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A. FERRITES AT MICROWAVE FREQUENCIES

In reference 1, variational principles for the resonant frequencies of a cavity or the

cutoff frequency of a waveguide, both completely filled with ferrite, were given. Varia-

tional principles for the resonant frequencies of more complicated systems, as well as

for the propagation constant of waveguides partially or completely filled with ferrites,

have also been obtained and will be briefly discussed here. To illustrate their use and

to develop confidence in them, they have been applied to inhomogeneous waveguides the

solutions of which are already known. It turns out that the variational principles lead

to algebraic expressions which not only obviate the need of solving transcendental equa-

tions but also give excellent accuracy even with rather crude trial fields. Furthermore,

since the various quantities are explicitly related by algebraic expressions, the latter

may be used as design equations.

1. Variational Principles for Resonant Frequencies of Cavities

a. A cavity partially filled with ferrite. Equation 1 of reference 1 can be used in

this case provided that E is taken within the integral sign.

b. A cavity partially filled with a dielectric. Here we can either use the varia-

tional principle described in the preceding paragraph (with .i a scalar) or

V X E • V XE* dv
ViXE. vE dv

l E i E - E dv

The choice depends on whether it is easier to use E or H as a trial field. The symbols

of Eq. 1 are the same as those used in reference 1.

c. A cavity with inhomogeneous and anisotropic substance. Here we require E, "

to be hermitian. Then we have

E VX Hdv - H •Vx Edv

n v - v(2)
fvE * Edv + fH * -i Hdv

To utilize Eq. 2, a trial field, say E, is assumed. H is then found from one of
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Maxwell's two equations. The rest of the procedure is standard. For the method of

deriving Eq. 2 see section 4 below.

The formulas of the preceding paragraphs can be adapted to the cutoff frequencies

of waveguides, provided that we replace the resonant frequencies by cutoff frequencies,

the volume integrals by surface integrals over the cross section of the guide, and E, H

by their z-independent parts.

2. Variational Principle for the Propagation Constant y

We have

S fH V XEds -f E V XHds + j f H ' Hds +j E .E 'Eds

H a xEds - E a x Hds
z z

(3)

where E, H are the z-independent parts of the electric and magnetic fields, E , H are

their complex conjugates, and az is the unit vector in the direction of propagation.

To utilize Eq. 3, a trial field, say E, is assumed; H is then found from Maxwell's

equation

V X E -j ya E = -jw * H

The rest of the procedure is standard in variational calculation.

3. Application

a. Equation 1 has been applied to the case of the lowest mode of waveguides par-

tially filled with dielectric of permittivity E, as shown in Figs. XII-1 and XII-2. A very

crude approximation of the field E gives results that are in excellent agreement with the

exact solutions given in reference 2. Moreover, the variational principle enables us to

compute cases similar to that of Fig. XII-1, but with the dielectric asymmetrically

placed. As a specific result we shall give the expression for the cutoff wavelength Xc
in terms of the geometry of Fig. XII-1.

Fig. XII-1 Fig. XII-2
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c = a + Xe + - sin 1 (4)
c e~a + a /]

b. Next, we shall give an application of Eq. 3 to the case shown in Fig. XII-2.

2 _ 5 2 6 Xe Z rr6 2 rr6
S + k -- sin - cos -

2 a e a 2w a a

2 e1T2 1/2

([3 v 2 koXe 2rr 2 vb 16 (kX
S sin - si + sin - (5)

a a a 9 a

2 2
where ko w 2o . Although Eq. 5 was obtained with a rather crude trial field, it

faithfully reproduces all the curves given in Fig. 11. 11 of reference 2.

4. Derivation of the Preceding Variational Principles

The variational principles given in reference 1 and that given by Eq. 1 can be

derived by following known procedures of which an excellent account may be found in

reference 3. The variational principles given by Eqs. 2 and 3 are more complicated,

since the functionals [w], [y] depend on more than one function. A brief outline of the

derivation of Eq. 3 will, therefore, be given. We start with

v x E +j w- H = jya X E (6)

V X H - jwY" E = jya x H (7)

We multiply the first by H, the second by E, integrate over the cross section of the

guide, and subtract. E, H are the adjoints of E, H, to be determined presently.

