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Abstract. A deterministic fluid model in the form of nonlinear ordinary differen-
tial equations is developed to provide the description for a multichannel service sys-
tem with service-in-random-order queue discipline, abandonment and re-entry, where
servers are treated like enzyme molecules. The parametric analysis of the model’s
fixed point is given, particularly, how the arrival rate of new customers affects the
steady-state demand. It is also shown that the model implies a saturating clearing
function (yield vs. demand) of the Karmarkar type providing the mean service time
is much shorter than the characteristic waiting time.
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1 Introduction

Historically, the service sector was long considered a sort of marginal economic
activity that did not fit into agriculture and manufacturing categories. However
from 1980s on its share in most economies has steadily expanded. By 2020, the
service sector contributes to around two thirds of the total global GDP, whereas
for the most industrialized economies this indicator exceeds three fourth [34].

The rapid development of the service sector in many economies has stim-
ulated a renewed interest in multi-server queueing models. These models are
particularly important in large-scale service systems, such as customer contact
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centers and health-care centers [4, 28, 35, 36]. Operations research, of which
queueing theory is a branch, treats act of service and production (manufac-
turing) uniformly, from cybernetics perspective, as a kind of an input–output
transformation process going on in an imaginary converter box [8]:

Inputs −→ Converter −→ Outputs (1.1)

In the case of industrial production, the inputs are physical substances, such
as raw materials or parts, and they are transformed by workers and machines
in the factory shop into a finished commodity (output).

In the case of service, the inputs and outputs involved may not necessarily
be unanimate material objects—they may appear to be people or information,
and the nature of conversion may be less obvious. For service, it is not the
physical nature of the input that is being transformed, but the condition (or
state). Indeed, according to the widely adopted definition of service set forth
by Hill [15], “A service may be defined as a change in the condition of a person,
or a good belonging to some economic unit, which is brought about as a result
of the activity of some other economic unit, with the prior agreement of the
former person or economic unit.” As opposed to a good that, once produced,
acquires exteriority with regard to both manufacturer and potential consumer,
services are consubstantial with provider and with customer: they cannot be
stored, they are not a given outcome, but rather an act or a process [10].

Following Hill, Gadrey [9] coined the metaphorical term “service triangle”,
in terms of which he proposed the following wording of service: “A service
activity is an operation intended to bring about a change of state in a reality
C that is owned or used by consumer B, the change being effected by service
provider A at the request of B, and in many cases in collaboration with him
or her, but without leading to the production of a good that can circulate in
the economy independently of medium C.”

Figure 1, adapted from [8], illustrates different service scenarios according
to the varying involvement of persons and their belongings. Generally speak-

Customer Provider

Person
oo

✤

✤
Person

✤

✤

xx♣♣♣
♣♣♣

♣♣

Belongings
oo

Belongings

◆◆◆◆

ff◆◆◆

Figure 1. To the definition of service by Hill and his followers. After Fromm and
Cardoso [8].

ing, a service provider has properly qualified personnel (employees with skills,
competencies, and knowledge) and resources (like facilities, tools, and materi-
als) to render a service. Five different situations are covered by the diagram
on Figure 1:
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(i) A person (provider) delivers a service to another person (customer) di-
rectly. No belongings are involved on either side. For example, a tutor
gives private lessons to a student. In so doing, the tutor transforms less
educated student (the input) into better educated student (the output);

(ii) A person equipped with belongings (provider) acts on another person
(customer). For example, doctors use facilities (ward, bed, operating
room), instruments (stethoscope, syringe, lancet), and materials (medi-
caments, plasters, dressings, disinfectants) to deliver their service to a
patient. Thus, the clinic transforms ill patients (the input) into healthier
patients (the output);

(iii) A person equipped with belongings (provider) acts on the belonging of
a customer. The customer is not involved in the process. This situation
is representative for dry cleaning, maintenance and repair services, for
mail delivery and transportation of cargo. For example, the car mechanic
transforms a disabled vehicle (the input) into a functional vehicle (the
output);

(iv) The case of self-service, when an unmanned service is rendered by the
provider. The provider typically sets up facilities or equipment that the
customer can use to transform his/her condition. Examples are vending
machines, phone-booths, and rental cars;

(v) Provider’s belongings act on customer’s belongings. For example, a pro-
gram application installed on the customer’s computer can request and
get an update service from a remote computer program on the side of
the provider.

