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ABSTRACT

Growing electricity demand in Chile has prompted the proposal of new hydropower projects. In
addition to evaluating new projects to satisfy demand, a holistic assessment of alternatives as well as
potential gains from improved utilization of current hydropower resources should be completed.
This study aims to quantify potential gains from optimizing reservoir operations through a case
study of the 2-dam system, consisting of the Pangue and Ralco dams, on the Biobio River. This
analysis includes results from an optimization model built in GAMS (General Algebraic Modeling
System) and two simulations built in MATLAB by the author to assess the efficacy of various
operational schemes.
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1. BACKGROUND 1

1.1. Energy in Chile

Electricity demand in Chile centers on Santiago and the nation's mining industries (Pabich, 2008).

Increased GDP and transport in Chile have heightened energy demand especially in the northern

region. Chile aims to incorporate new energy at a rate of 400 to 700 Megawatts per year

(CONAMA, 2009). Power needs are prompting the proposal of new hydropower projects,
primarily HidroAysen's proposed dams on the Baker and Pascua rivers in the Aysen region, 1,400

miles south of Santiago. In light of the energy situation, is prudent to consider a holistic assessment

of both alternatives and potential for improving utilization of current resources, especially those

closest to areas of concentrated demand.

This study aims to estimate potential gains from improved utilization of operational hydropower

facilities in Chile. A case study of the two-dam system on the Biobio River was completed and

results extrapolated to other systems. The Biobio system, consisting of dams Ralco and Pangue, is

already connected to the Santiago grid (Sistema Interconectaco Central, SIC) and thus any additional

power obtained from the system should come at no additional cost or environmental damage.

1.2. Motivation for Optimizing Reservoir Operations

Chile has several multi-dam operations on its many large rivers. Dams are often placed in series on

a single river, or on various tributaries within the same watershed. Since inflows to downstream

dams are dependent on the releases from upstream dams, it is important to evaluate an operation

scheme that considers these relationships, formulating a global watershed strategy that maximizes

power output over all connected reservoirs.

On the Biobio River, the Ralco and Pangue dams and associated reservoirs are in series. The

outflow from the upstream Ralco reservoir is a large component of the inflow to the Pangue

reservoir (see Figure 1). The uncertainty of future hydrologic conditions must be considered. The

most important uncertain inputs to the system include upstream and tributary flows, evaporative

losses, and precipitation. This analysis describes an optimal operation plan that accounts for the

interaction between reservoir releases while characterizing the most important unknown future

inputs by analyzing historical variability.

1 Components of this section are a result of a group effort between Kristen Burrall, Gianna Leandro, Laura Mar,
Elisabetta Natale, and Flavia Tauro.
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Figure 1: Ralco and Pangue Dams and Reservoirs (Ediciones Especiales, 2009)

Figure 1 displays the geographic relationship of the dams to each other as well as to the rest of the
Biobfo watershed. The river originates in the Andes Mountains and flows to the mouth at
Concepci6n. The Rio Laja, a tributary of the Biobio, is another important river for hydropower and
can be seen in the graphic. The enlarged image shows the reservoirs (embalses), dams (presas), and
the Ralco power station (Central Ralco). The tinel de aducci6n is the 7-kilometer pipe that takes
water from the Ralco reservoir to the turbines.

2. OPTIMIZATION MODEL

2.1. Model Overview

This optimization used 30 synthetic flow series, called replicates, for each of two parameters. Each

replicate consists of one year of monthly flows. The parameters modeled were aggregated inflow to

the Ralco reservoir and tributary flow between the two reservoirs. The tributary flow between the
reservoirs adds to the Ralco discharge to form the inflow to the Pangue reservoir. Considering each
of the 30 replicates to be equally probable, the model maximizes expected total power, an average
over each replicate of the sum of power produced at both dams over all time steps.



2.2. Data Analysis and Replicate Creation

Six years of daily flow data (2003-2009) were obtained from Direcci6n General de Aguas (DGA)
flow stations (DGA, 2009). Flow stations and dam locations are noted in the satellite image below.

Figure 2: Satellite Image of Biobio Basin 2

The upstream station, Llanquen, is shown on the lower right hand corner in the Andes mountain

range. The Biobfo River flows down into the Ralco reservoir, covering 3,467 hectares at full

capacity (Endesa, 2009). The Ralco reservoir is not pictured in the satellite photo due to its recent
creation; see Figure 1 for a graphic. From the Ralco dam, an intake draws water down about 7
kilometers to the turbines and then the restitution point,3 directly upstream of the Huiri Huiri
station.

Below is a schematic of the system displaying how various flows were aggregated in this model.

2Plotted on Google Maps (2009). UTM coordinates for flow stations obtained from MOP (2009).

