolates between

−23/2v and +23/2v:

lim
w→−∞

χ(w) = −2
√

2v, lim
w→+∞

χ(w) = +2
√

2v. (4.13)

In the case ν = 3 the solution also exhibits a short plateau centered around w = 0. Larger

(odd) values of ν lead to profiles which are qualitatively similar to the ones discussed in the

cases of Fig. 2. It is therefore legitimate to conclude that, for odd values of ν, the solution

defined by Eqs. (4.2), (4.3) and (4.7) always describe a bound system of a topological

soliton (the χ field) and of a non-topological defect (the φ field). Similar solutions also

arise in (1+1)-dimensional field theories with appropriate non-linear potentials, and, in that

context, they have been named ”trapping bags” [1, 3, 12] since, in our language, the χ field

is ”trapped” in the ”bag” provided by the φ profile.

From Eq. (4.6) it follows that if h(x) is a solution, also −h(x) will be a solution. If

h → −h, then, from Eqs. (4.2) and (4.3), the rôle of φ and χ will be interchanged. In

particular, in the case of odd ν, h → −h would imply that the topological profile becomes

non-topological and vice-versa. Let us now consider the case when ν is an even integer, i.e.

ν = 2, 4, 6, .... In Fig. 3 the first two relevant values of ν are illustrated. In this situation

it is not difficult to get convinced, by looking at Eqs. (4.2), (4.3) and (4.7) that φ(w) and

χ(w) both describe non-topological profiles and that the overall solution is therefore a bound

system of two bags, according to the terminology previously employed in the present section.
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This statement can be explicitly verified since, in the case of even ν, it holds that

lim
w→±∞

φ(w) = lim
w→±∞

χ(w) = 2
√

2 v. (4.14)

It can be argued from Fig. 3 that as ν increases the width of the bag also increases. Moreover,

both φ and χ have a global minimum for w = 0. However, while χ(0) = 0 φ(0) = 2 v. The

configurations arising in the case of even values of ν illustrate the system formed of two bag

profiles (i.e. bag-bag solutions).

5 Zero-modes for multidefects systems

In the following the techniques for the analysis of the zero modes in the case of gravitating

multidefects will be presented. The treatment followed in the present section generalizes

the gauge-invariant approach to the fluctuations of single defects developed in [19, 20]. The

main differences of the discussion resides in the analysis of the scalar modes. In the case of

a single gravitating defect in five-dimensional warped geometries it was shown that

• the scalar modes of the configurations can be found by solving a single second-order

(linear) differential equation for a gauge-invariant variable which is the combination of

the fluctuations of the geometry and of the fluctuation of the defect;

• this gauge-invariant degree of freedom is indeed the canonical normal mode of the

system, as it was demonstrated [21] by diagonalizing the full second-order action for

the scalar modes of the geometry coupled with the fluctuations of the defect;

• the zero-mode (i.e. the lowest mass eigenstate) was shown not to be normalizable.

The introduction of a further scalar degree of freedom entails necessarily the need of a second

gauge-invariant variable. While the generalization of the tensor and vector problem will be

swiftly discussed just for completeness, the treatment of the scalar modes is qualitatively

different with respect to single-defect configurations.

5.1 General considerations

Denoting by δφ and δχ the first-order perturbations of φ and χ, the scalar degrees of freedom

will be given by their background values supplemented by the appropriate fluctuations:

φ→ φ(w) + δφ(xµ, w), χ→ φ(w) + δχ(xµ, w). (5.1)

By taking the trace of Eq. (2.1) we get

RAB = κ
(

TAB − T

3
GAB

)

, TA
A = T, (5.2)
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which is particularly useful in perturbation theory since it gives automatically all the relevant

equations avoiding the calculation of the first-order fluctuation of the Ricci scalar. Therefore,

by taking the first-order fluctuation of Eq. (5.2) and by recalling Eq. (2.4) we will have

δRAB = κ[∂Aδφ∂Bφ+ ∂Aφ∂Bδφ+ ∂Aδχ∂Bχ+ ∂Aχ∂Bδχ]

− 2κ

3
W (φ, χ)δGAB − 2κ

3
GAB

(

∂W

∂φ
δφ+

∂W

∂χ
δχ
)

, (5.3)

where GAB denotes the background value of the metric tensor while δGAB and δRAB denote,

respectively, the fluctuation of the five-dimensional metric and the fluctuation of the five-

dimensional Ricci tensor.

