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RESEARCH OBJECTIVES

The work reported in this section includes continuations of studies that were desig-
nated as Analog Computer Research in previous Quarterly Progress Reports. The new
heading for this research seems more appropriate, since the efforts of the group are
directed largely toward general nonlinear circuit analysis and synthesis problems. Some
of the studies do apply to analog computers but also have broader implications. The
group has been augmented by several new staff members, and a number of new studies
are under way.

Resistive diode circuits are being studied to determine general properties and meth-
ods of synthesis.

H. J. Zimmermann

A. DIODE CIRCUIT CHARACTERISTICS

In the Quarterly Progress Report, July 15, 1954 (p. 86), a new algebraic symbolism

was described by Stern. It is an algebra that provides a concise mathematical repre-

sentation of piecewise-linear networks; it was applied to the synthesis of driving-point

resistances and transfer functions of diode circuits.

This investigation bears on the same subject but is concerned only with the general

properties of the driving-point resistances of piecewise-linear networks containing no

storage elements. Realizability criteria are discussed, with special emphasis on real-

izability with the theoretically established minimum number of components. No rigorous

proofs will be presented unless they are of interest.

Definition I: The state of a diode will be denoted by "1" if the diode is conducting;

by "O" if it is not conducting.

Definition II: The state of a network will be defined as the condition in which the

state of all its diodes is uniquely specified. For example, state 100110 means that the

network contains 6 diodes with the first, fourth, and fifth diodes closed and the others

open.

Definition III: As the input variable (input voltage Ein, for example) of a network is

increased from -oo to +oo, the network assumes a succession of states. This succession

of states will be called a "code."

THEOREM I: "The input-resistance (Ein vs. I in) or input-conductance (Iin vs. Ein)

curve of a network consisting of diodes, resistances, and constant voltage and current

sources is a monotonically increasing function. "

This is intuitively obvious, since, regardless of whether the diodes in the network

are open or closed, we see a positive resistance when looking into any terminal pair of

the type of network specified above.
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THEOREM II: "The maximum number of states a network can have is 2n , where n
is the number of diodes in the network. "

This follows, since each of the n diodes may assume only one of two mutually exclu-

sive states: open or closed. This is true for all piecewise-linear networks, including

those that have negative resistances and linear amplifiers in them.

THEOREM III: "The driving-point resistance, conductance, or transfer function of
a piecewise-linear network containing n diodes can have a maximum of 2n linear

regions."

This theorem is not identical with Theorem II, for the latter merely states that the
maximum number of states is 2 n, but does not preclude the same state occurring more
than once; that is, according to Theorem III, a state can occur in only one range of the

input variable. In more concise form, Theorem III states that the code of a network can
consist of a maximum of 2n states. The proof of this is of interest.

Proof (advanced by Prof. S. J. Mason): Assume a network containing n diodes.

This network can be represented by a box with the input terminal pair and the terminals

of all the diodes brought outside, as shown in Fig. XV-1. In any specified state S (state
1001... 1 in this example), all of the diode currents and voltages are always positive

because the reference convention indicates as positive the forward currents of conducting

diodes and the reverse voltages of open diodes. Let us say that we plot X m vs. Ein ,
where Xm is either a forward current of a closed diode or a reverse voltage of an open

diode. In the example given above, X 1 = il, X 2 = e, X 3 = e 3 , .. ., Xn = i n . Since the

network in any one state is linear (and stable), the Xm vs. Ein curves will be straight

lines (see Fig. XV-2). It is clear that as either a diode forward current or a diode

reverse voltage tends to become negative, a break point occurs and the state S for
which the Xm vs. Ein curves were plotted in Fig. XV-2 is terminated. The region in
which the specified state S can exist, therefore, is the region in which all X's are
positive. Since the Xm vs. Ein curves are straight lines, there is only one such region.
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Piecewise linear resistive network. Transfer conductance or transfer function
of the network (Fig. XV-1) between the
input and the terminals of a diode.
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THEOREM IV: "The closing of a single diode in the network will make the incre-

mental resistance across any terminal pair decrease, and the opening of a diode will

make the resistance increase."

