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Abstract

We derive the equation of state of symmetric nuclear matter in a relativistic

theory with σ and ω exchange. We take a chiral version of this model which insures

all the chiral constraints. Going beyond the mean field approach we introduce the

effects of the pion loops. For the parameters of the model, in order to fix those linked

to pion exchange, we exploit the most recent information on the short-range part of

the spin-isospin interaction. For those linked to the scalar meson exchange we make

use of an analysis of lattice results on the nucleon mass evolution with the quark

mass. With these inputs we are able reach a correct description of the saturation

properties. From the equation of state of symmetric nuclear matter we alsoderive

the density dependence of the quark condensate and of the QCD susceptibilities.

Pacs24.85.+p 11.30.Rd 12.40.Yx 13.75.Cs 21.30.-x

1 Introduction

Relativistic theories of nuclear matter are needed for the prediction of the equation of
state of nuclear matter at large densities, or of other quantities such as the QCD quark
condensate or the QCD susceptibilities. They find a natural framework in the relativistic
σ and ω exchange model [1]. One important aspect is its chiral nature, especially if it
has to be used also for the investigation of QCD related quantities such as the quark
condensate. The approach that we follow in this work for symmetric nuclear matter is
based on the chiral version of the σ and ω model that we have proposed in ref. [2].
Here the sigma model is formulated in a non-linear version but with the presence of a
chiral singlet scalar field s. The nuclear binding is provided by this chiral invariant field
and in this way all chiral constraints are automatically satisfied. However it is known
that in such chiral theories attractive tadpole diagrams destroy saturation [3, 4]. Hence
in order to achieve saturation we complement our model, as in our previous work [5],
by the introduction of the scalar nucleonic response first introduced in the quark-meson
coupling model, QMC [6]. In our previous investigation [5], we have applied this model
in the Hartree approximation to derive the equation of state. From this we have deduced
the density evolution of the quark condensate and of the QCD susceptibilities. This
procedure insures the compatibility with the saturation properties of nuclear matter. Our
conclusions were that the deviations of the condensate evolution with density from the
linear behavior are mild and that there exists a convergence effect between the scalar and
pseudoscalar susceptibilities, a conclusion already reached in ref. [7, 8].

The pion which does not contribute at the mean field level was ignored in this work.
However the exchange of the scalar s field between nucleons is not the only source of
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attraction. Beside the exchange of a scalar meson, the Van Der Waals type of forces, i.e.,
two-pion exchange with one or two intermediate Delta excitations, also contribute to the
middle range attraction of the NN potential and to the nuclear binding. Iterated pion
exchange is also a source of attraction. It is even envisaged in a chiral theory that it could
describe the bulk of the nuclear binding [9] . It is therefore natural to extend our previous
descriptions restricted to the Hartree scheme so as to incorporate pion loops, which is the
aim of the present article. When pion exchange forces are discussed one has also to intro-
duce the other components of the spin-isospin force, namely the short-range contribution
embodied in the Landau Migdal parameters. We will also introduce rho exchange, which
acts in the spin transverse channel. We will show that the role of both the short-range
terms and the rho in the correlation energy is crucial. For what concerns the values of
the Landau-Migdal parameters, years of experimental and theoretical investigations have
sharpened our knowledge of these quantities. We will exploit here the most recent results,
for which a survey is given in a recent article by Ichimura et al. [10]. We feel timely to
revisit certain problems of nuclear physics and combine in these studies the experience ac-
cumulated in the pionic type of physics including chiral aspects and some results of QCD
to have simultaneously a description of the nuclear binding and the evolution of chiral
symmetry restoration, i.e., of the quark scalar density, and of the QCD susceptibilities.

In order to achieve this we will incorporate in a consistent way, on top of this mean
field, the pion loop contribution to the energy, namely the pion Fock term and the pionic
correlation energy, taking into account short-range correlation effects, within a RPA ring
approximation [11]. In this way, by taking the successive derivatives of the grand potential
with respect to the pion mass, we will obtain the full contribution to the evolution of
the chiral condensate and the scalar susceptibility. In a recent work [12] we obtained
the pionic piece of the scalar susceptibility by taking the derivative with respect to the
quark mass (in practice to the pion mass) of the pion scalar density 〈Φ2〉, which is a
component of the condensate of the medium. We showed that the medium effects affecting
the scalar susceptibility are precisely the same that the ones governing the reshaping
of the strength in the low invariant mass region in two-pion production experiments
[13, 14, 15]. One purpose of the present paper is to provide a unified description of
two quantities, i.e. the effect of the nuclear scalar field and of the pion loops in a way
compatible with saturation properties of nuclear matter. The pionic contributions depend
on the pionic polarization propagator i.e. the p.h. (particle-hole) and ∆.h. (Delta-hole)
Lindhardt functions. Although we start from a relativistic mean field theory we will
evaluate these Lindhardt functions in a non-relativistic framework for convenience since
it is based on a well established phenomenology. It is interesting to point out that this
approach where pion loops are incorporated on top of background scalar and vector mean-
fields has some similarities with the approach of reference [16] based on a relativistic
density functional. There are however important differences that will be discussed in
section 4.

Our article is organized as follows. Section 2 is devoted to the loop energy. After a
brief summary of the results obtained in the Hartree scheme pion loops are introduced
together with the other short-range components of the spin-isospin interaction. Section 3
discusses the QCD quantities, the quark condensate and the scalar susceptibility. Finally
in section 4 numerical results are given and the results discussed.

2



2 Pion loop energy

2.1 Summary of the mean field results without pion loop

We start with the mean field Hamiltonian used in ref. [5] supplemented by the free pion
Hamiltonian :

H0 =

∫

dr N̄
(

−i~γ · ~∇ + M∗
N(s) + gωγ0ω0

)

N + V (s) −
1

2
m2

ωω2
0 +

∑

q,j

ωq

2
b†qjbqj (1)

where s is the chiral invariant field associated with the radius S = fπ + s of the chiral
circle. V (s) = V0(s) − cS is the vacuum potential which can be split into V0(s) =

(λ/4)
(

(fπ + s)2 − v2
)2

, responsible for spontaneous chiral symmetry breaking, and the
explicit symmetry breaking piece, −cS, where c = fπm2

π. As usual in relativistic mean
field theories we have added a coupling to an omega field ω0 .

At the mean field level the energy density for symmetric nuclear matteris given by :

E0

V
= ε0 =

∫

4 d3p

(2π)3
Θ(pF − p) E∗

p(s̄) + V (s̄) +
g2

ω

2 m2
ω

ρ2 (2)

and E∗
p(s̄) =

√

p2 + M∗2
N (s̄) is the energy of an effective nucleon with the effective mass

M∗
N (s̄). The effective mass is sensitive to the effect of the nucleon susceptibility, κNS,

which embeds the influence of the internal nucleon structure :

M∗
N (s̄) = MN

(

1 +
s̄

fπ

)

+
1

2
κNS s̄2. (3)

The expectation value, S̄ = fπ + s̄, of the S field plays the role of a chiral order parameter.
It is obtained by minimizing the energy density : ∂ε/∂s̄ = g∗

S ρS + V ′(s̄) = 0 with the
following expressions for the scalar density, ρS, and the scalar coupling constant g∗

S :

ρS =

∫

4 d3p

(2π)3
Θ(pF − p)

M∗
N

E∗
p

and g∗
S(s̄) =

∂M∗
N

∂s̄
=

MN

fπ
+ κNS s̄.