Point where the flow used to generate power is returned to the river.
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Figure 3: Schematic of Biobio Basin

Flows between Llanquen station and the Ralco dam were aggregated into the term Tribl and
estimated with a long-term flow balance (see Appendix A.1 for details on flow series estimations).
For the analysis, the upstream flow at Llanqu6n and the aggregated tributary flow were added
together to form a single term representing inflow to the Ralco reservoir. Similarly, all tributaries
between Ralco and Pangue were aggregated into the term Trib2. Therefore, the inflow to the
Pangue reservoir included the sum of the release from the Ralco dam and Trib2. Measured
discharges from the Ralco and Pangue reservoirs, which were used to recreate the actual release
schedule, are at Huiri Huiri station (including discharge and spill) and Ante Junta Pangue station
respectively.

Monthly flow series for Ralco inflow and Trib2 were modeled as lognormal distributions with the
statistical parameters of the historical data. The mean and variance for each month were calculated
from the six years of data. For the replicates, each month of flow was drawn independently from a
lognormal distribution with the parameters of historical data for that month of historical years.
From this procedure, thirty plausible time-series for each parameter were synthesized. See
Appendix A.2 for details of replicate creation.

2.3. Optimization Problem Formulation

The General Algebraic Modeling System (GAMS, 2008) was used to build the optimization model.

In this modeling system, the objective function and all constraints are represented symbolically.
GAMS uses a nonlinear solver algorithm to evaluate the optimal release schedule D,,, for each
reservoir and each time step (month) that optimizes the specified objective function over a horizon



of one year. In the following equation, Power generated over each month is summed over twelve
months, two sites, and thirty replicates, and then normalized by the number of replicates, to
represent total annual expected power output.

Equation 1: Objective Function
30 2 12

max Power,,, /30
r=1 s=1 t=1

The optimization is subject to several constraints, the most important of which are the following.

1. Continuity - Water balance at each reservoir must always be satisfied. Flows considered
were upstream flow, tributary flow, rainfall, evaporation from the reservoir, and outflows.

Equation 2: General Reservoir Flow Balance

St+l,,r = ,s,r + Q,s,, - D,s - Spill,,sr + rain,, - evap,~ * SA,, /1e6

Evaporation, evap, is in meters, surface area SA is in square meters, and the factor of 10'
converts cubic meters to MCM (106 cubic meters). The indices t, s, and rrepresent time step,
site, and replicate number. In the general equation, the change in storage for each time step
is equal to all inflows,Q, minus controlled discharge D and spilled quantity Spill, plus rainfall
directly on the reservoir, rain, minus evaporative losses, in meters, multiplied by
instantaneous reservoir surface area to obtain a volume. Precipitation and evaporative losses
were considered to be deterministic and seasonal fluctuations were calculated from historical
data for each site (see Appendix B.2).

Specific equations for Ralco and Pangue reservoirs are given below. All inflows to Ralco are
included in the Q term, while inflows to the Pangue reservoir include spill and discharge
from Ralco plus tributary flow in between, Trib2. Both reservoir releases include a
controlled discharge term as well as a spill term.

Equation 3: Continuity for Ralco Reservoir

St+l,l,r = St.lr + Qt.l ,r - Dt,l - Spill,1,r + raint,1 - evap,, * SAtr, /1e6

Equation 4: Continuity for Pangue Reservoir

S,+1,2,r = St,2,r + D,, + Spill.1 r + Trib2,, - Dt,2 - Spill,2, + raint,2 - evap,2 * SAt,2,r / l e6

Flows are all expressed in MCM/month (106 cubic meters per month).

2. Power output - Potential power output is a function of the product of discharge (D) and
head (H) at each time step (see Appendix C.1 for theoretical expressions). In the following
expression, power P is evaluated for each time step t, each reservoir site s, and for each
hydrologic time series r. Gamma (y) is a conversion factor and e is operational efficiency.

Equation 5: Power Production

P,,,,, = yeDt, ,lt,,At



The time step, At, is expressed as hours per time period, and P is expressed in Megawatt-
hours after a conversion coefficient is applied.

3. Storage Capacity - The storage volume in the reservoirs cannot exceed reservoir capacity.

Equation 6: Storage Capacity Constraints

min Stor; r S,,,, s max Stor,

Storage is constrained by the physical capacity of each reservoir in MCM, maxStor.
Minimum storage minStor is a constraint applied to ensure that the reservoir levels do not dip
below the required operational level. For the case of Ralco, for example, water level cannot
dip below the intake. Minimum storage values were estimated from documents that detailed
the maximum usable storage volume for regulation as being 800 MCM for Ralco (Ingendesa,
2009) and 80 MCM for Pangue (EcoAmerica, 2009). Therefore, minimum storage levels
were set at 400 MCM for Ralco and 100 MCM for Pangue.