By employing Theorem IV and Definitions I and III, it is possible to assign a code

to a graphical representation of an input resistance or input conductance. Referring to

Fig. XV-3(a), for example, an increase in slope corresponds to a decrease in resist-

ance, which means that in traversing the break point at the origin from left to right, at

least one "1" has to be introduced into the third state of the code describing the network

represented by Fig. XV-3(a). This code, however, is by no means unique for Fig.

XV-3(a), even if we restrict the number of variables (diodes) to two and do not permit

the repetition of identical states, in agreement with Theorem III. Figure XV-3(b) illus-

trates this fact by assigning an alternate code to the network represented by Fig. XV-3(a).

CODE in CODE in CODE in CODE
01 10 00 11 00
OO 00 01 01
0 0 o 10 00
S11 1 11 10 10

0 10
E in n Ein 01 in

(a) (b) (c) (d)

Fig. XV-3

Graphical representation of codes.

1. Realizability with Minimum Diodes

Although a driving-point conductance like that shown in Fig. XV-3(c) has only four

states, making two the lower bound on the number of diodes necessary to synthesize it,
it clearly cannot be realized with only two diodes. To realize it with two diodes, we

would have to represent the network by some code such as that shown in Fig. XV-3(c).

This code is a possible representation, for the net change in input resistance in going

from state 01 to state 10 can be negative and thus correspond to the concave curve of

Fig. XV-3(c). The code of Fig. XV-3(c) implies, however, that two diodes switch at

the same level of input voltage. Such double switchings can always be broken up into

two single switchings by inserting an infinitesimally small battery in series with one of

the diodes that partakes in the double switching. One of the possible codes for this new

condition is shown in Fig. XV-3(d). This would mean, however, that there are more

than 2 n linear regions in a network of n diodes. This is in direct contradiction to

Theorem III, and hence is impossible. The conclusion is that not necessarily all of the

2 n! possible codes can be realized with n diodes (2 n states can be arranged in 2 n

different ways, giving 2n! codes).
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Total possible codes ( 2 n!= 2 4 ) for n = 2.
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Graphical representation of codes
realizable with two diodes.

Fig. XV-6

Networks representing all physically
realizable codes for two diodes.

The previous discussion poses the question of just exactly how many of the 2 n! codes

are realizable with n diodes. The answer to this question is intuitively that only those

codes are realizable in whose successive states only one variable changes. This would

be a Gray code. The proof hinges on the previous discussion.

2. Realizations for n Equals 2

In investigating the possible realizable codes for two variables, a through x of

Fig. XV-4, it is seen that there are eight codes (b, d, g, 1, m, r, u, and w) satisfying the

conditions discussed in the preceding paragraph. Of these eight codes, b and d, u and

w, 1 and r, g and m, however, are actually the same, for they differ only in the number

assigned to the different diodes; that is, they are alternate codes representing the same
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driving-point resistance or conductance picture. Hence, there are only four different

realizable codes for two variables (b, g, r, and w), as shown in Fig. XV-5.

A thorough inspection of Fig. XV-4 will reveal the fact that the vertically adjacent

codes are complements of each other - to use the terminology of switching circuits.

This suggests the possibility that they may be realized with dual networks, as also evi-

denced by the dual nature of the plots of Fig. XV-5. There are only eight ways in which

four different slopes can be put together so that they will appear different. A possible

set of codes corresponding to these eight ways is a, b, f, g, r, s, w, x. Of these, only four

follow the Gray code; and hence only four (b, g, r, w) are realizable with two diodes.

Codes b and g have been synthesized in the form of the bridge circuits shown in Fig.

XV-6, and their duals have been taken according to the rules (1) for obtaining networks

represented by codes r and w (dotted lines). These are also shown in Fig. XV-6.

Further investigations are carried on along these lines to uncover the characteristics

of piecewise-linear diode circuits with and without negative resistance regions.

