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Vortex lines in a cubic magnetic nanodot: structure and dynamics
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Abstract. Langevin simulations of cubic magnetic nanodots were performed using the Landau-Lifshitz equa-
tion with exchange and dipolar interactions. Vortices tend to organize as lines: we establish the structure and
dynamics thereof for a large range of the dipolar versus exchange ratio d. These lines tend to be bent and twisted.
For large values of the dipolar interaction, a complex network of vortex lines arises. Dynamics evidences low
frequency collective gyrotropic motions of vortex lines which maintain their distance during motion.

1 Introduction

A tremendous amount of both experimental an theoreti-
cal work is being done on magnetic nanodots for obvious
practical purposes such as data storage and manipulation,
but also from a fundamental viewpoint for their often chal-
lenging behavior.

Since the first observations of Weiss domains [1],
many investigations on the nature of these complex mag-
netic structures [2] and of their dynamical properties [3]
were carried out. Magnetic nanodots, through increased
performance and miniaturization, follow the same trend
as electronic devices with Moore’s law. After magnetic
tapes, ultrathin quasi-2D films were produced [4], then
magnetic vortices were predicted theoretically to occur un-
der the competition between exchange and dipolar inter-
actions [5, 6], and observed experimentally in nanodisks
[7, 8]. New kinds of magnetic memories linked with the
polarity of these nanodisks were introduced [9]. Stud-
ies with different nearly 2D nanodots showed that under
the influence of anisotropic Dzyaloshinsky-Moriya inter-
action, magnetic structures rather similar to asymmetric
vortices are predicted [10], observed and called skyrmions
[11], the advantage of skyrmions with respect to standard
vortices being their reduced size [12].

The competition between long-ranged interactions
such as dipolar ones, and short-ranged interactions such
as exchange leads to the domain organization of magnetic
samples [2]. Shape and size effects result from this com-
petition. The shape effect, also called magnetostatic effect,
has been long well-known in compasses. More recently,
miniaturized needles are moved by means of distant mag-
netic fields, with mechanical or thermal effects for instance
applied to dealing with cancer tumors [19]. The size and
shape of elongated nanofibers can be controlled by means
of chemistry in polyols [20-22] and by means of electro-
chemistry with further thermal treatment [23], with many
applications. A new application of such electro-chemical
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treatments [23] enlarges these fibers in some places by
thermal heating to form blobs. Such a connected set is
similar to a set of neurons and axons : a useful analogy
in the now very active field of neuromorphic spintronics
applications [24].

The dynamics of these many new magnetic structures
is obviously of interest. The study of magnetic excitations,
spin waves in thin films, which were used in magnetic
tapes, soon revealed a specific behaviour among other ex-
citations: a wavelength dependent velocity [25]. This re-
sult introduced further questions on the possibility of 2D
magnetism [26]. Now, the introduction of complex mag-
netic material sets open large possibilities for finding new
excitation spectra and thus metamaterials. An original
spectrum is observed for fractal sets when only exchange
and a saturating magnetic field occur: in these connected
samples, a very complex spectral structure with many gaps
is observed [27-29]. These gaps and their spectral loca-
tion strongly depend on the specifics of this potentially
rich lacunary structure. The introduction of dipolar inter-
actions in such magnetic structures leads even in standard
samples to new specific modes which occur at rather low
frequency, in the terahertz domain as early observed from
Brillouin scattering [30, 31]. With such possibilities of ap-
plications as metamaterials in this very interesting spectral
domain, magnonics, the observation of spectral features
in such new materials, received a lot of attention [32-35].
A great advantage of extended structures effectively sub-
mitted to dipolar interactions is the coupling of physically
disconnected parts. It opens the path many studies in this
very rich field of lacunary systems. This choice of struc-
tures considerably enlarges the field and so the possibility
of searching for new metamaterials where gaps are crucial
[36]: for instance, special orderings such as fractal ones
[33] or orders induced by Fibonacci series [37] were re-
cently considered with evidence for gaps in the spectrum.