With similar notations, the first-order version of Eqs. (2.2) and (2.3) can be written by

recalling that, when acting on a scalar degree of freedom, ∇A∇B = ∂A∂B − ΓC
AB∂C where

ΓC
AB is the five-dimensional Christoffel connection. With this specification in mind we will

have that:

δGAB[∂A∂Bφ− Γ
C
AB∂Cφ] +G

AB
[∂A∂Bδφ− δΓC

AB∂Cφ− Γ
C
AB∂Cδφ]

+
∂2W

∂φ2
δφ+

∂2W

∂φ∂χ
δχ = 0, (5.4)

δGAB[∂A∂Bχ− Γ
C
AB∂Cχ] +G

AB
[∂A∂Bδχ− δΓC

AB∂Cχ− Γ
C
AB∂Cδχ]

+
∂2W

∂χ2
δχ+

∂2W

∂φ∂χ
δφ = 0. (5.5)

In Eqs. (5.4) and (5.5), Γ
C
AB and δΓC

AB denote, respectively, the background Christoffel and

their first-order fluctuations.

As usual [19], the fifteen degrees of freedom constituting δGAB in five dimensions5 can

be separated, to first-order, into tensor, vector and scalar modes. In particular, this de-

composition amounts to parametrize the various perturbed components of the metric tensor

as

δGµν = 2a2hµν + a2(∂µfν + ∂νfµ) + 2a2ηµνψ + 2a2∂µ∂νE, (5.6)

δGµw = a2(Dµ + ∂µC), (5.7)

δGww = 2a2ξ, (5.8)

where the Lorentz indices run over the four space-time dimensions. The tensor modes,

i.e. hµν , are, by definition, traceless and divergenceless, i.e. ∂µh
µ
ν = hµ

µ. Furthermore, it

can be shown that, under infinitesimal coordinate transformations hµν is invariant. The

invariance of a given fluctuations with respect to infinitesimal coordinate transformations

will be referred to as gauge-invariance since the group of infinitesimal diffeomorphisms is,

effectively, the gauge group of gravitation.

5While it is rather simple to discuss the same decomposition in the case of d transverse dimensions [52],

we will be mainly concerned here with the case d = 3.
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The vector modes are parametrized by two divergenceless vectors i.e. fµ andDµ subjected

to the conditions ∂µD
µ = 0 and ∂µf

µ = 0. Overall there are six degrees of freedom.

Finally, the scalar modes are parametrized in terms of the four Lorentz scalars ψ, ξ, E

and C whose evolution equations are coupled with the fluctuations of the multidefect, i.e.

δφ and δχ.

5.2 Tensor zero-mode

The evolution equation of the tensor modes is given by

h′′µν + 3Hh′µν − 2hµν = 0, (5.9)

where 2 = ηαβ∂α∂β. The zero mode of the tensor fluctuations is localized in all the solutions

presented in the previous sections owing to the quasi-AdS5 nature of the geometry. Defining,

in fact, the rescaled variable µµν = a3/2hµν , Eq. (5.9) becomes:

µ′′
µν − 2µµν −

(a3/2)′′

a3/2
µµν = 0. (5.10)

Note that µµν is the variable which appears canonically normalized in the (second-order)

action. Neglecting the Laplacian, the solution of Eq. (5.10) which is normalizable is given

by µµν = cµνa
3/2 where cµν does not depend on w and µ0(w) = a3/2(w). Thus, the tensor

zero mode is normalizable provided the integral

∫ +∞

−∞
|µ0(w)|2 dw =

∫ +∞

−∞
a3(w) dw (5.11)

is finite. This normalizability condition is satisfied by all the explicit forms of the warp

factors discussed so far in the present paper and, in particular by Eqs. (3.4) and (4.1). In

particular, it turns out that

∫ ∞

−∞

dw

[1 + (bw)2]3/2
=

2

b

∫ ∞

−∞

dw

[1 + (bw)2ν ]
3

2ν

=
2

b

Γ
(

1 + 1

2ν

)