G. S. Sebestyen

Reference

1. T. E. Stern, Internal memorandum and Sec. XV-Bl of this report.

B. PIECEWISE LINEAR NETWORK THFORY

1. Duality in Diode Networks

Since the addition to a linear network of nonlinear elements that must be represented

by directed line segments necessitates a careful consideration of polarity and direction,

the first step in dealing with duality in nonlinear networks is to obtain a definition that

is clear with regard to polarity and direction. A suitable definition (which does not con-

flict with the usual definitions for linear networks) will be evolved as follows.

Consider a network N consisting of interconnected two-terminal elements. This

discussion will be confined to linear elements, and nonlinear elements that do not con-

tain energy storage. Let us examine the network by making "pliers entries" into each

branch, and "soldering-iron entries" across each branch. The current-voltage rela-

tionship, looking into a "pliers entry" into branch m, will be known as the short-

circuit driving-point admittance for branch m. It will be denoted by i = ym(e). The

voltage-current relationship, looking into the "soldering-iron entry" across branch m,

will be known as the open-circuit driving-point impedance for branch m. It will be

denoted by e = zm(i).

Figure XV-7(a) establishes reference polarities relative to the direction of branch

m, for determining ym. Figure XV-7(b) does the same for zm.
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Fig. XV-7 Fig. XV-8

Branch and node reference Diode bridge network and its dual.
conventions.

Now that reference conventions have been established, duality can be defined for

nonlinear networks.

Definition: Given two networks, A and A'; A' is the dual of A if and only if:

1. To each branch m in A there corresponds one and only one branch m', in A';

and to each branch n' in A' there corresponds one and only one branch n, in A. (In

other words, the branches of the two networks can be put in one-one correspondence.)

2. y = zm, for all m.

3. Zm = Ym' for all m.

It is clear that this definition implies topological duality as a prerequisite for elec-

trical duality. For example, all branches, m, n, p, . . ., which appear in series around

a loop in A must correspond to branches, m', n', p',..., across a single node pair in

A', since ym = n = y ... , and therefore zm, = zn, = zp, ....

One may form the dual of a planar nonlinear network in the same manner as one

would proceed with a linear network: replace loops by nodes, and directed branches

by their dual branches, always being careful to observe reference directions.

As a first step in constructing the duals of diode networks we must determine the

dual of a voltage source, a current source, and a diode.

It can be shown that, subject to the aforementioned convention, the dual of a voltage

source is a current source generating a current in the direction of the potential drop of

the voltage source, and the dual of a diode is another diode pointing in the opposite direc-

tion. It should be noted that these rules are a consequence of the chosen convention,
and would be different had a different convention been chosen. Using these rules we may

now proceed to the determination of the dual of a typical diode network.

The dual of the bridge network of Fig. XV-8(a) will be determined. The procedure

is:

1. Assign labels and reference directions to each branch, reducing the circuit to a

network of directed line segments.
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2. Draw the topological dual of this line graph, using any arbitrary reference con-

vention; such as, all branches converging on a node in the original graph will appear

clockwise around a corresponding loop in the dual graph.

3. Insert in each branch of the dual, a branch which is the dual of the original

branch.

By this procedure we find that the dual of the network of Fig. XV-8(a) is that shown

in Fig. XV-8(b). As a check, the node equations for the network of Fig. XV-8(a) are

written below on the right, and the loop equations for the network of Fig. XV-8(b) are

shown below on the left. Comparison of the two sets confirms the duality of the two

networks.

iz - i
2 1 2

i - i 2

2 +i-i1

i - i i + (-il) + el = 0

where

el= z(i l , i 2 ) = l, O

e = z2 (i 2 ) = [00(i 2 - 1), O] +

90 g g2
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e - e2 2 +i +i 2 =0
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2 1e-e

e - el + (-el) + i i = 0
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il =Yl(el,

i2 =y(e
2 )

e 2 ) 2 6 , 0

= [oo(e 2 - 1), O 4
+
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Fig. XV-9

Foster canonical forms for diode driving-
point impedances.

