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Abstract

One of the major di�culties faced in the numerical resolution of the equations of physics is
to decide on the right balance between computational cost and solutions accuracy� and to
determine how solutions errors a�ect some given �outputs of interest��
This thesis presents a technique to generate upper and lower bounds for outputs of

hyperbolic partial di�erential equations� The outputs of interest considered are linear func�
tionals of the solutions of the equations� The method is based on the construction of an
�augmented� Lagrangian� which includes a formulation of the output as a quadratic form
to be minimized and the equilibrium equations as a constraint� The corresponding La�
grange multiplier� or adjoint �� is determined by solving a problem involving the adjoint
of the operator in the original equations� The bounds are then derived from the under�
lying unconstrained max�min problem� A predictor is also evaluated as the average value
of the bounds� Because the resolution of the max�min problem implies the resolution of
the original discrete equations� the adjoint on a 	ne grid is approximated by a hierarchical
procedure that consists of the resolution of the problem on a coarser grid followed by an
interpolation on the 	ne grid� The bounds derived from this approximation are then op�
timized by the choice of natural boundary conditions for the adjoint and by selecting he
value of a stabilization parameter ��
The Hierarchical Bounds Method is illustrated on three cases� The 	rst one is the

convection�di�usion equation� where the bounds obtained are very sharp� The second one
is a purely convective problem� discretized using a Taylor�Galerkin approach� The third
case is based on the Euler equations for a nozzle 
ow� which can be reduced to a single
nonlinear scalar continuous equation� The resulting discrete nonlinear system of equations is
obtained by a Taylor�Galerkin method and is solved by the Newton�Raphson method� The
problem is then linearized about the computed solution to obtain a linear system similar to
the previous cases and produce the bounds�
In a last chapter� the Domain Decomposition is introduced� The domain is decomposed

into K subdomains and the problem is solved separately on each of them before continuity
at the boundaries is imposed� allowing the computation of the bounds to be parallelized�
Because the cost of sparse matrix inversion is of order O�N��� Domain Decomposition
becomes very useful for two�dimensional problems� where the overall cost is divided by K��
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Introduction

When solving an engineering problem� one has to evaluate some outputs of interest� or

design variables that determine the performance of the design� These outputs are often

functionals of 	elds that are in turn solutions of ordinary or partial di�erential equations�

These functionals are often linear� or more generally convex� but they can be nonlinear

as well� An important part of the process followed by the engineer therefore consists of

modeling a given problem� i�e� of translating it into a mathematical model� which generally

yields a set of partial di�erential equations such as the Euler� Navier�Stokes or Maxwell

equations� The solutions of these equations are the 
uid velocity and pressure 	elds or the

electromagnetic 	eld� From the engineering point of view� these solutions are not as critical

as the outputs derived from them� like the lift of a wing� the drag of a body or the radar

cross section of an aircraft� The 	elds are nonetheless worthier than just intermediary steps

to these outputs of interest� Indeed� if the engineer 	nds that the outputs do not satisfy

the design constraints� he can go back to the 	elds to 	nd information on the reasons for

the degradation of the performance �shocks� turbulent transition� scattering�����

Because the analytical solution to the equations of physical problems is not always

�and one could almost say rarely� available� the 	elds have to be computed numerically�

The resulting discretization of the equations leads to a necessary trade�o� between cost

and accuracy � on one hand� a very 	ne discretization step usually yields very accurate

solutions� with a very high computational cost � on the other hand� the computation of a

solution on a coarse grid may be much cheaper� but it is always at the cost of accuracy�

Several approaches have been suggested to reduce the cost of computations while keeping

an acceptable accuracy� The simplest one consists of using non�uniform meshes to discretize

the equations� the grids being re	ned only at places where high resolutions are needed � close

to walls� around the expected positions of shocks or where the solution is expected to vary

��



very fast� This method is limited by two factors� First� the cost may remain high because of

the regions where the mesh is re	ned� Second� the zones where solutions vary rapidly may

not be known a priori� To put up with the latter� an iterative process can be used� involving

adaptative mesh re	nement� The key idea of adaptative techniques is to de	ne a certain

norm for the error� which is made up by adding up the contributions from each point� the

mesh being re	ned in the regions where these contributions exceed a certain threshold� A

di�culty encountered by this approach is that the process does not stop by itself � either

it is stopped �manually�� or a minimum size must be 	xed for the elements� under which

the re	nement is suspended� These mesh re	nement methods achieve cost reduction by

performing accurate computations only where they are needed�

The technique adopted in this thesis does not aim at 	nding the �exact� solution� but

rather seeks to estimate bounds for an output derived from the solution� The idea is to

replace the direct solution of the equations on a 	ne grid by a Hierarchical Bounds Method

�HBM� that gives a much cheaper estimation of the output of interest considered� assuming

that the di�erence between the 	ne grid output and the exact output is negligible� Bounds

for this 	ne grid output are actually computed� so that� if they 	t into the design constraints�

the �exact� solution need not be computed�

The 	rst chapter of this thesis presents a general theory of the Hierarchical Bounds

Method� yielding bounds for some given output� The following chapters show how this

theory can be successfully applied to several typical problems� the convection�di�usion

equation� the pure convection equation �linear problems� and an equation derived from

the one�dimensional Euler equations for a nozzle 
ow �nonlinear problem�� In each case

the particularities and di�culties encountered are illustrated� as well as the necessary ad�

justments made to apply the HBM� In particular� the natural boundary conditions used for

the adjoint are derived and the sharpness of the bounds is discussed� In the last chapter�

the Domain Decomposition technique is presented as a tool� useful especially in two or

more dimensions� that allows further computational cost reduction and parallelization of

the HBM�

��



Chapter �

General Theory for Bounds

��� Introduction

This 	rst chapter introduces a general theory for the Hierarchical Bounds Method� yielding

bounds for linear functionals of solutions �or outputs� of partial or ordinary di�erential equa�

tions� After a brief preliminary discussion about Sobolev spaces� the theory is developped

in three steps� First� the continuous problem is discretized by a Galerkin 	nite element

method� Second� the outputs of interest are cast as the stationary point values of a La�

grangian �saddle problem� and bounds for these outputs are derived� Third� a hierarchical

procedure is applied to obtain these bounds in a more computationally e�cient manner�

The last part of this chapter presents a procedure for sharpening the bounds based on the

optimization of a stabilization parameter introduced in the formulation� In this thesis only

one�dimensional problems are considered�

��� Sobolev Spaces

In this section� Sobolev spaces are brie
y introduced� For a more complete description� the

reader may consult ��� or ��� First� let � be an open subset of IRn �n � ��� The space

of in	nitely continuously di�erentiable functions with a compact support on � is denoted

D���� The space D���� of distributions on � is de	ned as the dual space of D���� i�e� the

space of linear forms that are �continuous� on D���� The duality between D���� and D���

is denoted � T� � � �T � D���� and �� � D����

Let L���� be the space of square integrable functions on � with respect to Lebesgue�s

�



measure� i�e the set of functions such that

Z
�
jf j� dx �  � �����

A scalar product can be de	ned on L���� by

�f� g���� �

Z
�
f�x�g�x� dx ����

and the corresponding norm is �

jjf jj��� � �f� f�
���
��� �

�Z
�
f�x�� dx

����
�����

With this scalar product� L���� is a Hilbert space� Distribution derivation is then de	ned

as �

If T � D����� �� � D��� and � i �� � i � n�� �
	T

	xi
� � �� � � T�

	�

	xi
� �����

The 	rst order Sobolev space on � is then de	ned as

H���� �

�
v � L����

���� 	v

	xi
� L���� � � � i � n

�
�����

A scalar product can be de	ned on H���� as

�u� v���� �

Z
�

�
nX
i��

	u

	xi

	v

	xi
 u v

�
dx �����

and the associated norm is �

jjujj��� � �u� u�
���
��� �

	Z
�



nX
i��

�
	u

	xi

��
 u�

�
dx

����

�����

With this scalar product� H���� is a Hilbert space� The closure of D��� in H����� i�e� the

set of all functions of H���� that are limits of converging sequences of functions of D���� is

denoted H�
����� It can be shown that H

�
���� is the set of functions of H

���� that vanish on

the boundary of �� For example� if n � � and � ���� ��� then H�
���� is the set of functions

of H���� that vanish at x � � and x � ��

��



The dual of H�
���� considered as a subset of H

���� is denoted by H������ That is�

H����� is the set of linear forms that are continuous on H�
����� One can show that the

elements of H����� are the 	nite sums of functions in L���� and 	rst order derivatives of

functions in L�����

��� Continuous Problem

The generality of the theory is kept if one assumes that the domain on which the di�erential

equation is de	ned is D ���� ��� The corresponding Sobolev spaces are denoted H��D��

H�
��D� and H

���D�� The problem considered is a second order linear problem where the

values of the solution u at � and � are imposed �

��
��

f�x� u� ux� uxx� � g

u��� � U� u��� � U�

�����

f is a linear function of its arguments and the forcing function g is assumed to be inH���D��

Let H�
E�D� be the set of all functions v�x� in H

��D� that satisfy the boundary conditions

in � and � �

H�
E�D� �

n
v � H��D� j v��� � U�� v��� � U�

o
�����

One looks for solutions u to ����� in H�
E�D��

A weak formulation for the problem is obtained by multiplying the di�erential equation

by w � H�
��D� and integrating over D� the second derivative terms being integrated by

parts �see ����� The 	nal result can be written in the form �

Z �

�
�w f��x� u� ux�  wx f��x� u� ux�� dx �

Z �

�
w g dx ������

In a more abstract form� the problem ������ can be stated as 	nding the solution u � H�
E�D�

such that �

a�u�w� �M�w� �w � H�
��D� ������

We shall consider problems such that the bilinear form a�u�w� is coercive �

�
 � � such that �u � H�
E�D�� a�u� u� � 
 jjujj���� �����

��



Lax�Milgram�s Theorem then ensures that the problem ������ has a unique solution ����

Although the theory to be presented can be easily generalized to nonlinear convex func�

tionals� the outputs considered are linear functionals of the 	eld u� These outputs are

written as �

s��� � l����u�� s��� � l����u�� � � � ������

��� Discrete Equations

We consider a linear Galerkin 	nite element approximation ��� on a general mesh with a

uniform grid�spacing ��

Let n be the total number of nodes interior to the interval ��� ��� One has �

n �
�

�
� � ������

Let xj � j � be the coordinate of the jth node of the mesh �� � j � n  ��� To each

of these nodes is associated a piecewise linear function �j ��hat� function� equal to � at

node xj and to � at all other nodes� Let XE 	 H�
E�D� and X� 	 H�

��D� be the classical

continuous�piecewise polynomial sets� They can be expressed as �

X� � span f���x�� � � � � �n�x�g ������

XE � fvE�x� � U� ���x�  v�x�  U� �n	��x� j v�x� � X�g ������

where U� and U� are the boundary conditions of the problem�

The 	nite element method then consists of approximating the solution u by its decom�

position on the basis functions f��� � � � � �n	�g �

u�x� 
 U� ���x�  
nX
j��

u�xj��j�x�  U� �n	��x� � ������

TheGalerkin 	nite element method is a particular case where the �test function� w is chosen

to be �j�x� �� � j � n�� which leads� after inserting ������ into ������ and evaluating the

integrals� to a linear system of n equations with n unknowns that one can write as �

Lu � f ������

��



where u � �u�� � � � � un�
T now designates the set of unknowns �values of the solution u at the

points interior to the domain D�� From now on� depending on the context� the notation u

may denote either the solution to the continuous problem �function� or the solution to the

discrete problem �vector�� The context will prevent any confusion� L is an n � n matrix