Γ
(

1

ν

)

Γ
(

3

2ν

) , (5.12)

where the result of the second integral in (5.12) is obtained under the assumption that ν

is a natural number, i.e. the same assumption for which the solutions reported in sec. 4

are defined. The finiteness of the integral appearing in Eq. (5.11) is also required by the

finiteness of the four-dimensional Planck mass

M2
P = M3

5

∫

+∞

−∞
a3(w)dw. (5.13)
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5.3 Vector zero-mode

For infinitesimal coordinate transformations

xA → x̃A = xA + ǫA, ǫA = a2(w)(ǫµ,−ǫw), (5.14)

the scalar and vector modes of the geometry are transformed. In particular, by isolating the

divergence-less part of ǫµ as

ǫµ = ∂µǫ+ ζµ, ∂µζ
µ = 0, (5.15)

the gauge variation of the vector modes is

fµ → f̃µ = fµ − ζµ,

Dµ → D̃µ = Dµ − ζ ′µ. (5.16)

From Eq. (5.16) it is immediate to ascertain the gauge-invariant vector mode which is given

by

Vµ = Dµ − f ′
µ. (5.17)

From the explicit form of Eq. (5.3) it is possible to obtain, after some algebra, that the

zero-mode of Vµ obeys the following equation

V ′
µ +

3

2
HVµ = 0, Vµ = a3/2Vµ. (5.18)

From Eq. (5.18) the normalizability of the vector zero-mode implies the convergence of the

following integral
∫ ∞

−∞

dw

a3(w)
. (5.19)

It is clear that the normalizability condition implied by Eq. (5.19) is, somehow, opposite

to the one arising from Eqs. (5.11) and (5.13). The conclusion is, therefore, exactly the

same one would get in the case of single defects: if the graviton is normalizable, then the

Planck mass is finite and the graviphoton is not normalizable. It should be remarked that

this conclusion is typical of five-dimensional warped geometries. However, in even higher

dimensions the situation may change. In particular, six-dimensional examples [53, 54] seem

to suggest that some vector degrees of freedom may indeed be localized (see also [55] for

warped cosmological backgrounds in six dimensions).

5.4 Scalar zero-modes

While the discussion of the tensor and vector modes of the geometry mirrors completely the

case of single defects, the scalar mode present relevant qualitative differences.

The scalar modes of the geometry are not gauge-invariant and are, in some sense, the most

relevant ones since they are coupled with the fluctuations of the multidefect configurations.
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More specifically, for the gauge transformation written in Eqs. (5.14) and (5.15) the scalar

fluctuations of the geometry change as

ψ → ψ̃ = ψ −Hǫw, (5.20)

ξ → ξ̃ = ξ + Hǫw + ǫ′w, (5.21)

C → C̃ = C − ǫ′ + ǫw, (5.22)

E → Ẽ = E − ǫ. (5.23)

To these transformations, the gauge variations of the fluctuations of the defects must be

added and they are

δφ→ δ̃φ = δφ− φ′ǫw, (5.24)

δχ→ δ̃χ = δχ− χ′ǫw. (5.25)

From Eqs. (5.20)–(5.25) it is clear that while gauge transformations involving ζµ preserve

the vector nature of the fluctuation, the transformations involving ǫ and ǫw preserve the

scalar nature of the fluctuation.

It is possible, in the context of the scalar modes, to define a set of gauge-invariant

variables which are, in their simplest incarnation:

Ψ = ψ −H(E ′ − C), (5.26)

Ξ = ξ − 1

a
[a(C − E ′)]′, (5.27)

X = δχ + χ′(C − E ′), (5.28)

Φ = δφ+ φ′(C − E ′). (5.29)

In terms of the fluctuations defined in Eqs. (5.26)–(5.29) the evolution equations of the

scalar problem can be written in fully gauge-invariant terms. In particular, from the diagonal

components of Eq. (5.3), i.e. the components (µµ) and (ww), the following pair of equations

can be obtained

2Ξ + 4Ψ′′ + 4H(Ψ′ + Ξ′) − 4

3
κWa2Ξ + 2κ[φ′Φ′ + χ′X ′]

