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A. ELECTRON-EMISSION PROBLEMS

1. Thermionic Work Function and Conductivity

of Oxide-Coated Cathodes

A combination of research on thermionic emission and conductivity

enables one to investigate the electron band structure of oxide-coated

cathodes. During the past year W. E. Mutter carried out on a well-activated

cathode some experiments which reveal a thermionic work function of 1.40 ev

and a conductivity activation energy of 1.22 ev. Below 650*K a low tempera-

ture slope of 0.13 ev was observed on his conductivity curve. A similar-

low temperature slope of 0.1 - 0.2 ev for temperatures in the range between

6000K and 800 0K has been reported by the Philips Laboratories (1). To

explain this break, Vink, the experimenter, thinks that there are two con-

duction processes going on. Below 800*K, electron conduction through ad-

joining particles of the coating dominates. Above 8000 K, conduction by

electrons passing in the pores between the particles dominates.

In disagreement with this hypothesis Mutter found no changes in con-

ductivity measurements made with the cathode in vacuum and in helium at a

pressure of one atmosphere, where the mean free path of low energy electrons

is only 10 cm. This indicates that the conductivity takes place through

the coating particles and not by thermionic emission between the particles.

In this case a possible explanation for the break can be that electron traps

have two electrons associated with them and give up the first electron to

correspond with the low temperature slope, and the second electron to pro-

duce the larger slope.

An anomaly observed by Mutter in the case of an oxygen-deactivated

oxide-coated cathode has led to an experiment wherein therelation between

the thermionic work function and the conductivity activation energy will be

studied as the degree of activation of the cathode is varied. Mutter em-

ployed a split-cathode to measure the conductivity. He found that the

thermionic work function was 2.36 ev, while the conductivity activation

energy was 3.40 ev for the deactivated state.

In the present case conductivity will be measured using both the
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split-cathode and the probe methods in the same tube. These measurements

will be compared over a wide temperature range including the region extending

far below the observed low temperature break.

The tube to be used is almost completed. It involves a gravity-con-

trolled sliding anode and a cylindrical cathode. The cathode has a ring

gap in the base metal as well as a probe wire running half-way along the

coating. The cathode remains the only unfinished element of the tube.

R. T. Watson

2. Thermionic Emission from Ultrafine-Grain

Oxide-Coated Filaments

Two projection tubes have been completed for visual study of thermionic

emission from the filaments described in the Progress Report of October 15,

1949. These tubes have cylindrical geometry. The phosphor is coated on

the inside of a 50-mm pyrex envelope. The emitter is held under tension at

the axis of the tube; the collector is parallel to the axis and near the

edge of the envelope.

The general experimental procedure which has been used is as follows.

The emitter is a polished tungsten wire in which single crystals have been

grown by heating. A photograph is taken of the tungsten emission pattern.

The tungsten wire is removed, coated cataphoretically with barium and

strontium carbonates, then returned to the tube. After activation a photo-

graph is made of the emission pattern from the oxide coating. The purpose

of these steps is to find whether or not the emission from the coating is

influenced by the crystallographic structure of the base metal.

The phosphor used is zinc sulphide, silver-activated. This material

has a peak in its emission spectrum at about 440 mL. In order to apply the

phosphor, the inside surface of the cleaned pyrex envelope is first washed

with a 10-percent solution of potassium silicate. After a 5-minute drying

in air the surface becomes sufficiently tacky, and the powdered phosphor is

blown in. The coating is then hardened by baking in air at 300*C. This

process may be repeated if a thicker coating is desired.

The collector is a 1/4-inch spring of 15-mil tungsten with a pitch of

40 turns to the inch. This spring is stretched between two press leads

which are 4.5 in. apart. The construction is such that the spring may be

outgassed by passing current through it. The emitter (or base metal in the

coated cases) is of No. 218 tungsten wire. This wire is 5 mils in diameter

originally but,after polishing, the diameter has decreased to about 4 mils.

The oxide coating is about 1 mil thick.
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Tube No. 1 was given a single coating of phosphor. The single crystals

were grown in the tungsten wire by passing an a-c current through it. The

temperature was raised to 18000K for an hour, 1900°K for an hour, and so on

to 26000K. The pattern was observed by applying 4000 volts to the collector.

