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1. Introduction and summary

The AdSd+1/CFTd correspondence relates, in general, a theory of strings on the nega-

tively curved Anti-de Sitter (AdS) space with a conformal field theory (CFT) living on its

boundary [1 – 4]. When the radius ℓ of AdSd+1 is large compared with the string length

ℓs, we can, in first approximation, analyze the dynamics of the low-energy gravitational

theory for the massless string modes. However, in most circumstances, we are forced to

restrict our attention to tree level gravitational interactions, since the loop expansion in

the gravitational coupling G is plagued with the usual ultra-violet (UV) problems present

also in flat space, when we neglect the regulator length ℓs. In the prototypical example

of the duality between type IIB strings on AdS5 × S5 and N = 4 U (N) supersymmetric

Yang-Mills (SYM) theory in d = 4, the gravitational coupling in units of the AdS radius

Gℓ−3 is proportional to N−2, and therefore we are in general forced to consider the pla-

nar limit of the SYM theory, even when the ’t Hooft coupling (ℓ/ℓs)
4 is large. Moreover,

even at tree level, Feynman graphs which are readily computed in flat space are extremely

complex in AdS, limiting the practical use of the perturbative expansion [5 – 7].
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Figure 1: Interaction diagrams in both flat and AdS spaces. In the eikonal regime, free propagation

(a) is modified primarily by interactions described by crossed-ladder graphs (c). In flat space and

in this regime, the tree level amplitude is dominated by the T -channel graph (b) with maximal spin

j = 2 of the exchanged massless particle. Moreover, the full eikonal amplitude can be computed

from diagram (b).

In this paper we initiate a program to go beyond the tree level approximation and

to explore the physics on AdSd+1 at finite Gℓ1−d. To do so, we recall that, in flat space

M
d+1, the quantum effects of various types of interactions can be reliably re-summed to all

orders in the relevant coupling constant, in specific kinematical regimes [8 – 14]. In partic-

ular, the amplitude for the scattering of two particles can be approximately computed in

the eikonal limit of small momentum transfer compared to the center-of-mass energy, or,

equivalently, of small scattering angle. In this limit, even the gravitational interaction can

be approximately evaluated to all orders in G, and the usual perturbative UV problems

are rendered harmless by the re-summation process. Moreover, at large energies, the gravi-

tational interaction dominates all other interactions, quite independently of the underlying

theory [9]. At high-energies, scattering amplitudes in the eikonal limit exhibit a universal

behavior which is indicative of the presence of gravity in the theory under consideration.

It is therefore tempting to speculate that, in certain favored kinematical regimes, quan-

tum effects can be re-summed also in AdS and that the gravitational interaction, if present,

will dominate all other interactions and exhibit a universal behavior which will be a clear

signal of the existence of a gravitational description in the dual CFT. This paper is a first

step towards the consistent application of eikonal methods to the dynamics in AdS and to

the physics of the dual CFT.

Let us start by recalling some basic facts about the eikonal formalism in flat space.

Consider the scattering of two scalar particles in flat Minkowski space M
d+1. For the

present purposes, we work at high-energies and we neglect the masses of the scattering

particles. The scattering amplitude A is a function of the Mandelstam invariants s and t

and is computed in perturbation theory

A = A0 + A1 + · · · ,

where A0 corresponds to graph (a) in figure 1 describing free propagation in spacetime.

The tree level amplitude A1 contains, in general, many different graphs. However, in

the eikonal regime of small scattering angle −t ≪ s, the T -channel exchange of massless
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particles dominates the full tree level amplitude. Therefore, the only relevant contribution

to A1 will come from graph (b) in figure 1, where j denotes the spin of the exchanged

massless particle. More precisely, this contribution reads1

A1 ≃ 43−j 2πiG
sj + c1s

j−1t + · · · + cjt
j

−t
.

In the eikonal limit, the full amplitude A is dominated by the ladder graphs (c) in figure 1

and can be reconstructed starting from A1. More precisely, we write A in the impact-

parameter representation

A
(
s, t = −q2

)
≃ 2s

∫

Ed−1

dx eiq·x e−2πi σ(s,r) , (1.1)

where r =
√

x2 is the radial coordinate in transverse space E
d−1 and q is the transverse

momentum transfer. In general, the phase shift σ (s, r) receives contributions at all orders

in perturbation theory. However, the leading behavior of σ (s, r) for large r is uniquely

determined by the tree level interaction A1 and is therefore obtained by a simple Fourier

transform

A1

(
s, t = −q2

)
≃ −4πis

∫

Ed−1

dx eiq·x σ(s, r) . (1.2)

This yields

σ (s, r) ≃ −8G
(s

4

)j−1
Π(r) ,

where Π (r) is the massless Euclidean propagator in transverse space E
d−1. The behavior

of σ for large r is determined only by the residue of the 1/t pole in A1, and is it insensitive

to the other terms, proportional to ci, which are regular for t → 0. Hence, the higher

order graphs of figure 1(c) are taken into account simply by exponentiating the phase σ

in (1.1). In the limit of high-energy s, the mediating massless particle with maximal spin j

dominates the interaction. In theories of gravity, this particle is the graviton, with j = 2.

In the literature there are essentially two derivations of the eikonal amplitude (1.1).

One derivation [8] considers the behavior of the Feynman diagrams in figure 1(c) in the

limit −t ≪ s, which, after a careful combinatorial analysis, re-sum to the result (1.1).

The second derivation [9] is more geometrical and considers the motion of particle 1 in the

classical field configuration created by particle 2. In the limit of large s, the particles move

approximately at the speed of light, and particle 2 is viewed as a source, localized along

its null world-line, for the exchanged massless spin j field. This classical source produces a

shock wave configuration [15] in the exchanged field, and one may solve the wave equation

for particle 1 in the presence of this classical background. When crossing the shock wave,

the phase of the wave function for particle 1 is shifted by −2πσ(r, s) and the amplitude

between the initial and final states of particle 1 is then given by the eikonal result (1.1).

In this work, we shall consider the CFT analogue of 2 → 2 scattering of scalar fields

in flat space. More precisely, we will study the CFT correlator

〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉CFTd
≡ 1

p∆1

13 p∆2

24

A (z, z̄) ,

1The normalization 43−j 2πi G has been chosen for later convenience. When j = 2, the gravitational

coupling constant G is the canonically normalized Newton constant.
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where the scalar primary operators O1, O2 have conformal dimensions ∆1, ∆2, respectively.

The pi are now points on the boundary of AdS, and the amplitude A is a function of two

cross-ratios z,z̄ (the precise definition of our notation can be found in section 2). Neglecting

string effects, the function A can be computed in the dual AdS formulation as a field

theoretic perturbation series [2, 3, 6, 7]

A = A0 + A1 + · · · ,

where A0 = 1 corresponds to free propagation described by the Witten diagram in fig-

ure 1(a). We expect that the eikonal kinematical regime in AdS is still defined by p1 ∼ p3,

which corresponds to the limit of small cross-ratios z,z̄. In analogy with flat space, we shall

focus uniquely on the contribution to A1 coming from the graph 1(b).

The direct generalization of the flat space eikonal re-summation to AdS is not obvious,

because AdS graphs are much harder to compute even at tree level [6, 7]. Fortunately, as

described above, in flat space there is an alternative way to derive the eikonal result (1.1),

which uses the shock wave geometry of the exchanged massless field. In this paper, we shall

extend this analysis by considering the two-point function E ∼ 〈O1O1〉shock on AdSd+1 in

the presence of a shock wave of a spin j massless field. By analogy with flat space, we

expect that the shock wave two-point function E contains contributions from all ladder

graphs of figure 1. In particular, the first two terms in the coupling constant expansion

E = E0 + E1 + · · · ,

should correspond, respectively, to free propagation and to tree level T -channel exchange

of a spin j massless particle. Indeed, we shall determine a precise relation between E1 and

the tree level amplitude A1 associated to graph 1(b). We will find that E1 controls the

small z,z̄ behavior of the discontinuity function (monodromy)

M1 (z, z̄) = Disc z A1 (z, z̄) ≡ 1

2πi

(
A©

1 (z, z̄) −A1 (z, z̄)
)

, (1.3)

where A©
1 is the analytic continuation of A1 obtained by keeping z̄ fixed and by transporting

z clockwise around the point at infinity as in figure 2. More precisely, the small z,z̄ behavior

of M1 plays the role of the residue of the 1/t pole in A1 in the flat space case and it is

given by

M1 (z, z̄) ≃ (−z)1−j M
( z̄

z

)
, (1.4)

where the function M(w) satisfies

M (w) = w1−jM (1/w) ,

M (w)⋆ = M (w⋆) .