+
2

3
κa2

[

∂W

∂φ
Φ +

∂W

∂χ
X
]

= 0 (5.30)

Ψ′′ + 7HΨ′ + HΞ′ − 2Ψ + 2(H′ + 3H2)Ξ +
2

3
κa2

[

∂W

∂φ
Φ +

∂W

∂χ
X
]

= 0. (5.31)

From the off-diagonal elements of Eq. (5.3), i.e. (µ 6= ν) and (µw) we do get the following

two conditions

∂µ∂ν [Ξ − 2Ψ] = 0 (5.32)

3(Ψ′ + HΞ) + κ(φ′Φ + χ′X) = 0. (5.33)
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Finally, from Eqs (5.4) and (5.5) we get the evolution equations for Φ and X, i.e. the

gauge-invvariant fluctuations of the defects:

Φ′′ + 3HΦ′ − 2Φ − ∂2W

∂ϕ2
a2Φ − ∂2W

∂φ∂χ
a2X

+φ′[4Ψ′ + Ξ′] + 2(φ′′ + 3Hφ′)Ξ = 0, (5.34)

X ′′ + 3HX ′ − 2X − ∂2W

∂ϕ2
a2X − ∂2W

∂φ∂χ
a2Φ

+χ′[4Ψ′ + Ξ′] + 2(χ′′ + 3Hχ′)Ξ = 0. (5.35)

By subtracting Eqs. (5.30) and (5.31) and by using the constraint Ξ = 2Ψ the following

equation can be obtained

Ψ′′ + HΨ′ + 2Ψ = −2κ

3
[φ′Φ′ + χ′X ′]. (5.36)

Moreover, using, again, the condition stemming from Eq. (5.32) it is easy to reduce Eqs.

(5.34) and (5.35) to the following (more tractable) form:

Φ′′ + 3HΦ′ − 2Φ − ∂2W

∂ϕ2
a2Φ − ∂2W

∂φ∂χ
a2X + 6Ψ′φ′ + 4(φ′′ + 3Hφ′)Ψ = 0, (5.37)

X ′′ + 3HX ′ − 2X − ∂2W

∂ϕ2
a2X − ∂2W

∂φ∂χ
a2Φ + 6χ′Ψ′ + 4(χ′′ + 3Hχ′)Ψ = 0. (5.38)

In the presence of a single defect, the system describing the scalar modes of the geometry and

of the sources can be put in a diagonal form by introducing the appropriately normal mode

of the scalar system which is linear combination, (with background-dependent coefficients)

of the fluctuation of the geometry and of the fluctuations of the defect [21]. If two (or

more) defects are simultaneously present this strategy can be generalized with important

qualitative differences. Let us therefore define the following pair of variables:

G = a3/2Φ − zφΨ, (5.39)

F = a3/2X − zχΨ, (5.40)

where

zφ =
a3/2φ′

H , zχ =
a3/2χ′

H . (5.41)

Equations (5.39) and (5.40) can be used to eliminate Φ and X from Eqs. (5.37) and (5.38).

The same procedure can be adopted in Eq. (5.36): the dependence upon Φ and X appearing

at the right hand side off Eq. (5.36) can be eliminated in favour of G and F . The obtained

equation can be used to eliminate the dependence on Ψ arising in Eqs. (5.37) and (5.38).

The net result of this procedure is that the evolution equations for G and F is given by

G′′ − 2G −MGGG −MGFF = 0, (5.42)

F ′′ − 2F −MFFF −MFGG = 0, (5.43)
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where

MGG =
(a3/2)′′

a3/2
+ a2∂

2W

∂φ2
− 2κ

3H2
H′φ′2 +

4

3
κ
φ′φ′′

H + 2κφ′2, (5.44)

MFF =
(a3/2)′′

a3/2
+ a2

∂2W

∂χ2
− 2κ

3H2
H′χ′2 +

4

3
κ
χ′χ′′

H + 2κχ′2, (5.45)

MFG = MGF =
∂2W

∂φ∂χ
a2 − 2κH′

3H2
φ′χ′ +

2κ

3H(φ′χ′′ + χ′φ′′) + 2κφ′χ′. (5.46)

In the limit W (φ, χ) → W (φ) and χ′ → 0, MGF → 0 and MGG → z′′φ/zφ. Thus, the result

of the single defect system is recovered.