S - V XEds - E V X Hds + jw 2 H-. - Hds + jw s E -E Eds

= J I a xEds- E a x Hds (8)

Equation 8 constitutes a variational principle for y if we vary E, H. It remains, how-

ever, to relate E, H to E, H in a simple manner. This can be done by suitably trans-

forming Eq. 8 to a variational principle for the determination of E, H. It then turns out

that E, H must satisfy the complex conjugates of Eqs. 6 and 7 provided that E, " are

hermitian, that is, when the losses are disregarded. Thus E, H equal E , H .
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5. Mode-Expansion Solution of Anisotropic-Inhomogeneous Waveguide Problems

In reference 4 a general approach for the solution of waveguide problems with aniso-

tropic and cross-sectionally inhomogeneous media was mentioned, and results of its

application were given. A brief exposition of the method follows.

Let E(x,y)exp(-jyz) be the electric field, H(x,y) exp(-jyz) the magnetic field,

Je exp(-jyz) the electric current, Jm exp(-jyz) the magnetic current. E, H, Je' Jm are
three-dimensional vectors depending on the cross-sectional coordinates only. Substi-

tuting in Maxwell's equations, we obtain

V X E - jy az X E + jwo H = Jm

(9)
V X H - jy a x H - jwE E= J

z o e

Following the method used for the problem of a cavity, we wish to expand the field

in terms of a complete set of modes, of which there are several. One possible choice

is a set comprising the usual TE, TM modes completed by a set of irrotational modes.

The inclusion of the latter is necessary for the expansion of the irrotational part of the

field, as in the case of ferrites, for example. Such a set of modes is perfectly admis-

sible and has the advantage that each mode has physical existence. However, we shall

choose another set which, although its individual modes have no physical existence, is

simpler and real (the TE, TM set is complex).

It is well known (5) that complete sets for vector fields can be generated from

solutions of

(V2 + ai 2) = 0, n 0 on boundary

2 n=, = 0 on boundary

as a result of operating on 4n.n by v, V X az, V X V x az
Application of this procedure yields the set

Vqi Xa
a n z b c 1

E E a E =- V (10)
n an n z n' n pn n

for the expansion of fields satisfying the electric type of boundary conditions, and

Ha  b Vn z c 1
H =a , H n H = (11)n z n - n -- n

n n

for the expansion of fields of the magnetic type. These modes satisfy a number of

interesting relations, orthogonality being the most important. Moreover, they are

normalized, provided that 4n , 4n are normalized. We next expand E, Je in terms of

-60-



(XII. MICROWAVE COMPONENTS)

a  b  c  a b  c
E E , E H, J in terms of Hn H , H , substitute in Eq. 9, and equate coefficients

of identical modes. There results the system of equations

a a a
a e + jw o h = Jm H dsn on m n

-jy ea + jwo h c = J H c ds (12)n on m n

a a  c  E a
-jwEo e + a h + jy hn = J E dson nn n e n

b c b fJHbds
Pe b + 1 e c + j h = J Hb dsnn n on m n

-jwE eb + P h = J e E ds (13)
o n nn e n

-jwE e c- j h b J E c ds-o n n = e n

ep (p = a, b, c) are the coefficients of E P in the expansion of E, h P have an analogousn n n
meaning. The integrals are over the cross section of the waveguide. They represent

the coupling between various modes.

The grouping of Eq. 12 and Eq. 13 is intentional. When there are no electric or

magnetic currents Eq. 12 yields the TE modes, Eq. 13 the TM modes, of an empty

guide. For ferrites in waveguides we have Je = jwE oX eE and Jm = -jp o m - H. In this

case Eqs. 12 and 13 reduce, after rearrangement, to a homogeneous set of equations.

The eigenvalues are the values of the propagation constant y which render the determi-

nant of the system zero.