This heat treatment resulted in two single crystals of about 3.5 in. and

1.5 in., respectively. Using Nichol's data one could recognize the peaks of

emission from the 111 and 116 planes, and the minima from the 110 and 112

planes. No minimum was seen at the 100 direction. Photographs were made

using Verichrome film and a Wratten 04 (deep-blue) filter. After coating

the wire, further photographs were made, this time with no filter. The

emission observed was reasonably uniform and showed no evidence whatsoever

of the tungsten pattern.

In tube No. 2 the same procedure was followed with the exceptions that

the glass envelope had a double coating of phosphor, and the single crystals

were grown by maintaining the tungsten wire at 20000K for 45 hours. In this

case there were about six single crystals in the tungsten filament, varying

in length from 1/2 in. to 1 in. The tungsten pattern could be recognized

as in the case of tube No. 1. After coating the wire the emission pattern

once again showed no evidence of an effect from the crystallographic struc-

ture of the base metal.

These results are Judged sufficiently conclusive to make the projection-

tube studies complete. A tube is now being designed for the purpose of

making the velocity-distribution measurements mentioned in the Progress

Report of July 15, 1949. C. P. Hadley

3. Deterioration of Oxide-Coated Cathodes

under Low Duty-Factor Operation

The tubes described in the Progress Report of October 15, 1949 have

been aged according to the plan outlined and show the following results:

a. Interface resistance

Up to 1557 hours, only four tubes had developed cathode interface re-

sistance. Two of these were from panel III, the other two from panel IV.

b. Pulsed emission

The results of the pulsed emission measurements are plotted in Fig. I-i.

They are normalized to the average currents at zero-hours life (approxi-

mately 0.5 amp/cm 2 at the reduced cathode temperature of 9400K and an

anode voltage of 250 volts). The pulsed emission was measured at zero- and

284-hours life by a l-msec, 250-volt pulse, repeated at a rate of one per
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second. This was found to affect the state of the cathode, as was evidenced
by the d-c emission measurements. All subsequent pulsed emission measure-
ments were therefore made with a single 1-msec pulse, viewed on a long-
persistence synchroscope.
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Fig. I-1 Results of pulsed emission measurements.

(1) Pulse shapes

For panels I and II, the emission pulses have been observed to be
square; the emission shows no time variation during the pulse. For nearly
all tubes of panels III and IV, however, the emission is observed to increase
during the pulse, as in Fig. I-2. A plot of log 1~2 - 12 vs. time, as in

200

TIME (psec) ----C

Fig. I-2 Pulsed emission vs. time. Tube IV-9 (1557 hours).
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Fig. I-3 yields a straight line within the experimental uncertainty.
When we recall that the theoretical expression for the emission current

from an oxide-coated cathode may be expressed as

j = A(T) ni/2 e-e/

where nb is the number of activation centers per unit volume, we see that

the behavior observed could be explained if nb varied with time during the

pulse as
nb = nbo + C(1 - et)

where C = 0 for t < 0, but C = constant independent of time for t > O. In

the simple semiconductor model of the oxide-coated cathode, the conductivity

is given by an expression of the form

a -= A'(T) ni/2 e-A/2kT

Fig. I-3 Log 2 12J vs. time (from

Fig. 1-2). Tube IV (1557 hours).

TIME ([psec) -

Thus, if nb were varying with time,

E = J/= A(T) e - e t/ k T

A'(T) e-Ae/2 T

is independent of nb and hence independent of time. The constant C could

therefore be proportional to E, since the field in the cathode coating is

zero when no emission current is being drawn.

It appears, therefore, that some process, dependent on the field, occurs
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in these cathodes, increasing the number of activation centers per unit

volume where current is drawn.

c. D-C emission

The d-c emission has been measured before and after the pulsed emission

measurements. The results are plotted in Fig. I-4 normalized to the average

zero time currents. Note that at 284 hours, for panels III and IV, the

pulse test caused a large change in the d-c emission; after modification of

the pulse test, it has caused no significant change in the d-c emission at

any measurement.

T
0

0 500 1000 1500 2000

HOURS LIFE -- *

Fig. I-4 Results of d-c emission measurements.

So far, only six tubes of the forty can be classified as failures.

They can be broken down as follows. Two tubes from panel II exhibited low

emission which apparently was due to loss of active material. Two tubes

from panel III and two tubes from panel IV showed interface resistance.

Evidently, interface-resistance formation is favored by low duty-factor;

however, the rate of incidence is much lower than previous work on commer-

cial tubes with No. 699 Ni cathode alloy would lead one to expect. This

leaves open the possibility that impurities in other electrodes of the tube

play a significant part in this type of deterioration.

