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A. INTRODUCTION

The Analog Computer group is engaged in a number of basic investigations in the

field of analog and special-purpose computers. The emphasis has been on the under-

lying concepts and the introduction of new components rather than on the design, con-

struction, or operation of a large computing facility.

We are primarily concerned with analog computers, rather than digital computers,
because more basic research seems to be needed in the analog field. There is great

need for an increase in the speed and the accuracy of analog equipment.

While some combined analog-digital equipment has been constructed, the emphasis

is on special-purpose computers. The underlying philosophy of special-purpose com-

puters is that they are cheap enough and simple enough to be used by the person who has

the problem to be solved. They do not interpose the extra link of a large, trained

operating staff between the problem and its ultimate solution.

Since a great many of the special-purpose computers that have been built are directly

or indirectly related to network theory, our group has maintained an active interest in

network theory and has done some work in this field.

At the present time the research falls into three groups: (a) those problems relating

to computer systems and the basic philosophy of computers, (b) the design of new com-

puting elements, and (c) applications of modern network theory.
R. E. Scott

B. COMPUTER SYSTEMS

1. Energy and Power in Nonlinear Systems

A basic investigation is being conducted into energy and power relations in nonlinear

systems, such as those involved in computers. This investigation begins with a transi-

tional stability study of second-order systems.

In the design of electromechanical multipliers and function generators, various

schemes have been employed to extend their dynamic range. Among other things, satu-

ration at high-power level represents a limitation to such efforts. This limitation is

similarly encountered in the related field of feedback control systems. The electro-

mechanical device, which is stable in the linear sense, may exhibit relative instability

when saturation occurs. Such operation involves the transition between linear and non-

linear modes. A phase-plane study has been made of the transitional stability of two

second-order electromechanical systems (Figs. XX-i, XX-2) that are frequently used

to form multipliers and function generators.
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Fig. XX-3

Transitional behavior of the system shown in Fig. XX-1.
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Fig. XX-4

of the system shown in Fig. XX-2.

The result for the system of Fig. XX-1 is shown in Fig. XX-3. The system is

said to be linearly synchronized if the response to a step input of very large amplitude

remains linear once it has left the saturated region. The result obtained by W. Hurewicz

and N. B. Nichols (Servos with Torque Saturation: Part 1, Rad. Lab. Report 555, May

1944) is indicated by a cross on the curve. The result for the system of Fig. XX-2 is

shown in Fig. XX-4. A formula for the approximate number of nonlinear entries when

the number n is large, is given by

1 m
n< <n+1

2 a T
85 m

F. F. Lee

2. Investigations and Applications of the Theory of Signal Flow Graphs

to Analog Computers

An attempt has been made to indicate to what extent computer component errors

(especially of a dynamic nature) affect the form of the equations of the original physical

problem being solved. Instead of expressing the resultant computer errors as actual

functions of the independent variable, the errors are expressed as modifications of the

original differential equations.

Thus far, we have determined the theoretical limit on the number of dynamic com-

ponents necessary to solve a system of simultaneous linear constant coefficient equations
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on a computer. A systematic method of proceeding from the original equations to the

final optimum computer connection is in the process of being completed.

Given a set in the form

L x 1+ L2X2 + ... + Lln x = S

Ln1 LnZX2 nn n 1n

L x +L x+ ... + L x = S

where L is a linear operator (that is, a polynomial in s), and S is a known function
pq q

of the independent variable, a signal flow graph is drawn representing the relations as

they are written above, that is, with the unknown functions as sources and the known

functions as sinks. The graph then consists of open paths, each path being a single

branch. To make this system physically realizable on a computer we must invert at

least n paths. The manner in which these paths are to be chosen depends largely upon

the characteristics of the computer being used. We shall assume that we are dealing

with a computer containing only integrators as dynamic elements. To utilize the inver-

sions to the best advantage, only n paths of inversion will be chosen. These paths inter-

cept all 2n nodes, that is, no two paths of inversion will intercept the same node. They

are also chosen so that the product of their branch transmissions is as large as possible,

to reduce the order of each individual branch operator. If paths of inversion other than

those specified above are used, the resultant flow graph will present difficulties in

physical realization. However, these difficulties can usually be overcome by performing

appropriate loop inversions until the configuration reverts to the one that would have

resulted from the correct initial choice of open path inversions.