4. Power Capacity - The power production cannot exceed the Megawatt rating of the
turbines.

Equation 7: Power Capacity Constraint (Major & Lenton, 1979)

P,s,r, Y * hours * CAPHs

Yis the power factor, assumed here to be 1.0 for both sites, indicating this analysis does not
account for demand patterns and it is assumed that all power produced over the time step
can be used or stored. CAPH is the MW-rating of each plant and hours is the number of
hours per time step.

5. Maximum discharge - Any water volume that must be evacuated each month above the
maximum throughput of the turbines is considered spill and does not generate power.

Equation 8: Maximum Throughput

D,, <D max

The maximum throughput capacity Dmax for each site was determined by each site's turbine
throughput rates (see Appendix B.1).

6. Storage-Head Relationships - Head H as a function of storage S for each site was
approximated. The relationships below are quadratic fits to data (see Appendix B.1 for data
source), and adjusted to reflect hydraulic head assumptions. The relationships are fitted to
usable storage and are accurate for storage values greater than minimum specified storage.

Equation 9: Ralco Storage-Head Curve

H1 = 69.4 - 5x10 -5 
S 12 + 0.1314S,

Equation 10: Pangue Storage-Head Curve

H2 = 28.9 - 0.002S22 + 0.7735S 2



7. Storage-Surface Area Relationships - Linear approximations to these curves were used.

Equation 11: Ralco Storage-SA Curve

SA1 = (S, - CAPD) * 3467e4 /CAPD, + 3467e4

The storage capacity, CAPD, for Ralco is 1,200 MCM and 3,467 x 104 is the maximum
surface area in square meters (Endesa, 2009).

Equation 12: Pangue Storage-SA Curve

SA2 = (S 2 - CAPD2 ) * 500e4 /CAPD2 + 500e4

The maximum surface area for the Pangue reservoir is 500 x 104 (EcoAmerica, 2009).

Decision variables to be determined were discharges from each dam (D,,) that dictate storage (S,,)

and head (H,,,) in each reservoir for each replicate.

The analysis used the General Algebraic Modeling System (GAMS) and one of its nonlinear

program solvers (GAMS, 2008). This problem can be formulated as a Quadratic Programming
Problem (QPP) if nonlinear equality constraints are substituted into the objective function, ensuring
all remaining inequality constraints are linear. See Appendix C.2 for QPP theory.

3. RESULTS

The optimal release schedule obtained from the GAMS model was included in two simulations to
assess power gains. One simulation was run over the duration of the six-year period for which data
was available. The second simulation was run over a set of 30 possible series of yearly reservoir

inflows. Both simulations were run over two initial storage conditions: the first where both

reservoirs were full at the start of the simulation at 1,200 MCM (Ralco) and 175 MCM (Pangue)

respectively, and the second where each storage initiated at the minimum operational level specified
as 400 and 100 MCM respectively.

3.1. 6-Year Simulation

The 6-Year simulation used the six years of data from the DGA and compared two discharge series.
The first series is a re-creation of the current scenario that utilized actual records of discharge from
flow stations downstream of the reservoirs (Huiri Huiri for the Ralco reservoir and Ante Junta
Pangue for the Pangue reservoir, locations of which can be seen graphically in Figure 2). The
second release schedule was obtained by the GAMS optimization model and adjusted in the
following way. Since the model was run over 30 potential future flow scenarios, discharge was
constrained by the lowest flow month over all series. Therefore, discharge was adjusted such that if
some was wasted via spill, though the discharge was still less than the throughput capacity, as much

spill as possible was moved to the discharge term. The simulation forced a reduction in discharge

when storage approached the minimum values. Other constraints were checked and enforced.

Below are flow and storage figures for the full initial storage condition. In the flow figures, red lines

represent combined inflow (including rainfall), blue is combined outflow (including evaporation),
and green is total spill volume for each reservoir.



Figure 4: Reservoir Flows, Current scenario
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Figure 6: Reservoir Flows, Optimal scenario
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Figure 7: Reservoir Storage, Optimal scenario



The optimal release schedule accomplished a relatively large spill volume reduction of about 35% for
both initial storage conditions. Results for annual power production for the various scenarios and
initial conditions are given in the table below.

Table 1: 6-Year Simulation, Annual Power Production

Current, Power [GWh] Optimal, Power [GWh]
Initial
Storage Ralco Pangue Ralco Pangue % increase

Minimum 2910 2110 3090 2240 6%
Full 2960 2140 3100 2280 5%

In the 6-Year simulation, a range of 5-6% improvement in total power generation was observed
with the optimal release schedule over the recreation of the current scenario. The optimal scenario
had a spill volume loss of about 7% of the total release volume.