Defining

L =

(

G
F

)

, M =

(

MGG MGF

MGF MF ,F

)

, (5.47)

Eqs. (5.42) and (5.43) can be simply written in matrix notation

L′′ − 2L −ML = 0. (5.48)

It is worth noticing that the derivation presented here is fully gauge-invariant. Since

G and F are gauge-invariant their evolution equation is the same in any specific gauge.

It is therefore useful to cross-check the gauge-invariant derivation with a gauge-dependent

discussion. A particularly useful coordinate system, already exploited in [20] is the off-

diagonal gauge where E = 0 and ψ = 0. The gauge-invariant variables become, in this

gauge,

Ψ = HC, Ξ = ξ −HC − C ′, (5.49)

Φ = δφ+ φ′C, X = δχ+ χ′C. (5.50)

Inserting Eqs. (5.49) and (5.50) into Eqs. (5.39) and (5.40) it is also clear that, in the

off-diagonal gauge, G = a3/2δφ and F = a3/2δχ. Therefore, using the evolution equations

written explicitly in the off-diagonal gauge, it is possible to recover exactly Eqs. (5.42) and

(5.43). The essential steps of this exercise are summarized in the Appendix.

Let us now consider, as a useful application, the determination of the localization proper-

ties of the scalar zero-modes in the case of the solutions discussed in sec. 3 and parametrized

according to Eq. (3.1). In the case of the kink-antikink system the various matrix ele-

ments appearing in Eq. (5.47) can be computed in terms of g. The result of this algebraic

calculation is

MGG =
b2

4g2
[g2(1 − g2)(76g2 + 42g + 1) + 4(11 + g)2(1 − g)3(6g2 + g + 1)],

MFG = MGF =
b2

g2
[7g2(1 − g2)3/2 + (1 − g2)5/2(g + 1)(2g − 1) + 3g(1 − g2)2],

MFF =
b2

4g2
[g2(1 − g2)(76g2 − 42g + 1) + 4(1 − g)2(1 + g)3(6g2 − g + 1)], (5.51)
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Using the explicit expression of g(x) derived in Eq. (3.6) the matrix elements of M can be

expressed as a function of the rescaled bulk coordinate x = bw:

MGG =
b2

4x2(x2 + 1)5/2
[x2

√
x2 + 1(77x2 + 42x

√
x2 + 1 + 1)

+ 4(
√
x2 + 1 − x)(7x2 + x

√
x2 + 1 + 1)],

MFG = MGF =
b2

x2(x2 + 1)5/2
[x(x2 + 1)(7x+ 3) + (x2 + x

√
x2 + 1 − 1)],

MFF =
b2

4x2(x2 + 1)5/2
[x2

√
x2 + 1(77x2 − 42x

√
x2 + 1 + 1)

+ 4(
√
x2 + 1 + x)(7x2 − x

√
x2 + 1 + 1)]. (5.52)

To determine if the lowest mass eigenstates are normalizable or not it suffices to go see if

Eqs. (5.42) and (5.43) admit normalizable solutions in the case 2G = 2F = 0 when the

coefficients MGG, MFG and MFF , are the ones determined in Eq. (5.52).

The idea is therefore the following. Let us solve, asymptotically, the explicit form of Eqs.

(5.42) and (5.43) in the limit x → −∞. By imposing initial condtions for x → −∞ the

system can be integrated numerically across x = 0. This procedure will give, as a function

of different initial conditions, the lowest mass eigenstates provided the obtained solution is

regular and sufficiently convergent for large absolute values of the rescaled bulk coordinate.

In the limit x→ −∞ it can be verified that Eq. (5.52) gives

MGG ≃ 119

4

b2

x2
, MFG = MGF ≃ 7b2

x3
, MFF =

35

4

b2

x2
. (5.53)

Therefore, for x→ −∞, the solutions for G and F are simple power law, i.e.