The theoretical minimum number of integrators necessary to solve a given set of

equations is equal to the order of the determinant of the operational coefficients. This

is always either equal to, or less than, the sum of the orders of the highest derivatives

of all the dependent variables. Therefore, the next step in the procedure is to determine

this minimum and compare it with the number of integrations present in the inverted

flow graph. If they are equal, no further advantage in this direction may be obtained

by more modifications. If they are not equal, the number of integrators can usually be

reduced to the minimum by such manipulations as the introduction of additional nodes,

and the like. These further modifications, which do not change the fundamental relations

between the variables, may also be necessary in certain cases for reducing the order of

some branch transmissions that may still not be realizable on the computer even after

the best possible combination of branch inversions. These modifications should also be

used to make as many of the transmissions negative as possible, since electronic com-

puter components always have an inherent phase inversion.
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This method has been tried on several examples and seems to have some advantages

over the conventional methods of setting up the computer.

Additional investigation is to be performed on modification of the flow-graph con-

figurations to reduce the sensitivity of the solutions to errors in branch transmis-

sions.

T. E. Stern

C. COMPUTER ELEMENTS

1. Square-Law Network

Two networks, shown in Figs. XX-5 and XX-6, were constructed and tested during

the past months. Initial tests showed that the network in Fig. XX-5 is superior to that

of Fig. XX-6 in both stability and accuracy.

A push-pull stage was then constructed for the second network to enable it to accept

both plus and minus signals. At present, the device can be represented by Fig. XX-7.

This device uses four straight-line segments to approximate the square-law charac-

teristics. It has about 1 percent static accuracy. With ac signals the accuracy drops

to 10. 5 percent due to an equal gain in the push-pull stages. Frequency response is

unknown at the present time because many potentiometers have been used in the circuit

to faciliate experimental adjustments and they decrease the upper frequency range. At

present we need a more stable push-pull driving stage that has a maximum output of 3

ma into a 10-kilohm load and a better switching arrangement for the diodes in the net-

work.

IN e

+2V +4V +6

e 2  e2 34e

DC e OUT
AMP

le OUT

Fig. XX-5

Square-law network using
active elements.

Fig. XX-6

Square-law network using
passive elements only.
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PUSH SQUARE DC
eIN PULL LAW AMP OUT

Fig. XX-7

Complete square-law device

e. = input voltage
1n

eout = output voltage

k= proportionality constant

ein = ke 12 < k < 35.
in out

The principal limitation of square-law devices with germanium diodes is the finite

forward and backward resistance. It is safe to say that unless elaborate compensation

is used an accuracy of 0. 5 percent is the practical upper limit for a square-law device

of this nature. Any attempt to go above the limit will sacrifice the simplicity of the net-

work.
Y. C. Ho

2. Delay Lines

The delay lines and their associated equipment built by Dr. C. A. Stutt are being

repaired and put into operation for experimental investigations of Dr. M. V. Cerrillo's

theory of network synthesis in the time domain.

Y. C. Ho

D. APPLIED NETWORK THEORY

1. Potential Analogs

During the preparation of a technical report from the work on potential analogs the

material has been completely revised. It is true that an equation such as Eq. 2

(Quarterly Progress Report, July 15, 1953, p. 101) is quite costly to deal with, and for

this reason more examples have not been worked out. In the revised material the main

ideas and results remain the same but they are presented in a more precise and satis-

factory form.
M. S. Macrakis

2. RC Filter Frequency Transformations

In the techniques of modern network synthesis it is customary to satisfy the require-

ments for a desired filter on a normalized lowpass prototype and then, through a
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frequency transformation, to obtain the correct type of filter, highpass, or bandpass.
It is the purpose of this study to investigate the applicability of frequency transformation

in the case of a transfer function of RC character.

a. Lowpass to highpass transformation

Consider a transfer function Z 1 2 (s) which satisfies all the RC requirements

h (s 2 + A.s B i )

Z12(s ) = C i=1 m

r (s + ci)
i=1

n
- (s + Pi)(S + i )

(s + a )
i=l

where n = 2m as the upper limit and a. is real and positive.
1

To make the lowpass-to-highpass transformation let s - k/s. The new transfer

function is

n
S(k + pis)(k + Pi s )

i=l
Z 2z(s) = Z1L2 C, n = 2m

(k + a.s)1

n
sP 1 (k +

i:1
m
11 (k

Pis)(k + Pis)

C, 2m = n + p

+ ais)
1

sP (s + k/i)(s + k/P i )
i=1

(s + k/ai)

] i 
2

Ci=m
ni a

i=1

On examining this equation it is seen that the poles and zeros of the new function are

inverted about a circle of radius k. (See Fig. XX-8.) Since the RC character of the

transfer function is preserved, that is, all poles are simple and on the real axis, and

n 4 2m, the transformation is still applicable.

b. Lowpass to bandpass transformation

For this type of frequency transformation let

sk s

(-Yo
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Fig. XX-8 Fig. XX-9

where wo is the center frequency desired, and k is a bandwidth factor.

width product is constant.

