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A. A THEOREM CONCERNING NOISE FIGURES

The noise figure theorem discussed in the Quarterly Progress Report, April 15,

1955 (pp. 29-31), established the greatest lower bound for the noise figure of an n-

amplifying device (n-UNIT) system as equal to the minimum noise figure of a system

using one of the amplifying devices provided that certain conditions hold. Among these

conditions was the one that each amplifying device have an equivalent circuit consisting

of separate input and output parts.

It is desirable to prove the theorem without this condition in order to include in the

scope of the theorem a broader class of amplifying devices. This has been achieved and

the theorem now has the more general form given below.

The new theorem concerns the single frequency noise figure of linear systems

belonging to the class T which have the general form shown in Fig. VII-1. They consist

of a given signal source S, n given amplifying devices (UNITS U 1 through Un), and a

coupling network. The class T is determined by the signal source S and the UNITS 1

through n (that is, each system in 7 has the same signal source and the same set of

UNITS). It consists of the systems that are formed by all possible interconnections of

the signal source and the n UNITS and satisfy conditions (a) through (e) below.

The one-to-one ideal transformers shown in Fig. VII-1 have the purpose of insuring

that whatever signal is transmitted through a UNIT actually appears across its input

terminals. Alternatively, any other scheme which achieves this result can be used, for

example, grounding one input terminal of each UNIT.

Any system T belonging to 7 satisfies the following conditions: (a) All noise gener-

ated within the system can be represented, for single frequency noise figure calcula-

tions, by ensembles of constant voltage and constant current generators located within

the system. We shall refer to these generators as noise generators. (b) If these noise

generators are grouped into n + 2 groups, according to whether they are located within

the signal source S, the UNITS 1 through n, or in the coupling network C, no correla-

tion exists between any two noise generators belonging to different groups. However,

correlation may exist among noise generators of any one group. (c) The open-circuit

transfer impedance of each UNIT from its input to its output terminals is not zero.

(d) The coupling network C is such that when the system is excited by the signal source

noise generator or any noise generator located within UNITS I through n the transmis-

sion from the input to the output circuits of the UNITS through C does not appreciably

bypass the transmission through the UNITS themselves; any coupling through C between

these input and output circuits is, effectively, a unilateral feedback from output to input.
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More precisely, C is such that a related system T' , of the form shown in Fig. VII-2,

exists whose transmission from the signal source or from any noise generator within

the UNITS to the output is essentially the same as the corresponding transmission in

the original system T. The original coupling from the output to the input circuits in T

is represented in T' by the controlled voltage (or current sources 1l through Fp,

linearly related to the control voltages (or currents) yl through yq. (e) The coupling

network C' of T' is a passive, bilateral network.

The above conditions determine the class T and the theorem is formulated as

follows.

THEOREM: Given a signal source S and n UNITS the greatest lower bound of the

noise figures of the systems belonging to the corresponding class T (that is, the systems

formed by arbitrary interconnections of S and the UNITS and satisfying conditions

(a) through (e) is equal to the minimum noise figure attainable with a one-UNIT system

of the form shown in Fig. VII-3 consisting of the same signal source, the "least noisy"

one of the UNITS and a lossless coupling network with no feedback external to the UNIT.

The "least noisy" UNIT referred to is that UNIT which when used in a system of the

form of Fig. VII-3 yields a minimum noise figure which is at least as small as the mini-

mum noise figure attainable with any of the remaining UNITS.

A. G. Bose, S. D. Pezaris

B. AN EXTENSION OF THE WIENER THEORY OF NONLINEAR SYSTEMS

We shall describe an extension of the Wiener theory of nonlinear system classifica-

tion and representation that enables us to determine experimentally an optimum non-

linear filter. The theoretical as well as the experimental aspects of the problem are

best described if, before proceeding to the general case, we first examine the special

case of no-storage nonlinear filters.