Up to the present, there appears to be no significant difference between

the 100-percent duty-factor panels and 0-percent duty-factor panels as far
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as emission is concerned. However, a visual inspection of the tubes indi-

cates that evaporation of active material is much greater in the conducting

tubes than in the nonconducting ones. They would therefore be expected to

be the first to fail due to loss of emission.

The life test herein described is being continued. When it has been

carried to completion, the plates and cathodes of the tubes will be sub-

jected to spectrochemical analysis to ascertain the difference in impurity

content, if any, of failures and nonfailures. In addition, a method is

being devised whereby more accurate measurements than heretofore possible

may be made on the cathode interface voltage drop as a function of current

and temperature so that quantitative inferences on the nature of the inter-

face may be made from its electrical characteristics.

4. Purified Standard Diodes

These diodes have been aged as follows:

Tube Activated by Aging condition Tk

N - 1 drawing emission current Ib - 12 ma N 11000K

N - 2 drawing emission current Ib = 12 ma -1100K

N - 4 drawing emission current Ib = O -110 0*K

N - 5 methane Ib - 12 ma -1100K

N - 7 methane Ib . 0 11000K

Tubes N - i, N - 2, N - 4 were aged 572 hours, and were forwarded to

Professor Lark-Horowitz, Purdue University, for attempt at activation by
neutron bombardment. Their history was as follows:

a. No interface resistance was shown.

b. Pulsed emission (940*K, 250 volts Eb)

Tube 284 hrs 572 hrs

N- 1 0.12 amp 0.16 amp

N- 2 0.06 0.09

N - 4 (sparked) 0.22

c. D-C emission (6506K, 4.5 volts Eb)
0 hours 284 bra 572 hrs

Tube before after before after
pulse test pulse test pulse test pulse test

N - 1 <0.01 ja 8.1 p a 10.5 /a 20.0 a 14.0 La

N - 2 <0.01 0.05 0.5 0.02 0.3

N - 4 21.5 19.2 1.6 19.5 38.0
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Tubes N - 5 and N - 7 have been aged 1557 hours with the following
results:

a. Interface resistance
Neither tube shows interface resistance; however, N - 7 appears to

have a high coating resistance, in that its plot of current vs. voltage
departs from the space-charge line at the origin, yet it has at least as
good an emission under pulse conditions as any of the other tubes.

b. Pulsed emission

Tube 0 hours 284 hrs 572 hrs 1028 hrs 1557 hrs

N - 5 0.47 amp 0.51 amp not obtained 0.40 amp 0.25 amp

N - 7 0.41 0.23 0.36 0.36 0.18

c. D-C emission

0 hours 284 hra 572 hrs 1028 hrs 1557 hrs
Tube before after

pulse test pulse test

N - 5 92 la 26.0 La 108 ua 65.3 ja 69.8 ua 60.0 Ia

N - 7 190 0.08 0.05 0.02 0.02 0.01

From the foregoing results it appears that although methane activation
yields a high initial activity for pure nickel cathodes, if they are operated
nonconducting, they become unsatisfactory in a matter of a few hundred hours,
as far as d-o emission is concerned. The exact mechanism of this failure
is unknown at present, but is believed to be a high cathode coating re-
sistance. J. F. Waymouth, Jr.

5. Determination of the Field-Emission Properties

of Single Tungsten Crystals by a Photometric Method

The first experimental tube has been completed and found to be unsatis-

factory. As outlined previously the anode in the type of spherical pro-

jection tube used in this study has two purposes. It serves as the electrode

to which the high voltage is applied and as the collector of secondary elec-

trons emitted from the phosphor. In the first tube this anode was a circular

ring of 15-mil tungsten wire with a diameter of 5 cm. It was found that

this anode contained such a small surface area that it was not an efficient
collector of secondary electrons. Hence the potential of the phosphor did
not approach the potential applied to the anode but remained several thousand
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volts lower. An attempt was made to improve this situation by painting lines

of aquadag on the outside of the glass envelope and connecting the aquadag

as an auxiliary anode. The field-emission patterns were observed at various

stages as the point filament was heated and cleaned but these patterns were

too weak to supply significant data.

The tube is now being used in the study of techniques required to ob-

tain the extremely good vacuum necessary in an experimental project of this

kind. The method now under consideration does not involve the use of a

getter when the tube is sealed off the vacuum system. Instead, an ioniza-

tion gauge is sealed off with the experimental tube, and the operation of

this gauge serves to clean up the residual gases. More data are necessary

before any conclusions can be drawn, but the results now available indicate

that a very good vacuum can be obtained in this manner.