Note that (1.4) is not directly related to the small z,z̄ behavior of A1, which is in turn

controlled by the standard OPE in the dual CFT. As in flat space, the maximal spin j

dominates in the eikonal regime of small z, z̄. The leading behavior of M1 is explicitly
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Figure 2: Analytic continuation of A1 to obtain A©
1 . The variable z̄ is kept fixed and z is

transported clockwise around the point at infinity, circling the points 0, 1, z̄.

given as an integral representation over transverse space analogous to (1.2). As derived in

section 6, we shall find that

M1 ≃− 8GN∆1
N∆2

Γ (2∆1 − 1 + j) Γ (2∆2 − 1 + j)× (1.5)

×
(
−q2

)∆1
(
−p2

)∆2

∫

Hd−1

d̃xd̃y
Π(x, y)

(2q · x)2∆1−1+j (2p · y)2∆2−1+j
,

where the relevant notation is given in detail in section 2. In a companion paper [16] we

will explore the CFT consequences of the above result.

One crucial step is missing to complete the eikonal program. In flat space, one can

approximately reconstruct the full amplitude from the tree level phase shift σ using (1.1).

This last step cannot be immediately done in AdSd+1, since the tree level eikonal two-

point function E1 is not related to A1 but rather to the discontinuity M1 of A1 across

a kinematical branch cut. Therefore, in order to reconstruct A1 and the full amplitude

A from the shock wave two-point function, extra information is needed. In [16] we shall

conjecture a possible resolution of this problem, even though more work is needed to put

these results on firm grounds.

Let us further comment on the above result, and on its relation to the more familiar flat

space case. In the CFT literature, one usually considers the amplitude A1 (z, z̄) evaluated

on the principal Euclidean sheet, where z̄ = z⋆ (again see section 2 for a precise definition

of the notation). It is quite clear, on the other hand, that eikonal results, both in flat and

in AdS space, probe amplitudes deep in the Lorentzian regime. In fact, scattered particles

are almost light-like separated in position space, due to the high relative energies. There-

fore, in the context of the AdS/CFT duality, we must also consider the boundary CFT

correlator A1 (z, z̄) in its Lorentzian regime. This is obtained by analytically continuing

A1 (z, z̄), with z, z̄ now viewed as independent variables. The channel z, z̄ → 0 corresponds

to light-like separation of the relevant scattering particles but, as explained in detail in

section 5, this limit must be accompanied by the relevant analytic continuation in (1.3).

Note that, implicitly, this continuation is also performed in the flat space eikonal computa-

tion, but it is immaterial in this case since, in momentum space, tree level amplitudes are

rational functions of the kinematical invariants. Finally, let us note that, without analytic

continuation, the limit of A1 for z, z̄ → 0 goes like |z|Energy and is therefore governed by

the usual OPE. In this case, the relevant contribution comes from only a finite number

– 5 –
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of states of lowest energy propagating in this channel . This corresponds to the state Oj

dual to the the spin j particle being exchanged, and the eikonal result would amount to

a computation of the three-point coupling 〈O1O1Oj〉 〈OjO2O2〉. The eikonal result, on

the other hand, contains much more information. The limit z, z̄ → 0 of M1 goes in fact

like |z|1−Spin and we obtain information about the full tower of spin j intermediate states,

which is encoded in the generating function M (w).

Finally, in section 7, we extend the computation of the two-point function E ∼
〈O1O1〉shock to the case of a shock wave propagating along the horizon of a Schwarzschild

BTZ black hole [17, 18]. This computation extends the results of [19 – 23], where CFT

correlators are used to extract information on the physics behind the horizon of the black

hole, with particular emphasis on the singularity. In particular, in future work we plan to

relate E to the four-point function in the BTZ geometry at all orders in G, thus probing

the physics of the singularity in a truly quantum gravity regime.

In two appendices, we further include a full discussion on the AdS and Hyperbolic

space propagators required in the main text; and an explicit calculation of the shock two-

point function, in the case of d = 3, using Poincaré coordinates. This will provide the

reader who is familiar with the correlation function calculations of [3, 24] a simpler access

to the calculations we perform in the bulk of the paper.

2. Preliminaries and notation

Recall that AdSd+1 space, of dimension d + 1, can be defined as a pseudo-sphere in the

embedding space M
2 ×M

d. We denote with x = (x+, x−, x) a point in M
2 ×M

d, where x±

are light cone coordinates on M
2 and x denotes a point in M

d. Then, AdS space of radius

ℓ is described by2

x2 = −x+x− + x2 = −ℓ2 . (2.1)

Similarly, a point on the holographic boundary of AdSd+1 can be described by a ray on

the light cone in M
2 × M

d, that is by a point p with

p2 = −p+p− + p2 = 0 ,

defined up to re-scaling

p ∼ λp (λ > 0) .

In figure 3 the embedding of the AdS geometry is represented for the AdS2 case. From

now on we choose units such that ℓ = 1.

The AdS/CFT correspondence predicts the existence of a dual CFTd living on the

boundary of AdSd+1. In particular, a CFT correlator of scalar primary operators located

at points p1, . . . ,pn, can be conveniently described by an amplitude

A (p1, . . . ,pn)

2We denote with x · y and x · y the scalar products in M
2
× M

d and M
d, respectively. Moreover, we

abbreviate x2= x · x and x2 = x · x when clear from context. In M
d we shall use coordinates xµ with

µ = 0, . . . , d − 1 and with x0 the timelike coordinate. Finally, in M
2 we shall write x± = xd+1

± xd for the

light cone coordinates, with xd+1 the time direction and xd the spatial one.

– 6 –
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Figure 3: Embedding of AdS2 in M
2 × M

1. A point p in the boundary of AdS2 is a null ray in

M
2 × M

1.

invariant under SO (2, d) and therefore only a function of the invariants

pij = −2pi · pj .

Since the boundary points pi are defined only up to rescaling, the amplitude A will be

homogeneous in each entry

A (. . . , λpi, . . .) = λ−∆iA (. . . ,pi, . . .) ,

where ∆i is the conformal dimension of the i-th scalar primary operator.

Throughout this paper we will focus our attention on four-point amplitudes of scalar

primary operators. More precisely, we shall consider correlators of the form

A (p1,p2,p3,p4) = 〈O1 (p1)O2 (p2)O1 (p3)O2 (p4)〉CFTd

where the scalar operators O1,O2 have dimensions

∆1 = ∆ + ν , ∆2 = ∆ − ν ,

respectively. The four-point amplitude A is just a function of two cross-ratios z, z̄ which

we define, following [25, 26], in terms of the kinematical invariants pij as3

zz̄ =
p13p24

p12p34
,

(1 − z) (1 − z̄) =
p14p23

p12p34
.

Then, the four-point amplitude can be written as

A (pi) =
1

p∆1

13 p∆2

24

A (z, z̄) ,

3Throughout the paper, we shall consider barred and unbarred variables as independent, with complex

conjugation denoted by ⋆. In general z̄ = z⋆ when considering the analytic continuation of the CFTd to

Euclidean signature. For Lorentzian signature, either z̄ = z⋆ or both z and z̄ are real. These facts follow

simply from solving the quadratic equations for z and z̄.
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where A is a generic function of z, z̄. By conformal invariance, we can fix the position of

up to three of the external points pi. In what follows, we shall often choose the external

kinematics by placing the four points pi at

p1 = (0, 1, 0) , p2 = −
(
1, p2, p

)
, (2.2)

p3 = −
(
q2, 1, q

)
, p4 = (1, 0, 0) ,

and we shall view the amplitude as a function of p, q ∈ M
d. The cross ratios z, z̄ are in

particular determined by

zz̄ = q2p2, z + z̄ = 2p · q .

When d = 2 it is convenient to parameterize M
d by light cone coordinates x = x0 + x1 and

x̄ = x0 − x1, with metric −dxdx̄. Then, if we choose p = p̄ = −1 we have q = z, q̄ = z̄.

In the sequel, we will denote with Hd−1 ⊂ M
d the transverse hyperbolic space, given

by the upper mass-shell

x2 = −1
(
x0 > 0

)
,

where x ∈ M
d. We will also denote with M ⊂ M

d the future Milne wedge given by x2 ≤ 0,

x0 ≥ 0. Similarly, we denote with −M the past Milne wedge and with −Hd−1 the associated

transverse hyperbolic space. Finally we denote with

d̃x = 2dx δ
(
x2 + 1

)
,

d̃x = 2dx δ
(
x2 + 1

)
,

the volume elements on AdSd+1 and Hd−1, respectively. For example
∫

M
dx =

∫ ∞

0
td−1dt

∫

Hd−1

d̃y ,

where x = ty and y ∈ Hd−1.

Throughout the paper, we will often need the massless Minkowskian scalar propagator

Π (x,y) on AdSd+1 and the massive Euclidean scalar propagator Π (x, y) on Hd−1 of mass-

squared d − 1 . They are canonically normalized by

¤AdSd+1
Π (x,y) = i δ (x,y) ,

[
¤Hd−1

− (d − 1)
]

Π(x, y) = − δ (x, y) ,

and are explicitly given in appendix A. We also introduce, for future use, the constant N∆

given by the integral

N−1
∆ =

∫

M

dy

|y|d−2∆
e2k·y = Γ (2∆)

∫

Hd−1

d̃y

(−2k · y)2∆
=

π
d
2
−1

2
Γ (∆)Γ

(
∆ − d

2
+ 1

)
.

