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1. Introduction and Summary

The AdS/CFT correspondence opens the fascinating possibility of describing quantum gravitational in-
teractions using gauge theories and vice–versa [1, 2, 3, 4, 5]. When the radius ℓ of Anti–de Sitter (AdS)
is much larger than the string length, the correspondence relates a local gravitational theory, describing
the dynamics of string massless modes in AdS, to a strongly coupled gauge theory defined on the AdS
boundary. The perturbative expansion in the AdS gravitational coupling G corresponds, in general, to
the 1/N expansion in the gauge theory. However, the understanding of loop corrections in AdS quantum
gravity is presently beyond our reach and it is therefore difficult to check the correspondence beyond the
planar limit or to use it to derive finite N effects of strongly coupled gauge theories. In flat space, where
similar problems are present, it is nonetheless possible to re–sum the gravitational loop expansion when
considering four–point amplitudes in the specific eikonal kinematical regime. In a companion paper [6],
we generalize the eikonal approximation to the calculation of four–point amplitudes in AdS spaces. In
the sequel, we shall explore the consequences of these results for the dual conformal field theory (CFT),
therefore initiating a program to probe finite N effects of strongly coupled gauge theories.

We shall concentrate on CFT correlators like A ∼ 〈O1O2O1O2〉, which can in general be decomposed in
conformal partial waves in various channels, thus giving information about the CFT spectrum and three–
point couplings. Neglecting string corrections, these correlators can be computed gravitationally using
Witten diagrams, which describe interactions in AdS. Unfortunately, it is a hard problem to decompose
a given AdS diagram in conformal partial waves and therefore to improve our understanding of the dual
CFT. Recall that, in flat space, the eikonal kinematical regime of small scattering angle controls the large
spin behavior of the partial wave decomposition. Analogously, we shall use the results derived in [6] to
prove a similar result in AdS. We will show, in particular, how to determine directly the high spin and
dimension decomposition of tree–level Witten diagrams and how to compute the anomalous dimensions of
certain high spin composite operators.

Let us recall some relevant facts on the eikonal formalism in flat space. Consider the scattering of two
scalar particles in flat Minkowski space M

d+1, working at high energies and neglecting particles masses.
The scattering amplitude A is a function of the Mandelstam invariants s, t, and can be conveniently
decomposed in S–channel partial waves

A =s
3−d
2

∑

J≥0

SJ (z) e−2πi σJ (s) ,

with

z = sin2

(
θ

2

)
= − t

s

related to the scattering angle θ and with σJ (s) the phase shift for the spin J partial wave1. The
angular functions SJ (z) are eigenfunctions of the Laplacian on the sphere at infinity, with eigenvalue
−J (J + d− 2), and are polynomials in z of order J , whose explicit form depends on the dimension of
spacetime. They can be written as hypergeometric functions

SJ (z) ∝ F

(
−J, J + d− 2,

d− 1

2

∣∣∣∣ z
)
.

1We choose a non standard normalization and notation for the phase shifts for later convenience. To revert to standard
conventions, one must replace −2πσJ → 2δJ .

– 2 –



Figure 1: In the eikonal regime, free propagation (a) is modified primarily by interactions described by crossed–
ladder graphs (b).

and they are normalized so that σ = 0 corresponds to free propagation with no interactions. Unitarity
then implies Imσ ≤ 0. The amplitude itself can be computed in perturbation theory

A = A0 + A1 + · · · ,

where A0 = s
3−d
2

∑
J SJ (z) corresponds to graph (a) in figure 1 describing free propagation in spacetime.

All S–channel partial waves contribute to A0 with equal weight one, and vanishing phase shift.
In the eikonal regime we are interested in the limit z ≪ 1 of small scattering angle, where the amplitude

is dominated by partial waves with large intermediate spin J . One may then replace the sum over J with
an integral over the impact parameter r,

r

2
=

J√
s
,

denoting the phase shifts by σ (s, r) from now on. More precisely, if we consider the double limit

z → 0 , J → ∞ ,
(
z ∼ J−2

)
, (1.1)

we may approximate the sphere at infinity by a transverse euclidean plane E
d−1 and the angular functions

SJ (z) become, in this limit, the impact parameter partial waves IJ ,

IJ ∝
∫

Ed−1

dx δ
(
x2 − r2

)
eiq·x ∝ z

3−d
4 J d−3

2

(
2J

√
z
)
, (1.2)

with q2 = −t and Jν the Bessel function. One then obtains the impact parameter representation of the
amplitude

A ≃ 2s

∫

Ed−1

dx eiq·x e−2πi σ(s,r) , (1.3)

where r =
√
x2. In general, the phase shift receives contributions at all orders in perturbation theory.

On the other hand, the leading behavior of σ (s, r) for large r, which controls small angle scattering, is
uniquely dominated by the leading tree–level interaction A1 and it is therefore determined by a simple
Fourier transform

A1 ≃ −4πi s

∫

Ed−1

dx eiq·x σ(s, r) . (1.4)

The main result of the eikonal approximation is that the knowledge of the tree–level amplitude A1 is
enough to compute the amplitude (1.3) in the z → 0 limit to all orders in the coupling. Moreover, the
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Figure 2: Some possible interactions at tree–level, both in flat space and in AdS. When decomposing the amplitude
in the S–channel, only graph (a), with maximal spin j = 2, dominates the dynamics at large intermediate spin and
energy.

dominant interaction in A1 comes from T–channel exchanges of spin j massless particles, so that the full
amplitude (1.3) approximately re–sums the crossed–ladder graphs in figure 1(b). In the limit of high energy
s, the mediating particle with maximal j dominates the interaction. In theories of gravity, this particle is
the graviton, with j = 2.

To understand in more detail the generic behavior of amplitudes for small scattering angle and large
energies, consider some sample interactions shown in figure 2 contributing to A1, where the exchanged
particle has spin j. The contribution of graph 2(a) to A1 has the form2

43−j 2πiG
sj − c1s

j−1t+ · · ·
−t ∝ sj−1

(
1

z
+ c1 + · · · + cjz

j−1

)
.

The polynomial part in z contributes to partial waves with spin J < j. This can also be understood in the
impact parameter representation (1.4), since polynomial terms in z = q2s give, after Fourier transform,
delta function contributions to the phase shift localized at r = 0. The universal term sj−1/z contributes,
on the other hand, to partial waves of all spins and gives a phase shift at large r given by

σ (s, r) ≃ −8G
(s

4

)j−1
Π(r) , (1.5)

where Π (r) is the massless Euclidean propagator in transverse space E
d−1. At high energies, the maximal

j dominates. Graph 2(b) is obtained by interchanging the role of s and t, and therefore is proportional
to sj−1

(
zj + c1z

j−1 + · · · + cj
)
. The corresponding intermediate partial waves have spin J ≤ j. Finally,

graph 2(c) is obtained from 2(a) by replacing t by u = − (s+ t) and therefore by sending z → 1 − z.
Using the fact that SJ(1 − z) = (−)JSJ(z), we can again expand the U –channel exchange graph 2(c) in

the form s
3−d
2

∑
J (−)J SJ σJ (s) where σJ(s) are the phase shifts of the T–channel exchange, whose large

spin behavior is given by (1.5). At large spins, the contribution to the various partial waves is alternating
in sign and averages to a sub–leading contribution. Finally, the contact graph 2(d) only contains a spin
zero contribution. We conclude that, at large spins and energies, the T–channel exchange of a graviton in
graph 2(a) dominates all other interactions.