The quantity gS = MN/fπ is the scalar coupling constant of the model in the vacuum.
Notice that the density dependence of g∗

S arises entirely from the susceptibility term.
Since the mean scalar field is negative and the sign of κNS is positive, g∗

S is a decreasing
function of the density. The in-medium sigma mass is obtained as the second derivative
of the energy density with respect to the order parameter : m∗2

σ = ∂2ε/∂s̄2 = V ′′(s̄) +
∂ (g∗

S ρS) /∂s̄.
In the free pion part of the Hamiltonian of eq. 1, the operator b†qj creates a free pion

state with momentum q and isospin index j and we we have ωq =
√

q2 + m2
π where mπ

is the pion mass. In fact in a more complete treatment including s-wave pion-nucleon
coupling, according to ref. [2], the pion mass should be replaced by an effective mass
m∗2

π = m2
π(1 + s̄/fπ). As in ref. [17] we do not consider this effect since it is almost

completely compensated by other contributions [18] and the pion mass remains stable in
the nuclear medium [19].
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2.2 Inclusion of the pion-nucleon coupling

We now include the usual derivative pion-nucleon interaction Hamiltonian :

HπNN = −

∫

dr
gA

fπ

N̄ γµ γ5
~τ

2
.∂µ

~Φ N ≃ −

∫

dr
gA

2 fπ

N †
σ.∇~Φ.~τ N (4)

where the second form corresponds to the non relativistic limit of pure p-wave nature. It
can be rewritten in a standard second-quantized form as :

HπNN =
∑

q,j

(

1

2 ωq V

)1/2
(

bq,j + b†−q,j

)

Lj(q)

Lj(q) =
∑

α,β

c†β cα V βα
j (q), V βα

j (q, ω) = −i
gA

2 fπ

v(q) < N : β|σ.q τj eiq.R|N : α〉(5)

where we have included phenomenologically a dipole πNN form factor v(q) and V is
the volume of the normalization box. Using Green’s function techniques, the expectation
value on the nuclear ground state |0〉 of this interacting Hamiltonian can be obtained
according to [11] :

〈HπNN〉 = 3 V

∫ +∞

−∞

i dω

2π)

∫

dq

(2π)3

1

ω2 − ω2
q

ΠL(ω,q). (6)

Here ΠL(ω,q) is the full spin-isospin polarization propagator defined by :

ΠL(ω,q) =

∫ +∞

−∞

d(t − t′) eiω(t−t′) (−i)

V
〈0|T

(

L†
j(q, t) , Lj(q, t′)

)

|0〉

=
1

V

∑

n

|〈n|Lj(q)|0〉|2

ω − En + iη
−

|〈n|L†
j(q)|0〉|2

ω + En − iη
. (7)

We also include the Delta-hole states. In this case the operator σ.q τj is replaced by
(gπN∆/gπNN)S.q Tj where the Sj (Tj) are the standard spin (isospin) transition operators
between spin (isospin) 1/2 and 3/2 states. For the ratio of coupling constants, we take
the quark model value : RN∆ = (gπN∆/gπNN) =

√

72/25.

2.3 Inclusion of short-range correlation and rho meson exchange

The expression (6) written above shows that the interaction energy of the pion cloud
with matter is obtained by integrating the product of the full longitudinal spin-isospin
polarization propagator (i.e. the nuclear response to a pion-like excitation) with the pion
exchange potential. However, due to the correlated nature of the medium, the contact
piece of the pion exchange potential should be treated with caution. In the part which
concerns medium effects, this piece should be removed. This is achieved as usual by
introducing in the spin-isospin channel a short-range two-body potential governed by
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Landau-Migdal g′ parameters. The Nh − Nh piece of the corresponding Hamiltonian
writes :

Hsr =
1

2

∑

αβγδ

c†αc†βcδcγ 〈αβ|Vsr(1, 2)|γδ〉

Vsr(1, 2) =

∫

dq

(2π)3

(

gA

2 fπ

)2

v2(q) g′
NN σ(1).σ(2)~τ(1).~τ(2) e−iq.(R1−R2) . (8)

It is straightforward to extend this expression in order to include the Nh − ∆h and the
∆h − ∆h pieces. For this we replace g′

NN by RN∆ g′
N∆ and R2

N∆ g′
∆∆ where RN∆ defined

previously is the coupling constant ratio. In the numerical calculation we will use the
following set of values suggested in ref. [10], which takes into account the most recent
data analysis : g′

NN = 0.7, g′
N∆ = 0.3, g′

∆∆ = 0.5, with clear deviations from universality
as advocated in ref. [10]. The spin-spin operator can be decomposed into a longitudinal
piece and a transverse one. For this reason we also introduce the full transverse spin-
isospin polarization propagator :

ΠT (ω,q) =
1

2

∫ +∞

−∞

d(t − t′) eiω(t−t′) (−i)

V
〈0|T

(

T
†
j(q, t) , Tj(q, t′)

)

|0〉

=
1

2V

∑

n

|〈n|Tj(q)|0〉|2

ω − En + iη
−

|〈n|T†
j(q)|0〉|2

ω + En − iη
(9)

where Tj is obtained from Lj by replacing σ.q by σ × q. The expectation value of the
short-range potential is :

〈Hsr〉 =
3

2
V

∫ +∞

−∞

i dω

2π)

∫

dq

(2π)3
g′
[

(ΠL(ω,q) + 2 ΠT (ω,q))
]

−
1

2

∑

αh

〈αh|Vsr(1, 2)|hα〉

(10)
where the second term is introduced in order to remove the contribution for free nucleons.
In the following, when this second term term is not explicitely written, this substraction
is done implicitely. The first term g′ (ΠL(ω,q) + 2 ΠT (ω,q)) is written in a schematic
form. The precise form involving the three Landau-Migdal parameters, g′

NN , g′
N∆, g′

∆∆,
will be given below in subsection 2.4.

Finally, so as to obtain a more realistic description of the transverse spin-isospin
channel we also introduce, beside the short-range piece, the ρ meson through a ρNN
Hamiltonian. In the non relativistic limit it has a structure similar to the πNN one, once
the σ.q coupling is replaced by a σ × q coupling. Its expectation value is :

〈HρNN〉 = 3 V

∫ +∞

−∞

i dω

2π)

∫

dq

(2π)3

2 Cρ

ω2 − Ω2
q

ΠT (ω,q). (11)

with Ωq =
√

q2 + m2
ρ. We take Cρ = 2 which corresponds to the strong rho coupling [20].