To conclude this section, let us remind the reader that we have been careless about

the global structure of AdSd+1. As it is well known, the locus (2.1) has a non-contractible

timelike circle, and we shall denote with AdSd+1 the covering space of (2.1), where global

time τ , given by

xd+1 + ix0 =
1

2

(
x+ + x−

)
+ ix0 = cosh (ρ) eiτ , (2.3)

– 8 –
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Figure 4: Poincaré patches of an arbitrary boundary point p, separated by the null surfaces

x · p = 0. Here AdS is represented as a cylinder with boundary R × Sd−1. Throughout this paper

we shall mostly use a two-dimensional simplification of this picture, as shown in the figure. The

point −p and an image point p′ of p are also shown.

is decompactified. Therefore, one must be cautious when working in the embedding coor-

dinates since two general bulk points x and x′, or two boundary points p and p′, related by

a global time translation of integer multiples of 2π have the same embedding in M
2 × M

d.

Given a boundary point p, we may divide the AdS space in an infinite sequence of Poincaré

patches separated by the null surfaces x · p = 0 and labeled by integers n increasing as we

move forward in global time. The n = 0 patch is the one which is spacelike related to the

boundary point, as shown in figure 4. These global issues will be relevant in sections 4 and

5.

3. The shock wave geometry

In this section we review the shock wave geometry in AdSd+1, which is a direct analog of

the Aichelburg-Sexl geometry in flat space and which has been described in [27 – 32].

In order to easily describe the geometry, it is convenient to focus first on two consecutive

Poincaré patches in AdSd+1 with x− > 0 and x− < 0, respectively. As shown in figure 5,

these two regions are separated by the surface in AdSd+1 defined by x− = 0 and are

parameterized by the light cone coordinate x+ and by a point x in the transverse hyperbolic

space Hd−1. Since the two Poincaré patches are invariant under translations generated by

x−∂µ + 2xµ∂+, we may parameterize the x− < 0 patch with new coordinates

x+ − 2σ · x + σ2x− ,

x− ,

x − σx− ,

where σ ∈ M
d is arbitrary. We may then think of the two patches as being described

by different coordinate systems glued along the surface x− = 0 with the following gluing

– 9 –
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Figure 5: Two consecutive Poincaré patches with x− > 0 and x− < 0. The shock geometry can be

described by specifying gluing conditions on the separating surface x− = 0, which is parameterized

by x+ and x, with x ∈ Hd−1.

conditions

x+ → x+ + h (x) , (3.1)

x → x ,

where

h (x) = 2σ · x .

As we move from one patch to the next, the light cone coordinate x+ is shifted by an

amount h (x) which depends only on the transverse coordinates x ∈ Hd−1. Moreover, note

that the function h (x) satisfies
[
¤Hd−1

− (d − 1)
]

h = 0 . (3.2)

To show this fact, recall that any function h (x) defined on a (pseudo) Euclidean space

E
D+2 which is harmonic and homogeneous, i.e., ¤ED+2 h = 0 and h (λx) = λ−αh (x),

satisfies, when restricted to the (pseudo) sphere SD+1 given by x2 = ±1, the equation[
¤SD+1

− m2
]

h = 0, where m2 = ±α (D − α).

Up to now we have only described the original AdSd+1 space using different coordinate

systems in different parts of the space. The geometry describing a shock wave propagating

along the surface x− = 0 is obtained by adding, to the vacuum Einstein equations, a source

term localized at x− = 0 and independent of the null coordinate x+. The shock geometry

can then be easily described by gluing two AdSd+1 patches as in (3.1). As explained below,

the gluing function now satisfies (3.2) with a source term on the right-hand-side of the

equation given by

−16πGT (x) ,

where x ∈ Hd−1 and G is the Newton constant measured in units of the AdS radius. We

denote as usual with Π (x, y) the Euclidean scalar propagator of mass d−1 in the transverse

space Hd−1, canonically normalized so that
[
¤Hd−1

− (d − 1)
]

Π(x, y) = −δ (x, y) ,

– 10 –
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and given explicitly in appendix A. In the presence of a source term T (x) the gluing

function h (x) is then given by

h (x) = 16πG

∫

Hd−1

d̃x′ Π
(
x, x′

)
T

(
x′

)
. (3.3)

The usual AdS Aichelburg-Sexl geometry can then be recovered by choosing a source due

to a particle of energy ω localized in transverse space at y ∈ Hd−1

T (x) = ω δ (x, y) ,

h (x) = 16πG ω Π(x, y) .

3.1 General spin j interaction

An equivalent way to present the shock wave geometry is to note that, as in flat space,

the linear response of the metric to a stress-energy tensor localized along a null surface

actually solves the full non-linear gravity equations. In this case, the full metric reads

ds2 (AdSd+1) +
(
dx−

)2
h (x) ,

where h is localized on the shock front at x− = 0 and depends only on the transverse

directions x ∈ Hd−1

h (x) = δ
(
x−

)
h (x) .

The metric deformation h is generated by a stress-energy tensor

T (x) = δ
(
x−

)
T (x) , (3.4)

located along the shock front. Einstein’s equations

¤AdSd+1
h = −16πG T

again translate, in transverse space, to

[
¤Hd−1

− (d − 1)
]

h = −16πG T ,

which is solved by (3.3).

We now wish to consider the propagation of a complex scalar field Φ1 of mass m1 in

the presence of the shock. The metric deformation h changes the free Lagrangian

∫
d̃x Φ⋆

1

(
¤ − m2

1

)
Φ1

by adding the minimal gravitational coupling −4
∫

d̃x Φ⋆
1∂

2
+Φ1h, where we used that the

only non-vanishing component of the metric fluctuations is h−− = h. For the purposes

of this paper, we will need to consider a more general interaction mediated by a spin j

particle. We may still consider a classical profile for h localized on the null surface x− = 0

– 11 –
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as described above, but now associated to a shock wave of the spin j massless field. The

interaction with the scalar field Φ1 will then be of the more general form

−4

∫
d̃x Φ⋆

1∂
j
+Φ1 h , (3.5)

where now h is the component h−···− of the spin j field. The equations of motion for Φ1

then read (
¤ − m2

1

)
Φ1 = 4h ∂j

+Φ1 = 4δ
(
x−

)
h ∂j

+Φ1 , (3.6)

which translate in a boundary condition for Φ1 at the location of the shock. Around x− ∼ 0

the differential equation (3.6) simplifies to

∂+∂−Φ1 = −δ
(
x−

)
h ∂j

+Φ1 .

Taking the Fourier transform
∫

dx+ e−ix+s with respect to x+, we obtain

∂− ln Φ1

(
s, x−, x

)
= −δ

(
x−

)
(is)j−1h(x) .

Therefore, the value of the field Φ1 changes across the shock according to

Φ1

(
x+, x

)
→ eh(x)∂j−1

+ Φ1

(
x+, x

)
. (3.7)

In particular, for j = 2 we recover the previous result x+ → x+ + h (x) in (3.1).

4. Two-point function in the shock wave geometry

We are now in the position to compute the two-point function of the scalar field Φ1 in the

presence of the shock. From now on we shall view the field Φ1 as dual to the operator

O1 of conformal dimension ∆1, with ∆1 (∆1 − d) = m 2
1 , and we shall be interested in its

boundary to boundary correlator.

Recall first the standard bulk to boundary propagator Kp1
(x) of Φ1, from a boundary

point p1 to a bulk point x in the absence of the shock (3.1). It is given by C∆1
(−2x · p1)

−∆1 ,

where4

C∆ =
1

2π
d
2

Γ (∆)

Γ
(
∆ − d

2 + 1
)

and where we must pay particular attention to the exact phase factor. More precisely, as

described at the end of section 2, given the boundary point p1, the AdS space may be

divided in an infinite sequence of Poincaré patches separated by the surfaces x · p1 = 0

and labeled by integers n increasing as we move forward in global time. The n = 0 patch

4The normalization C∆ is not the standard one used in the literature [5, 3]. In this paper, the bulk to

boundary propagator Kp1
(x) is taken to be the limit of the bulk to bulk propagator Π(x,y) as the bulk

point y approaches the boundary point p. As shown in [33, 24] and briefly in appendix B, naive Feynman

graphs in AdS computed with this prescription give correctly normalized CFT correlators, including the

subtle two-point function.
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Figure 6: Computation of the two-point function between the boundary points p1 and p3 in the

presence of a shock along the thick diagonal line. This is equivalent to a linear superposition of

propagators from k to p3 in the absence of the shock, where the boundary point k runs over the

grey patch x− > 0. We have divided the AdS space in patches along the x− = 0 surface (continuous

lines, including the shock surface) and along the x+ = 0 surface (dashed lines).

is the one which is spacelike related to the boundary point, as shown in figure 4. Then,

the correct definition of the bulk to boundary propagator is

Kp1
(x) = C∆1

i−2∆1|n|

|2x · p1|∆1
. (4.1)

We shall mostly concentrate on the three patches labeled by n = 0,±1 and shown in grey

in figure 4, where we can also write

Kp1
(x) =

C∆1

(−2x · p1 + iǫ)∆1
. (4.2)

Let us stress that (4.2) is not valid in general. In fact, had we extended (4.2) throughout

the whole AdS space, we would have the propagator from a collection of boundary points

related to p1 and −p1 by 2π translations in global time.