G0(x) ≃ |x|γ±, γ± =
1 ± 2

√
30

2
, (5.54)

F0(x) ≃ |x|δ±, δ+ =
7

2
, δ− = −5

2
. (5.55)

Recall now that the zero mode is normalizable provided

∫ +∞

−∞
|G0(x)|2 dx,

∫ +∞

−∞
|F0(x)|2 dx (5.56)

are both convergent. This requirement implies that the only asymptotic initial conditions

(for x → −∞) compatible with the finiteness of the integrals appearing in Eq. (5.56) are

the ones parametrized in terms of γ− and δ−. The numerical integration of the system can

be performed by starting with a sufficiently negative xi, for instance xi = −103. Thus, the

initial conditions will be dictated by G0(xi) ≃ |xi|γ− and by F0(xi) ≃ |xi|δ−. It turns out,

after explicit numerical integration, that a singularity is always developed in the origin so

that the obtained solution is not normalizable because of the behaviour near x = 0 where
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the matrix elements of M diverge. We then conclude that the kink-antikink system does

not admit a normalizable zero mode. A similar discussion can be performed in the case

of the solutions reported in section 4. Also in that case there scalar zero modes are not

normalizable because of the behaviour of the solution in the origin.

6 Concluding remarks

The possibility of gravitating multidefects from higher-dimensional warped geometries has

been scrutinized. It has been shown that, indeed, it is possible to find systems where

qualitatively different profiles arise simultaneously. After devising a general method for the

construction of multidefects solutions, specific examples, compatible with AdS5, have been

presented. While the obtained solutions were only illustrative, it can be argued, on general

grounds, that the following configurations can explicitly constructed:

• kink-antikink systems both in the case of Einstein-Hilbert gravity and in the case of

Gauss-Bonnet gravity;

• configurations containing one topological soliton and a non-topological profile;

• systems containing two bag-like profiles, both non-topological.

The second class of solutions listed above corresponds, indeed, to the so-called trapping bag

solutions that may be used to model (static) confining configurations in (1 + 1) dimensions.

As in the (1 + 1) dimensional case three-defects solutions may be constructed, it is justified

to speculate that the present considerations may also be extended to the case of three (or

even more) defects.

As far as the localization properties of the zero modes are concerned, it has been shown

that while the tensor and vector modes exhibit exactly the same features arising in the

case of single gravitating defects, the scalar modes present qualitatively new features. In

the case of gravitating multidefects, the fluctuations of the geometry are coupled with the

fluctuations of all the profiles of the system. A fully gauge-invariant formalism for the analysis

of the localization properties of the fluctuations of various spin has then been developed by

extending the treatment already exploited in the case of single gravitating defects.
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A Off-diagonal gauge

In this Appendix the decoupled set of evolution equations for the scalar modes of the ge-

ometry will be derived in the off-diagonal gauge. The reported exercise complements and

corroborates the gauge-invariant derivation reported in sec. 5. The rationale for the previous

statement is that since the canonical (scalar) normal modes defined in Eqs. (5.39) and (5.40)

are gauge-invariant, they must also obey the same evolution equations (i.e. Eqs. (5.42) and

(5.43)) in any specific gauge. As observed in sec.5, in the off-diagonal gauge, i.e. the gauge

where ψ = E = 0, G = a3/2δφ and F = a3/2δχ. The exercise presented here will the be

to derive Eqs. (5.42) and (5.43) by using directly the evolution equations written in the

off-diagonal gauge.

The evolution equations in the off-diagonal gauge can be obtained by expressing the

gauge-invariant quantities of Eqs. (5.26)–(5.29) in the gauge ψ = 0 and E = 0. The result

of this procedure is given by Eqs. (5.49) and (5.50). Using Eqs. (5.49) and (5.50) into Eqs.

