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Abstract

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined
with massively parallel implicit solvers. The stabilization parameter of the GLS
discretization is modified to improve the resolution characteristics and the condi-
tion number for the high-order interpolation. The Balancing Domain Decomposi-
tion by Constraints (BDDC) algorithm is applied to the linear systems arising from
the two-dimensional, high-order discretization of the Poisson equation, the advection-
diffusion equation, and the Euler equation. The Robin-Robin interface condition
is extended to the Euler equation using the entropy-symmetrized variables. The
BDDC method maintains scalability for the high-order discretization for the diffusion-
dominated flows. The Robin-Robin interface condition improves the performance of
the method significantly for the advection-diffusion equation and the Euler equation.
The BDDC method based on the inexact local solvers with incomplete factorization
maintains the scalability of the exact counterpart with a proper reordering.
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Chapter 1

Introduction

1.1 Motivation

As Computational Fluid Dynamics (CFD) has matured significantly over the past

decades, the complexity of the problems that can be simulated has also increased

dramatically. Driven by the desire for higher fidelity simulations, the model equa-

tions have evolved from the potential equation, to the Euler equations, and to the

Navier-Stokes equations with turbulence models, e.g. Reynolds-Average Navier Stokes

(RANS) and Large Eddy Simulations (LES). The geometry of the problems has also

become increasingly complex, ranging from airfoils to full aircraft configurations. The

evolution of the CFD capability has been realized through both algorithmic develop-

ment and increased computational power.

However, there remains a number of challenging problems that are beyond the cur-

rent CFD capabilities. In [61], Mavriplis lists some Grand Challenges in the aerospace

community, including: a complete flight-envelope characterization, full engine simu-

lations, and probabilistic computational optimization. Mavriplis points out that the

biggest impediment to solving these problems is not the hardware capability, which

has been increasing exponentially, but rather the lack of a robust, high-fidelity solver

that can take advantage of massively parallel architectures that will deliver the com-

putational power needed. In fact, today’s most powerful computers house more than
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Figure 1-1: The trend of the Top 500 computers in the past 15 years [62] and the large
scale computation in the aerospace community [5, 60].

100,000 processors, and the trend of massive parallelization is expected to continue

(see Figure 1-1).

The difficulty in high-fidelity, efficient CFD simulations arise from the large range

of temporal and spatial scales present in the flow structures; the scale of turbulence

structures and the aircraft body can easily vary by more than six orders of magnitude.

Thus, the discretization must be capable of efficiently capturing the widest range of

scales and, given the geometric complexity, handle unstructured meshes. To meet the

requirements, the work presented in this thesis employs the Galerkin Least-Squares

method, which enables arbitrarily high-order accurate discretization on unstructured

meshes.

Furthermore, the stiff problem, which results from the wide range of scales present,

necessitates the use of an implicit method for a robust simulation at a reasonable cost.

The solver must also be highly scalable to take advantage of the massively parallel

computers. To address these problems, the Balancing Domain Decomposition by Con-

straints, which was initially developed for large-scale structural dynamics problems,

is adopted for a system of conservation laws and employed to solve the linear systems

arising from the high-order discretization of advection-dominated flows.

14



1.2 Background

1.2.1 Stabilized Finite Element Methods

Stabilized finite element methods have been developed extensively for hyperbolic and

parabolic conservation laws, including the Euler equations and the Navier-Stokes equa-

tions. These methods provide consistent, locally conservative [42, 78], and arbitrar-

ily high-order accurate discretization on unstructured meshes. The original stabi-

lized method, the Streamline-Upwind Petrov-Galerkin (SUPG) method, was devel-

oped to provide upwinding effect in finite element methods using the Petrov-Galerkin

framework [21, 47]. The method provides improved numerical stability for advection-

dominated flows while maintaining consistency. The convergence analysis of the SUPG

method applied to the advection-diffusion equation was elaborated in [44]. The method

was extended for systems of hyperbolic equations using the generalized streamline op-

erator, and applied to Euler equations [41, 38]. The symmetrization theory for hy-

perbolic conservation laws played a key role in extending the method to systems of

equations [32, 37]. At the same time, the nonlinear operators for shock capturing were

designed for scalar equations and systems of equations [40, 39, 45].

The SUPG method was generalized to the Galerkin Least-Squares (GLS) method,

which provided a general framework for improving the stability of the classical Galerkin

method using the least-squares operator [36]. The GLS method is equivalent to SUPG

in the hyperbolic limit but is conceptually simpler in the presence of diffusion. Later,

generalized framework for analyzing the stabilized finite element methods, including

those based on the bubble functions, were provided by the variational multiscale con-

cept [20, 19, 34, 35]. In the variational multiscale framework, the least-square operator

in the GLS method is viewed as a model for the dissipation present in the subgrid

scale.
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1.2.2 Domain Decomposition Methods

Massively parallel solvers that are most relevant to the current work are non-overlapping

domain decomposition methods, known as iterative substructuring methods. These

methods were developed to solve symmetric, positive-definite linear systems arising

from finite element discretization of elliptic systems in parallel environments [76, 13,

14, 15, 16]. The original substructuring method was the Neumann-Neuamnn method

proposed in [12]. The Balancing Domain Decomposition (BDD) method, introduced

in [53], significantly improved the scalability by introducing a coarse space correc-

tion, which made the condition number of the preconditioned operator independent

of the number of subdomains. The BDD method was further modified to accomodate

problems with large jumps in the coefficient across the subdomain interfaces [54, 27],

making the method capable of handling larger classes of structural dynamics problems.

The BDD method further evolved into the Balancing Domain Decomposition by

Constraints (BDDC), in which the coarse, global component is constructed from a

set of selected primal constraints [25]. The convergence theory of the BDDC method

was developed in [55], and the BDDC preconditioned operator is proved to have a

condition number that is independent of the number of subdomains. Meanwhile,

the BDDC method and the dual-primal Finite Element Tearing and Interconnecting

(FETI-DP) method [28] have been shown to have the same set of eigenvalues except

possibly those equal to 0 or 1, assuming the same set of the primal constraints are

employed [56, 51, 18]. The use of inexact solvers for the BDDC method has been

considered recently in [52, 26]. In these work, the subdomain problems or the partially

assembled system is solved using an incomplete factorization or multigrid. The BDDC

method for spectral elements using the Gauss-Lobatto-Legendre quadrature nodes has

also appeared recently in [48].

Although the iterative substructuring methods were originally designed for sym-

metric, positive-definite systems, the methods have been applied to the advection-

diffusion equation to a lesser extent. In [1], the typical Neumann-Neumann interface

condition of the elliptic problem is replaced with the Robin-Robin interface condition

16



to maintain the positivity of the local bilinear form. The interface condition has also

been applied in the FETI [75] and BDDC [77] frameworks to solve the advection-

diffusion equation.

The iterative substructing methods have been implemented and tested in the pro-

duction level code. In particular, a group at Sandia National Laboratory has run

FETI and FETI-DP algorithms on ASCI-Red and ASCI-White with more than 1,000

processors to solve large-scale structural dynamics problems [10, 11, 70]. Their largest

case includes the real-world structural analysis with more than 100 million degrees of

freedom on 3,375 processor ASCI-White.

1.2.3 Massively Parallel Solvers in Aerospace Applications

The aerospace community has also been active in designing massively parallel solvers.

In 1999, the finite volume Navier-Stokes solver, FUN3D [4], was ported to the ASCI-

Red machine with 3,072 dual-processor nodes [5]. The code used matrix-free Newton-

Krylov method with additive Schwarz preconditioner (i.e. subdomain-wise block Ja-

cobi). The finite volume Euler equations solver, Cart3D [2], has also been used to simu-

late the flow over the Space Shuttle Launch Vehicle recently on the NASA Columbia su-

percomputer using 2,016 processors [60]. The code employs the multigrid-accelerated

Runge-Kutta method to reach steady state. In the same study, the RANS equations

solver, NSU3D, was used to simulate full aircraft configurations. The NSU3D solver

uses a multigrid-accelerated explicit method, with implicit line smoothing in bound-

ary layers. [57, 59]. While the explicit solvers used in Cart3D and NSU3D achieve

high-parallel efficiency, these methods are not as robust or efficient as fully implicit

solver for stiff problems.

1.3 Outline of Thesis

This thesis is organized as follows. The GLS discretization of conservation laws is

presented in Chapter 2. The BDDC algorithm and the Robin-Robin interface condition

17



for a system of nonlinear equations are developed in Chapter 3. The BDDC algorithm

that uses an inexact local solvers and the choice of the local solvers are discussed in

Chapter 4. The numerical results are presented in Chapter 5, where the quality of

the high-order GLS discretization and the performance fo the BDDC algorithm are

evaluated for the Poisson equation, the advection-diffusion equation, and the Euler

equations. The performance of the BDDC algorithm using the inexact factorization

is also assessed.

18



Chapter 2

The Galerkin Least-Squares

Method

This chapter develops the Galerkin Least-Squares discretization for a system of con-

servation laws. Particular attention is paid to a design of the stabilization parameter,

τ , for a high-order discretization. The linear system arising from the high-order con-

tinuous Galerkin discretization is also discussed.

2.1 Variational Form of Conservation Laws

Let Ω ∈ Rd be an open, bounded domain, where d is the number of spatial dimensions.

In general, a system of time-dependent conservation laws is expressed as

uk,t + (F inv
ik ),xi

− (F vis
ik ),xi

= fk, in Ω (2.1)

where k ∈ {1, . . . , m} is the component index of the governing equations, i ∈ {1, . . . , d}
is the spatial index, (·),t denote the temporal derivative, and (·),xi

denote the spatial

derivatives with respect to xi. The inviscid flux F inv = F inv(u, x, t), viscous flux F vis =

F vis(u,∇u, x, t), and the source term, f(x, t), characterize the governing equations to
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be solved. The quasi-linear form of the governing equation is given by

Lu ≡ uk,t + Aiklul,xi
− (Kijklul,xj

),xi
= fk, (2.2)

where the inviscid flux Jacobian and viscous flux tensor are defined to satisfy

Aikl =
∂F inv

ik

∂ul
and Kijklul,xj

= F vis
ik . (2.3)

The finite element discretization of the problem is performed on a space of functions

Vh = {u ∈ [H1(Ω)]m : u|K ∈ [Pp(K)]m, ∀K ∈ Th} (2.4)

where Th is the triangulation of domain Ω into non-overlapping elements, K, such that

Ω̄ = ∪K∈Th
K̄, and Pp(K) is the space of p-th order polynomial on K. The superscript

m implies the spaces are vector-valued. The finite element variational problem consists

of finding u ∈ Vh such that

(uk,t, vk)Ω + Rgal(u, v) = 0 ∀v ∈ Vh,

where

Rgal(u, v) = −(F inv
ik , vk,xi

)Ω + (F vis
ik , vk,xi

)Ω − (fk, vk)Ω + (F̂k(u,B.C.data, n), vk)∂Ω,

where (·, ·)Ω : L2(Ω) × L2(Ω) → R and (·, ·)∂Ω : L2(∂Ω) × L2(∂Ω) → R denote the

L2 inner product over the domain and the boundary of the domain, respectively.

The numerical flux function, F̂ , uses the interior state and the boundary condition

to define the appropriate flux at the boundary. It is well known that the standard

Galerkin method becomes unstable for a large grid Peclet number, Pe, and exhibits

spurious oscillations in the vicinity of unresolved internal and boundary layers. The

Galerkin Least-Squares (GLS) method remedies this problem by directly controlling
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the strong form of the residual. The GLS problem consists of finding u ∈ Vh such that

(uk,t, vk)Ω + Rgal(u, v) + Rls(u, v) = 0 ∀v ∈ Vh, (2.5)

where the least-squares residual is given by

Rls(u, v) = ((Lv)l, τlk(Lu− f)k)Ω,Th
,

where L is the linear differential operator defined in Eq. (2.2), and τ is the stabilization

parameter. The choice of stabilization parameter is discussed in detail in Section 2.2.

(·, ·)Ω,Th
denotes the summation of the element-wise L2 inner product,

∑

K(·, ·)K. In

the limit of F vis → 0, the stabilization term, Rls(·, ·), adds viscosity only in the

streamwise direction, and the scheme is equivalent to the Streamline Upwind Petrov-

Galerkin method [36]. It is important to note that the discretization is consistent in

the sense that the true solution satisfies the discrete equations.

2.1.1 Advection-Diffusion Equation

The advection-diffusion equation is characterized by inviscid and viscous fluxes given

by

F inv
i = βiu and F vis

i = κu,xi
,

where β is the advection field and κ is the diffusivity coefficient. For simplicity, assume

the Dirichlet boundary condition is imposed everywhere on ∂Ω. In order to impose

the boundary condition strongly, the finite element spaces for the trial function u ∈ Vh

and the test function v ∈ Vh,0 are chosen as

Vh = {u ∈ H1(Ω) : u|K ∈ Pp(K), ∀K ∈ Th, u|∂Ω = g}

Vh,0 = {u ∈ H1(Ω) : u|K ∈ Pp(K), ∀K ∈ Th, u|∂Ω = 0},
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where g is the Dirichlet boundary data.