2.4 Calculation of the pion loop energy

In order to calculate the pion loop energy we use the well-known charging formula method.
For this purpose we introduce an auxiliary Hamiltonian which depends on one strength
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parameter λ :
H(λ) = H0 + λ (HπNN + HρNN) + λ2 Hsr . (12)

H(λ) coincides with the original Hamiltonian for λ = 1. The charging formula allows the
evaluation of the modification of the ground state energy with respect to the ground state
energy E0 of the H0 Hamiltonian :

Eloop = E − E0 ≡ V εloop =
3

2
V

∫ +∞

−∞

i dω

2π)

∫

dq

(2π)3

∫ 1

0

dλ

λ
([

VL(ω,q) ΠL(ω,q; λ)
]

+ 2
[

VT (ω,q) ΠT (ω,q; λ)
])

. (13)

The dependence on λ of the full polarization propagators can be obtained by systemati-
cally multiplying the coupling gA/fπ by λ. For instance there appears a net λ2 factor in
front of each first order Lindhardt function appearing in the RPA expression of the full
polarization propagators.The quantities VL,T (ω,q) are the full energy dependent residual
interactions in the longitudinal and transverse spin-isospin channels. In the Nh − Nh
sector, they write :

VLNN(ω,q) = g′
NN +

q2

ω2 − ω2
q

, VTNN(ω,q) = g′
NN + Cρ

q2

ω2 − Ω2
q

, (14)

with identical expressions in the Nh−∆h and the ∆h−∆h channels once the relevant g’
parameters have been incorporated. Again the expression (13) written above is schematic
and the full formula calculated in the RPA ring approximation is given just below in eqs.
16,17. The λ integration can be done analytically to obtain the loop energy density εloop :

εloop = εL + εT with (15)

εL =
3

2

∫

idωdq

(2π)4

[

− ln
(

1 − VLNNΠ0
N − VLN∆Π0

∆ − (V 2
LN∆ − VLNN VL∆∆)Π0

NΠ0
∆

)]

(16)

εT = 3

∫

idωdq

(2π)4

[

− ln
(

1 − VTNNΠ0
N − VTN∆Π0

∆ − (V 2
TN∆ − VTNN VT∆∆)Π0

NΠ0
∆

)]

(17)

Π0
N is the N.h. Lindhardt function which is calculated non relativistically. With the

single particle energy, εp = p2/2M∗ where M∗ is the s dependent nucleon effective mass
calculated at the mean-field level, Π0

N has the familiar form :

Π0
N (ω,q) = 4

(

gA

2fπ

)2

v2(q)

∫

dp

(2π)3

(

Θ(pF − p) Θ(|p + q| − pF )

ω − ǫNpq + iη

−
Θ(pF − p) Θ(|p + q| − pF )

ω + ǫNpq − iη

)

. (18)

ǫNpq = ǫp+q − ǫp is the energy of the p.h. excitation. The corresponding ∆.h. Lindhardt
function, Π0

∆ is also calculated non relativistically. Introducing also an effective ∆ mass,
we make the natural assumption that the in-medium shift of the nucleon and delta masses
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in presence of the nuclear scalar field are identical. The ∆.h. energy is thus : ǫ∆pq =
ǫ∆,p+q − ǫp with ǫ∆,p = M∆ − MN + p2/2M∗

∆ and Π0
∆ writes :

Π0
∆(ω,q) =

16

9

(

gA

2fπ
RN∆

)2

v2(k)

∫

dp

(2π)3
Θ(pF − p)

(

1

ω − ǫ∆pq + iη
−

1

ω + ǫ∆pq

)

,

.

(19)
This loop energy can be split in a piece of mean-field nature (containing the Fock term)
and a genuine correlation energy. For instance we have for the longitudinal piece :

εL = εMF
L + εCorr

L

εMF
L =

3

2

∫

idωdq

(2π)4

[

VLNNΠ0
N + VLN∆Π0

∆

]

εCorr
L =

3

2

∫

idωdq

(2π)4

[

− ln
(

1 − VLNNΠ0
N − VLN∆Π0

∆ − (V 2
LN∆ − VLNN VL∆∆)Π0

NΠ0
∆

)

−VLNNΠ0
N − VLN∆Π0

∆

]

. (20)

By performing the energy integration with a Wick rotation, εMF
L can be expressed as

follows :

εMF
L =

∫

4dp

(2π)3
Θ(pF − p) Σπ(p) + εFock

L . (21)

Σπ(p) is the pionic contribution to the nucleon self-energy :

Σπ(p) = −
3

2

(

gA

2fπ

)2 ∫
dq

(2π)3
q2 v2(q)

(

1

ωq

1

ωq + ǫNpq

+
4R2

N∆

9

1

ωq

1

ωq + ǫ∆pq

)

. (22)

In principle medium effects are present in this quantity since the N.h. and ∆.h. energies
depend on the effective nucleon and delta masses but in practice we ignore these effects.
The momentum dependence of the nucleon self-energy is linked to the treatment of the
vacuum nucleon which is not the purpose of this paper. Hence we ignore it. At zero
momentum the self-energy Σπ ≡ Σπ(p = 0) is similar to the model calculation one used
to fit lattice data by Thomas et al [21], although we do not make a static approximation.
In our calculation we will choose a dipole form factor, with a cutoff Λ = 0.98 GeV , such
that the resulting contribution to the free nucleon sigma term, σ

(π)
N , the expression of

which being given in subsection 3.1, is σ
(π)
N = 21.5 MeV , in agreement with previous

determinations [22, 23]. The corresponding pion cloud self-energy is Σπ = −420 MeV .
The Fock term is :

εFock
L = −

3

2

(

gA

2fπ

)2 ∫
dq

(2π)3
v2(q)

∫

4dp

(2π)3
Θ(pF−p)Θ(pF−|p+q|)

(

g′
NN −

q2

ωq(ωq + ǫNpq)

)

.

(23)
Notice that this Fock term includes a retardation effect through the presence of the
particle-hole energy ǫNpq. In practice the effect is numerically small and we take it as its
average Fermi sea value : ǫNpq = ǫNq = q2/2MN , ignoring the in-medium modification
of the nucleon mass. In that way the Fock energy does not depend on s̄, a feature which
simplifies the calculation of the scalar susceptibility. Also notice that, at variance with
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other works, see e.g. [24], we keep the form factor in the Fock term. The Fock term
relative to the transverse channel is obtained in a similar way :

εFock
T = −3

(

gA

2fπ

)2 ∫
dq

(2π)3
v2(q)

∫

4dp

(2π)3
Θ(pF−p)Θ(pF−|p+q|)

(

g′
NN −

Cρ q2

Ωq(Ωq + ǫNpq)

)

(24)
Finally the correlation energy is also calculated using a Wick rotation for the ω energy
integration. The numerical results will be given in section 4.