A second experimental tube is now under construction in which the anode

will consist of tungsten springs. It is believed that these springs will

collect the secondary electrons sufficiently well to eliminate the diffi-

culties experienced in the first tube. M. K. Wilkinson

6. Photoelectric Emission

Work on the photoelectric emission from germanium was resumed in

September. An experimental tube has been designed and is now under construc-

tion. The tube, possessing spherical symmetry, contains two spherical

molybdenum cathodes as sub-strata on which germanium may be deposited, and

a third to be used as a control. The anode is a graphite coating painted

on the glass envelope. By means of side arms the cathodes are removed from

the center of the spherical anode for outgassing by electron bombardment

and germanium deposition.
Using spherical geometry, the distribution of total energies of the

electrons
E

N(E) - rm2/h f(E) T(px)dEx
o

where f(E) is the Fermi factor, T(px) is the transmission-transition proba-

bility and Ex is the energy associated with the component of momentum normal

to the surface, may be determined by differentiating the current with re-

spect to the retarding potential. This distribution function contains T(p x )

under an integral sign, and a second derivative of the current would be

needed to determine these unknown factors. However, using a tube possessing

normal geometry these probabilities do not occur under this integral, i.e.
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n(Ex) - ahrm2 kT/I T(pz) In [1 + exp -(Ex -- Eo)/kT]

where a is a new factor containing surface roughness which is indeterminant.

The general form of T(Px) could be found from data on the normal geometry

tube and substituted into N(E). This substitution should yield the distri-

bution obtained from the data on the spherical tube except for a multipli-

cative constant. By this method the transition-transmission probability
may be determined and checked.

Future work will be the completion of the spherical tube and the design

of a normal geometry tube. H. S. Jarrett

7. Effect of Impurity Surface States on the

Photoelectric Threshold in Semiconductors

Experimental work has not yet been started on this project. It is

proposed to study the change in the photoelectric threshold of the semi-

conductor germanium resulting from a surface layer of certain impurity

atoms. The threshold is to be measured in the standard manner using plane

parallel geometry (by a determination of the minimum retarding potential

for zero photoelectric current combined with a simultaneous determination

of the contact potential between the photoelectrically sensitive surface

and the collecting anode). A P-type impurity atom is to be used. Within

this classification lie most trivalent atoms containing closed inner shells.

Aluminum has been chosen tentatively as the impurity. By using an effusion

method (while keeping the surface to be contaminated at liquid-air tempera-

tures) it is possible to deposit a desired amount of impurity with precision.

The amount to be deposited will be of the order of a monolayer.

It is hoped that such an experiment will be helpful in checking current

theories of surface states in semiconductors. R. H. Parmenter

Reference

(1) E. S. Rittner, F. K. du Pre and R. A. Hutner, Suggestion regarding

emission phenomena in (Ba-Sr)O cathodes, Phys. Rev. .6, 996 (1949).
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B. STUDIES WITH GABSEOUS DISCHARGE

1. Investigation of Low-Pressure Mercury Arcs

Measurements of probe characteristics in the plasma of the mercury are

have been partially completed. Most of the data has been taken using a

plane tantalum probe whose axis can be set parallel or perpendicular to the

axis of the tube. The probe is located at the center of the discharge and

the supporting stem of the probe is surrounded by a cylindrical tantalum

guard. Voltage-current curves are obtained for the probe, and the results

are analyzed according to the customary Langmuir-probe method.

In order to control accurately the pressure of the mercury vapor in

the tube it was found necessary to submerge the entire tube in a cooling

bath of water, instead of merely submerging the bulb containing the mercury-

pool cathode as is usually done. With all the tube walls at the same

temperature it is found that small droplets of mercury condense on the walls

while the discharge is going on, thus insuring that the pressure of the

mercury gas in the plasma is the vapor pressure of mercury at the wall

temperature. In this manner probe data were taken for water-bath tempera-

tures of 110 to 620C, corresponding to mercury-vapor pressures of 6 x 10- 4

mm to 3 x 10- 2 mm.

Fig. I-5 Typical probe character-
istic curve.