Fig. XV-10

Cauer canonical forms for diode
driving-point impedances.
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2. Driving Point Impedance Synthesis

The synthesis problem with regard to driving-point impedances (dpi) is as follows:

Given a piecewise-linear voltage-current relationship, evolve a diode network that will

produce this characteristic as its dpi. This discussion is confined to monotonically

increasing functions. These functions can be classified with regard to the number and

types of break points they contain. Each break point may be classified as either con-

cave or convex, depending upon whether the slope of the function decreases or increases

as one passes through the break point from

left to right. Thus, for example, an imped-

ance function whose incremental resistance

is always increasing from left to right may

be classed as strictly concave. The type of

network and number of diodes reauired to

Fig. XV-11 synthesize a given dpi depend upon the number

Ladder development for general and types of break points it contains, and the

diode driving-point impedances. order in which they occur.

Minimization of diodes in realization of

dpi's is discussed in Section XV-A. In this

connection, there are a few general rules that can in all cases give upper and lower

bounds to the required number; in some cases, actually indicate the minimum number.

These are:

1. Any function containing n break points can be synthesized with n diodes or less

(an upper bound).

2. A function containing 2 n- 1 break points requires at least n diodes (a lower bound).

3. Any function requires at least as many diodes as the excess of concave (convex)

break points over convex (concave) break points in the entire function or any section

thereof (more stringent lower bound).

4. One diode per break point is a necessary and sufficient number for synthesizing

any strictly concave or convex function (special case of 3).

Figures XV-9 and XV-10 illustrate four canonical network forms for synthesizing

strictly convex or strictly concave functions. Note that Fig. XV-9(b) is the dual of

Fig. XV-9(a) and that these two forms are similar to the Foster canonical forms for

linear networks. Likewise, Fig. XV-10(b) is the dual of Fig. XV-10(a), and these

latter two forms are similar to the Cauer forms for linear networks. Naturally, any

of these networks can be synthesized with either voltage or current sources by making
Th6venin or Norton source transformations. Given a particular dpi or driving-point

admittance (dpa), one can choose the proper values of the elements in any of these net-

works quite easily.
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There are no canonical forms available for a general function. However, Fig. XV-11

is a block diagram of a network for synthesizing any arbitrary function, using one diode

per break point, in a series-parallel arrangement. This is a minimum network if one

is considering only series-parallel developments, but one might be able to reduce the

number of diodes for certain types of functions by using lattice structures. The ladder

structure shown is derived in the following manner. First, the given function is parti-

tioned into strictly convex or strictly concave sections. These sections are then

synthesized one at a time by using any of the aforementioned canonical forms. If the

sections of the function are numbered from left to right, 1, 2, . . ., then the impedance

or admittance elements corresponding to these sections appear in the correspondingly

numbered boxes of Fig. XV-11. In general, then, all of the horizontal sections are

strictly convex impedance functions, and all of the vertical sections are strictly con-

vex admittance functions. Again, it is not difficult to determine the actual values of

the required elements.

T. E. Stern

C. A PIECEWISE-PLANAR MULTIPLIER

The output of a multiplier (Z) should satisfy the equation Z=KXY where X and Y are

the two independent variables, and K is an arbitrary gain factor. This equation may be

represented as a surface whose height above the x-y plane is equal to Z. The problem

of building a practical multiplier, then, is essentially one of reproducing this surface.

See Fig. XV-12.

Mr. T. E. Stern describes, in the Quarterly Progress Report of July 15, 1954, a

general method for the synthesis of piecewise-planar functions of two variables

with diode networks. He introduces a com-

pact algebraic notation for piecewise-linear

functions, and discusses two basic diode

building blocks, the "step" element and the

"pyramid" element.

The use of this algebraic notation and

the development of a third building block,

the "ramp" element, make this method par-

ticularly adaptable to an approximation of

the multiplier surface on a piecewise-planar

basis.

The "ramp" element is depicted in Fig.