2.1.2 Euler Equations

In two dimension, the Euler equations are characterized by the conservative state ucons

and the inviscid flux F inv given by

ucons =

















ρ

ρv1

ρv2

ρE

















and F inv
i =

















ρvi

ρv1vi + pδi1

ρv2vi + pδi2

ρHvi

















,

where ρ is the fluid density, v is the velocity vector, p is the pressure, and E is the

specific stagnation internal energy. The specific stagnation enthalpy, H , is given by

H = E + p/ρ, and the pressure is given by p = (γ − 1)ρ(E − ‖v‖2/2), where γ is the

ratio of specific heats. Then, the time-dependent conservation law is stated as

ucons
,t + (F inv

i ),xi
= 0. (2.6)

Alternatively, the Euler equations can be formulated using the entropy-symmetrized

variables. The two sets of entropy variables commonly used for the Euler equations

are Harten’s variables [32] and Hughes’ variables [37]. When applied to the Navier-

Stokes equations, Hughes’ variables have the advantage that they also symmetrize the

viscosity tensor. The entropy variables used in this study are the scaled version of

Hughes’ variables used in [8], i.e.

uentropy =

















−s+γ+1
γ−1

− ρE
p

ρv1

p

ρv2

p

−ρ
p

















,
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where the entropy s is given by s = log(p/ργ). The transformation matrix from the

entropy variable to the conservative variables, A0, the conservative flux Jacobian, Âi,

and the entropy flux Jacobian, Ai, are defined as

A0 =
∂ucons

∂uentropy
, Âi =

∂F inv
i

∂ucons
and Ai = ÂiA0

Note that A0 is symmetric positive-definite and Ai is symmetric [37].

2.2 Stabilization Parameter τ

The stabilization parameter controls the amount of stabilization added to the Galerkin

Least-Squares discretization. From the variational multiscale perspective, it can be

thought of as adding the dissipation that would have been provided by the unresolved,

subgrid scale [34, 35]. It is well known [33, 41, 40] that, in order to attain optimal

convergence rate with the element size h, the stabilization parameter must scale as

τ = O(h/|β|), P e≫ 1

τ = O(h2/κ), P e≪ 1.

The first condition is necessary to obtain stability and optimal convergence in the

streamline derivative, ‖βiu,xi
‖L2(Ω), in advection-dominated cases. The second con-

dition is necessary to maintain the optimality in diffusion-dominated case. As the

conservation laws of interest consist of inviscid and viscous parts, τ may be conve-

niently expressed as the sum of these two parts. In particular, the scaling relation can

be satisfied by choosing

τ−1 = τ−1
inv + τ−1

vis ,

where τinv = O(h/|β|) and τvis = O(h2/κ). In addition to satisfying the scaling

relations, the τ matrix must be symmetric and positive-definite for a system of equa-
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tions [38]. Generalization of the inviscid stabilization parameter to a multidimensional

system of equations follows from [8]. Let the directional vectors associated with the

mapping from physical space, described by coordinate x, to the reference space, de-

scribed by barycentric coordinate ξ, be

ni = (ξi,x1ξi,x2)
T , i = 1, 2, 3,

and the unit normal vector be n̂i = ni/|ni|. For example, in two-dimensions, the

normal vectors are

n1 = (ξ1,x1, ξ1,x2)
T

n2 = (ξ2,x1, ξ2,x2)
T

n3 = −(ξ1,x1 + ξ2,x1, ξ1,x2 + ξ2,x2)
T .

The directional flux Jacobian is given by

A(ni) = ni
jAj ,

where Aj is the flux Jacobian in the xj coordinate direction. The inviscid stabilization

parameter is defined as

τ−1
inv = |ni||A(n̂i)|A0,

where |A(n̂i)| is the matrix absolute value of the flux Jacobian evaluated in the n̂i

direction. Note, the directional flux Jacobian, A(n̂), has a real set of eigenvalues for

any n̂, as the inviscid problem constitutes a hyperbolic system.

The viscous stabilization parameter is chosen to be

τ−1
vis =

p2

h2
s

Kii,
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where hs is the shortest edge of an element, p is the interpolation order, and Kii

is the sum of the block diagonal entries of the viscosity tensor. The choice of the

shortest edge, hs, as the viscous scaling length and its p-dependence is discussed in

Section 2.2.1.

2.2.1 High-Order Correction of τ

The proof of the optimal convergence of the GLS method in the diffusion-dominated

cases requires a choice of τ that satisfies

κτ‖∆(u− uh)‖2
Ω,Th

≤ C‖∇(u− uh)‖2
Ω, (2.7)

where C is a parameter independent of h [36, 30]. From an inverse estimate, there

exists c such that

h2
e‖∆v‖2

K ≤ c‖∇v‖2
K , ∀v ∈ V, (2.8)

where he is a characteristic length of the element. By the inverse estimate, Eq. (2.7)

is satisfied asymptotically as long as τ = O(h2
e). However, in practice, he is far from

zero, and the choice of the scale of the stabilization parameter affects the solution

quality. In a practical setting, two questions of interests are the choice of he for an

anisotropic element and the scaling of c with the interpolation order.

The inverse estimate for a quadratic and cubic interpolation on a triangular element

has been studied in detail in [31]. The analysis shows that the appropriate element

size, he, in Eq. (2.8) scales with the length of the shortest edge for an anisotropic,

straight-edged element. Similar results for the GLS methods on highly anisotropic

mesh are reported in [6, 63].

The inverse estimate for a spectral-like discretization is introduced in [7], and c

in Eq (2.8) is shown to scale with p4 asymptotically. However, as the interpolation

orders considered (p = 1, . . . , 5) are relatively low, the use of the asymptotic behavior
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for the design of τ is not appropriate. In [31], the choice of c for p = 2 and p = 3

interpolations is calculated by analytically solving a Rayleigh quotient problem,

λ = max
v∈Pp(K)

‖∆v‖2
K

‖∇v‖2
K

,

and setting c = λh2
e. However, this approach becomes difficult for p > 3. On the

other hand, an explicit calculation of c for each element is alluded to in [30], but not

pursued. Note, an explicit calculation would make the discretization nonlinear even

when it is applied to a linear equation.

The proposed approach is a simplification of the approach taken in [31]. Recall,

the role of τ is to recover the dissipation that would have been provided by the sub-

grid, unresolved features. As pointed out in [35], p-refinement generates approximate

subgrid scale Green’s function, and some of the dissipation effects that the subgrid

scale has on the resolved scale are captured. Thus, the proposed approach is obtained

by rescaling the viscous scaling length based on the interpolation order.

Consider the Poisson equation in one dimension,

Lu ≡ −κu,xx = f, x ∈ Ω ⊂ R
1.

For simplicity, assume Dirichlet boundary condition with u|∂Ω = 0 is enforced. The

GLS discretization of the problem is to find u ∈ H1
0 (Ω) such that

(κv,x, u,x)Ω + (Lv, τ(Lu− f))Ω,Th
= 0 ∀v ∈ H1

0 (Ω).

Assuming u ∈ H4(Ω), applying integration by parts to the stabilization term twice

reveals the modified equation arising from the GLS discretization of the problem, i.e.

−κu,xx + τκ2u,xxxx = f, x ∈ Ω.
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Applying Fourier transform x→ η, the resulting equation in η domain is

κη2û(η) + τκ2η4û(η) = f̂(η), η ∈ C

and the eigenvalues of the modified equation are

λ = κη2 + τκ2η4.

For high-order discretization, assume max(|η|) ∼ 1
h/p

= p
h
. The condition number of

the problem is

λmax

λmin

=
κ
(

p
h

)2
+ τκ2

(

p
h

)4

κ+ τκ2
=

1 + τκ
(

p
h

)2

1 + τκ

(p

h

)2

. (2.9)

In order for the condition number of the stabilized operator to behave like that of the

unstabilized operator (i.e. τ = 0), the first term of Eq. (2.9) must satisfy

1 + τκ
(

p
h

)2

1 + τκ
= O(1), as h→ 0

1 + τκ
(

p
h

)2

1 + τκ
= O(1), as p→ ∞

In order to satisfy these conditions, the appropriate τ scaling in viscous limit is

τ ∼ 1

κη2
∼ h2

κp2
.

Thus, in additional to satisfying the h2 scaling of the linear finite element, τ must

scale as 1/p2 in diffusion dominated cases for high-order elements.

Figure 2-1 shows the comparison of the stabilization parameters for the advection-

diffusion equation with ‖β‖ = κ = 1. Hughes 82 is the τ that gives the nodally exact

solution for linear finite element in one dimension [21]. For higher-order interpolations,

Franca 92(p) refers to the method proposed in [30] using the inverse estimate coeffi-

cient, c, derived for p = 2 and p = 3 interpolations in [31]. The proposed approach is
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Figure 2-1: Comparison of the stabilization parameter for high-order discretization.

more diffusive than Franca 92(p) in diffusion dominated case.

2.3 Discrete Systems

Once a suitable basis for Vh is chosen, a solution u ∈ Vh can be expressed as u = Ujφj,

where {φj}dof
j=1 is the set of basis functions. Then, Eq. 2.5 can be expressed as a system

of ODE’s

M
dU

dt
+R(U) = 0,

where R(U)i = Rgal(u, φi) +Rls(u, φi) are the discrete nonlinear residuals, and Mh =

(φj, φi)Ω is the mass matrix. The steady state solution to the conservation laws is

given at R(U) = 0. In order to solve for the steady state, a damped Newton method

based on the backward Euler differencing of the ODE is used, i.e.

Un+1 = Un +

(

1

∆t
M +

dR

dU

∣

∣

∣

∣

U=Un

)−1

R(Un).

Even though this work is concerned with steady problems, the pseudo-time stepping

improves the robustness of the solver for nonlinear equations. After the initial tran-

sient, ∆t → ∞, and the method approaches the full Newton method. The time
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marching scheme requires the solution of a linear equation at each time step, i.e.

(

1

∆t
M +

dR

dU

∣

∣

∣

∣

U=Un

)

∆Un = −R(Un).

For a small ∆t, the linear equation is well-conditioned as the mass matrix dominates.

On the other hand, as ∆t → ∞, the linear system becomes harder to solve as the

condition number of the system increases.

It is worth mentioning the relationship between the Jacobian matrix, dR
dU

, and the

stiffness matrix arising from a finite element discretization of a linear PDE. Although

the boundary residual and the least-squares residual can be included readily, these

terms are neglected for simplicity. The Jacobian matrix can be expressed as

dRi

dUj
=

d

dUj
(Rgal(Ukφk, φi))

=
d

dUj

(

−(F inv
s , φi,xs

)Ω + (F vis
s , φi,xs

)Ω − (S, φi)Ω

)

= − (Asφj, φi,xs
)Ω +

(

∂Ksr

∂u
φju,xr

+Ksrφj,xr
, φi,xs

)

Ω

−
(

∂f

∂u
φj , φi

)

Ω

where A and K are the flux Jacobian and viscous tensor defined in Eq. 2.3. Defining

Ās = As + ∂Ksr

∂u
u,xr

and C = ∂f
∂u

, the linearized equations solved in each Newton step

is equivalent to a linear system arising from a discretization of advection-diffusion-

reaction equation, i.e.

Rlin(u, v) = −
(

Āsu, v,xs

)

Ω
+ (Ksrui,xr

, vi,xs
)Ω − (Cku, v)Ω .

For this reason, the term Jacobian matrix and the stiffness matrix are used inter-

changeably in the following sections. Similarly, the linear solver algorithm is described

using the bilinear form, a(·, ·), instead of the linearized form Rlin(·, ·), to be consistent

with other literatures on domain decomposition methods.
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(a) Node mode (b) Edge mode (c) Element mode

Figure 2-2: Diagram of basis modes and their support. The degree of freedom for each
mode for p = 4 discretization is shown in dots.

2.4 High-Order C0 Basis Functions

Throughout this study, triangular elements with a Lagrange basis are used to construct

the approximation space. A set of equally-spaced nodes is used to define the basis

functions on a reference element. For an even higher order interpolation, it would

be necessary to use a node distribution clustered in the extremities to improve the

numerical conditioning, e.g. Fekete points [74].

High-order geometry representation is achieved through polynomial mapping based

on the Lagrange points, i.e. x = xjφj(ξ) where φj is the Lagrange basis function

corresponding to node j, xj is the physical coordinate of the j-th Lagrange node, and

ξ is the coordinate on the reference triangle. Note, as the mapping T : ξ → x is

nonlinear, the basis functions in the physical space are not polynomials for curved

elements.

The basis functions for the high-order continuous Galerkin method must be C0

continuous across the element boundaries. In order to enforce the continuity, it is

convenient to categorize the basis functions into one of the three types of modes

in two dimensions, as shown in Figure 2-2. The first is the node mode, which has

support on all elements sharing the node. For a given node, this mode always has a

single degree of freedom regardless of the polynomial order. This is the only active

mode for p = 1 discretization. Except on the boundary, the node mode has the largest

support out of all basis types. The second type of basis is the edge mode, which has
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p 1 2 3 4 5
Elemental basis 3 6 10 15 21

DOF/elem. 0.5 (0.5) 2.0 (2.0) 4.5 (3.5) 8.0 (5.0) 12.5 (6.5)
Matrix nnz/elem. 3.5 (3.5) 23.0 (23.0) 76.5 (66.5) 188.0 (143.0) 387.5 (261.5)

Table 2.1: The degree of freedom associated with high-order continuous Galerkin
discretization on an average mesh.

support on two elements sharing an edge. The degrees of freedom associated with a

given edge are equal to p− 1. The third type of basis is the element mode, which has

support on a single element. The degrees of freedom associated with a given element

are equal to 1
2
(p− 2)(p− 1). As the element mode has elementally compact support,

this mode can be eliminated locally prior to solving the global linear system via static

condensation.