We observe that the poles of the new transfer function

The gain band-

sW s

will be solely determined by the transformation of the factor

(s+ 0i) - s 2
1 W 0S(

o 2
Sa.k s+wi k 0o

However, since the degree of the numerator is smaller than or equal to the degree

of the denominator it is sufficient to consider only the factor

( 2
W
O

+ ..i T s + W = (s+y)(s+6)

The necessary condition for y and 6 to be positive is

2 2
-L. W Ia.o

1- 1 o
2k - 2

+4 k

2 2
iLo 2

1/2

2

a.
1k>1

2k

Since k determines the bandwidth, it is clear that there is a low limit in the

bandwidth
& =

of the bandpass network. This limit is determined by the pole a.i which is closest to the
1
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Fig. XX-10

origin in the lowpass structure. This constitutes the only restriction on the transfor-

mation from a lowpass RC structure to another bandpass. It is obvious that for

Z 1 2 (0) = z2

s = +j 0 , therefore wo is the center frequency and for

Z 2 (+ j) = z (B)

s = + +
-k - o z2k/

Hence the bandwidth AW is

I1
AW = o

k

The minimum Q of the RC network therefore becomes

AW 1 Cmin

k- 2

If the roots of the equation are examined it is seen

2
C1L

2k2k
2
o

or

2
y- 6 = o

Therefore yi and 6 i constitute inverse pairs about the periphery of a circle from the
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origin with radius ow (See Fig. XX-9.) From Fig. XX-9 the following relation

Z1 (s) = Z12(s) Z Z(s)

is obvious for the case of o = k = 1. This suggests an alternative procedure of super-

imposing the magnitude characteristic of a lowpass and a properly derived highpass

filter as in Fig. XX-10.

N. DeClaris

3. Duality of Ideal Transformers

Given an electrical circuit containing R's, L's, C's, and sources, there is a tech-

nique that enables one to interchange voltage with current and junction points with

meshes by merely topological considerations. The following theorem extends the appli-

cation of this technique to circuits containing ideal transformers. The significance of

the theorem is obvious, since one has to recognize the fact that ideal transformers are

very frequently used in circuit analysis.

Theorem: The dual of an n-winding ideal transformer with Nk turns in each winding

consists of n two-winding ideal transformers of 1:N k turns ratio each, and with the

secondary windings connected in series; the secondary voltages are taken in the same

clockwise (or counterclockwise) direction.

Proof: Consider an ideal transformer with n-windings. (See Fig. XX-11ii.) Each

of the windings has N k number of turns. Let the voltage polarities and current flow

directions be assumed to be those shown in Fig. XX- 11. Since the system is lossless,

the instantaneous power is zero.
n

SVkIk = 0 (1)
k=0

Furthermore, by definition
V 1 V 2  V k

1 = constant (2)
N1 N2 N k

Divide Eq. 1 by Eq. 2.
n

V Z V k 0
k Vk k =
k=0

Since
N

- = constant
Vk

n

Z NkIk = 0 (3)

k=0

It is obvious that Eqs. 2 and 3 describe the system completely.
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*Mk

E k,0-

Fig. XX-11

In order to obtain this dual set

Thus we have

I'

N1

Fig. XX-12

of equations, it is sufficient to interchange Ik and V k.

2 k
N N - constant
N2 N k

n

NkV k = 0

(4)

(5)

Obviously the power equation has not been altered

n

Z Vk k = 0

k=0

Therefore the system defined by Eqs. 4 and 5 constitutes the dual of the circuit shown
in Fig. XX-12. In order to recognize the system more easily, let

1
Nk M k

Equations 4 and 5 are rewritten as

MII = M2 = MkI k = constant

nVk

Z0 k
k=0

(6)

(7)

The circuit of Fig. XX-12 corresponds to Eqs. 6 and 7, as can be easily verified.

For a general orientation on this topic the reader is referred to E. A. Guillemin,
Communication Networks, Vol. II, chap. V, John Wiley and Sons, Inc., New York,
1935 and E. C. Cherry, "The Duality Between Interlinked Electric and Magnetic Circuits

and the Formation of Transformer Equivalent Circuits," Proc. Phys. Soc. (London)

B 62, 101, 1949.

N. DeClaris
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