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Abstract

Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the

accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment

coefficients) is required from a single adaptive solution. The underlying adaptive procedure is

based on a merging of adjoint error estimation and Hessian-based anisotropic grid adaptation.

Airfoil test cases are presented to demonstrate the various adaptive strategies including a

single element airfoil at cruise conditions and a multi-element airfoil in high-lift configuration

with flow separation. Numerical results indicate that the lift, drag and moment coefficients

are accurately predicted by all of the output–based strategies considered, although slightly

better accuracy is obtained in the output(s) for which a particular strategy is specifically

designed. Furthermore, the output-based strategies are all shown to be significantly more

efficient than pure Hessian-based adaptation in terms of output accuracy for a given grid

size.

Key words: anisotropic grid adaptation; adjoint error correction/estimation; multiple func-

tional outputs; aerodynamics; finite volume; finite element; computational fluid dynamics.
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1 Introduction

Proper grid resolution is critical for industrial computational fluid dynamics (CFD) appli-

cations due to the conflicting and exacting requirements of adequate solution accuracy and

limited computer execution time. Solution–based, automatic grid adaptation has proven to

be an effective means of iteratively improving the local grid resolution during the solution

procedure [1–10]. The basic premise is to assess the solution error at intermediate stages of

the overall solution process and modify the local grid density accordingly in order to improve

the solution accuracy and/or reduce the nominal grid size.

A limiting factor in the application of grid adaptation for Navier–Stokes computations has

been the lack of reliable error indicators for driving the adaptive process. Many methods use

indicators based on large flow gradients or undivided differences [2,8,9]. These methods tend

to increase the grid density near certain flow features such as shocks, wakes, and boundary

layers. Unfortunately, indicators of this type may lead to incorrect results. For example,

continuously refining the grid near a shock does not necessarily lead to an improvement in

overall solution accuracy. Predicting the proper shock strength and location, as well as other

derived quantities, may depend more on the quality of the grid well upstream of the shock

rather than in its immediate vicinity [9].

Adaptive indicators for nonlinear flow problems have also been derived from interpolation

error estimates for linear finite elements [3,4,7,9]. These methods attempt to equidistribute

the estimated interpolation error in one or more scalars throughout the computational do-

main. Essentially, this amounts to adapting on the local second–derivatives or Hessian of

the solution and, therefore, shares some of the potential deficiencies associated with feature–

based indicators. Traditional feature– and Hessian–based indicators are local in nature and

do not provide a reliable indication of how the discretization error is distributed or trans-

ported throughout the domain. The equidistribution of interpolation error does not generally
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translate into the equidistribution of discretization error for nonlinear flow problems. Fur-

thermore, even the equidistribution of discretization error may not be optimal within an

engineering context.

An alternate approach to making error estimation more relevant for engineering applications

is to assess the error made in predicting integral quantities representing basic engineering

outputs. Examples include the lift and drag forces acting on an aircraft wing, the mass-

averaged total–pressure drop across a high–pressure turbine stage, or the average noise levels

generated by an aircraft at takeoff condition. There has been a significant volume of research

into a posteriori error analysis and grid adaptation for functional outputs within the context

of finite element methods for fluid dynamics [11–22]. For general discretizations, Pierce

and Giles [23–26] have developed an adjoint-based error correction technique for functional

outputs that extends superconvergence properties, automatically inherent in many finite

element methods, to cover numerical results from any numerical method, including finite

difference, finite volume, or finite element without natural superconvergence.