3 The chiral condensate and the scalar susceptibility

3.1 Direct calculation

In this first approach the in-medium quark condensate is evaluated directly from the
expectation value of chiral symmetry breaking piece of the Hamiltonian :

〈HχSB〉 ≡ V 2 m 〈q̄q〉 ≃ V

〈

1

2
m2

π Φ2 − c S

〉

→ 〈q̄q〉 ≃ 〈q̄q〉vac

(

1 −
〈Φ2〉

2 f 2
π

+
s̄

fπ

)

(25)
where the GOR relation has been used to obtain the second equation. The pion scalar
density can be directly calculated from the in-medium pion propagator [25, 12] :

〈Φ2〉 = 3

∫

idωdq

(2π)4
[Dπ − D0π] (ω,q) = 3

∫

idωdq

(2π)4

[

DπD0π(ω,q)q2 Π̃0(ω,q)
]

. (26)

Dπ = (ω2−ω2
q−q2Π̃0)−1 is the full pion propagator, q2Π̃0 is the irreducible pion self-energy

with :

Π̃0 =
Π0

N + Π0
∆ + (2g′

N∆ − g′
NN − g′

∆∆)Π0
NΠ0

∆

1 −
(

g′
NNΠ0

N + g′
∆∆Π0

∆ + (g′2
N∆ − g′

NNg′
∆∆)Π0

NΠ0
∆

) . (27)

It is possible to show that the formal expression of the pion scalar density can be obtained
as the derivative with respect to m2

π of the pionic energy density εL given by eq. 16 :

〈Φ2〉

2
=

∂εL

∂m2
π

or equivalently − 〈q̄q〉vac
〈Φ2〉

2 f 2
π

=
1

2

∂εL

∂m
(28)

which is nothing but the Feynman-Hellman theorem applied to the pion loop contribution.
As in the previous section we decompose εL into a free nucleon contribution, a Fock
contribution and a correlation piece, with a similar decomposition for 〈Φ2〉 :

〈Φ2〉

2
= ρ

∂Σπ

∂m2
π

+
∂εFock

L

∂m2
π

+
∂εCorr

L

∂m2
π

≡ ρ
σ

(π)
N

m2
π

+
〈Φ2〉Fock

2
+

〈Φ2〉Corr

2
. (29)

The pionic contribution to the pion-nucleon sigma term is :

σ
(π)
N =

3

2

(

gA

2fπ

)2

m2
π

∫

dq

(2π)3

q2 v2(q)

2ω2
q

[

1

ωq

1

ωq + ǫq

+
1

(ωq + ǫq)2

+
4 R2

N∆

9

(

1

ωq

1

ωq + ǫ∆q
+

1

(ωq + ǫ∆q)2

)]

. (30)
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The Fock term contribution has the following explicit form :

〈Φ2〉Fock

2
= −

3

2

(

gA

2fπ

)2

ρ

∫ 2pF

0

dq

(2π)3

q2 v2(q)

2ω2
q (ωq + ǫq)

(

1 −
3q

4pF
+

q3

16p3
F

)

(

1

ωq
+

1

(ωq + ǫq)

)

. (31)

Finally the correlation piece is obtained by removing the leading order piece in eq. 26 :

〈Φ2〉Corr

2
=

3

2

∫

idωdq

(2π)4
q2
[

DπD0π Π̃0 − D2
0π Π0

]

(ω,q). (32)

In the next subsection we will evaluate the condensate from the equation of state (grand
potential) and the Feynman-Hellman theorem. It leads essentially to the same result with
a modification coming from the fact that we will have to face the problem of the Lorentz
nature of the in-medium effects of the pion loop energy.

3.2 The quark condensate from the equation of state

The pion cloud contribution has been calculated within the standard non relativistic
framework. One reason is the basis of the pion-nucleus phenomenology. However some
care should be taken when this pion cloud is included on top of the relativistic mean
field used to describe the coupling of the scalar field to nucleons. For free nucleons the
pionic self-energy Σπ has to be of scalar nature and thus it adds to the bare nucleon mass:
MN = M0 + Σπ. For what concerns the in-medium contribution to the energy we do not
know if it is of scalar or vector nature or a mixture of both. Here we assume its vector
nature and add it to the energy density. This assumption affects contributions arising
from the pionic interaction between nucleons where it amounts to distinguishing between
scalar and vector densities. In practice the effect of this difference is numerically quite
small. For the free nucleon part instead this distinction has a non negligible effect. The
energy density thus writes :

E

V
= ε =

∫

4 d3p

(2π)3
Θ(pF − p) E∗

p(s̄) + V (s̄) +
g2

ω

2 m2
ω

ρ2 + εFC (33)

where εFC = εFock
L + εFock

T + εCorr
L + εCorr

T summarizes the loop energy density from the
Fock term and correlations (pion + rho + short-range) which can be decomposed into a
longitudinal piece (pion + short-range) and a transverse piece (rho + short-range). The
mean field s̄ is obtained by minimizing the energy density before the incorporation of
the loop energy or, said differently, ignoring the s̄ dependance of εFC. This is actually
true for the Fock term and this approximation has a small numerical incidence on the
evolution of the condensate with inclusion of the correlation energy. It also follows from
the independence on s̄ of ǫFC that the in-medium sigma mass remains the same as in the
mean-field case :

m∗2
σ =

∂2ε

∂s̄2
= V ′′(s̄) + κNS ρS + g∗

S

∂ρ∗
S

∂s̄
. (34)
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As discussed in ref. [5] the scalar susceptibility term (second term in κNS on the r.h.s of
eq. 34) counterbalances the effect of the first term, the in-medium chiral dropping of the
sigma mass. The last term actually corresponds to the nuclear response associated with
NN̄ excitation. In practice it is small and it can be omitted [8].

We will derive the in-medium chiral condensate and the QCD scalar susceptibility
from the equation of state since they are related to the first and second derivatives of the
grand potential with respect to the quark mass m at constant chemical potential µ. The
baryonic chemical potential is obtained as :

µ =
∂ε

∂ρ
= E∗

F +
g2

ω

m2
ω

ρ +
∂εFC

∂ρ
with E∗

F =
√

p2
F + M∗2

N (s̄). (35)

In order to obtain this result we have taken into account only the explicit density depen-
dence on the density ρ, i.e., keeping s̄ constant since ∂ε/∂s̄ = 0. One deduces that the
baryonic density is controlled by the chemical potential according to :

ρ =

∫

4 d3p

(2π)3
Θ

(

µ − E∗
p −

g2
ω

m2
ω

ρ −
∂εFC

∂ρ

)

(36)

while the scalar density writes :

ρS =

∫

4 d3p

(2π)3

M∗
N

E∗
p

Θ

(

µ − E∗
p −

g2
ω

m2
ω

ρ −
∂εFC

∂ρ

)

. (37)

The grand potential, which is obtained through a Legendre transform, can be written in
the following form :

ω(µ) = ε − µ ρ

=

∫

4 d3p

(2π)3

(

E∗
p +

g2
ω

m2
ω

ρ +
∂εFC

∂ρ
− µ

)

Θ

(

µ − E∗
p −

g2
ω

m2
ω

ρ −
∂εFC

∂ρ

)

+ V (s) −
g2

ω

2 m2
ω

ρ2 + εFC − ρ
∂εFC

∂ρ
. (38)

For the derivation of the condensate and of the susceptibility we have to specify the sym-
metry breaking parameter, which in QCD is the quark mass. In the context of this model
it is the quantity c = fπm2

π which enters the symmetry breaking piece of the potential. In
the application of the Feynman-Hellman theorem we use the explicit expression of ∂c/∂m
given by the model to leading order in the quark mass m, i.e., ∂c/∂m = −2〈q̄q〉vac/fπ.
As previously, in the calculation of the derivative we only keep the explicit dependence
on c :

〈q̄q〉 =
1

2

(

∂ω

∂m

)

µ

=
1

2

∂c

∂m

(

∂ω

∂c

)

µ

≃ −
〈q̄q〉vac

fπ

(

−S̄ + ρS

(

∂MN

∂c

)

S̄

+
∂εFC

L

∂c

)