1. The No-Storage Nonlinear Filter

Let x(t) and z(t) be the given filter input and the desired filter output time functions,

respectively. We shall consider only bounded, continuous time functions. (This is

clearly no restriction in the practical case.) Since x(t) is bounded, there exists an

a and b such that a 4 x(t) 4 b for all t. Now consider a set of n functions W(x)

(j = 1, ..... n) over the interval (a, b). These functions have the property

w w
1 for x. -2 x < x. +

4j(x) = w n (1)

0 for all other x
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illustrated in Fig. VII-4. Clearly, this set of functions is orthogonal over the interval

(a, b). We shall refer to these functions as "gate functions."

In the case of stationary no-storage filters the filter output y(t) at any instant is a
unique function of the value of the input x(t) at the same instant. For reasons that will
soon become apparent it is convenient to represent this output-input characteristic

(transfer characteristic) of the no-storage filter in terms of an expansion employing the
set of orthogonal functions defined above. We thus have

n

y(t) = a [x(t)] (2)

j=l1

The determination of an optimum no-storage filter for a given error criterion
consists of choosing the a.' s in such a manner that the error between y(t) and the
desired output z(t) is a minimum. We adopt a weighted mean square error criterion in
which the weighting factor G(t) is a variable at our disposal. More specifically we mini-
mize the integral

T n 2
= lim G(t) (t) - a j x(t) dt (3)

-T j=

with respect to the n coefficients a..

Proceeding with the minimization and denoting the operation of time averaging by a

bar above the averaged variable we have

n(4)
G(t) k [x(t)] z(t) - a [x(t) = 0 (k = 1,..., n) (4)

j=1
or

n

G(t) (t) ak [x(t)] aj [x(t) = z(t) G(t) k [x(t)] (5)

j=l

It is readily seen that as a consequence of the non-overlapping property of the gate

functions along the x-axis the pj x(t)] (j = 1, ..... n) will, for single valued input time

functions x(t), form an orthogonal set in time as well as in x and further that this orthog-

onality holds for any bounded weighting function. (For stationary time functions this is

formally seen by using the ergodic theorem to evaluate G(t) 4j [x(t)] ck [X(t)] on the

ensemble basis.) Taking advantage of this time domain orthogonality, Eq. 5 reduces to

ak G(t) 2j [x(t)] = z(t) G(t) k [x(t)] (6)
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It follows from the definition of the j .(x) given in Eq. 1 that pi [x(t)] = [x(t)] so that

Eq. 6 can be rewritten as follows

ak G(t) 4 k [x(t)] = z(t) G(t) k [x(t)] (7)

Equation 7 provides a convenient means of obtaining the desired coefficients a k from

measurements involving the given filter input, the desired filter output, and the error

weighting time functions. The experimental setup for the evaluation of the coefficients

is shown in Fig. VII-5.

From a knowledge of the coefficients ak we can directly construct a stepwise

approximation, like that of Fig. VII-6, to the desired optimum transfer characteristic.

By increasing the number n of gate functions in a given region (a, b) of x we clearly get

a better and better approximation to the transfer characteristic of the optimum no-

storage filter.

The synthesis of the filter can be carried out formally according to Eq. 2 by using

gate circuits and an adder as shown in Fig. VII-7, or we can synthesize the optimum

characteristic by any of the other available techniques such as piecewise linear approxi-

mations or function generators.

In the discussion above it was assumed for convenience that each gate function had

the same width w. We need not restrict ourselves to gate functions of equal width how-

ever. It is sufficient to choose them so that they cover the interval (a, b) and do not

overlap. Thus if we have some a priori knowledge about the optimum transfer char-

acteristic we may be able to save time and work in determining the characteristic by

judiciously choosing the widths of the 4j(x)' s. In fact, after evaluating any number m

of the a k ' s we are free to alter the widths of the remaining functions j (x) (j > m) as we

proceed. Thus, for example, in evaluating the ak' s if we find that they are not changing

much from one to the next we can choose larger widths for the succeeding gate functions

and in regions in which there is a large change between successive ak' s we can choose

smaller widths to improve the accuracy. This flexibility is permissible because in

taking advantage of it we do not disturb the time domain orthogonality of the gate

functions.

