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Abstract

A convex optimization controller design method is presented which minimizes the
closed-loop 712 norm, subject to constraints on the magnitude of closed-loop transfer
functions and transient responses due to specified inputs. This method uses direct
parameter optimization of the closed-loop Youla or Q-parameter where the variables
are the coefficients of a stable orthogonal basis. The basis is constructed using the
recently rediscovered Generalized Orthonormal Basis Functions (GOBF) that have
found application in system identification. It is proposed that many typical control
specifications including robustness to modeling error and gain and phase margins can
be posed with two simple constraints in the frequency and time domain. With some
approximation, this formulation allows the controller design problem to be cast as a
quadratic program.

Two example applications demonstrate the practical utility of this method for
real systems. First this method is applied to the roll axis of the EOS-AM1 spacecraft
attitude control system, with a set of performance and robustness specifications.
The constrained 72 controller simultaneously meets the specifications where previous
model-based control studies failed. Then a constrained 712 controller is designed for an
active vibration isolation system for a spaceborne optical technology demonstration
test stand. Mixed specifications are successfully incorporated into the design and the
results are verified with experimental frequency data.
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Chapter 1

Introduction

The linear controller design problem can be stated as follows: given a linear time

invariant (LTI) model of a plant, find a controller that simultaneously meets a set of

design specifications (and perhaps optimize a design metric) or determine that one

does not exist. Historically, classical control methods have played a dominant role

in practical control applications while model-based methods have been the focus of

vigorous theoretical research. However, as many engineers have discovered, achieving

a particular set of performance and robustness specifications with these methods

can often be indirect. In recent years, the advancement in computer technology

and efficient convex optimization algorithms has led to the reformulation of many

control problems into general convex optimization problems [3, 4, 5, 60]. Some of

the earliest related work is observed in the sequence of publications starting in 1964

by Fegley et. al. [6, 18, 19, 20, 44] where some control problems are shown to

have linear and quadratic programming formulations. The result is that the most

typical controller design constraints and objective can be cast as a convex optimization

problem (frequently as a simple quadratic program) which can be solved efficiently.

This ideology provides a nice foundation for developing general purpose Computer-

Aided Design (CAD) software. The aim of this thesis is to develop a new CAD tool

that extends the work of Boyd et. al. [3, 4], and Polak [60] which demonstrates

through example the practical benefits of designing linear controllers with convex

optimization algorithms.



1.1 Linear controller design overview

A brief overview and historical account of some analytic and optimization based linear

controller design approaches are now discussed to add perspective to the current

research. This overview also incorporates preliminary background material regarding

mathematical programs, convexity, and optimization.

1.1.1 Classical methods

Traditional classical methods of solving the linear control design problem adopt the

strategy of designing the loop gain, the plant and compensator serial combination

PK, and inferring the closed-loop performance. Often times the compensator is as-

sumed to have some fixed structure, such as a Proportional Integral Derivative (PID)

or lead-lag structure, with corresponding gains that can be tuned through estab-

lished rules, engineering intuition, or previous experience. Root-locus techniques,

Nyquist diagrams, Bode plots, and Nichols charts are used to design the loop gain,

analyze stability margins, and infer the closed-loop performance. This framework is

especially suited for single-input/single-output (SISO) systems. Application of the

classical methods to multiple-input/multiple-output (MIMO) systems is limited by

the interplay or cross-coupling between the input/output channels.

A typical simplified control loop diagram used for classical synthesis is shown

in Figure 1.1 where r, d, n, y, u, and e are various inputs and outputs that could

represent the reference, disturbance, noise, measurement, control, or error signals

respectively. Although there are multiple input/output locations in the typical clas-

sical closed-loop diagram, each SISO closed-loop, for example from d to e, is treated

separately. The designer must simultaneously consider the effects on all of the closed-

loop transfer functions of interest when adjusting the compensator gains. Meeting

multiple design objectives often becomes indirect and difficult because of the global

influence of each gain. Furthermore, formulating the gain selection into an optimiza-

tion problem results in a non-convex search space, as discussed in Section 1.1.3 under

controller optimization methods, and has inherent practical limitations.
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Figure 1.1: Typical classical control Figure 1.2: Traditional model-based

loop. method closed loop.

1.1.2 Traditional model-based methods

Traditional model-based approaches such as the Linear Quadratic Gaussian (LQG, or

72) or '7o focus on finding analytic solutions to certain classes of problems. These

methods generalize the notion of the plant and closed loop as shown in Figure 1.2 so

that closed loop H is a linear fractional transformation (LFT) of the plant P with

the compensator K. This leaves the map H between the signals w and z open for

minimization in terms of some metric or norm. Usually frequency weights or shaping

filters are appended to these signals, for example W, and Wz in Figure 1.2, as a

means of penalizing particular frequency bands or shaping the closed-loop response.

The optimal weighted 72 controller is found by

K = arg min JWzHW.1 2 ,K

where 11 112 is the system 2-norm. Similarly, the optimal W7. weighted controller is

found by

K = arg min IWzHW,, ,,
K

where 11- , is the system oo-norm. These problems are easily solved through two

closed-form Riccati equations or by iterating over modified single parameter Riccati

equations. The design variables are now the frequency weights or shaping filters W,

and W,., and must be adjusted until the desirable closed-loop performance is achieved.

One important advantage of this design framework is that MIMO systems are easily

handled. However picking the correct set of weights or filters to simultaneously achieve

a mixed set of design specifications is still a difficult task.



1.1.3 Parameter optimization methods

The difficulties and limitations of traditional model-based and classical methods and

the development of cheap and fast computers have motivated research in direct pa-

rameter optimization design methods. The idea is to cast the linear controller design

problem as a mathematical program of the form

min 4((w)

subject to w E 2

where ( is the objective function, w is the decision variables and Q is the feasible set.

One important preliminary notion when considering parameter optimization methods

or mathematical programs, is the nature of the feasible set and objective function.

Most important is the notion of convexity.

A set Q is said to be convex if

Ax+(1-A)y E , Vx,yE Q, and0< A< 1.

This definition says that if the two points x and y are in the convex set, then any point

on a line segment connecting x and y is also in the set as illustrated in Figure 1.3. A

function f : f -+ R is said to be convex on a convex set Q if

f(Ax + (1 - A)y) _ Af(x)+ (1- A)f(y), Vx, y E , and 0 < A < 1.

This definition says that a line connecting two points f(x) and f(y) on a convex

function lies above the function between the two points x and y as illustrated in

Figure 1.4.

A mathematical program is called convex if 4) is a convex function and Q is a con-

vex set. One nice property of a convex program is that the local optimal solution is

also the global optimal solution. Two important special cases of convex mathematical

programs are the linear and convex quadratic programs. In these special cases, the

constraints that define the feasible set, also referred to as the constraint set, are linear

scalar inequalities of the decision variables, while the objective function is either a

linear or quadratic (positive definite) function of the decision variables respectively.



Xf(x)+(1- X)f(y)

Figure 1.3: Convex set Q. Figure 1.4: Convex function f.

Celebrated optimization algorithms used to solve the linear program are the Simplex

Method [27] and the more recently developed interior point methods (for a survey

of interior point methods see [22]). Reliable optimization algorithms to solve the

quadratic program are readily available and described in [24]. More recent develop-

ments in convex mathematical problems write the constraint set in terms of Linear

Matrix Inequalities (LMI) [5] in which interior-point optimization methods have been

developed to solve [51].

Non-convex optimization problems describe a class of problems where the objec-

tive function and feasible set can be non-convex and even disconnected. In this case

the nature of the objective function, feasible set, and the existence of local minimum

can make these optimization problems NP-hard (A problem is NP-hard if solving it

in polynomial time would make it possible to solve all other problems in the class of

nondeterministic polynomial time problems in polynomial time).

The purpose of this section is to examine some of the proposed parameter opti-

mization methods, and analyze their objective function and feasible set in terms of

convexity and numerical tractability. The parameter optimization methods are cat-

egorized into three classes determined by the design variable that is parameterized.

The three most common choices are the compensator K, the closed loop H, or the

Youla-Parameter Q. Similar survey discussions can be found in the work of Boyd et.

al. [3, 4] and Polak [59].



Controller optimization methods

Possibly the most direct parameter optimization approach is to parameterize the com-

pensator itself. This gives the designer maximum control over the compensator order

and structure. In the work of Polak and Stimler [62], Davison and Ferguson [12],

Ly et. al. [42] and Jacques and Ridgely [36], optimization-based design methods are

derived where the compensator is parameterized directly. For example, one possi-

ble parameterization for a discrete compensator could represent a partial fraction

expansion
N bok + blk Z-1

K(z) , 1 + az - 1 + a2k - 2 '

where the decision variables would be the coefficients bol, b02 , ... , a2N. Similarly, the

compensator state-space could be parameterized in minimum-realization modal form

as suggested in [42].

Now consider constraining a particular closed-loop transfer functions assuming a

plant of the form,
P11 P12

P21 P22

with inputs w and u and outputs z and y as shown in Figure 1.2. The compensator

appears in the closed loop in a linear fractional way

H = P11 + P12K(I - P22K)-'P21,

or in shorthand H = 7j(P, K). Hence a mathematical program constraining the set

closed-loops would be,

(P1) min 4(K)
KEICK

K = {K I P11 + P12K(I - P22K)-1P21 E CH}

where H is the closed-loop constraint set, IK is set of compensators that produce

closed loops inside the constraint set, and K is the compensator, parameterized in

a finite dimensional space. Because of the linear fractional dependence of the closed

loop on the compensator, convex constraints on the closed loop in general do not

result in convex constraints on the compensator [4]. Figure 1.5 gives a graphical



Constraint Set on K Constraint Set on H

KK KH

LFr-

K-Space H-Space

Figure 1.5: Nonconvex, disconnected constraint set in controller optimization.

interpretation of a possible constraint set on the compensator resulting from convex

constraints on the closed loop. It is not hard to imagine why constrained optimization

problems of this form quickly become numerically intractable. Never the less, some

CAD software exists to solve the linear controller design problem with controller

optimization formulations (it may be more relevant to solve the control problem this

way for some systems). One example is the SANDY code of Ly [42]. There are many

examples where these methods have been applied to controller design problems and

compared to other parameter optimization methods. See for example [2, 37, 41, 47,

67, 69, 70].

Closed-loop optimization methods

Another class of linear controller design problems treat the closed loop H as the design

variable. Now a convex constraint set ICH of the closed loop avoids the complicated

LFT map because the constraints and the design variable H are in the same space.

Switching the design variable to the closed loop does not come free and requires ad-

ditional interpolation conditions to ensure that closed loops in the constraint set are

also achievable by some stabilizing compensator. The interpolation conditions ap-

pear as additional linear scalar equality constraint in a mathematical problem [9]. In

general, the interpolation conditions may result in an infinite number of equality con-

straints. Figure 1.6 illustrates the convex intersection of the constraint set and set of



closed loops

H-space

Figure 1.6: Intersection of convex constraint set and set of achievable closed loops in
closed-loop optimization.

achievable closed loops. The mathematical program associated with this formulation
is

(P2) min 4(H),
HEICHiti

where KfH is the closed-loop constraint set and 7- is the set of achievable closed loops.

ICH f w is an infinite dimensional space which is usually parameterized in a finite
number of dimensions.

Closed-loop optimization methods are proposed by Dahleh [9, 10] to solve the lI
control problem, Elia to solve multi-objective control problems [16] and by McGov-
ern [45] to solve the constrained 11 and -W2 problems. McGovern applied his method

successfully to a real hardware system in [46]. The advantage of this method is that
the constraints and the design variables are in the same space so the designer has max-
imum insight into picking a good finite dimensional approximation for H. One disad-
vantage of this method is that once a desirable closed loop is found, finding the com-
pensator that achieves it relies on an inverse map through the Youla-Parameterization

(described in the Q-parameter optimization methods section) , which could be nu-

merically ill-conditioned. Furthermore, the addition of interpolation constraints adds
complexity to the optimization problem, especially for multiblock problems [14].



Q-parameter optimization methods

The Q-parameter optimization method exploits the Youla or Q-parameterization of

the close loop, eliminating the need for interpolation conditions. The Q-parameterization

is an affine parameterization of the set of closed loops achievable with stabilizing com-

pensators,

H = {T + T2QT3 I Q stable},

where T 1, T2 , and T3 are stable systems that are derived from the plant and Q is

any stable realizable system. This parameterization was first recognized by Youla et.

al. [71, 72] in 1976 and further developed in the 80's; see for example Desoer et. al. [13],

Pernebo [57, 58], Nett et. al. [52], Doyle [15], Francis [21], and Vidyasagar [66]. With

this formulation, a convex closed-loop constraint set is mapped to convex constraints

on Q as illustrated in Figure 1.7. An important result of this parameterization is that

every stabilizing compensator is related to Q through a bilinear map. Unfortunately

general constraints on the compensator will result in non-convex constraints on Q.

The mathematical program associated with this formulation is

(P3) min 4(Q)
QECQ

IQ, = { QI T + T2QT3 E H}

D(Q) = '(T + T2QT3),

where IC is the closed-loop constraint set, KCQ is the set of Qs that produce closed-

loops inside the constraint set, I) is the same objective function as in P2, and Q is

the infinite dimensional design variable to be approximated with a finite dimensional

parameterization.

Q-parameter optimization methods of design are proposed by Gustafson and Des-

oer [25, 26], Hu and Loewen [30], Boyd et. al.[3, 4] and Polak and Salcudean [60].

In the work of Gustafson and Desoer and Hu and Loewen, convexity is sacrificed by

assuming a general parameterization of Q where the design variables describe the loca-

tion of the poles and zeros of Q. The CAD tool DELIGHT.MIMO [61] was developed
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Figure 1.7: Convex constraint set in Q-parameter optimization.

based on the non-convex formulation of Gustafson and Desoer while Hu and Loewen

demonstrate their method using the MATLAB's Optimization Toolbox. By sac-

rificing convexity, the designer has maximum control over the order and structure

of Q and the resulting compensator. However in general, non-convex mathematical

programs can quickly become intractable.

The approach proposed by Boyd et. al. and Polak uses a fixed denominator

series expansion model to parameterize Q which preserves the convexity between the

Q-space and the parameter space defined by the decision variables. For example,

assuming a SISO Q, a finite dimensional approximation of Q would have the form

N-1

Q(z) E F (z)0,,
n=O

where Fn(z) are some fixed denominator stable maps also known as basis functions,

N is the total number of basis functions and the Os are the decision variables. For

sufficiently large N this provides a good approximation for the space of Q but also

results in high order compensators. Of course the choice of basis plays a significant

role in approximating Q(z) with small N. Typically Q(z) is approximated with a

Finite Impulse Response (FIR) basis. The CAD tool QDES [4] was developed based

on this methodology and controllers designed with QDES have been demonstrated

on a real hardware system [56]. Often times the resulting compensators are reduced

using model reduction methods [48] before implementation.