≃ 〈q̄q〉vac

(

S̄

fπ
−

m2
π

c

∂Σπ

∂m2
π

−
m2

π

c

∂εFC
L

∂m2
π

)

= 〈q̄q〉vac

(

1 +
s̄

fπ

−
〈Φ2〉

2f 2
π

)

. (39)
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In the last line we have grouped the pionic contribution in a pion scalar density given by :

〈Φ2〉

2
= ρS

σ
(π)
N

m2
π

+
〈Φ2〉Fock

2
+

〈Φ2〉Corr

2
. (40)

Notice that the pion scalar density deviates from the fully non relativistic one of eq. 26
since the leading order term behaves like ρS in place of ρ. To leading order in density we
recover, as expected, the well-known result :

〈q̄q〉 = 〈q̄q〉vac

(

1 −
σN ρ

f 2
π m2

π

)

, σN = σ
(π)
N + σ

(σ)
N , σ

(σ)
N = fπ gS

m2
π

m2
σ

. (41)

3.3 The scalar susceptibility

The in-medium scalar susceptibility is obtained as a derivative at fixed µ of the chiral
condensate given in eq. 39. The dependence of the pion scalar density on the symmetry
breaking parameter (c or mπ) receives two contributions : one comes from the explicit
dependence on c and the other from the implicit dependence since, at fixed µ, the density
ρ depends on c according to eq. 36. Hence the scalar susceptibility takes the form :

χS =

(

∂〈q̄q〉

∂m

)

µ

= −
1

2

(

∂c

∂m

)2
[

(

∂S̄

∂c

)

µ

−
1

2fπ

(

∂〈Φ2〉

∂c

)

µ

]

≃ −2
〈q̄q〉2vac

f 2
π

[

(

∂S̄

∂c

)

µ

−
1

2fπ

(

∂〈Φ2〉

∂ρ

)

µ

(

∂ρ

∂c

)

µ

−
m2

π

2fπc

(

∂〈Φ2〉

∂m2
π

)

]

≡ χnuclear
S + χpionloop

S . (42)

We have divided χS in two components. The first one which is the sum of the first two
terms contains the coupling of the scalar quark density fluctuations to the nuclear p.h.
excitations. For this reason we denote it χnuclear

S :

χnuclear
S = −2

〈q̄q〉2vac

f 2
π

[

(

∂S̄

∂c

)

µ

−
1

2fπ

(

∂〈Φ2〉

∂ρ

)

µ

(

∂ρ

∂c

)

µ

]

. (43)

The second one, χpionloop
S , of purely pionic nature, comes from the explicit dependence

on mπ of the pion scalar density 〈Φ2〉. The latter can be written as :

χpionloop
S = 2

〈q̄q〉2vac

f 2
π

1

2f 2
π

∂〈Φ2〉

∂m2
π

= ρS χ
(π)
NS + χpion−Fock

S + χpion−Corr
S . (44)

The pionic contribution to the nucleon scalar susceptibility χ
(π)
NS is obtained from the

derivitative of the pion cloud contribution to the sigma commutator (eq. 30):

χ
(π)
NS = 2

〈q̄q〉2vac

f 4
π

3

2

(

gA

2fπ

)2 ∫
dq

(2π)3

q2 v2(q)

2ω3
q

[

3

ω2
q (ωq + ǫq)

+
3

ωq (ωq + ǫq)2
+

2

(ωq + ǫq)3

+
4 R2

N∆

9

(

3

ω2
q (ωq + ǫ∆q)

+
3

ωq (ωq + ǫ∆q)2
+

2

(ωq + ǫ∆q)3

)]

. (45)
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The Fock term contribution is obtained from eq. 31 :

χpion−Fock
S = −2

〈q̄q〉2vac

f 4
π

3

2

(

gA

2fπ

)2

ρ

∫ 2pF

0

dq

(2π)3

q2 v2(q)

2ω3
q (ωq + ǫq)

(

1 −
3q

4pF
+

q3

16p3
F

)

(

3

ω2
q (ωq + ǫq)

+
3

ωq (ωq + ǫq)2
+

2

(ωq + ǫq)3

)

.(46)

Finally the correlation piece is obtained from eq. 32 :

χpion−Corr
S = 2

〈q̄q〉2vac

f 4
π

3

2

∫

idωdq

(2π)4
q2 [(D2

πD0π + DπD
2
0π

)

Π̃0 − 2 D3
0π Π0

]

(ω,q). (47)

In the evaluation of the nuclear contribution, χnuclear
S , the derivative (∂S̄/∂c)µ is obtained

by taking the derivative of the minimization equation with respect to the parameter c :

m∗2
σ

(

∂S̄

∂c

)

µ

= 1 − g∗
S

M∗
N

E∗
F

Π0(0)

[

g∗
S

(

∂S̄

∂c

)

µ

+
E∗

F

M∗
N

X(π) + VV

(

∂ρ

∂c

)

µ

]

, (48)

with the auxiliary quantities :

X(π) =
1

2fπ

∂〈Φ2〉FC

∂ρ
+

M∗
N

E∗
F

σ
(π)
N

fπm2
π

, VV =
E∗

F

M∗
N

(

g2
ω

m2
ω

+
∂2εFC

∂ρ2

)

(49)

and with Π0(0) = −2M∗
N pF/π2, which is the non-relativistic free Fermi gas particle-hole

polarization propagator in the Hartree scheme, at zero energy in the limit of vanishing
momentum. The derivative of the baryonic density is obtained by taking the derivative
with respect to c of eq. 36, with the result :

(

∂ρ

∂c

)

µ

=

(

g∗
S

(

∂S̄

∂c

)

µ

+
E∗

F

M∗
N

X(π)

)

Π0(0)
(

1 − VV Π0(0)
)−1

. (50)

It follows that χnuclear
S can be written in the following form which displays the propagator

of the scalar field and the role of the pion loops in this propagation :

χnuclear
S = −2

〈q̄q〉2vac

f 2
π





1

m∗2
σ

−
1

m∗2
σ

(

σ
(π)
N + σ

(σ)
N

σ
(σ)
N

)2

eff

ΠSS(0)
1

m∗2
σ



 . (51)

Here ΠSS(0) is the full scalar polarization propagators (in which we include the coupling
constant) :

ΠSS(0) = g∗2
S

M∗
N

E∗
F

Π0(0) [1 − Vres Π0(0)]−1 . , (52)

where Vres is the residual interaction :

Vres =
E∗

F

M∗
N

(

g2
ω

m2
ω

+
∂2εFC

∂ρ2

)

−
M∗

N

E∗
F

g∗2
S

m∗2
σ

. (53)
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This expression differs from the mean-field one of our previous work [5] by the presence
of the term in ∂2εFC/∂ρ2. In the expression 51 we have introduced quantities that we
denote effective sigma commutators with the explicit expressions :

(σN)eff = (σ
(π)
N )eff + (σ

(σ)
N )eff =

M∗
N

E∗
F

σ
(π)
N +

m2
π

2

∂〈Φ2〉FC

∂ρ
+

M∗
N

E∗
F

fπ g∗
S

m2
π

m∗2
σ

. (54)

It is interesting to compare it with the effective sigma commutator governing the evolution
of the chiral condensate.which is :