Here we are interested in the study of structure and low
frequency dynamics of a magnetic nanocube, by means
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of Langevin dynamics at low temperature, i.e. far from
Curie and Kosterlitz-Thouless transitions, in presence of
exchange and dipolar interactions. In this basic study a
large variation of the ratio dipolar interaction versus ex-
change is considered. This trick enables us to consider
different materials, and also to simulate different effec-
tive sizes from our study of a (64 x 64 x 64) cube. The
use of this cube as a mesh opens the path for a full study
from an atomic nanocube up to a very large cubic sam-
ple, analysing in this way the transition from a single do-
main without vortex, up to a full set of vortices and do-
mains, both on the viewpoints of structure and dynamics,
when taking into account the complete screening effect of
a complex magnetic structure. Of course, this arrangement
of domains and vortices is expected to occur [38—40], but
the perfect lack of impurities and defects would be impos-
sible to observe experimentally. So, this numerical experi-
ment which avoids the nuisance of impurities brings a new
paradigmatic brick to magnetism. A later comparison with
experimental results, even with defects, sounds attainable
since recently a high level of resolution has been obtained
from electron spin holography [41, 42] and even with time
resolution [43] in different ways.

The long ranged dipolar interaction has several ana-
logues in physics. Similar situations are issued from solu-
tions of a Coulomb like equation with a linear Dirac like
singularity at the origin. In mechanics the interaction be-
tween dislocations lies among these analogues. In the case
of dislocations, atoms are not rigid and the mobility along
dislocations, an essential feature, plays a main part. A
strong mobility forbids a comparison with the case of mag-
netic vortices where matter remains perfectly static. How-
ever, in the very special case of hard materials which in-
clude numerous useful impurities which stack the possible
displacements along dislocations in a quite rigid manner,
such a comparison makes sense. And in this case a com-
plex network of dislocations has been recently observed to
occur with different crystallites between dislocations [44].
This result is quite comparable to our present observation
of differently oriented magnetic domains parting magnetic
vortices as an effective topological repulsion. Moreover,
the atomic mobility which occurs in elasticity could intro-
duce, in the case of spins, the principle of a synaptic like
memory process, an Hebbian link, for neuromorphic spin
applications.

2 Simulation
2.1 Model

The model system consists in a rigid (64 x 64 X 64) simple
cubic lattice (ie. 2!8 = 262144 spins), on which classi-
cal spins are free to rotate following the Landau-Lifshitz
equation of motion at finite temperature 7' [71]:

eff eff
ds; s¢ X HY +a/s(z><(s[><H€ )

= ey

dt 1+a?

in reduced units and where s; is the spin on site ¢, a a
damping coefficient and

H" = H, + HY

Ht[h is a Langevin-style random thermal field with zero
mean and normal distribution such that:

(H2Y) = 2akyT

where kp is Boltzmann’s constant. He({s¢ ¢2}) is the local
field felt by spin ¢. The damping coefficient @ is necessary
as it makes the system relax toward thermodynamic equi-
librium but it should be chosen small enough to have little
influence on the dynamics of the system as it will tend to
broaden vibrational peaks.

The local field is generated by the interactions with all
other spins in the system, no external field being intro-
duced in the problem in this work: it is time-dependent
through the motion of the other spins. The local field
consists here in two terms representing the exchange and
dipole-dipole interactions:

_ gexc dip
H, = H;” + H,
where:
H =—J ) sy
.6}
where J is a positive constant for a ferromagnetic interac-

tion and 3, » is a sum restricted to nearest neighbours.
The dipolar field writes:
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where d is the dipole-dipole interaction strength and ry s
the vector connecting sites ¢ and ¢’. We choose J = 1 so
that d is also the dipole/exchange ratio. Other interaction
types could easily be introduced but we concentrate here
on the effects of the dipole-dipole interaction.

2.2 Method

2.2.1 Integration of the spin precession motion

The instantaneous motion produced by equation (1) is a
precession around the effective field H}’ﬁ which conserves
s|, so that it is adequate to use the Rodrigues rotation ma-
trix [72] to integrate the equation of motion:

Se(t +0;) = Re(t)s¢(t)

where ¢, is the integration time-step, with

R/(t) =
2w+ v hehyw — hu  hehw + hyu
hihyw + h.u hgw +v hyhw — hu
hehw — hyu  hyhw + heu h?w +v

where u = sinw, v = cos w, w = 1 —v, while the precession
angle is w = |H§ff| ;. Coordinates h,, . are those of the
unit vector h, = H;ff / |H;ff|.