2. The General Nonlinear Filter Involving Storage

Having investigated the special case of no-storage optimum filters we are now pre-

pared to consider the general nonlinear filter involving storage. The difference is that

no-storage systems operate only on the present value of the input while the general

filter operates upon the past as well as on the present of the input. As discussed in the

Quarterly Progress Report, October 15, 1954, page 57 we shall represent the past of

the filter input x(t) by the corresponding set of Laguerre coefficients (u 1, ... , Us). (The
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coefficients of other complete sets of orthogonal functions can be used in place of the

Laguerre coefficients if desired.) The filter output y(t) is then some function of the

Laguerre coefficients of the past of the input. We can write

y(t) = F [ul, u 2 , ... , Uss (8)

As in the case of the no-storage filter we are considering only bounded filter inputs. It

can be shown, from the fact that the Laguerre functions are absolutely integrable, that

the Laguerre coefficients of the past of x(t) are bounded if x(t) is bounded. Hence it is

convenient to expand Eq. 8 in terms of gate functions whose arguments are the Laguerre

coefficients. The expansion reads

y(t) = .... j h i(ul) j(u2)' h(us) (9)

i j h

If P(x) represents the function i(u ) j(u) ... h(Us) and Aa represents the corre-

sponding value of ai, j . h Eq. 9 takes the simplified form

y(t) = An i(a) (10)

As in the case of the no-storage filter (Eq. 3) we adopt a weighted mean square

error criterion and minimize the integral

T 2

Sr= lim -T G(t) z(t) - Aa (i) dt (11)
Twoo

with respect to the coefficients A .

Now it is convenient to think in terms of an s-dimensional function space of the past

of the input in which the axes are the unit Laguerre coefficients ~l through us of the past

of the input. In this function space the past of the input is represented as a point corre-

sponding to the tip of the vector formed by the Laguerre coefficients. As time pro-

gresses this point travels around in the function space.

Next let us consider 4(a) in the light of the function space discussed above. Since

it is a product of gate functions of the different co-ordinates u 1 through us (compare

Eq. 9 and Eq. 10), it has the value unity in one s-dimensional cell of the function space

and zero elsewhere. The set of #(a)' s covers the function space in non-overlapping

cells. As a consequence, the 4(a)' s are orthogonal in time and furthermore this orthog-

onality holds with respect to any bounded weighting function.

Taking advantage of this time-domain orthogonality we can, by a procedure similar

to that used in the no-storage case, minimize Eq. 11 with the result that the optimum
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coefficients Ao are given by relations of the form

Aa G(t) 4(a) = z(t) G(t) P(a) (12)

This relation provides a convenient means for experimentally determining the optimum

coefficients. The apparatus for their determination is indicated in Fig. VII-8. Having
determined the optimum coefficients, the nonlinear system can be synthesized according

to Eq. 10 as indicated in Fig. VII-9.

In the procedure described above for determining and synthesizing optimum filters

the use of gate functions in the expansion of Eq. 8 is of central importance. Let us

examine some of the consequences of this:

1. The use of gate functions provides us with a series representation for the output

of the filter in which the time domain orthogonality of the terms of the series is inde-

pendent of the filter input. This enables us to obtain the optimum filter coefficients for

arbitrary filter inputs without solving simultaneous equations.

2. Since the gate functions are orthogonal with respect to any weighting factor we

can determine optimum filters for weighted mean square error criteria.

3. In most series representations of a function we encounter the difficulty that over

some region of the independent variable small differences of two or more large terms

are necessary to represent the desired function. In the gate function expansion Eq. 10
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only one term has a non-zero value at any one instant of time; so this difficulty does

not arise.

4. In general, the expansion of Eq. 8 involves the use of multipliers in the experi-

mental setup. (For example, if a Taylor series or Hermite function expansion is used.)

The use of gate functions replaces the multipliers by simpler level selectors and gate

circuits.

NOTE: Because of the difficulties encountered in transforming a general filter input

into a multivariate gaussian input, work on the method described in the Quarterly

Progress Report, July 15, 1955, p. 38, has been temporarily discontinued in favor of

the present method.

