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A. EXTENSION OF THE ENERGY BAND THEORY

1. The application of energy band theory to antiferromagnetism is being considered,

with particular application to MnO and related oxides which have been studied by neutron

diffraction by Shull at Oak Ridge. At least some of these antiferromagnetic oxides, NiO

in particular, are semiconductors or insulators, and Mott (1) has assumed that this

means that the energy band method is inapplicable to them, on the assumption that the

energy band theory would lead to a single band for the 3d electrons, capable of holding

ten such electrons, whereas NiO has only eight 3d electrons per Ni atom. Hence he con-

siders that the band would be only partly filled, and NiO should be a conductor. To

investigate this situation, the writer is looking into possible sources of splitting the 3d

band into sub-bands, such that the available electrons in NiO would just fill certain sub-

bands, leaving an energy gap below the next empty bands, and being an insulator. Two

sources of splitting into sub-bands are being considered. First, in a ferromagnetic or

antiferromagnetic material, different Hartree-Fock potentials should be used for the

electrons of the two spins. The exchange correction to the potential for an electron of

given spin depends on the density of electrons of that spin; and if there is an unbalanced

magnetic moment in an atom, the Hartree-Fock potential for electrons of the spin

pointing in the direction of this magnetic moment is lower than for electrons with oppo-

site spin. This correction is usually considered only as a perturbation energy, in con-

nection with multiplet calculations, but should properly come into the potential and hence

the Schr6dinger equation. In an antiferromagnetic, then, in which the spins show a unit

cell twice as great in each direction as is shown by the ordinary crystal structure, the

Hartree-Fock potential for electrons of a given spin will likewise show this double unit

cell. This in turn will split the energy bands in two, the lower sub-band accommodating

five d electrons per atom of one spin, the other one accommodating five of the other spin.

MnO is a particularly simple case, since it contains just five 3d electrons per atom,

which presumably fill the lower sub-band. Self-consistent field calculations are being

made for MnO, and have been carried far enough to see that this splitting of the band

will have a magnitude of the order of a number of volts. The calculations also have been

carried far enough to show that the 3d electrons of Mn have wave functions which overlap

the oxygen atoms so much that it is not hard to see why an Mn atom can have antiferro-

magnetic interactions with neighbors at a considerable distance.

A second source of splitting of the 3d band into sub-bands, which presumably is

operative in NiO, is that arising from the cubic field in the crystal (which has the NaCl
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structure). This would split the band into one sub-band holding three electrons, another

holding two. It seems not inconceivable that in NiO the latter lies highest and is empty,

leaving a gap between it and the lower filled levels, and hence explaining the insulating

property. Detailed calculations have not yet been made.

2. The splitting of the d band in a cubic field is being looked into by

Mr. W. H. Kleiner, in connection with the problem of paramagnetic resonance in the

potassium and ammonium chrome alums, under investigation by Prof. Kip and students.

The theory of this splitting has so far been investigated only from the standpoint of the

group theory, by Bethe, and by Van Vleck and his school. To get a better physical

insight into the problem, we are starting with the one-electron 3d functions, with their

splitting in a cubic field (such as one approximately has in the alums on account of the

six water molecules surrounding the Cr + ++ ion) into a three-fold and a two-fold level,

as mentioned in the preceding section. Starting with these one-electron functions, we

are building up the whole multiplet theory, as in ordinary spectrum theory, with the

addition of the cubic perturbation and eventually of other perturbations as well. It is

hoped in this way that it may be possible to throw light on certain complications which

Prof. Kip is finding in the experiments. At the same time, we hope to make a close

connection between the paramagnetic theory and the antiferromagnetic case, in each of

which the iron group ion is surrounded by six neighboring oxygen ions, in about the same

arrangement. It is hoped that the perturbed multiplet structure derived from this theory

may be applied to the study of the absorption spectra of the iron group salts. They, of

course, are known to show bright colors.

3. Considerable attention is being given to the problem of the solution of the

Schr6dinger equation in a crystal. As a first step, to make the problem spherically

symmetrical, we can imagine averaging the potential acting on an electron in the neigh-

borhood of an atom or ion in the crystal over spheres with the atom as a center, and

solving Schr6dinger's equation in the resulting spherically symmetrical field. This is

presumably the best starting point for a calculation of wave functions in the periodic

potential by the cellular method introduced by the writer in 1934; it also is the best

starting point for wave functions for studying the effect of a cubic field, as in the pre-

ceding paragraph.

