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A. MEASUREMENT OF THE THERMODYNAMIC EQUATION OF STATE OF

PARAMAGNETIC SALTS

The measurements required for determining the properties of potassium chromium

alum in the demagnetization region have been completed. Since the entropy is constant

in a demagnetization and may be determined in the helium region of temperature, mag-

netic measurements easily give us M(Be, S), where M is the magnetization, and Be is

the external field. The thermodynamic temperature, T(Be, S), is not so easily meas-

ured, but this information is needed to complete our knowledge of the thermodynamic

properties of the salt.

This information is obtained as follows. We have the magnetic Maxwell relation

(aT/aBe)S = -(aM/aS)B . The final temperature, Tf, achieved in a demagnetization
e

from temperature T i and field B i is then integrated as
1 1

B.

Tf = Ti + )aM dB (1)

where the integral is along an isentrope. Since Tf may be quite small compared to T i ,
this direct method is quite inaccurate. We use an indirect method based on the well-
known property of an ideal paramagnetic (1) that the entropy and magnetization are both
functions of Be/T alone. Then we see that, along an isentrope, the magnetization, MI,
is constant and that the temperature goes to zero in a demagnetization. We define

a quantity MC with respect to the magnetization, M, of the real salt, appearing in
Eq. 1, by M(Be, S) = MI(S) - MC(B , S) . Since an actual salt approaches the behavior

of an ideal salt at large fields, MC approaches zero at large fields. Equation 1 then

becomes
B. B'

Tf Ti+ dB e \ d Be (2)

e BeBy the properties of an ideal salt, the first two terms on the right cancel, leaving

By the properties of an ideal salt, the first two terms on the right cancel, leaving
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Fig. IV- 1

Magnetization as a function of magnetic field at different
entropies (specified by Curie temperature).
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B B.

Tf = d B =- MC d Be (3)

0 e 0

Values of T at other values of B than B e = 0 may then be obtained from Eq. 1 by

interchanging the roles of Tf and T i .

The motivation for the use of Eq. 3 and then Eq. 1 is that theoretical interest is

greatest in the region of low fields, where the interactions among the elementary dipoles

outweigh that between each one and the external field. It is desirable to investigate the

properties of paramagnetic salts at temperatures so low that the dipolar interactions

are not masked by thermal agitations. Since such low temperatures are available only

through the use of a large magnet, we decided to investigate the applicability of Eq. 3

before this step was taken.

Although the theoretical interpretation is more difficult than for other salts (2),

potassium chromium alum was chosen for the paramagnetic sample because a great deal

of thermometric work has been done on it. A 7-mm spherical crystal, aligned with a

cubic axis along the magnetic field, was demagnetized to approximately 0. 07 0 K. The

solenoid described in the Quarterly Progress Report, July 15, 1954, was used. Meas-

urements of the differential susceptibility were made alternately at a given field and at

zero field and were continued until the sample warmed up to approximately 0. 2 0 K (about

one hour). The zero-field susceptibility, Xo, was used to determine T = k/X o , which

was used as a measure of the entropy. From time to time the sample was remagnetized

to a large field to ensure thermal equilibrium. The constant, X, was determined

from measurements in the helium region of temperature letting T = T, by the appli-

cation of Curie's law, with g = 2, J = 3/2. This data sufficed to determine the curves

of M vs. B e at constant S of Fig. IV-1. The entropy is labeled with the value of T

An extrapolation carried out for Be > 2000 gauss yielded the values M of Table I fore o
Moo = M(Be = oo); M equated to MI(S) yielded the values of S of Table I and Fig. IV-2.

As representative of the values of other workers, obtained by computation of the entropy

in the helium region before demagnetization, we give the curves of Ambler and Hudson

(3) and of Bleaney (2). Temperature values were computed from Eq. 3. They are

plotted against T in Fig. IV-3. Bleaney's curve is included for reference. His temper-

atures were computed from T = dQ/dS, where dQ was obtained by gamma ray heating.

Table I

T 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18

M Ic/Np 2.221 2. 110 2. 013 1.926 1.846 1.771 1.700 1. 633 1. 568

S/R 0.8176 0.8817 0.9336 0.9766 1. 0134 1. 0461 1. 0748 1. 1010 1. 1246
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Fig. IV-2

Entropy as a function of Curie tem-
perature for potassium chrome alum.

Fig. IV-3

Thermodynamic temperature as a function
of Curie temperature for potassium chrome
alum.

We note that there is good agreement for the temperature measurements, but not for

the entropy measurements. We cannot explain the deviation of our entropy values from

those of other workers. Our method of measurement excludes irreversibilities in the

magnetizing process. For this reason our entropy cannot be raised. It has been sug-

gested that the g value for this salt might be as low as 1.96 (see ref. 4). This change

would only bring our points about 10 per cent closer to those of Ambler and Hudson,

although the raising of our points would be greater at the lower entropies. This deviation

would tend to make our temperatures agree more closely with those of Bleaney. It is

possible that the computation of Arrbler and Hudson of the entropy in the helium region

is in error because of the lack of understanding of the low-lying energy levels (2).

L. D. Jennings, Jr.
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