A. G. Bose

C. PROPERTIES OF SECOND-ORDER AUTOCORRELATION FUNCTIONS

1. Periodic Functions

If fl(t) of period T 1 has a Fourier expansion, and F(n) is the complex

then the second-order autocorrelation function of fl(t) is

1 1

11N1' o

line spectrum,

f 1 (t) f 1 (t + T1) fl(t + TZ) dt

F(nl) F(nZ) F(n 1 + n2 ) e w(n1 1+n 2 (1)
Y X

nl=-0o nZ=-00

By extracting the terms that correspond to n I = 0, n 2 = 0, and n 1 = -n 2 , and using the

relation

F(n)j eJwlnT

1 can be rewritten as

F(0) 11(T) + 11(T ) + 1(T1 - T2)}

F(n1 ) F(nZ ) F(n 1 + n2 )
jwl(nT 

1 +n2 T2 )e

nl ;0, nZ 4 o)nl t -n  
/

This expression shows that the second-order autocorrelation function of a periodic

00

11(T) = Z
n=-oo

Eq.

- 2F3(0)

oo 00

+ y
nl=-oo n,=-00

11 (T1 TZ) =
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function is the sum of first-order autocorrelation functions that are free of phase

relationship of the harmonics, a double summation term that involves the phase rela-

tionship of the harmonics, and a constant term.

The last term in Eq. 3 can be rewritten by adding the terms with positive n l , n 2 to
the corresponding terms with negative n l , n 2 . These terms are complex conjugates.

Also the terms that correspond to n1 > 0, n 2 < 0, and n 1 < 0, n 2 > 0 are complex conju-

gates, and they will be added. When this is done Eq. 3 becomes

* 1 1 1, 2 ) = F(o) 
1 1 (Tl) + 1 1 (T 2 ) + 1 1 1  )} -2F 3 (0)

00 00 t- 112
+ 2 Re F(n,) F(n 2 ) F(n + n2) e

nl=1 n2=1

+ 2 Re F(n ) F(-n 2 ) F(n 1 - n 2 ) e j(n 1 T(4)

nl=1 n2=l
(n1 n 2z )

The complex line spectrum F(n) can be expressed as

a -jb
F(n) n2 n (5)

where an and bn are twice the average of fl(t) cos nwlt and fl(t) sin nw1 t over the interval

(0, T1 ) respectively.

If f 1 (t) is an odd periodic function, F(O) = 0, F(n) = -jbn/2 when n 6 0. In this case

Eq. 4 becomes

II (TI' Z) = b bn b +n sinwl(n 1 T1 + nZT2 )
11 2 n1 2

00 00

+ bn b bn -n2 n l -n1 2=1 1 2 1 2
nl=l n2=1

(nlt nZ)

sinwl(n1 T 1 - nzTz)j

Equation 6 shows that the second-order autocorrelation function of an odd periodic func-

tion does not involve first-order terms, and vanishes at = T 2 = 0.

When fl(t) is an even periodic function, F(n) = an/2, and Eq. 4 becomes
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00 00
a 2 2

a coswlnlT + an2 coswl n 72

l=1 nz=1

00 3

+ z a n cos ct.)1n ( T  
T?) + 2

4 an an an2 +n cos2l(n1 1 + n2 2 )L1 2 n2 =
Ln)l n2=1

a a an1 -n2 nl-n 2
cos ol(n 1 1 - n2T2

The second-order autocorrelation function of an even periodic function is symmetri-

cal about the lines 7 1 = -T 2 and 7 1 = T 2 . The proof is established by the relationships

1(T 1 (T T 1) (8)

(T T2) =  I ( - T I - T )  (9)

which hold in Eq. 7. From Eq. 8 the values of l 1 1 1(T 1 ,T 2 ) at points A and B of

Fig. VII-10 are equal. Similarly, the values of 11 1(T 1 , 2 ) at points C and D are

equal. From Eq. 9 the values of 1 1 (T1,T2 ) at points A and D are equal. Hence in

the first and third quadrants 1 1 (T 1 , T2) is symmetrical about the line 71 = -T 2 .