Now we compute the two-point function between boundary points p1 and p3 in the

presence of a shock wave, where p1 is on the boundary of the patch preceding the shock,

as shown in figure 6. Using translations x−∂µ + 2xµ∂+ in this patch, we are free to place

the point p1 at

p1 = (0, 1, 0) ,

so that the relevant bulk to boundary function is given, before the shock, by

C∆1

(x+ + iǫ)∆1
=

i−∆1C∆1

Γ (∆1)

∫ ∞

0
ds s∆1−1eisx+

.

Just after the shock, using the gluing relation (3.7), the scalar profile becomes

i−∆1C∆1

Γ (∆1)

∫ ∞

0
ds s∆1−1eisx++(is)j−1h(x) . (4.3)
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Figure 7: In expression (4.6), we are not allowed to use (4.2) for the bulk to boundary propagator.

In fact, the point p3, limiting boundary point of x, is not always inside the n = 0,±1 patches of

point k, which are shown in grey. In general, p3 is within the n = 0, 1, 2 patches of k.

We want to write the above function, defined on the shock surface x− = 0, as a coherent

sum

C∆1

∫
dk

(2π)d
F (k)

(x+ − 2k · x + iǫ)∆1
(4.4)

of bulk to boundary propagators Kk (x) where, as shown in figure 6, the point k =
(
k2, 1, k

)

runs over the boundary of the patch preceding the shock. To determine F (k) we equate

the Fourier transforms with respect to x+ of (4.3) and (4.4) and obtain, for s > 0,

e(is)j−1h(x) =

∫
dk

(2π)d
F (k) e−2ik·(sx) .

This equation may now be inverted by considering sx as a point in the future Milne wedge

M, decomposed in its radial and angular parts. We then obtain

F (k) = 2d

∫ ∞

0
sd−1ds

∫

Hd−1

d̃x e2ik·(sx)+(is)j−1h(x) . (4.5)

Having obtained the scalar profile (4.4) just after the shock, we may now evolve it for-

ward after the surface x− = 0 and compute the boundary to boundary correlator E , by

considering the limit of the profile
∫

dk

(2π)d
F (k) Kk (x) (4.6)

as the point x moves towards the boundary point

p3 = −
(
q2, 1, q

)

in the patch after the shock. We need to be careful with phases using the general form of

the propagator (4.1) since p3 can be outside the n = 0,±1 Poincaré patches of k, as shown

in figure 7. More precisely, one arrives at the following integral

E = C∆1

∫
dk

(2π)d
F (k)

[− (k − q)2 + iǫ sign (k0 − q0)]∆1

.

– 14 –
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Using (4.5) and changing variables to k′ = s (k − q) we obtain

E = i−2∆1C∆1

∫ ∞

0
s2∆1−1ds

∫

Hd−1

d̃x e2iq·(sx)+(is)j−1h(x)

∫
dk′

πd

e2ik′·x

[k′2 − iǫ sign (k′0)]∆1
.

The last integral in the above expression is a constant since x ∈ Hd−1. This constant can

be evaluated, for example, by considering the limit h = 0 with q ∈ −M in the past Milne

wedge. In this case E is given by the free propagator C∆1

(
−q2

)−∆1, thus showing that the

constant is given by N∆1
. We have then arrived at the final result

E = i−2∆1C∆1
N∆1

∫ ∞

0
s2∆1−1ds

∫

Hd−1

d̃x e2iq·(sx)+(is)j−1h(x) .

When j = 2 the s integral can be easily performed to obtain

E = C∆1
N∆1

Γ (2∆1)

∫

Hd−1

d̃x

(2q · x + h (x) + iǫ)2∆1
, (j = 2) . (4.7)

5. Creating the shock wave geometry

In flat space the computation analogous to the previous section yields a non-perturbative

approximation to the four-point amplitude in the eikonal kinematical regime. To under-

stand the relation between the AdS result of the previous section and the dual CFT four-

point function, we consider the tree level term in the expansion of the two-point function

E in powers of h

E1 = (−)j−1 C∆1
N∆1

Γ (2∆1 + j − 1)

∫

Hd−1

d̃x
h (x)

(2q · x + iǫ)2∆1+j−1

= 16πG (−)j−1 C∆1
N∆1

Γ (2∆1 + j − 1)

∫

Hd−1

d̃x d̃y
Π(x, y) T (y)

(2q · x + iǫ)2∆1+j−1
. (5.1)

In this section, we shall show that the function E1 can also be computed from the Feynman

graph in figure 1(b), which corresponds to a tree level exchange of a massless spin j particle

between two scalar particles Φ1 and Φ2, with appropriate external wave functions. The

fields Φi have masses mi and are dual to boundary operators Oi of conformal dimension

∆i. Moreover, the relevant coupling for the field Φ2, parallel to (3.5), is given by5

−4 (−)j
∫

d̃x Φ⋆
2∂

j
−Φ2 h′ , (5.2)

where h′ is the h+···+ component of the interaction spin j field, which has a two-point

function 〈
h (x)h′

(
x′

)〉
= 8πG Π

(
x,x′

)
.

5The sign (−)j indicates that, for odd j, the fields Φ1 and Φ2 are oppositely charged with respect to

the spin j interaction field. With this convention, graph 1(b) corresponds to an attractive interaction,

independently of j.
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The massless scalar propagator in AdSd+1 is canonically normalized by ¤Π (x,x′) =

iδ (x,x′) and it is explicitly given in appendix A. We will denote with φ1, φ3 and φ2, φ4 the

external wave functions of the AdS graph corresponding, respectively, to the two fields Φ1

and Φ2 interacting through the massless exchange. In general the external states φ1, φ3

and φ2, φ4 will be linear combinations of the bulk to boundary propagators

Kp (x) = C∆1
(−2x · p)−∆1 ,

K̃p (x) = C∆2
(−2x · p)−∆2 ,

respectively. Throughout this section, we will fix the external states φ1, φ3 to be

φ1 = Kp1
, φ3 = Kp3

,

according to the previous section.6 If we also choose

φ2 = K̃p2
, φ4 = K̃p4

,

the graph 1(b) computes the amplitude C∆1
C∆2

A1 (pi) = C∆1
C∆2

p−∆1

13 p−∆2

24 A1 (pi). How-

ever, we shall choose the wave functions φ2, φ4 so that the corresponding vertex (5.2),

schematically given by ∂j
µ φ2φ4, is localized along the shock surface x− = 0 and only along

the µ = − direction. In other words, the wave functions φ2 and φ4 will be chosen such

that the vertex (5.2) is the source for the shock wave. This will be achieved by choosing

φ2 and φ4 to be a particular linear combinations of the basic external wave functions K̃p.

More precisely, the fields φ2 and φ4 will respectively vanish after and before the shock,

so that their overlap ∂j
µ φ2φ4 is supported only at x− = 0. Moreover, near x− ∼ 0, the

functions φ2 and φ4 will be respectively chosen to behave in the light cone directions x±

as (x−)
∆2+j−1

and (x−)
−∆2 , so that their overlap ∂j

−φ2φ4 goes as 1/x− ∼ δ (x−). With

this specific choice of external states φ2, φ4, graph 1(b) is explicitly given by

−4i

∫

AdSd+1

d̃x φ3∂
j
+φ1 h(x) ,

where

h (x) = 16πG i

∫

AdSd+1

d̃x′ Π
(
x,x′

)
T

(
x′

)
,

T = −2 (−)j φ4∂
j
−φ2 . (5.3)

As discussed above, the functions φ2, φ4 are chosen so that the source function T is sup-

ported on the light cone T (x) = δ (x−) T (x), and the graph 1(b) computes E1 for the

specific choice of transverse source T (x).

6In this section, all external states φi are built starting from the canonical bulk to boundary propaga-

tor (4.1). This includes the states φ2, φ4 used to explicitly construct the shock wave. The phase conventions

in (4.1) show that the bulk to boundary propagator Kp (x) corresponds to a non-normalizable wave with a

δ-function source at the boundary point p. Computation of Feynman integrals with those external states

corresponds then, in the dual CFT, to a computation of the boundary correlator in the relevant Lorentzian

regime. Note, finally, that the phases in (4.1) are obtained by a canonical Wick rotation in global time,

starting from Euclidean AdS in global coordinates.
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Figure 8: Construction of the external wave functions φ2 and φ4 starting from the bulk to boundary

propagators K̃±p2
and K̃±p4

. The points ±p4 are fixed, whereas the points ±p2 are free to move

in the past Milne wedges (shaded regions of the boundary). In particular, in (5.8), the points ±p2

lie along a ray from the origin, as shown. The source points p1, p3 are as in figure 6. We also show

global AdS time.