3.2. Replicate Simulation

Since this simulation used synthetic flow series, the current scenario operation rules were
approximated. Average flows over the replicates for each month were assumed as the inflow series,
and the operation rule was to release the expected inflow for the month if storage was full or close
to full, and a reduced amount if storage approached the minimum. Flows were adjusted to ensure
constraints were not violated.

The current operating scheme for this simulation is not intended as an approximation to how the
reservoirs would actually be operated given the replicate flow series. It simply displays an operation
rule that could be used to form a basis for comparison to the optimized scenario. The table below
summarizes annual power production results from the simulation.

Table 2: Replicate Simulation, Annual Power Production

Current, Power [GWh] Optimal, Power [GWh]
Initial
Storage Ralco Pangue Ralco Pangue % increase
Minimum 2560 1970 2880 2140 11%
Full 2990 2240 3090 2290 3%

In the Replicates simulation, a range of 3-11% improvement was observed with the optimal release
schedule over the simple operation rule. Spill losses from the optimal scenario represented about
5% of total discharge volume.

3.3. Conclusions

Total current hydropower production in Chile is about 20,000 GWh/year (EIA, 2008). The Biobio
case study can be extrapolated to the remaining hydropower systems, assuming the systems have
similar potential for improved operations and spill reduction. With these assumptions, potential gain
from operations (3-11%) is estimated to be between 600 and 2,200 GWh/year over all hydropower
systems in Chile. The high end is an upper bound obtained from the comparison of the simple



operating rule to the optimal release series, as the optimal scenario achieves 5-6% power gains over
the re-creation of the actual scenario over six years. While not insignificant, this amount does not
replace the need for new power projects. Additionally, the potential gain from spill reduction from

the optimal scenario is another 5-7% by volume. To glean as much as possible from current
hydropower systems, the following areas for improvement can be investigated.

1. Operations - Stochastic optimization formulation can be improved with longer series of
historical data. Also, if it is possible to accurately predict flows within a short time frame, a
real-time control system with a flow forecasting input (from weather predictions) can be
utilized to reduce waste due to spill.

The efficacy of this technique depends on the upper bound for total potential gain from a
perfect prediction of future flows. In this case, running a deterministic optimization over all
30 replicates showed that the added potential power production from perfectly forecasting
the future ranges from 0 to 8% with a mean of 3% over the optimal scenario developed in
this analysis. This gain corresponds to 0 to 15% with a mean of 6% over the simple
operating rule defined in the replicate simulation. This means that, given perfect information
about future flows, the optimal operating procedure would only gain an average of 6% over
a simple operating rule. The small potential gain suggests that spending such time and effort
in the development of a real-time control model is probably not necessary for this system.

However, it is possible that more accurately characterizing historical variability could yield
more years where the high end of 15% power gains could be obtained. The possibility of
achieving power gains closer to the high end of the range indicates the potential benefit from
of a real-time control model. For this system, with more data, and for other systems, a
similar analysis should be completed to evaluate the effectiveness of a real-time control
system.

If the potential gain from a good forecast is high for a given multi-dam hydropower system,
a stochastic Model Predictive Control (MPC) technique could be used to formulate the real-
time control model. A forecast of future flows, along with current state variables such as
storage volume, is input into a stochastic optimization over a specified time interval. The
first optimal control decision is implemented for the current time step. At the next time
step, the process is repeated with new state information and new forecasts. See Appendix
C.4 for MPC details.

2. Increased reservoir storage - Storage would have to be significantly increased and doing
so would flood additional area and likely incur environmental and social detriment. Potential
gains for different reservoir sizes should be assessed prior to construction as storage is
probably not feasible to adjust in an already operational hydropower dam.

3. Increased hydraulic head - Since power is proportional to the product of hydraulic head
and discharge, an obvious way to increase power production is to increase the height of the
dam. In many cases such a post-construction modification is infeasible, however, in some
cases it is possible to increase height by a couple of meters with technology like fuse gates.
This technique requires flooding additional area.

4. Increased turbine throughput capacity - This can be accomplished by replacing turbines



with higher throughput models or by adding more turbines. Such alterations are probably
logistically infeasible in an operational facility, as large modifications to the turbine housing
structure and probably the intake as well would be necessary. In order to capture the power

from high flow events observed in the simulations of the Biobio case study, about a 50%

increase in throughput capacity would be required. A detailed cost-benefit analysis would

be necessary to evaluate potential gains from harnessing high flow events compared to extra

cost of higher throughput capacity. Such an analysis is likely to be most useful if completed
prior to construction.