Fig. VII-10. T1,T 2 -plane

+Z Z
nl=l n2=1

(n1 6n )

111(TIT2) =
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From Eq. 8, the values of (11 (1',T 2 ) at points E and F are equal. From rela-

tion 9, the values of T1 1 (T 1,T 2 ) at points E and G are equal. Hence the values of

11 1( 2) at points F and G are equal. This shows that 41 11(T 1T ) is symmetrical

about 71 -T 2 in the fourth quadrant. The use of relation 9 shows that the values of

1 1 1 (T 1 ,T 2 ) at points F and H are equal. Hence the values of 1 1 1 ( 1 ,T 2 ) at points E

and H are equal. This shows that the line T, = -T 2 is the line of symmetry in the second

quadrant.

Relation 8 is used to prove that (T 11 ,2) is symmetrical about T1  2 in all the

quadrants.

2. Aperiodic Functions

If fl(t) is an aperiodic function, and F(w) is its Fourier transform, the second-order

autocorrelation function of fl(t) is

00

lll(Tl,T2) = f (t) fl(t + TI ) fI(t + T 2 ) dt

00 00

= 2 rr F(wl) F(w 2 ) F(wl + w2 ) e dwl dw 2

* (Wiw2) e 2 dw dw2  (10)

-00 - 00

where

*(wl, W) = 2r F(wl) F(c 2 ) F(w 1 + w2)

It is of interest to consider 4 *(wl' 2 ) when ol = 0, when w2 = 0, and when wl = -2'
When wl = 0,

S(0, W2 ) = 2Tr F(0) IF( 2) 2 = F(0) 4l 1(WZ) (11)

where tll 2) is the energy density spectrum of f 1 (t). Similarly, when w2 = 0,

(Wl, 0) = 2rr F(0l) 1 12 = F(0) ll(ol) (12)

When = -2'

(ol = -2' W 2) = 2rr F(-o 2 ) F(w 2 ) F(0) = F(0) Dll(w2 ) (13)

To illustrate this point, the Fourier transforms of second-order autocorrelation

functions of two aperiodic functions will be evaluated. The first function is,
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Ef(t) = e-at
fl (t) =

0

for t >, 0

for t< 0

where a > 0. The second-order autocorrelation function of this function is

3ra(T +T2) when T1>,0, 2 >,0

E 3 -a(T -27 2)e - when 1 >

E 3 a(2 T1 -7 2 )
Ta- e when T 1 <

0, TZ< 0, and when T1< 0, T2< 0, and I( T > IT1

0, 2 > 0, and when T 1 < 0, T2< 0, and I11> IT21

(15)

The transform (wl,sZ) of S111(T ) is given by
ill1 '

00 00

1 )
S 2 2 I 1 1 (T1 , 2 ) e

(2 0 - f '00

-j(w 1T I+2 T 2)

The evaluation of Eq. 16 can be simplified by utilizing the symmetry property of

11 1( T2). From the definition of 1 1 (T 1 , T 2 ), it is readily seen that

11 (T, , T ) = ,, (T, T, ) (17)

and (1 1 1(T1 T 2 ) is symmetrical about the line T 1 = 2 . First

of 4 (w 1 ,l 2 ) in the plane where T 1 > 0, T2 < 0, and T 1 < 0, T 2
) (Wlw2) is

1

(2Tr)2

00 0

1=0 2

1 (T I T 2 ) e

consider the evaluation

> 0. In the first region

-j( r I + 2r 2 ) 2
dT 2 dT

Letting 1 = 2 , T 2 = T and using Eq. 17, Eq. 18 becomes

1
2  0

( T) 2 =0 T1= -o

111 (T1 TZ) e dT 1 dT 2

In the T1 ,r 2 -plane, where 7 1 < 0, 2 > 0, ( (W1,,2)is

0 00

1

(2r) 
1 =-0 z=0

dT2 dTr
- j(W1 + 2 T2 )

1 11 " ,'2r ) e

(14)

lll(TT 2 ) =

dT dT
2

(16)

(18)

(19)

.