The so-called “improved Euler” or Heun method [66]
is used to integrate equation (1) numerically and the damp-
ing coefficient « is chosen small enough not to perturb the
dynamics of the system in the relevant frequency range.
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2.2.2 Dipole-dipole interaction

Since the dipole-dipole interaction decreases with distance
as 1/r3, each spin is under the influence of all others and
cutoff radii and other such approximations cannot be used.
Writing the interaction as a convolution and then using the
convolution theorem and fast Fourier transforms signifi-
cantly accelerates computations [66].

2.3 The search for vortex cores

Figure 1. A vortex core is detected within a given square if Q
in equation (3) equals 2. The black arrows represent the spin
directions at each vertex.

The introduction of dipole-dipole interactions will
quite often generate vortices and anti-vortices, the cores
thereof must be detected. If we consider one plane (e.g.
(x, y) of the cubic lattice, the vortex-cores reside within the
squares of the lattice, and arise when the projections of the
four neighbouring spins on the the square’s plane “wrap
around” the square (figure 1). One can thus compute the
four angles ¢;, i € [1, 4] that these projections make with a
given axis. In the sum

Q = p(p2— 1)+ plep3 —2) + pls —3) + plo1 —@4) (3)

p(0) restricts angle 6 to the [—m, 7] interval; if Q equals
27 then a vortex-core is present on that site, while if the
sum equals —2 it is an anti-vortex; otherwise there is no
such singularity on that site. This search must be done in
the three relevant planes (x, y), (y, z) and (z, x) of the cubic
lattice: the polarization of the vortex will then be along z,
x or y respectively.

2.4 Vortex core line detection

The result of such a simulation with vortex-core detection
will consist in a list of vortex-core sites which changes
with time: in principle, to analyse such complex data,

graph-theory based methods [73] could be used, however
we adopt here a simpler procedure based on the specific
physics of our problem. In three dimensions, vortex-cores
are apt to gather up in lines which can have more or less
complicated shapes: they can be more or less sinuous or
“thick”. In practise, these lines are obtained through a
neighbour-of-neighbour-of-neighbour type of procedure:
one chooses a vortex-core, looks for neighbours, then
neighbours of these neighbours, etc., in a recursive man-
ner. The simplest approximation of one vortex line is a
straight line (figure 2). The orientation of that straight line
will provide the overall orientation of the sinuous vortex
core line, while the differences will yield the internal struc-
ture and dynamics of the line.

100
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Figure 2. Example of a set of vortex cores and the analy-
sis results obtained through equation (4).The blue vectors are
the eigenvectors multiplied by the corresponding standard devia-
tions.

A vortex line is defined by n vortex cores at locations:

Xi
r;=| y; |,i€[l,n]. The center of the vortex line is thus
Zi
given by: ry = Y, r;/n. The direction of the line is a unit
u
vectore =| v | with u? + v?> + w? = 1. The coordinates
w

of a point on the line are therefore: r = ry + £e where &
is a scalar. We want that line to be as close as possible
to the vortex cores. Let &; be the value of ¢ for which the
segment that joins the line to the i core is normal to the
line direction e:

(6, -&e)-e=0

where:

(=%}
g,

=r;—Ip

(=%
Q.
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thus:
&i=6;-e

The squared distance between the set of vortex cores and
this line is

K= D (=& + 6y - E0) + (6 - £w)?)

1
2 2 2 2
PR P
i

X1

D6 6%+ 6%~ (St + S0 + 60)
i

which should be minimized with the constraint that e is a
unit vector:

aa—u ()(2 - A+ + wz)) =0
% (/\(2 — A + v + w2)) = 0
% ()(2 - A+ + wz)) =0

where A is a Lagrange multiplier. Thus:
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D [Buitt+ 6,0 + w6, = v
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or
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Zi 5.x56yi Zi 65,’ Zi 6yi61i e=Je “)
Zi 6xi6zi Zi 5yi61i Zi 6?,’

which is a symmetric eigenproblem which can easily be
solved by standard methods.

Since this is a (3 X 3) problem, we obtain 3 eigenvalues
and as many eigenvectors. The eigenvalues A, divided by
n, are the variances of the distance from xj to the actual
points projected on the directions defined by the eigenvec-
tors: this defines an ellipsoid, the longest axis of which
is the overall orientation e of the line, and the two others
the dispersion in the normal directions. This procedure is
clearly very similar to finding the inertial tensor of a set of
masses [74].