The goal of our work is to improve the reliability, accuracy and efficiency of CFD through the

development and application of an error estimation and grid adaptive method for functional

outputs. The error estimation procedure is based on the functional correction technique of

Pierce and Giles. It shares the advantage of being applicable to any type of discretization

method, including finite volume methods which are widely used for the simulation of com-

pressible flows. The functional correction and error estimation terms used in this work have

already been incorporated into isotropic adaptive schemes for finite volume discretizations

of quasi-one-dimensional [27] and two-dimensional [28] inviscid flows, and for a Galerkin

finite element discretization for low-Peclet-number convection-diffusion [29]. The approach

has been generalized for anisotropic adaptation [29, 30] by merging the functional correc-

tion and error estimation procedure with elements of traditional Hessian–based adaptation.
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To the authors’ knowledge, this was the first reported output–based, anisotropic, adaptive

method for Navier–Stokes flows; it has been successfully applied to practical two-dimensional

laminar [29] and turbulent [30] test cases. Park has applied and extended the methods

in references [28–30] to three-dimensional inviscid [31] and turbulent flows [32]. Formag-

gia, Micheletti and Perotto [33,34] have independently developed output–based, anisotropic

adaptive procedures for advection–diffusion–reaction and Stokes flows within a finite–element

framework that also combine adjoint or duality arguments with anisotropic interpolation er-

ror estimates.

In this paper we propose several adaptive strategies in which the accurate prediction of

multiple integral outputs is required from a single simulation. The underlying adaptive

methodology is presented in references [29] and [30] and is summarized in Section 2. Sec-

tion 3 outlines the various adaptive strategies, and Section 4 presents numerical results in

which the strategies are applied to two airfoil test cases: a single element airfoil at cruise

conditions and a multi-element airfoil in high-lift configuration with flow separation. The

effectiveness of each strategy is gauged in part by the accuracy of the predicted lift, drag,

and moment coefficients relative to the corresponding grid size. Numerical results indicate

that the aerodynamic coefficients are accurately predicted by all of the output–based strate-

gies considered, although slightly better accuracy is obtained in the output(s) for which a

particular strategy is specifically designed. Furthermore, the output-based strategies are

all shown to be significantly more efficient than pure Hessian-based adaptation in terms of

output accuracy for a given grid size.
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2 Adaptive Methodology

This section presents a succinct summary of the output–based adaptive methodology out-

lined in references [29] and [30]. The methodology borrows concepts from adjoint error

estimation/correction for functional outputs [24, 26], and from Hessian–based anisotropic

grid adaptation [3, 7].

The adaptive procedure is designed to improve the accuracy of an integral output fH(UH)

that can be written as a nonlinear functional of the discrete flow solution UH on the current

grid ΩH . The system of residual equations associated with the flow discretization on ΩH is

denoted RH(UH) = 0.

Each iteration in a single–output adaptive simulation requires approximate solutions of the

discrete flow (primal) and adjoint (dual) equations. The discrete system of adjoint equations

is given by

∂RH

∂UH

T

ΨH =
∂fH

∂UH

T

, (1)

where ∂RH/∂UH is the Jacobian of the primal residual equations, ∂fH/∂UH is a row vector

containing the functional sensitivities, and ΨH is the corresponding adjoint solution.

Once approximate flow and adjoint solutions have been obtained on the current grid a

correction term [24,26] is computed and used to improve the accuracy of the output. This is

done prior to the grid–adaptive step for the current iteration. The corrected output is given

by [30]

fH
h = fh(Q

H
h UH) − (Q̄H

h ΨH)T Rh(Q
H
h UH). (2)

In this last expression fh(·) and Rh(·) are the functional and residual operators, respectively,

defined on a fine grid Ωh. The fine grid is constructed by uniformly subdividing the elements

of the current grid. The rectangular matrices QH
h and Q̄H

h represent quadratic prolongation

operators that map the flow and adjoint solutions, respectively, onto the fine grid. Detailed
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descriptions of these terms are provided in reference [30].

The adaptive algorithm attempts to further enhance the accuracy of the corrected output by

working to reduce the magnitude of the remaining error after correction. A crude approxima-

tion of the remaining error in the functional ε is obtained by summing positive contributions

εk from each element k in the current grid [30],

ε =
∑

k

εk, (3)

where

εk =
1

2

∑

l(k)

{
∣

∣ [RΨ
h (L̄H

h ΨH)]Tl(k) [QH
h UH − LH

h UH ]l(k)

∣

∣

+
∣

∣ [Q̄H
h ΨH − L̄H

h ΨH ]Tl(k) [Rh(L
H
h UH)]l(k)