When dealing with modeling or simulation of production and service sys-
tems, operations research mainly adheres to a black box approach to the inter-
nal structure of the “converter” shown in diagram (1.1). A black box approach
allows describing the act of transformation with interface information that is
externally visible to observers. Nonetheless, the internal details of the trans-
formation are hidden. As a consequence, any original mechanism of conversion
can be replaced with a proper phenomenological transfer function as long as it
mimics an equivalent interface. Black box approach is often justified since the
robust applied model should be able to describe a production or service with-
out being overloaded with the full complexity of internal structures, processes,
and implementations. The most well-known example of black box converter in
operations research is the production function.

The production function is an econometric statement relating the rate of
production of a certain finished, or partly finished, intermediate, commodity
(output), Y , to a set of the involved factors of production, φ1, φ2, . . . , φn (e.g.,
[31]):

Y = F (φ1, φ2, . . . , φn). (1.2)

In its broad meaning, factor of production is any entity which can lead to
increased output as its availability is increased. Factors may be of material,
energy, human and financial nature. They may be of two types: consumable
and nonconsumable. By convention, consumable factors are referred to as in-
puts. We use term “resource” interchangeably with “input”. By consumption
we understand irreversible conversion, physical embodiment, of a resource into

Math. Model. Anal., 25(4):505–521, 2020.



508 A. Kantarbayeva and A. Mustafin

a material product. As the production process takes place, the resource is
consumed, used up. Consuming the resource means tending to reduce its avail-
ability. The nonconsumable factors of production, commonly known as primary
factors, to which belong land, capital and labor, are often lumped together as
“funds”. They are not resources by the definition in use. Funds are not mate-
rially transformed into an output they produce. They are transforming tools
that turn the involved inputs into a product, but are not themselves embodied
physically in the product. Although funds are not used up, their amount can
change and they are subject to wear-and-tear. In terms of dimensions, output
Y in formula (1.2), being the quantity of the commodity produced in a unit of
time, is a flow variable. Inputs, most commonly are flows, although in some
cases they may be stocks. Funds always are stock variables.

A special variety of production function is the clearing function introduced
in the supply chain management (e.g., [1]). It is widely used for production
planning. The clearing function is a deterministic relation between the through-
put of a steady-state production process, Y , and the work in progress (i.e. the
total volume of partially finished goods in the manufacturing system awaiting
completion), W : Y = f(W ). The input W in this formula is readily seen to be
a stock variable.

The first aim of this work is to propose a plausible reconstruction of events
taking place in the black box of service, understood as a transformation of
customer’s state by the service provider. In other words, we propose a minimal
non-phenomenological model of the service process, that is not derived from a
regression analysis, but rather appeals to some first principles.

We assume that change in the condition of a customer as a result of the
interaction between the customer and the service provider proceeds in much
the same way as does the conversion of the substrate into a different molecule in
an enzyme-catalyzed biochemical reaction. Indeed, in a living cell, a substrate
molecule, S, binds to an enzyme molecule, E, to form a short-lived substrate-
enzyme complex, [ES]. The complex then breaks up into a product, P , and
the original enzyme, which can then catalyze a new reaction (e.g., [7]):

r // S + E
k1 // [ES]
k−1

oo
k2 // P + E (1.3)

In the scheme (1.3), as is customary, an arrow points the direction of the
respective reaction. The double arrow in the first step denotes a reversible
reaction. Arrow labels are the respective reaction rate constants.

Treating service as a kind of transformation process, one may identify in-
coming (potential) customer with substrate, outgoing (served) customer with
product, and server (provider) with enzyme. As applied to production pro-
cess, in just the similar way we associate resource with substrate, finished good
with product, and fund (e.g., worker or machine) with enzyme. All aforesaid
is summarized in Table 1.

Georgescu-Roegen was the first to suggest that a production factor such as
labor is like a catalyst: “The assumption is that labor, while an indispensable
factor in the production of any commodity, can be substituted by other factors
beyond any limit. Or in other words, an output of any size can be obtained
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Table 1. Biochemical catalysis vs. production and service.

Agents with similar functions

Transformation process Input Output Converter

Enzymatic reaction Substrate Product Enzyme
Manufacturing Resource Finished goods Funds
Service Potential customer Served customer Provider

by any industry with as little labor as we may wish, provided that nonlabor
inputs are available in unlimited amounts. Since this property presents an
obvious analogy with that of a catalyst in a chemical reaction, we propose to
say that labor is catalytic in industry Gk if it has the mentioned property in
that industry” [12, p. 319].

A few years later, Poletaev stated that “The typical prototypes of the pro-
cess of production-consumption type are chemical reaction in the presence of
a catalyst, and process of industrial production. In both cases, three kinds
of components are involved: inputs (substrate, raw material), funds (catalyst,
equipment), and outputs (product of reaction, commodity)” [22, p. 72, own
translation].