This method can also be used for an atom in a liquid, where the averaging over orien-

tations is practically necessary, and the method is being applied by Miss Hilda Hsieh,

under the direction of Prof. P. M. Morse, to the problem of a very dense gas of a light

element, so dense that the electrons are forced out of quantized levels into an energy

band. A self-consistent problem is being solved, using a spherically averaged potential,

so that the electrons reduce to a free electron gas at a distance from the atom in ques-

tion. A solution then is found for the potential and charge density in the atom, independ-

ent of its neighbors.
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It seems not impossible that this method may have some application to the electronic

structure of an atom of one metal immersed in another metal, in an alloy. X-ray

evidence, particularly from Miss Cauchois, has recently shown that the emission spec-

trum of such an atom in an alloy is almost identical with that of the same atom in a pure

metal, as if it carried its electronic structure around with it when it was alloyed. A

method like that being used by Miss Hsieh gives information about the behavior of a

single atom immersed in a sea of others, without regard to the precise arrangement of

the others, and this may be what is wanted for this problem.

4. L6wdin (2) has recently suggested the use of orthogonal atomic orbitals for

molecular calculations. These orbitals are similar to those introduced by Wannier in

1936 for the study of crystal problems. Since most of the difficulty associated with the

Heitler-London method for molecules arises on account of the nonorthogonality of atomic

orbitals, it is an attractive possibility, suggested by L6wdin, that if we set up a Heitler-

London method starting with the orthogonal atomic orbitals instead of the usual functions,

we might avoid these difficulties. The writer has looked into this possibility, and finds

that unfortunately it does not work out. By using the simple case of the hydrogen mole-

cule as an example, we show that one can, it is true, set up a formal analogy to the

Heitler-London theory, but the state which in that theory is the ground state of the mole-

cule proves in this revised theory to show no molecular binding at all. The reasons for

this, together with various interesting relations between the molecular orbital method

and the Heitler-London method, are discussed by the writer in a note submitted to the

Journal of Chemical Physics.
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B. SELF-CONSISTENT CALCULATIONS FOR Cu +

The calculation of the self-consistent field for Cu has been completed. The results

obtained are based upon the atomic wave functions furnished by the differential analyzer.

These wave functions can be improved considerably by supplementing the work of the

analyzer by a method to be mentioned later. The object of the self-consistent method is

to achieve an agreement between the assumed potential field of the atom and the poten-

tial field calculated on the basis of this assumption. The following table indicates the

results obtained.
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Log r Initial 2Z Calculated 2Z
p p

-4.20 54. 10 53.79

-3. 20 48.80 48. 78

-2.80 45.28 44.04

-2.00 35.46 33.51

-1.20 22.95 22.05

-0.60 12.47 12.54

0.00 4.72 5.02

A great deal of work has been done in examining methods by which the results given
by the differential analyzer might be improved. One can, of course, write Schr6dinger's

equation in the form of a set of simultaneous difference equations. This method has been
studied and some valuable conclusions drawn as to the effect of the interval between suc-
cessive points on the final result. On the whole, however, this method did not prove
satisfactory. One can solve Schr6dinger's equation as an integral equation and refine

the results by iteration. This method has been closely examined and shows considerable

promise. The main advantage of this scheme from the computing point of view is the

ease of hand computation and the rapidity of convergence of the iterated wave functions.

Further work is being done on this method.

An inquiry has been conducted in an effort to find the most efficient combination of
methods and high-speed computing machines for the purpose of self-consistent field cal-
culations. One must, in such an investigation, break down the solution of the differential

equation involved into a series of mechanical steps which can be duplicated by digital or
analog machines. These so-called algebraised procedures must be tested by hand calcu-
lation before one attempts to program them for a particular machine.

Four methods for solving Schr6dinger's equation have been examined. They are the
simultaneous difference equations method, the direct numerical integration of

Schr6dinger's equation, the method of iterated integral equations, and the Runge-Kutta
method. The evaluation of these methods is nearing completion and it is hoped that the
results obtained will make possible self-consistent calculations for a large number of
complex atoms. G. W. Pratt, Jr.

C. ENERGY BANDS IN SOLIDS

The determinantal equation given in the Quarterly Progress Report, October 15,

1950, has been found to be incorrect. As was pointed out by the writer then, this equa-

tion is the solution of the boundary-value problem involved in Slater's method (i. e. the

electronic wave functions and their radial derivatives are made continuous at the bounda-

ries of the spheres surrounding the atoms of the crystal). On the other hand, this equa-

tion gives no assurance that the wave functions will satisfy Schr6dinger's equation in the
regions outside the spheres, and therefore must be considered wrong.
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Slater's solution (see Phys. Rev. 51, 846, 1937) does not suffer from this defect and

is quite correct. It can be shown that it gives the correct free-electron energy depend-

ence in the case of the empty lattice (i. e. constant potential).