1.2 Scope and Contribution

The goal of this thesis is to examine the impact of Q-parameterization optimization

methods on practical control problems. The aim is to bridge the gap between theory

and practice by developing a methodology that is accessible to the practicing design

engineer. The method proposed in this work attempts to boost productivity by

simplifying the problem formulation and user interface while employing proven and

efficient optimization algorithms. Exploring more advanced formulations, for example

using LMI's, which require more sophisticated optimization algorithms such as semi-

definite programming is outside the scope of this work.

The main contribution of this thesis is a reduction in the control system design

cycle time. The design cycle time is reduced by combining an easy to use problem

specification interface with an efficient problem solution methodology. A more natural

expression of many design specifications is proposed using two types of constraints in

the frequency and time domain that are easily placed with the aid of a Graphical User

Interface tool. The efficiency of the problem solution is increased by approximating

the optimization problem with an easily solved quadratic program with a minimum

number of basis functions (that are found through an ad hoc method developed in

this work). A significant factor in realizing this contribution was incorporating the

newly rediscovered Generalized Orthonormal Basis Functions (GOBF) into the Q

approximation. The GOBF have mostly been studied for system identification appli-

cations, however this work proposes that the GOBF are useful in the design problem

as well. An ad hoc method for selecting the GOBF poles is proposed which is shown

to produce lower order compensators while further improving the speed of finding

an acceptable solution. This work demonstrates that Q-parameterization optimiza-

tion methods are applicable to a variety of real controller design problems such as

precision pointing attitude control of a flexible spacecraft or vibration isolation of a

flexible space structure.



1.3 Organization

This thesis is organized into eight chapters as shown in Figure 1.8. The second through

fourth chapters presents the developmental material for the constrained W-2 design

methodology. In Chapter 2, the Youla parameterization of the closed loop is presented

and the 72 objective function and closed-loop specifications in the frequency and time

domains are formulated. Chapter 3 discusses how to build a good model for design and

constrain it to achieve robustness to modeling uncertainty, compensator roll-off, loop

gain roll-off, and gain and phase margins. Finally, Chapter 4 presents the Generalized

Orthonormal Basis Functions (GOBF) that are used to approximate Q. Chapter 5

gives a brief overview of the Graphical User Interface (GUI) panels developed under

subcontract for the Structural Control Toolbox (SCTB) [32] to illustrate how this

methodology can be used in a general purpose linear controller design tool. Chapters

6 and 7 present real control applications where the constrained 712 method was used

effectively. The GUI panels described in Chapter 5 were used to design the controllers

in these chapters. Finally the conclusions and recommendations for future work are

presented in Chapter 8.
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Chapter 2

Constrained '-12 Design

There are many variations to the constrained optimization problem that combine a

particular objective function with a variety of meaningful constraint sets. In [4], the

W2 , oo, and 11 objectives are considered with constraints such as asymptotic tracking,

decoupling, and regulation; overshoot, undershoot, and settling-time limits; bounds

on closed-loop signal peaks; bounds on transfer function peak magnitudes; classical

single-loop gain/phase margin (M-circle) constraints; and other miscellaneous bounds.

Further variations on the constrained optimization design theme include methods

that systematically incorporate a nominal controller into the formulation, which is

necessary if the plant is unstable. The following discussion explores the marriage

of the 7t2 (or LQG) design methodology and objective with two simple types of

constraints in the frequency and time domain.

A constrained optimization method based on a nominal WH2 design is appealing

for several reasons:

* The WU2 objective function is easily constructed as a quadratic function of the

free parameters.

* A state space model for the Youla parameterization can be directly obtained

from the controller and filter gains of a LQG design.

* An l12 design guarantees nominal stability of the plant given that the 72 design

assumptions are met.



* Much research has been invested in designing 7-2 or LQG controllers.

The question often arises whether W'2 optimization is the best approach to use

if some nominally stabilizing controller already exists that exhibits marginal perfor-

mance. The concern is that the constrained 7-2 formulation would start from scratch

rather than exploit the good qualities of the nominal controller. The constrained

augmentation method is developed in this chapter to deal with this issue.

To some extent, the objective function is less important than meeting a set of

design constraints. A typical list of design specifications are usually constraints on

the closed-loop and the compensator. Rarely are the specifications concerned with

minimizing a closed-loop objective. Most design specifications are based on two simple

types of constraints:

1. Time Domain. Constraints on the transient response z(t) to a specified com-

mand or disturbance to remain within an envelope, i.e.,

Zmin(t) < z(t) Zmax (t) for a given w(t)

2. Frequency Domain. Constraints on the closed-loop gain at a particular fre-

quency, i.e.,

IH(w)I < 7(w)

For example, frequency-domain constraints can be used directly or through small

gains arguments for loop shaping, gain and phase margin constraints, and robustness

to modeling uncertainty.

This chapter develops a powerful convex optimization controller design method to

minimize the closed-loop 12 norm, subject to frequency and time domain constraints

on the closed-loop system. Explicit equations are derived for the objective function

and constraints. In addition, formulations for the controller augmentation design,

quadratic frequency domain constraints, peak-to-peak constraints and A phase con-

straints are included at the end of this chapter.



Figure 2.1: Youla Parameterization.

2.1 Youla Parameterization

The Youla parameterization of a closed-loop system is shown in Figure 2.1, where

the closed-loop system H(z) = .7e(P, K) is a nz x n, system and K = Y(Ks, Q) is

a nu x n, compensator. Furthermore, K, is a stabilizing controller with an observer-

based state-space realization and Q is realizable and stable [43].

Typically, K, is derived from an observer based formulation where the output e is

the measurement residual, and the input v is added to the actuator command signal.

A well known result of observer theory is that the closed-loop transfer function from

v to e is zero. Because of this fact, an affine representation of all achievable H is:

H = {T + T2QT 3 IQ stable}.

where T 1, T2 and T3 are stable systems with sizes n, x nw, nz x nu, and ny x n, [72].

This powerful parameterization represents all stabilizing controllers as K = e(K,, Q)

for some stable Q.



2.1.1 State-Space Model of the Youla Parameterization

State-space representations for K, and T are found in [3, 11, 43] and their derivations

are reviewed here for completeness. Consider the plant:

P x[k] w[k] u[k]

x[k + 1] A B1 B2

z[k] C, Dll D21

y [k] C2 D21 D 22

Figure 2.2 shows the structure of every linear, realizable, stabilizing compensator

K for plant P. The blocks connected by the solid line show the familiar model-

based controller structure of K, where F and H are the controller and filter gains

respectively. When solving the discrete 7-2 control problem, these gains are computed

from the solutionI of two algebraic Riccati equations [73]. In Figure 2.2, the Youla

parameter Q(z) is a proper and stable system with realization (Aq, Bq, C,, Dq).

A derivation of K, is obtained directly from Figure 2.2 by adding the input v

to the actuator command signal before the observer tap and tapping the output

measurement residual to obtain e,

u[k] = Fi[k] + v[k],

e[k] = y[k] - C2 4 [k] - D 22u[k].

In addition, a modification to the state estimate equation is needed to include the

contribution of the signal v,

1[k + 1] = (A + B2F + HC2 + HD22F):[k] - Hy[k] + (B2 + HD 22)v[k].

Combining these three equations, the state-space representation for K, immediately

follows,

K ,  x[k] y[k) v[k]

x[k+l] A+B 2F + HC2 + HD22F -H B 2 + HD22

u[k] F 0 I

e[k] -(C2 + D22F) I -D22

1With the following assumptions: i) (A, B2 , C2) must be stabilizable and detectable ii) Dll must

be zero iii) D12 and D T2 must have full column rank
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Figure 2.2: All stabilizing compensators.

A realization for T is obtained by algebraically eliminating u and y in a lower linear

fractional transformation of P and K,,

T x[k] ,[k] w[k] v[k]

x[k +1] A + B2F -B 2F B1 B2

i[k + 1] 0 A+HC2 B 1 + HD21  0

z[k] C1 + D 12F -D 12F Dll D12

e[k] 0 C2  D21 0

where = x - &. Notice that the state estimate error , is uncontrollable from v

while the state x is unobservable from the measurement residual e, hence the transfer

function from v to e is zero. Figure 2.3 shows the interconnection between T and Q

where the transfer function matrix T is a two by two matrix of the form,

T= .
ST3 T 4

The closed loop from w to z is simply H(z) = .Fe(T, Q),

H(z) = T1 + T2Q(I - T4Q 1T3.

Because the map from v to e (T4) is zero, H(z) is affine in Q,

H(z) = T1 + T2QT 3
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Figure 2.3: T and Q interconnection.

with,

([A + B 2F -B 2F B 1
T = A+H 2  ' B+HD2 1  , [C 1 +D 12F -D12F], D1 )

0 A + HC2 B1 + HD21

T2 = (A+B 2F, B 2 C, 1 + D 12F, D1 2 )

T3 = (A+ HC2, B + HD21, C2, D21)

2.1.2 Parameterization of Q(z)

An infinite-dimensional affine representation of Q(z) is given by:

nu ny oo

Q(z) = E E E,,F,(z) pqn
p=l q=1 n=O

where the Epq's are n, x ny matrices with the (p, q) entry 1 and all other entries zero,

{F,(z)} is a complete sequence of basis transfer functions, and the Opqn's are the free

coefficients. A set of basis functions {Fn(z)} is complete if it spans the space of all

stable realizable transfer functions, and is orthonormal if ECo fi[k]fj[k] = Jij, where

f,[k] is the impulse response of Fn(z) and 6ij is the Kronecker delta function.

The above infinite-dimensional representation of Q(z) is approximated by the

following finite-dimensional representation for optimization:

nu ny N-1

Q(z) E E EpqFn(z) pqn
p=1 q=1 n=O

where N is the total number of basis functions. The basis functions have less impact

on the approximation as n increases, hence good approximations can be achieved with

sufficiently large N.



The FIR, Laguerre, and Kautz basis functions are examples of commonly used

orthonormal basis functions, and have all been generalized by the following basis

function model [54]:

( J~nJ2 
n-1

z - G k=0 -k

This construction allows for arbitrary placement of poles within the unit circle, rather

than restricting pole placement to a single location as is the case with the FIR,

Laguerre, and Kautz models. In [34], these functions are referred to as the Generalized

Orthonormal Basis Functions (GOBF). The GOBF are discussed in Chapter 4 and

explicit state-space realizations are provided.

2.2 7-2 Performance Objective

One of the most commonly used objective function in model-based control is the

system 7t2 norm. The 7-2 norm of a MIMO system is defined as

I|H(z) 112 (Tr- J H(ew)H")(e)*dw1/2

This system norm can be interpreted as the root mean squared value of the system

output given a white Gaussian input. By Parseval's theorem, the 12 norm squared

is approximately
nz nw L

i=1 j=1 k=O

where h[k] is the closed-loop impulse response and L is a finite but large number of

time steps. The 7W2 norm of the closed loop is constructed from the Youla parame-

terization in terms of the closed loop impulse response:

nu ny N-1

hij[k] = ti,ij [k] + Ez t2,ip * fpq * t3,qj [k]
=1 q=1 n=O

where f, is the basis function impulse response for Q, tl,ij, t2 ,ij, and t3,ij are the

impulse responses of the (i, j) entries of T 1, T2, and T3 respectively, and N is a finite



number of basis functions. The 7W-2 suboptimal objective can now be written as a

quadratic function of qpq (a vectorization of ,pqn):

nu nly

minimize + gT
p=1 q=1

where

nz n,

Mp mipqj
i=1 j=1

nz nw

gpq = 2t jmipqj
i=1 j=1

mipqj = t2,ip * t3,qj * [ f1 "'... fN-1

2.3 Closed-loop Specifications

2.3.1 Time-Domain Constraints

Specifications on the transient response of a system due to a specified input can

be posed as a set of linear scalar constraints on Q. Consider a MIMO closed-loop

transfer function H(z) in which a SISO transfer function Hij(z) is to be constrained.

The output zij due to a specific disturbance wj is found by the convolution zij[k] =

(hij * wj)[k], where hij[k] is the impulse response of Hij(z). A constraint on the

transient response gl,ij[k] _ zij[k] _ gu,ij[k] can be written as

nu ny

E E(wj * mipqj)[k]pq (gii.j - j tj)[k]
p=l q=1

flu ny

Z Z-(w * mipqj)[k]pq !5 (gu,i - wj *tl,ij)[k]
p=l q=1

where gl[k] and gu[k] are the lower and upper bounds of z[k]. This set of constraints

is simply the linear inequality Atime 5 btime, where q is a vectorization of the Opq

vectors.



2.3.2 Frequency-Domain Constraints

Consider the magnitude bound on the frequency response of a SISO transfer function

in the MIMO system H(z):

with
n, ny N-1

H 3(z) = Tji + EEE T2,ipFqpqnT3,qj.
p=1 q=1 n=O

This constraint is equivalent to

R[Hij(w)]cosO + Q[Hij(w)] sinO < 'ij VO E [0,27r).

In [9], a magnitude constraint in this form is approximated by a finite number of

linear constraints on the real and imaginary parts of Hij(w) by only considering a

discrete number of angles 0 n,N evenly spaced between 0 and 2r,

7 2nr
R[Hij(w)]cos n,N+[Hij(w)] sin0 ,,N < Yij cos where On, = N ,n= 1, ... , N.

N N

The approximate constraint is easily visualized on a Nyquist plot of the constrained

transfer function Hij(z). Figure 2.4 shows the exact constraint on the magnitude of

Hij(z). The approximation shown in Figure 2.5 corresponds to picking 8 discrete lin-

early spaced angles between 0 and 27r. Hence, in this example, 8 linear constraints are

used to approximate a single frequency-domain constraint at a particular frequency.

This approximation has the property that the intersection of the linear constraints

are contained within the exact constraint set. Define the compact set

S-_ {Hij(w) I Hij(w)j yjj(w)},

and the halfspace

2o,, - {Hij(w) I R[Hij(w)] cos 0,N + ![Hij(w)] sin On,N <5 y ijcos N

Then the intersection of the halfspace is contained inside Q

N

n Qo.,N CQ
n-1



Re

Figure 2.4: Exact magnitude con-

straint on H(w).