Independently, Chernavskii accentuated the analogy between biosynthesis
and industrial production: “Both by spirit and by methods of research, model-
ing the economic and production processes is closely related to the subject we
expounded above. There is nothing surprising in that biological systems with
their basic variables—concentrations of substances—are similar to economic
ones, where variables are the quantities of products or commodities, and the
role of enzyme concentration is played by the number of machines in a shop
or automatic line. In this regard, both the kinetic models of biophysics and
biochemistry, and the economic models belong to the common branch of cyber-
netics, the so-called theory of complex systems” [29, p. 134, own translation].

Regrettably, the above mentioned inspiring insights have gone barely no-
ticed by contemporaries. The situation started to improve after recognition
of the newly emerged field of evolutionary economics [27] and the concept of
“industrial metabolism” [5]. Since then, the trend has been toward the grow-
ing awareness that chain of biochemical synthesis in a living cell resembles
production line in an industrial factory, where products of one machine are
used by other machines for manufacturing of their own products [2]. In recent
years, advanced tools of the queueing theory become more and more relevant
in the studies of intracellular metabolic networks [16,25], research work in this
direction being spoken of as “biologistics” [14].

However so far only sporadic attempts have been undertaken to unveil the
black box of service process with the help of interdisciplinary approach. The
existing rare works lack the attempts to recognize one essential common fea-
ture of enzyme and server: they both interact with the input being transformed
to form a short-lived intermediate that subsequently releases the output. For
example, Niyirora and Zhuang [28] do introduce the transient server–patient
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complex in their continuous model of queue in an emergency department, but
do not compare time dynamics of the servers with that of the patients what-
soever. However, the coexistence of strongly varying timescales in the process
of conversion may have important implications as is known from biochemistry.
This is what lies behind our motives to apply more consistently the “enzymatic”
approach to service. The present research is partially based on the earlier work
of the authors [26] on production networks.

We verify workability of the enzymatic model of service by the example of
a cyclic service system. Within the steadily growing service center literature,
the object of our research fits into the single customer class, single server type
category of queueing systems with parallel multiple servers, queue discipline of
service in random order, unlimited-size buffer, abandonment from queue, and
re-entry. At present, queueing theory is held to be the principal mathematical
tool to describe processes in waiting lines using the apparatus of probability
theory (e.g., [17]). For a broad range of purposes, however, deterministic fluid
models, originally intended to analyze the stability of an underlying queueing
system [6], prove to be an effective alternative to discrete stochastic queueing
models [3, 11]. They are an approximation technique for studying important
dynamic characteristics of queueing networks. When the deterministic vari-
ability in the arrival and departure flows seems to dominate over the stochastic
volatility, it may be safe to neglect the stochastic part of the model altogether.
And if the number of customers in a system varies over a wide range, then the
discrete nature of individual customers also might be ignored. This is similar
to a passage from multiparticle system to the hydrodynamical limit of contin-
uous medium. Discrete jobs are replaced by continuous fluid mass with scalar
density field and vector velocity field, which follows the same routing as before.
The resulting set of ordinary differential equations (ODEs) of mass balance is
referred to as a fluid model. The solutions of fluid models are often handy to
analyze as opposed to the corresponding queueing network equations.

The model of a service system suggested in the present paper likens servers
to enzymes, which shift customers from the category of “potential” to the
category of “served”. This enables us to state the model in fluid form in
terms of nonlinear ODEs of chemical kinetics. Assuming that the mean service
time is much shorter than the typical waiting time makes possible to apply a
quasi-steady-state approximation to the number of busy servers. This variable
is shown to hastily adapt to the momentary demand following the famous
Michaelis–Menten saturation curve of enzyme kinetics. As a result, we easily
derive the clearing function of the system, which is shown to be the Karmarkar
function [18] widely used in production planning. The proposed model allows
for an explicit steady-state solution and complete analysis of its stability. We
also analyze how the steady-state demand is affected by the arrival rate of new
customers.

2 The model

Consider an open service system with a group of identical servers helping the
customers (processing the incoming orders). Each of the servers can process
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any of the arriving orders and we assume here that they do so one at a time.
Potential customers arrive at the service system from the outside with a con-
stant rate, and if all servers are busy processing jobs, the arriving customer
has to join the queue. Would-be customers may be impatient and leave after
a while, should they have to wait too long before a server is available. Those
customers are lost (they will go to another company).