From these simulations, it appears that current operations of the hydropower systems on the Biobio

River are harnessing very close to the maximum amount of power. Only very small gains can be

expected through further optimizing operations, and it is possible these gains are only seen because

of the various assumptions that were required due to lack of information. The potential gains for

various optimization techniques, such as real-time control with forecasting, should be assessed for

other large hydropower systems in Chile.

Depending on the hydropower system, gains can likely be achieved by a combination of improved

release schedules, use of weather forecasting in a real-time control model, and prior evaluation of the

optimal throughput capacity and reservoir characteristics.



METHODS DETAIL

A.1. DATA ANALYSIS

Daily data was obtained for all required stations (Llanqu6n, Ante Junta Pangue, and Huiri Huiri) for

the longest contiguous period of time available. This study analyzed six years of daily data for all

stations between 1/2003 and 1/2009 from the DGA (2009).

Daily data was converted into monthly average data, ignoring gaps if possible. Monthly averages

were assessed ignoring data gaps by simply calculating an average over available data. If necessary,

data gaps were filled in with values interpolated linearly from days surrounding missing data.

All inflows between Ralco and Pangue were aggregated into the term Trib2. Inflow between

Llanquen and Ralco was termed Tribi, which included all tributaries downstream of the Llanquen

station as well as those that feed directly into the reservoir.

Trib2 was estimated by assuming that, over a long period of time (the six-year period between 2003

and 2009), the total tributary flow should equal the difference between the Ante Junta Pangue and

Huiri Huiri. That is equivalent to assuming constant storage in the Pangue reservoir over the six

years. The tributary flow was subsequently distributed as Huiri Huiri's flows over the year such that

the seasonal variation follows Huiri Huiri but sums to the appropriate amount. However, it is likely

that storage was increasing over that time period and thus Trib2 was underestimated. The final

paragraph of this section describes an adjustment made to remedy this possibility.

Tribl was estimated by a similar process, which assumed the Ralco reservoir started and ended at

relatively constant volume over the six-year period. The tributary flow was then distributed monthly

as scaled by the Llanquen station flows.

Finally, tributary flows were adjusted for Tribl and Trib2 such that during the current operation

scenario (when flow station Huiri Huiri was assumed to be the outflow from Ralco and Ante Junta

Pangue station the outflow from Pangue), the storage in each reservoir did not dip below the

minimum storage prescribed as 400 MCM for Ralco and 100 MCM for Pangue. The amount

required to prevent storage from dipping below the minimum values was added to the estimated

tributary flow.

A.2. REPLICATE CREATION

Data from stations upstream and downstream of each reservoir were aggregated into monthly flow

series. From the flow stations and a long-term water balance, direct inflows to the reservoirs were

estimated.

The top left figure of Figure 8, below, shows the six years of aggregated inflow to the Ralco

reservoir. The other three figures show synthesized replicates. In each figure, 10 of 30 replicates are

shown. Aggregated inflow to Ralco includes the sum of Llanquen and Tribl. The following figure,
Figure 9, shows the yearly data and replicates for Trib2.

APPENDIX A.
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Seasonal variability is well represented in these replicates, as are peaks and lows. Of course,
additional historical data would be useful in better characterizing potential future series.

Replicates were generated assuming the flow in each month, month i, is lognormally distributed with
mean and variance equal to the historical mean and variance for month i over the 6-year period.
Thirty replicates were generated for each of two flow series (aggregated inflow to Ralco and Trib2)
in a matrix using MATLAB's lognrnd function. The parameters can be calculated as (MATLAB,
2009):

1= log(m2  v+m 2)

S= log(v /m 2 + 1)

Where m and v are the mean and variance of the historical data.



ASSUMPTIONS

B.1. DAM AND RESERVOIR CHARACTERISTICS

Reservoir Geometry

* Maximum surface area

o Ralco: 3,467 hectares at full storage (Endesa, 2009)

o Pangue: 500 hectares at full storage (EcoAmerica, 2009)

* Storage

o Maximum: 1,200 MCM for Ralco and 175 MCM for Pangue

o Minimum: There is reason to believe the storage is not allowed to dip below the
prescribed values of 400 MCM and 100 MCM for Ralco and Pangue respectively;
this is because the "live" or usable storage for each is approximately 800 MCM
(Editec, 2009) and 80 MCM respectively (EcoAmerica, 2009).

* Hydraulic Head

o Ralco: Estimated hydraulic head is 155m when the reservoir is full. This is an
approximation based on observed power performance, since exact specifications for
the height of the intake and the total drop to the turbines could not be found. There
appears to be a larger head difference than 155m but there is head loss in the long
length of pipe, so it was decided that hydraulic head would be back calculated using
power production with a full reservoir (690 MW operating at full throughput
capacity of 450 m3/s corresponds to a hydraulic head of about 155m).

o Pangue: Hydraulic head was approximated as height of water at the dam, with a
maximum of 103m (Universite du Qu6bec a Montreal, 2009). Unfortunately, this
analysis lacks crucial dam specifications that would be found in the inaccessible EIA.