The ratio of the number of global modes and the number of elements is shown in

Table 2.1. The number of nonzero entries in the stiffness matrix per element is also

shown. The number in the parenthesis are based on the global system after the static

condensation of the elemental modes. The calculation is based on an average mesh

with six elements sharing a node. For a high-order discretization, the elemental static

condensation significantly reduces the size of the global vector and the size of the

stiffness matrix. The static condensation not only leads to a smaller preconditioner

size, but also reduces the size of Krylov space vectors for GMRES.

The comparison of the original system and the system after the elemental static

condensation is shown in Figure 2-3. For the original system, the node modes are

ordered first, followed by the edge modes, and then the element modes. The static

condensation removes the elemental modes, but does not alter the sparsity pattern of

the remaining matrix.
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Figure 2-3: Sparsity pattern of the stiffness matrix arising from p = 5 discretization
on a 3 × 3 structured mesh with 18 triangular elements.
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Chapter 3

Balancing Domain Decomposition

by Constraints

This chapter develops the Balancing Domain Decomposition by Constraints (BDDC)

method. The generalization of the Robin-Robin interface condition to a system of

symmetrized hyperbolic equations is also discussed.

3.1 Schur Complement System

This section presents the algebraic formulation of the Schur complement system.

Throughout the section, a suitable set of basis functions representing the finite el-

ement spaces is assumed to have been chosen, and no distinction is made between the

finite element spaces and the spaces of coefficients for the basis, e.g. Vh(Ω) ⊂ H1(Ω)

and Vh = Rdof(Vh(Ω)).

Let {Ωi}N
i=1 be a decomposition of domain Ω into N non-overlapping subdomains

such that

Ωi ∩ Ωj = ∅ i 6= j

Ω̄ = ∪N
i=1Ω̄i.
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The decomposition is assumed to align with the finite element triangulation, Th. The

interface of a subdomain Ωi is denoted by Γi and defined as Γi ≡ ∂Ωi \ ∂Ω. The

collection of the subdomain interfaces is denoted by Γ, and is defined as Γ ≡ ∪N
i=1Γi.

The space of finite element functions on Ωi is denoted by V
(i)
h . The subset of these

functions that vanish on Γi is denoted by V
(i)
I and the space of traces on Γi of the

functions in V
(i)
h is denoted by V

(i)
Γ . In order to define the local Schur complement

system, the local degrees of freedom are decomposed into the interior part u
(i)
I ∈ V

(i)
I

and the interface part u
(i)
Γ ∈ V

(i)
Γ . The local stiffness matrix, the solution vector, and

the load vector are denoted by

A(i) =





A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ



 , u(i) =





u
(i)
I

u
(i)
Γ



 , and f (i) =





f
(i)
I

f
(i)
Γ



 .

Let R(i) : Vh → V
(i)
h be the restriction operator that extracts the degrees of freedom

associated with V
(i)
h . The global stiffness matrix and the load vector are obtained by

assembling the interface degrees of freedom, i.e.

A =
N
∑

i=1

(R(i))TA(i)R(i) and f =
N
∑

i=1

(R(i))Tf (i).

The discrete harmonic extension, Hi : V
(i)
Γ → V

(i)
h , and the adjoint discrete harmonic

extension, H∗
i : V

(i)
Γ → V

(i)
h , correspond to extending the interface values to the interior

such that the interior residual vanishes with respect to ai(·, ·) : V
(i)
h × V

(i)
h → R, i.e.

ai(Hiu
(i)
Γ , v

(i)
I ) = 0, ∀u(i)

Γ ∈ V
(i)
Γ , ∀v(i)

I ∈ V
(i)
I

ai(w
(i)
I ,H∗

iψ
(i)
Γ ) = 0, ∀ψ(i)

Γ ∈ V
(i)
Γ , ∀w(i)

I ∈ V
(i)
I .

The equivalent operators in matrix form are given by

Hi =





−(A
(i)
II )−1A

(i)
IΓ

I
(i)
Γ



 and H∗
i =





−(A
(i)
II )−T (A

(i)
ΓI)

T

I
(i)
Γ



 .
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For elliptic problems, the discrete harmonic extension is the minimum energy extension

of the interface variables to the interior [76]. The local Schur complement operator is

given by restricting the local bilinear form to the space of discrete harmonic extensions,

i.e.

S(i) = (H∗
i )

TA(i)Hi = A
(i)
ΓΓ − A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ (3.1)

g(i) = (H∗
i )

Tf (i) = f
(i)
Γ − A

(i)
ΓI(A

(i)
II )−1f

(i)
I .

The global Schur complement operator is defined as the assembly of the local Schur

complement operators. Let the operator R
(i)
Γ : VΓ → V

(i)
Γ be the restriction of the

global interface variables, VΓ, to the local interface variables, V
(i)
Γ . The global Schur

complement matrix, S : VΓ → VΓ, and the vector, g ∈ VΓ, are

S =

N
∑

i=1

(R
(i)
Γ )TS(i)R

(i)
Γ and g =

N
∑

i=1

(R
(i)
Γ )Tg(i),

and the Schur complement problem is

SuΓ = g.

In practice, the Schur complement system is not formed explicitly. Instead, the action

of S on v ∈ VΓ is computed when necessary by solving the local Dirichlet problems

defined in Eq. (3.1) in parallel and by assembling the resultant vectors. Thus, a

preconditioned GMRES [71, 73], which only requires the action of a matrix onto a

vector, is used to solve the Schur complement problem.

3.2 BDDC Preconditioner

In order to define the BDDC preconditioner, the space of local interface degrees of

freedom, V
(i)
Γ , is decomposed into two parts, i.e. V

(i)
Γ = V

(i)
∆ ⊕ V

(i)
Π . The local primal

variables, V
(i)
Π , are a selected few degrees of freedom on the interface. The local
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dual variables, V
(i)
∆ , consists of functions in V

(i)
Γ that vanish on the primal degrees

of freedom. The space V
(i)
Π is chosen such that the local Schur complement system

restricted to V
(i)
∆ is invertible. The partially assembled space is defined as

ṼΓ =
(

⊕N
i=1V

(i)
∆

)

⊕ ṼΠ, (3.2)

where ṼΠ is a coarse primal variable space. The functions in ṼΠ are continuous across

the subdomain interfaces. Two coarse primal variable spaces are considered in this

study: the first is the space spanned by coarse basis functions defined on the subdo-

main corners, and the second is the space spanned by coarse basis functions on the

subdomain corners and edges. Notice, because ṼΠ is continuous across the interface

and the functions in V
(i)
∆ vanish at the primal degrees of freedom, the partially assem-

bled space ṼΓ is continuous at the primal degrees of freedom. However, the function

in ṼΓ are discontinuous elsewhere as ⊕N
i=1V

(i)
∆ is discontinuous across the interface.

In order to inject a function from the partially assembled space, ṼΓ, into the fully

assembled space, VΓ, a scaling operator that takes weighted average of the interface

variables must be defined [25]. For this study, the scaling operator δ†i is simply set to

1/Nx, where Nx is the number of subdomains sharing the same degree of freedom on

the interface. For an elliptic problem with discontinuous coefficients, it is known that

the scaling parameter should be weighted by the coefficient of neighboring subdomains

[50]. The scaling factors, δ†i , are collected to form a diagonal matrix, D(i), which

operates on V
(i)
Γ .

Assume the basis functions of V
(i)
h are modified such that all primal and dual

degrees of freedom are explicit, using the method described in [49, 51], i.e. v =

(vI , v∆, vΠ)T ∈ V
(i)
I ⊕ V

(i)
∆ ⊕ V

(i)
Π . After the change of basis, the local stiffness matrix

can be written as

A(i) =





A
(i)
rr A

(i)
rΠ

A
(i)
Πr A

(i)
ΠΠ



 ,
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where

A(i)
rr =





A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆



 , A
(i)
rΠ =





A
(i)
IΠ

A
(i)
∆Π



 , and A
(i)
Πr =

(

A
(i)
ΠI A

(i)
Π∆

)

.

Let R∆Γ : V
(i)
Γ → V

(i)
∆ be the restriction operator that extracts the dual degrees of

freedom on the interface. The local dual Schur complement operator is given by

S
(i)
∆ = A

(i)
∆∆ − A

(i)
∆I(A

(i)
II )−1A

(i)
I∆. (3.3)

Similar to the Schur complement, the matrix S
(i)
∆ is not formed explicitly. Instead,

the application of its inverse, (S
(i)
∆ )−1, to a vector w

(i)
∆ ∈ V

(i)
∆ is computed by solving

a Neumann problem with a few additional constraints, i.e. v
(i)
∆ = (S

(i)
∆ )−1w

(i)
∆ is given

by solving





A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆









v
(i)
I

v
(i)
∆



 =





0

w
(i)
∆



 . (3.4)

A sufficient number of coarse constraints is assumed to have been chosen such that

this constrained Neumann problem is well-posed.

Let R
(i)
Π : VΠ → V

(i)
Π be the restriction operator that extracts the local primal

degrees of freedom from the global primal degrees of freedom. The local coarse basis,

Ψ(i) : V
(i)
Π → V

(i)
h , and the adjoint coarse basis, Ψ∗(i) : V

(i)
Π → V

(i)
h , take a value of 1 at

a primal degree of freedom and extends to interior and dual degrees of freedom such

that residual against them are zero, i.e.

ai(Ψ
(i)u

(i)
Π , v) = 0 ∀u(i) ∈ V

(i)
Π , ∀v ∈ V

(i)
I ⊕ V

(i)
∆

ai(w,Ψ
∗(i)ψ(i)) = 0 ∀ψ(i) ∈ V

(i)
Π , ∀w ∈ V

(i)
I ⊕ V

(i)
∆ .

In matrix form, these problems are equivalent to finding Ψ(i) = ((Ψ
(i)
I )T , (Ψ

(i)
∆ )T , IT

Π)T
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and Ψ∗(i) = ((Ψ
∗(i)
I )T , (Ψ

∗(i)
∆ )T , IT

Π), each in Rdim(V
(i)
h

)×dim(V
(i)
Π ), such that





A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆









Ψ
(i)
I

Ψ
(i)
∆



 = −





A
(i)
IΠ

A
(i)
∆Π





and





A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆





T 



Ψ
∗(i)
I

Ψ
∗(i)
∆



 = −





(A
(i)
ΠI)

T

(A
(i)
Π∆)T



 .

For elliptic problems, the local coarse basis function is the energy minimizing extension

of the primal degrees of freedom to the interior and the dual degrees of freedom [25]. In

order to construct the local coarse basis function, the constrained Neumann problem,

Eq. (3.4), is solved dim(V
(i)
Π ) times. The restriction of the local coarse basis function

to the interface space is denoted by Ψ
(i)
Γ ≡ ((Ψ

(i)
∆ )T , IT

Π)T and Ψ
∗(i)
Γ ≡ ((Ψ

∗(i)
∆ )T , IT

Π)T .

The local primal Schur complement is defined as a restriction of the global Schur

complement to the space of local primal variables, i.e.

S
(i)
Π = (Ψ

∗(i)
Γ )TS(i)Ψ

(i)
Γ = A

(i)
ΠΠ − A

(i)
Πr(A

(i)
rr )−1A

(i)
rΠ.

The global primal Schur complement is the assembly of local primal Schur comple-

ments, i.e. SΠ =
∑N

i=1(R
(i)
Π )TS(i)R

(i)
Π . The BDDC preconditioner is given by

M−1
BDDC =

N
∑

i=1

(R
(i)
Γ )TD(i)

(

T
(i)
sub + T (i)

coarse

)

D(i)R
(i)
Γ ,

where

T
(i)
sub = (R

(i)
∆Γ)T

(

S
(i)
∆

)−1

R
(i)
∆Γ

T (i)
coarse = (Ψ(i)R

(i)
Π )S−1

Π (Ψ∗(i)R
(i)
Π )T

Note the application of the subdomain correction, Tsub can be performed completely
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in parallel. The coarse grid correction, S−1
Π , is a globally coupled problem, but the

degrees of freedom associated with the problem is on the same order as the number

of subdomains.

Assuming the standard shape regularity conditions of substructuring methods

hold [17], the BDDC preconditioned operator applied to the Poisson equation has

the condition number bound

κ(M−1
BDDCA) ≤ C(1 + log(H/h))2,

where the constant C is independent of the subdomain size H and the element size

h [26]. Thus, the condition number is independent of the number of the subdomains

and is weakly dependent on the size of the subdomains.

3.3 Robin-Robin Interface Condition

As the BDDC preconditioner was originally designed for symmetric positive-definite

systems, the method must be modified for nonsymmetric systems. A local bilinear

form that conserves the energy stability property of the global form is first derived for

the advection equation. Then, the approach is generalized to symmetrized system of

conservation laws.