Figure 2.5: Approximate magnitude

constraint on H(w) with 8 linear con-

straints.

as seen in Figure 2.5 for N = 8. It is easy to show that in the limit as N -+ oo

N

lim n o,,N -+ .
n=l

The approximate magnitude constraint translates to a finite number of linear

scalar constraints on q:

1 E(R[Sipqj(w)] cos On,N + .[Sipqj()] sin On,N)pq < Lij(w)
p=l q=1

where

Sipqj(w) = T2 ,ip(W)[ F0 (w) ... FN-1(W) ]T3,qj(W)

and

Lij(w) = 7ij(w) cos - R[T,ij (w)] cos n,N - .,[Tij (w)] sin On,N.

This is simply the linear inequality Afreq¢ 5 bfreq, where q is a vectorization of the

,pq vectors.



2.4 Additional Topics

This section discusses alternate approaches to the constrained optimization problem.

These topics represent ongoing ideas for further research, and will not be used in the

examples.

2.4.1 Constrained Augmentation Design

In some cases an augmentation to an existing controller is preferred over a complete

redesign. An example of this is a controller that operates in two modes where one is

a low performance classical control mode and the other is a high performance aug-

mented classical mode. For this case, the augmentation would simply provide the

necessary correction to the nominal controller to meet the design specifications. A

constrained augmentation approach is developed in this section so that augmenta-

tions to existing nominally stabilizing compensators can be designed with the convex

optimization framework.

The constrained augmentation design method is similar to the constrained 7-2

design method in that they both begin with a baseline stabilizing controller that is

augmented with a stable Q parameter to satisfy some constraints set. The constrained

augmentation approach departs from the traditional assumption that the baseline

controller is observer based and exploits the Youla parameterization such that any

stabilizing controller can be used. It is proposed that the objective function for the

constrained augmentation method is constructed in a way that penalizes modifications

to the baseline controller so that the desirable qualities of the baseline controller are

preserved.

Modification to the Youla Parameterization

Frequently in control system development, a nominal controller has been designed

which stabilizes the plant and achieves a modest level of performance or robustness.

By exploiting the Youla parameterization, the nominal controller can be used as a

starting point for an augmented control design. If the nominal controller is observer
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Figure 2.6: Nominal closed-loop system.

based (e.g., developed using LQG or Woo Riccati formulations), then the Youla pa-

rameterization is simple as described in Section 2.1. On the other hand, if the nominal

controller is not observer based, a Youla Parameterization can still be constructed as

follows. Given the open loop plant:

z1 P11 P12
y P21 P22  U

add a modified control input to the actuator signal, and close the loop with the

nominal controller, as shown in Figure 2.6. Then this "nominal" closed-loop can be

written as

z T11 T12 

yi T 21 T 22  Umod

where

T-1 = P1 1 + P12Knom(I- P22)-1P21

T12 = P 2 + P12Knom(I - P22Knom)- 1P22

T2 = (I - P22Knom)- 1 P21

T22 = (I - P 22Knom) P22.

Because this new system is stable, an observer-based Youla parameterization can

be constructed where the observer and state feedback gains are zero matrices (the

feedback gains are no longer needed to stabilize the system). Defining this "sta-

bilizing" controller with zero gain to be K,mod, the augmented controller is then



K = Knom + e(Ks,mod, Q). In this case, it can be shown that the Youla Parameteri-

zation reduces to:

H(z) = T11 + T12QT 21

Q Minimization Performance Objective

It is not clear which objective function is best for constrained augmentation design.

It is assumed that the designer has a good nominal controller and desires to modify

it slightly while preserving its good qualities. In this case, it makes sense to penalize

modifications to the nominal controller. Minimizing the unweighted 72 norm of Q

is one naive but simple way of implementing this strategy. That way, in the limit

as IIQ(z)l1 goes to zero, the augmented controller converges to the original nominal

controller. If the selected set of basis functions are orthonormal, the 712 norm of Q(z)

is found by
n, ny N-1

IIQ(z)ll = Z Z
i=1 j=1 k=O

The 7-2 suboptimal Q objective can now be written:

minimize T

where q is a vectorization of Oi j k-

Design Specifications

The frequency and time-domain constraints are unchanged by the constrained aug-

mentation design method.

2.4.2 Quadratic Frequency Domain Constraints

Some designers may prefer to write frequency-domain constraints exactly instead

of using the approximation presented in Section 2.3.2. This section shows that a

frequency-domain constraint can be written exactly as one quadratic constraint. The

advantages of representation over the linear approximation are obvious: (1) it is



exact, (2) each frequency constraint can be represented by a single quadratic con-

straint. However, it is unclear whether one quadratic constraint will perform better

than N approximate linear constraints in the optimization algorithm. MINOS uses

a projected augmented Lagrangian algorithm [24] to solve problems with nonlinear

constraints. MINOS becomes more efficient solving nonlinear constrained problems if

the gradient 2 of the constraint equations are provided, otherwise they are computed

numerically at additional computational cost. For this reason, both the quadratic

constraints and the gradients are provided in this section.

The frequency-domain constraint, JHij(w)l 7ij(w) is most naturally written as

a single quadratic constraint. Define the scalar values a and /,

a Re[Hij(w)]

P Im[Hij(w)].

Then the exact frequency-domain constraint shown in Figure 2.4 is,

a+2 + 2 < 2.

This constraint translates to a quadratic constraint on € by the following procedure.

nu ny N-1

a = Re [TI,ij(w)] + Re E T2,ip(w)Fn(w)T3,qj(w) Opqn
[p=1 q=1 n=O

nl ny N-1

3 = Im [T1,ij(w)] + Im E E j T2,ip (w)Fn (w)T3,qj (w) pqn
p=1 q=1 n=0

or in vector notation,

a = b +A A

S= bp +

where [1,1,0o 1,1,1 ... on,ny,N-1 ]T and

ba = Re [T,j (w)]

An - Re[(W T2,ip(wFn 3(wT,qj ) T

bo ' Im [T,ij(w)]

A Im [ ... T2,ip(w)Fn (w)T3,qj(w) . ]T

2 The gradients are used to construct the Jacobian matrix.



Now the quadratic constraint on 0 can be written,

T ( T + A3A T o +2T +2
(AA, + ApA ) + 2¢T(AabQ + Apb,) + be + bo < '2

and the gradient d( + 0 2) is easily computed by,

(a2 2) = 2ATa + 2AP.

Experience using quadratic constraints in the constrained 7i 2 problem is limited.

In the few examples that quadratic constraints were tried, MINOS was less robust in

terms of finding an initial feasible solution than when solving the problem with the

linear approximation constraints.

2.4.3 Peak-to-Peak Constraints

Peak-to-peak constraints on transient responses due to specified inputs are a compact

way to write some time-domain specifications. A more attractive application of these

constraints is the potential for optimizing the peak-to-peak value. For example, a

specification that wishes to minimize the excursion of a state from the origin, as in

a disturbance rejection or tracking error problem, would be easily posed as a peak-

to-peak constraint, where the constraint value is actually included in the objective

function for minimization.

A peak-to-peak constraint on the transient response to a fixed input as shown

in Figure 2.7 is easily formulated with the addition of two variables 7, and 71. The

response zij and the variables are constrained in the following way:

zij < Yu

zij > 'Yi

N- Y1 < 7pk,

where zij[k] = (hij * wj)[k] and Ypk is the peak-to-peak constraint value which can

be fixed or a variable. To implement this in the optimization problem, the first two

inequalities are treated like time-domain constraints with the exception that y, and



Figure 2.7: Peak to peak constraint.

-y are decision variables like 0 instead of constants but are not represented in the

objective function. The last inequality is in the correct form for the optimization

problem. It is up to the designer to determine whether 7pk is best defined as a fixed

value or a variable that is included in the objective function.

2.4.4 A Phase Constraints

A constraint on the phase change between two frequencies is one way to increase

damping in a closed-loop mode. The phase change of a lightly damped mode is much

more dramatic in the neighborhood of the resonance frequency than in a damped

mode. This is illustrated in Figure 2.8 where two modes with a natural frequency of

0.796 Hz but with different damping ratios are plotted. The lightly damped mode has

a damping ratio of 0.02 and experiences nearly 1800 of phase lag between 0.5 and 2

Hz, while the damped mode with damping ratio 0.6038 only experiences roughly 980

of phase lag. Hence, constraining the phase lag between two frequencies can be used

as a mechanism for constraining the damping. These constraints were motivated as

a method to eliminate the spiking effect described later in Section 7.4 and shown in

Figure 7.11, where mismatched lightly damped poles and zeros cause large gain and

phase changes in the closed-loop.
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Figure 2.8: Phase change in lightly damped mode compared to damped mode.

The phase change between two frequency points can be written as a quadratic

constraint by exploiting the fact that [8],

arg = argz - argz2,

where z E C and argz = tan-1(Im{z}/Re{z}). The change in phase of a closed-loop

transfer function Hij(z) between two frequency points is equivalently written,

AO = 01 -2 = Hij(
Hij (W2)

where 0 = LHij(w), Hij(w) = a + iP, and a and 0 assume the same definitions as in

Section 2.4.2. After some algebra an inequality constraint can be written,

AO = tan- 1 a,2,- a0f 1 <
1aa2 + /102 -

where 7 is the constraint on the change of phase. Finally, the constraint is written,

(al02 - a 2 1) - (ala2 + 012) tan y < 0,

where a and / are affine in q, hence the constraint is quadratic in q.

n
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Chapter 3

Design Model and Linear

Controller Design Specifications

This chapter discusses the construction of the design model and formulates some

typical linear controller design specifications that are easily incorporated into the

constrained optimization approach. The specifications in this chapter are formulated

in terms of magnitude bounds on closed-loop transfer functions over a frequency band

(see Section 2.3.2). The main theme of this chapter is to demonstrate how to combine

ideas from robust control with constraints in the frequency domain to construct useful

design specifications.

3.1 The Design Model

A design model, shown in Figure 3.1, is a model that includes the plant with its control

input u and measurement y, and any additional input and output channels 1 denoted

by w and z respectively that are useful in the design problem. The input/output chan-

nels w and z are the signals available to the designer for constraining, optimizing, or

both. The closed-loop H is constructed through a lower linear fraction transformation

(LFT) of the design model with the compensator as shown in Figure 3.2.

The system H should contain every closed-loop transfer function that the designer

0Often referred to as exogenous inputs and regulated outputs.
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Figure 3.1: Design model. Figure 3.2: Lower linear fractional

transformation.

wishes to constrain or optimize. The idea is to add the appropriate inputs and outputs

to the design model so that the closed-loop transfer functions of interest appear in

H. These inputs and outputs can be interpreted as being physical signals injected

or tapped from the system, fictitious signals injected or tapped from the system, or

uncertainty applied to the signal path or about the plant or compensator.

Often times, the same closed-loop transfer function can be derived by adding

inputs and outputs with different interpretations. As an example, consider the closed-

loop disturbance rejection problem shown in Figure 3.3 where d is the disturbance, n

is the sensor noise, e is the regulator error and u is the control. This figure illustrates

the internal structure of the design model where the signal paths are motivated by

the physical interpretation of each input or output. The LFT of this design model

with K leads to the following closed-loop transfer function H from w to z,
PK K

H = 1-PK 1-PK

P PK
1-PK 1-PK

where w = [d n]T and z = [u e]T, and d, n, u, and e are scalar signals.

An equivalent design model can be obtained by applying multiplicative uncertain-

ties at the plant input and output as shown in Figure 3.4. The closed-loop transfer

function resulting from a LFT of this model with K is also described by H above

with w = [wl w2 ]T and z = [ z z2 ]T. The closed loop contains the same SISO

transfer functions as in the physically motivated design model.
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Figure 3.3: Disturbance rejection block diagram.

Figure 3.4: Equivalent disturbance rejection block diagram.



Some design specifications follow directly from the input/output pairs of the phys-

ically motivated design model while others are better understood by studying an as-

sociated uncertainty. For example, to attenuate sinusoidal disturbances at a certain

frequency, the transfer function from d to e or P/(1 - PK) would be constrained

in the frequency domain. Likewise, to avoid actuator saturation in the presence of

a specified disturbance, time-domain constraints would be placed on the transient

response of the transfer function from d to u or PK/(1 - PK). These specifications

are derived directly from the physical system. Alternatively, specifications such as ro-

bustness to modeling uncertainty, compensator and loop gain roll-off and gain/phase

margin constraints are more easily derived from the system modeled with uncertainty.

The remainder of this chapter is dedicated to showing how to incorporate the appro-

priate inputs and outputs into the design model so that these specifications can be

enforced.

3.2 Robustness to Modeling Uncertainty

Robustness to modeling uncertainty can be incorporated into the design problem

by representing the plant modeling errors as an additive uncertainty as shown in

Figure 3.5. The additive uncertainty has the following form

PA = P + A.

By the small gain theorem, stability is guaranteed if IK/(1 - PK)I < 1/jAI where

K/(1 - PK) is the transfer function seen by the additive uncertainty. If A is of the

form reiO where 0 E [0, 27r], then stability is guaranteed if

1 - PK r(W)

This is simply a frequency-domain constraint, and the approximations derived in

Section 2.3.2 can be applied.

Modeling errors can also be reflected on the multiplicative or divisive uncertainty

shown in Figures 3.6 and 3.7 respectively. The multiplicative uncertainty has the
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Figure 3.5: Additive uncertainty.

following form

PA = (1 + A)P.

Under the same assumptions for A with a multiplicative uncertainty, stability is

guaranteed if

Similarly, PK r()

Similarly, the divisive uncertainty has the form

PA = (1 - A)- 1 P.

Stability is guaranteed with a divisive uncertainty if

(1PK r(W) Vw.

3.3 Compensator Roll-off

It is often desirable to have the gain of the compensator roll-off at high frequencies be-

cause of inevitable high frequency unmodeled dynamics. Through the constrained op-

timization design approach, the designer is limited to constraining closed-loop transfer

functions rather than constraining the compensator directly. One indirect approach
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Figure 3.6: Multiplicative uncertainty (at plant output).
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Figure 3.7: Divisive uncertainty (at plant output).



to imposing constraints on the compensator is by applying an additive uncertainty

to the nominal plant of the form

PA = P + A,

as shown in Figure 3.5. The closed-loop transfer function from w to z is then K/(1 -

PK). At high frequencies, A will be large so the loop gain will need to be small.

Assuming IPKI < 1, the closed-loop transfer function from w to z is approximately

1 - PK (u) K(w)j •

Hence constraining K/(1 - PK) at high frequency is an approximate constraint on

the compensator. In [32], the roll-off constraint was proposed,

K (w) IK(w)l <20
1 - PK Wco

where wco is the crossover frequency and a is the roll-off slope in dB.