2The normalization 43−j 2πi G has been chosen for later convenience. When j = 2, the gravitational coupling constant G

is the canonically normalized Newton constant.
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We shall study the CFT analogue of 2 → 2 scattering of scalars in flat space. More precisely, we will
study the CFT correlator

〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉CFTd
≡ 1

p∆1

13 p∆2

24

A (z, z̄) ,

where the scalar primary operators O1, O2 have conformal dimensions ∆1, ∆2, respectively. The pi are
now points on the boundary of AdS, and the amplitude A is now a function of two cross–ratios z, z̄, whose
precise definition is given in section 2. Neglecting string effects, the function A can be computed in the
dual AdS formulation as a field theoretic perturbation series in the gravitational coupling [2, 3, 4, 7, 8]

A = A0 + A1 + · · · ,

where A0 = 1 corresponds to free propagation described again in figure 1(a). The amplitude A can
be decomposed, as in flat space, in S–channel partial waves. These are know, in the CFT litterature,
as conformal partial waves and correspond to the exchange of the conformal primaries that appear in
the operator product expansion (OPE) of O1 with O2 as p1 → p2, together with their descendants. In
particular, the free amplitude A0 corresponds to the exchange of an infinite set of O1∂µ1

· · · ∂µJ
∂2nO2

composites3 of spin J and dimension E = ∆1 + ∆2 + J + 2n, with J, n non–negative integers.

As the coupling is turned on, we expect that the above lattice of intermediate primaries acquires
anomalous dimensions, and also that new intermediate states appear in the partial wave decomposition.
We shall show that the large spin and dimension S–channel decomposition of the tree level amplitude A1

is dominated, as in flat space, by the T–channel exchange of massless particles of maximal spin j. In
fact, in this limit, this decomposition is determined by the small z, z̄ behavior of the discontinuity across
a kinematical branch cut of the T–channel exchange Witten diagram 2(a), which we derived in [6]. This
result is central in the derivation of our main findings:

(i) The AdS graph 2(a) contributes to all partial waves corresponding to the O1∂
NO2 composites of

spin J and dimension E already present in A0. For large E, J these composites acquire anomalous
dimensions given by

2σ (s, r) ,

where σ (s, r) is again given by (1.5), but where now

s =
(
E2 − J2

)
/ℓ2 ,

tanh
( r

2ℓ

)
=
J

E
,

and where Π (r) is the massive Euclidean propagator on transverse space, which is now the hyperbolic
space Hd−1 with radius ℓ. The mass–squared is given by (d− 1) /ℓ2 and r is the geodesic distance on
Hd−1. Once again, the dominant contribution to σ comes from the exchange of the graviton. Note
that the flat space limit can be obtained letting ℓ → ∞ keeping the physical AdS energy E/ℓ fixed.
(Sections 4.2 and 5)

3Throughout this paper we will use this schematic notation to represent the primary composite operators of spin J and
conformal dimension E = ∆1 + ∆2 + J + 2n, avoiding the rather cumbersome exact expression. We shall also use the simpler
notation O1∂

N
O2 whenever possible.
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(ii) The AdS graph 2(b) contributes to partial waves with spin J ≤ j and with dimensions E = d,
E = ∆1 + ∆2 + n. These partial waves correspond to the massless exchanged particle and to
corrections to the composites O1∂

NO2 with bounded spin. Moreover, the contribution with maximal
spin J = j can be determined explicitly without computing the full graph. (Sections 4.3 and 5)

(iii) The AdS graph 2(c) is similar to graph 2(a), but with alternating signs (−)J . Graph 2(d) contributes
to partial waves with spin J = 0 only. Comments similar to the flat space case apply. (Section 5)

(iv) In order to arrive at the above results, we have extended the impact parameter representations (1.2)
and (1.4) to the decomposition of CFT amplitudes in terms of conformal partial waves, using the
approach of [9, 10]. (Section 3.2)

Finally, in section 6, we conjecture a formula for A which resums the perturbative expansion in the
AdS gravitational coupling G in the eikonal limit. This formula also predicts the anomalous dimensions of
O1∂

NO2 composites with large spin and conformal dimension to all orders in G.

2. Preliminaries and Notation

This section follows closely section 2 of [6] and is included for completeness. Recall that AdSd+1 space, of
dimension d + 1, can be defined as a pseudo–sphere in the embedding space M

2 × M
d. We denote with

x = (x+, x−, x) a point in M
2 × M

d, where x± are light–cone coordinates on M
2 and x denotes a point in

M
d. Then, the AdS space of radius ℓ is described by4

x2 = −x+x− + x2 = −ℓ2 . (2.1)

Similarly, a point on the holographic boundary of AdSd+1 can be described by a ray on the light–cone in
M

2 × M
d, that is by a point p with

p2 = −p+p− + p2 = 0 ,

defined up to re–scaling

p ∼ λp (λ > 0) .

From now on we choose units such that ℓ = 1.
The AdS/CFT correspondence predicts the existence of a dual CFTd living on the boundary of AdSd+1.

In particular, a CFT correlator of scalar primary operators located at points p1, . . . ,pn can be conveniently
described by an amplitude

A (p1, . . . ,pn)

invariant under SO (2, d) and therefore only a function of the invariants

pij = −2pi · pj .

Since the boundary points pi are defined only up to re–scaling, the amplitude A will be homogeneous in
each entry

A (. . . , λpi, . . .) = λ−∆iA (. . . ,pi, . . .) ,

4We denote with x · y and x · y the scalar products in M
2
× M

d and M
d, respectively. Moreover we abbreviate x

2= x · x

and x2 = x · x when clear from context. In M
d we shall use coordinates xµ with µ = 0, . . . , d − 1 and with x0 the timelike

coordinate.
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where ∆i is the conformal dimension of the i–th scalar primary operator.
Throughout this paper we will focus our attention on four–point amplitudes of scalar primary operators.

More precisely, we shall consider correlators of the form

A (p1,p2,p3,p4) = 〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉CFTd

where the scalar operators O1,O2 have dimensions

∆1 = ∆ + ν , ∆2 = ∆ − ν ,

respectively. The four–point amplitude A is just a function of two cross ratios z, z̄ which we define, following
[9, 10], in terms of the kinematical invariants pij as5

zz̄ =
p13p24

p12p34
,

(1 − z) (1 − z̄) =
p14p23

p12p34
.

Then, the four–point amplitude can be written as

A (pi) =
1

p
∆1

13 p
∆2

24

A (z, z̄) ,

where A is a generic function of z, z̄. By conformal invariance, we can fix the position of up to three of
the external points pi. In what follows, we shall often choose the external kinematics by placing the four
points pi at

p1 = (0, 1, 0) , p2 = −
(
1, p2, p

)
, (2.2)

p3 = −
(
q2, 1, q

)
, p4 = (1, 0, 0) ,

and we shall view the amplitude as a function of p, q ∈ M
d. The cross ratios z, z̄ are in particular determined

by
zz̄ = q2p2, z + z̄ = 2p · q .