* Storage-Head relationships

o Quadratic curves were fitted to data obtained from a university course project
(Brown & Vargas, 2004).

* Storage-Surface area curves approximated linearly using maximum surface area
corresponding to a full reservoir.

* Maximum throughput (Dmax): 450 m 3/s for Ralco (Editec, 2009) and 500 m 3/s for
Pangue (EcoAmerica, 2009).

* Minimum spill was not considered. Ralco is required to spill a minimum ecological flow to
maintain water in the river between the dam and the restitution point but it is not accounted
for in this analysis.

Power Production

* Efficiency was estimated as the discrepancy between theoretical power capacities based on
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the maximum hydraulic head and maximum throughput and the MW-rating of each plant.

* MW Capacity of Ralco is assumed to be 690 MW (Editec, 2009) and Pangue to be 467 MW
(Colegio de Ingenieros de Chile, 2009)

* Power factor (or load factor) is assumed to be 1.0, meaning demand patterns are not
considered. It is assumed that power produced at any time can be utilized.

B.2. EVAPORATION AND PRECIPITATION

Precipitation and evaporation are not modeled stochastically. Each is estimated to vary in the same
way over each year according to historical trends for each site.

Precipitation

Precipitation in meters was estimated as having the seasonal variation of a precipitation curve shown
in a DGA report for 2004 (DGA, 2004). For each site, the total precipitation expected per year was
scaled by the seasonal variation curve. Approximate yearly values in millimeters were obtained from
the same DGA report. Ralco, in the upper part of the Biobio basin, was approximated to have
3,000 mm per year total precipitation, concentrated between May and August.

Precipitation volume was estimated as the amount falling on the entire reservoir area, irrespective of
the current storage level, assuming all rainfall within that region ends up in the reservoir.
Approximated precipitation volumes for the Ralco reservoir are shown in Figure 10.

I Rainfall on Ralco Reservoir

Month

Figure 10: Approximated Rainfall on the Ralco reservoir

Pangue, located between Ralco and Los Angeles, was approximated to have 2,000 mm/year
precipitation with the same seasonal variation.

Yo
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Evaporation

Ralco was assumed to have a total of 101.6 mm/month4 and Pangue to have 122.2 mm/month in

evaporative losses. In order to obtain the seasonal variation, it was assumed evaporation is roughly

twice as high in the summer months as the rest of the year.

4According to the report (translated): "As for water losses from evaporation product in the basin average monthly values

reached 122.2 mm in the area of Los Angeles. In parts High River Bio Bio (Ralco), evaporation is lower, reaching values

of 101.6 mm/year." (DGA, 2004). This analysis has assumed that the 101.6 mm/year is a mistake and really intends the

value to be per month.



LITERATURE REVIEW

C.1. Hydroelectric Power Production

Hydroelectric plants use water turbines to drive generators that produce electrical power. The
hydropower production function is proportional to the product of discharge through the turbines
and hydraulic head at the dam, described by the following equation:

Equation 13: Hydroelectric Power Generation

P = EfR(t)H(t)dt

Where P is power, R(t) is the rate of water discharge, and H(t) is the instantaneous hydraulic head at
the dam. E is a constant based on the efficiency and load factor of the plant (Mays, 1996 as
referenced by Chatterjee, et al., 1998). When time is discretized, the total power production can be
written as follows (Major & Lenton, 1979):

Equation 14: Discretized Power Production

P = yeRH,At

Where P, [MWh] is the power production over time step i, R, is the total discharge over
the period, H, is head at the beginning of the period (or an average head over the
period), At is the number of hours in the period, and y is a conversion coefficient.
The unitless constant e represents the operating efficiency of the plant. H is a function
of S, the total storage in reservoir s at the beginning of time period t, as determined by
the geometry of the reservoir.

C.2. Quadratic Programming Theory

This optimization model is described by a quadratic objective function and linear constraints, and
the technique that such solves a problem is termed Quadratic Programming.

The basic theory behind solving quadratic programming problems, in the general case, will be
outlined below. The mathematical problem formulation is the following (McLaughlin, 2008):

1 T

MaximizeF =cix + -xjQjkk MaximizeF(x)=
X1 ,X2 , , n  

2

such that

g,(x) = Axj -bO, 0, = 1,..., mT

g,(x) = -x, O, i = mT+l,...,mT+n

or

g(x) = GTx - f < 0

where
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GT [=] 11b

Dim(G) = (n)X(m, + n), Dim(f) = (m, + n)X(1).