Potential customers waiting for service gather in a common buffer which
feeds all servers. The waiting space is assumed unlimited. When a server fin-
ishes the processing of its current job, it randomly picks another customer to
enter service from the queue. The probability for a waiting customer to obtain
service depends on the number of customers waiting at the same time and is
independent of how long the customer has already waited. This type of the
service discipline is known as service in random order (SIRO). One example
of SIRO is a system where the service discipline is processor sharing and the
service times are independent and identically exponentially distributed. Pro-
cessor sharing corresponds to the server equally dividing its service amongst
all the customers in the queue. This is relevant in many computational set-
tings. Another examples where SIRO may be encountered are call centers,
or an air defense system. SIRO is not as popular scheduling discipline as the
well-known first-come-first-served (FCFS) rule, however this fact rather reflects
considerations of social justice than of economic performance. Indeed, in case
of memoryless arrivals, independent and identically distributed service times
and a single server, SIRO and FCFS both provide the same mean waiting time,
given by the Pollaczek–Khintchine formula [32, pp. 256–259].

In our model the terms “inventory”, “work in progress” (WIP) and “buffer
stock” are regarded as synonyms and mean the current number of potential cus-
tomers in the queue. In fact, this is the instantaneous demand. The population
of potential customers does not include those in service (current customers).

Customer-server contact may not necessarily culminate in satisfaction of
customer’s individual demand, in other words completion of service. Occa-
sionally, current customer may evince hesitation and decide to postpone the
service, or may be turned down by a server (e.g., in the event that the order
is submitted with irregular documentation). In both cases such a customer
returns to the queue.

Once completely served, current customer turns to a past customer. After a
while, past customers either leave the system, or replenish the ranks of potential
customers over again. The latter happens when the change in the condition of
a customer is temporary. For example, the obtained commodity is perishable,
or represents durable goods which need replacement/repair because of their
continuous use, or is attributable to obsolescence, or falls in the category of
style-and-fashion goods, etc. Thus the queue actually consists of the mixture
of external and internal arrivals.

The systematic study of cyclic queues has been initiated by Taylor and
Jackson [33] and Koenigsberg [20,21]. Shortle and coauthors [32, ch. 5, pp. 213–
254] review the most notable results obtained by now in this field of research
with probabilistic approach. We opt for the fluid formalism. The issue of
the accuracy of fluid approximation as applied to our “enzymatic” model of a
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service system is touched upon in Section 4.
We can represent the totality of the events listed above in the form of

pseudochemical equations presented by Figure 2. In the figure referred above,

r // x
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Figure 2. The modeled open cyclic service system.

x is the population of potential customers (in other words, queue length or
demand), u is the population of free servers, v is the population of busy (oper-
ative) servers, and y is the population of successfully served (past) customers.
The constants r, k−1, k1, . . . , k5 depict the various rates with which these pro-
cesses proceed.

A flowchart such as the one given by Figure 2 encodes both the sequence of
steps and the rates with which these steps occur. It can be translated into a set
of ODEs that describe rates of change of stock quantities of the participating
agents. To write corresponding equations, we naturally can choose to use what
chemists call the “law of mass action” (e.g., [24, sect. 102, pp. 306–310]), which
states that when two or more agents are involved in a conversion step, the rate
of conversion is proportional to the product of their quantities. By convention,
the mass-action rate constants are the proportionality constants. They are
indicated in Figure (2) as arrow labels. Namely:
– r is the arrival rate of the customers;
– k1 is the capture rate of a would-be customer by a server;
– k−1 is the frequency with which orders are being withdrawn or denied after

beginning of service;
– k2 is server’s turnover number, or the maximum number of fulfilled orders

that a single server is capable to deliver at one unit of time. Thereby,
1/(k−1 + k2) is the mean lifetime of the complex “server–customer”, or the
mean processing time of a server, or simply service time;

– k3 is the frequency with which customers rejoin the queue upon completion
of service. Thus, 1/k3 is how long lasts “aftereffect” of a service;

– k4 is the frequency of abandonments;
– k5 is the out-migration rate of the past customers.

Keeping track of each participant allows us to derive the following set of
equations:

ẋ = r + k−1v + k3y − k1ux− k4x, (2.1a)

ẏ = k2v − (k3 + k5)y, (2.1b)

u̇ = (k−1 + k2)v − k1ux, (2.1c)

v̇ = k1ux− (k−1 + k2)v, (2.1d)
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where overdots mean differentiation with respect to time t. All parameters in
the model are nonnegative. (Notice that the model suggested in [28] is a special
case of the system (2.1) with k−1 = k3 = k5 = 0.)