When d = 2 it is convenient to parameterize M
d by light–cone coordinates x = x0 + x1, x̄ = x0 − x1 with

metric −dxdx̄. Then, if we choose p = p̄ = −1 we have q = z, q̄ = z̄.
In the sequel, we will denote with Hd−1 ⊂ M

d the transverse hyperbolic space, given by the upper
mass–shell

x2 = −1 ,
(
x0 > 0

)

where x ∈ M
d. We will also denote with M ⊂ M

d the future Milne wedge given by x2 ≤ 0, x0 ≥ 0. Similarly,
we denote with −M the past Milne wedge and with −Hd−1 the corresponding transverse hyperbolic space.
Finally we denote with

d̃x = 2dx δ
(
x2 + 1

)
,

the volume element on Hd−1, such that
∫

M
dx =

∫

M
d(ty)

∫ ∞

0
td−1dt

∫

Hd−1

d̃y ,

5Throughout the paper, we shall consider barred and unbarred variables as independent, with complex conjugation denoted
by ⋆. In general z̄ = z⋆ when considering the analytic continuation of the CFTd to the Euclidean signature.
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where x = ty and y ∈ Hd−1.
Throughout the paper, we will often need the massive Euclidean scalar propagator Π (x, y) on Hd−1,

of mass–squared d− 1 , defined by

[
�Hd−1

− (d− 1)
]

Π(x, y) = − δ (x, y) ,

and explicitly given in terms of the hypergeometric function

Π (x, y) = (4π)
1−d
2

Γ
(

d+1
2

)

d(d− 1)
(−z)1−d F

(
d− 1,

d+ 1

2
, d+ 1

∣∣∣∣
1

z

)
, (2.3)

where 2z = 1 + x · y.

3. Conformal Partial Waves

The amplitude A (z, z̄) can be expanded using the OPE around z, z̄ = 0, 1,∞, corresponding to the point
p3 getting close to p1, p2 and p4, respectively. In particular, we will be interested in the contribution to
the amplitude A coming from the exchange of a conformal primary operator of dimension E and integer
spin J ≥ 0 in the two channels

z, z̄ → 0 , T–channel,

z, z̄ → ∞ , S–channel,

together with all of its conformal descendants. It will be convenient in the following to use different labels
for energy and spin E, J . We shall use most frequently conformal dimensions h, h̄ defined by

E = h+ h̄ ,

J = h− h̄ .

We will also use the so called impact parameter labels s, r defined by

s = 4hh̄ = E2 − J2 ,

e−r =
h̄

h
=
E − J

E + J
. (3.1)

In terms of these variables, the present equations closely resemble eikonal results in flat space, with s
playing the role of the total center–of–mass energy squared, and with r being the physical transverse
impact parameter. We shall justify this interpretation more clearly in section 4.1. We also recall the
unitarity bounds E ≥ d − 2 + J for J ≥ 1 and E ≥ (d− 2) /2 for J = 0, with the single exception of the
vacuum with E = J = 0. This translates into

h̄ ≥ d− 2

2
, (J ≥ 1) ,

h̄ ≥ d− 2

4
, (J = 0) ,

again with the exception of the vacuum at h = h̄ = 0. Figure 3 summarizes the basic notation regarding
the intermediate conformal primaries.
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Figure 3: Intermediate primaries of dimension E = h + h̄ and integer spin J = h − h̄ ≥ 0 can exist in the white
region along the dashed lines. The light grey region is excluded due to the unitarity constraint, with the vacuum at
h = h̄ = 0 being the unique exception. Also shown are the impact parameter labels s = 4hh̄ and r = ln

(
h/h̄

)
.

The amplitude A (z, z̄) can be expanded in the basis of conformal partial waves in either the T or
S–channels, whose elements we shall denote by

Th,h̄ (z, z̄) , Sh,h̄ (z, z̄) .

Following [9, 10], the functions Th,h̄ and Sh,h̄ must be symmetric in z, z̄ and must satisfy the differential
equations

DT Th,h̄ = ch,h̄ Th,h̄ ,

(zz̄)∆DS

[
(zz̄)−∆ Sh,h̄

]
= ch,h̄ Sh,h̄ ,

where the constant ch,h̄ is the Casimir of the conformal group given by

ch,h̄ = h (h− 1) + h̄
(
h̄− d+ 1

)
,

and where the differential operators DT , DS have the explicit form

DT = z2 (1 − z) ∂2 − z2∂ + z̄2 (1 − z̄) ∂̄2 − z̄2∂̄+ (3.2)

+ (d− 2)
zz̄

z − z̄

[
(1 − z) ∂ − (1 − z̄) ∂̄

]

and

DS = z (z − 1) ∂2 + (2z − 1) ∂ +
ν2

z
+

+ z̄ (z̄ − 1) ∂̄2 + (2z̄ − 1) ∂̄ +
ν2

z̄
+ (3.3)

+
d− 2

z − z̄

[
z (z − 1) ∂ − z̄ (z̄ − 1) ∂̄

]
.
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Moreover, the partial waves Th,h̄ and Sh,h̄ satisfy the boundary conditions

lim
z,z̄→0

Th,h̄ ∼ zh z̄h̄ ,

lim
z,z̄→∞

Sh,h̄ ∼ z∆−h z̄∆−h̄ ,

where we choose to take the limit z̄ → 0,∞ first. The symmetric term with h and h̄ interchanged is then
sub–leading since h ≥ h̄.

3.1 The d = 2 Case

Explicit expressions for the partial waves Th,h̄ and Sh,h̄ exist for d even [9, 10], and are particularly simple
in d = 2 where the problem factorizes in left/right equations for z and z̄. In this case we have the explicit
expressions

Th,h̄ (z, z̄) = Th (z) Th̄ (z̄) + Th̄ (z) Th (z̄) , (3.4)

Sh,h̄ (z, z̄) = Sh (z)Sh̄ (z̄) + Sh̄ (z)Sh (z̄) ,

for h > h̄ and

Th,h (z, z̄) = Th (z) Th (z̄) ,

Sh,h (z, z̄) = Sh (z)Sh (z̄) ,

for h = h̄, where

Th (z) = (−z)h F
(
h, h, 2h

∣∣∣z
)
,

Sh (z) = ah (−z)∆−h F
(
h+ ν, h− ν, 2h

∣∣∣z−1
)
. (3.5)

The specific normalization of the S–channel partial waves

ah =
Γ (h+ ν) Γ (h− ν) Γ (h+ ∆ − 1)

Γ (∆ + ν) Γ (∆ − ν) Γ (2h− 1) Γ (h− ∆ + 1)

is chosen for later convenience, and it is such that

∑

h∈∆+N0

Sh (z) = 1 , (3.6)

where N0 is the set of non–negative integers.