Following figure 8, we start by choosing as external state φ4 the linear combination

φ4 = i2∆2 K̃−p4
− K̃p4

= C∆2

[
(x− − iǫ)−∆2 − (x− + iǫ)−∆2

]
, (5.4)

where we chose p4 = (1, 0, 0). The wave function φ4 clearly vanishes before the shock for

x− > 0. Similarly, the function φ2 will be given by the general linear combination

φ2 =

∫
dp

(2π)d
G (p)

(
K̃p2

− i2∆2K̃−p2

)
, (5.5)

where we write p2 = (1, p2, p). The integrand in (5.5) vanishes for x · p2 < 0, so that, for

G(p) supported in the past Milne wedge −M , the wave function φ2 vanishes after the shock

for x− < 0. Recall that we are interested in the overlap φ4∂
j
−φ2, so that we need only the

behavior of φ2 for x− ∼ 0. This in turn is controlled only by G(p) for p ∼ 0. To show this,

we shall for a moment assume that G(p) in (5.5) is homogeneous in p as G(λp) = λcG(p).

Then φ2 is an eigenfunction of x+∂+ − x−∂− as follows

φ2(λ
−1x+, λx−, x) = λc−∆2+dφ2(x

+, x−, x) ,

and behaves, close to x− ∼ 0, as

φ2(x
+, x−, x) ≃ (x−)c−∆2+dφ2(0, 1, x) ,

where x ∈ Hd−1. In general, we shall take, for reasons which shall become clear shortly,

G (p) = G0 (p) + · · · ,

G0 (λp) = λ2∆2+j−d−1G0 (p) ,
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where the dots denote sub-leading terms for p ∼ 0. The above discussion then immediately

implies that the behavior of φ2 just before the shock is given by

φ2

(
x+, x−, x

)
≃

(
x−

)∆2+j−1
g (x) + · · · ,

where x is a position in transverse space Hd−1 and where g (x) is determined uniquely by

G0(p).

We are now in a position to explicitly compute the source term T in (5.3). We first

recall the following representation of the delta-function

Γ (α) Γ (β) [(x− − iǫ)−α − (x− + iǫ)−α][(−x− − iǫ)−β − (−x− + iǫ)−β ]

=

{
−2π2δ (x−) , (α + β = 1) ,

0 , (α + β < 1) .

Writing the leading behavior of φ2 as

Γ (∆2 + j) Γ (1 − ∆2 − j)

2πi

[
(−x− − iǫ)∆2+j−1 − (−x− + iǫ)∆2+j−1

]
g (x)

and using the above representation of δ (x−) we conclude that the source function T in (5.3)

is given by

T (x) = δ
(
x−

)
T (x) ,

T (x) = (−)j−1 2πi C∆2

Γ (∆2 + j)

Γ (∆2)
g (x) .

To explicitly compute the function g (x) in terms of the weight function G0 (p), we

must simply evaluate (5.5) at (0, 1, x), with G replaced by G0. The first term in (5.5) gives

C∆2

∫
dp

(2π)d

G0 (p)

(−1 + 2p · x + iǫ)∆2

=
C∆2

i−∆2

Γ (∆2)

∫ ∞

0
dt t∆2−1

∫
dp

(2π)d
G0 (p) eit(−1+2p·x)

=
C∆2

ij−1

22∆2+j−1

Γ (1 − ∆2 − j)

Γ (∆2)
G0 (x) ,

where we abuse notation and denote with G0 (x) = (2π)−d ∫
dp eip·x G0 (p) the Fourier

transform of G0 (p). The second term in (5.5) is similarly given by

i2∆2C∆2

∫
dp

(2π)d

G0 (p)

(1 − 2p · x + iǫ)∆2
=

C∆2
i1−j

22∆2+j−1

Γ (1 − ∆2 − j)

Γ (∆2)
G0 (−x) .

Note that, in this case, the iǫ prescription is correct since G0 (p) is supported only in the past

Milne wedge −M. We finally conclude that the T -channel exchange Witten diagram 1(b)

with external wave functions φ4 and φ2, respectively as in (5.4) and (5.5), is given by (5.1)

with

T (x) = −
2π C2

∆2

22∆2+j−1

Γ (1 − ∆2)

Γ (∆2)

[
ijG0 (x) + i−jG0 (−x)

]
, (5.6)
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where recall that we are interested in x ∈ Hd−1. Denoting with A±±
1 the tree level correlator

associated to graph 1(b) when the external points are at p1, p3 and ±p2, ±p4, the same

Witten diagram can be written as

E1 = C∆1
C∆2

∫
dp

(2π)d
G (p)

(
i2∆2A+−

1 + i2∆2A−+
1 − A++

1 − i4∆2A−−
1

)
. (5.7)

It is particularly convenient to choose a weight function G (p) supported along a

straight line as shown in figure 8

G (p) =

∫ a

0
dt t2∆2+j−2 (2π)d δd (p − p̂t) , (5.8)

with p̂ ∈ −Hd−1 a unit vector. Note that the behavior of G(p) for p ∼ 0 is independent of

a, and the leading behavior G0(p) is obtained by setting a = ∞ in (5.8). We then have

G0 (x) = i2∆2+j−1 Γ (2∆2 + j − 1)

(p̂ · x + iǫ)2∆2+j−1
,

and finally, for x ∈ Hd−1,

T (x) = (−)j−1 π C∆2
N∆2

Γ (2∆2 + j − 1)
1

(2p̂ · x)2∆2+j−1
.

For this particular source the two-point function (5.1) becomes

E1 =16π2GC∆1
C∆2

N∆1
N∆2

Γ (2∆1 + j − 1) Γ (2∆2 + j − 1)×

×
∫

Hd−1

d̃x d̃y
Π(x, y)

(2q · x)2∆1+j−1 (2p̂ · y)2∆2+j−1
, (5.9)

where we recall that both q · x and p̂ · y are positive if q is in the past Milne wedge −M.

6. Relation to the dual CFT four-point function

In this section we shall express the Lorentzian four-point correlators in (5.7) in terms of

the Euclidean four-point function by means of analytic continuation. We will denote with

A±±
1 (z, z̄) the Lorentzian amplitudes corresponding to the tree level correlators A±±

1 . More

precisely, we have

A±±
1 =

i−2∆1|n13|i−2∆2|n±±

24 |
|p13|∆1 |p24|∆2

A±±
1 .

We have been careful with the exact phases and introduced, as in the discussion of the bulk

to boundary propagator in section (4), the integer numbers nij which label the Poincaré

patch, relative to point pi, containing the point pj . Note that the cross-ratios z,z̄ are

invariant under re-scalings pi → λipi with λi arbitrary, and in particular they are indepen-

dent of the choice of signs in ±p2, ±p4. This means that the functions A±±
1 (z, z̄) are given

by specific analytic continuations of the basic Euclidean four-point amplitude A1 (z, z̄).
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Figure 9: Wick rotation of z,z̄ when the external points are at p1, p3, ±p2, ±p4. On the

Euclidean principal sheet of the amplitude we have z̄ = z⋆ (initial points of the curves), while after

Wick rotating to the Lorentzian domain z, z̄ are real and negative (final points). Points A, B, C

and D refer to the detailed analysis of A++

1 in figure 10.

Without loss of generality we may fix from now on q ∈ −M. Recalling that G (p) is

non-vanishing only for p ∈ −M, we have that n13 = 0, n++
24 = 0, n−−

24 = 2, n+−
24 = n−+

24 = 1.

Therefore we can write (5.7) as

E1 = C∆1
C∆2

∫
dp

(2π)d

G (p)

(−q2)∆1 (−p2)∆2

(
A+−

1 + A−+
1 −A++

1 −A−−
1

)
,

where we recall that z, z̄ are implicitly defined by

zz̄ = q2p2 , z + z̄ = 2q · p .

In particular, choosing q = q̂ ∈ −Hd−1 of unit norm and G (p) as in (5.8), we obtain the

expression

E1 = C∆1
C∆2

∫ a

0
dt t j−2

(
A+−

1 + A−+
1 −A++

1 −A−−
1

)
, (6.1)

where now

z = −tw−1/2, z̄ = −tw1/2 , (6.2)

w1/2 + w−1/2 = −2q̂ · p̂ .

Notice that for q̂, p̂ ∈ −Hd−1 we have that −q̂ · p̂ ≥ 1 and therefore both z and z̄ are real

and negative. We now must consider more carefully the issue of the analytic continuation.

Consider a generic boundary point p, and let τ be the decompactified global time. We

have that

pd+1 = λ cos (τ) ,

p0 = λ sin (τ) .
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In particular, denoting with τ1, τ3, τ±
2 , τ±

4 the global times of the four boundary points

p1, p3, ±p2, ±p4, we clearly have that (see figure 8)

τ1 = τ+
4 = 0,

τ−
4 = π,

0 ≤ τ+
2 , τ3 ≤ π ,

−π ≤ τ−
2 ≤ 0 .

We can then consider, for each of the boundary points under consideration, the standard

Wick rotation τ → −iτ parameterized by 0 ≤ θ ≤ 1

pd+1 = λ cos
(
−iτe

iπ
2

θ
)

,

p0 = λ sin
(
−iτe

iπ
2

θ
)

,

where θ = 0 corresponds to the Euclidean regime and θ = 1 to the Minkowski setting. In

particular, given the four points p1, p3, ±p2, ±p4, we may follow the cross-ratios z (θ),

z̄ (θ) as a function of θ. The plots of z (θ), z̄ (θ) in the four cases A±±
1 are shown in figure 9.