∣

∣ }. (4)

The index l(k) enumerates each fine–grid node associated with element k. The rectangular

matrices LH
h and L̄H

h represent linear prolongation operators analogous to QH
h and Q̄H

h ,

respectively. The adjoint residual operator RΨ
h on the fine grid is defined as

RΨ
h (·) ≡

∂Rh

∂Uh

T

(·) −
∂fh

∂Uh

T

. (5)

Note that the evaluation of (2)–(4) does not require solutions to be performed on the fine

grid. Only functional and residual evaluations are needed on the fine grid, preceded by the

prolongation of the flow and adjoint solutions from the current grid.

For each element k a desired new element size H ′
k is computed from the old one, Hk, according

to

H ′
k = Hk

(

1

ηgηk

)ω

, (6)

where ηk and ηg are local and global adaptation parameters, respectively, and ω is an under-

relaxation parameter that controls how aggressively the subsequent grid is refined. In par-

ticular, ηk = εk/ēo and ηg = ε/eo where eo is a user-specified desired error level, ēo = eo/Ne
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is the target error for each element, and Ne is the total number of elements in the current

grid. A value of ω = 1/8 is used for the test cases in this paper.

Equation (6) only provides isotropic information about the desired element size in the subse-

quent grid. Anisotropic criteria are incorporated into the adaptive procedure by extracting

stretching and orientation information from interpolation–error estimates for linear finite

elements [3, 7]. This merging of adjoint error estimation and Hessian–based anisotropic

grid adaptation was originally proposed in references [29, 30] and is briefly outlined in the

following.

The Hessian (matrix of second derivatives) of a specified scalar field, such as the Mach

number distribution, is computed using a quadratic recovery algorithm [28] resulting in

piecewise constant values over each element in the current grid. A Hessian–based metric

MH is then computed by diagonalizing the Hessian matrix and taking the absolute value of

its eigenvalues [3, 7] yielding

MH = R |Λ|RT . (7)

In two dimensions, the orthonormal eigenvector matrix R can be written as

R =







cos θ − sin θ

sin θ cos θ






, (8)

and the corresponding eigenvalue matrix Λ as

Λ =







1/h2
1 0

0 1/h2
2






. (9)

The Hessian–based metric can be interpreted as a transformation matrix that maps physical

(Euclidean) sets onto a metric space [3]. For example, the unit circle centered at the origin

in the metric space is mapped onto an ellipse in the physical space with major and minor

principal lengths h1 and h2, respectively, and with its major axis rotated by an angle θ to

the x–axis.
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In the proposed output–based adaptive procedure, stretching and orientation parameters,

β = h1/h2 and θ, respectively, are obtained directly from MH, and an element–size param-

eter H ′ is obtained from Equation (6). An output–based metric M′ is then constructed for

each element in the current grid as

M′ = R |Λ′|RT , (10)

where

Λ′ =







1/(βH ′)2 0

0 1/(H ′)2






. (11)

Note from the last expression that the element–size parameter H ′ has been attributed to the

minor principal length associated with the output–based metric. Accordingly, the current

element–size parameter H in Equation (6) is computed as the minor principal length associ-

ated with the local grid–implied metric on the current grid. The grid–implied metric [29,30]

is the metric distribution that yields a constant metric length for all edges in the current

grid. An average value for the grid–implied metric is calculated for each element in the

current grid by solving a local 3 × 3 system of equations for the metric components. The

equations are formed by specifying a unit metric length for each edge in the element. The

square of the metric length lM of a straight edge with respect to the constant metric M is

given by

(lM)2 = ŝTMŝ (lI)
2 , (12)

where ŝ is a unit vector tangent to the edge and lI is the physical (Euclidean) length of the

edge.

The output–based metric components are transferred to the nodes of the current grid using

area–weighted averages of the piecewise–constant values over the elements surrounding each

node. The nodal values are then provided as input to an anisotropic grid generator and the

new grid is created.
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For the test cases presented in this paper, the adaptive algorithm is run for at least 16

iterations, at which point the change in the total number of nodes from one grid to the next

is typically on the order of 1%. The intent is to ensure convergence of the grid–evolution

process; no attempt is made to optimize the rate of convergence in this work.