3.3.1 Advection Equation

The variational form of the time-dependent advection equation is: find u ∈ V ≡
H1(Ω × I), with I = (0, T ), such that

a(u, v) = ℓ(v), ∀v ∈ V
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where

a(u, v) = (v, u,t)Ω×I − (v,xj
, βju)Ω×I + (v, βjunj)∂Ω+×I

ℓ(v) = (v, f)Ω×I − (v, βjgnj)∂Ω−×I ,

with (·, ·)Ω×I denoting the L2 inner product over the space-time domain. The inflow

and outflow boundaries are denoted by ∂Ω− = {x ∈ ∂Ω|βj(x)nj(x) < 0} and ∂Ω+ =

{x ∈ ∂Ω|βj(x)nj(x) > 0}, respectively. Integrating by parts the temporal and spatial

derivative terms, the energy stability of the advection equation follow from

1
2
‖u|t=T‖2

L2(Ω) + 1
2
(u, uβj,xj

)Ω×I + 1
2
(u, u|βjnj|)∂Ω×I

= 1
2
‖u|t=0‖2

L2(Ω) + (u, f)Ω×I + (u, g|βjnj |)∂Ω−×I .

In other words, assuming βj,xj
≥ 0, the solution at t = T is bounded by the initial

state, the source function, and the inflow condition.

Consider designing a local bilinear form, ǎ(·, ·) : V (Ω̌) × V (Ω̌) → R, with the

criterion that the local form maintains the energy conservation property of the global

bilinear form on a subet Ω̌ ⊂ Ω. Although the analysis generalizes to the case where

Ω̌ is any subset of Ω, the setting that is most relevant to the domain decomposition

method is the case where the subset is the subdomain (Ω̌ = Ωi) and the local bilinear

form acts on the subdomain, i.e. ǎ(·, ·) = ai(·, ·) with ai(·, ·) : V (i) × V (i) → R. First,

consider the local bilinear form and the linear form defined by restricting the global

bilinear form and the linear form, respectively, to the subdomain, i.e.

âi(u, v) = (v, u,t)Ωi×I − (v,xj
, βju)Ωi×I + (v, βjunj)(∂Ωi∩∂Ω+)×I

ℓ̂(v) = (v, f)Ωi×I − (v, βjgnj)(∂Ωi∩∂Ω−)×I .

40



The energy statement arising from the bilinear form âi(·, ·) is

1
2
‖u|t=T‖2

L2(Ωi)
+ 1

2
(u, uβj,xj

)Ωi×I + 1
2
(u, u|βjnj |)(∂Ωi∩∂Ω)×I

− 1
2
(u, u|βjnj |)Γ+

i
×I + 1

2
(u, u|βjnj |)Γ−

i
×I

= 1
2
‖u|t=0‖2

L2(Ωi)
+ (u, f)Ωi×I + (u, g|βjnj|)(∂Ωi∩∂Ω−)×I , (3.5)

Note, the local problem does not maintain the energy conservation property of the

global problem due to the presence of the term −1
2
(u, u|βjnj|)Γ+

i
×I + 1

2
(u, u|βjnj|)Γ−

i
×I .

In particular, the local problem can be unstable due to the negative term on Γ+
i . In

order to preserve the energy stability property of the global problem, the terms on

the interface Γi must be eliminated by adding 1
2
(u, uβjnj)Γ+

i ×I to the interfaces. The

resulting bilinear form is

ai(u, v) = âi(u, v) +
1

2
(u, uβjnj)Γ+

i ×I . (3.6)

As the interface term added to one side of the interface is subtracted from the neigh-

boring subdomain, this does not modify the global bilinear form, i.e.
∑N

i ai(u, v) =

a(u, v). The same modification to the interface condition is proposed in [1] to make

the local bilinear form positive definite. The resulting interface condition is called the

Robin-Robin interface condition as the resulting local problem involves the Robin

boundary condition. The method has been also successfully applied to solve the

advection-diffusion equation using Finite Element Tearing and Interconnect [75] and

recently BDDC [77].

3.3.2 Interface Condition for Symmetrized System of Equa-

tions

The Robin-Robin interface condition can be generalized to a system of symmetrized

nonlinear equations using the linearized form presented in Section 2.3. For a time-

dependent hyperbolic system of conservation laws, the semilinear form is expressed
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as

R(u, v) = (ucons
l,t , vk)Ω×I − (F inv

jk , vk,xj
)Ω×I + (F̂k(u,B.C.data, n), vk)∂Ω×I .

and the linearized equation solved at a given step of the Newton iteration is

Rlin(u, v) = (A0klul,t, vk)Ω×I − (Ajklul, vk,xj
)Ω×I + (Abc,klul, vk)∂Ω×I

where A0 = ducons/duentropy is the matrix mapping the entropy symmetrized variables

to the conservative variables, Aj is the flux Jacobian in xj direction, and Abc ≡ ∂F̂
∂u

.

The energy statement of the global equation is of the form

1
2
‖u|t=T‖2

A0,Ω − 1
2
(A0kl,tul, uk)Ω×I + 1

2
(Ajkl,xj

ul, uk)Ω×I − 1
2
(A(n)klul, uk)∂Ω×I

+ (Abc,klul, vk)∂Ω×I = 1
2
‖u|t=0‖2

A0,Ω

where ‖u‖A0,Ω = (A0u, u)Ω is the energy norm weighted by the symmetric positive

definite matrix A0. Note, for a linear system of equations with the boundary flux

F̂k = A+
klul + A−

klgl, the boundary flux Jacobian is given by Abc = A+, and the inte-

grals on the boundary can be simplified as −1
2
(A(n)klul, uk)∂Ω×I + (Abc,klul, vk)∂Ω×I =

1
2
(|A|u, u)∂Ω×I.

In order to develop an appropriate local bilinear form, first consider the form

obtained by simply restricting the global linearized form to the local space, i.e.

R̂lin
i (u, v) = (A0klul,t, vk)Ωi×I − (Ajklul, vk,xj

)Ωi×I + (Abc,klul, vk)(∂Ωi∩∂Ω)×I

Integrating by parts the temporal and spatial derivative terms and taking advantage
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of the symmetry of A0 and Aj, the energy statement for the local bilinear form is

1
2
‖u|t=T‖2

A0,Ωi
− 1

2
(A0kl,tul, uk)Ωi×I + 1

2
(Ajkl,xj

ul, uk)Ωi×I

− 1
2
(A(n)klul, uk)(∂Ωi∩∂Ω)×I + (Abc,klul, vk)(∂Ωi∩∂Ω)×I − 1

2
(A(n)klul, uk)Γi×I

= 1
2
‖u|t=0‖2

A0,Ωi

Again, due to the presence of the term −1
2
(Akl(n)ul, uk)Γi×I , the local energy statement

is not consistent with the global energy statement. Using the same approach as the

advection equation case, the consistent local energy statement is derived by modifying

the local linearized form to

Rlin
i (u, v) = R̂lin

i (u, v) + 1
2
(Akl(n)ul, uk)Γi×I .

A local semilinear form that has the desired linearized form is

Ri(u, v) = −(F inv
jk , vk,xj

)Ωi
+ 1

2
(F inv

jk ni, vk)Γi
+ (F̂k(u,B.C.data, n), vk)∂Ω∩∂Ωi

.

Thus, for a system of nonlinear equations with a symmetric flux Jacobian, the Robin-

Robin interface condition corresponds to adding half of the nonlinear flux on the

interfaces.
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Chapter 4

Inexact Solver

This chapter develops an inexact BDDC preconditioner following the approach taken

in [52]. Inexact local solvers based on the dual threshold incomplete factorization [72]

and the minimum discarded fill reordering [23] are also discussed.

4.1 Inexact BDDC Preconditioner

The BDDC algorithm described in Chapter 3 requires solutions to the local Dirchlet

problems, Eq. (3.1), and the constrained Neumann problems, Eq. (3.4). In each GM-

RES step, the local Dirichlet problem is solved to obtain the action of the local Schur

complement, S(i), on a vector v
(i)
Γ ∈ V

(i)
h . The action of the inverse of the local dual

Schur complement, (S
(i)
∆ )−1, on a vector v

(i)
∆ ∈ V

(i)
∆ requires the solution to the con-

strained Neumann problem. Similarly, in pre-processing stage, the local coarse basis

functions, Ψ(i), and the primal Schur complement, SΠ, are constructed by solving the

constrained Neumann problems.

For a large scale problem, the cost of computing and storing the exact factorizations

of the local problems can be prohibitively high, and the cost only escalate for three-

dimensional problems. Thus, the inexact BDDC preconditioner is constructed by

replacing the solutions to the Dirichlet and the constrained Neumann problems by

action of inexact local solvers.

45



In order to employ inexact solvers, the BDDC formulation needs to be modified

slightly. Recall, the BDDC algorithm creates a preconditioner for the Schur comple-

ment system. The preconditioned interface problem is to find uΓ ∈ VΓ such that

M−1
BDDCSuΓ = M−1

BDDCg.

However, in the absence of the exact factorizations to the local stiffness matrices, A(i),

the action of discrete harmonic extensions cannot be computed exactly. Thus, the

original right hand side, f ∈ Vh, cannot be statically condensed to form the interface

right hand side, g = fΓ − AΓIA
−1
II fI ∈ VΓ. Therefore, the preconditioner based on

local inexact solvers, M−1
iBDDC, must act on the entire finite element space, Vh, i.e. the

preconditioned problem must have a form

M−1
iBDDCAu = M−1

iBDDCf,

where u, f ∈ Vh.

Ref. [52] shows the construction of preconditioned operator, M−1
iBDDCA, that has the

same spectrum as the BDDC preconditioned operator, M−1
BDDCS, with the exception

of some additional eigenvalues equal to 1. The preconditioner, M−1
iBDDC, is given by

M−1
iBDDC = H̃Ã−1(H̃∗)T . (4.1)

The matrix Ã and the extension operators H̃ and H̃∗ will be defined shortly. The

matrix Ã operates on the partially assembled space, Ṽ , defined as the product of the

partially assembled interface space, ṼΓ, and the interior degrees of freedom, i.e.

Ṽ = (⊕N
i=1V

(i)
I ) ⊕ ṼΓ.

Let R̄ be an injection operator from the partially assembled space, Ṽ , to the unassem-

bled space, ⊕N
i=1V

(i). The partially assembled matrix, Ã, is obtained by assembling
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the local stiffness matrices, A(i), with respect to only the primal variables, i.e.

Ã =

N
∑

i=1

(R̄(i))TA(i)R̄(i) =

















A
(1)
rr Ã

(1)
rΠ

. . .
...

A
(N)
rr Ã

(N)
rΠ

Ã
(1)
Πr · · · Ã

(N)
Πr ÃΠΠ

















≡





Arr ÃrΠ

ÃΠr ÃΠΠ



 ,

where

A(i)
rr ≡





A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆



 , Ã
(i)
rΠ ≡





A
(i)
IΠR

(i)
Π

A
(i)
∆ΠR

(i)
Π



 ,

Ã
(i)
Πr ≡

(

(R
(i)
Π )TA

(i)
ΠI (R

(i)
Π )TA

(i)
Π∆

)

, ÃΠΠ =

N
∑

i=1

(R
(i)
Π )TA

(i)
ΠΠR

(i)
Π

Note, due to the block structure of Ã, most of the operations required to calculate its

inverse can be carried out in parallel. More precisely, with a Cholesky-like factoriza-

tion, the inverse of the partially assembled matrix can be expressed as

Ã−1 =





A−1
rr 0

0 0



 +





−A−1
rr ÃrΠ

I



S−1
Π

(

−ÃΠrA
−1
rr I

)

,

where SΠ = AΠΠ −AΠrA
−1
rr ArΠ. The majority of the cost of the inversion comes from

the application of A−1
rr , which parallelizes completely.

The extension operators H̃ and H̃∗ in Eq. (4.1) average the interface variables VΓ

and add the harmonic extension of the jump in the interface variables to the interior,

i.e.

H̃ =





I A−1
II ÃIΓJ1,D,Γ

R̃T
D,Γ



 and H̃∗ =





I A−T
II Ã

T
ΓIJ

T
2,D,Γ

R̃T
D,Γ



 (4.2)
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with

J1,D,Γ = I − R̃ΓR̃
T
ΓD̃ and J2,D,Γ = I − D̃R̃ΓR̃

T
Γ .

The majority of the cost of the extension operators comes from applying A−1
II , which

can be carried out in parallel.

The preconditioned operator, M−1
iBDDCA, has the same spectrum as the BDDC

preconditioned operator, M−1
BDCCS, when Ã−1, H̃, and H̃∗ are computed exactly [52].

The inexact solver proposed for this study is obtained by replacing Ã−1
rr in Ã−1 and

A−1
II in H̃ and H̃∗ with the action of inexact solvers.