Note that, in the Euclidean limit, we have that

z̄ (0) = (z (0))⋆ ,

as expected. On the other hand, when θ = 1, the cross-ratios z (1) , z̄ (1) are explicitly

given by (6.2). We remark that, although figure 9 has been derived with a specific choice

of p = tp̂ and q = q̂, the qualitative features of the curves are independent of the chosen p,

q. Moreover, from figure 9, we deduce that

A++
1 (z, z̄) = A©

1 (z − iǫ, z̄ − iǫ) ,

A+−
1 (z, z̄) = A1 (z − iǫ, z̄ − iǫ) ,

A−+
1 (z, z̄) = A1 (z + iǫ, z̄ + iǫ) ,

A−−
1 (z, z̄) = Aª

1 (z − iǫ, z̄ + iǫ) ,

where A©
1 (Aª

1 ) is the analytic continuation of the Euclidean amplitude A1 obtained by

keeping z̄ fixed and by transporting z clockwise (counterclockwise) around the point at

infinity. We explain the above result by concentrating on the first case of A++
1 . Consider the

black curve z (θ) in figure 9 for A++
1 . It can be deformed without crossing any singularity

to the black curve in figure 10, which is composed of three parts AB, BC and CD. The

first part AB is just the complex conjugate of the curve z̄ (θ). Therefore, at point B, we

are clearly on the principal sheet A1. The curve BC, on the other hand, rotates clockwise

around the point at ∞, moving therefore to the sheet A©
1 . Finally the last segment CD is

immaterial, since the function A1 is only singular at z = 0, 1, z̄.

In general we have that the Euclidean amplitude is real, in the sense that

A1 (z, z̄) = A1 (z̄, z) , A⋆
1 (z, z̄) = A1 (z⋆, z̄⋆) .
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Figure 10: The black curve going through points A,B,C,D is obtained from a continuous defor-

mation of the curve z(θ) in figure 9 for A++

1 . It shows the relation of A++

1 with the Euclidean

amplitude A1.

Therefore

Aª
1 (z, z̄) =

[
A©

1 (z⋆, z̄⋆)
]⋆

.

We then conclude that

A+−
1 + A−+

1 −A++
1 −A−−

1 = 4π ImM1 (z − iǫ, z̄ − iǫ) ,

where M1 is the discontinuity function of A1 defined in the introduction. Thus, the right

hand side of (6.1) is explicitly given by

4πC∆1
C∆2

∫ a

0+iǫ
dt t j−2 ImM1

(
−tw1/2,−tw−1/2

)
. (6.3)

Recall from the discussion in the previous section that the above integral is independent of

a. Therefore, the integrand is supported at t = 0, and the leading behavior of M1 is given

by

M1 (z, z̄) ≃ (−z)1−j M
( z̄

z

)
, (6.4)

with M⋆(w) = M(w⋆). Note, in particular, that the residue function M (w) must be

real in order for the integrand in (6.3) to be localized at t = 0, which follows from the

independence of the integral on the upper limit of integration a. Then (6.3) becomes

4πC∆1
C∆2

w
j−1

2 M (w)

∫ a

0
dt Im

1

t + iǫ
= −2π2C∆1

C∆2
w

j−1

2 M(w) .

The two-point function E1 is, on the other hand, given by (5.9) with q = q̂ ∈ −Hd−1. This

gives then an integral representation for M (w)

w
j−1

2 M(w) = − 8GN∆1
N∆2

Γ (2∆1 − 1 + j) Γ (2∆2 − 1 + j)×

×
∫

Hd−1

d̃xd̃y
Π(x, y)

(2q̂ · x)2∆1−1+j (2p̂ · y)2∆2−1+j
. (6.5)

where we recall that w1/2 + w−1/2 = −2q̂ · p̂. Clearly we have that

M(w) = w1−jM

(
1

w

)
.

Finally, using (6.4) and (6.5), we obtain the equivalent result (1.5) for the leading behavior

of M1 given in the introduction.
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6.1 An example in d = 2

Let us conclude this section with a simple example where we can check our result. We

shall consider the case j = 0 corresponding to massless scalar exchange in AdS. The basic

amplitude A1 is given by

C∆1
C∆2

p∆1

13 p∆2

24

A1 = −4i

∫

AdSd+1

d̃x
C 2

∆1

(−2x · p1)
∆1 (−2x · p3)

∆1
h (x) ,

where

h (x) = −32iπG

∫

AdSd+1

d̃y Π (x,y)
C 2

∆2

(−2y · p2)
∆2 (−2y · p4)

∆2

and where Π (x,y) is the massless propagator in AdSd+1. We shall concentrate, in par-

ticular, on the simple case d = ∆2 = 2, so that the scalar field dual to the operator O2 is

massless in AdS3. In this case we can use the general technique in [34] and easily compute

h (x) = − 1

(2π)2
8πG

p24 (−2x · p2) (−2x · p4)
,

where we have used C∆ = 1/ (2π) for d = 2. In terms of the standard functions

Dd
∆i

(pi) =

∫

Hd+1

d̃x
∏

i (−2x · pi)
∆i

,

reviewed in appendix A, we conclude, after Wick rotation
∫

AdSd+1

d̃x → −i

∫

Hd+1

d̃x ,

that

A1 =
8G

π
p∆1

13 p24 D2
∆1,∆1,1,1 (p1,p3,p2,p4) . (6.6)

We may also explicitly compute the integral (1.5), which controls the leading behavior

as z, z̄ → 0 of M1 = Discz A1. For ∆2 = 2, j = 0 we can use again the methods of [34] to

explicitly perform the y-integral in (1.5). We then arrive at the result

M1 ≃ −8G
Γ (2∆1 − 1)

Γ (∆1)
2

(
−q2

)∆1
(
−p2

)
D0

2∆1−1,1 (−q,−p) .

Using the explicit form of D0
2∆1−1,1 given in appendix A, we conclude that M1 ≃

−zM (z̄/z), where the function M (w) is explicitly given by

M (w) = − 4G

2∆1 − 1
wF

(
1,∆1, 2∆1

∣∣∣1 − w
)

, (6.7)

where F is the standard hypergeometric function.

Furthermore, we shall restrict our attention to the special case ∆1 = 2, where the

amplitude (6.6) can be explicitly computed [35]

A1 (z, z̄) = −8G
z2z̄2

(z̄ − z)

[
1

1 − z̄
∂ − 1

1 − z
∂̄

]
a (z, z̄) ,
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with

a (z, z̄) =
(1 − z) (1 − z̄)

(z − z̄)

[
Li2 (z) − Li2 (z̄) +

1

2
ln (zz̄) ln

(
1 − z

1 − z̄

)]

and where Li2 (z) is the dilogarithm. It is easy to check that a (z, z̄) = a
(
z−1, z̄−1

)
, so that

we quickly deduce that

Disc z a (z, z̄) = −1

2

(1 − z) (1 − z̄)

(z − z̄)
ln

(
1 − z

1 − z̄
· z̄

z

)
.

Applying to Disc z a the differential operator relating a with A1, we obtain an exact ex-

pression for the discontinuity of A1

M1 = 4G
zz̄

(z − z̄)3

[
z2 − z̄2 + ln

(
1 − z

1 − z̄
· z̄

z

)(
2zz̄ − zz̄2 − z2z̄

)]
.

For small z, z̄ the above expression simplifies to M1 ≃ −zM (z̄/z), with

M (w) = −4G
w

(1 − w)3

[
1 + 2w ln (w) − w2

]
.

This is exactly (6.7) for ∆1 = 2.

7. Shock wave in the BTZ black hole

In this final section, we will extend the previous analysis of the two-point function in the

presence of a shock to the case of the Schwarzschild BTZ black hole. Therefore, throughout

this section, we shall work in d = 2. The main interest of this calculation is to understand,

within the BTZ black hole example, how spacelike singularities and horizons can be de-

scribed in terms of CFT amplitudes. This problem was first addressed in [36], where the

BTZ geometry is conjectured to be dual to an entangled state between two copies of the

CFT located at the two disconnected BTZ boundaries, and later further explored in [19 –

23]. In particular, the main goal of [19] is to extract, from CFT correlators, information

on the physics behind the horizon, with particular emphasis on the singularity. One can

probe physics behind the horizon by studying the two-point function 〈O1(p1)O1(p3)〉 of

a boundary operator, where the boundary points are located on the two distinct BTZ

asymptotic boundaries. In the case where this operator creates a bulk scalar particle with

a large mass m1 (and therefore large conformal dimension) one may evaluate the two-point

function in the semiclassical geodesic approximation as [19]

〈O1(p1)O1(p3)〉 ≃ exp (−m1L) ,

where L is the (regularized) proper length of the spacelike geodesic which connects the

two boundary points. Such a correlator gives access to the full spacetime, including the

region behind the horizon. Extensions of these ideas in d = 5 were carried out in [20, 21].