It is clear from (3.4) that the h, h̄ partial waves correspond to the exchange of a pair of primary
operators of holomorphic/antiholomorphic dimension

(
h, h̄

)
and

(
h̄, h

)
, together with their descendants.
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3.2 Impact Parameter Representation

We now move back to general dimension d, and we consider the behavior of the S–channel partial waves
Sh,h̄ (z, z̄) for z, z̄ → 0, i.e., in the dual T–channel. More precisely, in strict analogy with the case of flat
space, we analyze the double limit

z, z̄ → 0 ,

h, h̄ → ∞ ,

as in (1.1), with
z ∼ z̄ ∼ h−2 ∼ h̄−2 .

In this limit, the differential operator DS in (3.3) and the constant ch,h̄ reduce to

−D̃S = z∂2 + z̄∂̄2 + ∂ + ∂̄ − ν2

z
− ν2

z̄
+
d− 2

z − z̄

(
z∂ − z̄∂̄

)

and
c̃h,h̄ = h2 + h̄2 .

We shall denote with Ih,h̄ (z, z̄) the approximate impact parameter S–channel partial wave, which satisfies

(
−D̃S + c̃h,h̄

) [
(zz̄)−∆ Ih,h̄

]
= 0 . (3.7)

Fixing the external points pi as in (2.2), we view the S–channel impact parameter amplitude Ih,h̄ as a
function of q and p. In analogy with the flat space case (1.2), the function Ih,h̄ admits the following integral
representation over the future Milne wedge M

Ih,h̄ = N∆1
N∆2

(
−q2

)∆1
(
−p2

)∆2

∫

M

dx

|x|d−2∆1

dy

|y|d−2∆2
e−2q·x−2p·y ×

× 4hh̄
(
h2 − h̄2

)
δ
(
2x · y + h2 + h̄2

)
δ
(
x2y2 − h2h̄2

)
, (3.8)

where

N−1
∆ =

∫

M

dy

|y|d−2∆
e2k·y = Γ (2∆)

∫

Hd−1

d̃y

(−2k · y)2∆
π

d
2
−1

2
Γ (∆) Γ

(
∆ − d

2
+ 1

)
,

with k ∈ Hd−1 arbitrary6. Any function Σ(z, z̄) can be decomposed in the impact parameter partial waves
Ih,h̄ and we have chosen the normalization of Ih,h̄ such that

Σ (z, z̄) =

∫ ∞

0
dh

∫ h

0
dh̄ σ

(
h2h̄2, h2 + h̄2

)
Ih,h̄ (z, z̄) (3.9)

= N∆1
N∆2

(
−q2

)∆1
(
−p2

)∆2 ×

×
∫

M

dx

|x|d−2∆1

dy

|y|d−2∆2
e−2q·x−2p·y σ

(
x2y2,−2x · y

)
.

6In the appendix, we show that (3.8) is a solution of the differential equation (3.7). On the other hand, we do not have a
complete proof of (3.8), since we cannot distinguish different cases with the same Casimir c̃h,h̄. On the other hand, the form
(3.8) is strongly suggested by the case d = 2, where we can check explicitly that (3.8) is the impact parameter approximation
to Sh,h̄ (see section 3.3)
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In particular, setting σ = 1 we get ∫ ∞

0
dh

∫ h

0
dh̄ Ih,h̄ = 1 .

Note that, in (3.9), the leading behavior of the function Σ for z, z̄ → 0 is controlled by the behavior of σ

for h, h̄ → ∞. In fact, when σ ∼
(
hh̄

)−a
for large h, h̄ with a < 2∆1 and a < 2∆2, then Σ ∼ (zz̄)a/2 for

small z, z̄.

3.3 Impact Parameter Representation in d = 2

In d = 2 the constant N∆ is given explicitly by 2/Γ (∆)2. Choosing p = p̄ = −1 and q = z, q̄ = z̄, the
general expression (3.8) reduces to

Ih,h̄ =
(zz̄)∆1

Γ (∆1)
2 Γ (∆2)

2

∫ ∞

0

dxdx̄

(xx̄)1−∆1

dydȳ

(yȳ)1−∆2
ezx̄+zx̄−y−ȳ×

× 4hh̄
(
h2 − h̄2

)
δ
(
xȳ + yx̄ − h2 − h̄2

)
δ
(
xx̄yȳ − h2h̄2

)
.

The y, ȳ integrals localize at two points, namely at

y = x̄−1h2, ȳ = x−1h̄2 ,

and at the point obtained by exchanging h with h̄. Summing the two contributions we obtain

Ih,h̄ (z, z̄) = Ih (z) Ih̄ (z̄) + Ih̄ (z) Ih (z̄) ,

where

Ih (z) = 2
h2∆2−1 (−z)∆1

Γ (∆1) Γ (∆2)

∫ ∞

0

dx̄

x̄1−2ν
ezx̄−h2x̄−1

= 4
h2∆−1 (−z)∆
Γ (∆1) Γ (∆2)

K2ν

(
2h

√
−z

)
.

One can check that the function Ih (z) is indeed the impact parameter approximation of Sh (z) in (3.5).
Moreover it satisfies ∫ ∞

0
dh Ih (z) = 1 ,

which corresponds to (3.6).

4. Propagation in AdS

The impact parameter r in (3.1) has a natural interpretation in the dual AdS geometry. Writing the metric
of AdSd+1 in global coordinates

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dΩ2

d−2

)
,

we can analyze the geodesic motion of a massless particle of energy E/2 and spin J/2, conjugate to
translations in τ and θ. This gives the first order equation

ρ̇2 +
J2

4 sinh2 ρ
=

E2

4 cosh2 ρ

– 12 –



Figure 4: Collision of two particles in AdS. The trajectories are shown both in the full space τ, ρ, θ as well as
projected onto a spatial slice ρ, θ. The full configuration has total energy E and spin J , with the particles reaching
a minimum geodesic distance r given by tanh (r/2) = J/E.

where E = 2cosh2 (ρ) τ̇ and J = 2 sinh2 (ρ) θ̇, and where the dot denotes differentiation with respect to an
affine parameter. The particle reaches a minimum geodesic distance ρmin to the origin when ρ̇ = 0, that is
at tanh ρmin = J/E. We now consider two particles in a symmetric collision with total energy E and spin
J , as in figure 4. They reach a minimum relative geodesic distance r = 2ρmin given by

tanh
(r

2

)
=
J

E
,

thus justifying geometrically the definition (3.1).

4.1 Free Propagation

The four–point amplitude A can be described dually as gravitational interaction in AdS space. In partic-
ular, neglecting string corrections, we have the expansion

A = A0 + A1 + A2 + · · · ,

in powers of the coupling constant G. The above expansion starts with the contribution from the dis-
connected graph in figure 1(a), which describes free propagation in AdS and is given by the product
of two–point functions 〈O1 (p1)O1 (p3)〉 〈O2 (p2)O2 (p4)〉. Choosing appropriate normalization for the
external operators O1, O2 we have that

A0 = 1 .