If the desired error tolerance eo is very low relative to the resolution of the initial grid,

excessive overrefinement may result in the early stages of the adaptive process. To overcome

this difficulty, a modest (large) value for eo is prescribed initially and then gradually ramped

down to the desired error level over the course of several iterations.

3 Adaptive Strategies

Several output–based adaptive strategies are implemented using the adaptive methodology

outlined in Section 2. Airfoil test cases are presented in Section 4 to demonstrate the various

adaptive strategies including a single element airfoil at cruise conditions and a multi-element

airfoil in high-lift configuration with flow separation. The effectiveness of each strategy is

gauged in part by the accuracy of the predicted lift, drag, and moment coefficients computed

on the final adapted grids versus the total number of nodes in the respective grid.

Lift, Drag, and Moment Coefficients

In the first three strategies, the lift, drag, and moment coefficients are prescribed, individu-

ally, as the output for driving the adaptive simulations. A goal of this study is to assess the

effectiveness of each single–coefficient strategy to accurately predict the two other coefficients

for which the strategy is not explicitly designed.
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Weighted Average

One strategy for incorporating the lift, drag, and moment coefficients, CL, CD, and CM ,

respectively, into a single adaptive simulation is to define the output f as a weighted average

of the square of the coefficients,

f = WLC2
L + WDC2

D + WMC2
M . (13)

The weights, WL, WD, and WM , are chosen according to specified relative error levels, eL,

eD, and eM , respectively, as

WL =

(

1

eL

)2

; WD =

(

1

eD

)2

; WM =

(

1

eM

)2

. (14)

For the test cases in this paper, the relative error levels are arbitrarily chosen as eL = 1.0,

eD = 0.1, and eM = 0.2.

Multi–Output Adaptation

In the previous strategy, the output is linked to all three coefficients simultaneously, while

requiring only one adjoint calculation per adaptive iteration. The adaptive algorithm at-

tempts to satisfy the specified error levels in an average sense. In contrast, the current

strategy attempts ensure that all three error levels are satisfied simultaneously at the cost

of performing three adjoint calculations per adaptive iteration.

The following is a general description of the proposed multi–output strategy in which there

are Nf outputs f i and corresponding error tolerances ei
o, i = 1, Nf . A single iteration in the

adaptive procedure is comprised of the following steps:

1. On the current grid, compute the flow solution and the Nf adjoint solutions associated

with the specified outputs.
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2. For each element, compute piecewise–constant estimates of the local Mach number

Hessian.

3. For each element, compute the Hessian–based metric MH given by (7)–(9) and extract

the stretching and orientation parameters, β = h1/h2 and θ, respectively.

4. For each element, estimate the grid–implied metric and compute the current element–

size parameter H.

5. For each output, compute the adjoint–based adaptation parameters, ηi
g and ηi

k, i =

1, Nf . Specifically, ηi
g = εi/ei

o and ηi
k = εi

k/ē
i
o for each element k, where ēi

o = ei
o/Ne

is the element target error, Ne is the total number of elements in the current grid,

εi =
∑

k εi
k, and εi

k is obtained from (4) using the corresponding adjoint solution.

6. For each element, the element–size parameter H ′
i, associated with the ith functional,

is obtained in terms of the current element size parameter H using (6).

7. For each element, the final element size parameter H ′, used for generating the next

grid, is chosen as the minimum of the element–size parameters associated with each

functional. That is, H ′ = mini (H
′
i).

8. For each element, the new output–based metric M′ is constructed using the parameters

β′, θ′, and H ′, and Equations (8), (10), and (11). The elemental metric components are

transfered to the nodes using area–weighted averages of the piecewise–constant values

over the elements surrounding each node.

9. The nodal metrics are specified as inputs to the anisotropic grid generator and the grid

is regenerated.