Adding equations (2.1c) and (2.1d) reveals a conserved quantity u0, the
total number of servers, free and busy:

u+ v = u0. (2.2)

With the aid of (2.2) the system (2.1) can be reduced by eliminating either
u, or v. We arbitrarily choose to eliminate u. Next we nondimensionalize the
remaining three equations by changing over to the scaled variables τ = t/T ,
ξ = x/K, η = y/K, and ζ = v/u0, where

T = 1/(k1u0), K = (k−1 + k2)/k1. (2.3)

According to (2.3), T is chosen to be a new unit of time. It is a characteris-
tic time a potential customer spends waiting (in the queue) before beginning
service. This time is seen to be inversely proportional to the total number of
installed servers, u0. The motivation behind normalizing x and y by K will be
provided in Section 3. As to v, replacing it with a quantity ζ scaled relative to
u0, so that 0 < ζ < 1, is quite natural.

The dimensionless fluid equations then become

ξ̇ = ρ+ αη + (1− µ)ζ + ζξ − (1 + β)ξ, (2.4a)

η̇ = µζ − (α+ γ)η, (2.4b)

ε ζ̇ = ξ − ζξ − ζ, (2.4c)

where overdots now mean differentiation with respect to τ . Quantities

α = k3/(k1u0), β = k4/(k1u0), γ = k5/(k1u0),

ε = k1u0/(k−1 + k2), µ = k2/(k−1 + k2), ρ = r/ ((k−1 + k2)u0) (2.5)

all are new dimensionless parameters. It is worth noting that µ < 1. According
to (2.5), ε is the ratio of the frequency with which a server and a customer
associate to the frequency with which the complex server–customer dissociates.
In other words, it is the ratio of the mean service (holding) time to the mean
waiting time. From physical considerations, only nonnegative solutions of the
model equations (2.4) make sense.

3 Results

When deriving the equations (2.4) no approximations have been made. How-
ever it is known [35] that the waiting times are often longer than the service
times meaning our parameter ε should be assumed small. Inasmuch as ε� 1,
the system (2.4) is singularly perturbed. The slow variables ξ and η are respec-
tive populations of potential and past customers, while the fast variable, ζ, is
the number of busy servers. The standard practice of reducing such systems is
multiple-scale analysis whereby fast variable is adiabatically eliminated. One

Math. Model. Anal., 25(4):505–521, 2020.
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has to establish the validity of the adiabatic elimination in each specific case.
As applied to (2.4), Fenichel–Tikhonov theorem requires, among other things,
(i) fixed point ζ̄(ξ, η) of the fast equation (2.4c) to be an isolated root of the
algebraic equation ζ̇ = 0 and to retain stability at all allowed values of the
slow variables ξ and η, and (ii) initial condition ζ0 to fall within the domain of
influence of ζ̄ for all initial values ξ0 and η0 [23, ch. 3, p. 53–70]. The influential
works to clarify the applicability of the technique to enzymatic reactions have
been carried out by Klonowski [19], and Segel and Slemrod [30].

To decompose system (2.4) into fast and slow parts, introduce fast time
variable ϑ = τ/ε. Now rescale (2.4) by replacing τ with ϑε and, after taking
ε = 0, it becomes

ξ′ = 0, η′ = 0, ζ ′ = ξ − ζξ − ζ, (3.1)

where ‘primes’ stand for differentiation with respect to ϑ. This is the fast
subsystem, where ξ and η are replaced by their initial values and treated as
parameters. It yields the inner solution, valid for τ = O(ε).

Setting ε = 0 in (2.4) leads to the slow subsystem

ξ̇ = ρ+ αη + (1− µ)ζ + ζξ − (1 + β)ξ, (3.2a)

η̇ = µζ − (α+ γ)η, (3.2b)

0 = ξ − ζξ − ζ, (3.2c)

which produces the outer solution, valid for τ = O(1). In this singular limit,
as ε → 0, the subsystem defines a slow flow over the slow manifold given by
algebraic equation (3.2c). Outer solution is valid for those values of ξ and η,
for which the quasi-steady states of the fast subsystem (3.1) are stable.

The quasi-equilibrium for the fast subsystem (3.1) is given by ζ = ξ/(1 +
ξ), and it is asymptotically stable for any positive ξ. Recall that ζ is the
simultaneous fraction of busy servers. As long as the normalized demand keeps
small, i.e. ξ � 1, this fraction remains adequately small, meaning the servers
are strongly underloaded. However at high levels of demand, for ξ � 1, all the
servers become busy. When ξ = 1, the number of busy servers will be one-
half their total number. Therein lies the reason to consider the quantity K =
(k−1 + k2)/k1 an apt normalization constant for the populations of customers.
K is called Michaelis constant in biochemistry.