From the graph, it is intuitively clear that, in the T–channel, only the vacuum state with h = h̄ = 0
contributes, as shown in figure 5(a). In fact, with an appropriate normalization for Th,h̄ we have that

A0 = T0,0 . (4.1)

On the other hand, the S–channel decomposition of A0 is more subtle. In fact, as shown in figure 5(b), we
expect that the composites

O1∂µ1
· · · ∂µJ

∂2nO2 ,

of dimension E = 2∆ + J + 2n and spin J , contribute to the S–channel decomposition and define a lattice
of operators of dimension h = ∆ + J + n, h̄ = ∆ + n given by

h, h̄ ∈ ∆ + N0 , ∆ ≤ h̄ ≤ h .
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ST

Figure 5: Partial wave decomposition of the amplitude A0 = 1 corresponding to free propagation in AdS in figure
1(a). In the T–channel decomposition only the vacuum contributes, whereas the S–channel decomposition receives
contributions from a full lattice of O1∂

NO2 composites of dimensions h, h̄ ∈ ∆ + N0.

Again, with an appropriate normalization for the S–channel partial waves Sh,h̄, we have the decomposition

A0 =
∑

∆≤h̄≤h

Sh,h̄ , (4.2)

where it is understood that the sum is restricted to h, h̄ ∈ ∆ + N0. Finally, we have the impact parameter
representation corresponding to (4.2)

A0 =

∫ ∞

0
dh

∫ h

0
dh̄ Ih,h̄ .

Note that the normalizations chosen for the specific case d = 2 are compatible with (4.1) and (4.2).

4.2 Tree–Level Interaction in the S–Channel

We expect that the full amplitude A can be expanded in S–channel partial waves as

A ≃
∑

h≥h̄≥∆

(
1 +R(h, h̄)

)
Sh+Γ(h,h̄), h̄+Γ(h,h̄) ,

where 2Γ(h, h̄) is the anomalous dimension of the intermediate primary and R(h, h̄) is related to its three–
point coupling to the external operators. We are assuming, by analogy with the flat space situation, that in
the large h, h̄ limit the relevant intermediate primaries are the composites O1∂

NO2 that already contribute
at leading order. Let us now analyze the tree–level graph A1 in figure 2(a), corresponding to the exchange
of a spin j massless particle in AdSd+1. Denoting by σh,h̄ and ρh,h̄ the contribution of this graph to Γ(h, h̄)
and R(h, h̄), we can write

A1 =
∑

∆≤h̄≤h

σh,h̄

(
∂

∂h
+

∂

∂h̄

)
Sh,h̄ +

∑

∆≤h̄≤h

ρh,h̄ Sh,h̄ . (4.3)

The tree–level eikonal computation of the graph 2(a) does not give an approximation to the amplitude
A1, as one would expect by analogy with the flat space result. Rather, as was shown in [6], it computes
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Figure 6: Analytic continuation of A1 to obtain A�
1 . The variable z̄ is kept fixed and z is transported clockwise

around the point at infinity, circling the points 0, 1, z̄.

the small z, z̄ behavior of the discontinuity function (or monodromy of the amplitude around the point at
infinity)

M1 (z, z̄) = Disc z A1 (z, z̄) ≡ 1

2πi

(
A�

1 (z, z̄) −A1 (z, z̄)
)
,

where A�
1 is the analytic continuation of A1 obtained by keeping z̄ fixed and by transporting z clockwise

around the point at infinity as in figure 6. Since Sh,h̄ behaves around z, z̄ ∼ ∞ as

z∆−hz̄∆−h̄
∑

n,n̄≥0

z−nz̄−n̄cn,n̄

(
h, h̄

)
+ (z ↔ z̄) ,

we have that, for h, h̄ ∈ ∆ + N0,
(
∂

∂h
+

∂

∂h̄

)
Sh,h̄ = − ln (zz̄)Sh,h̄ + · · · ,

where the terms in the dots have an expansion around z, z̄ ∼ ∞ with integer powers of z−1, z̄−1 and do
not contribute to M1. It is then clear that

M1 (z, z̄) =
∑

∆≤h̄≤h

σh,h̄ Sh,h̄ (z, z̄) (4.4)

carries all the information about the anomalous dimensions σh,h̄.
In [6] it was shown that the leading behavior of M1 for small z, z̄ is given by

M1 ≃− 8GN∆1
N∆2

Γ (2∆1 − 1 + j) Γ (2∆2 − 1 + j)× (4.5)

×
(
−q2

)∆1
(
−p2

)∆2

∫

Hd−1

d̃xd̃y
Π(x, y)

(2q · x)2∆1−1+j (2p · y)2∆2−1+j
,

where Π (x, y) is the Euclidean scalar propagator on the hyperbolic space Hd−1 with mass squared d − 1
given in (2.3). The leading behavior is then of the form

M1 (z, z̄) ≃ (−z)1−j M
( z̄
z

)
,

with M (w)⋆ = M (w⋆) and M (w) = w1−jM (1/w). Recall from section 3.2 that, in the limit of small z, z̄,
we may approximate M1 with the impact parameter representation

M1 ≃
∫
dhdh̄ σh,h̄ Ih,h̄ , (4.6)
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where the leading behavior of σh,h̄ for large h, h̄ determines the leading behavior of M1 at small z, z̄. To
match (4.6) with (4.5) using the integral representation (3.9) it is convenient to express the integral over
the hyperboloids in (4.5) as an integral over Milne wedges

M1 ≃− 8GN∆1
N∆2

(
−q2

)∆1
(
−p2

)∆2 ×

×
∫

M

d(t1 x)

td−2∆1−j+1
1

d(t2 y)

td−2∆2−j+1
2

e−2q·(t1 x)−2p·(t2 y) Π(x, y) .

We then conclude that the leading behavior of the anomalous dimensions σh,h̄ for large h, h̄ is given by

σh,h̄ ≃ −8G
(s

4

)j−1
Π(x, y) , (s→ ∞) , (4.7)

where s = 4hh̄. The propagator Π (x, y) depends only on the geodesic distance r between x, y ∈ Hd−1,
which is given by cosh r = −x · y and it is related to the conformal dimensions by

e−r =
h̄

h
.

Using the explicit form (2.3) of the propagator, we can express Π in terms of the conformal dimensions
h, h̄ for various dimensions d, as shown in the following table:

d Π

2 1
2

h̄
h

3 − 1
2π

[
h2+h̄2

2hh̄
ln

(
h−h̄
h+h̄

)
+ 1

]

4 1
2π

h̄3

h(h2−h̄2)

5 1
8π2

[
8 h2h̄2

(h2−h̄2)
2 + 3h2+h̄2

hh̄
ln

(
h−h̄
h+h̄

)
+ 6

]

6 1
π2

h̄5(2h2−h̄2)
h(h2−h̄2)

3

The eikonal result (4.5) allowed us to determine, in the S–channel partial wave decomposition (4.3),
the high spin and energy behavior of the anomalous dimensions σh,h̄, but not of the coefficients ρh,h̄. We
will now show that in fact

ρh,h̄ ≃ ∂σh,h̄ (4.8)

up to sub–leading terms, where we use the notation

∂ = ∂h + ∂h̄ .

In this case, the high h, h̄ behavior of the amplitude A1 can be fully reconstructed from M1 and is given
by
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A1 ≃
∑

h≥h̄≥∆

∂
(
σh,h̄Sh,h̄

)
. (4.9)

In order to show this, consider the part of A1 which is of the form
∑
σh,h̄∂Sh,h̄. It is approximated by∫

dhdh̄
(
∂σh,h̄

)
Ih,h̄, where we have replaced

∑ →
∫
, S → I and where we have integrated by parts.