In the present case, there are Nf = 3 outputs corresponding to the lift, drag, and moment

coefficients: f 1 = CL, f 2 = CD, and f 3 = CM , respectively. The corresponding error
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tolerances are chosen as e1
o = ǫ, e2

o = 0.1ǫ, and e3
o = 0.2ǫ, where ǫ is varied in order to define

several different overall adaptive tolerances while keeping the relative error levels for the

coefficients constant.

Domain Integral

The aforementioned strategies all involve aerodynamic outputs expressible as integrals of

the flow solution over portions of the domain boundary (i.e. airfoil surfaces). The current

strategy attempts to provide overall solution accuracy by targeting an integral over the entire

domain. In particular, the output f is defined as

f =

∫

Ω

(M − M∞)2 dΩ (15)

That is, the square–integral of the Mach number relative to the free–stream value M∞.

This specific choice is made to further illustrate the differences between pure Hessian–based

adaptation (based on the Mach number Hessian) and the current output–based approach.

Pure Hessian–Based Adaptation

Adaptive simulations based solely on the local Mach number Hessian are performed for

comparison with the proposed output–based strategies. Pure Hessian–based adaptation is

essentially what is used in references [3, 4, 7] although their methodologies and implemen-

tations differ to varying degrees. In the present implementation, the algorithm attempts

to equidistribute the estimated interpolation error in the Mach number distribution by

equidistributing the metric lengths (see Equation (12)) of all the edges in the grid using

the Hessian–based metric MH given by (7)–(9). Different error tolerances are established

by scaling the metrics associated with each element by a constant multiplicative factor κ.

Larger values of κ correspond to more stringent tolerances on the estimated interpolation
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error. Nodal values of the second derivatives are obtained using an area–weighted average of

the piecewise–constant values over each element surrounding the node. To avoid excessive

element sizes in the farfield, the eigenvalues of the metric are bounded from below so that

h2 ≤ h1 ≤ hmax, where hmax is a specified maximum element length for the domain.

4 Numerical Results

Two airfoil test cases are presented to demonstrate the various adaptive strategies outlined in

Section 3: turbulent flow over the RAE 2822 airfoil at cruise conditions; and turbulent flow

over the Advanced Energy Efficient Transport (EET) three element airfoil [35] in high-lift

configuration with flow separation.

The flow and adjoint solvers used in this work are part of the FUN2D suite of codes [36–

38]. The governing flow equations are the compressible, Reynolds–averaged Navier–Stokes

(RANS) equations. The eddy viscosity is obtained using the one–equation turbulence model

of Spalart and Allmaras [39]. The BAMG [40] anisotropic grid generator is used to regenerate

the grids in this work. BAMG and FUN2D are incorporated into the overall adaptive

procedure using shell scripts.

4.1 RAE 2822 Airfoil

Adaptive simulations are performed for turbulent flow over the RAE 2822 airfoil. The

Reynolds number and free stream Mach number are Re = 6.5 × 106 and M∞ = 0.725,

respectively, corresponding to Case 6 conditions in reference [41]. The angle of attack is

fixed at α = 2.466o, corresponding to the computation by Allmaras [42] in which the Case

6 lift is matched. Under these conditions, a shock appears on the suction side of the airfoil

near the mid–chord position. The farfield boundary is placed at 100 chords. The initial grid
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for the adaptive simulations is a relatively coarse, inviscid–style grid analogous to the one

shown in Figure 4 of reference [30].

Figure 1 shows computed lift values obtained using the output–based strategies and pure

Hessian–based strategy outlined in Section 3. Each marker in the figure corresponds to a

fully converged adaptive simulation. Markers of the same shape correspond to the same

adaptive strategy but with different error tolerances eo specified. The experimental value

corresponds to Case 6 in reference [41]. The Allmaras value [42] is obtained from an inde-

pendent computation. Allmaras uses an upwind, second–order finite–volume discretization

for the conservation equations and a first–order discretization for the Spalart–Allmaras tur-

bulence model [39]. A structured C–type grid comprised of 768 × 192 cells is employed.

The farfield boundary is placed at 20 chords and a point vortex correction is applied to the

farfield boundary conditions.