Equations 12 and 13 are suitable for approximate calculations. Frequently we know,

on physical grounds, the small number of modes that are predominant in the unknown

field. We therefore assume the solution to be given just by these. Equations 12 and 13

serve, then, to determine the relative strength of each constituent mode.

6. Application

The results given in reference 4 are based on the application of the preceding method.

The two results given in sections 3a and 3b of the present report, and obtained by the

application of the variational method, have also been obtained as a direct application of

Eqs. 12 and 13. This is to be expected, since the trial field in the variational method
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was assumed to contain the same modes as the field used in Eqs. 12 and 13, and since

it is known that orthogonality of a set insures finality of its coefficients of expansion (6).

7. Integral Equation Method of Solving Anisotropic-Inhomogeneous Waveguide

Problems

The essence of this method is the formulation of the problem in the form of an

integral equation by means of suitable Green's functions.

From Eq. 9 we have the inhomogeneous equation

V 2 H+ (k 2 - 2 )H = (J J )  (14)

where

P = -jwo J - V X J + jya X J - i v(v Jm ) - Y a V • J
o m e z e Lo m Wo z m

O O

2
_ V(a J ) + j a z(a . J )

o z m Lo z z m

A similar equation can be written for the E-field. Next we define a magnetic Green's

dyadic Gh by the following relation where 6 is the delta function depending on the trans-

verse coordinates, and I is the idem factor:

V2Gh + (ko2 - y 2 )Gh = 16 (15)

Physically, Gh is the magnetic field caused by a filamentary distribution of current

with exp(-jyz) dependence and unit amplitude in an otherwise empty waveguide. Proper

combination of Eq. 14 and Eq. 15 yields

H = fGh P ds (16)

where the integration is over the cross section of the guide. A similar equation is

obtained for the E-field. In the usual case where J e Jm are given in terms of E, H,

Eq. 16 and its companion for the E-field constitute a pair of integral equations and the

usual tricks for approximate solutions can be applied. In particular, they are very

suitable for perturbation calculations, provided that the Green's dyadics are expandable

in a set of modes. It can easily be shown that Eqs. 10 and 11 are just the sets we need,

and that Gh is given by

Ha H a  Hb Hb Hc HC

n - k + an y -k + Pn y - k 0 + P
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with a similar expression for the electric Green's dyadic. This method has been worked

out in detail. In addition to giving an integral equation formulation of the problem it

completely contains the results of the mode-expansion method. In fact, Eqs. 12 and 13

are directly obtainable by this method. Note that the Green's dyadics defined here are

fundamentally different from those usually defined in waveguides.

8. Remarks

All three methods, the variational, the mode-expansion, and the integral-equation

methods, have been successfully applied to the following problems, in addition to those

already mentioned: rectangular waveguide with a dielectric layer perpendicular to the

electric field, ferrite slab in a rectangular waveguide with transverse steaay magnetic

field, ferrite rod concentric with circular guide and with longitudinal steady magnetic

field, eccentric rod in circular guide with transverse steady magnetic field. The results

are very promising and will be published soon.

After having completed the development of the mode-expansion method we have

found that a somewhat similar investigation was made by Schelkunoff (7), who treated

the problem from the coupled-transmission-lines point of view.

A. D. Berk
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B. STRIP TRANSMISSION SYSTEM

A Fourier integral analysis of the strip transmission system that was described

earlier (1) yielded results that compared favorably with experiment. However, due to

the complexity of the integral equations derived, the field pattern and the dependence of
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the propagation constant upon the various parameters of the system are obscured and

difficult to determine, making them impractical from an engineering standpoint.

It has been observed that for a given system the phase velocity as a function of fre-

quency is essentially constant over an extended range of frequencies; the variation is

less than 2 percent over a frequency range extending from 2 kMc/sec to 10 kMc/sec.

The constancy of the phase velocity would seem to indicate that a homogeneous plane

wave assumption is a good approximation to the dominant mode within this frequency

range. However, since in the strip system the medium is only regionally homogeneous,

the dominant mode is actually a TE-TM mode, and thus the validity of this assumption

requires justification. A theoretical and experimental study along these lines is being

made.

M. Schetzen
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