3.4 Loop Gain Roll-off

The same ideology can be applied to the loop gain. This may be useful to limit

the closed-loop bandwidth of PK/(1 - PK) which is common in tracking control

problems. This transfer function is obtained by applying multiplicative uncertainty

at the plant output as shown in Figure 3.6 so that the uncertainty on the plant has

the form

PA = (1 + A)P.

Again, at high frequencies A will be large so the loop gain magnitude must be small.

Assuming IPKI < 1, the closed-loop transfer function from w to z is approximately

PK_PKI (w) I |PK(w)l.
1- PK

In [32], the loop gain roll-off constraint was proposed,

wc PK (w) a iK() <20

1 - PK Wco

where wco is the crossover frequency and a is the roll-off slope in dB.
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Figure 3.8: Mixed uncertainty (at plant output).

3.5 Gain and Phase Margin Constraints

Gain and phase margin constraints can be incorporated into the linear controller de-

sign problem by constraining the gain of a fictitious closed-loop input/output channel

created by applying an uncertainty between the plant and the controller. One effec-

tive way to do this is by applying a mixed multiplicative and divisive uncertainty [11]

at the plant output as shown in Figure 3.8 so that the uncertainty on the plant has

the form

PA = P I

where (1 + A)/(1 - A) can be interpreted as a perturbation on the loop gain PK

injected between y and y'. By the small gain theorem, stability is guaranteed if

ILl < 1/IAI where L is the transfer function seen by A or (1 + PK)/(1 - PK). More

specifically if A is of the form reio where 0 E [0, 2r], then stability is guaranteed if

(1 + PK 
1 V.

1 - PK r(w)

Therefore, stability is guaranteed for any perturbation in the loop gain which falls

inside the complex-plane circle (1 + rej9)/(1 - rejo) where 0 E [0, 27r].

The gain margin is the range of tolerable gains between y and y' in which stability

is maintained. Figure 3.9 shows the transfer function between y and y' is a pure gain

when the phase of the uncertainty is 0 or 180 degrees (0 = 0, 7r). If rmin is lower
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Figure 3.9: Map of (1 + A)/(1 - A).

bound on r(w),

r(w) > ri Vw,

then the gain margin is computed directly by letting r = rmin and 0 = 0, 7r,

GM = [1 - rmin 1 + rmin]
1 + rmin' 1 - rminJ

Similarly, the phase margin is the range of tolerable phases between y and y' in which

stability is maintained. Figure 3.9 shows the transfer function between y and y' is a

pure phase (with unit magnitude) when the phase of the uncertainty is 0 = -+r/2.

Hence, the phase margin is computed by letting r = rmin with 0 = ±r/2,

PM = j1 - jrmin L 1 + jrmin1
P1 + jrmin' 1 - rmin

Through a simple trigonometric identity 2, the phase margin calculation simplifies to,

PM = [-OpM, OPM] where OpM = 2 tan- (rmin).

In fact, each rmin corresponds to an entire region of allowable simultaneous gain

and phase perturbations as shown in Figure 3.10 where (1 + rmine's)/(1 - rmineij ) is

plotted for several values of rmin with 0 varying between 0 and 7r. The interior of each

ellipse shows allowable gain and phase perturbations for y which will still guarantee

stability. The numerical values adjacent to each ellipse are 1/rmin in decibels which

2 tan 2a = tan where tan a = r and a = 0/2



are consistent with the bound on (1 + PK)/(1 - PK) required to guarantee stability

for gain and phase perturbations inside the ellipse. Gain and phase margins for each

value of 1/rmin are read at the intersection of the ellipses with the 0 degrees and 0

dB axes respectively.

The nice symmetry about 0 dB is an appealing characteristic of the mixed mul-

tiplicative divisive uncertainty. Gain and phase margin constraints derived using

the pure multiplicative or divisive uncertainties result in asymmetric gain and phase

curves shown in Figures 3.11 and 3.12 respectively. However, the divisive uncertainty

based constraints have a nice interpretation on the Nyquist plot, and are used in [4] to

formulate M-circle constraints. A M-circle defines a neighborhood of radius M in the

Nyquist plot about the critical point 1 + jO (or -1 + j0O assuming negative feedback)

in which the loop gain is prohibited to enter [43]. Constraining the closed-loop trans-

fer function seen by the divisive uncertainty, or 1/(1 - PK), to be less than 1/M is

equivalent to constraining the loop gain to stay outside of the M-circle neighborhood.

This result is easy to see from the application of the small gain theorem:

( 1 1
(1 -PK) < V

or equivalently,

1(1 - PK)(w)l > M Vw.

In the complex plane, this is

(R [PK(w)] - 1)2 + (Q [PK(w)])2 > M 2,

which is the equation of a circle centered at 1 + JO expressed as an inequality. Hence,

PK(w) must stay outside the circle centered at 1 + jO with radius M as shown in

Figure 3.13.

To enforce gain and phase margin constraints it is only necessary to constrain L at

frequencies where the phase and gain crossover is expected to occur rather than the

entire frequency spectrum. Figure 3.14 shows and example where L is constrained

in anticipated gain and phase crossover frequency bands. In the band of anticipated

gain crossover, L is constrained to be less than 11.43 dB corresponding to ±3 dB
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Figure 3.13: M-circle on Nyquist plot assuming positive feedback.

gain margin. Similarly, in the band of anticipated phase crossover, L is constrained

to be less than 15.34 dB corresponding to 300 phase margin. The gain and phase

margins as a result of these constraints are discussed in more detail in Section 6.6,

and illustrated in Figure 6.12.
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Figure 3.14: Example constraint on (1 + PK)/(1 - PK) at crossover frequencies.
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Chapter 4

Generalized Orthonormal Basis

Functions

Solving the constrained 312 problem relies on approximating the infinite-dimensional

system Q with an affine combination of a finite number of basis functions. An al-

ternative, non-convex approach would be to represent Q as a finite length partial

fraction expansion, where the parameters are the residue and poles of the expansion.

A good model for optimization should:

* preserve the convexity of the problem.

* have good numerical properties such as convergence and conditioning.

In this work the expansion of Q is restricted to be linear combinations of the basis

functions. Therefore Q will be affine over the free coefficients and convexity of the

problem is preserved. Furthermore, only orthogonal basis functions are considered

which have superior numerical properties to non-orthogonal basis functions.

The class of orthogonal basis functions have been studied for at least a century.

Their potential in linear system synthesis has been realized by Wiener and Lee [38] in

the 1930's. Historically, some commonly used and studied orthogonal basis functions

include the FIR, Laguerre, and Kautz functions. These basis functions restrict all

of the basis function poles to be at the same location on the open unit disk in the

z-plane. For example, all of the FIR poles are at the origin, while the Laguerre



Table 4.1: Basis function pole location in z-plane.

FIR (n = 0 n = 1, 2,...

Laguerre n =a n = 1, 2, ...

Kautz 2n-1 = 1, 2 = 2 n = 1, 2,- -

GOBF ( = arbitrary n = 1, 2, ---

functions move the poles from the origin to a point a on the real axis, and the Kautz

functions move the poles to a real or complex conjugate pole pair location '1 and 2

that satisfy a quadratic equation. In the last 10 years, vigorous activity in the study

of these functions helped to rediscover a method of building orthogonal functions

with fixed pole locations anywhere on the open unit disk [34, 54]. These functions are

referred to as Generalized Orthonormal Basis Functions (GOBF) and they generalize

the FIR, Laguerre, and Kautz functions. The pole locations for each basis function

are summarized in Table 4.1.

This chapter reviews the recent developments of the GOBF that have been playing

an increasingly important role in system identification [7, 31, 33, 50, 53, 55, 65, 68].

and in linear controller design [4, 40, 46, 56], and provides explicit real state-space

representations for these functions through two approaches. The first approach devel-

oped by the author is a direct construction from the transfer function representation of

the GOBF provided in [54]. The second approach developed in [34] cascades balanced

realizations of simple Laguerre and Kautz building blocks. In both developments, it

is shown that representations with mixed real and complex conjugate poles can be

built with series interconnections of two simple first and second order state-space

systems. The series connection naturally produces a realization with a lower diagonal

A. Simple system identification examples are provided.



4.1 Transfer Function Construction

The orthogonal basis function structure can be used to approximate an infinite di-

mensional system by a finite dimensional series expansion,

y(z) e, E OnFn(z) u(z)
\n=o

where {¢f}n=,...,N-1 are the parameters and {F,(z)}n=o,...,N-1, are the basis functions.

The linear-in-the-parameters feature makes them a natural choice for optimization

problems such as minimizing the error between a transfer function and frequency data,

or designing an optimal filter subject to convex constraints. In [54], a simple transfer

function construction for the complete GOBF are developed. The development of the

GOBF are reviewed below.

A set of basis functions {Fn(z)} is complete if it spans the space of all stable

realizable transfer functions, and is orthonormal if E'k= fi[k] fj [k] = ,ij , where f,[k] is

the impulse response of Fn(z) and 6 ij is the Kronecker delta function. The equivalent

orthogonality condition in the frequency domain is < Fi(z), Fj(z) >= 6ij, where

< Fi(z),Fj(z) >= p f- Fi(ei)Fj(eiw)* dw. In [54], the complete GOBF model is

derived as

n (Z) 1 -n n-1zk=0 k
where (* denotes the complex conjugate of . This construction allows the arbitrary

placement of poles 0, '1, ..., p-1 within the unit circle, rather than restricting pole

placement to a single location as is the case with the FIR, Laguerre, and Kautz models.

The filter under the product from k = 0 to n - 1 has the property IH(w) = 1 or

H(z)H(1/z) = 1 and is said to be all-pass. Hence the basis function Fn(z) is the

cascade of an all-pass filter with a low-pass filter.

When complex poles are added to the basis, the impulse response fn[k] can become

complex which is meaningless for real systems. For example, if a complex pole is

added to the basis without its conjugate partner, the impulse response of that basis

function will be complex. In [54], conditions that guarantee real impulse responses

are considered when complex conjugate pairs are added to the basis. Consider the



basis functions F and F,+1 with complex impulse responses associated with poles

(a and &n+1 where ( = (*+1. A linear transformation can be selected to create new

basis functions F,~ and F" with real impulse responses as follows

/1 -~nl2(z + A)

Z2 - ( +)Z+ I G 1~

V1 -I V( 'z + 1 ')
z2 - (± +)Z+ I J2

n-1 (1

k=O Z - k

where ,, p, 0' and p' are real coefficients determined by solving the following equations

xTMx = I1 - 12

where

(4.1)

x _ (/, I)T, M-

and

( o)
1

v1-

1 + JI12 2Re{(jn}

2Re{(n} 1 + in 2

a 1 0e (4.2)

where

1 + I(1 "

The eigenvalues of M in Equation (4.1) are A, A2 = II ± 12 > 0. Hence, M is a

real, symmetric, positive definite matrix and thus diagonalizable [64]. The solutions

lie on an ellipse

where vl and v2 are the eigenvectors of M,

vi=
1

(1 2

1
V2

1- 2

For example, a solution to Equation (4.3), corresponding to one of the principal

axes of the ellipse, is when

/2 11 2 I
2 11+ n["

Ai(vTx)2 + A2\U )2 = i- 12 (4.3)



Table 4.2: Example pole location in z-plane.

n = 0 0.88637 - 0.22336i

n = 1 0.88637 + 0.22336i

n = 2 0.80754

n = 3 0.76818

4.1.1 Example Impulse and Frequency Response

To help visualize the GOBF in the frequency and time domains, consider the basis

functions corresponding to four randomly selected poles:

* real poles at 0.34 and 0.42 Hz.

* complex conjugate pole pair at 0.418 Hz and with damping ( = 0.3420.

Assuming a 0.1 second time step, these poles correspond to the discrete pole locations

listed in Table 4.2. The GOBF corresponding to these poles are

0.07186(z + 1)
z2 - 1.773z + 0.8355'

0.5447(z - 1)
F2 - 1.773z + 0.8355'

0.5899

(z - 0.8075)
0.6402

(z - 0.7682)

0.8355z 2 - 1.773z + 1

z 2 - 1.773z + 0.8355 '

1 - 0.8075z
z - 0.8075

(0.8355z2 - 1.773z + 1

z2 - 1.773z + 0.8355) '

where Fo(z) - F (z) and Fi(z) - Fo'(z). The impulse and frequency responses of the

GOBF with these pole locations are shown in Figures 4.1, 4.2 respectively.

4.2 State-Space Realization: Direct Approach

A state-space realization of the general orthonormal basis can be derived directly from

the transfer function construction by assuming a particular block diagram structure.

One such structure is a series connection of SIMO (single-input/multiple-output)

F2(z)

F3(z)
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Figure 4.1: Example impulse response of the GOBF.

20

0

C
2,

10

0
X1 * - c n = 0

-10 G ------ 0-+ l~~~~ " n=1-O n=1
+-- n=2

-20IN- A n=3

_Qn . . . . . . .
10

-
2 10-1

-200

0.

Frequency [Hz]
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Figure 4.3: Series connection structure.

I I - fn

Figure 4.4: First order pole block diagram.

low-pass/all-pass blocks as shown in Figure 4.3, where the top channel(s) are simply

low-pass filters with first or second order roll-off, and the bottom channel is an all-

pass filter. With this structure, finding a state-space realization for a system with N

basis functions is reduced to finding the state-space realization for block diagrams 4.4

and 4.5, and using simple state-space interconnection rules.

4.2.1 First Order Pole Representation

The structure in Figure 4.3 implies that the addition of a real pole is equivalent to

multiplying by the 2 x 1 transfer function matrix L,(z) depicted by Figure 4.4, or



Figure 4.5: Second order pole block diagram.

more precisely

Ln(z) = [ 7-n2 z ]T

A state-space model for this transfer function matrix is illustrated in Figure 4.4, with

an = n

bn = 1

dn = -r

where r, - 1 -n2.

4.2.2 Second Order Pole Representation

The addition of a second order pole is equivalent to multiplying by the 3 x 1 transfer

function matrix depicted in Figure 4.5, or

L )1-[ 1 , 2(P z-)Ln(z) = [ _ n.+ .z 2 2(2( z-t+')

z2-( n+C*)z+j1n12 1 - (Cn +C,*)z -4-1 IZ2 ]Tz2_ (Cn +C*)Z+ I 12 12



A state-space model for this transfer function matrix is illustrated in Figure 4.5, with

An [
0 1

- ~I2 2Re{.}

B =

Cn = [(1- I14) -2Re{(.},]

Dn = I~ 12

where r~n - 1 - |II2. Notice that all of the coefficients in the state-space are real.