4.2 Local Inexact Solver

The inexact BDDC algorithm has been previously applied to linear systems arising

from the linear finite element discretization of elliptic systems [52, 26]. In [52], the

solution to the partially assembled system Ã and the local Dirchlet problems are

replaced by the action of multigrid V-cycles, and convergence properties are proved

for the Poisson equation, for which the multigrid method converges uniformly. The

numerical experiment confirms that the method preserves the scaling properties of the

BDDC method using the exact local solvers. However, the theory of multigrid applied

to hyperbolic equations is much less established. The issue is further complicated by

the presence of the mesh dependent stabilization parameter in the GLS discretization,

which results in an unstable coarse system if the least-squares operator is not scaled

properly [65, 64]. The p-multigrid strategy suffers from a similar problem, as the

modified stabilization parameter is a function of the interpolation order [24]. While

the multigrid methods have been applied successfully to systems of conservation laws

in aerospace applications (e.g. [43, 69, 58]), the use of the method is not pursued in

this study.

Incomplete factorizations, with a proper reordering, have been shown to work well

for advection-dominated problems [67, 24]. In order for the incomplete factorization to
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perform well, the reordering needs to ensure that the factorization captures the strong

couplings among the elements. Example of the succesful reordering for hyperbolic

systems includes the line creation algorithm motivated by the physics of the prob-

lem [65, 29] and the algebraic algorithms based on minimizing the magnitude of the

discarded fills [23, 67]. Thus, an incomplete factorization, with a suitable reordering,

is used as the inexact solver for the BDDC algorithm in this study.

4.2.1 Incomplete Factorization

BDDC using Incomplete Factorizations

Two different strategies, called the two-matrix method and the one-matrix method,

are considered for the BDDC preconditioner using the inexact local solvers. Recall,

the inexact solver is used to solve the local Dirichlet problem for the discrete harmonic

extensions and to solve the constrained Neumann problem for the partially assembled

system. The two-matrix method simply stores the incomplete factorizations for the

Dirichlet problem and the constrained Neumann problem separately, i.e.

P
(i)
D A(i)(P

(i)
D )T =





P
(i)
II

I
(i)
Γ









A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ









(P
(i)
II )T

I
(i)
Γ





≈





L
A

(i)
II

A
(i)
ΓIU

−1

A
(i)
II

I
(i)
Γ









U
A

(i)
II

L−1

A
(i)
II

A
(i)
IΓ

S
(i)
Γ





and

P
(i)
N A(i)(P

(i)
N )T =





P
(i)
rr

I
(i)
Π









A
(i)
rr A

(i)
rΠ

A
(i)
Πr A

(i)
ΠΠ









(P
(i)
rr )T

I
(i)
Π





≈





L
A

(i)
rr

A
(i)
ΠrU

−1

A
(i)
rr

I
(i)
Π









U
A

(i)
rr

L−1

A
(i)
rr

A
(i)
rΠ

S
(i)
Π




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The reordering provided by P
(i)
II and P

(i)
rr are optimized for solving the local Dirichlet

problem and the constrained Neumann problem, respectively. In particular, P
(i)
rr does

not distinguish the interior and dual degrees of freedom, and these degrees of freedoms

are mixed in the factorization process. The reordering strategy used in this work is

discussed in detail in Section 4.2.1. The first factorization is used to solve the action

of extension operators, H̃ and H̃∗, and the second factorization is used to used to solve

the partially assembled problem, Ã−1. A similar strategy has been employed in [26],

in which different local solvers are used to solve the Dirichlet and the constrained

Neumann problems.

The one-matrix method only stores a single incomplete factorization of the local

matrix, and uses it to solve both the Dirichlet and the constrained Neumann problem.

In order to use the same factorization for both problems, the reordering must preserve

the interior, dual, and primal order of the degrees of freedom, i.e. the incomplete

factorization applies to the reordered matrix given by

P (i)A(i)(P (i))T =











P
(i)
I

P
(i)
∆

I
(i)
Π





















A
(i)
II A

(i)
I∆ A

(i)
IΓ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Γ

A
(i)
ΓI A

(i)
Γ∆ A

(i)
ΓΓ





















(P
(i)
I )T

(P
(i)
∆ )T

I
(i)
Π











.

The resulting incomplete factorization for the constrained Neumann problem, A
(i)
rr ,

is of lower quality than that used in the two-matrix method, as the reordering is

constrained. However, the one-matrix method is memory efficient, as it requires half

as much storage as the two-matrix method.

Formation of the Primal Schur Complement

Regardless of whether the one-matrix or the two-matrix method is used, the incomplete

factorization of a local stiffness matrix, A(i), with respect to the interior and dual
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variables results in

A(i) =





A
(i)
rr A

(i)
rΠ

A
(i)
Πr A

(i)
ΠΠ



 ≈





L
A

(i)
rr

A
(i)
ΠrU

−1

A
(i)
rr

I
(i)
Π









U
A

(i)
rr

L−1

A
(i)
rr

A
(i)
rΠ

S
(i)
Π



 ,

where A
(i)
rr ≈ L

A
(i)
rr
U

A
(i)
rr

. The approximate local primal Schur complement, S
(i)
Π , is

formed implicitly as a by-product of the factorization because the basis functions of

V
(i)
h are changed to make the dual and primal degrees of freedom explicit. This is dif-

ferent from the approach in [26], where the primal coarse basis functions are computed

explicitly by solving the constrained minimization problems. At pre-processing stage,

the local primal Schur complement matrices are assembled to create the global pri-

mal Schur complement, SΠ. The global primal Schur complement matrix is factorized

exactly in this study.

Application of Inexact BDDC Preconditioner

Computing the action of the inexact BDDC preconditioner based on Eq. (4.1) requires

solving the local Dirichlet problem twice and the local constrained Neumann problem

once. At first glance, this appears to require three pairs of forward and backward sub-

stitutions. However, due to the structure of the matrices generated in the factorization

of A(i), the harmonic extension and the adjoint harmonic extension can be computed

in single backward and forward substitution, respectively. The implementation details

of the inexact BDDC preconditioner is discussed are Appendix B.

Block Threshold ILU

Approximate solutions to the local problems are obtained from the incomplete fac-

torization of the local matrices. If the governing equation has multiple components

or the discretization order is third order or higher, then the resulting stiffness ma-

trix is a block matrix. The inexact factorization used is a generalization of the dual

threshold incomplete LU factorization, ILUT(τ, p), proposed in [72] for block matrices.
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In the proposed method, the removal and introduction of the fill-ins are performed

block-wise. The parameters that control the quality of the factorization are the drop

tolerance, τ , and the number of additional block fill-ins per row, p. The incomplete

factorization is performed row-wise to minimize the memory reallocation, as suggested

in [72]. The Frobenius norm is used to measure the contribution of a given block to

the factorization. For example, after the factorization of the i-th block row, all blocks

that satisfy

‖Aik‖F ≤ τ
∑

j∈nnz(i)

‖A0
ij‖F (4.3)

are dropped, where A0
i,: is the i-th row of the matrix before factorization. Similarly,

the size of blocks within a row are compared using the Frobenius norm, and at most

the p largest additional block fill-ins are introduced.

Reordering

The performance of the incomplete factorization depends strongly on the ordering of

the unknowns [9]. This is particularly true for a strongly nonsymmetric matrix, which

arises from the discretization of advection-dominated flows. The reordering algorithm

used in this work is based on the minimum discarded fill (MDF) algorithm presented

in [23]. The method orders the unknown that produces the least discarded fill-in first

and repeats the process in a greedy manner. The method is modified for a block

matrix according to the approach in [67]. Namely, each block of the matrix is reduced

to a scalar value by taking the Frobenius norm, and the MDF algorithm is applied to

the scalar weight matrix.

For the one-matrix method, the degrees of freedom must be ordered such that

all interior variables come first, followed by dual variables, and finally the primal

variables. Thus, when selecting the variable with the least discard, the search is

initially restricted to the interior variables. Once all interior variables are ordered, the

next unknown is chosen from the dual variables.
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Chapter 5

Results

This chapter first presents numerical experiments to assess the quality of the high-order

GLS discretization developed in Chapter 2. The parallel preconditioners developed

in Chapter 3 and 4 are then applied to the linear system arrising from the GLS

discretization to evaluate their performance.

5.1 Assessment of High-Order GLS

5.1.1 Advection-Diffusion Equation

Streamwise Boundary Layer Problem

In order to assess the performance of the p-scaled stabilization parameter, τ , discussed

in Section 2.2.1, the streamwise boundary layer problem is solved on a domain Ω =

(0, 1) × (0, 1). The advection field and the viscosity parameter are set to β = (1, 0)T

and κ = 0.01, respectively. The exact solution to the problem is

u(x, y) =
1 − exp(−(1 − x)/κ)

1 − exp(−1/κ)
.

As shown in Figure 5-1(a), the solution is 1 almost everywhere in the domain, except in

the boundary layer region of thickness O(κ/‖β‖) near x = 1. The Dirichlet boundary
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Figure 5-1: Definition of the streamwise and cross-stream boundary layer problems.
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Figure 5-2: Comparison of the traditional and p-scaled τ for the streamwise boundary
layer problem.

condition is enforced strongly everywhere on the domain boundary. Solutions are

obtained on successively refined uniform, structured, isotropic meshes.

Figure 5-2 shows the result of the comparison. The quality of the solution is as-

sessed in two manners: the L2 norm of the error and the overshoot in the solution.

The proposed τ with p-scaling produces smaller L2 error than the traditional τ , par-

ticularly for h = 0.25 and 0.125. For these values of h, the mesh is not fine enough

to resolve the boundary layer region using the linear finite elements; however, the

higher-order interpolations resolve some of the subgrid-scale features. When τ is not

scaled with p, the excess diffusion reduces the benefit of the high-order interpolation.
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(a) Traditional p = 3 (b) Traditional p = 5

(c) p-scaled p = 3 (d) p-scaled p = 5

Figure 5-3: Solutions to the streamwise boundary layer problem projected onto the
y = 0 plane for h = 1/8. The exact solution is shown in dotted line.

Figure 5-3 shows the solutions to the problem for h = 1/8 projected onto the y = 0

plane. The figure confirms that the p-scaled τ provides a higher resolution for this

moderate value of the grid size. Thus, the primary benefit of the p-scaled τ is its

superior resolution characteristics for the moderate values of the grid Peclet numbers,

uh/κ, rather than the formal accuracy in the asymptotic range.

As the p-scaled τ adds less diffusion than the traditional τ , the stability of the

scheme must be assessed by measuring the overshoot based on the maximum value

u. Note, the true solution has max(u) = 1. Figure 5-2(b) shows that the standard

Galerkin scheme is unstable and produces unacceptably large overshoot. However,

for p = 5, the scheme becomes stable for h ≥ 0.125, as the high-order interpolation

captures the subgrid-scale dissipation. Both the traditional and p-scaled stabilized

schemes are stable, and the overshoot never exceeds 20%. All high-order stabilized

schemes produce lower overshoot than the p = 1 stabilized scheme, indicating that a

more aggressive reduction in the τ parameter with p could be used to further improve
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the resolution characteristics of the scheme. This is consistent with the comparison in

Section 2.2.1, in which the proposed τ is shown to be more diffusive than those based

on the detailed analysis of the inverse estimate for p = 2 and p = 3 elements.

Cross-stream boundary Layer Problem on Anisotropic Mesh

In order to assess the quality of the high-order GLS discretization on highly anisotropic

mesh often encountered in viscous flows, the high-Peclet number cross-stream bound-

ary layer problems are solved on a domain Ω = (0, 1)×(0, 1). The traditional boundary

layer problem is modified by adding a source term such that the exact solution of the

following form exists:

u = 1 − exp

(

− y
√

cκ(x+ 0.05)

)

,

with c = 1.3. As shown in Figure 5-1(b), the solution is essentially 1 everywhere,

except it decreases exponentially to 0 in the vicinity of the boundary y = 0. Note,

the boundary layer thickness varies as the square root of the Peclet number. The

advection field is set to β = (1, 0)T , and the two values of the viscosity considered are

κ = 10−2 and 10−6. The anisotropic meshes are uniformly spaced in the x-direction and

exponentially scaled in the y-direction such that the element on the lower boundary

has the aspect ratio equal to 1/
√
κ.

Figure 5-4 shows the L2-norm of the error measured for the two problems. Asymp-

totically, both the p-scaled τ and the traditional τ converge at the rate of hp+1, but

the p-scaled τ produces lower error for high-order interpolation particularly for the

κ = 10−2. The modification has a smaller effect for the κ = 10−6 case, as the viscous

contribution to the τ parameter is small in advection-dominated case.

5.1.2 Euler Equation

The accuracy of the GLS discretization applied to the Euler equations is assessed in

this section. The problem is solved on a (−10, 10) × (0, 10) rectangular domain with
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Figure 5-4: Comparison of the traditional and p-scaled τ for the cross-stream boundary
layer problem.

a Gaussian bump,

y =
1

σ
√

2π
exp

(

− x

2σ2

)

,

where σ = 5/6. The stagnation pressure, stagnation temperature, and the flow angle

are specified at the inflow, and the static pressure is specified at the outflow such that

the freestream Mach number is M∞ = 0.2. The boundary state for the subsonic inflow

and the outflow are reconstructed from the compatibility relations of the Riemann

invariants. The flow tangency condition is set on the upper and the lower walls.