Hence, it follows from (3.2) that for time scales on the order of τ = O(1)
the dynamics of the service system (2.4) is governed by a pair of equations

ξ̇ = ρ+ αη − µξ/(1 + ξ)− βξ, (3.3a)

η̇ = µξ/(1 + ξ)− (α+ γ)η. (3.3b)

The first term in the right-hand side of (3.3b) is the output of our service
system, or how many customers are being successfully served by all available
servers in a unit of time:

Ỹ = µξ/(1 + ξ) (nondimensional form),

Y = k2u0x/(K + x) (dimensional form).
(3.4)
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This is a clearing function since it depends on the number of potential customers
waiting in the queue, i.e. on WIP. More precisely, this is a clearing function in
the form originally introduced by Karmarkar [18]. However, as opposed to the
formula empirically obtained by Karmarkar for supply chains, the argument ξ
appearing in our formula does not have to be an equilibrium value of WIP. In
deriving the clearing function we did not require the service system to operate
in a steady-state mode. Nonetheless, the number of busy servers, ζ, being the
fast variable, after a short transient of order O(ε) keeps in a quasi-steady state
with respect to the current demand, ξ. In (3.3a), the arrival rate of potential
customers, ρ, may not be necessarily constant, but if the timescale of its typical
variations is much longer than the service time, then the expression (3.4) for
the clearing function will remain valid.

One can recognize (3.4) as another version of the Michaelis–Menten equa-
tion of enzyme kinetics [7, ch. 2]. The hyperbolic input–output relationship
of the type (3.4) is not uncommon in natural sciences: it describes a rela-
tionship between the number of active sites of the surface undergoing adsorp-
tion and pressure (Langmuir equation), the sigmoidal oxygen-binding curve of
haemoglobin and the fraction of a macromolecule saturated by ligand as a func-
tion of the ligand concentration (Hill equation), growth rate of microorganisms
in a nutrient solution (Monod equation), numerical response of predator to
prey population density (Holling type II response), and the like.

A distinguishing characteristic of the equation (3.4) is saturated response
of the output to the current demand. For low levels of demand, the output is
roughly proportional to the demand. At high levels of the demand, though, the
release of customers having received their service approaches a constant value.

System (3.3) has two steady states, of which only one always lies in the first
quadrant of the ξη phase plane, in other words is physically meaningful:

ξ̄ =
(√

B2 + 4β(α+ γ)2ρ−B
)
/ (2β(α+ γ)) , (3.5a)

η̄ =
(
B + 2(α+ γ)ρ−

√
B2 + 4β(α+ γ)2ρ

)
/ (2γ(α+ γ)) , (3.5b)

where B = (α + γ)(β − ρ) + γµ is an auxiliary quantity introduced for the
sake of simplicity. This steady state is always a stable node, because TrJ =
−α − β − γ − µ/(1 + ξ̄)2 < 0, detJ = β(α + γ) + γµ/(1 + ξ̄)2 > 0, and
(TrJ)2 − 4 detJ > 0, where J is the Jacobian matrix of the system (3.3)
evaluated at fixed point (3.5). Equations (3.3) suggest that phase trajectories
enter the first quadrant from the left and from below, thus making the nodal
point (3.5) globally stable for all conceivable initial conditions.

4 Discussion and conclusions

Two populations of customers coexist in the service system under considera-
tion. They are interdependent, though do not interact directly. One, with the
normalized head count ξ, is the queue for service and consists of both new-
comers and re-entrants. Another, with the normalized head count η, consists
of those whose demand has been satisfied by the moment. In steady state,
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as follows from the equations (3.3), the ratio of the two populations adheres
to the formula ξ̄/η̄ = (α + γ)(1 + ξ̄)/µ. As will readily be observed, in the
case of a low steady-state demand, ξ̄ < 1, this ratio takes the minimum value
(α + γ)/µ = (k1u0)−1(1 + k−1/k2)(k3 + k5). Factor 1 + k−1/k2 is thought to
be of order O(1) under the realistic assumption that k−1 < k2 (the rate of
rejected requests is lower than that of the fulfilled ones). Thus the expression
for min(ξ̄/η̄) can be interpreted simply as the ratio of the characteristic waiting
time, (k1u0)−1, to the mean time of customer’s sojourn in the category of past
clients, (k3 + k5)−1.

Requiring the steady-state normalized demand given by (3.5a) to not exceed
unity, we find a combination of model parameters for which the queue length
remains relatively short:

ξ̄ < 1 ∀(ρ 6 ρ∗ ∧ β > 0) ∨ (ρ > ρ∗ ∧ β > ρ− ρ∗), (4.1)

where ρ∗ = 1
2γµ/(α + γ) is the critical arrival rate of potential customers to

the system.
At subcritical arrival rates, such that ρ 6 ρ∗, the steady-state demand

will keep low irrespective of the frequency of abandonments, as illustrated in
Figure 3.

0 0.1 0.2 * 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

Figure 3. Contour line ξ̄ = 1 of the steady-state solution (3.5a) to the system (3.3)
projected onto the plane ρ β (“customers arrival rate–frequency of abandonments”). Line
β = ρ− ρ∗, where ρ? = 1

2
γµ/(α+ γ) is the critical arrival rate, partitions the positive

quadrant into two domains: above the line the steady-state demand is low, and below is
high. The parameters chosen for simulation: α = 1.1, γ = 1.4, µ = 0.9, and ρ∗ = 0.252.

To a first approximation, the steady-state demand in the neighborhood of
ρ = ρ∗ and β = 0 is given by ξ̄ = 1+2(ρ−ρ∗)/ρ∗−2β/ρ∗. As could be expected,
the queue gets longer whenever the arrival rate increases, and shorter whenever
abandonments become more frequent.

The dimensional form of the condition (4.1) is as follows:

x̄ < K ∀(0 < r 6 r∗ ∧ k4 > 0) ∨ (r > r∗ ∧ k4 > (r − r∗)/K),

where K = (k−1 + k2)/k1 and r∗ = 1
2k2u0k5/ (k3 + k5).

The threat of buffer overflow could be reduced, first and foremost, by el-
evating the critical arrival rate. In the formula for r∗, factor k5/(k3 + k5) is
sandwiched between 0 and 1: the lower limit may occur when the loyalty to



A Bio-inspired Model of the Cyclic Service System 517

provider, k−15 , lasts longer than the service “aftereffect”, k−13 , while the upper
limit is the case when the loyalty is transient and the results of a service are
long-lasting. Thus the potential of that factor is very limited. A more effective
means to push the critical threshold up could be increasing the factor k2u0 that
stands for the maximum possible yield of all servers in the system. This can
be achieved by setting up more servers and/or by increasing the turnover of an
individual server.

On the run, however, such a reorganization is difficult to implement. A
more practical measure is to increase the frequency of abandonments, k4, as
soon as the inflow of new customers reaches the critical value r∗. Abandonment
from service is an important feature of the model. Not only because there is
no real queue without abandonment—such is the nature of consumer behavior.
Without abandonment, a steady-state mode in our system would be impossible
for the arrival rates higher than the maximum service rate. As a result, the
queue length would blow up. The inclusion of abandonment in the model makes
it more robust and thereby—more realistic. In case of necessity, it is much
easier to manipulate the frequency of abandonments compared to other model
parameters. For example, the provider may constantly monitor the arrival rate
of new customers, and encourage those in the queue to postpone their visit,
should the inflow reach a prescribed critical level.

The discussion of the properties of the open system would be incomplete
without mentioning the distinct features of its closed counterpart. Closed ver-
sion of the service system is obtained by putting r = k4 = k5 = 0 in equations
(2.1). The resulting system of kinetic equations has two conserved quantities:
u0, given by (2.2), and x0, given by x + v + y = x0, where x0 is the overall
number of customers, potential, current and past. Thus the initial system of
four equations can be reduced to a system of just two, which, upon a rescaling
τ = tk1x0, ξ = x/x0, and η = y/x0, takes the following nondimensional form:

ξ̇ = cη − (ξ + a)(ξ + η − 1)− εξ,
η̇ = −b(ξ + η − 1)− cη,

(4.2)

where a = k−1/(k1x0), b = k2/(k1x0), c = k3/(k1x0), ε = u0/x0, and overdots
denote differentiation with respect to the new time variable τ .

A realistic assumption ε � 1 leads to the only physically feasible steady-
state solution of the system (4.2) to within O(ε):

ξ̄ = 1− ε(b+ c)

c(a+ b+ 1)
, η̄ =

εb

c(a+ b+ 1)
. (4.3)

This is a stable node in the phase plane ξη for all admissible values of the
parameters, because detJ = c(a+ b+ 1) +O(ε) > 0, TrJ = −a− b− c− 1 +
O(ε) < 0, and (TrJ)2 − 4 detJ = (a + b − c + 1)2 + O(ε) > 0, where J is the
Jacobian matrix of (4.2), evaluated at the fixed point (4.3). One can see that
the steady-state population of past customers is always relatively small within
the smallness of ε. Evidently, the number of past customers is in the direct
relationship with server’s turnover number and in the inverse relationship with
all other parameters of the model.
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As a by-product of the model analyzed in this work we derived the Kar-
markar clearing function, a concept widely used nowadays for production plan-
ning. Technically, it is a well known result for steady-state mode. However we
extended the notion of the clearing function to non-steady-state situations and
succeeded to find out the conditions for its validity. The questions like “How
good is an approximation offered by the clearing function?” and “When is it
expected to hold, and under what conditions would it fail?” are among hot
topics in queueing theory as evidenced by the review written by Armbruster [1].
So, there are two strongly varying timescales in our model of a service system:
the longer one, corresponding to the dynamics of consumer populations, and
the shorter, corresponding to the dynamics of the number of servers engaged
in rendering service. Presence of this time hierarchy makes possible the quasi-
steady-state approximation and, hence, the saturated response of the output
to the input (buffer stock) in the form of the Karmarkar clearing function,
identical with the Michaelis–Menten equation. In terms of our “enzymatic”
model with two timescales, we are able to suggest a more sound justification
of the clearing function: the momentary number of busy servers would be in
a quasi-steady state with respect to the demand, provided the service time
is much shorter than the waiting time. Consequently, the condition ε � 1
is expected to be sufficient to assure the validity of the clearing function in
non-steady-state service systems.

The last (but not the least) issue concerns the accuracy of the fluid ap-
proximation in our model. Just as the deterministic approach fails to capture
the discrete and stochastic nature of chemical reactions at low concentrations
and small reaction volume, so does the continuous mass-action treatment of
server-customer contacts at small numbers of interacting agents, whether cus-
tomers or servers. As many service systems involve operation at extremely
small quantities, such discrete stochastic effects are well relevant for our bio-
inspired model. For some queues, large fluctuations in the demand may be
destructive. The evolution of the population of customers due to interactions
with servers-enzymes is adequately described by Markov processes, which can
be formalized in terms of the chemical master equation (CME) for probability.

Recent years, as is evidenced by the review article [13], were marked with
notable advances in the field of theoretical stochastic enzyme kinetics. In par-
ticular, there has been analyzed the Michaelis-Menten reaction mechanism with
substrate inflow catalyzed by one enzyme molecule in a compartment, as en-
coded by equation (1.3). One may notice, that scheme (1.3) is nothing but the
core of Figure 2 depicting our cyclic queue, so the main stochastic properties
of the former could be extended to the latter. In mechanism (1.3), suppose
Ω is the volume of the compartment in which the reaction occurs, E0 is the
total enzyme concentration (cf. u0 from (2.2)), and KM = (k−1 + k2)/k1 is
the Michaelis–Menten constant (cf. K from (2.3)). By solution of the CME it
follows that in the limit KMΩ � 1, the mean rate of product formation, 〈Ṗ 〉,
reduces to the deterministic Michaelis-Menten equation Ṗ = k2E0S/(KM +S)
(cf. (3.4)) with E0 = 1/Ω. Given the definition of KM and the fact that
k−1 + k2 represents the frequency with which complex dissociates and k1/Ω is
the frequency with which a substrate and an enzyme molecule associate, it fol-
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lows that KMΩ � 1 implies the condition wherein bimolecular binding occurs
relatively rarely compared with complex breakdown. Hence fluctuations in the
substrate concentration are small. Monte Carlo simulations of reaction mech-
anism with enzyme molecule numbers in the range of 10–100 and with physi-
ologically realistic parameters show that whenever the criterion KMΩ � 1 is
satisfied, the Michaelis–Menten equation accurately describes the relationship
between the rate of product formation and the mean substrate concentration.

In terms of our model, the condition KMΩ � 1 means K/u0 � 1 or, what
amounts to the same thing, ε� 1. The latter is precisely our key assumption
as stated in the first paragraph of Section 3. Thus the deterministic fluid
approximation, including the Michaelis–Menten mechanism of input-output
transformation, can be safely applied to the service system depicted in Fig-
ure 2, whenever the mean service time is much shorter than the characteristic
waiting time. At the same time, exploring the possibilities offered by more
fundamental CME approach will constitute a future direction for work on our
model.

It is important to underline that we used the notation of chemical reactions
simply to describe things that combine and the things that they produce, and
that this framework can be employed to model other phenomena, where acts
of conversion are involved, in a similar way.
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