If the distribution of electron
energies in the plasma is Maxwellian,
then a plot of the logarithm of the elec-
tron current i. to the probe vs. the probe
potential V should be a straight line of
slope e/kT_ for probe voltages negative
with respect to the plasma potential.
Over the above range of pressure the actual
log i_ vs. V curves exhibit a double slope,
as shown in Fig. 1-5. This indicates that
the actual distribution of electron ener-
gies is non-Maxwellian, being character-
ized by a depletion of the high-energy
electrons. The potential V of the break-
point relative to the plasma potential
varies from 12 volts at 6 x 10- mm pres-

-2sure to 3 volts at 3 x 10-2 mm. The wide
variation of Vo for different pressures
would seem to discourage an explanation
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of this depletion of fast electrons on the basis of inelastic collisions

with mercury atoms resulting in excitation or ionization. It should be

remarked too that the probe-characteristic curves were practically inde-

pendent of the orientation of the probe surface, indicating the predominance

of random currents in the plasma.

Measurements were also taken using a second plane probe at the center

of the discharge. In this case the probe was surrounded by a guard ring as

before; the gap between the edge of the probe and the guard ring was several

tenths of a millimeter. The log i_ vs. V curves for this probe were the

same as those previously described.

It is interesting to note that the current to the probe for any given

probe voltage is found to be independent of the voltage applied to the

surrounding guard (at least as long as the guard potential is negative

enough with respect to plasma potential that the guard does not collect more

than about one-tenth of the saturation electron current and hence noticeably

deplete the plasma). This indicates that the probe is surrounded by a very

thin sheath, and that outside the sheath the plasma is undisturbed by the

presence of the probe, regardless of the probe potential.

The mercury-are tube, after having developed a leak, is now being

reprocessed, and a cylindrical wire probe will be added in order to furnish

additional data. R. M. Howe

C EXPERIMENTAL TECHNIQUES

1. Spectral Emissivity of Tungsten

Some progress has been made in the construction of an experimental

tube to be used in determining the spectral emissivity of tungsten. The

tungsten sample is in the form of a right circular cylinder 3 15/16 in.

long, 0.125 in. in diameter, and having a wall thickness of approximately

0.001 in.

The design of the tube requires that this cylinder be welded at each

end to solid tungsten rods 0.125 in. in diameter which are tapered very

slightly so that they will slide inside the cylinder and fit snugly. The

cylinder thus laps over the ends of the rods for a distance of about 3/16

in. To prevent oxidation these welds must be made in an atmosphere of

inert gas. Therefore the parts to be welded are mounted in a bell jar com-

pletely open at the bottom so that hydrogen can be fed in at the top and

allowed to stream out continuously at the bottom while the welding is going

on. The hydrogen is passed through concentrated sulphuric acid before being
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admitted to the bell jar.

The work is heated by drawing an are between a carbon electrode and
the parts to be welded. We have been successful in making several of these
welds so that they were quite strong and serviceable and the following

points have been established as the result of considerable experimentation.

(a) It is best to use about 550 volts d-c and limit the current with

suitable series resistances. With this voltage it is possible to draw an

are about 3/16 in. long which can be managed quite easily.
(b) Tungsten parts such as those described above can be welded best

if the series resistances total 180 ohms. With this value of resistance

the arc current is approximately 2.5 amp since the resistance of the wiring,
the carbon electrode, and the resistance of the arc total about 40 ohms.

(c) The correct polarity is that which makes the carbon electrode
negative with respect to the work.

(d) It is extremely important that the parts to be welded be shaped
carefully so that they are in close contact with one another. There are
several reasons for this. In the first place, very little free metal can
be supplied for the joint, therefore the parts must be in close contact so
that when they reach the melting point they will be able to fuse together
without having to flow very far. Second, heat must be supplied to the
thinner of the two parts, that is, to the cylinder, mainly by conduction
across the boundary, and any gap between the two will prevent the cylinder
from reaching its melting point. The are must never be allowed to touch
the cylinder. If it does, it will merely break away a small flake of it.

(e) Conduction of heat from the rod to the cylinder can be aided by
wrapping 30 in. of 1-mil tungsten wire around each of the two joints so
that it fits snugly half on the rod and half on the cylinder. This metal
also supplies additional material for the joint.

It is hoped that the tube may be completed soon so that preliminary
data on the spectral emissivity of tungsten may be presented in the next
quarterly report. W. B. Nottingham, L. E. Sprague, L. D. McGlauchlin

2. The Voltage Comparator Tube

The voltage comparator tube is a specialized type of vacuum tube de-
signed to indicate precisely an output whenever two input voltages are
equal. The input voltages each may be varying in a different manner with
time, and their magnitudes may differ by as much as 300 volts. It is
thought that such a tube might have practical application in certain types
of analogue computers where an accurate time-marking pulse is desired to

-13-



(I. PHYSICAL ELECTRONICS)

indicate the instantaneous voltage equality of two inputs.