4.2.3 Series Interconnection

A state-space model of the basis functions with mixed real and complex poles can be

derived by interconnecting the simple first and second order low-pass/all-pass blocks

above using the following rule. Given L(z)n and L(z)n+l with state-space realizations

A. B.

c o 0
Cn D.

and,

respectively. Then, L(z),L(z)n+l

A-

An+1 Bn+1

Cfn+l 0

Cn+1 Dn+1

has realization (A, B, C, D) where

An 0

Bn+ICn An+1

Bn

CAI

C= 0

69

0

Cbn+l

On+1J



D = 0

The new system has three outputs fn, f,+i, y.

A state-space model for an arbitrary number of mixed real and complex poles is

built using the above rule recursively. For example, consider building a state-space

model with 4 first or second order blocks. The state-space realization (A, B, C, D)

would be

A0  0 0 0

B1Co A1  0 0

B 2DICo B 2C 1  A 2  0

B 3D 2D1 Co B3 D 2C1 B 3C2 A3

Bo

f3 BiDo

B 2D 1Do

B3 D2D 1Do

Cbo 0 0 0

0 Cbl 0 0

C= 0 0 b 2  0

0 0 0 Cb3

D3D 2D1 Co D3 D 2C1 D3C 2  C3
0

- 0

0

D3 D2D1 Do

The last row in C and D would be discarded when the recursion is terminated. Close

inspection of the above realization shows that there is no conflict in dimension by

mixing first and second order blocks.



4.2.4 Special Case I.: Real Pole State-Space Representation

The N x 1 state-space system (A, B, C, 0) representation of a orthonormal basis with

strictly real poles is found by

0

?Ij-1
j -2

%-1 l- 2k=j )

for i < j

for i = j

for i=j+1

for i>j+1

I-2 (w-)Ik=0(

for i=1

for i>1

for i=j

for i j.

4.2.5 Special Case II.: Complex Pole State-Space Represen-

tation

The N x 1 state-space system (A, B, C, 0) representation of a orthonormal basis with

strictly complex conjugate poles is

0 2x2

0 1

-|j_, 12 2Re{&1j_
0 (

(1 -JI_11 4)

0

(1 -1 j_114)

0

1
0 k=

0

-2Re{ ji_1}j-1 k=j+l1 (-6k)

for i <

for i=j

for i=j+2

for i>j+2

for i=1

for i>1

0 2x2 j-1 j-1

02x2

for i=j

for i j

= 4

Bi ={

Cij =

A =2; =

B

C;,; =



where i = 1,3,5,...,N- 1, j = 1,3,5,...,N- 1, = [i,i+ 1]T and = [j,j + 1].

4.3 State-Space Realization: Balanced Approach

Perhaps a more elegant way to derive a state-space model for the GOBF is found in

the developmental theory of the generalized orthonormal basis derived by Heuberger

et. al. [34]. This approach uses special balanced realizations to construct the GOBF.

A realization (A, B, C, D) of a stable system is said to be (internally) balanced if the

solutions to the Lyapunov equations APA* + BB* = P and A*QA + C*C = Q satisfy

P = Q = E, where E = diag(al,a, 2... ,a,), al ... an is a diagonal matrix of

the positive Hankel singular values. The main result of this work is embodied in the

following theorem.

Theorem. Let G(z) be a scalar inner transfer function with McMillan degree n > 0,

having a minimal balanced realization (A, B, C, D). Denote

Vk(z) = z(zI - A)-'BGk(z).

Then the sequence of scalar rational functions {eTVk(z) }i=,...,n,;k=,..., forms an or-

thonormal basis for the Hilbert space 72.

In the above theorem, ei is the standard basis vector of zeros with 1 in the i-th

location, inner can be read as all-pass, and the McMillan degree [43] is the number of

poles in the transfer function. This theorem states that given an n-th order all-pass

filter and its minimal balanced realization (A, B, C, D), a complete orthonormal basis

for the class of square-integrable functions (functions with finite 72 norm) is given by

{eTVk(z)}i=,...,n,;k=,...,00. With this basis, the poles of G(z) are infinitely repeated.

In this work, the idea is to pick n large enough so that the basis made up of distinct

pole locations (i.e., k = 0) is a good basis for the square-integrable functions. The

GOBF with distinct poles is

Vo(z) = z(zI - A)-'B,



where the i-th basis function is {eTVo(z)}i=,...,,. Notice that this implies that the

realization of G(z) has the form (A, B, I, 0) and Vo(z) = zG(z).

The purpose of the forward shift z on Vo(z) is seen through a corollary in [34].

Corollary. Let G be an inner function with McMillan degree n as in the Theorem,

with a corresponding sequence of basis functions Vk(z). Then for every proper stable

transfer function H E712 there exists unique 0 E R, and 4 = {Ik}k=O,1,... E e21xn[, 0c),

such that
00

H(z) = 0 + z-' kVk(Z),
k=O

where 0 and (Dk are the orthogonal expansion coefficients of H(z).

The relationship between F(z) and Vo(z) is now seen,

F(z) = z-'Vo(z) = G(z),

where F(z) =_ [Fo(z) Fl(z) ... FNl(z) ]T. The Corollary also says that a con-

stant should be added to the basis with coefficient 0 to model systems with feed-

through' (non-zero D).

To construct a state-space for the GOBF using Theorem 4.3, one must derive

the minimal balanced realization for the n-th order all-pass filter G(z) with arbitrary

stable poles. This is made easy through the theory of orthogonal, all-pass filters [63].

An orthogonal, all-pass filter is defined to be a state-space realization of on all-pass

filter with orthonormal states. A system has orthonormal states if and only if the

state covariance matrix P = E{x(t)x(t)T } is identity2 for zero mean unit variance

white noise input. The state covariance is computed from the discrete Lyapunov

equation,

P = APAT + BBT.

Hence it follows that for orthogonal systems,

AA T + BBT = I.

'Recall that the basis functions derived in Section 4.2 had a zero D term.
2P can always be made identity with the proper state transformation.



Because the system is also all-pass, two additional conditions are imposed on the

state-space (see Appendix 10A of [63]),

CC T + DDT = I,

ACT + BDT = 0.

These three conditions imply that an orthogonal, all-pass filter has the property,

A B A B]T
-=I.

C D C D

Constructing a n-th order all-pass network G(z) with distinct poles is achieved

through the following Proposition:

Proposition. Cascading orthogonal, all-pass filters results in an orthogonal, all-pass

filter.

In the general case, the G(z) can be constructed by cascading first and second

order Laguerre and Kautz blocks respectively. The Laguerre and Kautz blocks are

the simplest first and second order orthogonal, all-pass filters. Therefore through

this Proposition, cascading 1 Laguerre and k Kautz blocks with arbitrary stable poles

results in an n = 1+ 2k order orthogonal, all-pass filter. Minimal balanced state-space

realizations for the Laguerre and Kautz blocks are now described.

4.3.1 Laguerre Function Balanced Realization

A single, real pole, all-pass filter is given by the Laguerre function,

1 - az
G(z) = ,z-a

where a is real valued with lal < 1. A minimal balanced state-space realization of G

is [34],

-a



where l7 = 1 - a2 . Since the Laguerre function has a single pole, the orthogonality

condition is trivially satisfied. The standard Laguerre model is a special case to the

GOBF when using the single pole (n = 1) all-pass filter G(z) in Theorem 4.3,

Vk(z) = ( a , < 1.
z-a z-a

The Laguerre function has a real pole at n when a = (.

4.3.2 Kautz Function Balanced Realization

A single, complex conjugate pole, all-pass filter is given by the two-parameter Kautz

function,
-cz 2 + b(c- 1)z + 1

z2 + b(C - 1)z - c

where b and c are real valued with JbI < 1 and Icl < 1. A minimal balanced realization

of G is [34],

b (1 - b2) 0

c (1 - b2)-b-c (12-

V(1 - c2)(1 - b2) -b/1 -c

This realization satisfies the orthogonality conditions. The two-parameter Kautz

model is a special case of the GOBF when using the complex conjugate pole (n = 2)

all-pass filter G(z) in Theorem 4.3,

S (1-c1-b2 (-cz2+b(c-l)z+1)k

Vk(z) = z 2+b(c-)z-) _ z2+b(c-1)z-c k b < 1, c < 1.
_ (z1_-c____b) (-cz 2

+b(c-1)z+1)

z2 +b(c-1)z-c z 2 +b(c-1)z-c )

The two-parameter Kautz function has complex conjugate poles at n and (* when

picking c = _- (2 and b = -2Re{n}/(c - 1).

4.3.3 State-Space Construction

A minimal, balanced, orthogonal state-space realization for the most general case with

multiple pole locations is constructed by cascading the Laguerre and Kautz function

blocks at specified pole locations in any order,

G(z) = G1(z)G 2(z)G 3 (z)... Gn(z),



where Gl(z), G 2(z),... and G,(z) can be single pole Laguerre blocks or complex

conjugate pole Kautz blocks. The cascade of the realizations (A1, B 1, C1, D 1) and

(A2, B2 , C2, D2 ) is defined by

A 1  0 B 1

B2C1  A 2  B2D 1

D 2C 1  C2 D2D1

When the recursion is terminated, the C and D matrices are replaced by I and 0

respectively. The orthogonal basis functions are the states of the resulting realization

(A, B, C, D):

Ao 0 0 .

B 1Co A1  0

B2D 1Co B2C 1 A2

Bo

B 1Do
B=

B 2D1 Do

C=I

D = 0.

The realization for G(z) is in the form (A, B, I, 0) so that Vo(z) = zG(z) and,

F(z) = G(z).

4.4 Pole Selection for Design

Selecting an efficient set of poles for the GOBF plays the most critical role in finding

acceptable solutions to the constrained 7-12 problem. The GOBF introduce many

more degrees of freedom over the FIR, Laguerre, or Kautz functions by allowing for

arbitrary pole locations. These degrees of freedom can be exploited by the designer to

minimize the number of basis functions needed to obtain a feasible design. However,



Figure 4.6: Recursive process for finding efficient GOBF for design.

it is unclear how to systematically select the most efficient basis for a given design

problem. This section proposes a simple ad hoc method to find an efficient set of poles

for the GOBF during the design process. This method is used to select the GOBF

poles in the examples in this thesis.

Figure 4.6 illustrates the algorithm to find efficient GOBF for a given design

problem. The algorithm starts with any basis which results in a feasible solution to

the optimization problem. For example a high order FIR or Legendre [28] basis could

be used to find an initial feasible solution. Then model reduction techniques are used

to find a reduced order Q with new pole locations. The poles of the reduced order Q

represent the pole locations of the GOBF for the next iteration. The designer has the

option to include extra pole locations representing FIR or Legendre basis functions

into the new pole set to increase the chance of finding a feasible solution on the next

iteration. The algorithm is terminated when the designer feels that the minimum

order basis is found that solves the optimization problem.



4.5 System Identification Examples

The utility of the unifying orthonormal basis is best illustrated with simple system

identification examples. In essence, the design problem is a system identification

problem of the optimal Q(z).

4.5.1 Model-Matching with the GOBF

Consider minimizing the 7W2 norm of the error between a known transfer function

H(z) and linear combination of basis functions,

min II(H(z) - TF(z))||2

where F(z) _= [Fo(z) Fl(z) ... FN_1(z) ]T. A state-space solution to this prob-

lem is derived in [45]. In summary, using state-space interconnection rules the transfer

function H(z) - qTF(z) can be represented as

AH 0 BH

H - OT F  0 AF BF = A B

C 0
CH -- TCF 0

where H(z) = (AH,BH, CH, 0) and F(z) = (AF, BF, CF, 0). In this example D is

assumed to be zero with no loss of generality (D can easily be approximated by

adding a constant to the basis). By definition IIH - OTF1|2 is,

IIH - T FII2 = Tr(CPCT )

= [CH - TCF]
P21P22 -CFTO

where P is the solution to the discrete Lyapunov equation,

APAT + BBT = p.

The optimal ¢ is found by solving the equation,

dIIH - OT F112 = 0.



Hence,

=opt = (CFP22CT -1CFP 21C.

For example, consider approximating the discrete transfer function

-38.2048(z 3 - 2.833z 2 + 2.6802z - 0.84663)
H(z) - 3.3121z 3 + 4.3304z2 - 2.6291z + 0.63362

using a 20th order FIR, Laguerre, and the GOBF bases.

The 20th order FIR approximation of H(z) results in an 7W2 error of 83.17. Fig-

ure 4.7 shows the frequency response of the FIR approximation compared to H(w).

The FIR approximation shows approximately 35 dB error at low frequencies. Fur-

thermore, the FIR basis does not approximate the 60 Hz resonance very well. The

FIR basis has all of its poles fixed at the origin and the only degree of freedom is the

basis order. Because the pole location and the order is fixed, this represents the best

approximation possible.

A 20th order Laguerre basis with optimal time scale [23] results in an 7 2 error of

34.62. The optimal time scale for a particular system is derived by minimizing the

truncation error associated with the finite Laguerre series expansion. Unfortunately

the optimal time scale can only be computed if H(z) is known a priori. For this

problem the optimal time scale was computed to be a = 0.6824. Figure 4.7 shows the

frequency response of the Laguerre approximation with optimal time scale compared

to H(w). Again large errors of approximately 29 dB occur at low frequencies. How-

ever, the Laguerre basis approximates the 60 Hz resonance much better than the FIR

basis. The Laguerre basis has all of its poles fixed at the time scale a and therefore is

completely specified by the choice of a and the order. Since a was picked to minimize

the truncation error, this approximation represents the best 20th order Laguerre fit.

However in real system identification problems, the optimal time scale would not be

known and the Laguerre approximation would get worse.

The best approximation with 20 GOBF basis functions is harder to find since each

pole location must be specified individually. The best GOBF basis would correspond

to choosing the poles of H(z) exactly which would result in zero 72 error. This

is unreasonable for system identification because the poles of H(z) are not know a



priori. One proposal for system identification is to search for the basis poles that

minimizes the 712 error of the approximation. Unfortunately the map between the

basis poles and the 112 error is nonlinear making the search for the optimal pole

locations complicated. For this example, a simple search was executed based on a

finite set of poles in an evenly spaced lattice of 121 pole locations. These pole locations

are defined on a grid of natural frequencies vs. damping ratios which contain real

and complex conjugate poles with natural frequencies between 10 and 100 Hz, and

damping ratios3 between 0.01 and 1. The GOBF was constructed by adding one real

pole or complex conjugate pole pair at a time based on their individual 712 error. The

best 20th order GOBF found with this coarse frequency/damping lattice results in an

W12 error of 0.28. Figure 4.7 shows the frequency response of the GOBF approximation

compared to H(w). The GOBF approximation matches H(w) well at all frequencies

including the 60 Hz resonance. This example does not reflect the best approximation

possible with the GOBF because of the arbitrary pole selection criterion used. With

a finer frequency/damping grid, the GOBF approximation is expected to get better.