The leading behavior of the above integral for z, z̄ → 0 is (zz̄)
3
4
−

j

2 , since ∂σh,h̄ ∼
(
hh̄

)j− 3
2 . On the other

hand, the OPE expansion of A1 is dominated by the exchange of the massless particle and must start

with (zz̄)
d
2 . Therefore, the term in A1 of the form

∑
ρh,h̄Sh,h̄ must compensate the anomalous dimension

contribution, giving (4.9), which is a total derivative in the impact parameter approximation and which is
therefore sub–leading near z, z̄ ∼ 0.

4.3 Tree–Level Interaction in the T–Channel

The function M1 can also be used to obtain information regarding the decomposition of the tree–level
graph A1 in T–channel partial waves. Decomposing the amplitude A1 as

A1 =
∑

µh,h̄ Th,h̄ , (4.10)

the function M1 can be written as

M1 =
∑

µh,h̄ Disc z Th,h̄ .

Thus, we must first analyze in detail the behavior of the functions Th,h̄ (z, z̄) as we rotate the point z
clockwise around infinity, keeping z̄ fixed. Since the eikonal result (4.5) holds around z, z̄ ∼ 0, we shall
need only the leading behavior of Disc z Th,h̄ around the origin.

Consider first the behavior of Th,h̄ in the limit z̄ → 0, with z fix. The operator DT in (3.2) reduces to

z2 (1 − z) ∂2 − z2∂ + z̄2∂̄2 − (d− 2) z̄∂̄ .

Using the boundary condition Th,h̄ ∼ (−z)h (−z̄)h̄ around the origin, we conclude that

Th,h̄ ∼ (−z̄)h̄ (−z)h F
(
h, h, 2h

∣∣∣z
)
.

Since

(−z)h F
(
h, h, 2h

∣∣∣z
)

=
Γ (2h)

Γ (h)2

∑

n≥0

(h)n (1 − h)n

(n!)2
z−n×

×
(

ln (−z) + 2ψ (n+ 1) − ψ (h+ n) − ψ (h− n)

)

we obtain that

Disc z Th,h̄ ∼ −Γ (2h)

Γ (h)2
(−z̄)h̄ F

(
h, 1 − h, 1

∣∣∣z−1
)
.

In the limit of small z the leading behavior is

Disc z Th,h̄ ∼ −Γ (2h) Γ (2h− 1)

Γ (h)4
(−z)1−h (−z̄)h̄ . (4.11)
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Recall that we derived this result in the limit z̄ → 0. To understand the general behavior around z, z̄ ∼ 0
of Disc z Th,h̄, we expand Th,h̄ in powers of z̄ as

Th,h̄ ∼
∑

n≥0

(−z̄)h̄+n gn (z) . (4.12)

We have just determined that Disc z g0 ∼ z1−h for small z. The other functions gn are determined
recursively by expanding the differential equation DT = ch,h̄ in powers of z̄. A rather cumbersome but

straightforward computation shows that Disc z gn ∼ z1−h−n for small z. Therefore, we conclude in general
that

Disc z Th,h̄ ∼ (−z)1−h (−z̄)h̄ Gh,h̄

( z̄
z

)
(4.13)

around z, z̄ ∼ 0. The function Gh,h̄ (w) is regular around w = 0 and, using (4.11), satisfies Gh,h̄ (0) =

−Γ (2h) Γ (2h− 1) /Γ (h)4. The careful reader will have noticed that in equation (4.12) we have implicitly
neglected to symmetrize in z ↔ z̄. Had we not, the function Th,h̄ would have had an extra contribution of

the form
∑

n≥0 (−z̄)h+n fn (z) with Disc z fn ∼ z1−h̄−n. These terms then give sub–leading contributions
to (4.13).

To compute explicitly the function Gh,h̄, we consider the operator DT in (3.2) near z, z̄ ∼ 0, which
reduces to

z2∂2 + z̄2∂̄2 + (d− 2)
zz̄

z − z̄

(
∂ − ∂̄

)
.

Acting on (4.13) the differential equation DT = ch,h̄ becomes of the hypergeometric form

2w (1 − w)G′′ +
[
2
(
h+ h̄

)
(1 − w) − (d− 2) (1 + w)

]
G′ = (d− 2)

(
h+ h̄− 1

)
G ,

in terms of w = z̄/z. We then arrive at the result

Gh,h̄ = −Γ (2h) Γ (2h− 1)

Γ (h)4
F

(
d

2
− 1, h + h̄− 1, h+ h̄+ 1 − d

2

∣∣∣∣
z̄

z

)
. (4.14)

We are now in a position to determine the implications of the eikonal result (4.5) for the T–channel
expansion coefficients µh,h̄ in (4.10). Recall that the leading behavior of M1 for small z, z̄ is controlled by

M1 ≃ (−z)1−j M
( z̄
z

)
,

as derived in the dual AdS description. We therefore immediately conclude from (4.13) that, in the
decomposition (4.10), only partial waves with

J = h− h̄ ≤ j

can appear, as shown in figure 7. Moreover, the coefficients µh,h̄ for J = h− h̄ = j are determined directly
by the function M (w) from

∑

h−h̄=j

µh,h̄ w
h̄ Gh,h̄ (w) = M (w) . (4.15)

In the simple case of d = 2 the functions Gh,h̄ are constants, so that the coefficients µh,h̄ are simply obtained
by expanding M in increasing powers of w.
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Figure 7: T–channel decomposition of the spin j exchange graph in figure 2(a). Only partial waves with spin J ≤ j
contribute. The eikonal integral determines the contributions with J = j, along the thick dashed line. We display
with a black dot the contribution from the operator dual to the exchanged particle, with spin j and energy d − j.
We also show, with light and dark grey dots, the contributions from the O1∂

NO1 and O2∂
NO2 composites, with

dimensions h, h̄ ∈ ∆1 + N0 and h, h̄ ∈ ∆2 + N0, respectively.

4.4 An Example in d = 2

To be more explicit we conclude this section with a simple example where we can check our results. We
shall consider the case d = ∆2 = 2 and j = 0 corresponding to massless scalar exchange in AdS3. As
shown in [6], the basic amplitude A1 is given by

A1 =
8G

π
p

∆1

13 p24 D
2
∆1,∆1,1,1 (p1,p3,p2,p4) . (4.16)

where Dd
∆i

(pi) are the standard D–functions [11, 6]. On the other hand, in [6] we have also explicitly
computed the integral (4.5), which controls the leading behavior of M1 = Discz A1 as z, z̄ → 0, obtaining
M1 ≃ −zM (z̄/z) , with M (w) given by

M (w) = − 4G

2∆1 − 1
wF

(
1,∆1, 2∆1

∣∣∣1 − w
)
. (4.17)

Recall, from the discussion in section 4.3, that the function M (w) contains information about the
T–channel expansion of A1

A1 =
∑

h

µh,h Th,h ,

which has only spin zero contributions. More precisely, the expansion (4.15), with the explicit form of Gh,h̄

in (4.14), becomes

M (w) = −
∑

h

µh,h
Γ (2h) Γ (2h− 1)

Γ (h)4
wh .