�not necessarily symmetric� and f is the forcing term� The latter can be either calculated

exactly when the function g is simple enough �

fj �

Z �

�
�j g dx 
��� ���j  ��� �n�j �

Z xj��

xj��
�j g dx 
��� ���j  ��� �n�j ������

or computed numerically by projecting g onto the space spanned by the basis functions �i�s

and performing the exact integration of the products �i �j �

Z �

�
�j g dx 


n	�X
i��

gi

Z �

�
�j �i dx

�
�

�
�gj��  �gj  gj	�� �����

In ������� ���j and �n�j are the Kronecker symbols � 
��� and ��� are coe�cients that

depend on the equation and contain the boundary conditions u��� � U� and u��� � U��


��� and ��� appear only in the 	rst and the last components of the vector f respectively�

A discrete linear output of the problem can now be expressed as a function of the solution

vector u �

s � uT � c �����

with � � IRn and c � IR�

For the following analysis� we introduce the matrix A which is twice the symmetric part

of the matrix L �

A � L LT ����

Because the bilinear form in ������ has been assumed coercive� the matrix A is positive

de	nite�

��



��� Duality Approach to Bounds for the Outputs

Following ���� a quadratic �augmented� output functional is 	rst constructed� The 	rst step

consists of pre�multiplying ������ by uT � and post�multiplying the transpose of ������ by u�

to obtain

uTLu � uT f �����

uTLT u � fTu �����

Adding these two equations� dividing by  and noting that the right�hand sides are equal�

one obtains� with ���� �
�


uTAu� uT f � � �����

Let us now de	ne the functional

S��v� �
�


vTAv � � vT f �

�
vT � c

�
� v � IRn and �� � IR	 �����

From ����� and ������ the output and its opposite can be written �

� s � S��u� �����

Because u is the unique solution of the system ������� it is the only element of the set

fv � IRn jLv � fg� and the output can be rewritten as �

� s � min
fv�IRn jLv�fg

S��v� �����

This trivial result transforms the original problem into a constrained minimization problem�

Following ���� a Lagrange multiplier �or adjoint� � can be used to build the constraint of

the primal problem ����� into a Lagrangian �

L��v� �� � S��v�  �T �Lv � f� �����

����� can be interpreted as an augmented Lagrangian with respect to the output s� in which

� plays the role of a stabilization parameter�

The dual problem is obtained by eliminating v from the Lagrangian� To that end� the

��



Lagrangian is minimized with respect to v� The stationarity condition for this unconstrained

minimization is

�Av � � f  �� LT� ������

A being positive de	nite� ������ has a unique solution that can be inserted into ����� to

obtain

min
v�IRn

L��v� �� � �
�

�
�LT�� �� � f�TA�� �LT�� �� � f�� c� �T f � �R���� ������

The dual problem can therefore be written �

max
��IRn

�R���� � max
��IRn

�
�
�

�
�LT�� �� � f�TA�� �LT�� �� � f�� c� �T f

�
�����

By de	nition�

� �v� �� � IRn � IRn� �R���� � L��v� �� ������

Weak duality then follows from the equality of L��v� �� and S��v� when the constraint is

satis	ed �

For all admissible v and �� �R���� � S��v� ������

A small trick can be used to extend this inequality to all vectors �v� �� � IRn � IRn � if the

constraint is satis	ed� then the value of S��v� is given by ������ whereas� if the constraint

is not satis	ed� the value of S��v� is set equal to  �� Thus� one has

� �v� �� � IRn � IRn� �R���� � L��v� �� � S��v� ������

It can be shown that the values of the constrained minimum of S��v� and of the maximum

of �R���� are equal �

S��v�  R���� �
�


vTAv � � vT f �

�
vT � c

�
 
�

�
�LT�� �� � f�TA�� �LT�� �� � f� c �T f

�
�

�
��Av  LT�� �� � f�TA�� ��Av  LT�� �� � f�

�
�

�
��Av�TA���LT�� �� � f�� �vTLv � vT � �TLv

�
�

�
��AvLT�� �� � f�TA�� ��AvLT�� �� � f� ������

��



Equation ������ is obtained by making use of the fact that A is symmetric and that for all

admissible v� the equality Lv � f is satis	ed� The stationarity condition of the Lagrangian

with respect to v being ������� the right�hand side in ������ vanishes� which proves the

Minimax Theorem �
min

fv�IRnjLv�fg
S��v� � max

f��IRng
�R���� ������

S��v� is by construction the maximum of the Lagrangian when � varies and �R����

is by de	nition the minimum of the Lagrangian when v varies� so the Minimax Theorem

allows us to write �

� s � min
fv�IRng

max
f��IRng

L��v� �� ������

� max
f��IRng

min
fv�IRng

L��v� �� ������

The solution �u� ��� of this saddle problem� also called saddlepoint� is determined by the

stationarity conditions derived from setting the derivatives of the Lagrangian with respect

to v and to � equal to � �

�Au LT�� � � f � � � � ������

Lu� f � � ������

Equation ������� which is equivalent to ������� shows that u does not depend on the sign

chosen for the output and the Lagrangian� whereas� from ������� �� does�

The bounds immediately follow from ������� because

�!�� � IRn min
fv�IRng

L��v� !��� � �s �����

which can also be written as �

min
fv�IRng

L	
�
v� !�	

�
� s � � min

fv�IRng
L�

�
v� !��

�
������

Thus� for any !�� � IRn� solving ������ to obtain the vector v � IRn that minimizes the

left�hand side of ����� and plugging it into ������ we obtain upper and lower bounds for

the output�

��



��	 Hierarchical Procedure

Equation ������ can be used to give bounds for the discretized output of interest� From

������"������� the bounds are exactly equal to the output when the Lagrange multiplier

!�� and the 	eld v satisfy the stationarity conditions ������"������� Unfortunately� two

di�culties complicate the choice of !�� in contradictory ways� First� the vector !�� chosen to

compute the bounds must be as close to the �true� adjoint as possible� because the sharpness

of the bounds is closely related to the quality of the approximation of the exact saddlepoint�

Second� ������ shows that the computation of the adjoint requires the resolution of the

original discrete system� hence makes the computation of the exact saddlepoint on a 	ne

grid prohibitively expensive�

Because the saddlepoint cannot be computed cheaply on a 	ne grid� the Hierarchical

Bounds Method consists of considering  di�erent grids� i�e�  levels of discretization� one

	ne ��truth� mesh� and one coarse ��working� mesh�� and solving for the saddlepoint only

on the coarse grid� The adjoint is then interpolated to obtain an approximation of the

exact saddlepoint on the 	ne grid and the bounds are obtained from ������ by solving only

a symmetric problem� Further gains on the cost can be achieved� even in one dimension�

by the use of the Domain Decomposition technique presented in the last chapter�

The general uniform grid�spacing � can now be equal either to H �coarse grid� or to h

�	ne grid�� The nodes of the coarse mesh are� from now on� assumed to be nodes of the

	ne mesh as well� The variables corresponding to the coarse grid �H�mesh� or �working�

discretization� are denoted with an H subscript �e�g� LH � uH � xHj � � � ��� while the variables

corresponding to the 	ne grid �h�mesh� or �truth� discretization� are denoted with an h

subscript �e�g� Lh� uh� xhi� � � ��� The numbers of the points of the meshes that are interior

to the domain D are N and n for the coarse and the 	ne grids respectively�

����� Computational Procedure

The saddlepoint on the coarse mesh �uH � �
�
H� is 	rst determined by solving the stationarity

conditions �� � H� �

�AH uH  LTH�
�
H � � fH � �H � � ������

LH uH � fH � � ������

�



������ is solved for uH �coarse grid solution�� plugged into ������� which is then solved for

��H � IRN by �

LTH�
�
H � � ��AH uH � � fH � �H� ������

Next� !��h � IRn is formed by interpolation of ��H on the h�mesh �� � h�� Let the

boundary values for the adjoint in x � � and x � � be �b�� and �b�� respectively� One has

� i �� � i � n� ��
!��h

�
i
� �b�� �H�� �xh�i�  

NX
j��

�
��H

�
j
�H�j �xh�i�  �b�� �H�N	� �xh�i� ������

Equation ������ shows that the values of !��h � especially at points close to x � � and

x � �� directly depend on the choice of the boundary conditions �b�� and �b�� for the

adjoint ��H � Two considerations must be taken into account for this choice� First� the

approximation !��h of the discrete adjoint has to be of good quality� otherwise accuracy

is lost and the sharpness of the bounds is a�ected accordingly� Second� the interpolated

adjoint has to be consistent with the underlying continuous problem� Because the choice

for these natural boundary conditions depends essentially on the problem studied� they

have to be determined for each particular case� Let us just mention� however� that the

boundary conditions are derived from the continuous problem and a continuous equivalent

of the discrete Lagrangian ������

Finally� the bounds for the output sh are computed on the 	ne grid as �

�sh�LB �H� � min
fv�IRng

L	
�
v� !�	h

�
������

�sh�UB �H� � � min
fv�IRng

L�
�
v� !��h

�
������

The stationarity conditions for these two unconstrained minimization problems are sim�

ply ������ written on the 	ne grid with �� � !��h � i�e� �

�Ah !u
�
h � �

�
LTh !�

�
h � � fh � �h

�
������

which is solved for !u�h � The computation of the bounds is then straightforward by plugging

!u�h and !�
�
h into ������ ������ and ������ �

�sh�LB �H� � L	
�
!u	h � !�

	
h

�
������

�sh�UB �H� � �L�
�
!u�h � !�

�
h

�
�����

�



Equation ������ shows that� although the 	rst component of the exact saddlepoint �u� ���

did not depend on the sign chosen for the output and the Lagrangian� !u�h does depend on

this sign� since it is determined from !��h �

A simpler expression can now be derived for ������ and ����� � multiplying ������ on

the left by !u�Th � one obtains

� !u�Th Ah !u
�
h � �

�
!u�Th LTh !�

�
h � � !u�Th fh � !u

�T
h �h

�
������

Therefore�

L�h �!u
�
h � !�

�
h � �

�


!u�Th Ah !u

�
h � � !u�Th fh �

�
!u�Th �h  ch

�
 !��Th �Lh !u

�
h � fh� ������

� �
�


!u�Th Ah !u

�
h � ch � !�

�T
h fh ������

Equation ������ is obtained by adding ������ and ������� The bounds can thus be computed

as �

�sh�LB �H� � �
�


!u	Th Ah !u

	
h  ch � !�

	T
h fh ������

�sh�UB �H� �
�


!u�Th Ah !u

�
h  ch  !�

�T
h fh ������

����� Computational Cost

We now brie
y discuss the advantages and drawbacks of the Hierarchical Bounds Method�

The advantages of this procedure are not immediately obvious� As a matter of fact� the

cost of the method resides essentially in the inversion of the matrix Ah to obtain !u
�
h � the

inversion of Lh has been replaced by that of Ah� which is as costly� since both matrices have

the same size and are tridiagonal in the one�dimensional case� Given that tridiagonal matri�

ces can be easily and cheaply inverted� even when their sizes are large ���� the Hierarchical

Bounds Method does not seem very advantageous�

However� the HBM presents two undeniable advantages� First� in two dimensions� the

HBM represents a real improvement� because the matrices are not tridiagonal anymore� but

sparse� Replacing the inversion of the matrix Lh� which is not necessarily symmetric� by the

inversion of Ah� which is symmetric becomes critical� As a matter of fact� numerous very

e�cient algorithms are available to solve sparse symmetric problems �especially iterative





processes� like the conjugate gradient ��� �� ����� whereas existing methods to invert non�

symmetric matrices are usually neither systematic nor e�cient� Second� the cost of the