Figure 5-5 shows examples of the Mach contour for the Euler Gaussian bump

problem. The three cases shown are: 1) p = 1, 1280 elements, 2) p = 1, 32000

elements, and 3) p = 5, 1280 elements. The degrees of freedom for the discretizations

are 693, 16261, and 16261, respectively. Obtaining a symmetric Mach contour is a

challenging problem, as the entropy generated by the numerical dissipation affects

the solution downstream of the bump. The p = 1, 1280-element case is completely

underresolved. Even with 32000 elements, the p = 1 discretization still suffers from

large numerical dissipation. On the other hand, the p = 5 solution shows nearly

symmetric Mach contour. The high-order interpolation, along with the high-order

geometry representation, significantly reduces the entropy generation in the bump

57



(a) Bump mesh (1280 elem.) (b) Mach number (p = 1, 1280 elem.)

(c) Mach number (p = 1, 32000 elem.) (d) Mach number (p = 5, 1280 elem.)

Figure 5-5: The mesh for the Gaussian bump problem and the solutions.

region. In fact, while having the same degrees of freedom, the entropy error of the

p = 5 discretization on the 1280-element mesh is approximately 50 times less than the

error of the p = 1 discretization on the 32000-element mesh.

Figure 5-6 shows the grid convergence of the entropy error for different order dis-

cretization on hierarchical grids with 80, 320, 1280, 5120, and 20480 elements. Asymp-

totically, the entropy error converges at hp+1/2. The convergence rate is 1/2 order less

than the optimal convergence rate based on the interpolation theory , but is consistent

with the theory of SUPG for purely advective equations [44].

5.2 BDDC with Exact Local Solver

5.2.1 Poisson Equation

To evaluate the performance of the parallel preconditioners for elliptic problems, the

Poisson equation is solved on a unit square domain. The solution is initialized to

random values, which results in random initial residual. In other words, the right
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Figure 5-7: Example of structured and unstructured mesh and partitioning.

hand side of the linear system is a random vector. The system is solved using the

BDDC preconditioned GMRES until the 2-norm of the residual reduces by a factor

of 10−13. The condition number of the preconditioned matrix is estimated from the

smallest and the largest eigenvalues obtained from the Arnoldi iteration. Two different

sets of coarse primal constraints are considered; the first set only uses the degrees of

freedom on the corners of the subdomains, and the second set uses both the corners

and the edge averages.
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BDDC Preconditioner

Table 5.1 shows the result of solving the Poisson equation using the BDDC precondi-

tioner on a series of uniform, structured mesh shown in Figure 5-7(a). In the upper

half of the table, the size of a subdomain (H/h) is fixed to 8 × 8 (128 triangular ele-

ments) and the number of subdomains is varied from four to 256. In the lower half of

the table, the number of subdomains is fixed to 16 and the size of the subdomains is

varied from H/h = 4 (32 elements) to H/h = 16 (512 elements). For each case, the

interpolation order is varied from p = 1 to 4.

For a fixed size of submain, the condition number is nearly independent of the

number of subdomains forN > 16. Using both the corner and edge average constraints

reduces the iteration count to approximately half of the corner only cases. When

the size of subdomains varies while keeping the number of subdomains fixed, the

condition number increases slowly, as expected from the (1 + log(H/h))2 dependence

of the condition number on the size of subdomains. In general, using the higher

order interpolation increases the condition number and the iteration count, but the

scalability is maintained for all values of p.

The GMRES convergence history for several different cases are shown in Figure 5-8.

As the preconditioned problem is well-conditioned, GMRES converges exponentially

with the number of iterations. Thus, if the residual convergence criterion is relaxed

from 10−13, the number of GMRES iterations would decrease proportionally.

Lumped FETI-DP Preconditioner

Recall, the BDDC preconditioned operator on the full finite element space is given

by M−1
iBDDC = H̃Ã−1(H̃∗)T . This preconditioner extends the interface jumps resulting

from solving the partially assembled problem, Ã, to the interior using the discrete

harmonic extension. A simpler preconditioner discussed in [52] extends the interface

value by zero to the interior. The resulting preconditioned operator, M−1
FETI-DPA =

(R̃)TA−1R̃A, has the same spectrum, with exceptions of additional 0 and 1, as the pre-

conditioned FETI-DP operator with lumped preconditioner [52]. The preconditioner
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p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 4 (1.28) 5 (1.60) 5 (1.88) 6 (2.12)
16 13 (2.22) 16 (3.42) 18 (4.35) 29 (5.13)
64 19 (2.45) 25 (3.80) 29 (4.85) 31 (5.73)
256 20 (2.51) 26 (3.90) 30 (4.97) 33 (5.87)
16 4 11 (1.63) 14 (2.58) 16 (3.38) 17 (4.06)

8 13 (2.22) 16 (3.42) 18 (4.35) 19 (5.13)
16 15 (2.96) 18 (4.39) 19 (5.46) 21 (6.34)

(a) Corner constraints only

p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 5 (1.09) 5 (1.25) 6 (1.43) 6 (1.59)
16 9 (1.15) 12 (1.39) 13 (1.62) 15 (1.82)
64 10 (1.18) 12 (1.45) 15 (1.70) 16 (1.91)
256 10 (1.18) 13 (1.46) 15 (1.72) 17 (1.94)
16 4 7 (1.04) 9 (1.20) 11 (1.38) 12 (1.55)

8 9 (1.15) 12 (1.39) 13 (1.62) 14 (1.82)
16 11 (1.32) 13 (1.64) 15 (1.91) 16 (2.14)

(b) Corner and edge average constraints

Table 5.1: The GMRES iteration counts and the condition numbers for the BDDC
method for the Poisson problem on structured meshes.
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Figure 5-8: Typical GMRES convergence history for the Poisson problem. (64 subdo-
mains, H/h = 8, corner constraints)
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p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 14 (4.41) 22 (11.29) 28 (18.87) 32 (27.53)
16 28 (9.08) 41 (30.01) 52 (56.88) 58 (90.20)
64 41 (10.17) 68 (34.19) 87 (65.18) 102 (103.77)
256 45 (10.43) 80 (35.18) 107 (67.15) 131 (106.98)
16 4 19 (3.74) 31 (12.24) 40 (23.76) 46 (38.30)

8 28 (9.08) 41 (30.01) 52 (56.88) 58 (90.20)
16 39 (22.63) 55 (72.05) 68 (133.45) 76 (208.51)

(a) Corner constraints only

p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 12 (1.89) 18 (4.09) 25 (6.57) 29 (9.38)
16 17 (2.14) 28 (5.05) 37 (8.40) 44 (12.24)
64 18 (2.20) 31 (5.29) 42 (8.85) 51 (12.93)
256 18 (2.22) 32 (5.34) 43 (8.95) 52 (13.10)
16 4 11 (1.31) 19 (2.50) 26 (4.11) 31 (5.89)

8 17 (2.14) 28 (5.05) 37 (8.40) 44 (12.24)
16 25 (4.17) 40 (10.54) 52 (17.54) 60 (25.52)

(b) Corner and edge average constraints

Table 5.2: The GMRES iteration counts and the condition numbers for the lumped
FETI-DP method for the Poisson problem on structured meshes.

requires only one application of the factorized matrix instead of two solves for the

BDDC preconditioner using the implementation in Appendix B. In fact, the applica-

tion of the lumped FETI-DP preconditioner is only as expensive as the subdomain-wise

block Jacobi preconditioner, MJ , for which the condition number deteriorate with the

number of subdomain, i.e. κ(M−1
J A) = O(log(1 + (H/h))2/H2).

The result of solving the Poisson equation using the lumped FETI-DP precondi-

tioner is shown in Table 5.2. For a fixed size of the subdomains, the condition number

is essentially constant for N > 16. However, as the size of the subdomains increases,

the condition number increases rapidly. Similarly, the conditioner number worsens

rapidly with the interpolation order, due to the increase in the degrees of freedom per

subdomain. In realistic problems, the degrees of freedom per subdomain are much

larger than the values considered here, and the performance of the preconditioner is

expected to degrade further. Therefore, the lumped FETI-DP preconditioner is not
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p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 11 (1.45) 11 (1.57) 11 (1.68) 12 (1.79)
16 17 (2.29) 19 (3.02) 20 (3.54) 21 (3.99)
64 21 (2.84) 25 (3.85) 27 (4.58) 29 (5.17)
256 25 (3.81) 29 (4.99) 31 (5.87) 33 (6.58)
16 4 16 (2.30) 19 (3.07) 21 (3.71) 22 (4.26)

8 17 (2.29) 19 (3.02) 20 (3.54) 21 (3.99)
16 18 (2.66) 21 (3.55) 22 (4.24) 23 (4.81)

(a) Corner constraints only

p = 1 p = 2 p = 3 p = 4
# Sub. H/h it. κ it. κ it. κ it. κ

4 8 10 (1.25) 10 (1.35) 11 (1.41) 11 (1.46)
16 13 (1.85) 13 (1.95) 14 (1.95) 15 (1.99)
64 15 (1.89) 15 (2.01) 16 (2.02) 16 (2.07)
256 16 (1.90) 17 (2.00) 18 (2.17) 19 (2.43)
16 4 12 (1.73) 13 (1.88) 14 (1.91) 15 (1.96)

8 13 (1.85) 13 (1.95) 14 (1.95) 15 (1.99)
16 14 (1.69) 15 (1.76) 16 (1.80) 17 (1.92)

(b) Corner and edge average constraints

Table 5.3: The GMRES iteration counts and the condition numbers for the BDDC
method for the Poisson problem on unstructured meshes.

considered for the rest of the study.

Unstructured Mesh and Partitioning

The Poisson problem is solved on unstructured meshes. The unstructured meshes are

generated using the Distmesh package [68] and partitioned using the METIS pack-

age [46], with the objective of balancing the number of elements in each subdomain

and minimizing the interface degrees of freedom. Figure 5-7(b) shows an example of

the unstructured mesh and the partitioning. The measure of H/h is based on the av-

erage number of the element per subdomain. Thus, for a subdomain with an irregular

shape, H/h can be larger than the numbers shown.

A comparison of Table 5.3 and 5.1 shows that the p = 1 interpolation experiences

approximately 50% increase in the iteration count with the unstructured partitionings,

but the p = 4 interpolation is essentially unaffected by the unstructured partitionings.
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Figure 5-9: Comparison of the Robin-Robin and the Neumann-Neumann interface
conditions. (64 subdomains, H/h = 8)

Thus, using an unstructured partitioning has a bigger impact for the linear elements

than for the higher-order elements. Nevertheless, the BDDC preconditioner maintains

a good scaling for all interpolation orders considered.

5.2.2 Advection-Diffusion Equation

Interface Conditions

In this section the cross-stream advection-diffusion boundary layer problem, shown in

Figure 5-1(b), is solved on a uniform mesh to assess the performance of the paral-

lel preconditioners for a wide range of the physical Peclet numbers, uL/κ, with the

viscosity varying from 102 (diffusion-dominated) to 10−6 (advection-dominated). A

structured partitioning with 64 subdomains and H/h = 8 is used. The methods com-

pared are the BDDC method using the Robin-Robin interface condition discussed in

Section 3.3, the BDDC method using the Neumann-Neumann interface condition that

arises naturally from the discretization of elliptic problems, and the subdomain-wise

block Jacobi preconditioner with the Robin-Robin interface condition.

Figure 5-9 shows the result of the comparison. In the diffusion-dominated case,

the Robin-Robin and the Neumann-Neumann interface conditions are identical, and

the BDDC method based on either interface condition performs well. The subdomain-
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Figure 5-10: Typical GMRES convergence histories for the advection-diffusion equa-
tion. (H/h = 8, corner constraints)

wise block Jacobi preconditioner becomes ill-conditioned in the diffusion limit as the

interior subdomains float in the absence of the constraints. In the advection-dominated

case, the Robin-Robin BDDC maintains its performance. On the other hand, the

Neumann-Neumann BDDC performs poorly, due to the loss of the positivity of the

local bilinear forms. In fact, a simple subdomain-wise block Jacobi preconditioner with

the Robin-Robin interface condition performs better than the Neumann-Neumann

BDDC in the advection-dominated cases. The performance of the Robin-Robin BDDC

is independent of the choice of the constraints in the advection-dominated cases, while

the use of both the corner and the edge average constraints roughly halves the iteration

count in the diffusion-dominated cases.

The GMRES convergence histories for several cases using the BDDC method with

the Robin-Robin interface condition is shown in Figure 5-10. Unlike the convergence

history for the Poisson equation shown in Figure 5-8, the residual does not decay

significantly for the first Nchar/2 iterations, where Nchar is the maximum number of

the subdomains that a characteristic passes through. The theoretical study of the

Robin-Robin type domain decomposition method is conducted in details in [1] by

considering the quasi-one-dimensional flow on vertical strips. The numerical results

obtained in this section is consistent with the theoretical results presented in [1].
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κ = 10−6 κ = 10−4 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 3 3 3 3 4 5 5 6 5 8 8 8
16 7 6 6 6 7 7 8 8 8 10 10 11
64 10 9 8 8 9 10 11 12 11 13 14 16
256 14 13 12 13 14 15 17 19 19 22 23 25
16 4 10 10 9 9 11 9 8 8 8 10 11 11

8 7 6 6 6 7 7 8 8 8 10 10 11
16 5 5 5 5 6 8 8 10 8 10 11 12

(a) Corner constraints only

κ = 10−6 κ = 10−4 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 4 4 4 4 4 4 5 5 6 8 8 8
16 8 7 7 7 8 7 8 8 8 10 10 11
64 11 10 10 9 10 10 11 12 10 12 13 14
256 15 14 14 13 14 14 16 18 10 12 14 16
16 4 10 10 9 9 10 9 8 7 8 10 11 11

8 8 7 7 7 8 7 8 8 8 10 10 11
16 6 6 6 6 7 7 8 10 8 10 11 12

(b) Corner and edge average constraints

Table 5.4: The GMRES iteration count for the BDDC method with the Robin-Robin
interface condition for the boundary layer problem on uniform meshes.