The practical value of Slater's method in numerical calculation will be dependent

upon the rapidity with which the roots of his determinantal equation converge (as the

order of the determinant is increased). For energies where the wave vector has some

of the symmetries of the reciprocal lattice, this convergence can be greatly facilitated

by a suitable transformation of the determinant. In general, however, it appears that

the question of convergence must be settled by testing each particular case numerically.

At present calculations are beginning on the lithium crystal. R. H. Parmenter

D. THEORY OF MOLECULAR OXYGEN

As is usual in problems of multiplet structure, we are concerned with the solution

of a secular equation obtained from the condition that a linear combination of certain

many-electron determinantal wave functions be an eigenfunction of our molecular

Hamiltonian. The elements of these determinants are single-electron wave functions;

out of the set of 2p atomic wave functions we form what we consider suitable molecular

wave functions with which we perform the perturbation calculation.

The use of a Heitler-London method means that we take as our molecular functions

the atomic functions themselves; we assign each electron to a hydrogenic orbital cen-

tered about one of the ion cores. Using the notation

- KrA - KrB
2 , 2

Po -- rA cos A e Po rB cos 0 B ep ~rA A o B s Be

- KrA - KrB
2 " , 2 "i

p++ rA sin 0A e 2 ei  p+ rB sin B e ei

-KrA -KrB

2 -i9 2 -i4
p_ •r A sin 0A e e p_ -rB sin B e e

where A and B denote the ion cores, the elements of our antisymmetrical many-electron

wave functions are simply a selection of eight of these atomic orbitals multiplied by spin

functions. The trouble with this approach is that we have to use nonorthogonal functions;

keeping track of overlap integrals becomes a bewildering job in the attempt to formulate

the secular determinant completely.

It is always possible to construct orthogonal functions from a set of nonorthogonal

functions by taking appropriate linear combinations. Replacement of the atomic orbitals

by orthogonal functions constructed in this way must give the same answers to the
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complete solution of the secular equation. We are only performing an identity operation

on any determinantal wave function by adding multiples of rows or columns. We shall

discuss two ways of getting orthogonal functions from the nonorthogonal atomic function;

the Bloch-Mulliken method of linear combinations of atomic orbitals (1. c. a. o. 's) and the

introduction of orthogonalized atomic orbitals (o. a. o. 's).

Consider Po and Po We want two linear combinations of these which shall be orthogo-

nal to one another.

ap o + b po

cpo + d Po

Each of these functions is already an eigenfunction of L , the z-component of total orbi-

tal angular momentum. The demands for orthogonality and normalization give three

equations for the four coefficients. The fourth equation will be that one which tells how

these functions behave under the interchange of nuclei. We derive the 1. c. a. o. 's by

stipulating that one function be symmetrical, the other antisymmetrical under this opera-

tion:

o = e (Po P)

X =f(P -- p')

The o. a. o. 's are derived by the requirement that the interchange of nuclei sends one

function into the other.

ao = 011 o + 12 Po

a co= 1 2 po +c 1 1 o

The o. a. o. 's bear the same relation to the 1. c. a. o. 's as do the spin eigenfunctions of

a- to those of ao. Physically, an 1. c. a. o. represents charge distributed equally betweenx z
the two ion cores. As for the o. a. o. 's, we choose the roots of an ensuing quadratic

equation such that c 11 1 and cl 2 - 0 as the internuclear distance becomes infinite. In

this way we retain the Heitler-London character of our set-up; the charge distribution

favors one ion core, and correspondence with the separated atom state can be seen by

inspection. Moreover, the writing down of matrix elements using o. a. o. 's appears to

be simpler. In any case the perturbation problem has been set up using them.