HBM can be improved� even in one dimension� by the use of the Domain Decomposition

studied in more detail in the last chapter� The key idea here is to divide the domain D into

several subdomains and solve in each subdomain Neumann or Neumann�Dirichlet decoupled

problem with appropriate boundary 
uxes� The cost is reduced because each subdomain

contains many less points and the resolution of the problems on the subdomains can be

easily parallelized�

��
 Optimal Stabilization Parameter

The results of Sections ��� and ��� are valid for all positive values of the stabilization

parameter �� This additional parameter can now be used to optimize �i�e� sharpen� the

bounds� To begin� the adjoint on the coarse grid is decomposed as �

��H � ���
H  ����

H ������

where

���
H � �LTH�

���H ������

���
H � �LTH�

�� �fH �AHuH � ������

uH being the solution of the system on the coarse grid ������� Similarly� the boundary

values for this adjoint are decomposed as �

�b�� � �� b�
�  ��� b�

� ������

�b�� � �� b�
�  ��� b�

� �����

where �� b�
� � �� b�

� � �� b�
� and �� b�

� are independent of ��

The approximated adjoint on the 	ne grid can now be written as �

!��h � !�
��
h  � !���h ������

�



where !��� and !��� are interpolations on the 	ne grid of ���
H and ���

H respectively �

�
!���h

�
i
� �� b�

� �H� �xhi�  
NX
j��

�
���
H

�
j
�Hj �xhi�  �� b�

� �H�N	� �xhi� ������

�
!���h

�
i
� �� b�

� �H� �xhi�  
NX
j��

�
���
H

�
j
�Hj �xhi�  �� b�

� �H�N	� �xhi� ������

for all i �� � i � n�� Following the notations of ���� the bounds are denoted as �

�	��� � �sh�LB ������

����� � � �sh�UB ������

Two new vectors can be introduced �

y�h � LTh !�
��
h � �h ������

z�h � LTh !�
��
h � fh ������

and the corresponding inner products are de	ned as �


� � y�Th A��h y�h ������

� � z�Th A��h z�h   f
T
h !�

��
h ������

where A��h is interpreted as the inverse of Ah�

Using ������� ������� ������ and ������"������� the bounds ������ and ������ can be

written �

����� � �
�


!u�Th Ah !u

�
h � ch � !�

�T
h fh

� �
�



�
Ah !u

�
h

�T
A��h

�
Ah !u

�
h

�
� ch �

�
!���h  � !���h

�T
fh

� �
�

�

h
LTh

�
!���h  � !���h

�
� � fh � �h

iT
A��h

h
LTh

�
!���h  � !���h
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where the symmetry of Ah �therefore of A
��
h � has been used� Finally� the bounds are

expressed as functions of � �

����� � �
�

�

� �

�


� � y�Th A��h z�h � fTh !�

�� � ch ������

Taking the 	rst derivative of ����� with respect to � �

��� ��� �
�

��

� �

�


� ������

The stationarity condition ��� ��� � � yields the value of the optimal stabilization parameter�

��� �

��� �

s

�

�
������

where the denominator is assumed positive for ��� to be de	ned� This is not guaranteed�

in particular for nonlinear problems�

Note that ������"����� and ������"������ show that !���h � �!��	h and !���h � !��	h � so

that y�h � �y
	
h and z

�
h � z	h � Therefore� 


� � 
	 and � � 	� which leads to

��	 � ��� � �� �

s

�

�
������

A second consequence concerns the predictor �or predicted output� de	ned as the average

value of the bounds �

spre�H� �
�


��sh�UB �H�  �sh�LB �H�� ������

This predictor does not depend on the stabilization parameter �� Indeed� we have �

spre�H� �
�



�
�	���� �����

�
�

�



�
�
�

�

	 �

�


	 � y	Th A��h z	h � fTh !�

�	  ch
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�

�  

�


�  y�Th A��h z�h  fTh !�

��  ch

�

� �y	Th A��h z	h � fTh !�
�	  ch ������

where � does not appear anymore�

From a computational cost point of view� the optimal stabilization parameter needs to

�



be computed only for one of the bounds� its value being the same for the other bound� The

computation of �� requires the inversion of Ah to be performed twice� which was already

the cost of the HBM without optimizing �� Furthermore� there is no need for any other

inversion of Ah� since the expression for the bounds is ������� the last inversion in this

equation having already been performed to compute ��

Finally� taking the second derivative of ����� with respect to �� we obtain �

������� � �

�

��
������

When � � ��� this second derivative is negative� which means that the optimum obtained

is indeed the maximum of ������ Practically� ������ and ������ show that the maximum of

the lower bound and the minimum of the upper bound are determined by this procedure�

The following chapters are devoted to the application of this theory to three di�er�

ent equations� Each of these problems have its particular features� The 	rst one is the

convection�di�usion equation� for which the general theory developed in ��� can be readily

applied� without any modi	cation� The second one is the purely convective case� where the

straight 	nite element formulation needs to be modi	ed to stabilize the solution and deal

with the absence of the second boundary condition� The third one is a nonlinear equation

derived from the steady Euler equations� where the problem needs to be linearized before

it can be solved�

�



Chapter �

The Convection�Di�usion Problem

In this chapter� the Hierarchical Bounds Method is applied to the one�dimensional convec�

tion�di�usion equation�

��� Continuous problem

The problem can be formulated in a di�erential form as �

�� uxx  ux � g �x � D ����

u��� � U�� u��� � U� ���

where � is a �small� positive constant� U� and U� are real numbers and D ���� ��� Be�

cause the problem is time�independent� ���� is an ordinary di�erential equation� The weak

formulation of the problem can be written �

For g � H���D�� 	nd u � H�
E�D� such that

Z �

�
�� wx ux  w ux� dx �

Z �

�
w g dx �w � H�

��D� ����

The outputs of interest considered are the average value of the solution �s���� and a

pointwise value� i�e� the value of the solution u at a given point x � � �s���� �

s��� � l����u� �

Z �

�
u�x� dx ����

s��� � l����u� � u�x� ����

�



��� Continuous Formulation

A continuous formulation for the problem is 	rst introduced� This will prove useful to

determine natural boundary conditions for the adjoint�

The 	rst step consists of deriving the equivalent of the discrete Lagrangian ����� for

the continuous case� Multiplying ���� by u and integrating between � and �� one obtains �

Z �

�
�� uuxx dx 

Z �

�
uux dx�

Z �

�
u g dx � � ����

The 	rst integral is integrated by parts and the second one can be integrated directly �

� � ux���u���  � ux���u���  

Z �

�
� �ux�

� dx 
u���� � u����


�

Z �

�
u g dx � � ����

The continuous form of the augmented output ����� is then de	ned as �

S��v� � �



�� vx���U�  � vx���U�  

Z �

�
� �vx�

� dx 
U�
� � U�

�


�

Z �

�
v g dx

�
�l�v� ����

The trivial minimization follows �

� s � minn
v�H�

E
�D�

���R �
�
�� wx ux	w ux�w g� dx�� �w�H�

�
�D�

oS��v� ����

and the corresponding Lagrangian becomes �

L��v� �� � S��v�  

Z �

�
� ��� vxx  vx � g� dx �����

Integrating the second derivative term by parts� one obtains �

L��v� �� � �



�� vx���U�  � vx���U�  

Z �

�
� �vx�

� dx 
U�
� � U�

�


�

Z �

�
v g dx

�
� l�v�

�� ���� vx���  � ���� vx���  

Z �

�
�� �x vx  � vx � � g� dx �����

Let us now consider the 	rst output� namely the average value of the solution over the

domain D� i�e� l����v� �
R �
� v dx� The 	rst variation of ����� with respect to variations

w�x� � v�x� � u�x� must be equal to � for u to be a stationary point �

�

�
�� wx���U�  � wx���U�  

Z �

�
� wx ux dx�

Z �

�
w g dx

�
�

Z �

�
w dx

�� ����wx���  � ����wx���  

Z �

�
�� �xwx  �wx� dx � � ����

�



The natural boundary conditions for the adjoint now appear simply by grouping the

terms containing either wx��� or wx���� and setting them to �� since the equation must be

valid for any value of wx��� and wx���� One obtains �

���� � ��U� �����

���� � ��U� �����

As far as the second output is concerned� the reasoning is not modi	ed and� since

� � x � �� the natural boundary conditions for the adjoint remain unchanged�

��� Discrete Equations

The problem ����"��� is discretized with a Galerkin 	nite element method� Denoting the

size of the space discretization � and the number of points interior to the domain n� the

elements of the resulting n� n matrix of the system ������ are given by �

Lij �

Z �

�

�
�
d�i
dx

d�j
dx

 �i
d�j
dx

�
dx � �i� j� �� � i� j � n� �����

where the basis functions �i �� � i � n� are the usual �hat� functions �piecewise linear

functions�� The matrix L then becomes �

L �

�
BBBBBBBBBBBBBBBBBBBBB�

�
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�
�
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� � � � � � � � �
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�
�



�

�

�
CCCCCCCCCCCCCCCCCCCCCA

�����

The corresponding matrix A � L  LT can be obtained either from ������ or directly

by discretizing the self�adjoint part of the di�erential operator in ����� i�e� �

Aij � 

Z �

�

�
�
d�i
dx

d�j
dx

�
dx � �i� j� �� � i� j � n� �����

�



which leads to �

A �

�
BBBBBBBBBBBBBBBBBBBBB�
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�����

The forcing term f is de	ned in the general case� for �� � i � n�� as �

fi �

Z �

�

�
�i g �

�
�
d�i
dx

d�n	�
dx

� �i
d�n	�
dx

�
U� �

�
�
d�i
dx

d��
dx

� �i
d��
dx

�
U�

�
dx �����

Assuming that g is discretized using the �i �� � i � n� basis� one obtains �

fi �
�

�
�gi��  �gi  gi	��  

�
�

�
 
�



�
U� ���i  

�
�

�
�
�



�
U� �n�i ����

where ���i and �n�i are the Kronecker symbols �
�
�
�  

�
�

�
U� and

�
�
� �

�
�

�
U� are the terms


��� and ��� seen in ������ respectively�

The discrete form of the outputs can be written as �

s � uT � c ����

where � � IRn and c � IR� For the two outputs considered in this chapter� one has s��� �R �
� u�x� dx 


R �
�

nP
i��

ui �i dx �
nP
i��

ui �  
�
� and s

��� � u�x� � u�xj� � uj� Hence

���� � � �� � � � ��T � c��� �
�


���

���� � �� � � � � � � � � ��T � c��� � � ����

In the case of the second output� the single nonzero component corresponds to j � x��

assumed integer�

��



��� Numerical Results

The general theory of the Hierarchical Bounds Method can be applied directly to the

convection�di�usion equation� The numerical results obtained are presented for both ouputs

with and without optimization of the stabilization parameter�

For these numerical simulations� the viscosity parameter � has been taken equal to

���� The forcing term g in ���� is equal to � over the whole domain D and the boundary

conditions are U� � � and U� � �� The right�hand side of the discrete equations f therefore

has all its components equal to � but the last� which is equal to
�
�
� �

�
�

�
� The boundary

conditions for the adjoint become �

���� � � ����

���� � �� ����

The size of the 	ne grid cells is h � ����� and the bounds presented have been computed

for values of the coarse grid discretization H ranging between h and ���� More precisely�

H � f��� � ���� � ���� � ��� � ���� � ������ � ������ � ����� � ����g� Figure �� presents the
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Figure ��� Solution of the convection�di�usion problem �h � ����� H � ����

solutions of the problem obtained on the 	ne and coarse �H � ���� grids� The exact solution

��



of the problem ����"���� u�x� � �e�x � �� � �e� � �� is given as a reference�

Good accuracy is observed� even for the coarsest grid� For the 	ne grid� the plot of

the solution computed by the Galerkin 	nite element method cannot be distinguished from

that of the analytical solution�

����� First Output � Average of the Solution

The results obtained for the 	rst output �average of the solution over the domain D� are now

presented� The stabilization parameter � is chosen equal to �� which in this case happens

to coincide with the optimal value� as described in Chapter �� Figure � shows the adjoints

