TABLE OF CONTENTS | Publications and Reports | | | | | |--------------------------|------------------------------|--|----------------------|--| | Personnel | | | | | | Introduction | | | | | | I. | Phy | sical Electronics | 1 | | | | A. | Electron-Emission Problems 1. Work Functions and Electrical Conductivity of Oxide- | 1 | | | | | Coated Cathodes 2. Determination of the Thermionic-Emission Properties of Single Tungsten Crystals by a Photometric Method | 1
3 | | | | | 3. Determination of the Field-Emission Properties of Single Tungsten Crystals by a Photometric Method | 3 | | | | | 4. Thermionic Emission from Ultrafine-Grain Oxide-
Coated Filaments | 4 | | | | | 5. Investigation of Certain Properties of Oxide-
Coated Cathodes Using Radioactive-Tracer Techniques
6. Deterioration of Oxide-Coated Cathodes under Low | 4 | | | | | Duty-Factor Operation 7. Activated Diodes | 6 | | | | в. | 8. Studies of Photoelectric Emission Studies with Gaseous Discharge | 10
10 | | | | D. | 1. Investigation of Low-Pressure Mercury Arcs | 10 | | | | C. | Experimental Techniques | 10 | | | | | Spectral Emissivity of Tantalum Ionization Gauge and High-Vacuum Studies | 10
11 | | | II. | Mici | rowave Gaseous Discharges | 12 | | | | Α. | Pulsed Breakdown | 12 | | | | B. | 100-Megacycle Cavity | 15 | | | | C.
D. | Positive Ion Analysis Dielectric Coefficient of Plasmas | 15
16 | | | TTT | - • | | 17 | | | III. | _ | id State Physics | 17 | | | | A.
B. | Theory of Superconductivity Soft X-Ray Vacuum Spectrograph | 17
17 | | | IV. | Low-Temperature Physics | | | | | | A.
B.
C. | Helium Liquefiers Second Sound Velocity X-Ray Study of Superconductors | 19
19
21 | | | | D. | Investigation of Dipole Interaction Theory in Crystals | 21
23 | | | ٧. | Radio-Frequency Spectroscopy | | | | | | A. | Molecular-Beam Research 1. The Fourth Atomic-Beam Apparatus | 23
23
24 | | | | В. | Nuclear Magnetic Resonance | 24 | | | | | 1. The Magnetic Moment of RbO! | 24 | | | | | 2. The Magnetic Moment of Bil. | 24 | | | | | 3. The Magnetic Moment of La ¹³⁹ 4. Deuteron-Proton Moment Ratio | 24
25
25
26 | | | | | 5. Faraday Effect | 25 | | | | _ | 6. New Magnet | 26 | | | | C. | Microwave Spectroscopy | 2 6
26 | | | | | 1. Ketene2. Formaldehyde | 26 | | | | | 3. Oxygen | 27 | | | | | 4. Tellurium | 28 | | | | | 5. Methyl Stannane | 29 | | | | | 6. Apparatus | 29 | | | VI. | The | Linear-Accelerator Program | 3: | | | |------------|----------|--|---|--|--| | VII. | Mag | netron Development | 3: | | | | | А. | High-Power 10.7-Cm Magnetron 1. Testing and Design 2. Thoria Cathodes 3. Auxiliary Equipment a. Filament Transformer b. Electro-Magnet c. Vacuum Furnace Magnetron Research | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | | | | | c. | 1. Mode Stability 2. Noise Properties of the Pre-Oscillating Magnetron Cathode Research | 3!
36
36 | | | | VIII | . Tra | veling-Wave Tubes | 38 | | | | | A.B.C.D. | Three-Cm Medium-Voltage Traveling-Wave Tubes Velocity-Modulated-Input Traveling-Wave Tube Theory Low-Voltage 3-Cm Traveling-Wave Amplifier 1. Helix Assembly 2. Gun Design Dense Electron Beams in Axial Magnetic Fields Microwave Noise Studies 1. Microwave Noise Source 2. Receiver | 38
39
40
40
41
41
41
41 | | | | IX. | | Analysis of Traveling-Wave Tubes munications Research | 45
47 | | | | TV* | A. | Multipath Transmission 1. Speech and Music | 47 | | | | | В• | a. Theory b. Receiver Design 2. Television Microwave Modulation Techniques l. Investigation of Frequency Modulation of a Reflex Klystron | 47
47
47
47
49 | | | | | С. | Statistical Theory of Communication 1. Auto-Correlation Functions a. Correlation Functions b. Digital Electronic Correlator 2. Amplitude and Conditional Probability Distributions of a Quantized Time Function 3. Techniques of Optimum Filter Design 4. Storage of Pulse-Coded Information | 49
50
50
50
50
50 | | | | | | 5. "Felix" (Sensory Replacement) 6. Clipped Speech Studies a. A Short-Time Correlator for Speech Waves 7. Pulse-Code Magnetic Recorder | 53
51
56
56 | | | | | D.
E. | Transient Problems 1. Transient Theories Active Networks | 60
61 | | | | | F. | 1. General Theory Locking Phenomena in Microwave Oscillators | 61
63
63 | | | | x . | | iscellaneous Problems | | | | | | A.
B. | Electronic Differential Analyzer Mathematical Analysis of a Series-Shunt Peaking Circuit An Automatic Impedance-Function Analyzer | 64
61
66 | | |