(σ̃N )tot = (σ̃
(π)
N ) + (σ̃

(π)
N ) =

ρS

ρ
σ

(π)
N +

m2
π

2

〈Φ2〉FC

ρ
+ fπ m2

π

s̄

ρ
. (55)

As was shown in ref. [7], this last quantity, corresponding to the full nuclear sigma
commutator per nucleon, also governs the evolution of the pseudoscalar susceptibility
according to :

χPS = −2
〈q̄q〉2vac

f 2
π m2

π

(

1 −
(σ̃N )tot ρ

f 2
π m2

π

)

. (56)

Comparing the expressions 54 and 55 we see that they are not identical. They coincide
to leading order in density but the higher order terms differ. In particular 〈Φ2〉FC/ρ
is replaced in eq. 54 by ∂〈Φ2〉FC/∂ρ. We recover in this work the result of [8], that
the quantity which governs the transformation of the quark scalar density fluctuations
into nucleonic ones represents an effective nucleon sigma commutator which includes pion
loops. In ref. [8] it was the free nucleon one while here interactions are incorporated and
we deal with effective values. Our present result thus generalizes the first order result of
[8].

Coming back to the expression 51 of χnuclear
S , we point out that the pion loops only

enter in the effective sigma commutator which includes medium effects. The mass, m∗
σ,

which enters the denominators is instead unaffected by the pion loops. The nuclear
contribution χnuclear

S is indeed linked to the propagation of the chiral invariant scalar field
s which is not coupled to pions. The pure pion cloud contribution (eq. 44) is totally
decoupled. This point was already discussed, within a different approach in ref. [12].

4 Numerical results and discussion

4.1 Fixing the parameters

One important constraint to fix the parameters is the pion-nucleon sigma term which
has a value, σN ≃ 50 MeV . In our approach it receives two contributions: one from the
pion cloud, the other from the sigma meson. We point out that if our model represents
a bosonized underlying NJL model, the latter contribution represents the sigma term of
constituent quarks. It is interesting to make a connection with the lattice evaluations
of the evolution of the nucleon mass with the pion mass. Indeed lattice simulations of
the nucleon mass as a function of the squared pion mass (equivalently the quark mass)
are available in the mass region beyond mπ ≃ 400MeV . The derivative ∂MN/∂m2

π =

13



σN/m2
π provides the nucleon sigma commutator. In turn the derivative of σN leads to

the susceptibility. Both quantities are strongly influenced by the pion cloud which has
a non-analytic behavior in the quark mass, preventing a polynomial expansion in this
quantity. However, it is possible to extrapolate lattice data using chiral models of the
nucleon as discussed by Thomas and collaborators and we use their recent version ref.
[21]. In their work the pionic self-energy contribution to the nucleon mass is separated
out using different cut-off forms for the pion loops (gaussian, dipole, monopole) with an
adjustable parameter Λ. They expanded the remaining part in terms of m2

π as follows :

MN (m2
π) = a0 + a2 m2

π + a4 m4
π + Σπ(mπ, Λ) . (57)

The best fit value of the parameter a4 which fixes the susceptibility shows little sensitivity
to the shape of the form factor, with a value a4 ≃ −0.5 GeV −3 while a2 ≃ 1.5 GeV −1 (see
ref. [21])), from which we can infer the non-pionic pieces of the sigma commutator :

σnon−pion
N = m2

π

∂M

∂m2
π

= a2 m2
π + 2 a4 m4

π ≃ 29 MeV . (58)

This number indicates the existence of a large component σN beside the pion one, that
it is natural to attribute to the scalar field. The identification of σnon−pion

N with σ
(σ)
N of

our model fixes the sigma mass to a value mσ = 800 MeV , close to the one ≃ 750MeV
that we have used in our previous article [5]. As it is the ratio gs/m

2
σ which is thus

determined this value of mσ is associated with the coupling constant of the linear sigma
model gS = MN/fπ = 10. Lowering gS reduces mσ. With our cutoff , Λ = 0.98 GeV ,

which yields σ
(π)
N = 21.5MeV , the total value of the sigma term is σN = 50.5 MeV , a

quite satisfactory result.
Although the procedule becomes more uncertain, on can also try to extract the non-

pionic part of the nucleon scalar susceptibility :

χnon−pion
NS = 2

〈q̄q〉2vac

f 4
π

∂

∂m2
π

(

σnon−pion
N

m2
π

)

=
〈q̄q〉2vac

f 4
π

4 a4 . (59)

It has to be compared with the non-pionic piece of the nucleon scalar susceptibility. This
can be done taking the zero density limit of eq. 51 :

χ
(σ)
NS = −2

〈q̄q〉2vac

f 2
π

(

1

m∗2
σ

−
1

m2
σ

)

1

ρ
= −2

〈q̄q〉2vac

f 2
π

1

m4
σ

(

3 gS

fπ

− κNS

)

. (60)

This identification allows an estimate of the crucial parameter κNS. For convenience, as
in [5], we introduce the dimensionless parameter C = (f 2

π/2MN )κNS and we obtain :

a4 = −
fπ gS

2 m4
σ

(3 − 2 C) . (61)

The value a4 ≃ −0.5 GeV −3 leads to C ≃ 1.25, which indicates a strong cancellation
between the two components of a4, which makes the results sensitive to the exact values
of the parameters. Therefore, due to the uncertainties of the procedure, we take this value
of C only as indicative.
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Figure 1: Binding energy of nuclear matter with gω = 7.3 and C = 0.985 keeping only
the Fock term on top of σ and ω exchange. The full line corresponds to the full result,
the dotted line represents the binding energy without the Fock term and the dot-dashed
line corresponds to the contribution of the Fock term.

Hence for the following discussions we fix the various parameters according to mσ =
800 MeV , Λ = 980 MeV , g′

NN = 0.7, g′
N∆ = 0.3, g′

∆∆ = 0.5, Cρ = 2 and the parameter
associated with the nucleonic response is allowed to vary in a broad region around C =
1.25. The vector coupling constant gω is a totally free parameter. Finally, as in ref. [5],
we also impose that the nucleonic response vanishes at the chiral restoration (s̄ = −fπ) :

κNS(s̄) =
∂2MN

∂s̄2
= κNS

(

1 +
s̄

fπ

)

. (62)

Accordingly, the effective nucleon mass of eq. 3 is modified according to :

M∗
N(s̄) = MN

(

1 +
s̄

fπ

)

+
1

2
κNS s̄2

(

1 +
s̄

3 fπ

)

(63)

and the effective scalar coupling constant becomes dependent on s̄:

g∗
S(s̄) =

∂M∗
N

∂s̄
=

MN

fπ

+ κNS s̄

(

1 +
s̄

2 fπ

)

. (64)