Scalability

Table 5.4 shows the result of the scalability study for the advection-diffusion equa-

tion for κ = 10−2, 10−4, and 10−6. In the advection-dominated cases, the iteration

count increases with the maximum number of subdomains that a characteristic passes

through, Nchar, as the hyperbolic equation does not possess the smoothing property

of the elliptic equation. On the other hand, the iteration count is independent of

the size of the subdomain, the interpolation order, and the choice of constraints in

the advection-dominated case. Thus, in the advection-limit, a partitioning strategy

based on capturing the strong characteristics, such as those used in [24] and [66], is

expected to improve the performance of the preconditioner. However, these strategies

are sequential in nature and tend to increase the communication volume, especially in

three-dimensions.
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κ = 10−6 κ = 10−4 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 8 9 10 11 7 9 9 10 7 9 9 8
16 9 11 11 12 10 11 13 15 9 10 12 13
64 14 15 17 19 17 18 18 19 18 20 21 22
256 34 36 41 46 45 38 37 36 37 40 41 43
16 4 12 12 12 12 11 11 12 14 9 11 10 11

8 9 11 11 12 10 11 13 15 9 10 12 13
16 9 10 12 13 10 12 14 15 9 12 13 15

(a) Corner constraints only

κ = 10−6 κ = 10−4 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 7 8 9 10 7 9 10 11 7 9 9 8
16 9 10 11 12 9 11 12 13 8 10 11 12
64 12 13 15 17 14 15 17 18 12 14 16 17
256 26 28 30 32 31 26 26 28 19 23 25 27
16 4 11 12 12 13 10 11 12 13 8 11 10 10

8 9 10 11 12 9 11 12 13 8 10 11 12
16 8 10 12 12 10 12 13 14 9 11 13 14

(b) Corner and edge average constraints

Table 5.5: The GMRES iteration count for the BDDC method with the Robin-Robin
interface condition for the boundary layer problem on anisotropic meshes.

Anisotropic Mesh

In realistic problems, highly-anisotropic meshes are employed to resolve the thin

boundary layer of high Peclet number flows. The meshes used in this section have

the exponential y-spacing such that the elements on the boundary have the aspect ra-

tio approximately equal to 1/
√
κ. Thus, for κ = 10−6, the elements on the boundary

have the aspect ratio of 1000, and the area of an element on the boundary is less than

1/1000 of the largest element in the domain.

Table 5.5 shows the scalability result using the series of anisotropic meshes. Com-

paring to Table 5.4, the iteration count increases in general. In particular, the perfor-

mance degrades considerably on the fine mesh used for the 256-subdomain partition.

The difference in the iteration count for the corner only and the corner and edge aver-

age constraints suggests that the problem exhibits elliptic behavior even for κ = 10−6
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Subdomain BDDC BDDC
Block Jacobi (Corner only) (Corner + edge)

#. Sub. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
2 50 87 113 34 57 75 30 55 74
8 190 359 565 156 284 428 223 276 455
32 914 - - 580 - - 476 - -

(a) Neumann-Neumann Interface Condition

Subdomain BDDC BDDC
Block Jacobi (Corner only) (Corner + edge)

#. Sub. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
2 37 50 63 16 20 21 15 18 20
8 92 155 199 51 77 106 38 66 89
32 209 334 415 90 130 180 52 82 116
128 478 - - 158 220 309 65 106 159

(b) Robin-Robin Interface Condition

Table 5.6: The GMRES iteration count for the Euler bump problem. (160 elem. per
subdomain, ∆t = ∞)

with the highly anisotropic mesh.

5.2.3 Euler Equation

In this section, the Euler equation problem with a Gaussian bump discussed in Sec-

tion 5.1.2 is solved using the subdomain-wise block Jacobi, BDDC with corner con-

straints, and BDDC with corner and edge average constraints using the Neumann-

Neumann (i.e. naturally arising) and Robin-Robin interface conditions. The size of

the subdomain is fixed to 160 elements, and increasingly larger problem is solved as

more subdomains are added. The linear system arising from the Jacobian for the

converged solution is used, and the CFL number is set to infinity so that there is no

mass matrix contribution to the linear system.

Table 5.6 shows the result of the comparison. For all types of preconditioners

considered, the Robin-Robin interface condition performs significantly better than

the Neumann-Neumann interface condition. Similar to the result obtained for the

advection-dominated case of the advection-diffusion equation, a simple subdomain-

wise block Jacobi preconditioner with the the Robin-Robin interface condition out-
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Elem. per sub. p = 1 p = 2 p = 3
40 30 49 71
160 38 66 89
640 46 74 100
2560 52 78 102

Table 5.7: Variation in the GMRES iteration count with the size of subdomains using
the BDDC method with the Robin-Robin interface condition. (8 subdomains, corner
and edge constraints)
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Figure 5-11: Typical GMRES convergence history for the Euler problem. (32 subdo-
mains, 160 elem. per subdomain, corner and edge constraints)

performs the BDDC preconditioner with the Neumann-Neumann interface condition.

However, unlike the advection-dominated case of the advection-diffusion equation, the

iteration count is dependent on the type of constraints for the BDDC method, and

using both the corner and edge average constraints significantly improves the perfor-

mance of the solver, especially when a large number of subdomains is employed. The

difference suggests the underlying ellipticity of the acoustic modes in steady, subsonic

flow.

Table 5.7 shows the variation in the iteration count with the size of the subdomains

using eight subdomains for the BDDC method with the Robin-Robin interface con-

dition and the corner and edge average constraints. There is no significant increase

in the iteration count as the subdomain size grows, particularly when 640 or more

elements are employed per subdomain for all interpolation orders considered.

The GMRES convergence histories for a typical subsonic Euler equation case is
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shown in Figure 5-11. The linear residual decays exponentially with the number of

iterations. Since the convergence criterion of the linear problem is typically relaxed in

the early stage of Newton iteration, the number of GMRES iteration would decrease

proportionally in the early stage of the nonlinear solve.

5.3 BDDC with Inexact Local Solvers

5.3.1 Advection-Diffusion Equation

Serial Preconditioner

The quality of the incomplete factorizations are assessed by solving the advection-

diffusion equation for the advection-dominated case (κ = 10−6) and balanced advection-

diffusion case (κ = 10−2) on the uniform and anisotropic meshes. The ILUT factoriza-

tion with minimum discarded fill (MDF) and approximate minimum degree (AMD) [3]

orderings are used as the inexact local solvers. The maximum block fill per row is var-

ied from 0 to 10, and the traditional and p-scaled τ are used for stabilization.

Table 5.8(a) and 5.8(b) show the results of solving the problem on a uniform mesh

with 512 elements. The MDF reordering performs significantly better than the AMD

reordering for advection-dominated cases using ILU(0). However, as the number of

maximum fill-ins increases, the difference in the MDF and AMD reordering become

insignificant. For the κ = 10−2 case, the p-scaled τ provides slightly better convergence

rate than the traditional τ ; the p-scaling results in no differences for the κ = 10−6 case

as the viscous contribution to the τ parameter is small.

Table 5.8(c) and 5.8(d) show the result for solving the same problems on anisotropic

meshes with the element on the wall having aspect ratios of 10 and 1000 for κ = 10−2

and κ = 10−6, respectively. The benefit of the MDF reordering as well as the p-scaled

τ is more pronounced than the isotropic mesh cases. However, the iteration count is

generally higher than in the isotropic mesh cases due to the presence of elliptic modes

in the highly anisotropic boundary layer region; in order to efficiently precondition

70



MDF (τp−scaled) MDF (τtraditional) AMD (τp−scaled)
fill 0 2 5 10 0 2 5 10 0 2 5 10
p = 1 11 6 4 3 11 6 4 3 22 13 10 6
p = 2 12 8 6 5 17 11 10 7 22 13 10 8
p = 3 16 11 8 5 27 19 10 7 27 16 12 10
p = 4 18 11 8 5 24 12 9 6 31 19 12 10

(a) Isotropic 512 elem., κ = 10−2

MDF (τp−scaled) MDF (τtraditional) AMD (τp−scaled)
fill 0 2 5 10 0 2 5 10 0 2 5 10
p = 1 9 6 5 3 9 6 5 3 34 16 11 7
p = 2 12 6 6 4 12 6 6 4 51 16 10 6
p = 3 12 10 6 6 12 10 6 6 58 18 10 6
p = 4 10 6 5 4 10 6 5 4 61 20 10 7

(b) Isotropic 512 elem., κ = 10−6,

MDF (τp−scaled) MDF (τtraditional) AMD (τp−scaled)
fill 0 2 5 10 0 2 5 10 0 2 5 10
p = 1 12 8 6 4 12 8 6 4 29 15 11 7
p = 2 15 11 9 7 16 11 10 8 46 17 11 9
p = 3 18 13 11 9 26 18 12 9 53 18 13 10
p = 4 22 14 10 8 34 19 14 11 55 22 15 11

(c) Anisotropic 512 elem., AR = 10, κ = 10−2,

MDF (τp−scaled) MDF (τtraditional) AMD (τp−scaled)
fill 0 2 5 10 0 2 5 10 0 2 5 10
p = 1 10 7 5 4 10 7 5 4 32 16 11 7
p = 2 16 12 9 8 14 11 8 6 49 16 10 8
p = 3 16 11 10 8 17 11 9 8 58 18 11 8
p = 4 17 12 10 8 22 12 10 8 61 19 12 9

(d) Anisotropic 512 elem., AR = 1000, κ = 10−6

Table 5.8: The GMRES iteration count for the ILUT preconditioner at various fill-
levels applied to the advection-diffusion equation on a single domain.
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8192 elem. 32768 elem.
fill 5 10 ∞ 5 10 ∞

Factorization (sec) 0.094 0.099 0.598 0.507 0.834 4.941
Application of Preconditioner (sec) 0.010 0.012 0.049 0.037 0.094 0.233

Memory (nnz(M−1)/nnz(A)) 2.261 2.723 6.594 2.377 3.705 8.531
(a) p = 1

512 elem. 2048 elem.
fill 5 10 ∞ 5 10 ∞

Factorization (sec) 0.074 0.087 0.976 0.371 0.465 46.334
Application of Preconditioner (sec) 0.000 0.006 0.030 0.020 0.025 0.356

Memory (nnz(M−1)/nnz(A)) 1.605 2.010 3.637 1.663 2.207 7.579
(b) p = 4

Table 5.9: The time for performing the incomplete factorizations, the time for applying
the preconditioner, and the memory requirement for storing the factored matrix.

these modes, the use of a multigrid-type coarse correction should be considered.

In order to quantify the cost of the factorization, the timing and memory require-

ment for the incomplete factorizations ILUT(10−8,5) and ILUT(10−8,10) and the exact

factorization are compared. The viscosity is set to κ = 10−2, and the MDF reordering

is used for the incomplete factorization cases. The exact factorization is performed

using the same ILUT algorithm but using the AMD ordering to minimize the fill. This

results in the exact factorization algorithm that is slower than the sophisticated algo-

rithm that takes advantage of the memory hierarchy of the modern computers (e.g.

UMFPACK [22]), but allows for more consistent comparison of the inexact solver and

the exact solver.

The timing and memory requirements for representative cases are shown in Ta-

ble 5.9. In general, the cost of the exact factorization rises rapidly, both in terms of

the time and the memory requirement, with the size of the problem and the number

of neighbors. For instance, the incomplete factorization are approximately six times

faster for the p = 1, 8192-element case, but is more than 100 times faster for the p = 4,

2048-element case. The inexact factorizations also reduces the memory requirement

and the time for applying the preconditioner, which is the major cost in the GMRES

algorithm.
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BDDC with Inexact Solver

The result for the BDDC method based on the ILUT factorization of local stiffness

matrices is shown in Table 5.10. The performance of both the one-matrix method and

the two-matrix method, discussed in 4.2.1, are assessed. For the infinite fill case, the

drop tolerance is set to zero such that the local solvers become direct solvers; for all

other cases, the drop tolerance is set to 10−8.

In general, the two-matrix method performs significantly better than the one-

matrix method, especially when the number of maximum allowed fill-in is low. For

the κ = 10−2 case on the isotropic mesh, the two-matrix method incurs less than

30% increase in the iteration count compared to the exact local solver with as few

as five additional fill-ins per row, outperforming the one-matrix method with 20-

fills. The experiment reasserts the importance of the reordering when an incomplete

factorization is employed.