Q is a symmetric matrix. G are the constraint inequalities. There may also be equality constraints,
but generally those can simply be used to eliminate a decision variable until the problem can be
constrained solely by inequalities.

Define the following expressions:

* C(x): set of constraints active at solution x (includes active inequalities and strict equalities)

* G,,(x): a by mA active gradient matrix at x, comprised of columns of G,, with i E C(x)

* ji (x): a vector of active right-hand side values at x, comprised of rows of P, with i E C(x)

* Z,,(x): n by n - mA active constraint tangent matrix (the columns are orthogonal to

columns of G such that GT(x)Z(x) = 0)

SGTX -p = 0: active constraint equations

The argument x may be eliminated in the following discussion for clarity, though it should be noted
which of the above matrices are dependent on the current solution x.

C.2.1. Local and Global Optimality of a QPP

Local Optimality

In order for a candidate solution x* to be locally optimal, the Kuhn-Tucker conditions need to be
satisfied. The Kuhn-Tucker conditions ensure that x* is a local maximum by checking that
F(x*) 2 F(x) for all x obtained from infinitesimal feasible perturbations about x*. The
following discussion will include the basic application of the Kuhn-Tucker conditions to a QPP.
The four basic conditions, as applied to a QPP, are as follows (McLaughlin, 2008):

1. Feasibility - Solution x* is feasible if and only if GTx * -P 0, meaning all constraints are
satisfied.

2. Stationarity - The objective function gradient at x* must be a linear combination of the
mA active constraint gradient vectors. Using the definition of the objective function for a
QPP,

( A=dF(x*) .- A = c + Qx
dx

Each component of X, Ai, is the Lagrange multiplier for the associated constraint g,(x).
Stationarity is satisfied if the above set of linear equations is consistent, or

p= Rank[G] = Rank[G Ic+ Qx*].

3. Inequality Lagrange Multipliers - If x* is a local maximum, X, > 0 for all active
inequalities.

4. Curvature - Feasible perturbations of x* must lie in the active constraint tangent subspace



defined by Zj,(x*). The curvature of the objective function in the active constraint tangent

subspace is measured by the projected Lagrangian Hessian matrix W1k,
d 2L(x* ) 2_______

Wk = Z r  Z = ZjlZqk. If X* is a local maximum, W must be negative
dxdx dx dx

semidefinite, meaning that the eigenvalues of W are s 0. For a QPP,
WIk = Zk,(x*)QjkZji(x*) r 0 is the necessary condition.

If x* satisfies all four Kuhn-Tucker conditions, it is a local maximum.

Global Optimality

Once a candidate solution x* has been proven to be a local optimum, it is necessary to check if it is
also a global optimum. The necessary conditions are twofold:

1. The feasible region is convex. For a QPP, the feasible region is always convex since it is
comprised of linear constraints, which are both convex and concave.

2. The objective function is concave along feasible perturbations from all x E F, the feasible
region. Thus, the projected Hessian used in KIT condition 4 must be negative semidefinite
for all points in the feasible region including boundaries (not just at x* as confirmed in

KT4): Z T (x)QZ(x)5 0 for all x E F.

For a QPP, if the above expression is satisfied, a local maximum is a global maximum.

A QPP optimization must be solved once for a single optimization, as in this analysis, or at every
time step in a real-time control procedure. The procedure for finding the optimal solution (carried
out by many commercial software packages) can be any number of methods including interior point,
active set, or conjugate gradient methods. Generally, active set methods are utilized.

C.3. Other Stochastic Optimization Methods

Unknown hydrologic variables are always a challenge in water resources optimization. In a reservoir
system, upstream inflows are generally the variable in question. Techniques such as Stochastic
Dynamic Programming (SDP) have been widely used in such problems to account for inflow
uncertainty in the sequential stages of the decision process. In SDP models developed between the
1960s and the 1980s, inflows were often described as a Markov chain process. Such methods,
known as 'steady-state' SDP optimization, were traditionally used to generate stationary policies,
which dictate optimal releases for a given system state (storage and previous inflow) at a given time
(Serrat-Capdevila & Valdes, 2007). A minimum expected cost is also defined for each state of the
system. More recently, real-time SDP formulations have been proposed by authors such as Bras et
al. (1983) and Alarcon and Marks (1979). In real-time methods, expected costs associated with each
state of the system are used as boundary conditions for the optimization over a finite horizon, and
the process is repeated at each time step.

