IV. MICROWAVE SPECTROSCOPY

Prof. M. W. P. Strandberg	J. D. Kierstead	P. R. Swan, Jr.
J. G. Ingersoll	S. Krongelb	H. Venkatesh
B. Josephson, Jr.	M. Peter	G. J. Wolga

A. INTERACTIONS BETWEEN TORSIONAL AND OVER-ALL ROTATIONS IN SYMMETRIC TOP MOLECULES

The work described in the Quarterly Progress Report, July 15, 1955, has been continued. The following $J = 0 \rightarrow 1$ transitions were observed for methyl silane in its various torsional states. Assignments of the torsional states were based on relative intensity measurements.

n	k	Observed (Mc/sec)
0	0,1	21,937.84
1	3	21,873.00
1	2	21,872.33
2	4	21,814.29
2	3	21,808.81
3	6	21,768.68
3	5	21,758.38
4	6	21,737.9
4	7	21,706.5

These data were compared with the results of Kivelson's theoretical treatment (1), and good agreement was found on all except the n = 4, k = 7 line. The torsional energy of this state, however, is close to a nontorsional vibrational frequency of the molecule, so that breakdown of the theory might be expected.

Some measurements were also made on the $J = 1 \rightarrow 2$ transitions with a harmonic obtained from a crystal doubler driven by a 2K33 klystron. Agreement between these data and Kivelson's work was indicated, although frequency-measurement difficulties and the limited power available did not warrant giving any definite conclusions. It is planned to repeat these measurements with the fundamental frequency obtained from a Raytheon QK294 klystron.

S. Krongelb

References

1. D. Kivelson, J. Chem. Phys. 22, 1733 (1954).

(IV. MICROWAVE SPECTROSCOPY)

B. PARAMAGNETIC RESONANCE

The paramagnetic resonance spectrograph is being adapted for high-frequency magnetic modulation. The resonant microwave cavity has been fitted with modulation coils for magnetic field modulation within the cavity.

G. J. Wolga