4.2 Results with the influence of the Fock term

The result of the calculation for the binding energy of nuclear matter in presence of the
Fock term only (i.e., ignoring the correlation energy) is displayed in fig. 1. The saturation
point(ρ0 = 0.16 fm−3, E/A = −16.1 MeV ) is obtained with C = 0.985 and gω = 7.3.
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Figure 2: Density evolution of the nucleon (dot-dashed curve) and sigma masses (full
curve) with gω = 7.3 and C = 0.985; the dashed curve corresponds to the sigma mass
when the effect of the nucleon susceptibility is removed.
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Figure 3: Density evolution of the QCD susceptibilities (normalized to the vacuum value
of the pseudoscalar one) with gω = 7.3 and C = 0.985 keeping only the Fock term on
top of σ and ω exchange. Dashed curve: pseudoscalar susceptibility. Full curve: scalar
susceptibility. Dotted curve: nuclear contribution to the scalar susceptibility. Dot-dashed
curve: pion loop contribution to the scalar susceptibility.
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Figure 4: Density evolution of the full in-medium sigma term, (σ̃N )tot (dotted line) and
of the effective sigma term, (σN )eff (full line), with gω = 7.3 and C = 0.985 keeping only
the Fock term on top of σ and ω exchange.
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Figure 5: Density evolution of the residual interaction in MeV −2 (continuous line).
Dashed line: omega exchange contribution. Dot-dashed line: Fock term contribution.
Dotted line: sigma exchange contribution.
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The corresponding incompressibility is K = 254 MeV . Comparing with our previous
results [5] we see that the inclusion of the Fock term somewhat improves the description
since it lowers K. We observe in fig. 1 that the value of the Fock term at saturation
density is nearly the same as the binding energy. It turns out that, at this density, this
binding comes from the transverse Fock term (g′ + rho exchange). In the longitudinal
channel there is an almost exact compensation between the pion and the g′ exchanges.
The genuine Fock term associated with the Yukawa piece of the pion exchange represents
an attractive contribution to E/A of only −4.2MeV ≃ 20% smaller than what is obtained
in relativistic theories [24] where the πNN form factor is omitted.

For completeness we also display in this subsection (fig. 2) the nucleon and sigma
masses with these values of the parameters, although they are not sensitive to the inclusion
of the Fock term. At normal nuclear matter density the effective nucleon mass is close
to 800 MeV . As already emphasized in our previous work [5] the sigma mass remains
instead quite stable, due to the introduction of the nucleonic scalar response.

The evolution of the susceptibilities is depicted in fig. 3. The convergence effect
between the pseudoscalar susceptibility (dashed line) and the scalar one (full curve) is
more pronounced than in the mean field approach of our previous work [5]. The reason is
clear and linked to the introduction of pion loops. Firstly the evolution of the pseudoscalar
susceptibility, χPS, as written in eq. 56, is governed by the in-medium sigma term, (σ̃N )tot,
which in the present approach receives a contribution from the pion loops which increases
its value (see eq. 55). Secondly, for the scalar susceptibility, the effective sigma term,
(σN )eff , transforming the scalar quark density fluctuations into nuclear excitations also
has a pion cloud contribution (eq. 54) and this effect increases the nuclear part, χnuclear

S

(dotted curve), of the scalar susceptibility. Finally the scalar susceptibility also contains a
pure pion loop contribution, χpionloop

S (dot-dashed curve), which becomes more important
at large density. For illustration we also compare in fig. 4 the in-medium modified nucleon
sigma term (σ̃N)tot governing χPS (dotted curve) and the effective sigma term (σN)eff (full
curve) affecting the nuclear piece χnuclear

S .
The density behavior of the residual interaction (eq. 53) is displayed in fig. 5 with

separate curves for the various components (omega and sigma exchanges, Fock contribu-
tion). While the ω exchange has a very smooth density dependence, one notices the rapid
variation of the sigma component associated with the dropping of the effective scalar
coupling constant g∗

S with increasing density. Around ρ0 Vres turns from attraction into
repulsion. This feature comes in part from the Fock term evolution and mostly from the
behavior of the sigma exchange contribution

4.3 Influence of the correlation term

The expression of the longitudinal contribution to the correlation energy, which is always
attractive, has been given in eq. 20. It is is depicted schematically in fig. 6 and involves the
full longitudinal spin-isospin polarization propagator ΠL, which is calculated in practice
within the RPA ring approximation. There is a similar expression for the transverse piece.

With the previous choice of these parameters it turns out that the numerical value
of the correlation energy is close to the Fock term energy. This extra attraction has to
be compensated by an additionnal repulsion in order to account for the saturation point.
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Figure 6: Schematic representation of the longitudinal spin-isospin contribution to the
correlation energy.
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Figure 7: Binding energy of nuclear matter with gω = 8, mσ = 850 MeV and C =
0.985 with the Fock and correlation energies on top of σ and ω exchange. The full line
corresponds to the full result, the dotted line represents the binding energy without the
Fock and correlation energies and the dot-dashed line corresponds to the contribution of
the Fock terms. The decreasing dotted line (always negative) represents the correlation
energy.
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Figure 8: Density evolution of the longitudinal (full line) and transverse (dashed line)
contributions to the correlation energy for g′

N∆ = 0.3.
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Figure 9: Density evolution of the longitudinal (full line) and transverse (dashed line)
contributions to the correlation energy for g′

N∆ = 0.5.
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Figure 10: Density evolution of the QCD susceptibilities (normalized to the vacuum
value of the pseudoscalar one) with gω = 8, mσ = 850 MeV and C = 0.985 with the
Fock and correlation terms on top of σ and ω exchange. Dashed curve: pseudoscalar
susceptibility. Full curve: scalar susceptibility. Dotted curve: nuclear contribution to the
scalar susceptibility. Dot-dashed curve: pion loop contribution to the scalar susceptibility.
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Figure 11: Density evolution of the full in medium sigma term, (σ̃N)tot (dotted line) and
of the effective sigma term, (σN )eff (full line),with gω = 8, mσ = 850 MeV and C = 0.985
with the Fock and correlation terms on top of σ and ω exchange.
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Increasing only the vector coupling constant tends to give too low a saturation density.
However a slight adjustment of the sigma mass yields a correct saturation point. Taking
gω = 8 and mσ = 850 MeV (corresponding to σnon−pion

N = 26 MeV ) and keeping C = 0.985
we obtain the saturation point : ρ0 = 0.16 fm−3, E/A = −15.7 MeV . The corresponding
correlation energy is ECorr/A = −17.4 MeV which divides into a longitudinal piece,
ECorr

L /A = −7.9 MeV and a transverse one, ECorr
T /A = −9.5 MeV . The results of the

calculation are shown in fig. 7. We stress the importance of the transverse channel in
the correlation energy as compared to the longitudinal one. The reason is the strong
screening of the pion exchange by the short-range interaction in the longitudinal channel,
hence a sensitivity to the g′ parameters. For instance changing g′

N∆ from 0.3 to 0.5 reduces
further the longitudinal value to ECorr

L /A = −3.7 MeV while the transverse contribution
shows less sensitivity, with ECorr

T /A = −7.8 MeV , such that the total value becomes
ECorr/A = −11.5 MeV . With the value g′

N∆ = 0.3 the longitudinal contribution to the
correlation energy is dominated by 2π exchange with one Delta intermediate excitation.
Iterated pion exchange is smaller, because of the screening effect. Therefore, as the main
mechanism with one Delta is a part of the NN potential, we expect the longitudinal
correlation energy to be linear in density, at variance with the transverse channel where
the Delta is not dominant. These behaviors are illustrated in fig. 8. The longitudinal
correlation energy has indeed a linear behavior at low densities. It deviates from linearity
at high density where it becomes more attractive. This reflects the appearance of many
body forces due to the increase of the nuclear pionic field, the critical opalescence effect
[26] induced by the small value of g′

N∆. Taking for illustration a larger g’ value, g′
N∆ = 0.5,

the linearity is fulfilled in a larger density range, as shown in fig. 9.
It is interesting to make a comparison with the chiral perturbation calculation of ref. [9]

where the effect of short-range correlation is absent. In the latter work the contribution of
the iterated pion exchange is found to be −68 MeV , the corresponding Hartree diagramm
coinciding with the lowest order term of the longitudinal correlation energy depicted on
fig. 6. There is nearly one order of magnitude difference between the two results, owing
to the fact that in our phenomenological approach pion exchange is strongly screened by
short-range correlations.

