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A. RESEARCH OBJECTIVES

Problems being worked upon by members of this group are directly or indirectly

concerned with providing better means for handling the synthesis of networks for

various specified response characteristics. As is well known, the process of synthesis

consists essentially of two parts: (a) the solution to an approximation problem which

yields a realizable rational function of the complex frequency satisfying stated require-

ments regarding desired response and acceptable tolerances; (b) the construction of a

network schematic that exactly realizes the rational response function determined in

part (a).

The approximation problem assumes one of two general aspects according to whether

the desired response is specified as a function of frequency or as a function of time.

When specified as a function of frequency, the solution to the approximation problem

involves only the consideration of behavior patterns with frequency as the independent

variable. When the desired response is specified as a time function, the problem of

converting these data to equivalent specifications in terms of frequency arises, and

brings with it the necessity of relating tolerances in the frequency function to tolerances

in the associated time function.

These added considerations make the solution to the approximation problem

extremely difficult, since the relation between the time and frequency domains is math-

ematically intricate and computationally tedious to deal with. Hence much considera-

tion is given to providing a better understanding of these relationships alone, for it is

felt that all other aspects of the approximation problem in time-domain synthesis will

readily be clarified once a suitable means for correlating the time and frequency

domains is at hand.

Although this problem has been pursued for some time, and numerous aspects have

been clarified and some methods of synthesis have been devised which exploit these

results, the summation of all this work does not yet constitute a satisfactory solution

to the initial difficulty. This fact indicates the mathematically profound character of

the problem. It will eventually be solved only through continued stubborn attack upon

every promising approach that ingenuity can reveal.

In the construction of a network schematic when an appropriate rational function is

given, a number of specific problems that are not yet adequately solved from a practi-

cal point of view are also being studied. One of these is concerned with devising better

methods of finding networks for driving-point impedances that will avoid mutual induc-

tive coupling and if possible provide means for accommodating incidental loss. These
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investigations are specifically concerned with improving upon the Brune, the Bott and
Duffin, and the Darlington procedures, which are the currently known methods of dealing
with this problem.

Another problem in this category is concerned with RC network synthesis; specifi-
cally with finding a computationally simple way of carrying out the procedure of B. J.
Dasher (Technical Report No. 215) in order to make this scheme more nearly a practi-
cal reality. It is felt in this connection that RC networks are of considerable practical
potential value and that their extensive use is hampered only by the fact that presently
available methods of design are computationally too involved and cumbersome to appeal
to the engineer who is the prospective user and who ought to benefit from the results of
the kind of research reported here.

These are the major themes pursued by this research group. Numerous minor topics
that inject themselves collaterally, directly or indirectly add their bit to a better under-
standing of the network picture as a whole.

E. A. Guillemin

B. REGARDING A RATIONAL APPROXIMATION TO e-S

Before the advent of time-domain synthesis methods, this problem was described
as the design of a linear phase shift network, which could be realized in terms of either
an allpass network having a constant amplitude response, or as a lowpass filter having
an essentially linear phase characteristic in its passband. The allpass network in such
a design provides a phase characteristic with nearly constant slope up to some specifi-
able frequency, beyond which the phase curve approaches a horizontal asymptote.

In the light of our present more complete knowledge of the relation between transient
(time domain) response and frequency response it seems worthwhile to reassess these
older methods of approach. As will be seen, it turns out that these methods, if properly
handled, can be used successfully as means for obtaining rational approximants to the

-s
delay factor e - s that compete in quality very favorably with any of the time-domain syn-
thesis procedures more recently developed for dealing with this same problem, and
require far less disagreeable computational labor in carrying them out.

The oldest form of delay network involves an unbalanced ladder network having
inductances in its series branches and capacitances in its shunt branches. When termi-
nated in a resistive load, such a network has a transfer impedance of the form

= 1 1 (1)
12( Q(s) - m + n

where Q(s) is a Hurwitz polynomial, and m and n are, respectively, its even and odd
parts. The real and imaginary parts of this impedance for s=jw are readily seen to be
given by
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Re 12(jw = m (2z)
Zm -n s=j

and

Imag 12 W  2 -n 2 (3)

m n Is=jn

The real and imaginary parts of e- j, on the other hand, are cos w and -sin w; hence

the approximation problem may be stated by writing

2m 2 cos W (4)
m -n

n 2 = sin 0 (5)
m -n

A particularly simple way of obtaining an approximant over a frequency range

0 w w c is to let the zeros of m and n throughout this range coincide, respectively,

with the zeros of cos 0 and sin w. Since the even and odd parts of a Hurwitz polynomial

have simple zeros alternating on the j-axis, this procedure is sure to yield a polynomial

Q(s) that is Hurwitz, and hence the transfer impedance, Eq. 1, is realizable. Since all

of its zeros lie at infinity, a realization in the form of the simple unbalanced ladder

described above is assured. Let us see what kind of time-domain properties this design

has.