(5.30)–(5.31) we get

Hξ′ + 2(H′ + 3H2)ξ −H2C +
2

3
κa2

[

∂W

∂φ
δφ+

∂W

∂χ
δχ
]

= 0 (A.1)

H2C + 2C ′ − 4Hξ′ − 2ξ − 2κ[φδφ′ + χ′δχ′]

−4

3
κa2Wξ +

2

3
κa2

(

∂W

∂φ
δφ+

∂W

∂χ
δχ
)

, (A.2)

Using Eqs. (5.49) and (5.50) into Eqs. (5.32)–(5.33) the following pair of conditions are

obtained:

ξ − C ′ − 3HC = 0 (A.3)

3Hξ = −κ(φ′δφ+ χ′δχ), (A.4)

Finally, using Eqs. (5.49) and (5.50) into Eqs. (5.29) and (5.28) we do get:

δφ′′ + 3Hδφ′ − 2δφ− ∂2W

∂φ2
a2δφ− ∂2W

∂φ∂χ
a2δχ

+(ξ′ − 2C)φ′ + 2(φ′′ + 3Hφ′)ξ = 0 (A.5)

δχ′′ + 3Hδχ′ − 2δχ− ∂2W

∂χ2
a2δχ− ∂2W

∂φ∂χ
a2δφ

+(ξ′ − 2C)χ′ + 2(χ′′ + 3Hχ′)ξ = 0 (A.6)

As already mentioned, in the off-diagonal gauge the variables G and F become

G = a3/2δφ, F = a3/2δχ. (A.7)

Subtracting Eqs. (A.2) from Eq. (A.1) and recalling Eq. (5.33) we do get

2C − ξ′ = − 2κ

3H [φ′δφ′ + χ′δχ′] − 2ξ′, (A.8)

ξ = − κ

3H [φ′δφ+ χ′δχ]. (A.9)
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By inserting Eq. (A.7) into Eqs. (A.5) and (A.6) δφ and δχ can be completely eliminated in

favour of G and F . In Eqs. (A.5) and (A.6) the only remaining pieces will be, respectively,

the expressions proportional to (2C − ξ′) and to ξ:

1

a3/2

{

G′′ − 2G −
[

(a3/2)′′

a3/2
+
∂2W

∂φ2
a2

]

− ∂2W

∂φ∂χ
F
}

+(ξ′ − 2C)φ′ + 2(φ′′ + 3Hφ′)ξ = 0, (A.10)

1

a3/2

{

F ′′ − 2F −
[

(a3/2)′′

a3/2
+
∂2W

∂χ2
a2

]

− ∂2W

∂χ∂φ
G
}

+(ξ′ − 2C)χ′ + 2(χ′′ + 3Hχ′)ξ = 0. (A.11)

But using Eq. (A.7) into Eqs. (A.8) and (A.9) we do get

2C − ξ′ =
2κ

3Ha3/2

[

φ′′G + χ′′F − H′

H (φ′G + χ′F)
]

, (A.12)

ξ = − κ

3Ha3/2
(φ′G + χ′F). (A.13)

Equations (A.12) and (A.13) show that (2C − ξ′) and to ξ can be solely expressed in terms

of G, F and their first derivatives with respect to the bulk coordinate. This completes the

derivation since inserting then Eqs. (A.12) and (A.13) into Eqs. (A.10) and (A.11), Eqs.

(5.42) and (5.43) are readily obtained.

23



References

[1] R. Rajaraman, Solitons and Instantons, (Elsevier, Amsterdam, 1982).

[2] R. Rajaraman and E. Weinberg, Phys. Rev. D 11, 2950 (1975).

[3] C. Montonen, Nucl. Phys. B 112, 349 (1976).

[4] S. Coleman, Aspects of symmetry: selected Erice lectures, (Cambridge University press,

Cambridge, UK, 1985).

[5] J. Rubinstein, J. Math. Phys. 11, 258 (1970).

[6] J. R. Morris, Phys. Rev. D 51, 697 (1995).

[7] D. Bazeia, R. F. Ribeiro and M. M. Santos, Phys. Rev. D 54, 1852 (1996).

[8] D. Bazeia and F. A. Brito, Phys. Rev. D 61, 105019 (2000).

[9] D. Bazeia, L. Losano and C. Wotzasek, Phys. Rev. D 66, 105025 (2002).

[10] A. de Souza Doutra, Phys. Lett. B 626, 249 (2005).

[11] T. D. Lee, Particle physics and introduction to field theory, Vol. 1 (Harwood Academic

Publisher, Chur, Switzerland, 1986), p.117.

[12] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, Phys. Rev. D 9,

3471 (1974).