Although in detail our numerical results on the correlation energy present a sensitivity
to various factors, the values of the g′ parameters, the rho coupling (Cρ) or the form
factors, especially in the transverse channel, we believe that our conclusion about the
moderate importance of the correlation part of the energy is robust. The important point
is that the rest of the interaction, as provided by lattice data, is sufficient to bind the
nuclear system.

In the spirit our approach has a similarity with the density functional approach of
Finelli et al [16]. As them we have background scalar and vector fields. The first one
has a connection with chiral symmetry restoration of QCD. However there is an essential
difference concerning the scalar field. For Finelli et al. the full nucleon sigma commutator
enters the scalar self-energy of the nucleon according to :

Σ
(0)
S = −

σN MN

f 2
π m2

π

ρS. (65)

In our case instead, only part of the nucleon sigma commutator enters this self-energy. It

22



is the part which originates from the chiral invariant field s. To leading order in density
we have :

Σ
(0)
S = MN

s̄

fπ
= −

σ
(σ)
N MN

f 2
π m2

π

ρS. (66)

The other component from the nucleon pion cloud, σ
(π)
N ≃ 21 MeV should not enter the

mass evolution as it is cancelled by other terms, as imposed by chiral constraints. This
point was emphasized in several works, see e.g. reference [27, 12]. Accordingly the link
between our nuclear scalar field and QCD does not occur through the total nucleon sigma
commutator but only through part of it, its non-pionic piece. Information on this last
quantity can be obtained from the lattice result on the nucleon evolution with pion mass,
once the pionic contribution is separated out, as done in ref. [21] and explained in section
4. Our result is therefore not totally model independent but this limitation is imposed
by chiral constraints [28].

For the evaluation of the scalar susceptibility including correlation terms, we make the
assumption that the pionic correlation energy density and the correlated part of the pion
scalar density go both like ρ2, a reasonable approximation in view of the results shown
on fig. 8. The net conclusion is that the convergence effect between the scalar and pseu-
doscalar susceptibilities is much more pronounced as shown in fig. 10 (compare with fig.
3). One reason is that the pionic piece of the scalar susceptibility, χpionloop

S , is significantly
increased by the RPA correlations, a conclusion already reached in our previous work
[12]. Another reason comes from the fact that the full in-medium sigma term (σ̃N )tot,
governing the pseudoscalar susceptibility and the effective sigma term, (σN)eff affecting
the nuclear piece of the scalar susceptibility remain relatively stable with the density, as
depicted on fig. 11, while they significantly decreased in fig.4.

5 Conclusion

We have studied in this work a relativistic nuclear model based on a chiral version of
the σ and ω exchange model. We have worked beyond the mean field approximation
introducing the pion loops. Our goal is to reach a consistent description of matter which
can apply at densities larger than the saturation one by introducing the pion loops on
top of a mean field approach. The aim is to reach the best possible description in the
framework of the model.The pion is an important actor of the nuclear dynamics and a
credible theory should incorporate its effect.

In establishing the model and fixing its parameters we have kept contact with other
domains. In particular we introduce beside the pion the short-range components, which
are indissociable from the pion in the spin-isospin residual interaction. They are em-
bedded in the Landau-Migdal parameters and for their values we have used the most
recent informations. They favor a clear deviation from universality, with a small value of
g′

N∆ ≃ 0.3. We have also insured the compatibility of our parameters with informations
from QCD. One important constraint is the total nucleon sigma commutator. But more
information is also available from the lattice results on the evolution of the nucleon mass
with the quark mass. From the analysis of these data by Thomas et al. [21] we extracted

23



the non-pionic piece of the sigma commutator. In our model this is the scalar field contri-
bution and it fixes the sigma mass to be used in our inputs. Another piece of information
is obtained from the higher term of the expansion, even if we take this information as
indicative. Combining the informations from spin-isospin physics and from QCD lattice
results we can reach a tenable description of the saturation properties. ¿From spin-isospin
physics, we have taken the values of the Landau-Migdal g′ parameters to be used in as-
sociation with pion and rho exchanges. They limit the value of the correlation energy
from the pion loops through a suppression of pion exchange by the short-range compo-
nent. On the other hand the value of the non-pionic piece of the sigma commutator from
lattice QCD, which fixes the sigma mass, provides the attraction needed for saturation
to occur. Moreover the higher term a4 of the nucleon mass expansion strongly limits the
many-body effects that can occur in the propagation of the nuclear scalar field. Other-
wise the tadpole terms chiral theories alone would induce too much attraction and destroy
saturation. It is quite remarkable than the parameters which reproduces the saturation
properties are compatible to the lattice ones. Nowhere have we faced a contradiction. It
was not a priori obvious that the amount of attraction needed from the scalar field fits
the value of the non-pionic sigma commutator from lattice data. Nor that the amount of
cancellation necessary in the medium effects of the sigma propagation from the nucleon
scalar response is reproduced in the expansion of the lattice results, with values of the
parameter C remarkably close (C = 1.25 for the lattice results versus C ≃ 1 in our fit).
This consistency gives credibility to the description..

In more details, we have investigated the role of the Fock term and of the correlations.
For the second one we have found a moderate value, ≃ −17 MeV at ρ0 due to a suppression
of the pion contribution by the short-range component in such a way that the transverse
channel linked to rho exchange becomes dominant. The longidudinal component of the
correlation energy is linear in density but it evolves faster at high densities, signalling
the possible appearance of many-body forces of attractive nature. They arise from the
enhancement of the nuclear pion field, the critical opalescence effect which softens the
equation of state at large densities. The compatibility of the parameters of our approach
with the QCD lattice data is a support for our results on the density evolution of the
QCD quantities, the quark condensate and the QCD suceptibilities.We have insured that
these results are in addition fully compatible with the saturation properties of nuclear
matter. For the quark condensate we find small deviations from a linear behavior with
density, in spite of the inclusion of various types of many-body effects. This also applies
for the pseudoscalar susceptibility which follows the condensate. The scalar susceptibility
is instead very sensitive to the interactions and shows a large enhancement as compared
to the free value. It even surpasses the pseudoscalar one beyond ρ ≃ 2.2 ρ0 while in the
vacuum it is much smaller.

Our description could be improved in various directions such as the incorporation of all
the Fock terms (sigma and omega exchange, time component of the rho meson exchange)
and a covariant description of the short-range interaction in a fully covariant framework.
It would also be interesting to extend the approach to the case of asymmetric nuclear
matter and neutron matter.
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