To this end it is necessary that we determine the way in which the magnitude of Z12
(or of its real or imaginary parts) behaves with regard to frequency. Suppose we choose

a total of r zeros for m or n and let

the zeros of m fall at 1, 3, 5, . .. ,2r-1 (6)

the zeros of n fall at 0, 2, 4, ... ,2r

Since by Eqs. 1, 2, and 3

Re Z 1 2 O 1 + (n2/mZ =j (7)

Imag Z12  1 1 2 2 (8)
1Z l 1 + (m /n ) s=j

12 2 1 2 2 2 1 2(9)
1 + (n /m S=j 1 + (m2/n

it becomes clear that the magnitude behaviors of the envelope of the real or imaginary

part, or that of the magnitude, are all practically coincident, and that a good approxi-

mation to this magnitude behavior may be had through simply computing the values of
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1/m at the zeros of n, or the values of 1/n at the zeros of m. A smooth curve passed

through either of these sets of values is the envelope for the real or imaginary part,
and at the same time the magnitude of Z12 with an approximation that becomes better
with an increase in the total number of zeros r.

Suppose we compute m at the zeros of n. We have

m(0) = [1. 3. 5 . . . (2r - 1)] [1- 3. 5 ... (2r - 1)]

m(2) = [1- 3- 5 ... (2r + 1)] [1. 3 5 ... (2r - 3)]

m(4) = [1- 3- 5 . . . (2r + 3)] [1- 3 5 ... (2r - 5)] (10)

m(2r - 2) = [1- 3- 5 ... (2r - 1 + 2r - 1)] [1]

If we let f(c) be the envelope function, then we get

f(2) 2r- 1 f(4) 2r - 3 2r - 5
f(0) 2r + 1' f(2) 2r + 3' f(4) 2r + 5'

f(Zr - 2) 2r - (2r - 3) 3

f(2r - 4) 2r + (2r - 3) 4r - 3

As a numerical illustration, these ratios yield for f(w) the following results:

For r = 5 and the points w = 0, 2, 4, 6, 8

f = 1, 0. 818, 0.440, 0. 147, 0.026 (12)

For r = 10 and the points c = 0, 2, 4, ... , 18

f = 1, 0. 904, 0. 668, 0. 401, 0. 193, 0.0564, 0. 0164, 0. 00347, 0.000496, 0.00004 (13)

From plots of these functions or from the analytic relations, Eq. 11, one can see

that the magnitude or envelope function has nearly gaussian behavior over most of the

pertinent frequency range and hence the impulse response of a network having this kind

of a transfer function will also be very nearly a gaussian pulse. Hence we need not fear

that the response will contain objectionable oscillations.

However, we want the response to be a rather narrow gaussian pulse if the approxi-
-st

mation of Z12(s) to e 0 is to be a good one, and so we think of choosing larger and

larger values of r. In this connection we now observe that this design is uneconomical

in the sense that it apparently wastes poles. In the above envelope values for r = 10 we

note that beyond about the sixth zero of m or of n the amplitude response is so low that

the rest of the zeros are doing practically no good; yet we cannot simply omit them since

we then revert to a lower value of r.

We have, for simplicity, placed zeros at w = 0, 1, 2, ..... since we can subsequently
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change the spacing (or zero density along the j-axis) at will. This density controls the

amount of delay t desired. The narrowness of the resulting gaussian pulse in the time

domain is then controlled by choosing r sufficiently large. If we stick to this kind of

design, the law of diminishing returns soon makes itself felt and we anticipate poor

efficiency from the standpoint of getting a given quality of result with a rational Z12 of

lowest degree. A partial reason for this poor efficiency may be seen in the fact that the

gaussian type of frequency behavior is ultraconservative with regard to ripple suppres-

sion in the time domain.

So long as we keep r relatively small (say r = 5), we get a rather efficient result,

and we can make the width of our pulse in the time domain as small as we please by

stretching the frequency scale. As we do so, the amount of delay decreases. Let us,

therefore, imagine that we cure this difficulty by cascading the network having this Z12
with an appropriate length of lossless transmission line (properly terminated) that

increases the delay by any desired amount and leaves the pulse shape of the over-all

impulse response unchanged. Since the magnitude of the over-all transfer impedance

is the magnitude of Z12, and since this function has negligible values beyond some finite

frequency, we see that although the lossless transmission line provides a linear phase

characteristic out to infinite frequency, only a finite portion of this perfect behavior is

utilized and the rest is wasted. This fact tells us that we don't really need a lossless

transmission line in order to get practically the same result. All we need is a network

that provides an essentially linear phase and flat amplitude response up to a frequency

where the magnitude of Z 1 2 has fallen to negligible values (1 percent or so).

The transfer function for this network is readily found. It has the form

= P(-s) ml - n
Z (s) + (14)
12(S) P(s) ml + n1

The real and imaginary parts are

[Z (j  = m - n
Re Z7* 2 ] 1 (15)

ml - 1s=

and

Imag Z12( - 2 (16)

The simplest procedure here is to consider only the imaginary part and use as an

approximation criterion
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2 2 = sin o (17)
m 1 - n 1

Choosing alternate zeros for m 1 and n 1 (so that P(s) becomes a Hurwitz polynomial)

and letting these coincide with the zeros of sin w over the appropriate frequency range,

fixes m 1 and n 1 and hence P(s) completely.

It is easy to satisfy one's self that the real part, Eq. 15, is thereby also approxi-

mated; or we can use an alternate simple procedure to approximate the function, Eq. 15,

from its known zeros. In either case we determine the rational function Z 1 2 which,

multiplied by an appropriate Z 1Z, yields a desired solution to the approximation problem

originally stated in which the amount of delay, the width of the resulting time-domain

pulse, and to some extent its shape, are separately controllable through an appropriate

choice of the total number of poles and their allotment to the component functions Z1Z

and Z 1 2 .

E. A. Guillemin
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