The voltage comparator tube uses a system of electron focusing as its

principle of operation. A cylindrical, slotted electron lens structure is

enclosed in a glass envelope of 1-in. diameter, which may be mounted on an

octal tube base. A 40-mil nickel sleeve is surfaced with a narrow strip of

oxide cathode coating. Concentric to the cathode are two anodes A and B

(Fig. I-6). Anode A is split into two equal and insulated sections, Al and

A2, with a focusing aperture of about 30.

Anode B has an exit slit whose width is closely

equal to the cathode width, about 0.05 cm.

Finally, just beyond the exit slit is the col-

lector anode C. If the interelectrode voltages
.o. BEM are adjusted correctly, a beam of electrons

leaving the cathode will De rocusea snarply
TOP VIEW

OF THE VOLTAGE COMPARATOR TUBE at the exit slit and reach the collector anode;

Fig. -6 Top view of voltage but if the voltage on anode A1 is slightly

comparator tube. different from the voltage on A2 , the beam will

be deflected to one side of the exit slit and

will no longer reach the collector anode.

An approximate formula for the focal length of such a cylindrical lens

system as employed here was stated by Davisson and Calbick as

2VA
f -

where (considering for simplicity of explanation that the cylinders are not

yet slotted) VA is the difference of potential between anode A and cathode;

EA is the electric field intensity at the inside surface of anode A resulting

from the difference of potential between anode A and cathode; and EB is the

electric field intensity at the outside surface of anode A resulting from

the difference of potential between anode B and anode A.

The basic test circuit for the voltage comparator tube is shown in

Fig. I-7. Note that the entire tube rides above ground by whatever voltage

value signal SA takes on instantaneously. When SA1 - SA2, an output cur-

rent ic may be observed in the collector circuit.

The determination of the conditions for optimum focusing requires

much experimentation because of the number of parameters involved, i.e.

heater voltage and the three anode voltages. It was found necessary, for

example, to operate the heater at a voltage well below the normal value of

6.3 volts in order to avoid excessive space charge which would broaden the
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apparent object of the electron lens system and consequently the all impor-

tant image itself. For best sensitivity VAl is kept small (less than a volt)

so that any difference of voltage between Al and A2 will more readily de-

flect the low-energy electrons. To determine optimum focusing conditions

for particular values of voltages

on the heater, anode A and an6de

C, curves were plotted of ic/i c + iB
vs. VB; hence, there was found a

- particular value of anode B voltage

T for which this ratio was a maximum.
At conditions of optimum fo-

cusing a sensitivity curve may be

plotted - collector current as a

function of the difference of voltage

between anode Al and anode A2. A
Sa SAI-- -o typical sensitivity curve is shown

in Fig. 1-8. If, now, in place of

BASIC TEST CIRCUIT the i c meter in the test circuit, a
load resistor is inserted and the

Fig. 1-7 Basic test circuit, voltage developed across this re-

sistor is fed through a two-stage

d-c amplifier, the sensitivity curve

may be clipped preferentially at

the top with the final output from

the amplifier indicating voltage

equality of signals SAl and A2
within one-tenth of a volt.

The static characteristics of

this voltage comparator tube have

been quite completely determined.

It was felt that rather than proceed

further with the design of practical
circuits demonstrating the timimg
precision for which the tube may be
AiAwlcf It urlA e b ... 4t -

-1.0 -0.8 -0.6 -0.4-0.2 0 0.2 0.4 0.6 0.8 1.0 $ W U W ~ V IJ Mr

DIFFERENCE OF VOLTAGE (SA2-SA2) an attempt to modify the original
tube design in order to improve

Fig I-8 Sensitivity curve. EF = 3.5 volts certain characteristics. The fo-
Va = 0.75 volts V 9.0 volts cusing aperture will be reduced in
V C 20.7 volts.CB
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width so as to improve resolution and will have the engineering refinement

of edges bent in slightly toward the center. Anode A will be a solid ele-

ment rather than split as before. A pair of very narrow deflection plates

will be located just outside of the focusing aperture and shielded from the

direct beam of electrons by anode A; thus the input resistance will be

increased. The other electrodes will be similar to those of the first tube.

B. T. Joyce

* **
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