Figure 2 shows a set of points and the three eigenvec-
tors multiplied by the associated standard deviation. Of
course the largest eigenvalue gives the overall direction e
of the line.

The time evolution of ry(¢) should yield the transla-
tional motion, if any, of the vortex line, that of e(?)), the
rotational motion of the line as a whole. The separations
d; between the straight line and the actual vortex core po-
sitions r; should provide the internal motions of the vortex
line.

The separations d; write:
di=r,—¢e—rg=0,-(d e

These vectors can be expressed in a reference frame
(e1, e, e3), where e is equal to e et e; and e; are the two
other eigenvectors. This yields:

di~e1 =
d,»~e2
d,--e3 = 0

Il
>
(o]

]

®)

If we want to include the position of the vortex upon the
line, we can just as simply write ; in the (e, e,, e3) refer-
ence frame:

0i-e (6)

We therefore now have the means to attempt to understand
vortex line dynamics.

2.5 Simulation parameters

All simulations were done at low temperature (7 = 0.001
in reduced units, to be compared with the transition tem-
perature in the 2-D Kosterlitz-Thouless model: 7, = 0.7)
with J = 1 and d € [0.005,0.4], that is, a large range of
dipolar strengths. Several typical initial conditions were
selected: with uniform magnetization (i.e. no vortices),
one central vortex line parallel to the z axis and four vor-
tex lines also parallel to z. The integration time-step runs
from 6, = 0.005 for d = 0.005 to 6, = 0.001 for d = 0.4
to account for the acceleration of the dynamics as d is in-
creased. The damping coefficient of the Landau-Lifshitz
equation (1) was set to @ = 0.01 in reduced units which
is a compromise between reasonably rapid thermalization
and not too much interference with the system’s dynamics.
The system was left to relax to whatever configuration it
chose and then averages obtained.

3 Analysis of simulation results
3.1 Configurations

Figures 3 and 4 show two typical configurations for d =
0.005 and 0.1. Both were obtained after relaxation of iden-
tical initial conditions chosen as four straight vortex-core
lines parallel to the z axis. The colors indicate the out-
of-plane component of the spins while the arrows show
the in-plane components thereof: vortex-cores are visi-
ble through the in-plane components but also through the
out-of-plane component: this is a well-known effect of the
exchange-dipole competition. The first observation to be
made from these figures is that the vortex-core location
for each “slice” is approximately the same, meaning that
vortex-cores indeed line up (in this case, parallel to z due
to initial conditions, but the three axes are of course equiv-
alent). The effect of sample boundaries can also be ob-
served in these figures: spins tend to remain parallel to
surfaces and edges resulting in competitions which clearly
are not easily solved by the system.
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0 16 32 48 64 0 16 32 48 64

Figure 3. Snapshot configuration after relaxation for d = 0.005 and 7 = 0.001. Grey arrows show the in-plane components of the
spins, colors the out-of-plane component thereof (black,blue and green mean: negative; red, orange, yellow: positive; white: in-plane).
Each image represents one (x, y) plane: z = 0 or 63 are the top and bottom surface monolayers, while the others lay within the bulk.
Initial conditions consist in four straight vortex lines parallel to the z axis.

0 16 32 48 ©64
Figure 4. Same as figure 3 for d = 0.1. Four vortex lines are visible, along with an anti-vortex line, approximately located between the
vortex lines.

16 32 48 64

For d = 0.005, the system spontaneously evolves to-
wards a single vortex line configuration with quite a lot of
disorder, while for d = 0.1 the four vortex line configu-
ration remains. If the “width” of the line is measured by
the extent of the area in which the out-of-plane component
is non-zero, one observes, firstly that this width tends to
decreases with increasing dipolar interaction, which is no
surprise, while it changes quite a lot within the bulk of the
sample: narrow on the surface (layers 0 and 63 in both

0 16 32 48 64 0 16 32 48 64

figures), broad in the middle (layers 27 and 36). Flux clo-
sure induced by the dipole-dipole interaction implies that
the spins on the surface layers tend to lie parallel to that
surface: the out-of-plane component therefore is energet-
ically not favourable on surface layers so that the vortex
core extent as defined by the out-of-plane component will
be reduced near surfaces, and not so within the bulk.