The colored markers in Figure 1 correspond to corrected values of the lift. The corrected

values are computed using Equation (2). Note that corrections for the lift are only computed

in the lift–based and multi–output–based strategies since these are the only two strategies

for which the lift adjoint is readily available.

Figures 2 and 3 present analogous results for the drag and moment coefficients, respectively.

The moment coefficient is defined with respect to the quarter–chord location. The pro-

posed output-based adaptive strategies offer substantial improvements in accuracy over pure

Hessian–based adaptation, particularly for the lift and drag coefficients. The output-based

strategies also predict the moment coefficient accurately and with less variability than does

the Hessian–based method. In light of the poor lift and drag predictions by the Hessian–

based method, the relatively accurate moment predictions are likely the result of a fortuitous

cancellation of errors. As expected, the corrected outputs are consistently more accurate than

the corresponding uncorrected values. Furthermore, the most successful output–based strat-

15



egy for any given coefficient is generally the strategy for which the coefficient is specifically

designed, although the corresponding improvement is minor relative to the accuracy gains

obtained over the Hessian–based results. For a similar level of output accuracy, the output–

based strategies yield grids with an order of magnitude less nodes than the Hessian–based

grids.

Figure 4 compares final adaptive grids from the domain–integral–based, drag–based, and

Hessian–based strategies. Perhaps the most distinguishing feature in these plots is the reso-

lution of the wake downstream of the airfoil. The wake appears to be truncated prematurely

in the Hessian–based grid. In this region, wake refinement gets propagated downstream by

the Hessian–based algorithm at a very slow rate. In comparison, the output–based algo-

rithms are able to detect and resolve the wake far more rapidly over a comparable number of

adaptive iterations. The drag–based algorithm only resolves the wake to approximately one

chord–length downstream of the trailing edge. Evidently, this is all that is needed in order

to accurately predict the drag. In the case of the domain–integral–based strategy, the algo-

rithm refines the wake all the way to the farfield boundary in order to accurately capture the

Mach number deficit in the wake. The inaccurate force predictions from the Hessian–based

simulation are primarily attributed to insufficient grid resolution in the inviscid portions of

the flow, particularly near the leading edge and immediately adjacent to the boundary layer

regions. Conversely, although it is not perceivable from the figure, the near–wall region in

the boundary layer is significantly over–refined relative to the output–based grids, resulting

in a much larger overall grid size.

Figure 5 shows intermediate grids during the first few iterations in a domain–integral–based

adaptive simulation. After 7 iterations, wake resolution has been propagated by more than

40 chords downstream of the airfoil. This compares with less than 1 chord of wake resolution

by the Hessian–based algorithm after 16 iterations.
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4.2 Advanced EET 3-Element Airfoil

Adaptive simulations are performed for turbulent flow over the Advanced Energy Efficient

Transport (EET) three element airfoil [35]. The Reynolds number (based on the chord

of the EET with elements retracted), free stream Mach number, and angle of attack are

Re = 9 × 106, M∞ = 0.26, and α = 8o, respectively. The farfield boundary is placed at 100

chords.

Figure 6 shows predicted lift and drag values using the proposed output–based strategies and

pure Hessian–based adaptation. The experimental lift value is obtained from reference [35].

The Anderson et al. value is obtained from an independent computation [43]. Anderson et al.

use the FUN2D flow solver. An unstructured grid comprised of 70686 nodes is employed for

their computation. The grid has regular spacing near the airfoil boundaries with a minimum

normal spacing of 2 × 10−6 chord units adjacent to the wall.

The predicted coefficients from the output–based grids are substantially more accurate than

those computed from the Hessian–based grids. Output–based grids with greater than 20000

nodes are essentially converged with respect to the computed lift. Conversely, the lift and

drag values from the finest of the Hessian–based grids are still in error by over 20% and

600%, respectively.

Figure 7 shows the final adapted grid from the domain–integral–based adaptive strategy. The

plot illustrates the detailed resolution of the wakes emanating from the slat, main element,

and flap.