��H for this output�
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Figure �� Adjoints ��H �H � h � �����

Figure �� shows the bounds obtained� Three observations can be drawn from this

graph� The 	rst one is that the outputs computed on the coarse grids are very close to

the output on the 	ne grid� since the curves seem to be on top of each other� The second

one is that the bounds computed on the coarse grid estimate the �true� output within

approximately �#� even for large values of H �e�g� H � ����� The third one concerns the

predictor� Like the coarse grid output� this predictor is so close to the h�mesh output that

it becomes impossible to distinguish one curve from the other in the plot�
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Figure ��� Bounds for the output � Average Value of the Solution

A closer look at the neighborhood of the 	ne grid output shows that the predictor is

actually closer to the h�mesh output than the H�mesh output �see Figure ���� Therefore�

the predictor estimates the �true� output better than the coarse grid�

To examine the convergence to the �true� output as a function of H� the rate of con�

vergence r of the upper bound is de	ned as � sUB�H�� sh � O �Hr�� One has�

log jsUB�H�� shj � r logH  constant ����

Therefore� the rate of convergence of the upper bound is given by the slope of a graph of

log jsUB�H�� shj as a function of logH� The same reasoning holds for the lower bound�

the predictor and the coarse grid output� Figure �� presents plots showing the convergence

rates of the upper and lower bounds as well as those of the predictor and the coarse grid

output� The plot of the logarithm of the di�erence between the upper and the lower bounds

is also represented� Some observations can be drawn from this graph� First� there is

a large di�erence between the error bounds and the predictor error� Second� the errors

corresponding to H � h have of course not been shown� since by de	nition they are equal

to �� Third and 	nal� the slope of the lines is equal to � which con	rms the prediction of ���

according to which the convergence of the bounds is O�H��� This second order convergence

��
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Figure ��� Predictor for the output � Average Value of the Solution

of the coarse grid output is characteristic of linear 	nite elements� at least as long as the

problem is elliptic and the solution is su�ciently regular�
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����� Second Output � Pointwise value of the solution

In this subsection� we consider the value of the solution at point x � ���� i�e� s � u������

as the output of interest� The discretizations are such that x � ��� corresponds to a grid

point in all meshes� In this case� the optimal value of the stabilization parameter �� is

not � anymore� but converges to a 	nite value �approximately ����� as H converges to h�

Because this value is very close to �� we present the results obtained for � � � and � � ��

to highlight the improvement of the bounds computed�

Figure �� presents one characteristic feature of the chosen output � the 	rst derivative

of the adjoint shows a discontinuity� which occurs at the point x � ��� where the solution

is evaluated�
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Figure ��� Adjoints for the output � Pointwise Value �H � h � �����

The improvement on the bounds between the case where � � � and the one where �

takes its optimal value is signi	cant� as shown on Figure ��� In particular� while the lower

bound is below the output of the H�mesh in both cases� it is much closer to the 	ne grid

output in the optimized case� Two other observations can be drawn from this 	gure� First�

the bounds obtained on the coarsest grids give the �true� output within �# for � � ��

and within ��# for � � ��� which is even better than for the average output� The bounds

are thus very sharp� Second� although the coarse grid output is better than either of the

��
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Figure ��� Bounds for the output � Pointwise Value

bounds� the predictor�estimator is signi	cantly better than the coarse grid output� As

expected� this predictor is also independant of ��
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The convergence of the bounds with the stabilization parameter � optimized is given on

Figure ��� As in the case of the average output� a second order convergence is numerically

observed�

��� Conclusion

Three aspects of the Hierarchical Bounds Method have been highlighted in this chapter�

First� the numerical results show that the bounds for the output computed on the 	ne grid

are fairly sharp� and that the convergence is in O�H�� �second order�� Second� although�

in the case of the outputs considered so far� the coarse grid gives a better approximation

than the bounds� the average value of the bounds �predictor� is still better than the coarse

grid output in the sense that it is closer to the �true� output than the output computed

on the H�mesh� Third� the improvement brought by the optimization of the stabilization

parameter has been illustrated numerically�
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Chapter �

The Convection Problem

��� Introduction

This chapter considers the application of the Hierarchical Bounds Method to the linear

pure convection equation� This equation is of interest for two reasons� First� the direct dis�

cretization of this equation with a Galerkin 	nite element method leads to a skew�symmetric

matrix �hence with a zero symmetric part� and in certain cases to solutions with unphysical

oscillations� Second� the convection equation is a 	rst order ordinary di�erential equation

that requires only one Dirichlet boundary condition�

In this chapter� we present a modi	cation of the Galerkin procedure that allows for nu�

merical solutions without oscillations to be computed� We then apply the theory developed

in the 	rst chapter� suitably adapted to this problem� We consider a problem in which the

convection speed is from left to right and where a Dirichlet condition is applied at x � �

while the solution at x � � is unknown�

The 	rst step consists of 	nding a new formulation of the problem that eliminates the

oscillations and allows for the computation of the solution at x � �� yielding an �augmented�

matrix L of dimensions �n  �� � �n  ��� In the second step� a variation of the scheme

leads to the algebraic computation of the boundary conditions for the adjoint ��H at ��

This modi	cation is necessary because� by de	nition� the adjoint is solution of the dual

convection problem that involves a boundary condition at x � �� This results in augmenting

the dimensions of the matrix once again to �n �� �n ��

��



��� Formulation of the problem

The purely convective problem can be written as �

d u

dx
� g�x� �����

u��� � U� ����

where g is a function of the space variable x� For simple enough functions g� analytic

solutions can be obtained to compare with the results of the numerical schemes�

In certain cases �in particular when g is not continuous�� a direct Galerkin 	nite element

method fails to give an acceptable solution �presence of unphysical oscillations�� A possible

way of avoiding this numerical di�culty consists of using a simple Taylor�Galerkin approach

����� The basic idea of this approach is to introduce an arti	cial time�dependence �

	u

	t
 
	u

	x
� g �����

and compute the solution to problem ����� as the steady�state solution of ������

ut � �ux  g �����

utt � �utx �����

� uxx � gx �����

since g does not depend on the time variable t� u�x� t  $t� can be expanded in a Taylor

series� and� keeping the 	rst terms up to the second order� one gets �

u�x� t $t� � u�x� t�  $t ut�x� t�  
$t�


utt�x� t�  O�$t�� �����

� u�x� t�  $t ��ux  g�  
$t�


�uxx � gx�  O�$t�� �����

The solution of the original convection problem is then the steady�state solution of this

di�erential equation� One thus writes �

u�x� t $t� � u�x� t� �����

��



The new scheme then consists of solving the equation

� � uxx  ux � g � �gx ������

with � � $t�� Applying a CFL condition to the equation� one gets� for � � fh�Hg

� �
�


������

A convection�di�usion problem can be recognized in ������� except that� in the Taylor�

Galerkin formulation of the convection equation� the di�usion term goes to � as the size of

the space discretization goes to �� One should thus be able to apply a straight Galerkin

	nite element method to ������� just like in the case of the convection�di�usion problem�

Before performing the discretization� one di�culty must be solved concerning u����

Because the boundary condition on u at x � � is not speci	ed in the original problem� the

value of the solution at this point must be computed algebraically� u��� � u�xn	�� must

therefore be considered as the �n ��st unknown of the problem�

A weak form for ������ can now be written �

Z �

�
�� wx ux  w ux� dx �

Z �

�
�w g  � wx g� dx �����

The output considered for this problem is the pointwise value of the solution u at point

xn	� � �� This output o�ers a direct way of checking the convergence of the scheme to the

exact value at � as the space discretization becomes small�

Using the Galerkin method with piecewise linear approximations leads to a matrix of

the form �

L �

�
BBBBBBBBBBBBBBBBBBBBB�
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hence

L �

�
BBBBBBBBBBBBBBB�

� � � � � � � � � � � �
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� � �

� � �
���
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� � �
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� � �

���
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� � �
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���
���
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� � � � � � � � �� �

�
CCCCCCCCCCCCCCCA

where L is of dimensions �n ��� �n ���

��� A New Formulation for the Adjoint

In order to be able to determine algebraically the values of the adjoints at the boundaries�

the numerical algorithm is modi	ed so that the Dirichlet boundary condition is imposed

through the variational statement�

����� Additive term

Equation ����� can be written as �

Z �

�
�w �ux � g�  � wx �ux � g�� dx � �

for all w and u equal to zero at x � �� A modi	ed scheme is obtained by allowing u��� to

take any value and requiring �

Z �

�
�w �ux � g�  � wx �ux � g�� dx  w���u��� � � ������

for all w and u �with no condition on u in ��� After integration by parts� one gets �

Z �

�
�w �ux � g� � � w �ux � g�x� dx �� w �ux � g����  w���u��� � � ������

This is valid for all values of w��� and w���� so that the natural boundary conditions for

the solution of this problem are �

u��� � � �ux � g���� � � ������

�ux � g���� � � ������

��



The solution of the original convection problem �����"���� satis	es ������"������ as well as

������� but these boundary conditions are only used to check the validity of the solution given

by the scheme� In the process� the initial single Dirichlet condition has been transformed

into a pair of Neumann�Dirichlet conditions�

The absence of boundary conditions implies that� instead of looking for solutions of

������ in H�
E�D� like in the general theory� we shall look for u � H

��D�� The continuous�

piecewise polynomial set XE therefore needs to be redi	ned as �

XE � span f���x�� � � � � �n	��x�g ������

Moreover� because of the second term in the integral in ������� g � H���D� is not su�cient

to ensure the existence of this integral� g must be such that the integral of the product

�wx g� is de	ned� even for w � �� or w � �n	�� Therefore� g is restricted to a subset of

H���D�� The forcing functions chosen for the numerical tests do not raise any di�culty

from that point of view�

The resulting system has dimensions �n  � � �n  �� Three new terms appear in

this matrix� First� a � appears in the upper left corner because of the new term w���u���

�L�� � � 
�
� �

�
� �� The other two are linked to the addition of u� � u��� as a new unknown �

the term previously containing the boundary condition is taken back to the left�hand side

of the equation �L�� � �
�
� �

�
�� as well as the term expressing the dependance of u� on this

boundary condition �L�� � �
�
�  

�
���

The resulting matrix is �
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�  
�

�
�
�


�
�

�
 
�


� � � � � � � �

�
�

�
�
�



�

�

� � �
� � �

���

�
� � �

� � �
� � �

� � �
���

���
� � �

� � �
� � �

� � � �

���
� � �

� � �
�

�
�
�

�
 
�



� � � � � � � � �
�

�
�
�



�

�
 
�



�
CCCCCCCCCCCCCCCCCCCCCA

�



i�e�
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����� Natural Boundary Conditions for the Adjoint

Although they are computed algebraically� natural boundary conditions for the adjoint

can be determined analytically from the continuous problem� The continuous Lagrangian

corresponding to the new scheme can be written �

L�v� �� � �

	�
�


v�
��
�
�

Z �

�
v g dx �

Z �

�
v�x dx� �

Z �

�
vx g dx v����

�
� l�v�

 

Z �

�
���vx � g�  � �x�vx � g�� dx ���� v��� ������

� �

	�
�


v�
��
�
�

Z �

�
v g dx �

Z �

�
v�x dx� �

Z �

�
vx g dx v����

�
� l�v�

�

Z �

�
�v �x  � g  � �v �xx  �x g�� dx ���� v���  � ��x v�

�
� ������

Taking the 	rst variation of the Lagrangian with respect to variations w�x� � v�x��u�x�

and considering the pointwise value of u in � as the output one obtains �

�

�
�wu��� �

Z �

�
�w g  � ��wx ux  wx g�� dx w���u���

�
� w���

�

Z �

�
�w ��x  � �xx�� dx ����w���  � ��xw�

�
� � � �����

The coe�cients of w��� and w��� are set equal to zero� since all variations around � are

allowed� This gives natural boundary conditions for the adjoint �

����  � �x��� � � ��u��� � �� �����

� �x��� � �u��� ����

Again� these conditions are not used directly in the numerical scheme� but are useful as