When the anisotropic meshes are employed, the performance of the BDDC method

using the incomplete factorizations tend to degrade quicker than the isotropic mesh

cases due to the presence of the elliptic modes in the boundary layer region. In

particular, for κ = 10−2 case, the number of fill-ins required to achieve the iteration

count close to the case with the exact local solver is significantly higher. The use of a

multigrid-type correction in the local solver, which can capture the elliptic modes, is

expected to improve the result significantly.

Scalability

The scaling result for the inexact BDDC method using the ILUT(10−8, 5) local solvers

with the MDF reordering is shown in Table 5.11. Compared to the result obtained

for the same case using the exact local solver shown in Table 5.4, the iteration counts

increase in general. The degradation of the iteration count is more pronounced for

the one-matrix method than the two-matrix method due to the poorer inexact factor-

ization. The case with κ = 10−2 suffers from a larger increase in the iteration count

due to the stronger elliptic behavior of these flows. However, considering the orders
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Two-matrix method One-matrix method
fill 2 5 10 15 20 ∞ 2 5 10 15 20 ∞
p = 1 15 13 12 12 12 11 24 18 15 13 12 11
p = 2 22 19 16 15 15 13 30 23 19 17 16 13
p = 3 33 24 18 16 16 14 42 31 24 20 19 14
p = 4 31 26 18 17 16 16 46 35 25 22 20 16

(a) Isotropic mesh, κ = 10−2

Two-matrix method One-matrix method
fill 2 5 10 15 20 ∞ 2 5 10 15 20 ∞
p = 1 14 11 11 10 10 10 18 15 11 10 10 10
p = 2 21 14 13 13 13 9 21 19 17 15 13 9
p = 3 19 13 9 9 9 9 22 18 17 14 12 9
p = 4 18 14 13 13 12 9 29 21 16 15 14 9

(b) Isotropic mesh, κ = 10−6

Two-matrix method One-matrix method
fill 2 5 10 15 20 ∞ 2 5 10 15 20 ∞
p = 1 22 20 19 18 18 18 33 21 19 18 18 18
p = 2 34 26 22 21 20 20 69 49 34 28 25 20
p = 3 43 31 24 22 22 20 78 61 45 37 31 21
p = 4 48 34 26 24 24 22 95 68 48 38 32 22

(c) Anisotropic mesh, AR = 10, κ = 10−2

Two-matrix method One-matrix method
fill 2 5 10 15 20 ∞ 2 5 10 15 20 ∞
p = 1 19 16 15 14 14 14 26 18 15 14 14 14
p = 2 29 20 17 16 16 16 76 50 33 27 24 16
p = 3 32 25 20 18 18 17 72 52 38 32 29 17
p = 4 36 26 21 21 20 20 84 66 37 30 30 20

(d) Anisotropic mesh, AR = 1000, κ = 10−6

Table 5.10: The GMRES iteration count for the BDDC method with the ILUT local
solvers (64 subdomains, H/h = 8, corner constraints)
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κ = 10−6 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4
4 8 5 7 7 8 6 10 10 10
16 9 10 9 10 9 12 14 15
64 11 14 13 14 13 19 24 26
256 19 22 21 21 25 34 45 45
16 4 11 12 12 11 9 11 11 11

8 9 10 9 10 9 12 14 15
16 8 11 9 11 11 19 25 28

(a) Two-matrix method

κ = 10−6 κ = 10−2

#. Sub. H/h p = 1 2 3 4 1 2 3 4
4 8 7 9 9 10 7 10 11 11
16 11 15 14 17 12 15 17 19
64 15 19 18 21 18 23 31 35
256 24 26 25 29 29 41 56 58
16 4 12 14 14 14 10 13 14 14

8 11 15 14 17 12 15 17 19
16 11 17 17 20 16 22 28 32

(b) One-matrix method

Table 5.11: The GMRES iteration counts for the advection-diffusion equation on
isotropic mesh using the ILUT(10−8, 5) local solvers.

of magnitude improvement in the factorization time and the preconditioner applica-

tion time shown in Table 5.9, the inexact solver improves the overall solution time,

especially for large problems. The inexact algorithm also benefit from the substan-

tially reduced memory requirement. Thus, for advection-dominated flows, the inexact

BDDC algorithm based on ILUT with appropriate ordering outperforms the direct

method even for the two-dimensional problem, and the benefit is expected to increase

further for three-dimensional problems.
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Chapter 6

Conclusion

This work presents the high-order accurate Galerkin Least-Squares method combined

with massively parallel implicit solvers. The highlight of the thesis includes: a sim-

ple stabilization parameter correction for the high-order discretization of advective-

diffusive systems, the use of non-overlapping domain decomposition methods for high-

order triangular elements, the extension of the Robin-Robin interface condition to a

system of hyperbolic system, and the assessment of the BDDC method using local

solvers based on incomplete factorizations.

The stabilization parameter was adjusted to account for the subgrid-scale reso-

lution provided by the high-order elements. The modified p-scaled stabilization im-

proves not only the resolution characteristics while maintaining the stability, but also

the quality of the incomplete factorization applied to the discrete systems. The op-

timum hp+1 convergence was observed for advection-diffusion problems, and hp+1/2

convergence was observed for subsonic Euler flows.

The BDDC method was applied to the high-order discretization using triangular

elements for the Poisson equation, the advection-diffusion equation, and the Euler

equation. For the Poisson equation, the condition number of the BDDC preconditioned

operator increases with the order of interpolation, but the scalability is maintained.

The gap in the iteration count for the lower and higher order interpolations was found

to be smaller on unstructured meshes. On the other hand, the FETI-DP method with
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lumped preconditioner was not competitive for high-order interpolation due to the

large degrees of freedom associated with each subdomain.

For the advection-dominated flows, the iteration count is governed by the maximum

number of subdomains that a characteristic crosses, and the count is independent of the

size of the subdomain or the interpolation order. The BDDC preconditioner remained

effective on the exponentially-scaled boundary layer meshes with highly anisotropic

elements. The Robin-Robin interface condition was extended to the Euler equation us-

ing the entropy-symmetrized formulation. The resulting preconditioner outperformed

other preconditioners considered. The Robin-Robin interface condition treated the ad-

vection modes, while the global coarse correction treated the acoustic modes present

in the system. A further improvement in the interface condition and the global coarse

correction may be required to effectively precondition nearly incompressible or super-

sonic flows.

While the BDDC method with exact local solvers performs well, the inexact BDDC

method needs further improvement. The two-matrix method demonstrated that when

separate reorderings are employed to solve the Dirichlet and the constrained Neumann

problem, the inexact BDDC maintains the performance of the exact counterpart even

with a small fill for the advection-dominated cases. However, the two-matrix method

is memory inefficient, and the performance of the one-matrix method must be im-

proved for the BDDC method to be competitive in practical aerospace applications.

Moreover, the incomplete factorizations used in this work failed to capture the elliptic

modes, which degraded the performance of the parallel algorithm. The use of either

p- or h-multigrid correction within the local solver is the first step in improving the

performance of the inexact BDDC preconditioner. The BDDC method should also be

extended to three dimensions and tested on viscous flows over complex geometries.
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Appendix A

Parallel Implementation

The grid partitioning is performed using the METIS library [46], with an objective of

balancing the number of elements per subdomain while minimizing the communication

volume (i.e. minimizing the interface degrees of freedom). Note, this is different from

the approaches taken in [24] and [66], in which the strength of coupling among the

degrees of freedom are considered in partitioning. Keeping degrees of freedom with

strong couplings to a single subdomain was important in these work, because the

parallel solver used in the work applied ILU to the global stiffness matrix while ignoring

the coupling between the elements in different subdomains. For advection-dominated

flows, coupling-weighted methods tend to produce highly-stretched subdomains with

large interfaces. These features are undesirable for the domain decomposition method

based on Schur complement, as they produce a large Schur complement system and

nonuniform partitioning [76]. Thus, the method used in the current approach focused

on minimizing the interface degrees of freedom.

All parallel communications are performed using the Message Passing Interface

(MPI) library. The non-blocking communications are used whenever possible to min-

imize the idle time. The global primal system, SΠuΠ = gΠ, is solved using a direct

sparse solver UMFPACK [22].
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Appendix B

Implementation of Inexact BDDC

As discussed in Chapter 4, an inexact BDDC preconditioner can be developed from

the inexact application of Ã−1 and the inexact discrete harmonic extensions. This

section presents a detailed implementation of BDDC based on inexact factorization

that requires only single factorization of the local stiffness matrix, A(i). An inexact

factorization of the stiffness matrix produces





L
A

(i)
rr

A
(i)
ΠrU

−1

A
(i)
rr

I
(i)
Π



 and





U
A

(i)
rr

L−1

A
(i)
rr

A
(i)
rΠ

S
(i)
Π



 .

The local primal Schur complements, which are formed as bi-products of the factor-

izations, are gathered to the root processor and assembled to form SΠ. The matrix

SΠ is factored exactly using a sparse direct solver.

B.1 Application of Inexact Ã−1

This section considers application of Ã−1 to a vector ṽ to generate ũ = Ã−1ṽ. Note,

ũ, ṽ ∈ Ṽ .
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1. Using forward substitution, solve





L
A

(i)
rr

A
(i)
ΠrU

−1

A
(i)
rr

I
(i)
Π









w
(i)
r

ẘ
(i)
Π



 =





v
(i)
r

0
(i)
Π





The solution is given by

w(i)
r = L−1

A
(i)
rr

v(i)
r and ẘ

(i)
Π = −A(i)

Πr(A
(i)
rr )−1v(i)

r

2. Construct global primal vector wΠ

wΠ = vΠ +
N
∑

i=1

(R
(i)
Π )T ẘ

(i)
Π =

N
∑

i=1

(R
(i)
Π )T

[

D
(i)
Π v

(i)
Π + ẘ

(i)
Π

]

The action of
∑N

i=1(R
(i)
Π )T · corresponds to global sum of primal variables. Thus,

all primal variables are gathered to the root processor.

3. Solve SΠuΠ = wΠ for uΠ on the root processor.

4. Extract local primal variables u
(i)
Π = R

(i)
Π uΠ. The operation corresponds to

scattering variables.

5. Using back substitution, solve





U
A

(i)
rr

L−1

A
(i)
rr

A
(i)
rΠ

I
(i)
Π









u
(i)
r

u
(i)
Π



 =





w
(i)
r

u
(i)
Π





The solution is given by

u
(i)
Π = u

(i)
Π

u(i)
r = U−1

A
(i)
rr

(w(i)
r − L−1

A
(i)
rr

A
(i)
rΠA

(i)
rΠu

(i)
r ) = (A(i)

rr )−1(v(i)
r − A

(i)
rΠu

(i)
Π )

The resulting vector is ũ = Ã−1ṽ.
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B.2 Application of Inexact H̃i

Consider the application of the extension operator H̃ : Ṽ → V

H̃i =





I A−1
II ÃIΓJ1,D,Γ

R̃T
D,Γ



 =











II A−1
II AI∆(I∆ − R∆RT

D,∆)

RT
D,∆

IΠ











.

The application of H̃ to create u = H̃ṽ, u ∈ V , ṽ ∈ Ṽ , is performed as follows

1. Compute w∆ = R∆R
T
D,∆v∆

w
(i)
∆ =

N
∑

j=1

(R
(j)
D,∆)Tv

(j)
∆ =

N
∑

j=1

(R
(j)
∆ )TD(j)v

(j)
∆ ,

which corresponds to weighted averaging operation. Set u
(i)
∆ = w

(i)
∆ .

2. Compute the difference term q∆ = (I∆ − R∆R
T
D,∆)v∆ as

q
(i)
∆ = v

(i)
∆ − w

(i)
∆

3. Apply A−1
II AI∆ by solving





U
(i)
AII

L−1

A
(i)
II

A
(i)
I∆

I
(i)
∆









u
(i)
I

∗



 =





0

−q(i)
∆





the solution is given by

u
(i)
I = (A

(i)
II )−1A

(i)
I∆q

(i)
∆ .

The resulting vector is u = H̃ṽ.
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B.3 Application of Inexact (H̃∗)T

Consider the application of the extension operator (H̃∗)T : V → Ṽ

(H̃∗)T =





I

J2,D,ΓÃΓIA
−1
II R̃D,Γ



 =











II

(I∆ − RD,∆RT
∆)A∆IA

−1
II RD,∆

IΠ











.

The application of (H̃∗)T to create ũ = (H̃∗)Tv, ũ ∈ Ṽ , v ∈ V , is performed as follows

1. Compute effect of A∆IA
−1
II by solving







L
A

(i)
II

A
(i)
∆IU

−1

A
(i)
II

I
(i)
∆











∗
w

(i)
∆



 =





−v
(i)
I

0∆





The solution is given by

w
(i)
∆ = A

(i)
∆I(A

(i)
II )−1v

(i)
I .

2. Compute q∆ = RD,∆R
T
∆w∆ in parallel as

q
(i)
∆ = D

(i)
∆ R

(i)
∆

N
∑

j=1

(R
(j)
∆ )Tw

(j)
∆ ,

which corresponds to summing the dual variables and weighting them by D
(i)
∆ .

3. Compute u∆ = (I∆ − RD,∆R
T
∆)w∆ +RD,∆v∆

u
(i)
∆ = w

(i)
∆ − q

(i)
∆ +D(i)v

(i)
∆

The resulting vector is ũ = (H̃∗)Tv.
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