Work has progressed to the point where calculation of integrals is called for. The

difficult integrals are those in which the integrand is a product of wave functions cen-

tered about different nuclei. The use of ellipsoidal coordinates for certain integrals and

the technique of expansion about one core of the wave function centered about the other

core for the others should get them all evaluated. A. Meckler
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E. ON THE FERROELECTRICITY OF THE TiO6 COMPLEX

It has been suggested that in BaTiO3 the spontaneous polarization arises from a

combination of the high polarizability of the TiO6 octahedra with the (rather high) polariz-

ability of the BaO (see reference 1 and 2). Moreover, it is evident that the BaO is

relatively unimportant in its effect on the dielectric constant, for the isomorphous

replacement of barium by strontium has little effect on the critical temperature, after

correction is made for the change of volume with substitution (3). This result is con-

firmed by the detailed calculations of Slater (4), which showed that, at the critical tem-

perature, the polarization resulting from the barium ions was about five percent of the

total polarization in magnitude, but opposite in direction. It was thought to be of interest,

therefore, to compute the dielectric constant of a fluid of (hypothetical) TiO6 complexes,

to see whether this complex alone can give rise to ferroelectric behavior. In this compu-

tation Slater's method is used to obtain exactly the Lorentz correction for the interaction

of the atoms of a given complex with one another, but the usual isotropic Lorentz cor-

rection is used for the interaction of different complexes. The complexes are practically

spherical in shape, and so the isotropic Lorentz correction can be expected to apply to

this situation.

In applying Slater's method to this problem, we start by writing the effective or local

field acting on each atom of the complex in the form

2
1 3p.* r.. r.. -r. p.

Field on atom i = E + 4 1r ii 3i i,j =,...,7 (1)

o ji rij

where the electric dipole moment pj of atom j is given by

p = (polarizability of atom j) (field on atom j) (2)

and mks units are used throughout. (To transform to Gaussian units we simple replace

I/Eo by 4rw.) The polarizability of the titanium atom is the sum of the electronic polariz-

ability aTi and the ionic polarizability aTi, whereas that of the oxygen atoms is taken to

be just the electronic polarizability a . In the numerical work which follows, the elec-

tronic polarizabilities were assumed, following Slater, to be

aTi -24 3 ao -24 3
- 2. 34 X 10 cm , - 30.0 X 10 cm

E
o o

and the ratio of ionic to electronic polarizability of titanium was introduced as a para-

meter, aTi/aTi = X. (For BaTiO 3 , Slater found that X = 5.09.)

The TiO6 complex has such symmetry (octahedral) that the polarizability ellipsoid

reduces to a sphere, and so it suffices to solve Eqs. 1 and 2 for the special case in
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which the applied field is along a Ti-O bond direction. We introduce a cartesian coordi-

nate system with origin at the titanium atom and Z-axis in the field direction; then we

must distinguish between the two oxygen atoms at (0, 0, + I), which we call oxygen

atoms of type a, and the other four, which we call oxygen atoms of type b. Under these

conditions Eqs. I and 2 reduce to the following:

(1 + k) aTi 4
PTi = (1 + )aTi E + X)T (pa - POb

4x 3 O O
O

POa =

POb =

o 1
S4T 3 (2pTi

o 1so 3

0

with all dipole moments in the field direction.

The solution of this last set of equations is

Q Ti ( + XTi) 4+ +4[- 1
Ti (4 3 E) 8

(4T laO3 E)

Q~ POa
Oa a

(41T I E)

POb
Qob

(4rr 1
3

E E)

S + 8 / +1 X + 2(1
8 o

1 1
4POa ' ObF2

1 4 JZ+ 1
2 1 POa POb
21-2 8

39 + 92 I 2
o 32 o

+ ) XTi 47-2 (
4

X•o )( - 1 47 - 2
= 1 + Xo - (1 + X) XTi 4 (1

+ k) XTi X

+ X) XTi X

(5)

where

aTi
X Ti = Ti , X

(4r E13)

and

4r2 v-- 1 4X J +9

8 o 32

o

(41T E 3

X - 12(1 + X) X X
o Ti o
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For later numerical work we take I = 2.00 A, the spacing in barium titanate; hence

XTi = 0.0233, X = 0. 298. The field E in Eqs. 5 is of course the local field acting on

the complex. As discussed above, it is related to the external field Eex t by the usual

isotropic Lorentz correction E = Eext + P/(3 Eo), where P = n(PTi + 2 PO a + 4POb) and n

is the number of complexes per unit volume. Eliminating E, we find

P n(47 3 )(QTi + 2 QOa + 4 QOb)
= -1 = (7)

EE 1 3o ext 1 n (4 r ) + 2Q + 4Q )

The vanishing of the denominator of Eq. 7 is of course the condition for ferroelec-

tricity, and provides a relationship between the number of complexes per unit volume,

n, and the ratio of ionic to electronic polarizability of titanium, X. Expressing n in

terms of the equivalent radius R of the complex (1/n = 4TwR3/3), we obtain the values of

X given in Table I. The other columns of this table are the relative contributions to the

polarization P from the titanium ionic polarizability (PTi), the titanium electronic polar-

izability (PTi), and the electronic polarizability of the two type a oxygen atoms (2POa)
and the four type b oxygen atoms (4POb), respectively.