5 Conclusion

This paper presented applications of an anisotropic grid–adaptive method for functional

outputs. The method combines aspects of adjoint error estimation/correction for functional
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outputs and Hessian–based anisotropic grid adaptation. Several adaptive strategies were

proposed for aerodynamic simulations in which the accurate prediction of multiple outputs

is required from a single adaptive simulation.

Airfoil test cases were presented to demonstrate the various adaptive strategies. Turbulent

flow was simulated over a single element airfoil at cruise conditions and over a multi-element

airfoil in high-lift configuration with flow separation. Numerical results indicate that the lift,

drag and moment coefficients are accurately predicted by all of the output–based strategies

considered. Slightly better accuracy is obtained in the output(s) for which a particular

strategy is specifically designed. Furthermore, the output-based strategies were all shown to

be significantly more efficient than pure Hessian-based adaptation, generally yielding grids

with an order of magnitude less nodes for a similar level of output accuracy.

One of the proposed strategies attempts to provide overall solution accuracy by targeting

an integral of the square of the relative Mach number over the entire domain. This strategy

was shown to be far more efficient than pure Hessian–based adaptation (based on the Mach

number Hessian) at rapidly resolving the wake of a single–element airfoil at cruise conditions

to large distances downstream of the airfoil. This characteristic could be beneficial in ap-

plications where shear layers emanating from certain upstream components have significant

impact on the aerodynamics of downstream components.

Some of the most important quantities needed from a CFD simulation are often integral

outputs, such as lift and drag. It seems natural, therefore, that the accuracy of a simulation

should be measured by the accuracy of these key outputs. This work and previous studies

have shown that some of the most commonly used feature–based and Hessian–based adap-

tive methods cannot achieve this reliably. The potential benefit of a robust output–based

adaptive scheme is that these outputs can be predicted accurately, efficiently, and in an

automated manner, saving valuable time and resources. Developments in output–based grid
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adaptation are also expected to enhance the applicability of CFD for gradient–based design

optimization, particularly those implementations that already employ adjoint solvers for the

calculation of design sensitivities [38,44,45].
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Figure 1: RAE 2822 Airfoil test case: Re = 6.5 × 106, M∞ = 0.725, α = 2.466o. Lift

coefficient on final adapted grid for various adaptive strategies and error tolerances.
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Figure 2: RAE 2822 Airfoil test case: Re = 6.5 × 106, M∞ = 0.725, α = 2.466o. Drag

coefficient on final adapted grid for various adaptive strategies and error tolerances.

26



Nodes

M
om

en
t

0 20000 40000 60000

0.02

0.04

0.06

0.08

0.1

0.12

Lift Based
Drag Based
Moment Based
Moment Based - Corrected
Domain Integral Based
Weighted-Output Based
Multi-Output Based
Multi-Output Based - Corrected
Hessian Based

RAE 2822 - Re = 6.5x106 - M∞ = 0.725 - α = 2.466o

Figure 3: RAE 2822 Airfoil test case: Re = 6.5 × 106, M∞ = 0.725, α = 2.466o. Moment

coefficient on final adapted grid for various adaptive strategies and error tolerances.
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Figure 4: RAE 2822 Airfoil test case: Re = 6.5 × 106, M∞ = 0.725, α = 2.466o. Final

adapted grids. Top: domain–integral–based adaptation; middle: drag–based adaptation;

Hessian–based adaptation.
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Figure 5: RAE 2822 Airfoil test case: Re = 6.5 × 106, M∞ = 0.725, α = 2.466o. Interme-

diate grids during a domain-integral-based adaptive run. Top: initial grid; middle: after 3

iterations; after 7 iterations.
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Figure 6: Advanced EET Three Element Airfoil test case: Re = 9×106, M∞ = 0.26, α = 8o.

Lift (left) and drag (right) coefficients on final adapted grid for various adaptive strategies

and error tolerances.
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Figure 7: Advanced EET Three Element Airfoil test case: Re = 9×106, M∞ = 0.26, α = 8o.

Top: final domain–integral–based adapted grid; lower left: blowup near slat; lower right:

blowup near flap.
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