��



a check of the numerical results�

��� Optimal Scaling

����� Optimal Value for �

To compute the optimal value of � in the case of the pointwise value output� we follow the

procedure outlined in Chapter � and write �

���
H � �LTH�

���H �����

���
H � �LTH�

�� �fH �AH uH � �����

Given the form of the matrix LH �previously noted L for simplicity of notations�� the

inverse of its transpose is simple to 	nd �

�
LTH

���
�

�
BBBBBBBB�

� � � � � � � �

�
� � �

���
���

� � �
� � �

���

� � � � � �

�
CCCCCCCCA

�����

With the output vector �H � �� � � � � ��
T �column vector of size �N  ��� the constant part

of the adjoint for the coarse grid becomes �

���
H � 

�
�����
�
���

�

�
    ! �����

This vector is then interpolated on the �truth� mesh� The values of the components of

���
H being all equal� the components of the interpolated vector !���h are also all equal �

!���h � 

�
�����
�
���

�

�
    ! �����

The interpolation process therefore does not change the form of the constant part of the

��



adjoint� which means that� on the 	ne grid� one has �

!���h � �LTh �
���h �����

Equation ����� immediately shows that

p� � LTh !�
��
h � �h � � �����

which also implies that


� � p�TA��h p� � � ������

The optimal value of � given by ������ is thus equal to ��

The natural boundary conditions for the adjoint given by ����� and ���� then become �

!�����  � !��x ��� � � ������

!��x ��� � � �����

Equation ����� and �� � � imply that
�
!��h

�
i
�
�
!���h

�
i
� � � i� so

�
!��h

�
x
� � and

thus� both equations ������ and ����� are satis	ed�

����� Behaviour of the Bounds as � goes to �
� � �

In this section� we investigate the limiting case where � tends to zero� It is not clear that

for � � � the formulation presented applies as the Lagrangian is not strictly convex�

First� from ����� and ������ one has

!��	h � �!���h ������

!��	h � !���h ������

all terms being independent of �� !u�h is then de	ned by

LTh !�
�
h � LTh

�
!��	h  � !��	h

�
� lh � �

�
Ah !u

�
h � fh

�
������

which� using ����� leads to

Ah !u
�
h � �L

T
h !�

��
h  fh ������

��



!u�h is therefore independent of � and one has

!u	h � !u
�
h � !uh ������

Furthermore� the bounds sUB�H� and sLB�H� can be computed by

sUB�H� �
�


!uThAh !uh  !�

�T
h fh ������

sLB�H� � �
�


!uThAh !uh � !�

	T
h fh ������

Hence�

sUB�H� �
�



h
!uThAh !uh  !�

��T
h fh

i
 !���Th fh ������

sLB�H� � �
�



h
!uThAh !uh  !�

�	T
h fh

i
� !��	Th fh ������

In both formulas� the factor in brackets and the second term of the right�hand side are

independent of �� This establishes the linear convergence of the bounds to a 	nite limit

when � converges to �� The limits are �

lim
���

sUB�H� � !���Th fh �����

lim
���

sLB�H� � �!��	Th fh ������

Because of ����� and �������

!���Th fh �

��
LTh

���
�h

�T
fh

� lThL
��
h fh

� �Thuh ������

!��	Th fh � ��Thuh ������

where uh is the solution obtained on the 	ne ��truth�� grid �by de	nition� Lhuh � fh��

Since� by de	nition� �Thuh is the output sh computed on the 	ne grid� one 	nally 	nds �

lim
���

sUB�H� � lim
���

sLB�H� � sh ������

��



In other words� for any 	xed value of H� when � goes to �� the upper bound and the lower

bound computed from the coarse grid both converge to the output computed on the 	ne

grid�

Equation ������ is valid as long as ���
H is a linear function of x� Indeed� the interpolation

!���h has then the same form as ���
H � and ����� is satis	ed� Otherwise �in the case of the

average output for the convection�di�usion problem� for instance�� one should rather write

LTh !�
��
h � �h  �h ������

with all the terms being independent of �� Thus�

Ah !u
�
h � �L

T
h !�

��
h  fh �

�h
�

������

The solution !u�h can be decomposed as !u
�
h � !u

��
h  !u��h �� and it immediately appears

from ������ and ������ that one has �

lim
���

sUB�H� � � lim
���

sLB�H� �  � ������

This explains why � is not an optimal value for the scaling factor in general�

��� Numerical results

Di�erent functions have been considered for the forcing function g� The 	rst one is a �step

function� equal to � between ��� and ���� and to � everywhere else� Figure ��� shows

the oscillations obtained when a Galerkin 	nite element method is directly applied to the

convection equation� This 	gure demonstrates the need for another formulation to avoid an

oscillatory numerical solution� The presence of oscillations only on one side of the domain is

linked to the fact that� in one dimension� the 	nite element method is equivalent to central

	nite di�erences everywhere� but with an arti	cial Neumann boundary condition imposed

in ��

The other two functions tested for the forcing term are g�x� � x and g�x� � cos x� The

numerical results are presented for � � � and for the optimum ��

��
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Figure ���� Finite Element Method directly applied to the convection equation

��	�� Results for a non
optimal stabilization parameter � � � �

The modi	cations proposed for the scheme lead to a numerical solution� which does not

exhibit an oscillatory behaviour� The results obtained for di�erent values of H are given in

Figure ���

Although the error is rather large on the coarse mesh� it decays rapidly as the grid is

re	ned� This error behaviour is characteristic of a non�continuous right�hand side g � when

the function g is continuous� the solution computed by the modi	ed scheme is very close to

the exact solution� even for the coarsest grid �H � �����
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Figure ��� Numerical solution� g is a step function� h � ����
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The computed adjoint has to satisfy the natural boundary conditions ����� and �����

To check this property� the adjoint ��H is plotted on Figure ���� The following values can
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x

Psi-
Psi+

Figure ���� Adjoint for � � �� H � h � ����

be determined from this 	gure �

�
��H

�
x
��� � �

�	��� � ���

����� � ����
��H

�
x
��� � �

so that with u��� � � and u��� � ��� the boundary conditions on the adjoint are immedi�

ately satis	ed�

The bounds for the value of the 	ne grid solution at x � � are plotted on Figure ����

In this 	gure� h � ���� and H varies from ��� down to ����� Two conclusions can be

drawn from this graph� First� the output computed on the coarse grid is closer to the

�exact� output than both bounds� especially when the discretization step becomes very

large� Second� the curves representing the bounds are symmetric with respect to the 	ne

��
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Figure ���� Bounds for � � �� h � ����� ���� � H � ���

grid output� so the average of the bounds� used as an estimation of the value of the output

�predictor�� matches exactly the output produced by the �truth� mesh� Again� we can

verify that � only a�ects the bounds and not the predicted value�

The convergence of the bounds is again given by a plot of the logarithm of the er�

ror as functions of the logarithm of the grid size� This graph is shown on Figure ����

Although� in the present case� the coarse grid output converges only linearly because of the

discontinuity of the forcing term� the bounds still converge as O�H��� The error on the

predictor�estimator has not been plotted because this error is equal to �� the bounds being

symmetric with respect to the 	ne grid output�

Four other functions have been tried for the forcing term g� The results obtained are

given for two of them� First� we investigate the case of a linear forcing term � choose g � x

and solve fux � x �x � D� u��� � �g� The solutions obtained by the 	nite element method

are given in Figure ���� One can immediately check that the nodal values of the solutions

on both the coarse and the 	ne grids coincide with the exact solution �u�x� � x���� This

is to be expected� from the inspection of the resulting di�erence scheme�

��
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The bounds computed are presented on Figure ���� Two observations can be drawn

from this 	gure� First� the bounds appear to be very close to the 	ne grid output �even if

they do not exactly match it� and the average of the bounds exactly matches the output

computed on the h�mesh� The second observation concerns the sharpness of the bounds �
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Figure ���� Bounds for ux � x� u��� � �� pointwise value output� � � �

although the estimation obtained is not exact� the bounds remain within �����# of the

exact solution�

The convergence of the bounds is now plotted on a log�log graph presented in Figure

���� This 	gure shows another feature of the bounds obtained in the purely convective case

with a C� forcing term � not only are the bounds very sharp� but they also converge very

fast� a fourth order convergence is observed �i�e� O
�
H


�
�� The errors on the coarse grid

output and on the predictor are of the same order as machine precision� The bounds in this

purely convective case with a linear forcing term are therefore sharper and converge faster

than those obtained for the convection�di�usion model case�

Finally� we consider the case g � cos x� i�e� the resolution of ux � cos x� u��� � �� The

exact solution is u�x� � sinx� The solutions given by the 	nite element method are shown

in Figure ���� The forcing term being C�� the numerical solutions are much closer to the

exact solution than when the forcing term is a step function� Also� the forcing term is not

linear� so the coarse grid solution does not match the exact solution at the nodes anymore�

��
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The bounds obtained by the general method described in the previous sections are shown

on Figure ����� Once again� the bounds are very sharp� In this case� they give even a better
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Figure ����� Bounds for ux � cos x� u��� � �� pointwise value output� � � �

estimation of the 	ne grid output than the coarse grid does� In other words� the bounds are

closer to the �target� output than the coarse grid output� The convergence of the bounds is

again O
�
H


�
� as shown on Figure ����� However� the convergence of the coarse grid output

is still O
�
H�

�
� which is usual for the linear 	nite element method�

In summary� one can say that in the case of the purely convective problem� when one

chooses � � � �which is not optimal�� the method gives very good results� especially when

the forcing term is continuous�

��	�� Optimization of the Stabilization Parameter � �
� � �

The results obtained for � � � are already good� but the optimal value of the stabilizing

factor is not � but �� independantly of the forcing term g or of H� Let us see what happens

numerically when � � � is directly imposed for the case where g is the step function equal

to � between ��� and ��� and to � everywhere else� The solutions remain unchanged� since �

comes into play only in the computation of the bounds� The bounds obtained are given on

Figure ���� Apart from the coarse grid output that does not match the 	ne grid output�

all the other curves are so close to each other that they cannot be distinguished on this plot�

��
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� � �

This is understandable � it has already been shown that they are theoretically supposed to

match the �exact� output�
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Figure ����� which is the same graph� but with the coarse grid output removed� gives a

better resolution� and it appears that� in perfect accordance with the theory� the bounds�

as well as the predictor� match the 	ne grid output perfectly� This 	ne grid output is just
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Figure ����� Bounds for ux � g� u��� � �� � � �� � �� pointwise value output

above the exact value �� because the point where the di�erence is negligible has not been

reached with ���� elements� Although this might seem surprisingly good� the plotting of

the curves at higher resolutions �zooming around y � ��� gives exactly the same result�

Furthermore� a look at the computed numerical values also reveals a perfect match between

the 	ne grid output� the upper and lower bounds� and the predictor�

It is not clear that the theory applies directly with � � �� given that all the results

were derived with the assumption that � �� �� The question is thus to know what happens

if one chooses � �� � and has this stabilization parameter tend to �� Figure ���� shows

that the bounds get closer and closer to the output obtained on the 	ne grid� which is a

good indication of the consistency between the results and the theory� The upper and lower

bounds have been plotted for � � f� � ��� � ��� � ���� � ����g�

Figure ���� describes the evolution of the upper and lower bounds for H 	xed equal to

���� � varying from � down to ����� This plot con	rms that� for a 	xed value of H� the

upper and the lower bounds both converge to the �true� output when � tends to �� and

that the convergence is linear� as predicted by the theory� This is why one can take � � ��
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since the bounds present a regular behaviour near �� In other words� when � goes to �� the

bounds converge to the bounds obtained when � � � is directly imposed in the equations�
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��	 Conclusion