In deterministic SDP, a multi-stage problem is solved by optimizing a recursive equation, starting
from the final stage and following a backward recursion. At each stage, the decision variable is
optimized depending on the state of the system. If the state of the system is known (as in the
deterministic case), this can be done directly; when the inflow is considered as a random variable,
the decision is based on weighing each possible inflow with its probability of occurrence as
determined by all historical records available. Effective representation of stochastic variables



depends on how decision variables are assigned based on previous hydrologic data and estimated
probability distributions for the future time steps. Thus, it is important to derive realistic
distributions for stochastic variables, which requires each time step's flows to be discretized into
ranges, each of which is assigned a probability of occurrence (Bras et al., 1983, Tejada-Guibert et al.,
1995, and Capdevila & Valdes, 2006). For example, one approach would discretize time into n
stages, flow into n ranges, and would require the use of n transition probability matrices.

A steady-state formulation would dictate operating policies for each time step of one water-year
depending on the state of the system (current storage and previous inflow). The inflows would be
modeled as annual periodic first order Markov chains (Serrat-Capdevila & Valdes, 2007) from which
current stage probabilities could be derived, each conditional upon previous stage inflow. Such a
steady-state formulation would assume constant probability distributions for each year.
Autoregressive forecasting dictates that if the previous stage inflow deviated from the historical
mean, the expected values for subsequent stage flows will deviate in the same direction, given a
historical positive correlation between future stage flows (Serrat-Capdevila & Valdes, 2007).

Stochastic Model Predictive Control techniques have been discussed by authors Calafiore et al.
(2000), Khargoneka and Tikku (1996), Stengel and Ray (1993), Tempo and Bai (1997), Tempo and
Dabbene (1999) as referenced in Batina (2004).

C.4. Model Predictive Control

In order to evaluate the optimal solution to a real-time control problem, a technique called Model
Predictive Control (MPC) can be employed. MPC is an algorithm that uses a dynamic model of the
process, a history of control decisions, and an optimization cost function over the prediction
horizon to calculate the next set of optimum control decisions (Bemporad et al., 2001). The time-
step is determined by the scale of volatility of the inputs and the time resolution of flow forecasting.

The steps involved in an MPC analysis are as follows:

Assume future time series for inputs for the remaining planning horizon (using flow
predictions based on weather patterns for the duration of additional knowledge from
forecasting, then historical data for times past prediction range)

Adjust operations by solving the optimization problem at the current time-step using known
current values of inputs. Optimize decision variables over all times in the planning horizon
with the all assumed future input series.

At each time-step, MPC solves a single optimization problem. Given the current state of the system
(storage, head, and inflow), the amount of water to be released from each dam at each time-step
over the rest of the planning horizon is determined. Using this procedure, real-time decisions about
reservoir operating schemes can be made at each specified time-step.

Theory

MPC is a real-time optimization method by which a set of optimum control moves is developed at
each time-step for the rest of the planning horizon. MPC is analogous in many ways to strategy
games such as chess. In chess, a skillful player envisions a sequence of likely moves for his
opponent and chooses his first move based on the sequence that optimizes the expected end result.



Only one move can be applied before the opponent chooses a move, which may or may not be what
the first player predicted. Thus, the vector of future opponent moves is like the vectors of unknown
input variables. Such a strategy is termed a "receding horizon" algorithm since at each time-step, the
finite planning horizon to be optimized is shifted by one frame into the future. The methodology of
MPC can be described as follows (Camacho & Bordons, 1999).

1. At each instant t, all future input series to the model are predicted over the planning horizon
N. The predicted series depend on all known values (inputs and outputs) prior to instant t
as well as on the future control signals u,,,, i = t ... N-1.

2. The future control signals over the rest of the planning horizon N are calculated. This set
includes values ut ... UT_1. In traditional MPC, this is done by minimizing a cost function that
is a quadratic representation of the error between the predicted output signal and a reference
trajectory. However, in this model, a quadratic benefit function representing net monetary
gain from hydropower production will be maximized over the planning horizon.

3. The first control signal u, the control action for the current time, is implemented. All future
control signals are discarded since the entire vector of values will be recalculated in the
following time step based on new state and input variable values. Step 1 is then repeated
using the new state and input values for step t + 1 and all future control decisions for the
shortened and shifted horizon N, ut+, ... UTI, are determined (Huang & Kadali, 2008).

The MPC process is well described graphically.



Figure 11: Model Predictive Control Schematic (Nikolaou, 2001)

At each time tk, process measurements are taken and fed into a prediction of future inputs, which is
used in conjunction with the process model to optimize control signals over the rest of the planning

horizon. At each time step, only the first control move is implemented, and the entire optimization
problem is resolved considering a new measurement of input and state variables.

In this case, the control signals are represented by a matrix of the discharges from each reservoir for
the rest of the planning horizon, starting with the current time t.

u S- U s- Rs--' R s-2

S- ,i = t...T-1

S-1 s-2 Rs-l Rs= 2T-1 T-1 T-1 T-1

The "state" of the system is a matrix including the current storage V and the previous stage inflow,
Qi1, for each of two reservoirs.
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