On a different line [37], these two-point functions may also be used in the computation of

greybody factors for BTZ black holes.
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In what follows, we shall extend the results of [19] and compute the two-point function

in the presence of a shock wave along the black hole horizon. As for the pure AdS case, this

should be related to a specific kinematical regime, dominated by gravitational exchange,

of the full four-point function in the entangled thermal state of the CFT. Therefore, this

computation contains non-perturbative information about the dual CFT, which is probed,

beyond the semiclassical gravitational regime, at finite G. These results could then allow

us to study, following reasonings along the lines of [19 – 21], the physics of the singularity in

a full quantum gravity regime. We shall leave a full investigation of these issues to future

work, limiting ourselves to the computation of the shock two-point function.

As described in section 2, Anti-de Sitter space AdS3 is given by the M
2×M

2 embedding

−x2 = x+x− + xx̄ = 1 ,

where we use light cone coordinates x, x̄ on the second M
2. As is well know [17, 18], the

Schwarzschild BTZ black hole is described by the identifications

x ∼ eαx , x̄ ∼ e−αx̄ , (7.1)

where α is related to the black hole mass M by α = 2π
√

M . The region outside the

horizon, with x− > 0 and x+ < 0, can be parameterized with coordinates r, t, θ as

x± = ∓e±t
√

r2 − 1 ,

x = reθ, (7.2)

x̄ = re−θ .

with metric

ds2 = −
(
r2 − 1

)
dt2 +

dr2

r2 − 1
+ r2dθ2 .

The BTZ identification (7.1) simply amounts to the periodicity θ ∼ θ + α.

The identifications (7.1) clearly leave the surface x− = 0 invariant, and therefore we

may still construct a shock geometry along the horizon by considering the gluing condition

x+ → x+ + h (θ) ,

where, at the shock x− = 0, r = 1, we have x = eθ, x̄ = e−θ. Clearly, in order to

preserve (7.1), we must have that

h (θ + α) = h (θ) .

If we let ω be the energy of the particle creating the shock and located at θ = 0, the

function h (θ) satisfies
(

∂2

∂θ2
− 1

)
h(θ) = −16πGω

∑

n

δ (θ − αn)

with n ∈ Z, whose particular solution, satisfying the periodicity condition, is given by [30]

h(θ) = 8πGω
∑

n

e−|θ−αn| .
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In order to compute the two-point function across the shock, we must extend the

results of section 3. Indeed, in section 4 we have used the invariance under translations in

the Poincaré patch x− > 0 to place the source point p1 at the origin (0, 1, 0) of M
2. This

is clearly not general enough in the present context, since we are considering the quotient

of M
2 by a boost. We must therefore consider the more general source point

p1 =
(
−et, e−t, eθ, e−θ

)
,

where the last two entries explicitly denote the light cone coordinates on M
2. Moreover,

we must consider a source which is invariant under (7.1), so we must add all points p1 with

θ → θ + αZ. We also define the probe point p3 after the shock by

p3 =
(
et′ ,−e−t′ , eθ′ , e−θ′

)
,

where we parameterize the region with x− < 0 and x+ > 0 after the shock using (7.2) with

the only change x± = ±e±t
√

r2 − 1. We then have that

−2p1 · p3 = 2
(
cosh

(
t − t′

)
+ cosh

(
θ − θ′

))
.

Therefore, in the absence of a shock, the basic two-point function of a field of conformal

dimension ∆1 is given by [19]

〈
O1(t, θ)O1(t

′, θ′)
〉

= C∆1

∑

n

1
(
2 cosh (t − t′) + 2 cosh (θ + nα − θ′)

)∆1
. (7.3)

On the other hand, when the gluing function h (θ) is non-vanishing, we may use (4.7)

to obtain directly the two-point function. More precisely, to obtain the vector q in (4.7)

we first re-scale p1 → etp1 and p3 → et′p3 in order to rescale the p− coordinates to

±1. Then the vector q is the M
2 part of −et′p3 − etp1, which has light cone components

−(et′+θ′ + et+θ, et′−θ′ + et−θ). Summing over images of the initial source point, we then

obtain the final result

〈
O1(t, θ)O1(t

′, θ′)
〉
shock

= C∆1
N∆1

Γ (2∆1) e∆1(t+t′) ×

×
∑

n

∫
dχ

(
2et cosh (θ + αn − χ) + 2et′ cosh (θ′ − χ) + h (χ)

)2∆1
,

which extends (7.3) to the full BTZ shock geometry. We shall leave a full exploration of the

above result, including its relation to the full four-point function in the entangled thermal

state of the CFT, for future research.

8. Future work

This paper is a first step towards the understanding of the eikonal approximation in the

context of the AdS/CFT correspondence. We were able to understand the AdS eikonal

kinematical regime at tree level, relating the two-point function in the presence of a shock
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wave to the discontinuity across a kinematical branch cut of the dual CFT four-point

function associated to the Witten diagram in figure 1(b). Thus, in order to fully reconstruct

the four-point amplitude, extra information is needed: the monodromy alone is not enough.

As such, the understanding of the full eikonal re-summation is still missing and we leave it

for future study. Nonetheless, in a companion paper [16] we explore the CFT consequences

of the main result here obtained, and conjecture a possible resolution to the present problem

concerning the reconstruction of the full four-point function.

Let us then conclude with other future directions of investigation:

• All the discussion of this paper has been done for pure AdS. It is possible that the full

discussion can be generalized to AdS × compact spaces and to superspaces. This is

important for applications of our results in the specific realizations of the AdS/CFT

correspondence.

• We have considered purely field theoretic interactions, neglecting all string effects. In

flat space, on the other hand, it is known that, in the eikonal limit, the leading string

effects simply Reggeize the gravitational interaction lowering its effective spin j from

2 to 2 + α′t. Reggeized interactions can then be re-summed as usual. It would be

important to include this leading correction in the context of AdS physics, following

the work of [38, 39].

• Eikonal formulæ have an even greater range of validity in flat space, as shown in [11].

In the presence of a full string theoretic formulation of the interactions, the phase

shift becomes an operator defining an explicitly unitary eikonal S-matrix. String

effects are more than just Reggeization, but are still under control. The extension of

these results to AdS would then be the next logical step, after the previous points

have been understood.

• It is of fundamental importance to extend the results of this paper to the BTZ

geometry. In particular, one should be able to relate the two-point function computed

in section 7 to a four-point function in the BTZ background. If this program can

be carried to completion, it would yield information about thermal correlators at

finite G, which should probe spacetime, and in particular the singularity, in a truly

quantum gravity regime.

• Finally, it would be of outmost importance to test all these results against computa-

tions performed directly in the CFT duals at finite N , possibly at weak coupling.
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A. Propagators and contact n-point functions

Let x, y be two points in AdSd+1 or Hd+1, satisfying x2 = y2 = −1. Define the chordal

distance

z = −1

4
(x− y)2 =

1

2
(1 + x · y) .

The scalar propagator Π (x,y) of a scalar field of mass m, normalized to

[
¤AdSd+1

− m2
]
Π (x,y) = i δ (x,y) , (on AdSd+1) ,

[
¤Hd+1

− m2
]
Π (x,y) = − δ (x,y) , (on Hd+1) ,

is given explicitly by

Π =
1

(4π)
d+1

2

Γ (∆)Γ
(

2∆−d+1
2

)

Γ (2∆ − d + 1)

1

(−z)∆
F

(
∆,

2∆ − d + 1

2
, 2∆ − d + 1

∣∣∣∣
1

z

)
,

where ∆ is the conformal dimension of the dual boundary operator 2∆ = d+
√

d2 + 4m2. In

particular, in this paper, we shall mostly denote with Π (x,y) the Minkowskian massless

propagator in AdSd+1 and with Π (x,y) the Euclidean massive propagator on Hd−1 of

conformal dimension d − 1. They are explicitly given by

Π =
Γ

(
d+1
2

)

d (4π)
d+1

2

1

(−z)d
F

(
d,

d + 1

2
, d + 1

∣∣∣∣
1

z

)

and by

Π =
Γ

(
d+1
2

)

d(d − 1) (4π)
d−1

2

1

(−z)d−1
F

(
d − 1,

d + 1

2
, d + 1

∣∣∣∣
1

z

)
.

We also introduce the contact n-point functions

Dd
∆i

(pi) =

∫

Hd+1

d̃y
∏

i

1

(−2y · pi)
∆i

.

They are given by the integral representation

Dd
∆i

(pi) = π
d
2

Γ
(

∆−d
2

)
∏

iΓ (∆i)

∫ ∏
idti t∆i−1

i e−
1
2

P

i,j titj pij

=
π

d
2

2

Γ
(

∆−d
2

)
Γ

(
∆
2

)
∏

iΓ (∆i)

∫ ∏
idti t∆i−1

i

δ (
∑

iti − 1)
(

1
2

∑
i,j titj pij

)∆
2

,

with ∆ =
∑

i∆i and with pij = −2pi ·pj . The two-point function integral can be explicitly

computed as

Dd
∆1,∆2

(p1,p2) =
1

(
−p2

1

)∆1
2

(
−p2

2

)∆2
2

π
d
2

2

Γ
(

∆−d
2

)
Γ

(
∆
2

)

Γ (∆)
α∆2 F

(
∆2,

∆

2
,∆

∣∣∣∣ 1 − α2

)
,
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where

α +
1

α
=

−2p1 · p2
(
−p2

1

) 1
2
(
−p2

2

) 1
2

.

