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Abstract

I recall the main ideas about the treatment of QCD infrared physics, as developed in the
late seventies, and I outline some novel applications of those ideas to Electroweak Theory.
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1 Infrared Sensitive Observables

The high energy physics of elementary particles, as described by the Standard Model, gives
particular emphasis to states constructed out of massless partons or leptons, because of either
the original gauge symmetry, or of the QCD chiral symmetry. This in principle introduces
a number of problems because of the existence of mass singularities in gauge theories – that
is, of infrared and collinear divergences due to the initial or final states being massless. Of
course, physical states yield finite cross-sections because of QCD confinement, or of Electroweak
symmetry breaking, or of QED coherent states. However, a remnant of the mass singularities
of the problem is that the cross-section, besides being dependent on energy and momentum
transfers of the process at hand, may also depend on energy through large logarithmic variables,
involving some infrared sensitive mass parameters.

In QCD, avoiding large parameters is vital for the perturbative description of hard pro-
cesses, characterized by probe(s) with large momentum transfer(s) Q and by a supposedly
small coupling. Therefore, the cross-section must be infrared safe, i. e., sufficiently inclusive
in order to cancel the mass singularities according to the KLN and/or Bloch-Nordsieck (BN)
theorems [1], [2]. As a consequence, fully inclusive processes are truly perturbative, while the
inclusive processes in which some partons of virtuality Q0 are looked at (in the initial or final
state) show anomalous dimensions [3]. However, observables in which soft emission is sup-
pressed (e.g., at the boundary of the phase space) or emphasized (e.g., of multiplicity type)
are infrared sensitive [4], and still contain parametrically large logarithms of infrared origin,
because of an incomplete cancellation of virtual corrections with real emission.

The above observation raises a problem for quite interesting observables (like pT -form fac-
tors and jet multiplicity distributions), but indicates also how to solve it because we know
that the infrared behaviour is largely universal due to the QED factorization theorem [1] and
generalizations thereof. This fact triggered, in the late seventies, a number of seminal papers
dealing with factorization of the collinear behaviour [5], form factor resummation [6], precon-
finement [7], jet evolution [8] and multiplicities [9]. It also appeared that one could describe
in full the final state [10] at the level of partons with offshellness Q0 much smaller than Q but
still large with respect to Λ, the QCD scale, thus providing a ground for event generators [11].

All the above papers are largely based on factorization theorems for various hard processes,
and gradually introduce generalized renormalization group techniques in order to predict the
logarithmic dependence on the infrared sensitive parameters at leading-logarithm anomalous
dimension level, extended, by further analysis [12], to the subleading ones. The factorization
properties are in turn dependent on the cancellation of truly infrared divergent contributions for
all such processes, which requires a generalized Bloch-Nordsieck theorem to be valid in QCD,
as better established in the eighties [13]. In fact, the BN theorem states that a cross-section
which is inclusive over soft final states is also infrared safe, irrespective of the fixed, possibly
degenerate initial state. In this form, the theorem is not automatically valid, because the
nonabelian nature of QCD allows degenerate initial states in a multiplet, which have different
charges and thus in general different cross-sections for the same momentum configuration. This
spoils the cancellation of virtual corrections with real emission when summing over final soft
states, unless an average over initial colour is performed in order to restore the BN theorem.
Fortunately, this averaging is authomatic because of QCD confinement, which allows only colour
singlet asymptotic states.

The ideas above have been refined over the years in QCD, leading to an approximate treat-
ment of coherence effects by angular ordering in jet evolution [14], and to a more general
treatment of subleading logarithms in form factor calculations [15]. Recently, they have also
led to a new interesting development in Electroweak Theory. Näıvely, one would say that in
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the latter case the infrared structure is irrelevant because of the spontaneously broken gauge
symmetry, which provides a mass for weak bosons and for fermions. However, with the advent
of TeV scale accelerators, we shall soon have access to energies which are much larger than
the symmetry breaking scale (say, the W mass) which may act as infrared cutoff and thus give
rise to parametrically large infrared logarithms in the energy dependence, in addition to the
ones of collinear origin. That this is indeed the case was first remarked in the late nineties [17]
and soon applied to inclusive observables [18]. The failure of the BN theorem is due again to
the nonabelian nature of electroweak theory, where now no averaging over flavour is possible,
because the initial state consists of electrons, protons, and so on, each of them having a nontriv-
ial weak isospin charge. This also means that double logarithms depending on the electroweak
scale affect most cross-sections which are apparently infrared safe, so that electroweak radiative
corrections are enhanced, sometimes comparable to QCD ones, and to be carefully evaluated
in a unified way.

My purpose in this note is to outline, in a few examples, how the novel ideas of the seventies
allow to understand the physics of large logarithms for both QCD and Electroweak Theory,
thus turning a potential problem into a powerful tool. They also lead to a precise calculational
framework for the logarithmic energy dependence, for which I refer to the reviews already
mentioned [4], [14], and to further dedicated papers [15], [16].