Using the standard properties of the hypergeometric functions, we may expand M (w) in (4.17) around
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Figure 8: T–channel decomposition of the graph in figure 2(a). The contributions come from the operator dual to
the exchanged particle as well as from the O1∂

NO1 and O2∂
NO2 composites.

w = 0 as

M (w) = 4G
Γ (1 − ∆1)

Γ (∆1)

∑

h∈1+N0

Γ (∆1 − 1 + h)

Γ (1 − ∆1 + h)
wh−

− 4G
Γ (1 − ∆1)

Γ (∆1)

∑

h∈∆1+N0

Γ (∆1 − 1 + h)

Γ (1 − ∆1 + h)
wh,

finally concluding that

A1 = −µ1T1,1 +
∑

h∈∆1+N0

µhTh,h −
∑

h∈∆2+N0

µhTh,h ,

with

µh = 4G
Γ (1 − ∆1)

Γ (∆1)

Γ (∆1 − 1 + h)

Γ (1 − ∆1 + h)

Γ (h)4

Γ (2h) Γ (2h− 1)
.

The contributions come from the operator dual to the exchanged particle, with spin j = 0 and energy 2, as
well as from the O1∂

NO1 and O2∂
NO2 composites, with dimensions h = h̄ ∈ ∆1 +N0 and h = h̄ ∈ ∆2 +N0

respectively, as shown in figures 7 and 8.

Finally let us consider the expansion of A1 in the S–channel. We shall restrict further our attention
to the special case of ∆1 = 2, where the amplitude (4.16) can be explicitly computed [12]

A1 (z, z̄) = −8G
z2z̄2

(z̄ − z)

[
1

1 − z̄
∂ − 1

1 − z
∂̄

]
a (z, z̄) ,

where

a (z, z̄) =
(1 − z) (1 − z̄)

(z − z̄)

[
Li2 (z) − Li2 (z̄) +

1

2
ln (zz̄) ln

(
1 − z

1 − z̄

)]
,

with Li2 the dilogarithm. Using a symbolic manipulation program we can check the decomposition (4.3)
up to very high order, with

σh,h̄ = − 4G

h (h− 1)
,

ρh,h̄ =

(
∂

∂h
+

∂

∂h̄

)
σh,h̄ +

4G

h (h− 1) h̄
(
h̄− 1

) .

In the limit of large dimensions h,h̄→ ∞, we have σh,h̄ ∼ −4G/h2, as predicted from the general formula
(4.7). In the same limit, we have ρh,h̄ ≃ ∂σh,h̄, in agreement with (4.8).
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5. Graviton Dominance

We have analyzed in great detail the tree–level exchange of a spin j particle in the T–channel, given
by graph 2(a) in the introduction. We have noticed that, decomposing this graph in the S–channel and
considering its contribution to partial waves of large spin and energy, the dominant amplitude has the
maximal value for the spin j of the exchanged particle. In gravitational theories in AdS, this particle is the
graviton, whose exchange dominates the interaction and determines the tree–level anomalous dimensions
of the double trace O1O2 composites to be 2σh,h̄ ≃ −4GsΠ(x, y) for large h, h̄. On the other hand, the full
gravitational theory in AdS will have more interactions at tree–level, like S and U–channel exchanges, as
well as contact and non–minimal interactions. Just as in flat space, though, all these other interactions are
subdominant in the large spin and energy limit, and can be neglected in first approximation. We will not
give a complete proof of this fact, but we shall rather concentrate on some specific significant examples.
In particular, we will analyze the graphs already considered in the introduction (in figure 2), and we will
concentrate on the case ∆1 = ∆2 for simplicity.

Letting A1(z, z̄) be the amplitude for graph 2(a), the amplitudes for graphs 2(b) and 2(c) are simply
obtained by permuting the external particles and are given explicitly by

(zz̄)∆ A1

(
1

z
,
1

z̄

)
, (graph 2(b)),

(
zz̄

(1 − z) (1 − z̄)

)∆

A1 (1 − z, 1 − z̄) , (graph 2(c)).

The S–channel decomposition of graph 2(b) can be trivially deduced from the results of section (4.3), which
considers the mirror T–channel decomposition of graph 2(a). Without any further analysis, we conclude
that 2(b) contributes only to S–channel partial waves of spin J ≤ j, and is therefore local in spin as in flat
space. It is therefore irrelevant when considering large spin and energy decomposition of the full tree–level
amplitude.

To analyze the S–channel decomposition of graph 2(c), let us first note that the differential operator
DS in (3.3) is invariant under z → 1−z and z̄ → 1− z̄, whenever 2ν = ∆1−∆2 = 0. We therefore conclude
that (

zz̄

(1 − z) (1 − z̄)

)∆

Sh,h̄ (1 − z, 1 − z̄) = (−)h−h̄ Sh,h̄ (z, z̄) ,

where the normalization is fixed by recalling the leading behavior of Sh,h̄ ∼ z∆−hz̄∆−h̄ when z, z̄ → ∞.
In fact, if we choose z = iλ, z̄ = −iλ to avoid branch cuts on the real axis, we have that Sh,h̄ (z, z̄) ∼
(iλ)∆−h (−iλ)∆−h̄ and that Sh,h̄ (1 − z, 1 − z̄) ∼ (−iλ)∆−h (iλ)∆−h̄, thus fixing the relative normalization

to (−)h−h̄. We then conclude that, if the S–channel expansion of A1 is given by (4.3), then graph 2(c) is
given by

∑

∆≤h̄≤h

(−)h−h̄ σh,h̄

(
∂

∂h
+

∂

∂h̄

)
Sh,h̄ +

∑

∆≤h̄≤h

(−)h−h̄ ρh,h̄ Sh,h̄ .

Therefore, for instance, the extra contribution to the anomalous dimension is given by

(−)h−h̄ 2σh,h̄ ,

which oscillates as a function of spin. In a coarse–grained picture in which we consider large impact
parameters and continuous spins, these oscillations average to a vanishing function, just as in the flat space
case considered in the introduction.
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Finally, let us analyze the contact interaction of graph 2(d). Using the techniques developed in [6],
one can easily establish that the discontinuity Disc z of the amplitude corresponding to graph 2(d) is
proportional to

(
−q2

)∆ (
−p2

)∆
∫

Hd−1

d̃x
1

(2q · x)2∆−1 (2p · x)2∆−1
. (5.1)

This expression is essentially equation (4.5) with j = 0 and the propagator Π (x, y) replaced by the delta
function δ (x, y) on the transverse space Hd−1. It is therefore easy to follow section 4 and interpret it in
the S and in the T–channel partial wave expansions. On one hand, the discontinuity function is an impact
parameter approximation to the high spin and energy anomalous dimensions, which are now proportional
to

1

s
δ (x, y) ,

where we recall that s = 4hh̄ and −2x · y = h̄/h + h/h̄. Therefore the delta function fixes h = h̄, i.e.,
spin J = 0. On the other hand, since the discontinuity function (5.1) goes like z for small z, z̄, we have
only spin J = 0 partial waves appearing in the T–channel decomposition. Expression (5.1) also generates
the relative weights of all these spin zero contributions. In both channels, as expected, graph 2(d) only
contains spin zero intermediate primaries, and therefore does not effect the large spin results which are
only controlled by graph 2(a).