We need to address the issue of whether these are equi-
librium configurations. Simulations with different initial
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Figure 5. Energy as a function of time (axes’ labels were removed for space) for d € [0.005,0.4]. Several initial conditions were
chosen: uniform spin orientation (i.e. no vortex) in red, one straight vortex-core line parallel to the z axis in green, and four straight
vortex-core lines parallel to z in blue. The energy range length is 0.003 for all graphs, but the range itself is shifted from graph to graph.

d 0005 001 002 004 006 008 0.1 012 02 03 04
uniform |1 I 1 2 2 4 4 4

1line | 1 11 1 4 4 4 4

Alines | 1 | 4 4 4 4 4 4 4 4
lowest 1 1 1 4 4 4 4 4 4 4
energy

Table 1. Effect of the initial configuration choice. Initial configurations with uniform magnetization, one vortex-core line or four
vortex-core lines were tested and results in either uniform magnetization, one line or four lines. The last line of the table shows which
appears to be the lowest energy configuration and therefore a good candidate for being the ground state.

configurations but otherwise identical were done: figure 5
shows the time dependence of the energy of these simu-
lation runs for a sampling of values of the dipolar to ex-
change ratio d. In some situations (e.g. d = 0.005) all
initial conditions end up producing the same final energy
which turns out to correspond to equivalent configurations
(e.g. for d = 0.05 all three initial configurations yield a
final state with one vortex-core line). Table 1 summarizes
the effect of the choice of the initial condition. By com-
paring figure 5 and table 1 one may thus conclude that
the one vortex line configuration has the lowest energy for
d € [0.005,0.02], while the four vortex line configuration
is the most stable for d € [0.04,0.4]. These values are
comparable to the appearance of the “multi-vortex” phase
in a (64 x 64) 2-dimensional sample [75]. These results
also show that metastable states are easily reached, at low
temperature at least, and the notion of ground-state should
be taken with caution, because of, among others, surfaces
on the one hand, and vortex-core pinning which was ob-
served in two-dimensional simulations [67], on the other.

3.2 Vortex cores

Direct observation of the configurations, while instructive,
sometimes does not easily yield relevant information, so
that we now focus on vortex-cores and forget about other
details. Vortex-cores and anti-vortex-cores are detected
via equation (3). Figures 6-8 show situations of increas-
ing complexity with increasing dipole-dipole interaction.
We can first confirm the previous remarks, that is the pres-
ence of one vortex line for small d and four vortex lines for
larger d. The single anti-vortex line between the four vor-
tex lines is also visible when applicable. We also confirm
that the polarization of the vortex core is parallel to the
overall line orientation. However, it now appears clearly
that these lines are twisted and that additional features are
present: for d = 0.1 and more so for d = 0.4, other shorter
vortex lines spontaneously arise in a normal direction: one
may surmise that for larger samples three dimensional ar-
rays of such lines may be relevant. For the higher dipole-
dipole interaction case, it also seems that an effective re-
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Figure 6. Snapshot of vortex and anti-vortex cores for d = 0.005.
Vortices are represented by full circles, anti-vortices by open cir-
cles. (Anti-)vortices which are in the plane normal to x are in
red, those in the plane normal to y in green, and those in the
plane normal to z in blue.
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Figure 7. Snapshot of vortex-cores for d = 0.1. Symbol and
color conventions are the same as in figure 6.
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Figure 8. Snapshot of vortex-cores for d = 0.4. Symbol and
color conventions are the same as in figure 6.

pulsion between vortex lines is present inducing additional
bending of the lines.

3.3 Vortex core line dynamics

3.3.1 Line precession

Vortex core positions (color = time), d=0.005

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

64

32

Figure 9. For d = 0.005 the above mentionned vortex-cores for
which the color indicates time.

Figure 9 represents the time evolution of a vortex-core
line and shows that a dynamics of these are to be observed:
this can be done for all d values. Again, we have a tremen-
dous amount of data, out of which we would like to extract
a few useful items. The next step is thus to carry out the
analysis explicitly in terms of vortex lines as in section 2.4
and equation (4).

The first issue that must be addressed is the definition
of when a vortex core is to be considered a neighbour of
another. If we limit the search to nearest neighbours, it
means in practise that only vortex-cores situated strictly on
top of each other will be considered part of the same vor-
tex line, so that only perfectly strait lines will be accepted.
Some limit must then be defined, next nearest neighbours,
or beyond: if one decides that the limit should be chosen
at a distance less that \/5, the two vortex-cores should be
part of the same cube. This still seems a bit drastic since
a vortex-core is a rather large object as can be seen in fig-
ures 3 and 4. At this stage, the threshold is set at 4 after
gradually increasing it until the vortex-core lines thus de-
tected correspond to those that the human eye will sponta-
neously establish: more rigorous procedures, e.g. Voronoi
tesselation-based, are certainly possible.