An illustration of the 712 error vs. basis order is shown in Figure 4.8. For com-

parison, two special cases of the GOBF are plotted in addition to the above cases,

where the poles are restricted to be either all real or all complex conjugate. The

real pole GOBF case, denoted Random Real GOBF, has randomly selected real poles

between 10 and 100 Hz. The complex pole GOBF case, denoted Random GOBF, has

randomly selected complex poles with the same frequency range but with random

damping ratios between 0 and 1. The Figure shows that the recursive construction

of the GOBF is the most effective means of minimizing the 112 error in system iden-

tification applications. For design applications it is more realistic to randomly pick

the pole locations of the basis. The Figure shows that in this case, the GOBF with

randomly selected complex conjugate pole location is the best choice for design.
3 The real poles correspond to the grid line with damping ratio 1.
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4.5.2 Frequency-Domain System Identification

System identification from frequency data is easily formulated as a least squares

problem. Consider approximating the frequency response G(w) using the GOBF, or

min IIW(w)(G(w) - F(w))lj~ for all w E {ei&TI J = [0, 7r/T]}

where W(w) is a frequency weight and F(w) is the vector of basis functions defined

in Section 4.5.1. This problem is approximated by minimizing

TNw
E = - (G(w) - F(w,) )*WT(w,)W(w)(G(wi) - F(w)O)As,

i=1

or equivalently,

E = (G(w) - F(w))*WTAQW(G(w) - F(w)),

where W = diag[W(w)], G E CN ' xx, F E CNxN, q E RNx1, Co are a discrete set of

sampled frequency points, and An is defined by,

AQ = Tdiag[ A&i AD 2 ... ADNW],

where AJi9 = ;i+ - JDi for i = 1,..., N,- 1 and ADN, = AN3D,_. To guarantee a

real solution, the real and imaginary parts of the G and F matrices are separated,

and the least-squares problem is solved by,

(opt = (FT T A  WF) -1F T WT A f2WV G

where F = [FRe(w) Fm(w)]T, G = [GRe(W) GIm(w)]T, Af2 = diag[A AQ]

and WV = diag[ W W ]. If the basis functions are orthonormal and W = I, then the

optimal solution is,

€opt = FTAiG.

Active Vibration Isolation System System Identification Example

To demonstrate this system identification technique on real frequency data, the Active

Vibration Isolation System (AVIS) is used as an example. This system is presented



as a design example in Chapter 7. A detailed description of the AVIS system and

data are provided in [29]. The objective of this exercise is to demonstrate how fre-

quency weights with the GOBF can be a used to effectively capture local dynamics

in frequency bands of interest, while intentionally under-modeling other frequency

bands. Figure 4.9 shows the target Frequency Response Function (FRF) data span-

ning a frequency range between 0.1 Hz and 5 kHz and exhibiting hundreds of lightly

damped modes. The objective is to model the local dynamics in the 400-1500 Hz

range while approximating the gain and phase trends outside this range. This type

of model would be useful for designing a low order model-based controller with an

anticipated crossover frequency between 400 and 1500 Hz.

The fixed pole locations used in the GOBF consisted of placing a second order

mode at 35.803 Hz and 0.1791 damping to approximate the lightly damped dynamics

in the 10-100 Hz range and then randomly selecting 20 second order modes between

400-700 Hz and 13 second order modes between 700-2500 Hz. Figure 4.9 shows the

unweighted 68 order approximation using the GOBF. The approximation failed to

approximate the low frequency zero between 0.7 and 0.8 Hz causing a large low fre-

quency gain error and substantial broad band phase error. At low frequency the target

transfer function has approximately 50 dB less gain than at high frequencies which es-

sentially reduces the incentive for the least squares solution to eliminate low frequency

approximation error. One way to remedy this is to incorporate frequency weights into

the least squares problem. In this example the frequency weight was constructed by

first inverting the magnitude data to normalize the data to 0 dB through the entire

frequency range, then multiplying specified frequency bands by scalar weights listed

in Table 4.5.2. Figure 4.10 compares the weighted and unweighted systems. Using

the same pole locations, Figure 4.11 shows the 68 order weighted approximation with

the GOBF. Now good qualitative matching is observed in the low frequency band

while tighter matching is observed in the 400 to 1500 Hz band.



Table 4.3: AVIS frequency weights after normalization.

Frequency Band [Hz] Weight [dB]

0.1-10 100 40

100-400 300 49.54

400-1500 1000 60

1500-2000 100 40

2000-5000 10 20
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Figure 4.9: AVIS system identification example with GOBF.
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Chapter 5

Graphical User Interface Tool

A MATLAB based Computer-Aided Design (CAD) tool known as the Structural

Control Toolbox (SCTB) [32] was developed under subcontract at The Charles Stark

Draper Laboratory to include the constrained 72 methodology. The SCTB tools are

driven in a Graphical User Interface (GUI) environment that eliminates the need for

the user to interact with the MATLAB command line. The present capabilities of

the SCTB include:

* Plant construction from linear models or Frequency Response Function (FRF)

data.

* Controller design via classical, model based 72, 7C, pL, or constrained opti-

mization design methods.

* Plant and controller model reduction.

* Real-time controller interface.

This chapter introduces the GUI panels associated with designing constrained 712 con-

trollers only. More detail on the other SCTB features can be found in the Structural

Control Toolbox; User's Guide [32].



5.1 Main Panel

Upon launching the SCTB from the MATLAB command line, the main panel appears

as shown in Figure 5.1. The main panel has a menu bar with four pull-down menus:

File, Window, Options, and Help; text fields for the system name and description;

plant and controller list boxes which contain variations of the design model and

controller design iterations; and various buttons and pop-up menus that allow the

user to access the SCTB tools. These tools allow the user to import plants and

controllers into the SCTB data structures, design controllers, close loops, analyze

open-loop and closed-loop systems, and perform model reduction. The remainder

of this chapter will focus on the SCTB tools associated with controller design, in

particular the constrained 712 methodology.

5.2 Constrained Optimization Controller Design

GUI

The constrained 7-2 software is accessed by selecting the "Constrained Optimization"

option under the "Design Methods" pop-up menu on the main panel. This launches

the constrained optimization controller design GUI as shown in Figure 5.2. The GUI

is designed to operate in four modes:

1. Objective function specification mode.

2. Basis function specification mode.

3. frequency-domain constraint specification mode.

4. time-domain constraint specification mode.

The modes are toggled through a set of radio buttons on the left hand side of the

panel. The right hand side of the constrained optimization controller design GUI is

updated for each mode with custom interfaces to accept the user input. By default,

this panel is initially in the objective function specification mode. After the objective,



'I"-El-

Figure 5.1: Main panel.

basis and constraints have been specified, the problem can be solved by simply clicking

the "Solve" button in the lower left corner of the panel.

5.2.1 Objective Function Specification Mode

The objective function specification mode shown in Figure 5.2 is the default setting

of the constrained optimization controller design GUI. The 712 minimization option

in optimization method pop-up menu must be selected with the appropriate trans-

fer matrix to engage the constrained 'H2 design method. Frequency weights can be

appended to the design model by clicking the "Frequency Weights" button and fol-

lowing the instructions. Finally, the feedback sign should be selected appropriately

for positive and negative feedback controller design problems.

5.2.2 Basis Function Specification Mode

After the objective function has been specified, a basis for Q must be selected. Click-

ing the "Edit Basis" radio button produces the basis function control panel as shown

r==7 E.HEE-II



Figure 5.2: Objective function control panel - 7-t2 minimization.
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Figure 5.3: Basis function control panel.

in Figure 5.3. This panel has an assortment of basis function generation options for

the FIR, Laguerre, Legendre, and the fixed pole models described in [45]. Although

the interface remains unchanged, the fixed pole models have been replaced with the

GOBF models of Chapter 4 for this work. The user can specify a basis as a mix-

ture of FIR, Laguerre, Legendre, and GOBF models. The state-space realization of

the orthonormal basis is generated by clicking the "Create Basis State-Space Model"

button on the right hand side of the panel.

5.2.3 Frequency-Domain Constraint Specification Mode

The frequency and time-domain constraints are specified by clicking the appropriate

radio buttons on the on the left hand side of the the constrained optimization con-

troller design GUI. Clicking the "Edit Freq. Const." button produces the frequency

domain constraint function selection panel as shown in Figure 5.4. This panel dis-

plays a matrix of transfer functions which can be constrained. A transfer function is

E::: E:



Figure 5.4: Frequency-domain constraint transfer function selection panel.

selected by clicking on the circle corresponding to that particular transfer function

in the matrix. Constraints are added or edited to the selected transfer function by

clicking the "Add/Edit Constraints" button. This produces the frequency-domain

constraint tool shown in Figure 5.5. Constraints can be added at single points by

pressing the "Add Points" radio button and clicking on the appropriate spot on the

Bode magnitude plot. Likewise, a line of discrete frequency constraint points can

be added by first pressing the "Add Lines" radio button, entering a line density of

points per decade, and clicking on the Bode magnitude plot to specify the initial

and final points of the line segment. Each point constraint is approximated with N

linear constraints as discussed in Section 2.3.2. The number of linear constraints per

frequency-domain constraint is specified in the "Angles per Constraint" field. The

open-loop and previous closed-loop transfer functions can be plotted as a reference as

shown in Figure 5.5. Constraints can be deleted using the "Delete" button and spe-

cific areas of the Bode magnitude plot can be enlarged or reduced using the "Zoom"

feature.



Figure 5.5: Frequency-domain constraint tool.

Automatic Constraint Generator

Some of the most common constraints can be generated automatically through the

automatic constraint generator shown in Figure 5.6. The automatic constraint gener-

ator is accessed by pressing the "Auto Const. Gen." button on the frequency-domain

constraint tool. The user must select the form of closed-loop transfer function cur-

rently being constrained on the left hand side of the GUI. The choices K/(1 + PK),

PK/(1 + PK), 1/(1 + PK), and (1 - PK)/(1 + PK) correspond to the transfer func-

tions seen by the additive, multiplicative, divisive, or mixed multiplicative/divisive

uncertainties respectively. After the appropriate closed-loop transfer function has

been selected, the user must select either the compensator roll-off, loop gain roll-off,

or gain and phase margin constraints option on the right hand side of the GUI. For

example, selecting the "Additive - K(1 + PK)" and "Compensator Roll Off" radio

buttons produces the roll-off constraint tool shown in Figure 5.7. The user must

specify the roll-off slope (in dB/decade), approximate crossover, minimum and max-



Figure 5.6: Automatic constraint generator.

Figure 5.7: Roll-off constraint tool.

imum constraint frequency, and the total number of constraints. The constraints are

automatically placed on the Bode magnitude plot when the "Evaluate Constraints"

button is pressed.

Gain and phase margin constraints can be automatically generated for the multi-

plicative, divisive, or mixed uncertainty models by selecting the appropriate transfer

function and pressing the "Gain Margin / Phase Margin" radio button. This produces

the gain and phase margin constraint tool shown in Figure 5.8. The user supplies

the desired gain and phase margins, approximate gain and phase margin frequencies,

and the total number of constraints. The region of allowable simultaneous gain and

phase perturbations at each crossover frequency are plotted on the left hand side of

the tool as discussed in Section 3.5. The constraints are automatically placed on the



Figure 5.8: Gain and phase margin constraint tool.

Bode magnitude plot when the "Evaluate Constraints" button is pressed.

5.2.4 Time-Domain Constraint Specification Mode

The time-domain constraints mode is activated by clicking the "Edit Time Const."

button on the constrained optimization controller design GUI. The time-domain con-

straint tool operates in two modes: the disturbance specification mode and the con-

straint specification mode. The disturbance specification mode shown in Figure 5.9

allows the user to define a specific disturbance profile using the mouse to shape the

profile or choose from a list of typical disturbances such as an impulse, step, or ramp.

After the disturbance profile has been specified, the transient response to the distur-

bance can be constrained in the constraint specification mode as shown in Figure 5.10.

The open-loop response and previous closed-loop responses can be plotted for refer-

ence before the constraints are added. The user can toggle between placing upper

and lower bound constraints by selecting the appropriate mode of the pop-up menu

in the lower left hand corner of the panel. Constraints can be added at single points

with the mouse or along a line segment by specifying the line density and end points

of the segment. Constraints can be deleted using the "Delete" button and specific

areas of the figure can be enlarged or reduced using the "Zoom" feature.



Figure 5.9: Time-domain constraint tool - Disturbance specification.

Figure 5.10: Time-domain constraint tool - Constraint specification.
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Chapter 6

EOS-AM1 Precision Pointing

Attitude Control Example

The Earth Observing System (EOS)-AM1 spacecraft, shown in Figure 6.1, is a three

axis stabilized satellite with a large lightweight gallium arsenide solar array extending

along the pitch axis. The attitude control system has specific peak-to-peak angular

excursion pointing requirements during the normal (science data taking) mode [1].

However, the presence of lightly-damped solar array structural modes (and frequency

uncertainty) has limited the bandwidth of the classical control system [39].

To investigate the potential for improved pointing performance in the presence

of low frequency solar array modes, NASA Goddard Space Flight Center funded a

study to examine the application of robust control [1]. Since the time of that study the

EOS-AM1 spacecraft model has been used at the Draper Laboratory as a benchmark

problem to evaluate and develop new design techniques.

The following design focuses on a 7(2 design with performance and stability ro-

bustness constraints for the roll axis. Previous multi-axis designs [1] show that the

controllers can safely be designed on a per axis basis, due to the low cross-axis cou-

pling.



Z (to Earth)

Figure 6.1: EOS-AM1 Spacecraft.

6.1 Classical Design

The classical design described in [39] is used as a baseline to formulate the design

objectives presented in this chapter. The original design goals for the classical sys-

tem were "to provide the necessary low frequency disturbance torque rejection while

maintaining 10 dB of gain margin and 40 degrees of phase margin." These margins

are more conservative than the design objectives presented in Section 6.2 and limit

the peak-to-peak performance.