Fig. XV-12 XV-13. The x-y plane is divided into a grid

Portion of multiplier surface. of equal increments A of the independent
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eo=Z

R,,R 2>>R

Fig. XV-13 Fig. XV-14

"Ramp" element. Realization of "ramp" element.

variables x and y. The "center" of the "ramp" element is defined as being at the point

x=iA , y=j A, and the "height" of the element (Aij) is defined at this point. The equations

of the "ramp" element are

A
1. in region Q Zq =- y (j-1)A fory>(j-1) A

2. in region P Z = J x - (i-l) A] for x > (i-l) A

which can be combined, by using the previously mentioned algebraic notation, to

Z = [(Z q, Zp) , O] +

Z 1J i[(y - (j-l)), (x - (i-) A)] , o
A

(The reader is referred to Mr. Stern's article for background on the notation of this

equation.) One suitable network realization of the "ramp" element is given in Fig. XV-14.

The procedure used to approximate the multiplier surface is as follows. The x-y

plane is divided into a grid of points at equal increments of x and y. The true values

of Z are tabulated for each of these points in the form of a matrix whose general term

[ ija represents Z at x=i A, y=jA. Over each of these points, in general, is centered

a "ramp" element. The height of this element is so determined that when it is added

to the contribution from all the other elements at the point their sum will equal a.i , the

true value of the function. Thus, an additional matrix is derived whose general term

[Aij] represents the required "height" of the "ramp" element which is centered at x=ia,
y=j A.

To reproduce an arbitrary function over a range of m increments in x and n incre-

ments in y would require, in general, mn "ramp" elements. However, for the particular
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Table I Table II

a Matrix A.. Matrix

5

4

3

2

1

5

4

3

2

I

1 2 3 4 5 1 2 3 4 5

case of the multiplier, there is a simplification that results in a large reduction in the

number of elements, and consequently in the number of diodes, required.

The a.. matrix for the multiplier surface over a grid of 25 tabulated points is given

in Table I (K is assumed to be 1). The required Aij matrix is given in Table II. Nine

identical elements are required for this example, and it can be shown that in general

only m+n- elements are needed to reproduce the multiplier surface at mn tabulated

points. Further analysis shows that the maximum error (assuming ideal "ramp" ele-

ments) attributable to the linear interpolation between grid points is A /4, which for the

particular example is 1 per cent of the full-scale range. The approximation of the sur-

face over the voltage range of interest at smaller increments in x and y will decrease

the maximum error. This is limited, finally, by holding the elements required to a

practical number and by actual circuit component accuracy.

A "ramp" element has been built with an accuracy of approximately 1 per cent of

full scale. Nine of these elements were incorporated in a multiplier. Preliminary

measurements indicate an accuracy of 3 per cent for this first crude device. These

figures can be improved. A means for modifying this device from one- to four-quadrant

operation is under investigation.

R. I. Morganstern

D. AN ELECTRONIC VECTOR MAGNITUDE CIRCUIT

This device is one whose output is the vector magnitude of its two inputs; that is,

Z (X 2 + y2)1/2 Since this is the equation of a circular cone, the device must repro-

duce the surface of a cone. In the Quarterly Progress Report of July 15, 1954 (p. 85),

T. E. Stern described a method for realizing a piecewise-planar approximation to an
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I 2

y R3 Z Gx +G2 ySGIx +G 2 y

Fig. XV-15 Fig. XV-16
Circuit for obtaining plane coefficients. Circuit of vector magnitude computer.

arbitrary three-dimensional surface with diode circuits. Thus a cone may be approxi-
mated by a set of intersecting planes all passing through the origin of coordinates.

Because all of the planes pass through the origin, their equations have the form
Z = Ax + By. Since (x + y2)1/2 = ( x 2 + y 2)1/2, only the first quadrant of the cone
need be reproduced if the inputs of the device are preceded by absolute value circuits.
Therefore A and B are always positive. If A + B < 1, a plane may be easily realized
with the circuit shown in Fig. XV-15. The condition A + B < 1 can always be met by
choosing suitable scale factors for the input.

It can be shown that for any given values of x and y, the value of z which is on that
plane that most closely approximates the cone will be numerically greater than the value
of z on any of the other planes. Therefore, it only remains to select the greatest of a
set of positive voltages. This can readily be done with diodes. The complete circuit is
shown in Fig. XV-16.

A circuit of this sort has been built, reproducing the first quadrant of the surface of
the cone. Preliminary tests indicate an accuracy of 1 per cent.

L. W. Massey
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