[13] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125 (1983) 136.

[14] V. A. Rubakov, Phys. Usp. 44, 871 (2001) [Usp. Fiz. Nauk 171, 913 (2001)].

[15] A. Kehagias and K. Tamvakis, Phys. Lett. B 504, 38 (2001).

[16] A. Kehagias and K. Tamvakis, Mod. Phys. Lett. A 17, 1767 (2002).

[17] M. Gremm, Phys. Lett. B 478 , 434 (2000).

[18] M. Gremm, Phys. Rev. D 62, 044017 (2000).

[19] M. Giovannini, Phys. Rev. D 64 064023 (2001).

[20] M. Giovannini, Phys. Rev. D 65, 064008 (2002).

[21] M. Giovannini, Class. Quant. Grav. 20, 1063 (2003).

[22] R. Koley and S. Kar, Class. Quant. Grav. 22, 753 (2005)

24



[23] S. Pal and S. Kar, Class. Quant. Grav. 23, 2571 (2006).

[24] C. Bogdanos, A. Dimitriadis and K. Tamvakis, Phys. Rev. D 74, 045003 (2006).

[25] K. Farakos and P. Pasipoularides, Phys. Lett. B 621, 224 (2005).

[26] K. Farakos and P. Pasipoularides, hep-th/0609089.

[27] O. Corradini and Z. Kakushadze, Phys. Lett. B 494, 302 (2000).

[28] N. E. Mavromatos and J. Rizos, Phys. Rev. D 62, 124004 (2000).

[29] M. Giovannini, Phys. Rev. D 63, 064011 (2001)

[30] M. Giovannini, Phys. Rev. D 64, 124004 (2001).

[31] N. Deruelle and C. Germani, Nuovo Cim. 118B, 977 (2003).

[32] O. Corradini and Z. Kakushadze, Phys. Lett. B 506, 167 (2001).

[33] O. Corradini, A. Iglesias, Z. Kakushadze and P. Langfelder, Phys. Lett. B 521, 96

(2001).

[34] M. Giovannini, H. Meyer and M. E. Shaposhnikov, Nucl. Phys. B 619, 615 (2001).

[35] M. Giovannini, Class. Quant. Grav. 23, L73 (2006).

[36] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[37] L. Randall and R. Sundrum,Phys. Rev. Lett. 83, 4690 (1999).

[38] M. Giovannini, Phys. Rev. D 74, 087505 (2006).

[39] S. Randjbar-Daemi and M. Shaposhnikov, Nucl. Phys. B 645, 188 (2002)

[40] S. Randjbar-Daemi, Mod. Phys. Lett. A 18, 2459 (2003).

[41] M. Shaposhnikov, P. Tinyakov and K. Zuleta, JHEP 0509, 062 (2005).

[42] C. Lanczos, Z. Phys. 73, 147 (1932); Ann. Math. 39, 842 (1938).

[43] D. Lovelock, J. Math. Phys. 12, 498 (1971).

[44] J. Madore, Phys. Lett. 110A, 289 (1985);

[45] J. Madore, Phys. Lett. 111A, 283 (1985).

[46] B. Zwiebach, Phys. Lett. 156B, 315 (1985).

25



[47] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985); Phys. Lett. 175B, 409

(1986).

[48] R. R. Metsaev and A. A. Tseytlin, Phys. Lett. 191B, 115 (1987); Nucl. Phys. B293,

385 (1987).

[49] C. G. Callan, E. J. Martinec, M. J. Perry, and D. Friedan, Nucl. Phys. B 262, 593

(1985).

[50] A. Sen, Phys. Rev. Lett. 55, 1846 (1985).

[51] N. Deruelle and J. Madore, arXiv:gr-qc/0305004.

[52] M. Giovannini, Int. J. Mod. Phys. D 11 (2002) 1209.

[53] M. Giovannini, Phys. Rev. D 66, 044016 (2002).

[54] M. Giovannini, J. V. Le Be and S. Riederer, Class. Quant. Grav. 19, 3357 (2002).

[55] J. M. Cline, J. Descheneau, M. Giovannini and J. Vinet, JHEP 0306, 048 (2003).

26