2 QCD Form Factors, Multiplicities, Preconfinement

Form Factors An early consequence of the understanding of infrared and collinear behaviours
in QCD was the remark [6] – [10] that observables where real emission is suppressed are sen-
sitive to the (square of) the partons’ Sudakov form factor. The latter is evaluated, at leading
logarithmic level, by an evolution equation in µ2 (the parton virtuality) which is derived by a
dispersive argument [4], [6], or by applying [19] Gribov’s generalization of the Low theorem [20]
as follows:

d log Fa(Q
2, µ2)

d log µ2
= Ca

αs(µ
2)

2π
log(

Q2

µ2
) , (1)

where Ca = CF , CA is the Casimir charge of parton a = q, g. Note that µ2 > Q2
0 plays the

role of cutoff for an infrared divergent anomalous dimension, so that Fa shows an exponential
suppression which, in the frozen αs limit, involves two logarithms per power of αs, one of
collinear type and the other of infrared origin. In the case of physical observables, the cutoff on
µ2 should be replaced by a parameter which regulates real emission, like Q2/N for the parton
PDFs at large moment index N , or 1/B2 for impact parameter distributions. The outcome is
the characteristic large-N dependence of PDFs for DIS and for the Drell-Yan processes and the
corresponding pT -distributions.

For instance, the DIS structure function FN(Q2) allows real emission up to gluon momentum
fraction z < 1/N , and this regulates the anomalous dimension of (1) in the form

FN(Q2) ≃ exp[−
CF

π

∫ Q2

Q2
0

dµ2

µ2
αs(µ

2) log Min(
Q2

µ2
, N)] . (2)

We can see that the anomalous dimension becomes finite and of logN type for µ2 < Q2/N ,
while the “exclusive” limit is reached for N = Q2/Q2

0, in which case Eq.(2) reduces to F 2
q (Q2, Q2

0),
where Q0 is the minimal quark virtuality.
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Multiplicities Actually, the idea underlying Refs. [7], [10] is to describe outgoing hadronic
jets in semi-inclusive form, at the level of partons of virtuality Q0 > Λ, the decay products
of the latter being summed over. Here a problem of consistency arises, because Q0 is a some-
what arbitrary scale, and hadronic distributions should be independent of it. Fortunately, two
important properties help. Firstly, multiplicity distributions show a factorized Q-dependence
with respect to the Q0 dependence and, secondly, preconfinement holds, namely the average
mass of “minimal” colour singlets connected to a q − q̄ pair is of order Q0, much smaller than
Q. This means that jet evolution can be viewed in two steps, a perturbative QCD evolution
from Q down to Q0 (of order Λ) and a hadronization process at scale Q0. Thus, the virtue
of factorization and preconfinement is that the conversion into hadrons does not affect the
Q-dependence, and occurs at a much lower scale.

Of course, the infrared analysis is essential in order to derive the above properties. Fac-
torization of multiplicity distributions is argued for by resumming the double-log Feynman-x
dependence of jet distribution functions in the soft region, which eventually leads to a finite

anomalous dimension with a singular αs-dependence [9, 10] of type γ0 ≃
√

Ncαs

2π
[21], [19].

Correspondingly, the average hadronic jet multiplicity has the behaviour

n̄(Q2) ∼ exp

∫ t

0

dtγ0(αs(t)) ≃ exp

√

2Nc

πb
log

Q2

Λ2
, (3)

and thus grows more rapidly than any power of log(Q2/Λ2) = t.
The behaviour (3) is remarkably different from the one of QED radiation, essentially because

of the gluon charge, implying that the QCD jet evolution is a branching process, leading to a
cascade, rather than a bremsstrahlung process off one leg, as in QED. Correspondingly, strong
correlations of the final soft partons are present, leading to an approximate KNO scaling of
“exclusive” n-parton emission probabilities, which for a gluon jet have the form [4]

σn

σjet

≃
1

n̄
exp[−

1

2
(log

n

n̄
)2], (n ≪ n̄) . (4)

This result shows that the the approximate proportionality of the σns in a gluon jet to the
corresponding form factor (1) still holds, at double-log level, as for the electron in QED, but
their relationship to the average multiplicity (3) - in the frozen αs limit - is quite different from
QED because of the QCD cascade.