Three important conclusions can be drawn from the results presented in this chapter� First�

the Hierarchical Bounds Method can be adapted to 	rst order di�erential equations� where

only one boundary condition is available in the problem� and the numerical di�usion added

to stabilize the numerical solution is su�cient to force the symmetric part of the discrete

system matrix to be positive de	nite� so the Hierarchical Bounds Method can work�

Second� the boundary values of the adjoint are computed algebraically� Thanks to this

property of the formulation� the natural boundary conditions need not be derived from the

continuous problem� which is quite convenient� because the natural boundary conditions

given by the continuous problem are not of the Dirichlet type� and are not very easy to

implement�

Third� the bounds can be impressively sharp� In the case of the convection�di�usion

equation� the coarsest grids give bounds within �# of the �target� output �	ne grid out�

put�� For the pure convection equation� the bounds are within less than �# for the coarsest

grids �H � ���� when the stabilization parameter is not optimal� What may be even more

remarkable is that� even if the problem is solved only on a coarse grid� the optimization of

the stabilization parameter produces bounds that match exactly the 	ne grid output� which

is not the case for the convection�di�usion equation� This is of course particular to this

problem� and not necessarily generalizable to other problems�
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Chapter �

Nonlinear Problem

In this chapter� the Hierarchical Bounds Method is extended to nonlinear problems� The

model equation chosen is a scalar nonlinear equation derived from the one�dimensional

steady Euler equations�

��� Governing Equations

The model problem considered is the steady 
ow of an inviscid 
uid in a diverging nozzle�

The problem can be modelled as one�dimensional� and it is thus governed by the �D steady

Euler equations �

Fx  G � � � � x � � �����

where

F �

�
BBBB�

� uA�
� u�  p

�
A

��E  p� uA

�
CCCCA � G �

�
BBBB�

�

�pAx

�

�
CCCCA ����

In ����� � is the density� u is the velocity� p is the pressure and A is the variable cross�section

of the nozzle� Here� only the diverging part of the nozzle is modelled and A is assumed to

be a given monotonically increasing and di�erentiable function� One also has

E � e 
u�


�����

where e is the speci	c internal energy�

��



The pressure p is given by the equation of state of a perfect gas �

p � �� � �� � e �����

where � � � is the gas constant� For air� � � ���� Three types of 
ows can be observed

physically � totally supersonic� totally subsonic and transonic� In the latter case� the 
ow

is supersonic at the inlet and subsonic at the outlet�

In the case of a steady 
ow� the Euler equations �����"���� can be reduced to a sin�

gle nonlinear equation �see ����� To that end� the 	rst and third equations are directly

integrated to obtain �

� uA � C �����

��E  p� uA � H �����

With ����� and ������ ����� gives

� e 
u�


� H �����

The constants C �mass 
ow rate� and H �total enthalpy� can be evaluated either at the

in
ow boundary or at the out
ow boundary� as they are conserved even through a shock�

Using ����� and ������ � and e can be eliminated from the second component of ������ One

writes �

� �
C

uA
�����

e �
�

�

�
H �

u�



�
�����

Plugging this into h�
� u�  p

�
A
i
x
� pAx � � ������

yields � 	
C

u



u�  

� � �

�

�
H �

u�



���
x

�Ax
C

uA

� � �

�

�
H �

u�



�
� � ������

Simplifying by C and multiplying by �	
		� leads to �

�
u 

� � �

�  �

H

u

�
x

 
Ax

A

� � �

�  �

�
u


�
H

u

�
� � �����

��



Denoting � � 	��
		� and H �  � H� one 	nally obtains �

fx  g � � ������

where

f�u� � u 
H

u
������

g�u� x� �
Ax

A

�
� u�

H

u

�
������

Equation ������ is now a single scalar nonlinear equation� to which the HBM is applied�

Assuming that the direction of the 
ow is from left �inlet� to right �outlet�� the solution

of ������ satis	es the following properties �

� the 
ow is sonic at

u � u� �
p
H � ������

subsonic for u � u� and supersonic for u � u� �

� the shock jump from uL �left of the shock� to uR �right of the shock� satis	es the

Rankine�Hugoniot condition

uL � uR � H � ������

� the entropy condition ensures that any shock is physically acceptable �i�e� no expan�

sion shock� �

uL � u� � uR ������

For a smooth 
ow� ������ being a 	rst order ODE� only one boundary condition is

required� Rewriting ������ as �
	f

	u
ux  g � �� ������

Equation ������ has the form of a convection equation where the direction of the information


ow is given by the sign of the coe�cient of ux � if this coe�cient is positive� information

is transported from the inlet to the outlet� if it is negative� information is transported from

the outlet to the inlet� Equations ������ and ������ show that for completely supersonic


ows� f ��u� � 
f

u is strictly positive� whereas� for completely subsonic 
ows� f

��u� is strictly

�



negative� As a consequence� for a completely supersonic 
ow� the boundary condition on

the velocity is to be imposed at the inlet� For a completely subsonic 
ow� the velocity should

rather be imposed at the outlet� If a shock is present in the 
ow� then the in
ow has to be

supersonic and the out
ow must be subsonic� For this reason� one boundary condition has

to be imposed at each end of the nozzle�

For smooth solutions� the nonlinear equation ������ can now be integrated analytically �

fx is 	rst expanded and one obtains �

�
��

H

u�

�
ux  

Ax

Au
�
�
u� � H

�
� � �����

which leads to

Axu �
�
H � u�

�
 Aux

�
� H � u�

�
� � �����

and

�Au�x

�
H � u�

�
 



� � �
Au�ux � � ����

Let r � �
	�� and multiply ���� by

�
H � u�

�r��
� ���� becomes �

d

dx

h
Au

�
H � u�

�ri
� � �����

and 	nally

Au
�
H � u�

�r
� K �����

K is a constant determined from the boundary conditions� When there is a shock in the

duct� the constants computed from the in
ow and out
ow boundary conditions are di�erent

and it can be shown that K� which is an entropy function� increases across a shock �see

����� ����� actually de	nes a family of curves relating the area of the cross�section of the

nozzle to the velocity of the 
ow� The shape of the curves is given in Figure ����

Equation ����� and Figure ��� illustrate the discussion on the boundary conditions�

When the solution is smooth� then a single boundary condition completely determines

the 
ow in the nozzle� Indeed� this boundary condition de	nes the constant K� hence a

particular curve of the family ������ and one remains on this curve throughout the duct� If

a shock is present� then each of the two boundary conditions determines a constant K and

a curve of the family� The shock then enables to �jump� from one curve to the other� Let
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Figure ���� Curves for K� �supersonic�� K� �subsonic� and Solution with shock

then K� and K� be the values of the constant computed based on the supersonic in
ow and

the subsonic out
ow boundary conditions respectively� The function z�u� being de	ned� as

��� �

z�u� � u
�
H � u�

�r
�����

the position of the shock is given by �

�

K�
z�uL��

�

K�
z

�
H

uL

�
� � �����

Equation ����� is derived by making use of ������ and of the fact that� at the shock� the

area is the same on both sides� In the case where a shock is present� it can be shown that�

since K� � K�� ����� has a unique solution �see �����

��� Discrete Analysis Problem

The domain D ���� �� is discretized with a uniform grid� The node coordinates are xi �

i � �� � i � n� and ui is the �unknown� value of the solution at point xi� Equation ������

looks very much like the pure convection equation� and better results can be expected if a

Taylor�Galerkin approach is applied prior to the resolution of the equation� To that end� a

��



non�physical time dependance is introduced �

ut  fx  g � � �����

from which

ut � ��fx  g� �����

leading to

utt � �fxt � gt �����

and the equation corresponding to ������ is then

fx  g  � �fxt  gt� � � ������

Using Schwarz�s Lemma� the order of the derivatives can be inverted and one obtains �

fxt � �ft�x

�

�
	f

	u
ut

�
x

�

�
	f

	u
��fx � g�

�
x

������

and similarly

gx �
	g

	u
��fx � g� �����

Plugging ������"����� into ������� one obtains the following scheme �

fx  g � �

��
	f

	u
��fx � g�

�
x
 
	g

	u
��fx � g�

�
� � ������

Equation ������ can be �checked� intuitively by noting that� when f � u and g is indepen�

dant of u� like in the convection equation� ������ becomes exactly �������

The corresponding weak form is then �

Z �

�
w �fx  g� dx 

Z �

�
� wx

�
	f

	u
��fx � g�

�
dx�

Z �

�
� w

	g

	u
�fx  g� dx � � ������
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����� Smooth Flow

Let us now assume a smooth solution with no shock� For simplicity� the 
ow is assumed

supersonic in the rest of this section� The results obtained can be derived in a very similar

way for totally subsonic 
ows� The solution is determined by the in
ow boundary condition�

and consequently� no out
ow boundary condition can be imposed� Following the same

reasoning as for the purely convective case� an additional term is introduced and the values

of the solution u at all the points including the boundaries of the domain D are assumed

to be unknowns� The scheme can now be written as

Z �

�

�
w  wx �

	f

	u
� w �

	g

	u

�
�fx  g� dx w��� �u��� � uin� � � ������

where uin is the boundary condition that de	nes the problem� By analogy with the linear

case where � was the term multiplying the wx term� one now chooses

� �
�

max
�
��
���
f
u

���� ������

where � is a 	xed small number that prevents divisions by zero at sonic points �not exercised

in this case��

If w is set equal to the piecewise linear basis function �i �� � i � n �� and a one point

integration is performed to approximate the resulting integrals� one obtains a nonlinear set

of n equations with n unknowns� which can be written as �

W �u� � � ������

with

W i�u� �



�


 �i

	f

	u

����
ui

�
�


�i
	f

	u

����
ui

� 

	f

	u

����
ui

ui � ui��
�

 g �ui�

�


�


� �i	�

	f

	u

����
ui��

�
�


�i	�

	f

	u

����
ui��

� 

	f

	u

����
ui��

ui	� � ui
�

 g �ui	��

�
������

where ui �
ui	ui��

� and �i � ��ui�� In ������� one can recognize the contribution of element

i �between xi�� and xi� on the 	rst line and the contribution of element �i  �� on the

second line� The 	rst contribution of course does not exist for i � � �in which case the

��



additional term u���� uin appears�� and the second does not appear for i � n ��

This nonlinear system can be solved by the Newton�Raphson method� This requires

the computation of the Jacobian matrix of the nonlinear system� which will also be needed

for the HBM� Practically� the Jacobian matrix is computed by assembling the matrices

computed on each element i �� � i � n �� as

	We

	u
�

�
BBB�

	W i��
e

	ui��

	W i��
e

	ui
	W i

e

	ui��

	W i
e

	ui

�
CCCA ������

in ������� the index e indicates that the contribution of element e is considered�

The reasoning for subsonic 
ows is exactly the same� except that the boundary condition

is imposed at x � � and the additive term is w��� �u���� uout� instead of w��� �u���� uin��

����� Normalization

In the rest of this chapter� the following normalization is used� The speed of sound at

in	nity is set equal to �� This speed of sound is given by �

c�� �
� p�
��

� � �� � �� e� ������

so that� with c� � �� one obtains

e� �
�

� �� � ��
������

If one moreover assumes �� � �� one has

H� � E�  
p�
��

� E�  
� � �

��

�
��E� �

�


�� u��

�
� � e�  

�


u�� �����

which gives the following consistent set of variables �

�� � � ������

c� � � ������

u� � M� ������

H� �
�

� � �
 
M�
�


������

��



since by de	nition u � cM � The parameter H is then determined by

H �  � H� �


�  �
 
� � �

�  �
M�
� ������

��� Bounds for the Average Value of the Solution

The goal of the previous section was to provide a discrete solution to the problem �������

In this section� the Hierarchical Bounds Method is applied to the problem to 	nd bounds

for the average value of the solution u� Because the HBM can only be applied to linear

problems� the equation must be 	rst linearized� A heuristic approach is now used� The

solution on the coarse grid is assumed su�ciently close to the solution on the 	ne grid� so

that W �u� can be linearized about the H�mesh solution� Let uH and uh be the solutions on

the coarse and 	ne grids respectively� and let WH�uH� and Wh�uh� be the corresponding

systems of nonlinear equations� By de	nition� one has �

WH�uH� � � ������

Wh�uh� � � ������

Let uiH be the linear interpolation of uH on the 	ne grid� If uh is su�ciently close to uH �

one can write �

Wh�uh� 
Wh�uiH�  
	Wh

	u
�uiH� �uh � uiH� ������

hence� from ������

Lh uh � fh ������

where

Lh �
	Wh

	u
�uiH� �����

fh � Lh uiH �Wh�uiH� ������

One can verify that� in virtue of ������� the linearized equation on the coarse grid has

the same form as �������

The HBM is then applied to the linearized problem� with the possible extensions or

modi	cations mentioned for the smooth case� Two main conceptual di�culties can be
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expected� First� because nothing ensures that the self�adjoint part of the linearized system

matrix is positive de	nite� one cannot be sure that the HBM gives correct bounds for the

output� Second� even when this matrix is positive de	nite� the bounds obtained correspond

to the linearized problem� and nothing ensures that the 	ne grid output computed directly

from the nonlinear system lies between these bounds�

��� Numerical Results

The simulations were performed using some of the numerical data given in ���� More

precisely� the diverging nozzle has a linearly growing area� with A��� � ���� and A��� �

������ The in
ow boundary condition in the case of a completely supersonic 
ow is u��� �

����� and the out
ow boundary condition for the totally subsonic 
ow is u��� � ����� The

	ne grid discretization step is h � ����� and the coarse grid element size is re	ned from ���

to �����

����� Supersonic Flow

The completely supersonic 
ow is 	rst investigated� The solutions obtained by the Newton�

Raphson method applied to the modi	ed scheme ������ are given on Figure ��� Even for

coarse grids� the solution is very accurate� so one may expect the coarse grid output to

be very close to the 	ne grid output� Contrary to the previous two equations studied is

Chapters  and �� the analytical solution is not readily available in the present case� at least

not under the explicit form u � u�x�� The exact solution given as a reference was actually

computed as x � x�u� from ����� and the velocity appears to be a growing function of the

space coordinate� as is expected from a supersonic 
ow in a diverging nozzle�

The adjoints associated to this problem are now plotted on Figure ���� The boundary

values of the adjoints are computed algebraically� as in the purely convective case� One

remark should be made at that point� The choice of the parameter � is critical to the quality

of the solution� as well as to the stability and the convergence of the scheme� Indeed� this

parameter � � which is �arti	cial� �it is introduced to improve the quality of the solution�

can be interpreted from two di�erent points of view� First� as the coe�cient of the second

derivative of the solution in the equation� � can be seen as an �arti	cial� viscosity coe�cient�

Second� from ������� � is also a time step that can be used for time marching�
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Hence� a large CFL number multiplying the factor � smooths the solution and pre�

vents numerical oscillations by adding some arti	cial viscosity� but destabilizes the iterative

Newton�Raphson procedure� On the contrary� a small CFL number stabilizes the numerical

scheme� but allows parasite oscillations to appear in the solution� In the results given in

this section� the CFL number is equal to �� which seems numerically to be a good trade�o�

between stability and accuracy�

The bounds obtained for this problem are given on Figure ���� Four observations can
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be drawn from this graph� First� the 	ne grid output represented is the output computed

directly on the 	ne grid� and not the linearized problem output� sh is indeed between the

bounds computed by using the linearized problem� The second observation concerns the

sharpness of the bounds� Even though the lower and upper bounds are not as sharp as in

the linear purely convective case� they estimate the 	ne grid output within less than �# in

the worst case� i�e� when the coarse grid is made of only �� points ��� elements�� The third

observation concerns the coarse grid output� The main di�erence between the nonlinear

case and the other previous cases is the closeness with which the the coarse grid output

matches the 	ne grid� In the nonlinear case� the coarse grid is closer than either the bounds

��



or the predictor� This of course does not mean that the method fails for the nonlinear

case� Indeed� the present results show that one can compute strict bounds for the average

of the velocity� which� for the engineer� is at least as important� if not more important than

computing the output exactly� Finally� it has to be noted that in these simulations� the

stabilization parameter � has been optimized at each step� A characteristic feature of this

problem is that the optimal value of � becomes very large as H converges to h� Even if

the optimal value of � is not computed when H � h because both the numerator and the

denominator in ������ vanish� the evolution of � for the last values of H indicates that the

stabilization parameter goes to  � as H converges to h�

Again� the convergence of the bounds is O�H��� as shown by Figure ���� This 	gure
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shows that the coarse grid output and the predictor are not as close to the 	ne grid output

as in the purely convective case �the gap between the lines is not as important�� and that

the convergence is much more similar to the convection�di�usion case�
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����� Subsonic Flow

Similar numerical results can be obtained when the 
ow is subsonic� i�e� when a subsonic

boundary condition is imposed on the out
ow velocity� Not all subsonic boundary conditions

are acceptable in this case� Indeed� when one �goes back� into the nozzle� the velocity grows�

since in that direction� the nozzle is converging� so the sonic point may be reached before

the inlet if the out
ow velocity imposed is too large� and the 
ow cannot be solved� One

can also understand this phenomenon by looking at Figure ��� � starting at A��� and u���

on the subsonic curve� the sonic point �extremum of the curve� is reached before A��� �the

vertical line A � A��� is left of the extremum�� so that no point of the curve corresponds to

A���� This explains why the value u��� � ���� has been chosen for the boundary condition�

The solutions computed are given by Figure ���� Again� the accuracy of the solutions� even
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for very coarse grids is remarkable and the coarse grid output is expected to be very close

to the 	ne grid output�

The bounds obtained for the average output are given on Figure ���� Several points

can be derived from this graph� First� the coarse grid output is very close to the 	ne grid

output� as expected� Second� the bounds are clearly not as sharp as in the supersonic case�

In particular� in spite of the optimization of the stabilization factor� the lower bound is
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very poor for the coarsest grid� which a�ects the estimator accordingly� Third� although

the sharpness of the bounds is a little disappointing� their convergence is still fast and the

	ne grid output is indeed between the bounds� Fourth and 	nally� except for the coarsest

mesh� the predictor estimates very well the 	ne grid output� since on this plot� the curve

representing the predictor cannot be distinguished from the curve representing the 	ne grid

output when H � ����� A closer look at the neighborhood of the 	ne grid output �Figure

���� shows that� even if the predictor remains close to the 	ne grid output �as shown by the

vertical scale of the plot�� its evolution is not as regular as in other cases� and the coarse

grid output gives better results�

The convergence of the bounds is illustrated on Figure ���� The irregularities in the

evolution of the predictor are more apparent on this plot� but one has to take into account

that the general theory does not give any indication on the behaviour of this predictor� On

the other hand� the convergence of the bounds is regular �but for the 	rst points of the

curves�� and the slope of the lines is approximately ��� for the error bounds �the coarse

grid output converges as O�H����
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��� Conclusion

The main conclusions of this chapter are twofold� First� the Hierarchical Bounds Method

can be adapted to nonlinear cases� at least to a certain extent� Even though the results are

not as good as those in the linear cases considered� the bounds provided by coarse grids

remain fairly sharp� Second� the 	ne grid output computed directly from the nonlinear

discrete system lies between the bounds in the cases considered� The problem is now that

in the case where the 
ow is not smooth �presence of a shock�� it seems that the HBM

fails� mainly for two reasons� First� the self�adjoint part of the linearized system is not

positive de	nite� Second� in certain cases� the optimal value of � is not de	ned because the

denominator � of the fraction under the square root is negative�

��



Chapter �

Domain Decomposition

��� Introduction

In the problems considered so far� the Hierarchical Bounds Method hardly brought any

improvement with respect to the direct resolution of the equations on a 	ne grid� This is

because� in one dimension� the matrix Lh of the discrete system is tridiagonal� inverting its

symmetric part is as costly as the direct inversion of Lh�

However� two features of the HBM have been highlighted by these examples� First� the

values of the 	ne grid output predicted by the bounds �average value of the upper and lower

bounds� is usually closer to the exact solution than the coarse grid output� Second� in higher

dimensions� the matrix of the discrete system is not tridiagonal anymore� but sparse� so the

symmetry of Ah can be fully exploited� On one hand� a whole range of methods is available

to invert symmetric matrices � direct inversion �Gauss�s pivot� LU or QR Decompositions

��� ����� iterative methods �conjugate gradient� GMRES ���� Krylov subspace methods in

general �������� On the other hand� the existing methods to invert non�symmetric matrices

like Lh are either not very e�cient in general �Gauss�s Pivot� or not systematic�

The Domain Decomposition is a technique that further reduces the cost by using the

fact that the inversion of a general n � n matrix �even sparse� is a O�n�� process� The

domain D is decomposed into K subdomains and the problem is solved on each subdomain

before continuity is imposed at intersubdomain boundaries� For simplicity� and following

���� the Domain Decomposition is presented in this chapter for one�dimensional problems�

��



��� Domain Decomposition Formulation

	���� Notations

The problem is de	ned on D ���� ��� The closure of D is noted D� A decomposition of D

into K subdomains is now introduced� Let K � f�� � � � �Kg 	 IN � one has �

D �
"
k�K

D
k

�����

where D
k
is the closure of Dk �

i
ak� ak	�

h
� The points ak �� � k � K� are such that

a� � � � a� � � � � � aK	� � ��

The subdomain boundaries are assumed to be nodes of the grid� and the corresponding

indices Jk are de	ned by �

�����
�����

J���

ak�xJk for � � k � K�

JK	��n

����

where n is the number of points of the mesh in D and fxig�	i	n are the nodes of the grid�

Two sets of indices� local and global� are then de	ned on each subdomain� Let Mk �n
�� � � � �Mk

o
be the set of �local� indices on Dk for all k � f�� � � � �Kg� The number of

points in each subdomain D
k
interior to the domain D is thus

Mk � Jk	� � Jk  � for k � K �����

In the enumeration of the points of the subdomains� the extremities are cited twice� once

for each participating subdomain� so the number of degrees of freedom before imposing the

continuity of the solution at the subdomain boundaries is %n � n K � ��

The global indices of this �decoupled� enumeration are de	ned on each subdomain by

the sets %J k �
n
%Jk� � � � � %Jk	� � �

o
� where

��
��

%Jk � Jk  k � � for k � K

%JK	� � %n �
�����

��



	���� Subdomain Operators

With the notations of the previous subsection� one de	nes two hybridization operators

Q � IR�n
n and V � IR�K���
�n related to direct sti�ness summation and intersubdomain

continuity respectively� The matrix Q is given by

�k � K and p �Mk� Qij �

��
��
� if i � %Jk  p� � and j � Jk  p� �

� otherwise
�����

and the matrix V is de	ned as

�i � K� Vij �

�����
�����
�� if j � %J i	� � �

� if j � %J i	�

� otherwise

�����

To be more explicit� let us consider a decomposition into � intervals of equal length� we

have

Q �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

� � � � � �

� �
� � �

���
���
� � � � �

� � � � � �

� � � � � �

� �
� � �

���
���
� � � � �

� � � � � �

� � � � � �

� �
� � �

���
���
� � � � �

� � � � � �

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�����

and

V �

�
B� � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � �

�
CA �����

The columns of Q containing two nonzero entries correspond to the subdomain bound�

aries �columns Jk�� The nonzero entries of V are in the columns %Jk	� � � and %Jk	�� The