(20)
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Equations 19 and 20 are identical except for the interchange of WI and o2, provided the

order of integration with respect to T1 and 72 is interchangeable. From this we see
that once P (@,1' , 2 ) has been evaluated in the region where 71 > 0, 72 < 0 we can obtain

*lZ 2) in the region where 71 < 0, 7 2 > 0 by interchanging l and 2 in the expres-
sion for P (wl,w 2 ) in the first region.

In the T 1,T 2 -plane where T l > 0, T 2 > 0, and T1 > T2 (iO, 2) is

1 o 1 -j(ol T 1+02 2

1 0 T * (T -j(W 1 +W2 2 ) T dT (21)

(2r)2  11 1  2) e d2 d1 (21)
T1=0 T2=0

If we let 71 = 2' 2 = 
T 1 , and use Eq. 17, Eq. 21 becomes

1 2 -j(lTZ2+ 2ZT 1)
( '

2  0 T 11 1  1' 2 ) e d1 d 2 (22)
(2r)2 fil

T72=0 71T=0

In the r 1, 2 -plane where 1 > 0, 2 > 0, and 1 < T2 , *( 1,w 2) is

1 2 -j( T1 + 2 12 )

(Zr) 2  11 1(' 2) e dr1 d2 (23)
72=0 T1=0

By comparing Eq. 22 and Eq. 23, we see that the two expressions are the same except

that w 1 and w2 have been interchanged. Hence, having obtained *(~l,O2) in the T1 , T2 -
plane where 71 > 0, T 2 > 0, and r71> T2 , we merely interchange w and in this expres-

sion to obtain 4 (WP1,2) in the region where 71 > 0, T 2 > 0, and T < T 2 .

The same reasoning is used to show that if 4 (l,0 2 ) has been obtained in the T1, T 2-
plane where T 1 < 0, T2 < 0, and ITj1 < IT21, then by interchanging w and w 2 in this

expression we obtain *(w wl'2) in the 1,T 2-plane where 71 < 0, 72 < 0, and I71 > IT21'

To evaluate 4 *(wl,' 2) of the function defined in Eq. 14 the preceding method will not

be used, for it can be evaluated readily by substituting 4 1 1 1 '(TiT 2 ), as defined in

Eq. 15, in Eq. 16 and performing the integration. When we do this

* E 3  1(24)
2) 2 2 a (a 2 + W + W 2 + W 2) +(24)41 aa 2 +wl 2  1 2 1 2w(1 + 22

Let w2 
= 0, then Eq. 24 becomes

*(o 1, 0) = 2~a Za a2  2 F(0) (1) (25)
a +e1
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where

F(0) - E
2ra

and the energy density spectrum of fl(t) defined in Eq. 14 is

E Z

ll(~ ) - 2ra
a

2 2
a +o 1

Similarly when l = 0 and wl = - Z

4m (0, W Z)= *(i = E,'
2 1 2Ta S2aE2

(27)

(28)a2 z=
a + w2

2

As a second example consider the function

E
f 1 (t) =

0

when 0 < t < b

elsewhere

(29)

In evaluating 4*( l Z2 ) for this case, we will use the property that *11 (T1,Tz) is

symmetrical about 71 = r2 . First we will find the expression for #1 1 (T 1 , 2 ) below the

line T l = T2 in Fig. VII-11

(26)

E 3(b - T 1) when T1 > 0, T 2 > 0

11 (1') 
=  E3(b - 1 I 2 1) when T 1 > 0, T Z < 0

E 3 (b - [T 2 i) when T < 0, T2 < 012

, and 7 1 > T 2

(30)

, and I 1 2 Tz21

Next we will evaluate Eq. 16 in regions I, II, and III in Fig. VII-11 and by interchanging

l and w2 in these expressions we obtain the expressions for * ( l, w 2 ) in regions VI, V,

Fig. VII-11. Plane over which (1 1 (T, T2 )

in Eq. 30 is defined

F(0) 11( l Z2)
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and IV. Summing the six expressions