Moreover, as shown in [35], the four-point function D2
2,2,1,1 can be explicitly computed in

terms of standard one loop box integrals, as reviewed in section 6.1.

B. Explicit computations in Poincaré coordinates

The reader who is familiar with the calculation of correlation functions in AdS in, e.g., [5,

3, 24], will find in the present appendix a pedagogical and very explicit introduction to the

calculations of the shock two-point function performed in the bulk of the paper.

Let us recall two standard sets of coordinates in AdSd+1. We first have the usual

Poincaré coordinates (z, zµ), parameterizing the Poincaré patch x− > 0. They are defined

by

x =
(
x+, x−, xµ

)
=

1

z

(
z2 + zµzµ, 1, zµ

)
,

with the AdS metric taking the standard conformally flat form

ds2 (AdSd+1) =
dz2 + dzµdzµ

z2
.

Another useful set of coordinates, parameterizing the region xµxµ = x+x− − 1 < 0 near

the shock, is given by null coordinates (u+, u−, uµ) with uµ ∈ Hd−1, where now

x+ =
4u+

4 + u+u−
, x− =

4u−

4 + u+u−
, (B.1)

xµ =
4 − u+u−

4 + u+u−
uµ .

Here, uµ denotes a point along the transverse hyperboloid, which is parameterized in

general by d − 1 angular variables. The AdS metric now reads

ds2 (AdSd+1) = − 16du+du−

(4 + u+u−)2
+

(
4 − u+u−

4 + u+u−

)2

ds2 (Hd−1) ,

with volume form given by

ǫAdSd+1
= 8

(4 − u+u−)
d−1

(4 + u+u−)d+1
du+ du− ǫHd−1

. (B.2)

We shall mostly work in d = 2, where

u0 ± u1 = e±χ, ds2 (H1) = dχ2 , ǫH1
= dχ .

We now recall the standard computation of the AdS boundary-to-boundary two-point

function, starting with Poincaré coordinates. We parameterize points on the boundary as

always with pµ
1 , where the boundary point is given in global embedding coordinates by

p1 = (pµ
1p1µ, 1, pµ

1 ) .
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Since

−2p1·x =
1

z

(
z2 + (zµ − pµ

1 )
2
)

we obtain the usual expression for the bulk-to-boundary propagator

K (z, zµ; pµ
1 ) = C∆

(
z

z2 + (zµ − pµ
1 )

2

)∆

.

Given boundary data φ0(p
µ
1 ), the bulk scalar field value is given in terms of the propagator

by [3, 24]

φ(z, zµ) =

∫
ddp1 K (z, zµ; pµ

1 )φ0(p
µ
1 ).

Throughout the paper, the propagator K is taken to be the limit of the bulk-to-bulk

propagator Π, and its normalization differs from the standard one in the literature [5, 3]

by a factor of 2∆ − d. Therefore limz→0 z∆−dφ(z, zµ) = (2∆ − d)−1 φ0(z
µ). Moreover, the

two-point function is given by

〈O(pµ
1 )O(pµ

2 )〉 =
(2∆ − d)

∆
lim
ǫ→0

∫
ddz ǫ1−dK (ǫ, zµ; pµ

1 )
∂

∂z
K (z, zµ; pµ

2 )

∣∣∣∣
z=ǫ

,

and it follows that

〈O(p1)O(p2)〉 =
C∆

|p1 − p2|2∆
. (B.3)

Recall that [24] the coefficient (2∆ − d) /∆ arises from a careful treatment of regularization

at the boundary.

In the following we shall compute the two-point function, in the presence of the shock

wave, using null coordinates. It is then instructive to repeat the calculation above in these

coordinates. A point on the boundary with u+u− = −4 is given by

p1 =

(
− 2

u−
1

,
u−

1

2
, uµ

1

)
,

and the bulk-to-boundary propagator is now given by

C∆

(−2p · x)∆
= C∆

[
(4 + u+u−) u−

1 u−

2u+u−
(
u−

1

)2 − 8 (u−)2 − 2 (4 − u+u−) u−
1 u− u1 · u

]∆

.

Sending the point x to p2 on the boundary one obtains the two-point function in null

coordinates as

〈
O(u−

1 , uµ
1 )O(u−

2 , uµ
2 )

〉
= C∆

[
u−

1 u−
2(

u−
1 uµ

1 − u−
2 uµ

2

)2

]∆

.

In the presence of a shock the original metric in null coordinates gains an additional

term

ds2 (AdS3) +
(
du−

)2
δ
(
u−

)
h (χ) ,
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where from now on we specialize to the case d = 2 for concreteness. Recall that the function

h (χ) satisfies (
∂2

∂χ2
− 1

)
h(χ) = −16πGωδ (χ) ,

so that the particular solution satisfying limχ→±∞ h(χ) = 0 is given by

h(χ) = 8πGωe−|χ|.

We now have all the required data in order to proceed with the calculation of the two-

point function in the AdS shock wave background. The geometry is described by a metric

gmn + δgmn, where only δg−− is non-vanishing and where g−− = 0. Therefore, the volume

form is insensitive to δgmn and is given by ǫAdS3
in (B.2). One can also compute the

inverse metric, (g + δg)mn = gmn − δgmn, with single non-vanishing component δg++ =

4δ (u−) h (χ). The action for a scalar field in the AdS shock wave background is then

S[φ] = S0[φ] +
1

2

∫
ǫAdS3

(δgmn∂mφ∂nφ)

where S0[φ] is the standard AdS action for a scalar field, and the new term has support

on the shock wave alone, as it includes a delta-function restricting it to u− = 0. This new

term is what we shall call the shock wave vertex ; it is a new 2-vertex needed to compute

the two-point function in the AdS shock wave background, and it is precisely located at

the position of the shock wave. It is given explicitly by
∫

du+dχ h (χ) ∂+φ∂+φ .

One may now compute the leading correction to the two-point function (B.3) in the AdS

shock wave background. At a graphical level this is rather simple: the leading graph

includes two boundary-to-bulk propagators, which meet at the shock wave 2-vertex; the

higher order graphs includes two boundary-to-bulk propagators, and n different shock wave

2-vertices connected by n − 1 bulk-to-bulk propagators. The leading correction is simply

given by

2C2
∆

∫
du+dχ h (χ) ∂+ (−2p1·x + iǫ)−∆ ∂+ (−2p2·x + iǫ)−∆ ,

where x is given explicitly in terms of u±, uµ in ( B.1) and where the boundary points p1,p2

are explicitly given by p1 = (pµ
1p1µ, 1, pµ) and p2 = − (pµ

2p2µ, 1, pµ
2 ). Working always in

null coordinates, and using that, along the shock at u− = 0 we have

(−2p1·x + iǫ)−∆ =
i−∆

Γ (∆)

∫
ds1 s∆−1

1 eis1(u+−2u·p1) ,

(−2p2·x + iǫ)−∆ =
i−∆

Γ (∆)

∫
ds2 s∆−1

2 eis2(−u++2u·p2) ,

we obtain

2C2
∆

i−2∆

Γ (∆)2

∫
ds1ds2 s∆

1 s∆
2

∫
du+dχ h (χ) ei(s1−s2)u+

e2i(s2p2−s1p1)·u .
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Integrating in u+ we obtain 2πδ (s1 − s2) and therefore we finally get

4πC2
∆

i−2∆

Γ (∆)2

∫
ds s2∆

∫
dχ h (χ) e2is(p2−p1)·u

= −2πC∆N∆Γ (2∆ + 1)

∫
dχ

h (χ)

[2 (p2 − p1) · u]2∆+1
,

which matches exactly the result (5.1) in the bulk of the paper. In this particular two-

dimensional case one may further compute explicitly the χ integral as

8πGω

∫
dχ

e−|χ|

[−qe−χ − q̄eχ]2∆+1
,

where

q, q̄ =
(
p0
2 − p0

1

)
±

(
p1
2 − p1

1

)
.

Computing the integral one obtains the result(here F is the standard 2F1 hypergeometric

function),

−Gω
8π2C∆N∆Γ (2∆ + 1)

(∆ + 1)

[
1

(−q)2∆+1
F

(
∆ + 1, 2∆ + 1,∆ + 2

∣∣∣∣−
q̄

q

)
+

+
1

(−q̄)2∆+1
F

(
∆ + 1, 2∆ + 1,∆ + 2

∣∣∣∣−
q

q̄

)]
.

In order to proceed to higher orders in G, obtaining the exact two-point function in

the AdS shock wave background, we would need to compute graphs with an arbitrary

number of shock wave vertices. On the other hand, this immediately poses a problem in

the calculation. A general graph includes bulk to bulk propagators between the vertices

which are positioned along the shock surface. Since the geodesic distance of two points

along the shock is insensitive to the v coordinate, the naive computation of the graph

produces divergences coming from the integrations along the light cone coordinate v. This

means that, in order to compute higher order contributions to the shock wave two-point

function, one first needs to devise a suitable regularization of these graphs. In section 4

we have solved this problem using a generalization of the technique introduced by ’t Hooft

in [9].
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