Figure 10 shows the line dynamics for d = 0.005: a
case for which we expect a one-line situation, in which the
line is roughly parallel to z. The straight blue (z compo-
nent of ry) line at z = 32 in the top panel indicates that
the z coordinate of the middle of the line lays midway in
the sample, but the presence of other points for z ~ 16
and 48 also shows that sometimes the line gets cut some-
where in its middle, which lead to the suspicion that the
vortex core density might be lower in the middle: this is
consistent with the fact that that the vortex-core sizes tend
to be larger in the middle of the sample: the number of
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time
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2000 4000 6000 8000 10000

Figure 10. For d = 0.005 vortex core line dynamics. The line
center ro coordinates are given in the top panel, the line orien-
tation e in the lower panel. Point sizes are proportional to line
length.

detected vortex-core lines thus detected varies in this case
between one and two. The x and y components oscillate
which confirms lateral motion of the line taken as a whole.
The bottom panel of figure 10 shows the time dependence
of the coordinates of the line orientation e. Unsurprisingly,
since we expect the line orientation to be parallel to z, the
z component (in blue) remains close to one. The other two
components however oscillate showing a precession mo-
tion of the line.

d=0.1

64
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48
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16

2000 4000 6000 8000 10000
time

line orientation

o
S
o
NS X

2000 4000 6000 8000 10000
time

Figure 11. Same as figure 10 for d = 0.1.

Figure 11 provides the same information for d = 0.1.
Several differences can be noticed. In the top panel, we
still have one blue line for z = 32, but no others, meaning
the line discontinuity disappears. The x and y contribu-
tions to ry yield 16 and 48, which is consistent with the
fact that we now have four vortex-lines at approximately
x = 16,y = 16, then x = 16, y = 48, and x = 48,
y = 16, and finally x = 48, y = 48. The bottom panel
clearly shows the vortex-line precession at a higher fre-
quency than previously.

Similar results are obtained for increasing dipole-
dipole interactions. The precession frequency increases

0.006

0.005 Simulations

fo In(d/do)

£=0.0013, dy=0.0050
0.004 |-

frequency

0.003 -

0.002

0.001

Figure 12. Precession frequency as a function of dipole-dipole
interaction d (red line). The green line represents a least-square
fit of a logarithmic function.

approximately as the logarithm of d as shown in figure 12.
This allows to define a characteristic dipole/exchange ratio
dy = 0.005 for which the precession vanishes; a character-
istic frequency fy =~ 0.0013 can also thus be defined.

3.3.2 Intra-line dynamics

Using equation (6), one potentially has access to the in-
ternal structure and motion of a vortex line. This however
reaches beyond the scope of the present paper.

4 Discussion

Vortex-core motion, usually the gyrotropic motion, is well
known, it has been observed and calculated in various sit-
uations, and many times interpreted through the generic
Thiele equations [64, 67, 69, 76].

Miniaturization has another advantage, when dealing
with useful active impurities scattered through a sample,
in the possibility of reducing the averaging process over a
large number of active “impurities”. Finally, the possibil-
ity of dealing with a highly sensitive single impurity with-
out any statistics can be reached. For instance, in colour
centres, an impurity acts as a perfectly localized extended
atom or molecule, where the spatial extension is basically
driven by the host dielectric constant [14], and similarly
the energy difference between electronic levels is reduced.
Doping centres in semiconductors also act as localized
atoms with their different electronic levels and ionization
[15]. So, the purpose of miniaturization up to a single im-
purity sounds to be quite fruitful in various fields. It was
reached for colour centres in the case of nitrogen vacancies
in diamond, with very low doping and nanoparticles [16].
Then the local magnetic field can be detected by means of
magnetic resonance on the Zeeman split levels [17]. With
such a tool the resolution of a single spin near the surface
can be reached [17, 18]! Such studies open the path for an
ultimate resolution of magnetic surface structures down to
the atomic level. And quite numerous colour centres can
be tried for such high-resolution applications.
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