-2 sin(wo + 2) b + 2 sinwl b + 2 sinw2b
3

S(Wl' 2)=E 2
(2-r) W 1 2(w1 +

Application of L' Hipital' s Rule gives

-E F(0) -0 I (2) = ) Tr (i 2b

1
2

where

Eb
F(O) = Eb

and the energy density spectrum of fl(t) defined in Eq. 29 is

2

E b2 (sin 2b E (sin 2)
ll(wZ) = 2 2b11 2x w\

Since Eq. 31 is symmetrical with respect to we and u2'

lim * (w1, 2 ) = F(O) (11(1)

02'

L' H6pital' s Rule is applied again to get

lim 1(wU ,V 2 ) = F(O) l(2)

S 2-0-

The preceding examples show that the second-order autocorrelation function of an

aperiodic function includes the effects of the first-order autocorrelation when F(O) t 0.

For the aperiodic function such that F(0) = 0, the effects of the first-order autocorrela-

tion function are absent in the second-order autocorrelation function. An example of

this is

E

fl(t) = -E

0

when 0O< t< b

when -b < t < 0

elsewhere

(31)

(32)

(33)

(34)

(35)

(36)

(37)



Fig. VII-12. a. Plot of 111 ' 2) for 1 > 0, 7 2 > 0, T 2 > l of fl(t) given

by Eq. 37; b. Plot of 1 1 1('T 2 ) for 71 < 0, 72 > 0 of fl(t)

given by Eq. 37; c. Plot of 1 1 1 (T1',T 2 ) for 7 1 < 0, T < 0,

IT1l > IT2 1 of f 1 (t) given by Eq. 37
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The second-order autocorrelation function in this case vanishes at the origin and is non-

zero within a certain region as shown in Fig. VII-12a, b, c.

J. Y. Hayase

D. AN ANALOG PROBABILITY DENSITY ANALYZER

A proposed analog probability density analyzer uses the principle described by

W. Davenport in the Research Laboratory of Electronics Technical Report 148. Briefly

this principle involves creating a time function g(t) whose value is unity whenever the

amplitude of the time function x(t), of which the density is being measured, lies within

a given interval E to E + AE and is zero otherwise. The time average of g(t) is then

the probability that f(t) lies in the interval E to E + A E.

Figure VII-13 shows the essential elements of a system that provides a continuous

plot of the amplitude probability density P(x) versus x. A modulation scheme is

employed to avoid the use of direct-coupled amplifiers. By means of the variable

resistor R 5 the voltage across A-B is adjusted, with no input to the probability ana-

lyzer, to a chosen value AE volts. A small synchronous motor is used to slowly drive

the helipot R 3 so that the voltage E at point D increases linearly with time over a pre-

determined range. When the time function to be analyzed, x(t), is applied at the input

to the tube Tl, it is amplified and appears at point C. When the voltage at point C lies

between E + A E/2 and E - A E/2 both diodes are open. When the voltage is outside of

this range one of the two diodes is closed. If RL is chosen to be much smaller than the

resistance of the voltage divider (R 2 , R3, and R4) , the impedance to ground seen at

points A and B when either diode is closed is very small compared to the value when

both diodes are open.

R 3
HELIPOT

SMALL
SYNCHRONOUS
MOTOR

BROADBAND40-MC T
AMPLIFIER BIASED AVERAGING TO PEN

SLIGHTLY BELOW CIRCUIT RECORDER
CUTOFF

Fig. VII-13. Essential features of the proposed analog
probability density analyzer

x(t)-C>
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Connected to point A is a high-impedance, high-frequency (ca., 40-Mc) oscillator. The

oscillator voltage at point A, with both diodes open, is negligibly small compared to the

magnitude of the signal voltage variation at point C. This condition is necessary so that

the oscillator voltage does not influence the closing of the diodes. The 40-Mc signal at

point A or B will be much larger when both diodes are open than when either diode is

closed. This 40-Mc signal at point B is fed into an amplifier which is biased slightly

below cutoff so that it gives an output only when both diodes are open. The output of the

amplifier is limited and detected, yielding a time function proportional to g(t) described

above. The output of the detector is then averaged and fed directly to a pen recorder.

The method described above can be easily extended to the measurement of second

probability densities.

A. G. Bose