The philosophy of the classical design was to achieve the desired gain and phase

margins by choosing the system bandwidth to be at least 10 times lower than the

dominate resonant frequency. The design used a proportional-integral architecture to

sequentially close the minor rate and major position loops respectively. Third order

low-pass (Butterworth) filters were placed in the rate and position feedback loops

to provide attenuation at frequencies above the system bandwidth. An notch filter

was included to provide additional attenuation at the dominant flexible body modal

frequencies.



6.2 Design Objectives

In the NASA study, a simplified model of the EOS-AM1 dynamics was used along

with the four control design objectives listed below. These design objectives seek to

improve the peak-to-peak transient response of the classical design while maintaining

a minimal level of stability robustness. Several controllers were designed at Draper

Laboratory and MIT which attempted to meet all four of these specifications [1, 17].

For comparison, the results from some of the Draper designs are shown in Tables 6.2

and 6.3. The control design objectives are:

1. Reject sinusoidal disturbances at the 0.00015 Hz orbital rate below the magni-

tude of the baseline controller performance at 9 dB [asec/in-lb].

2. Improve the peak-to-peak transient response to a 10 second, 0.1 in-lb torque

pulse by a factor of 5 over baseline (from 24 to 4.82 arcsec).

3. Provide 3 dB gain margin and 300 phase margin.

4. Guarantee robust stability with 15% flexible modal frequency uncertainty.

6.3 Design Model

The continuous-time design model included a combination of the roll axis rigid body

modes and three dominant flexible modes of the solar array, and has the form:

P(S) = + + 2 k + [arc-sec/in-lbs]
JS k=1 82 + (WkS +k

with

J-1 = 1.2917, = 0.0015,

02 = [0.8226 1.2719 0.4380],

w = [0.2219 0.3469 0.4527] x 2r.

For design, the plant was converted to a discrete time representation using a zero

order hold with a sampling time of 0.512 sec. A single cycle time delay z-1 was then



e: Roll Error

A U: Control Torque

d: Torque Disturbance I

d P ( Z )

u: Control Torque z
from Reaction Wheel
(in-lbs) y: Roll Attitude (arc-sec)

Design Model: T=0.512 sec

Figure 6.2: EOS-AM1 Design Model.

appended to the input to model a processing delay present in the control computer,

resulting in a 9th order discrete model shown in Figure 6.2. The input of this model

is a control torque from reaction wheel actuators in in-lbs, and the output is the roll

attitude of the spacecraft, measured in arc-sec.

To pose the problem in standard LQG form, the plant roll output and the control

signal were selected as the regulated output. A disturbance was added to the control

signal at the plant input, and an exogenous noise input was added to the attitude

measurement.

Butterworth filter weighting functions were appended to the regulated outputs to

penalize the error at low frequencies and control effort at high frequencies. Scalar

weights on the roll error, control, disturbance, and noise were adjusted until the un-

constrained 72 design came close to meeting the design objectives. The optimization

weights are listed below.

* Roll error: 2nd order, 0.18 Hz, low-pass filter (We).

* Control: 3rd order, 0.30 Hz, 60 dB high-pass filter (W,).

* Disturbance: -6.02 dB (Wd).

* Noise:-20 dB (Wa).
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Two types of modeling uncertainty were included as a mechanism to meet the

robustness objectives. An additive uncertainty P + Aa was included to add high

frequency robust stability constraints, and a mixed multiplicative and divisive uncer-

tainty at the plant input (1 + Am)(1 - Am)-IP was included to constrain the gain

and phase margins. The outputs and inputs from these A blocks appear as extra

inputs and outputs in the design model.

6.4 Constrained 712 Design

The design objectives were directly addressed by simultaneously placing constraints

on the appropriate transfer functions and transient responses. The first performance

requirement was to achieve the same level of disturbance rejection at the orbital rate

(0.00015 Hz) as the classical controller. This was met by placing a single constraint

in the frequency domain on the transfer function from the torque disturbance to the

roll error or P/(1 - PK), with the magnitude constrained to be less than 9 dB at

0.00015 Hz. This constraint, and the resulting closed loop is shown on Figure 6.3. Also

shown on this figure are the open loop, classical closed loop, and the unconstrained

112-optimal solution.

The second performance requirement was to improve the peak-to-peak transient

response of the classical closed loop by a factor of five to a 10 second 0.1 in-lb torque

disturbance pulse. This was achieved by placing time-domain constraints on the

transient response, shown in Figure 6.4. This figure also shows the unconstrained 7 2

solution and the classical transient response for comparison.

The gain and phase margin constraints discussed in Section 3.5 are used to meet

the third design objective by placing a mixed multiplicative and divisive uncertainty

block at the plant input. The uncertainty has the form

By the small gain theorem, stability is guaranteed if JAm(w)l I r(w) and

PK 1 VW
1 - PK r (w)
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Figure 6.4: Closed-loop transient response constraints.
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Figure 6.5: Guaranteed gain and phase margins for bound on I(1 +PK)/(1-PK)(w)I.

Therefore, stability is guaranteed for any perturbation in the loop gain which falls

inside the complex-plane circle (1 + rej')/(1 - rejo) where 0 E [0, 27r]. Figure 6.5

shows two of these circles, and their corresponding bounds on the magnitude of (1 +

PK)/(1 - PK). This figure tells us that in order to guarantee +3 dB gain margin

and 300 phase margin, 1(1 + PK)/(1 - PK)(w)l must be constrained below 15.34 dB

at phase crossover and 11.43 dB at magnitude crossover. Figure 6.6 shows the

constraints on (1 + PK)/(1 - PK) which were distributed around the region of

anticipated phase and gain cross-over. The actual gain and phase cross-over with the

final design was found to be 0.05 Hz and 0.1 Hz respectively.

The fourth and final specification was to guarantee robust stability for 15% modal

frequency uncertainty. An additive uncertainty model is used to model the frequency

uncertainty:

P = Pnom + Aa.

To bound the magnitude of the Aa block, define the set of all possible modal frequen-
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Figure 6.6: Gain and phase margin constraints.

cies to be

= {f: f E [0.85inom, 1.15fnom])

where f -- [fl, f2, f3] is a vector of the three modal frequencies, and fnom is the

nominal value of these three frequencies. The frequency response of P is then a

function of f, and the perturbation is constructed as

6(w, f) = P(w, J) - P(, fnom)

The magnitude of An is bounded by

A()l I A Au,(w)l = sup 16(w, )I.

By the small gain theorem, stability is guaranteed if

K1
1 -PK) (w) s <

Vw.

Figure 6.7 shows the application of these robustness constraints. The grey area is

IA su1, calculated numerically by varying the three structural modes in the plant by
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Figure 6.7: Robust stability constraints.

±15%. The constraints were chosen to lie below this area. A smooth shape was chosen

for the constraints, giving the closed loop additional conservatism, and simplifying

the controller.

6.5 Basis Selection

Three bases for Q were selected for this problem including the FIR, Legendre, and

GOBF basis. The figures and results presented in Section 6.4 are based on the Legen-

dre basis solution. The Legendre orthonormal basis was constructed with real poles

at frequencies [0.05 0.15 ... (0.1N - 0.05)] Hz shown in Figure 6.8 on the complex

plane. This pole location choice bears resemblance to the continuous time Legendre

basis functions as described [28]. A total of 80 functions were used for optimization

(plus a constant, for a total of 81 basis functions). The quadratic program had 81

variables and 2193 linear constraints. A Sun Sparc 20 found the solution in two min-

utes using the MINOS optimization software [49]. The full order controller consisted

105



. .ma...... .n.... a.. - .. .: .

.. ........
-.

-1 -0.8 -0.6 -OA -2 0 02 0A 0.6 0. 1

Figure 6.8: Legendre pole locations.

of 104 stable states. A balanced model reduction [48] of the controller decreased the

order to 20 states with little degradation in performance or robustness.

For comparison, this problem was resolved using the FIR and GOBF basis. The

basis order, controller order, and reduced controller order with corresponding specifi-

cation error are tabulated for each basis in Table 6.1 and compared to the Legendre

basis described above. The specification error is the maximum percent in which the

original specifications were violated after model reduction. The basis order column

lists the minimum number of FIR and GOBF basis functions' needed to find a feasi-

ble solution which meets all of the design specifications. A balanced model reduction

was used to find reduced order controllers with minimal degradation in performance.

The minimum number of FIR basis functions needed to obtain a feasible solution was

found to be 85 compared to 30 GOBF. Figure 6.9 and 6.10 show that the majority

of the GOBF poles are lightly damped and distributed over a wide frequency band

while all of the FIR poles are at the origin. The GOBF pole locations were found

through a recursive process discussed in Section 4.4 that starts with the Legendre or

FIR pole locations, solves the optimization problem, and sets the new pole locations

to the poles of a reduced order Q plus some additional Legendre or FIR poles.
1Plus a constant
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Table 6.1: Basis Comparison.

Basis Basis Order Controller Order Specification error with

Full Reduced reduced controller [%]

FIR 85 108 22 1.14

Legendre 81 104 20 0.73

GOBF 30 53 18 0.42

RslA dm
-1 -0. -0.8 -A -02 0 02 0 4

RlkA

Figure 6.9: FIR pole locations. Figure 6.10: GOBF pole locations.
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Figure 6.11: EOS-AM1 full and reduced order Legendre compensators compared to

the classical design.

6.6 Compensator and Results

The full and reduced order Legendre compensators are shown in Figure 6.11 com-

pared to the classical design. Qualitatively, the constrained W2 design is a higher

gain controller than the classical with a broad notch between 0.2 and 0.6 Hz which

gain stabilizes the flexible body modes. This is illustrated on the Nichols chart in

Figure 6.12 and 6.13 where the circling motion of the loop transfer function corre-

sponding to the flexible body modes stays below 0 dB.

Tables 6.2 and 6.3 compare the constrained 7-2 design to classical, the uncon-

strained 712, and three previous Draper designs. The requirements are listed at the

top of the table and violations are emphasized with italics. The Constrained 712

design, in bold, is the only design that simultaneously meets all of the design specifi-

cations.
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Figure 6.13: Gain and phase margins of reduced Legendre controller.
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Table 6.2: Performance Comparison.

Control Method Disturbance Rejection Peak-to-Peak transient to 10 second

at Orbital Rate 0.1 in-lb torque pulse

[arcsec/in-lbs] [arcsec]

Requirement 2.8 4.8

Classical 2.8 24.1

7W2  43.8 5.1

Constrained W12 2.8 4.8

Previous Draper Designs

LQG 0.5 16.9

,oo 1.6 3.2

A 2.4 4.6

6.7 Conclusion

The constrained i2 design approach directly accommodates the precision pointing

control objectives listed in Section 6.2. This design is the first successful design of

many attempts, including classical and modern approaches, to simultaneously meet

all of the design objectives. No attempt was made to exceed the performance and

stability robustness objectives described in Section 6.2. Although the constrained W12

controllers were of order 53 and above, simple model reduction reduced the controller

order to as low as 18 states with little degradation in performance and stability

robustness.
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Table 6.3: Robustness Comparison.

Control Method Robustness to Modal Frequency Error Stability Margins

Mode 1 Mode 2 Mode 3 Gain Phase

[%] [%] [%] margin [dB] margin [deg]

Requirement 15.00 15.00 15.00 3.00 30.0

Classical 32.50 55.63 68.13 8.52 36.9

712 15.60 16.30 62.00 3.60 22.5

Constrained W72 15.00 33.00 58.00 3.00 30.7

Previous

Draper Designs

LQG 9.40 40.60 56.30 3.10 35.6

-H, 8.80 14.40 36.30 1.20 7.3

A 17.5 39.40 60.60 4.20 23.3
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Chapter 7

AVIS Disturbance Rejection

Control Example

As part of a spaceborne optical system technology demonstration program, Draper

Laboratory, under contract from Eastman Kodak Co., has developed and tested a six-

axis, Active Vibration Isolation System (AVIS) on the Structural Test Model (STM)

test bed [29] shown in Figure 7.1. The optical system technology selected for this

study was a 102" diameter telescope structure which is roughly the size of the Hubble

Space Telescope. The AVIS is designed to isolate the telescope from disturbances

transmitted through six active struts or main mounts that distort the wavefront and

perturb the position of the telescope image on the detector. Detailed descriptions

of the STM and the nominal AVIS are found in [29]. A second AVIS design found

in [46] was based on a constrained optimization approach proposed in [45] and was

successfully implemented and tested on the hardware system. This chapter offers a

third design based on the reformulated constrained 712 approach.

7.1 Design Objectives

The objective of the AVIS is to provide >20 dB attenuation between 10 and 200 Hz

while shifting the telescope-on-struts modes from 35-65 Hz to 5-10 Hz and provid-

ing reasonable gain and phase margin and compensator roll-off. Single-input/single-
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Figure 7.1: Structural Test Model.

output (SISO) classical and reduced constrained optimization [45] AVIS controllers,

which neglect coupling between the struts, have been designed, implemented and

tested on the STM [29, 46]. The nominal classical controller successfully attenuated

the closed loop in the 10-100 Hz range while keeping the primary structural mode

above 5 Hz and providing 2 dB and 10 degrees of gain and phase margin respectively.

This prompted the following design objectives for the constrained optimization con-

troller [46]:

1. Improve upon the closed-loop classical performance in the 10-200 Hz range.

2. Meet or exceed the gain and phase margins of the classical controller.

3. Keep the primary structural mode above 5 Hz in the closed loop.

4. Maintain stability with all six strut loops closed.

The constrained optimization design successfully met objectives 1, 2 and 4 while

objective 3 was achieved by appending filters that reduced the low frequency gain

of the controller. The constrained optimization controller actually provided >30 dB
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attenuation between 10 and 200 Hz and approximately 3 dB and 12 degrees of gain

and phase margin respectively as computed from the FRF data. New objectives for

a SISO constrained 12 controller are derived based on these results:

1. Reject sinusoidal disturbances with >30 dB attenuation in the 10-200 Hz range.

2. Provide 3 dB gain margin and 120 of phase margin.

3. Stability robustness to high frequency unmodeled dynamics through 20 dB per

decade compensator roll off.

7.2 Design Model

Discrete time linear models with 0.0001 second time step were developed for each strut

using a pseudo-linear identification (PLID) method [35] from FRF experimental data.

Figure 7.2 shows the FRF data for Strut #1 compared to the 58th order linear model.

The lightly damped modes below 200 Hz were intentionally left unmodeled because

they are collocated and easily controlled. The modeling error in the frequency band

of expected crossover is shown in Figure 7.3. Approximately 2 dB and 70 of gain and

phase error between the measured FRF data and the state-space model is observed in

the region of expected phase and gain crossovers respectively. These errors must be

factored into the gain and phase margin constraints in the constrained 1(2 formulation.