Table 1

R(A) PTi PTi 2POa 4POb

2. 6 3.57 0.083 0.023 0.478 0.416

2. 68 5.09 0. 129 0.025 0.507 0. 338

2.8 6. 73 0. 192 0.029 0.546 0.232

3.0 8.42 0.271 0.032 0.602 0.093
3.2 9.45 0.337 0.036 0.638 -0.011

3.4 10.14 0.384 0.038 0.663 -0.083

Slater's analysis of barium titanate showed that X = 5. 09, so we should expect X to be

close to that value here. The value R = 2. 6 A corresponds to no voids in the fluid (based

on conventional ionic radii (ref. 5) RTi = 0. 68 A, R O = 1.40 A), and the value R = 3. 4 A

corresponds to the smallest sphere which will circumscribe the entire structure and

hence represents a situation in which a considerable part of the space is taken up by

voids. For k = 5.09 the former case corresponds to ferroelectric behavior, the latter

does not. We might imagine that the complex would have an equivalent radius of 2. 9 to

3. 0 A, for which Eq. 7 gives a dielectric constant of ten to twelve. This calculation

therefore makes it appear that a fluid of TiO6 complexes would have an abnormally high

dielectric constant but would probably not be ferroelectric.
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F. FERROELECTRICITY IN THE ILMENITE STRUCTURE-

Single crystals of LiNbO 3 and LiTaO3 were found to be ferroelectric by Matthias and

Remeika (1). These crystals belong to the trigonal system, and have the following lattice

parameters: LiNbO 3, a = 5.47 kx, a = 550 43'; LiTaO 3, a = 5.49 kx, a = 56. 50

Their structure is the ilmenite structure, space group C 2
i , with Li at + (uuu), Nb or Ta

at + (vvv), and O at + (xyz), + (yzx), + (zxy). The parameters u, v, x, y, z, are not

known for either of these crystals; but the ilmenite structure is closely related to the

corundum structure, and so the parameters for the "ideal" case of the corundum-type

structure will be used in the following: u = 1/3, v = 1/6, x = 7/12, y = -1/12, z = 1/4.

In addition the intermediate angle a = 560 is used for the computations which follow.

The Slater method for evaluating the Lorentz correction (2) is being applied. In this

method the field of a lattice of dipoles is first obtained at the positions of the atoms, and

then the dipole moment of each atom is put equal to the product of the polarizability and

the total field at the position of the atom. The set of equations thus obtained can be

solved for the polarization of each kind of atom. These equations are

P. - EE + D.. P.
X ' o y 1j j

1

where P. is the polarization of the ith lattice of atoms, Xi = ai/ 0 v with a the polariza-

bility of atom i and v the volume of the unit cell, and Dij = D(r i) is a dyadic:

D v 1 (3RR - RI)
ij 4TWx R5

with R = r. - r 1 , r1 a direct lattice vector.

The D.. have been evaluated by the method of Ewald and partially checked; those

given below have been checked for two values of the arbitrary parameter introduced by

Ewald and so are almost certainly correct. They are:
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Dii (000) = 0. 354650 (ii + jj) + 0. 290699 kk

D.j ( ) = -0. 335106 (ii + jj) + 1. 670211 kk

111
D. (1 ) = 0.706082 (ii + jj) - 0.412163 kk

111Di ( 2 ) = 0. 291328 (ii + jj) + 0. 417345 kk

Here k is a unit vector in the direction of al + a2 ± a 3, i is a perpendicular unit vector

in the plane of k and a l such that i * a > 0, and j = k x i. The remaining Dij have been

computed but not yet checked; they will be reported later. It is interesting to note from
D. (1 ) that the interaction of Li and Nb or Ta is enhanced by a factor of more than

five compared with the isotropic value, for polarizations along the three-fold (k) axis.
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G. IONS IN A CUBIC ELECTRIC FIELD

An investigation is being made of the effect of a cubically symmetrical electrostatic

potential of the form A(x 4 + y4 + z4 _ 3/5 r 4 ) on the energy levels of ions of the iron

group. The wave functions used are linear combinations of antisymmetrized, one-

particle wave functions, including spin, which are diagonal with respect to the total spin

and total orbital angular momenta. The d2 configuration is now being examined. The

d 3 configuration is of particular interest in that Prof. A. F. Kip and Mr. C. F. Davis

have made an intensive investigation of Cr in single chrome alum crystals using

microwave techniques. This configuration will be examined presently.