6. A Conjecture and Conclusions

To complete the eikonal program, one crucial step is missing. In flat space, one can approximately re-
construct the full amplitude from the phase shift σ using (1.3). This step cannot be immediately done
in AdSd+1, even at tree–level, since the eikonal two–point function computed in [6] determines only the
leading behavior of the discontinuity M1 of the relevant tree–level amplitude A1 in figure 2a. Nevertheless,
we can be bold and try to reconstruct the full amplitude A from σh,h̄. We shall assume that A is domi-
nated at large h, h̄ only by the O1O2 composites with finite anomalous dimensions Γ(h, h̄). This implies a
decomposition of the form

A ≃
∑

h≥h̄≥∆

(
1 +R(h, h̄)

)
Sh+Γ(h,h̄), h̄+Γ(h,h̄) , (6.1)

where R(h, h̄) are now finite coefficients. Expanding in powers of Γ and dropping the explicit reference to
h, h̄, the above equation reads

A ≃
∑

(1 +R)

(
1 + Γ∂ +

1

2
Γ2∂2 + · · ·

)
S .

The coefficients R = R1 + R2 + · · · and the anomalous dimensions Γ = Γ1 + Γ2 + · · · are computed in
perturbation theory, with Γ1 ≃ σ and R1 ≃ ∂σ. Order by order in the loop expansion, we then have the
following expansions
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A0 ≃
∑

S ,

A1 ≃
∑

R1 S + Γ1 ∂S ,

A2 ≃
∑

R2 S + (Γ2 +R1Γ1) ∂S+
1

2
Γ2

1 ∂
2S ,

· · ·

Since Γ1 ≃ σ, it is tempting to assume, in analogy with (4.9), that in general

An ≃ 1

n!

∑
∂n (σnS) .

This is compatible with (6.1) provided that

Γ ≃
∑

n≥1

1

n!
∂n−1σn , R = ∂Γ .

For example, consider graviton exchange in d = 2, where σ ≃ −4Gh̄2. The sum over n can be done
explicitly, arriving at the following intriguing formula for the anomalous dimension

Γ ≃ 2h̄

1 +
√

1 + 16Gh̄
− h̄ , (j = 2, d = 2) .

Clearly the results above are purely conjectural, and we must leave a complete discussion of these issues
for future research.

Finally, it would be very interesting to apply the techniques developed in this paper to specific realiza-
tions of the AdS/CFT correspondence. All of our discussion has been carried out for pure AdS, decomposing
the amplitudes in conformal partial waves related to the isometries SO (2, d) of the underlying spacetime.
The impact parameter representation has also been derived accordingly. It is thus important to generalize
the discussion to AdS × compact spaces and to superspaces, with partial waves and impact parameter
representations appropriate for the isometry group of the full (super)space, including internal (and possibly
super) symmetries. This could then allow us to test our results against computations performed directly
in CFT duals at finite N .

Even though all computations in this paper are done in the gravity regime, neglecting string effects,
it known [13] that, in some cases, string effects do not alter the general eikonal results in flat space. It is
therefore tempting to speculate that some of the results of this paper could be already visible in weakly
coupled CFT’s at finite N .
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A. Impact Parameter Representation

In this appendix we show that the integral representation (3.8) of the impact parameter representation
partial wave Ih,h̄ solves the differential equation (3.7). We start by recalling the relevant kinematics.
Choosing the four external points pi as

p1 = (0, 1, 0) , p2 = −
(
1, p2, p

)
,

p3 = −
(
q2, 1, q

)
, p4 = (1, 0, 0) ,

the cross ratios z, z̄ are determined by

zz̄ = q2p2, z + z̄ = 2p · q .

In what follows, we choose once and for all a fixed point p ∈ −Hd−1, so that p2 = −1. We then view
the S–channel impact parameter amplitude Ih,h̄ as a function just of q. Recall that, in terms of z, z̄, the

function (zz̄)−∆ Ih,h̄ satisfies the following differential equation

z∂2 + z̄∂̄2 + ∂ + ∂̄ +
d− 2

z − z̄

(
z∂ − z̄∂̄

)
=
ν2

z
+
ν2

z̄
− h2 − h̄2.

A tedious computation shows that, in terms of q, the above equation can be written as

(
qipj − 1

2
ηijq · p

)
∂

∂qi

∂

∂qj
+
d

2
pi ∂

∂qi
= ν2 2p · q

q2
+ h2 + h̄2 . (A.1)

Consider first the following function

f (x) = |x|d
∫

M
dy e−2p·y δ

(
2y · x + h2 + h̄2

)
δ
(
x2y2 − h2h̄2

)
,

where we integrate over the future Milne cone M ∈ M
d given by y2 ≤ 0, y0 ≥ 0. Changing integration

variable to

z = −x(x · y) (x · p) − x2 (y · p)
(x · p)2 + x2

+ px2 (x · p) (y · p) + (y · x)
(x · p)2 + x2

,

with z2 = −x2y2, z · p = −y · x, z · x = −x2p · y and dz = |x|d dy, we also have the integral representation

f (x) =

∫

M
dz e−

2x·z

x2 δ
(
2z · p − h2 − h̄2

)
δ
(
z2 + h2h̄2

)
,

from which it is clear that the function f (x) satisfies

pi ∂

∂ (xi/x2)
f =

(
x2pj − 2p · x xj

) ∂

∂xj
f = −

(
h2 + h̄2

)
f . (A.2)

We now consider the following function

g (q) =
(
−q2

)ν
∫

M

dx

|x|d−4ν
e−2q·x f (x) . (A.3)

We claim that g (q) satisfies the differential equation (A.1). Replacing
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∂

∂qi
→ 2

(
ν
qi
q2

− xi

)
,

∂

∂qi

∂

∂qj
→ 2ν

(
ηij

q2
− 2

qiqj
q4

)
+ 4

(
ν
qi
q2

− xi

)(
ν
qj
q2

− xj

)
,

one can easily show that (A.1) is equivalent to

(
−q2

)ν
∫

M

dx

|x|d−4ν
e−2q·x

[
4 (q · x) (p · x) − 2x2 (q · p)−

− (d+ 4ν) (p · x) − h2 − h̄2
]
f (x) = 0 .

Using (A.2) the above is equivalent to

(
−q2

)ν
∫

M

dx

|x|d−4ν
e−2q·x

[
4 (q · x) (p · x) − 2x2 (q · p)−

− (d+ 4ν) (p · x) +
(
x2pj − 2p · x xj

) ∂

∂xj

]
f (x) = 0 ,

which in turn is equal to

∫

M
dx

∂

∂xj

[(
−x2

)− d
2
+2ν (

x2pj − 2p · x xj
)
e−2q·x f (x)

]
= 0 .

This last equation is true since the boundary value on ∂M, of the term in the square brackets, vanishes.

We have therefore proved that
(
−q2

)−∆ Ih,h̄ ∝ g. Choosing a convenient normalization and going back
to a general choice of p we have arrived at the result (3.8).
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