For example, to achieve 3 dB and 120 gain and phase margin with the FRF data, the

controller must achieve at least 5 dB and 190 gain and phase margin with the linear

model.

A 3rd order Pade approximate half cycle delay was appended to the control input

to model processing delay present in the control computer. The control input was

also passed through a zero order hold (ZOH) which accounts for another half cycle

delay.

The constrained 1(2 method requires the design model to be in standard LQG

form. Hence, the displacement output and control signal were selected as regulated

outputs and a disturbance and noise was added to the control signal and displacement
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Figure 7.3: Strut #1 system identification error at expected crossover range.
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Figure 7.4: AVIS design model.

measurement respectively as shown in Figure 7.4. Frequency weights were appended

to the model to penalize displacement error between 10-100 Hz and control effort at

low and high frequencies. The weights are listed below and shown in Figure 7.5.

* Displacement Error: 3rd order, 100 Hz, Butterworth low-pass filter cascaded

with 1st order, 1 Hz, Butterworth high-pass filter (We).

* Control: 2nd order filter with poles at 0.1 and 5000 Hz and zeros at 5 and

100 Hz (W,).

* Disturbance Force: 3rd order, 100 Hz, Butterworth low-pass filter cascaded with

1st order, 1 Hz, Butterworth high-pass filter (Wd).

* Noise: -60 dB (W).

Modeling uncertainties were included as a mechanism to meet the roll-off and gain

and phase margin objectives. An additive uncertainty P + A, was included to add

high frequency robust stability constraints, and a mixed multiplicative and divisive

uncertainty at the plant output (1 + Am)(1 - Am)-'P was included to constrain the

gain and phase margins. The outputs and inputs from these A blocks appear as extra

inputs and outputs in the design model.
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Figure 7.5: AVIS frequency weights.

7.3 Constrained72 Design

The design objectives were simultaneously enforced by placing frequency constraints

on the appropriate closed-loop transfer functions. Greater than 30 dB disturbance

attenuation in the 10-200 Hz range was enforced by placing frequency-domain mag-

nitude constraints at -26 dB on the closed-loop transfer function from disturbance to

error, or P/(1 - PK), in the 10-200 Hz band. The constraints and resulting closed

loops based on the model and FRF data are shown in Figure 7.6 compared to the

open-loop FRF data.

The gain and phase margin requirement was met by placing frequency-domain

magnitude constraints on the transfer function seen by the mixed multiplicative and

divisive uncertainty, or (1 + PK)/(1 - PK), as discussed in Section 3.5. To achieve

3 dB and 120 of gain and phase margin with the FRF data, constraints were placed

on (1 + PK)/(1 - PK) corresponding to 5 dB and 200 to compensate for the mod-

eling error at the crossover frequencies shown in Figure 7.3. The constraints were

118



3 0 . ........... ....... ....... . .......... .

oo iio0 ........ .. . . .

0i . i 10...
. 10 1010 :

Frequency tHzI

Figure 7.6: AVIS disturbance isolation constraints and closed-loop performance.

initially distributed about the expected crossover frequencies and after a couple de-

sign iterations they were moved to the actual crossover frequencies. The loop transfer

function shown in Figure 7.8 shows that there were actually two phase crossover

frequencies at approximately 210 and between 670-780 Hz while the gain crossover

occurred between 310 and 380 Hz. To achieve 5 dB and 200 of gain and phase margin

respectively, (1 + PK)/(1 - PK) is constrained below 11.05 and 15.07 dB at phase

and gain crossovers respectively. The gain and phase margin constraints and the

resulting closed loop are shown in Figure 7.7.

The 20 dB/decade compensator roll-off constraint was enforced by constraining

the transfer function seen by the additive uncertainty, or K/(1 - PK), as discussed

in Section 3.3. At high frequency, assuming a small loop gain magnitude, the roll-off

constraint is approximated by:

1- PK wco

where w, is the crossover frequency and a is the roll off slope in dB. The crossover

frequency was picked to be 300 Hz with an a of 20. A total of 60 constraints between
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Figure 7.9: AVIS 20 dB/decade compensator roll-off constraints.

800-5000 Hz were placed on K/(1 - PK). The constraints and the resulting closed

loop are shown in Figure 7.9.

7.4 Basis Selection

Three bases for Q were selected for this problem including the FIR and two GOBF

bases. The algorithm described in Section 4.4 was used to minimize the order of

the GOBF bases given an initial large order basis. For comparison, the algorithm

was initialized with two different Legendre basis selections. First the algorithm was

initiated with a 70th order Legendre basis with real poles at frequencies [25 75 ... 3475]

Hz plus a constant. After several iterations, the basis was reduced to 21 GOBF plus

a constant totaling 22 basis functions. At the algorithm termination, the majority

of the GOBF poles are lightly damped as shown in Figure 7.10. The final quadratic

program had 22 variables and 2337 linear constraints. A Sun Sparc 20 found the

solution in five minutes using the MINOS optimization software [49]. The full order

controller consisted of 92 stable states while a balanced model reduction [48] decreased
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Figure 7.10: Pole locations for 22nd and 27th order GOBF.

the order to 27 states with no degradation in performance or stability margins. The

figures and results presented in Section 7.3 are based on this solution.

The order of a constrained 7"t2 controller designed using the algorithm described in

Section 4.4 is sensitive to the initial basis selection and the model reduction choices of

the designer. To demonstrate this, the problem was resolved starting with a 50 order

Legendre basis with real poles at [25 75 ... 2475] Hz plus a constant. The iteration

number, basis order, basis type, solution time, compensator order and closed-loop

2-norm are recorded in Table 7.1. After 4 iterations, a minimum of 26 GOBF plus

a constant were needed to find a feasible solution. The 2-norm of the closed loop is

relatively constant through the iterations indicating that the closed-loop designs are

nearly identical at each step. The poles of the 27th order GOBF are compared to the

22nd order GOBF of the previous solution in Figure 7.10. Qualitatively the majority

of the poles in both solutions are lightly damped although in general they do not

match in z-plane location.

For comparison, the problem was resolved a third time with a 100th order FIR

basis. MINOS found a feasible solution after 17:31 minutes, however closer inspection
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Table 7.1: Iterative basis selection algorithm results.

Iteration # Basis Order Type Solution Time Compensator Order IIH112

1 51 Legendre 11:37 121 11.8080

2 42 GOBF 8:08 112 11.8066

3 34 GOBF 6:30 104 11.7965

4 27 GOBF 5:46 97 11.7403

of the closed loop reveals that the solution is actually invalid. High frequency spiking

occurs between the constraints in the closed-loop transfer function K/(1 - PK) shown

in Figure 7.11 making the solution unacceptable. This is a common problem when

a poor basis is selected for Q. One remedy to prevent spiking is to increase the

constraint density over the frequency band where the spiking occurs. Experience

shows that when the constraint density is increased with no adjustment in basis order,

the problem becomes infeasible, hence requiring even more basis functions. This

initiates an iterative process of resolving the problem with an increasing number of

basis functions and constraints until either a feasible solution is found or the problem

is determined infeasible. This can be time consuming and leads to excessively large

compensators. An alternative conjecture is that spiking may be a symptom of an

improperly weighted Wi2 norm minimization. In this case the solution is to increase

the corresponding frequency weight in the band where the spiking occurs. The hope

is that the weighted Wi2 optimization leg of the quadratic program will remove the

spikes after a feasible solution is found.

7.5 Compensator and Results

The full and reduced order constrained W12 compensators resulting from the 22nd

order GOBF solution are shown in Figure 7.12 compared to the classical design. The

constrained W(2 controller shows higher gain in and below the 10-200 Hz disturbance

isolation frequency band while exhibiting increasing phase lead above 200 Hz. The
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Figure 7.11: High frequency spiking in K/(1 - PK) with 100 order FIR basis.

additional gain of the constrained W72 controller provides better disturbance isolation

performance than the classical design in the 10-200 Hz band as shown in Figure 7.13.

At the gain crossover (310-380 Hz), the constrained W72 controller shows slightly more

phase lead than the classical controller. The exact gain and phase margins are shown

on the Nichols chart in Figure 7.14 for the reduced order constrained W72 compen-

sator with the model and FRF data. The model based gain and phase margins are

5 dB and 200 respectively as expected from the gain and phase margin constraints.

However, the actual FRF based gain and phase margins are 3 dB and 120 which

corresponds perfectly to the original objective. Finally, above 800 Hz the constrained

712 compensator gain rolls-off at 20 dB/decade.

The classical, constrained optimization, and full and reduced constrained 712 con-

trollers are compared in Table 7.2 in terms of their order and closed-loop 2-norm. The

order of the constrained 72 controller is derived by summing the order of the design

model, frequency weights and Q (the number of basis functions). The 2-norm is a

good qualitative measure of the degree of disturbance isolation and roll-off that the
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Table 7.2: AVIS controller comparison.

Controller Controller Order IH1I12

Classical [29] 3 16.9158

Constrained Optimization [45] 161 -

Constrained 112 92 11.3110

Reduced Constrained 7W2 27 11.6688

compensator provides. Little degradation is observed in the 2-norm performance be-

tween the reduced constrained 1W2 controller and full order design. A more dramatic

31% improvement in the 2-norm is observed between the classical and the reduced

constrained W12 design at the price of 24 states. The table also illustrates that the

constrained 12 method resulted in a much lower order controller than the constrained

optimization method before reduction for this example.

7.6 Conclusion

Active vibration isolation or disturbance rejection is well suited for the constrained 112

design method. Typical disturbance attenuation, gain and phase margin, and com-

pensator roll-off constraints are directly incorporated into the design process with

the appropriate compensation for modeling error. The GOBF were a particularly

important factor in finding a low order, well behaved feasible solution in this exam-

ple. Up to 100 FIR basis functions were shown to produce unacceptable solutions

compared to the 22th order GOBF solution which simultaneously met all of the ob-

jectives. The resulting constrained 112 controller was of order 92, but simple model

reduction reduced this controller to 27 states with no degradation in the performance

and stability margins.
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Chapter 8

Conclusions

A linear controller design tool was developed which poses the most typical specifica-

tions and weighted 7l2 objective as a convex mathematical program. The tool exploits

two simple types of constraints in the frequency and time domain to formulate a va-

riety of closed-loop specifications including robustness to modeling uncertainty and

gain and phase margins. The practical utility of this tool was demonstrated on real

applications by designing constrained 7W2 controllers for a precision pointing attitude

control system and an active vibration isolation system. The constrained 72 design

of the precision pointing attitude control system proved to be the first controller to

simultaneously meet the provided set of performance and stability robustness specifi-

cations. In the active vibration isolation system design example, the constrained W2

method was successful in meeting the design specifications while subsequent analysis

based on experimental frequency data verified the results.

This tool uses a direct parameter optimization approach of the closed-loop Youla

or Q-parameter. The Youla parameterization is an affine, free parameter represen-

tation in the variable Q of the set of closed loops achievable by all stabilizing com-

pensators. Although Q can be represented by any stable system, which spans an

infinite dimensional space, this space is approximated with a finite number of basis

functions for optimization. The basis selection for Q introduces an important tradeoff

between finding feasible solutions to the mathematical program and the compensator

dimension. A large basis for Q increases the probability of finding a feasible solution
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(if one exists) while driving the compensator order up.

One criticism of this method is that it results in high order compensators due to

the large number of basis functions needed to find a feasible solution. This problem

was addressed by considering the newly rediscovered Generalized Orthogonal Basis

Functions for Q rather than the standard FIR, Laguerre or Kautz bases. These

functions introduce extra flexibility in pole location and ordering that can be exploited

to find lower order compensators. An iterative algorithm was proposed as an ad hoc

way of finding a low order basis for Q. This algorithm starts with an high order

basis for Q with arbitrary pole locations, then uses model reduction on the solution

to find the basis poles for the next step. The algorithm proved to be effective in

reducing the basis order in the two examples presented. It was also demonstrated

that further model reduction of the resulting compensator often leads to lower order

controllers with little or no impact on stability and performance. This framework

provides an effective "engineer in the loop" method of synthesizing mixed objective

linear compensators.

Constraints on closed-loop frequency and time responses were central in this work.

Linear approximations of the frequency domain constraints were used in the exam-

ples. These approximations were found to perform better when using the MINOS

optimization software than the exact quadratic forms. For example, in some cases

the optimization algorithm could not find a feasible solution when the constraints

were posed in quadratic form, while a solution was found quickly when the con-

straints were in linear form. The frequency domain constraints were shown to be

useful in constructing robustness to modeling uncertainty and gain and phase margin

constraints. The small gain theorem acted as the link between the close-loop gain and

these specifications. As expected, this naturally produces gain stabilized solutions to

robust control problems. Phase stabilization solutions of uncertain dynamics were

not explored in this work.

The constrained 72 approach has proven to be a useful linear controller design

technique for many real problems. With the constrained 712 tool developed in this

work, an engineer can be given a plant and a set of design specifications and find a
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controller suitable for implementation or determine with some confidence that one

does not exist.

8.1 Future Work

The problem of finding the best basis for Q is still a problem at large. Much work

is needed to understand the infinite-dimensional constraint set on Q before a basis

is introduced. This understanding would help the engineer pick a minimum order

basis for Q that produces a feasible solution to the mathematical program. One idea

is to parameterize Q in terms of the real and imaginary parts of the complex fre-

quency response to solve for the frequency response of Q. Using system identification

techniques, a low order model of the solution may be obtained. Of course for this

approach to work, the frequency and impulse responses must be realizable by a linear

stable system which may be a limiting restriction of this method. Another idea is

to construct a basis for Q one pole at a time by searching over the pole locations

and picking the pole that comes closest to meeting the constraints. However at each

iteration, the mathematical program must be rewritten and resolved from scratch

which could be a computational burden.

There are plenty of possibilities to expand the menu of constraints to encompass

more control problems. One area left unexplored was the use of LMI constraints and

semidefinite programming. LMI constraints could open the door to maximum singular

value or 7o constraints and frequency-domain constraints over a band rather than a

single point. With the continuing innovation in computer technology and optimization

algorithms, LMI constraints are quickly entering the control community mainstream

and promise to rival linear and quadratic programming problems in efficiency.

The method presented in this work falls into the model-based control category,

where the plant model is used to construct the Youla-parameterization and the con-

straints. An attractive extension of this work would be to eliminate the need of a plant

model. A method that could construct the Youla-parameterization and constraints

from experimental frequency or time data would no doubt be a more powerful tool.
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Eventually a model of the stabilizing compensator will be needed for implementation

implying that data-based design methodologies will likely be hybrid where both data

and models will find their place.
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