W. H. Kleiner

H. SOFT X-RAY VACUUM SPECTROGRAPH

We have succeeded in obtaining the emission band of aluminum corresponding to the
valence band-2p transition. The curve of Fig. III-1 is a direct recording on an

Esterline-Angus recording milliammeter of the photon counting rate as a function of the

position of the photomultiplier along the Rowland circle. The driving mechanism of the

recording meter is mechanically coupled to the lead screw which moves the photomulti-

plier. The bombardment potential and current were 560 volts and 2. 5 ma, respectively.

The aluminum was prepared by evaporation of high-purity wire from a tantalum cup; the

surface of the target was maintained at approximately 100'C by water cooling. The
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image and object slits were adjusted to give a resolution of approximately 1. 0 A or

0.4 ev in terms of transition energies. While runs taken at five-minute intervals after

evaporation indicate a gradual contamination of the surface, probably a result of oxida-

tion, the similarity of the first two or three curves indicates that the initial run repre-

sents a sufficipntly clean surface Thp

results are in excellent agreement with pre-

vious work on aluminum in this wavelength

range (1, 2, 3).

The curve of Fig. III-2 shows the number

of s electrons in aluminum as a function of

the energy. This curve is obtained by
lottin++; +the o2ri, ;" I f F -1 4 TTT

against photon energy in electron volts,

having altered the height by division by a
S, r . , factor proportional to E . This alteration

WAVE LENGTH IN A

is necessary since the spectrograph sees
Fig. III-1 Photon counting-rate as a func-
tion of wavelength for aluminum. Full equal increments of wavelength as it records,
scale deflection is 500 counts per second. rather than equal increments of energy, and

the transition probability of any electron is
4also a function of the energy. The over-all correction thus becomes E4. (See reference

2 for a thorough discussion of this conversion. ) The small irregularities in the original
curve are a result of the randomness of the counting rate and have therefore been

smoothed.

N

EXPERIMENTAL CURVE

PROBABLE ZONE SHAPE

J/

/ /

I // \
I /

II I \
/~ ,/

60 62 64 66 68 70 72 74

E(ELECTRON-VOLTS)

Fig. III-2 Number of s electrons per unit energy range in aluminum.
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The dashed lines in Fig. III-2 are the probable Brillouin zone shapes, as deduced

from the work of Matyas (4) on the electronic structure of aluminum, and Jones, Mott,

Skinner (5) on the relative densities of s and p electrons in electronic energy bands.

We now have some tentative data on magnesium and plan to study several other

metals of the light elements. Future work will include a study of the complete iron

transition group.

As an alternative to preparation of samples by evaporation we have under construc-

tion a mechanical device with which we hope to clean the surface of the metal by

scraping.
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I. PARAMAGNETIC RESONANCE EXPERIMENTS

We have continued our investigations on single crystals of paramagnetic salts. Our

recent work has been concentrated on investigations of ammonium chrome alum below

the transition which occurs at about 80 0 K. The simple theory worked out originally by

P. Weiss (1) gives good agreement above the transition temperature for all of the chrome

alums investigated. This theory involves the perturbation of the lowest energy levels of

the Cr i6n by the surrounding crystalline electric field. Agreement with experimental

results is given by assuming an electric field of cubic symmetry plus a small axial field

of trigonal symmetry. Below the transition in ammonium chrome alum, this theory no

longer can be fitted to experimental results. In an effort to understand the nature of the

crystalline field below the transition we are extending our measurements.

We have added to our earlier measurements at 3-cm microwave frequencies, meas-

urements in the region of 1 cm. The first measurements at this frequency were made

with the use of a large electromagnet kindly loaned to us by Prof. F. Bitter. On the

basis of results with this magnet, in which the field could be carried up to 15, 000 gauss,

we have modified our own magnet so that we can reach 10, 000 gauss, which turns out to

be as high a field as we need.

We are now measuring the ammonium chrome alum spectrum at 1, 3 and 5 cm, using

various angles of orientation of the crystal. It is hoped that careful study of the indi-

vidual lines will allow a more complete understanding of the nature of the crystalline
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fields below the transition.

Description of other work in progress will be postponed until the next report, since

no significant new results have yet been obtained.

A. F. Kip, C. F. Davis, Jr., W. Kleiner, R. Weinstein
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