��



matrix V is de	ned only for K � �

Given any v � IRn specifying the global nodal values of the solution� Q � v assigns these

values to the local nodes on each subdomain� Conversely� given any w � IR�n� V �w evaluates

the jumps in w across the K�� subdomain boundaries� From ����� and ������ the following

equalities can easily be derived �

QTV T � � �����

V V T �  IK�� ������

where IK�� is the �K � ��� �K � �� identity matrix�

The subdomain matrix operators Lk and Ak can now be de	ned along with the subdo�

main right�hand sides fk by writing the weak form of the equation on each subdomain� For

instance� for the convection�di�usion problem� one obtains �

� k � K� � �i� j� �
�
Mk

��
�
Lk
�
ij

�

Z ak��

ak

�
�
d�i	Jk��

dx

d�j	Jk��
dx

 �i	Jk��
d�j	Jk��

dx

�
dx ������

�
Ak

�
ij

� 

Z ak��

ak

�
�
d�i	Jk��

dx

d�j	Jk��
dx

�
dx �����

�
fk
�
i
�

Z ak��

ak

�
�i	Jk�� g �

�
�
d�i	Jk��

dx

d�n	�
dx

� �i	Jk��
d�n	�
dx

�
U�

�

�
�
d�i	Jk��

dx

d��
dx

� �i	Jk��
d��
dx

dx

�
U�

�
dx ������

The output linear functionals also need to be decomposed� This decomposition is not

unique� A judicious choice can however facilitate computations in certain cases as discussed

in ���� One possibility consists of writing �

� k � K
�
�k
�
i
�

�����
�����

�i	Jk�� if

��
��

i �
n
�� � � � �Mk � �

o
k � K and i �MK

� if k � f�� � � � �K � �g and i �Mk

������

The block diagonal operators used to solve the problem numerically are now formed�

These operators are denoted with an underlining bar to distinguish them from the original

matrices on the global discretizations� These operators contain the unassembled� decoupled

��



matrices ������"������ One thus de	nes �L�A� �
�
IR�n
�n

��
by �

� k � K

�L�ij �

��
��

�
Lk
�
i� �Jk	��j� �Jk	�

if �i� j� �
�
%Jk
��

� otherwise
������

�A�ij �

��
��

�
Ak

�
i� �Jk	��j� �Jk	�

if �i� j� �
�
%Jk
��

� otherwise
������

The vectors
�
f� �

�
�
�
IR�n

��
are also formed� They contain the �unassembled� and

decoupled inhomogeneities ������ and output functionals ������ respectively �

� k � K � i � %J k

f
i
�

�
fk
�
i	 �Jk��

������

�i �
�
�k
�
i	 �Jk��

������

The operators ������"������ and the vectors ������"������ can be expressed simply using

����� and ����� as �

L � QTLQ ������

A � QTAQ �����

f � QT f �����

� � QT � ����

The consequences of the domain decomposition on the general theory provided in Chap�

ter � are now discussed�

��� Duality Approach to Bounds for the Outputs

u is the unique solution of ������� so that� using ����� and ������ and letting

u � Qu �����

��



u becomes the solution of the system �

QTLw � f �����

V w � � �����

Moreover� V is of rank �K � �� and Q is of rank n� so ����� shows that the columns of Q

span the nullspace of V� Adding to this the assumption that A is positive de	nite leads to

the conclusion that this solution is also unique�

If ������� ������ ����� and ����� are now plugged into ������ one obtains �

�


uTAu� �uT f � � �����

An augmented output form is then de	ned for all v � IR�n �

S��v� �
�


vTAv � � vT f �

�
vT � c

�
�����

and the output can be written� with ����� and ������ as

� s � min
fv�IR�njQTLv�f��� V v��g

S��v� �����

The Lagrangian corresponding to ����� introduces the additional adjoint � �

L��v� �� �� � S��v�  �T �QTLv � f�  �TV v �����

and the duality result ������"������ can be written as

� s � min
fv�IR�ng

max
f��IRn� ��IRK��g

L��v� �� �� ������

� max
f��IRn� ��IRK��g

min
fv�IR�ng

L��v� �� �� ������

The bounds are therefore given by �

� !�� � IRn and � !�� � IRK��

min
fv�IR�ng

L	
�
v� !�	� !�	

�
� s � � min

fv�IR�ng
L�

�
v� !��� !��

�
�����

�



and the saddlepoints �u� ��� ��� are solutions of the systems of equations �

�Au LTQ��  V T�� � � f � � � � ������

QTLu� f � � ������

V u � � ������

obtained as stationarity conditions for the Lagrangian ����� with respect to u� � and � for

������� ������ and ������ respectively� ���� ��� are the values of the adjoints that make the

bounds ����� exact�

��� Hierarchical Procedure

Two levels of discretization are now introduced� one coarse ��working mesh�� and one 	ne

��truth mesh��� and the domain decomposition is chosen such that all the intersubdomain

boundaries are also nodes of both grids�
�
!��h � !�

�
h

�
are computed as linear interpolants of

the best choice for the adjoints on the coarse grid� which are� from ������"�������
�
��H � �

�
H

�
�

	���� Computational Procedure

First� the solution on the coarse grid uH and its �decomposed� version uH � QH uH are

computed� The stationary conditions on the coarse grid are

�AH uH  LTHQH ��H  V T
H ��H � � f

H
� �H � � ������

QT
HLH uH � fH � � ������

VH uH � � ������

Pre�multiplying ������ by QT
H and using ������ ������"����� and ������ �

�
H is obtained by

LTH�
�
H � � ��AH uH � � fH � �H� ������

which is exactly ������� which does not include the domain decomposition� ��H is then

obtained by pre�multiplying ������ by VH and using ������� which yields directly �

��H � �
�


VH

�
�AH uH  LTHQH ��H � � f

H
� �H

�
������

��



The domain decomposition technique therefore does not add any complexity to the pro�

cedureso far� at least from a numerical point of view� �H can now be interpolated as in

������� Moreover� both ��H and !�
�
h have the same dimension �K � ��� so� given the results

of the coarse grid computations� the best choice for !��h is

!��h � ��H ������

The bounds are then computed as

�sh�LB �H� � min
fv�IR�nhg

L	h

�
v� !�	h � !�

	
h

�
�����

�sh�UB �H� � � min
fv�IR�nhg

L�h

�
v� !��h � !�

�
h

�
������

From the stationarity condition ������ applied on the 	ne grid �� � h�� if

!u�h � arg min
fv�IR�ng

L�h

�
v� !��h � !�

�
h

�
������

one must have

�Ah !u
�
h � �

�
LThQh !�

�
h  V T

h !�
�
h � � f

h
� �h

�
������

and the bounds become� as in ������ and ������ �

�sh�LB �H� � L	h

�
!u	h � !�

	
h � !�

	
h

�
� �

�


!u	Th Ah !u

	
h  ch � !�

	T
h fh ������

�sh�UB �H� � �L�h

�
!u�h � !�

�
h � !�

�
h

�
�

�


!u�Th Ah !u

�
h  ch  !�

�T
h fh ������

In view of ������� ����� and ������ these expressions for the bounds are actually exactly

the same as in ������ and ������� Furthermore� using ����� and ������ ������ pre�multiplied

by QT gives exactly �������

	���� Computational Cost

Given that the 	nal results obtained are exactly the same as in Chapter �� one might wonder

whether the Domain Decomposition really improves the performance of the Hierarchical

��



Bounds Method� Furthermore� nothing guarantees that ������ has a solution� In fact� as

shown in ���� there is always a solution and !u�h can be computed�

The main gain may not be obvious from this presentation because the procedure has

been presented only in one dimension for simplicity� It appears nevertheless that the cost of

the method once again comes from the inversion of Ah� Only this time� ������ shows that

this inversion is in fact decomposed in the resolution of K decoupled systems of size n�K�

The Domain Decomposition is thus cost e�ective for two reasons� First� the resolution of

subsystems can be parallelized� Second� in higher dimensions� the cost of the inversion of

Ah �which is sparse instead of tridiagonal� is O�n
��� whereas the cost of the inversion of Ah

is the cost of K inversions of systems of sizes n�K� so the total cost is divided by K��

��� Optimal Stabilization Parameter

The determination of the optimal boundary conditions for the adjoint refers only to the

continuous problem and not to the discretization� so that the natural boundary conditions

for the adjoint are not modi	ed by the Domain Decomposition� On the contrary� the

determination of the optimal stabilization parameter �� has still to be discussed� since it

depends on the domain decomposition�

The procedure is similar to the one presented in Section ���� The 	rst equations ������"

������ remain unchanged and are kept as such� But another adjoint must now be taken into

account� ��H is therefore also decomposed as �

��H � ���H  ����H ������

where

���H � �
�


VH

�
LTHQH�

��
H � �H

�
������

���H � �
�


VH

�
AH uH  LTHQH�

��
H � f

H

�
������

and !��h can be written as

!��h � !�
��
h  � !���h ������

��



where

!���h � ���H �����

!���h � ���H ������

because of ������� ������� ������� ������ and ������ are then replaced respectively by �

y�
h

� LThQh !�
��
h � �h  V T

h !�
��
h ������

z�h � LThQh !�
��
h � f

h
 V T

h !�
��
h ������


� � y�T
h

A��h y�
h

������

� � z�Th A��h z�h   f
T
h !�

��
h ������

The values of 
� and � are unchanged� Indeed� with ������ the pseudo�inverse of Ah

is determined by �

A��h � QA��h QT ������

The notations for 
� and � are therefore the same� with or without domain decomposition�

With the same notations as in Chapter �� the bounds then become �

����� � �
�

�

� �

�


� � y�T

h
A��h z�h � fTh !�

�� � ch ������

which yields the same result as the theory without domain decomposition �

�� �

s

�

�
������

On the contrary� the values of y� and z� are di�erent from the values of y� and z�

respectively� but because of ������� the value of the inner product y�T
h

A��h z�h remains

unchanged� so the values of the bounds are unchanged by domain decomposition�

The cost of the procedure is once again in the inversion of A� and the reasoning of

Section ��� still holds� The gain of the procedure using domain decomposition is then the

same as for the resolution with any value of ��

��



Conclusion

Three main conclusions can be drawn from the results obtained� First� the Hierarchical

Bounds Method works and gives good results in the linear case� whether it is applied to

second or 	rst order di�erential equations� The bounds are sharp� even for coarse grids� and

second order convergence has been observed in all cases� Second� the HBM is a globalmethod

that gives bounds for a 	ne grid output� but gives no information as regards the contribution

of each element to the error� Its use in adaptative methods is thus not straightforward�

Third� although the HBM also works in some cases for nonlinear problems� success is far

from being guaranteed� In particular� the heuristic approach adopted in Chapter � does not

automatically yield discrete systems that satisfy all the assumptions made in the general

theory of the HBM �e�g� symmetric part positive de	nite��

E�orts for the future development of the HBM should therefore concentrate on two

aspects of the problem� First� some further theoretical study should be conducted on the

nonlinear case to come up with a formulation that either guarantees that the conditions

of application of the HBM are gathered or at least that speci	es the �functioning domain�

of the method� Maybe the use of a simpler nonlinear equation �Burger�s equation for

example� would be a good starting point� Second� the HBM needs to be implemented in

two dimensions� because that is where the gains can be realized � inversion of symmetric

sparse matrices instead of general matrices and Domain Decomposition� Some initial e�orts

in that direction are already available ����� They seem very promising� and one can hope

to see the HBM applied in the near future� for instance to validate low�order models like

those developed in ���� without going to the full solution�
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If riding in an airplane is ��ying�� then riding in a boat is �swimming��

To experience the element� you have to get out of the vehicle�

��� And once you have tasted �ight� you will walk the Earth� looking skyward�

For there you have been� and there you long to return�

��


