Top Physics at the Startup of the LHC

Ludwig-Maximilians-Universität München

Frank Fiedler, Munich University on behalf of the ATLAS and CMS collaborations

DPF 2006, October 29 - November 3rd, 2006, Honolulu/HI/USA

Overview

 Top quark production and decay at the LHC

MDT run #1068 triggering on RPCs

(our picture of reality)

 Commissioning the LHC detectors

(already reality)

First LHC
 top physics results
 -> example studies

(reality soon)

10/30/2006

Motivation

ttbar production, single top production top quark decays

- top as background to other searches
- 1.) Detector Calibration:
- need all detector components to measure top
- have lots of top events
- can use top to commission/calibrate the detector

Cross Sections at the LHC LMU

Top Quark Production (I) LMU

Top/antitop pair production (strong interaction)

production cross section:

Tevatron Run II pp, 1.96 TeV	LHC pp, 14 TeV
85 %	5 %
15 %	95 %
6.7 pb	830 pb
7000 events (per fb ⁻¹)	8000000 events (per 10 fb ⁻¹)

-> Detector commissioning, top quark properties

10/30/2006

tt Event Topologies

- Top quarks... do not hadronize ($\tau = 4.10^{-25}$ s) decay almost(!) always via t->Wb
- W decays determine experimental signature

tt Event Topologies

- I energetic, isolated lepton
- 4 energetic jets (of which 2 b jets)
- missing transverse energy

"gold-plated" channel: event selection

- easy to trigger (lepton!)
- Iarge event yield
- relatively small backgrounds

"gold-plated" channel: kinematic information

- full kinematic event reconstruction possible (W, top mass constraints)
 - => top mass measurement
 - => trigger and b-tagging efficiency studies
 - => jet energy scale calibration (W->jj), jet resolution studies

tt Event Topologies

101

5% dilepton events: 2 energetic, isolated leptons of opposite charge 2 energetic b jets missing transverse energy easy to trigger (leptons!) small backgrounds (especially eµ channel) small BR not an issue(?) at the LHC but: no obvious top or W mass peaks (two neutrinos...)

44% all-hadronic events:

- 6 energetic jets (of which 2 b jets)
- no charged leptons
- no missing transverse energy
- Iarge backgrounds (multijet events!)

21% events with τ decays:

- various topologies
- additional neutrinos from τ decay

• studies of τ identification

Top Quark Production (II) LMU

Single top (or antitop) production (weak interaction)

Feynman diagrams (LO):

t+W associated production

-> top polarization, |V_{tb}|

production cross section:

Tevatron Run II pp̄, 1.96 TeV	LHC pp, 14 TeV	
 1.) 0.9 pb 2.) 2.4 pb 	10 pb 240 pb	
3.) 0.12 pb	60 pb	

smaller cross section
larger backgrounds
=> not yet seen

10/30/2006

Single Top Event Topologies LMU

Single top (or antitop) production (weak interaction)

Feynman diagrams (LO):

t+W associated production

-> top polarization, |V_{tb}|

require ≥1 leptonic W decay: • s-channel: 1 lepton, 2 b jets, missing transverse energy • t-channel: 1 lepton, 1 b jet (+forward jets), missing transverse energy • associated production: either 1 lepton, 1 b jet, 2 light jets, missing transverse energy 2 leptons (opposite charge), or 1 b jet, missing transverse energy

History of the Top Quark

1977-1995: indirect predictions (existence, mass) 1992-1996: Tevatron Run I, ppbar collisions at 1.8 TeV

- 1995: discovery at the Tevatron (ttbar production)
- basic properties (σ (ttbar), decay channels, mass)
- 2004: last Run I top mass measurement ready
- 2002-today: Tevatron Run II, ppbar collisions at 1.96 TeV
- ttbar "rediscovery"
- improved cross section
- improved properties measurements (Δm_{top} =2.1GeV)
- working on single top
- soon: LHC, pp collisions at 14 TeV
- Tevatron lessons: commissioning!, analyses
- precision measurements of top properties
- search for new physics with top quarks

• We know what the top quark looks like

Lesson 2:

• We will not observe the top quark in n minutes

Lesson 3:

• We know what we have to do to observe it

The LHC

- pp collisions at E_{CM} = 14 TeV (+heavy ion collisions)
- low luminosity phase: L ~ few x 10^{33} cm⁻²s⁻¹ (until 2009)
- high luminosity phase: L ~ 10^{34} cm⁻²s⁻¹ (from 2009) (compare Tevatron: L ~ 10^{32} cm⁻²s⁻¹)

10/30/2006

10/30/2006

The LHC

Experiments:

- ATLAS & CMS => general-purpose => top physics => this talk
- LHCb => b physics
- ALICE => heavy ion physics
- TOTEM => pp cross section, diffractive physics

ATLAS and CMS

- Tracking (|η|<2.5, B=2T):
 - Si pixels and strips
 - Transition Radiation Detector $(e/\pi \text{ separation})$
- Calorimetry ($|\eta|$ <5) :
 - EM : Pb-LAr with Accordion shape
 - HAD: Fe/scintillator (central), Cu/W-LAr (fwd)
- Muon Spectrometer (|η|<2.7):
 air-core toroids with muon chambers

- Tracking ($|\eta|$ <2.5, B=4T) :
- Si pixels / strips
- Calorimetry ($|\eta| < 5$):
 - EM : PbWO₄ crystals
 - HAD: brass/scintillator (central, end-cap), Fe/Quartz (fwd)
- Muon Spectrometer ($|\eta|$ <2.5) :
 - return yoke of solenoid instrumented with muon chambers

10/30/2006

Frank Fiedler - Top Physics at the Startup of the LHC

LMU

ATLAS and CMS

ATLAS cavern (webcam)

- Tracking ($|\eta|$ <2.5, B=2T):
 - Si pixels and strips
 - Transition Radiation Detector (e/π separation)
- Calorimetry ($|\eta|$ <5) :
 - EM : Pb-LAr with Accordion shape
 - HAD: Fe/scintillator (central), Cu/W-LAr (fwd)
- Muon Spectrometer (|η|<2.7):
 air-core toroids with muon chambers

CMS magnet test preparation

- Tracking (|n|<2.5, B=4T):
- Si pixels / strips
- Calorimetry ($|\eta|$ <5):
 - EM : PbWO₄ crystals
 - HAD: brass/scintillator (central, end-cap), Fe/Quartz (fwd)
- Muon Spectrometer ($|\eta|$ <2.5) :
 - return yoke of solenoid instrumented with muon chambers

10/30/2006

LHC Machine:

Installation:

last magnet installed: March 2007
machine closed: August 31, 2007

Commissioning Run:

first collisions: November 2007

 at injection energy: E_{CM} = 900 GeV
 luminosity: L ~ 10²⁹cm⁻²s⁻¹
 shutdown: end of 2007

Full energy:

first physics run: Spring 2008

 at energy: E_{CM} = 14 TeV
 integrated luminosity: a few fb⁻¹
 by end of 2008

Detectors:

"Phase I": cosmic rays

functioning of detectors

alignment

"Phase II": commissioning data

- tracking momentum scale
- inter-calibration of calorimeter

"Phase III": physics data

full detector calibration:
 Z->II events

ttbar events => this talk

measurements
first top results => this talk

Detector Commissioning

• "Phase I" has already started: RPC run # 1111 of sector 13

0, 1, 1, (m) 4, 1, 1, 0	

- Taking cosmic muons with L1 µ trigger
- Efficiency, noise, alignment studies of muon chambers

MDT run #1068 triggering on RPCs

ATLAS

10/30/2006

10/30/2006

Detector Commissioning

• "Phase I" has already started:

Frank Fiedler - Top Physics at the Startup of the LHC

LMU

Detector Commissioning

included: 30% data taking efficiency trigger/analysis efficiencies

LMU

10/30/2006

10/30/2006

"Phase III":

• use Z->µµ decays to calibrate muon chambers

tracking momentum scale

Z->ee decays to calibrate electromagnetic calorimeter

but: hadronic calorimeter? -> jet energies? -> missing E_T?
 b tagging? -> b-jet ID?

• => indirect method for jet energies:

1.) calibrate ECAL with Z->ee

2.) calibrate HCAL with γ +jet events (or use Z+jet events)

• => alternative: lepton+jets ttbar events!

Frank Fiedler - Top Physics at the Startup of the LHC

.let

• "Normal" selection in the lepton+jets channel (example cut values):

- I energetic isolated lepton
- ≥4 energetic jets (e.g. 0.4 cone jets)
- ≥2 b-tagged jets
- significant missing E_T
- works great for a perfect detector

E_T^{miss} > 20 GeV

 E_{T} > 40 GeV, |n| < 2.5

E_T > 20 GeV

- Scientific honesty: no detector is perfect from the start
 => educated guess on what may be wrong:
 - "perfect" lepton reconstruction (calibrated with Z->II) note: will require a lot of work on alignment, energy calibration, etc.!
 - no b tagging
 - imperfect jet energy calibration
- => demonstrate we can still find&calibrate ttbar events!

ttbar without b tagging

• assume a perfect detector except for b tagging

• purely kinematic selection:

1 isolated lepton $E_T > 20 \text{ GeV}$ exactly 4 jets (R=0.4) $E_T > 40 \text{ GeV}$ missing E_T $E_T^{miss} > 20 \text{ GeV}$

• assign jets to top and W decays:

1.) hadronic top:

Three jets with highest vector-sum p_T as the decay products of the top

2.) W boson:

Two jets in hadronic top with highest momentum in reconstructed jjj C.M. frame (do not use reconstructed jj mass to avoid biasing background spectrum) ATL-PHYS-PUB-2005-024

Selection efficiency = 5.3%

10/30/2006

ttbar without b tagging

• reconstructed mass distributions, signal only: ATL-PHYS-PUB-2005-024

10/30/2006

10/30/2006

Backgrounds: look at Tevatron experience

example: topological ttbar likelihood used by DØ

ttbar without b tagging

• including W+jets background: ATL-PHYS-PUB-2005-024 • ~ 3 times as much background W CANDIDATE • top, W mass peaks still clearly visible TOP CANDIDATE but remember! no QCD background yet perfect detector calibration e, μ Events / (5.1) m(top_{had}) . ∰450 m(W_{had}) ¥400 ______ 1850 300 $L = 300 pb^{-1}$ 400 250 full simulation: 300 200 - MC@NLO ttbar, 150 200 - ALPGEN W+jets 100 100 S/B = 0.45 50 500 350 100 120 100 150 reconstructed mass (GeV) reconstructed mass (GeV)

10/30/2006

10/30/2006

ttbar without b tagging

Frank Fiedler - Top Physics at the Startup of the LHC

27

b Tagging Calibration

Select ttbar events without using b tagging
 => calibrate b tagging efficiency

Lepton+jets events:

- S/B ratio (b jets / flavor mixture) = 1.77 with simple selection
- possible further S/B improvements (e.g., cut also on leptonic top mass)
- verification of S/B with mass peaks!

Dilepton events:

- only 2 b jets, clean sample
- careful with ISR/FSR!
- no mass peak for verification
- sample smaller
- => for cross-checks

Jet Energy Calibration

LMU

hep-ex/0403021

- Effect of mis-calibration of... jet energy: ΔΕ/Ε=1% -> Δm_{top} = 1.6 GeV jet-jet opening angle: Δcos(θ)=1% -> Δm_{top} = 1.2 GeV
- problem: a priori knowledge of jet energy calibration: O(10%) detector effects: detector commissioning physics effects: isr/fsr, underlying event
- Jet energy calibration with Z(->II)+jet events:
 -> light and b jet energy scales to 1%
- problem: energy sharing between jets systematic effect on jet-jet opening angle θ
 W mass in ttbar events shifted downwards
- => in-situ calibration using W decays in ttbar events (still have to extrapolate from light jets to b jets)

- ttbar events: source of identifiable hadronic W decays (->light quark jets)
- invariant mass of jets should yield well known W mass
- => calibrate light jet energy scale directly within ttbar events
- caution: do not use W mass for jet assignment to avoid bias
- reduction of combinatorics using b-tagging when possible

• calibrate energy scale:

rescale jet energies with a factor **a** => $m_W^2 = 2 a_1 E_{jet1} a_2 E_{jet2}$ (1-cos θ)

• fit for a as a function of raw jet energy

hep-ex/0403021

10/30/2006

• Essential ingredients for many searches: neutrinos, τ leptons • => Calibrate E_T^{miss} and τ ID with ttbar events!

More Backgrounds

- Effects of underlying event
- hard to predict for LHC
- Iarge effects
- need LHC data to study (only few events needed)

standard top mass analysis, lepton+jets channel

10/30/2006

Inputs needed for ttbar events:

- jet reconstruction efficiency (offline)
- jet energy (HCAL) inter-calibration
- underlying event studies
- charged lepton ID efficiency (trigger & offline)
- charged lepton energy/momentum scale

(dijet events) (dijet events) (from min. bias events) (from Z->11) (from Z->11)

Calibration information ttbar events can provide:

- b-tagging efficiency
- Iight jet energy scale, jet-jet opening angle calibration
- E_T^{miss} calibration
- τ ID efficiency

=> First physics measurements:

- relative cross-section $\sigma(\text{ttbar})/\sigma(W)$
- top quark mass (will take time to beat the Tevatron) -> this talk
- single top discovery/confirmation

First Top Measurements

- Top mass measurement with a calibrated detector
- Effect of b tagging:

LMU

Top Quark Mass

Lepton+jets channel: 1-tag(T): 105 events 2-tag: 38 events 14 12 10 10 8 10 10 Events/(15 GeV/c²) Events/(15 GeV/c²) 25 20 • hadronic top mass: Data 15Ē Signal + Bkgd 10 🔆 🕅 Bkad only most straightforward technique 200 250 300 350 400 150 150 200 250 300 350 400 m^{reco} (GeV/c²) m^{reco} (GeV/c²) 61 events • kinematic fit: 1-tag(L): 61 events 0-tag: 97 events Events/(15 GeV/c²) Events/(15 GeV/c² 10Ē also use leptonic side 8 -> reduced statistical error -> Tevatron 200 250 300 350 400 150 200 250 300 350 400 100 m^{reco} (GeV/c²) m^{reco} (GeV/c²) • Matrix Element / Dynamical Likelihood:

integrate over all possible final states best possible statistical error

-> Tevatron

-> too computing intensive for m_{top} @ LHC (?)

=> Ideogram technique (CMS)

events with large p_T(top)

independent systematics

hep-ex/0609053

CDF Run II Preliminary (680 pb)

10/30/2006

Top Quark Mass

10/30/2006

• statistical error: 0.05-0.25 GeV with 10 fb⁻¹ -> not dominant!

=> study (and reduce) systematic errors; other measurement techniques

• Kinematic fit for the top quark mass:

=> reduced uncertainty from fsr modeling

- Selection of high p_T top quarks:
 - => independent systematic errors => combination

uncertainty	hadronic	kinematic	high-p _T	
uncertainty	top	fit	top	
light-jet energy scale (1%)	0.2	0.2		
b-jet energy scale (1%)	0.7	0.7		
final state radiation	1.0	0.5	0.1	
mass rescaling			0.9	
underlying event			1.3	
CR, m _{top} definition	$O(\Lambda_{QCD})$	$O(\Lambda_{QCD})$	$O(\Lambda_{QCD})$	-> studies needed
total	1.3	0.9	1.6	

10/30/2006

Top Quark Mass

Dilepton channel:

very clean channel

but 2 neutrinos: no direct m_{top} measurement possible

• Weighting technique:

assume m_{top} value reconstruct event kinematics assign event weight according to MC distributions

evaluate weights for different m_{top} hypotheses

-> largest systematics: PDF modeling (1.2 GeV, ATLAS), JES (1 GeV, CMS)

• <u>Matrix Element technique</u>:

integrate over all possible final states

-> Tevatron

10/30/2006

All-hadronic channel:

very large multijet background

~3 GeV systematic error from FSR modeling hep-ex/0403021

Summary and Outlook

10/30/2006

Backup Slides

10/30/2006

ATLAS and CMS

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_{T} \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

Completion of the detectors:

Detector performance:

	Expected performance day 1	Physics samples to improve (examples)
ECAL uniformity e/γ scale	~ 1% (ATLAS), 4% (CMS) 1-2 % ?	Minimum-bias, Z→ ee Z → ee
HCAL uniformity Jet scale	2-3 % < 10%	Single pions, QCD jets Z (\rightarrow II) +1j, W \rightarrow jj in tt events
Tracking alignment	20-500 µm in Rø?	Generic tracks, isolated μ , $Z \rightarrow \mu \mu$

Ultimate statistical precision achievable after few days of operation. Then face systematics E.g. : tracker alignment : 100 μ m (1 month) \rightarrow 20 μ m (4 months) \rightarrow 5 μ m (1 year) ?

10/30/2006

b-Tagging Studies

10/30/2006

Frank Fiedler - Top Physics at the Startup of the LHC

LMU

 Systematic errors on the ttbar cross section measurement with 10 fb⁻¹: (largest contributions)

Uncertainty	lepton+jets	dilepton	CMS Physics TDR Vol II
light jet energy scale	1.6%		
b jet energy scale	1.6%	3.6%	
b tagging (conservative)	7.0%	3.8%	
pileup	3.2%	3.6%	
underlying event	0.8%	4.1%	
b fragmentation	1.0%	5.1%	
PDF uncertainties	3.4%	5.2%	
integrated luminosity	3%	3%	

Monte Carlo Tools

- MC@NLO: NLO Monte Carlo
 - Matching NLO calculations of QCD process with parton shower MC
 - Total rates are accurate to NLO
 - Hard emissions treated as in NLO computations
 - Soft/collinear emissions handled by MC shower
 - No 'double counting' between these

p_T(ttbar):

- ${\scriptstyle \bullet}$ Herwig and MC@NLO agree at low ${\rm p}_{\rm T}$
- MC@NLO harder at large p_T