Preconfinement On the other hand, preconfinement [7] follows from a veto on the possible
final states which are allowed in the minimal colour singlets in which, by definition, a U(3)
colour line connects a quark of offshellness Q0 to the corresponding antiquark. Because of
factorization, and of the veto, the inclusive mass distribution of minimal singlets being produced
in a jet of mass up to Q is independent of Q and is instead sensitive to the quark form factor,
as follows [7], [10]

M2dσ

σjetdM2
∼ F 2

q (M2, Q2

0) , (5)

so that its average mass is of order Q0. Therefore, the conversion of partons into hadrons can
occur by an interaction of partons which are close in phase space, leading to the so-called local
parton-hadron duality [22], and to the possibility of building event generators with relatively
simple hadronization models [11], [23].
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3 Inclusive Electroweak Double Logarithms

The infrared physics outlined above relies on the BN cancellation of virtual and real emission
singularities, which in QCD occurs because of the colour averaging in the initial state, as
remarked above. Therefore, the form factor behaviour of type (1) shows up only if some veto
uncovers the “exclusive” limit of the given hard process. On the other hand, in Electroweak
(EW) theory the BN theorem fails because of the flavour charges of the accelerator beams. For
instance, the total cross-section for e+e

−
annihilation into hadrons is an infrared safe observable

from the QCD standpoint, but carries nevertheless EW double logarithms, embodied into an
enhanced effective coupling

αeff(s) =
αW

4
(log

s

M2
W

)2 , (6)

which is of order 0.2 in the TeV energy range and leads, therefore, to sizeable corrections, of the
same order as QCD ones. Besides the expected collinear logarithm, the expression (6) carries
an additional one, of infrared origin, due to the violation of the BN theorem.

The analysis of such inclusive double logarithms [18] involves form factors of type (1), where
now µ2 is cutoff by the EW scale M2

W ≃ M2
Z = M2 and the Casimir Ca refers to the isospin

I representation a = I = 0, 1, ... in the t-channel of the lepton-antilepton overlap matrix. For
instance, the combinations σe

−
ν ± σe

−
e+

correspond to I = 0 (I = 1), so that

σe+e
−

(s, M2) ≃
1

2
(σ0 − σ1F1(s, M

2)) ≃
1

2
(σ0 − σ1 exp (−2

αeff (s)

π
)) , (7)

where σ0 corresponds to the isospin averaged cross section and has therefore no double log-
arithms, while the antisymmetric combination σ1 is damped by the I = 1 form factor, with
C1 = 2. We note that, because of the optical theorem, the inclusive form factor is not squared,
though referring to a physical cross-section in the crossed channel. Note also that in this ex-
ample σ1 > 0, because the neutrino cross-section is larger, and therefore the σe+e

−

/σ0 ratio
increases in the TeV energy range towards its high-energy limit, which is provided by the
flavour average.

The above description can be generalized, by collinear factorization, to single logarithmic
level and to a generic overlap matrix involving leptons and partons in the initial states, thus
coupling the EW and QCD sectors of the Standard Model. The result of this procedure is
a set of evolution equations in µ2 which are similar to the DGLAP equations [24], except
that evolution kernels exist in the channels with I 6= 0 also, and are infrared singular or, in
other words, depend on a logarithmic cutoff, much as in Eq.(1). For instance, in the evolution
of lepton densities fl and boson densities fb, the I = 0 evolution kernels coincide with the
customary DGLAP splitting functions Pba, while the I = 1 ones involve the cutoff dependent
virtual kernels

P V
f = δ(1 − z)(− log

Q2

µ2
+

3

2
), P V

b = δ(1 − z)(− log
Q2

µ2
+

11

6
−

nf

6
) . (8)

The corresponding evolution equations have the form

−
df 1

a

d log µ2
=

αW

2π
f 1

aP V
a + regular terms , (9)

and have been described in fully coupled form in [25]. Here I just notice that Eq.(9) shows a
Sudakov behaviour similar to (1) and is consistent with Eq.(7) after taking into account the
antilepton evolution, which doubles the virtual kernel.
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The presence of inclusive double logarithms in spontaneously broken gauge theories remains
an intriguing subject. It is mostly an initial state effect and, as such, it is present for any final
states of the same class (e.g., flavour blind) and strongly depends on the accelerator beams.
Leptonic accelerators maximize it, while hadronic ones (like LHC) provide some partial average
on the initial partonic flavours, thus decreasing it. But the effect appears also if the flavour
charges are looked at in the final state instead of the initial state, for instance in gluon fusion
processes in which some W s are observed [26]. Furthermore, the effect occurs whenever the
soft boson emission mixes several degenerate states having different hard cross-sections. Non
abelian theories have it because of the nontrivial multiplets, but also a broken abelian theory
shows it whenever the mass eigenstates are not charge eigenstates [27]. An example of the
latter type is the mixing of the Higgs boson with the longitudinal gauge boson occurring in a
U(1) theory. The Standard Model shows both kinds of effects and, given their magnitude in
Eq.(6), I think that the coupled evolution equations of parton-lepton distribution functions [25]
deserve by now a quantitative study at the TeV scale.

Perhaps, the most important lesson to be learned from several decades of investigation of
infrared sensitive high-energy physics is that, even at the level of hard processes, the fundamen-
tal interactions look much more intertwined, due to the large time nature of asymptotic states
which possibly increases their effective couplings. By the same token, because of the large times
involved, factorization theorems are at work and allow a good understanding of the infrared
dynamics. It remains true, however, that a unified treatment of all degrees of freedom is needed
already at Standard Model level – that is, even before discovery of a possible short-distance
unification.
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