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Abstract

A sustainable economy will depend, if only partly, on efficient renewable-feedstock
conversion to chemicals and fuels, and advances in that direction have relied and will
continue to rely on strain engineering. Traditional methods comprising directed genetic
modifications (i.e. targeting specific genes) have been quite successful in improving
several phenotypes of industrial interest. Evolutionary approaches have also contributed
much to these efforts and are gaining attention in particular for addressing complex
phenotypes. Most commonly, mutagenesis and selection has been the method of choice,
but many other random search-based approaches for phenotypic alteration have been
developed in recent years. One such method, transcriptional engineering, relies on
transcriptome-wide modifications that can be exploited to better complex traits. The
initial aim of this work was to build upon the idea of transcriptional engineering in
bacteria, which had been tried in our laboratory through mutagenesis of the principal
sigma factor, sigma D.

Initially, we explored new targets for transcriptional engineering. Using error-prone PCR,
we constructed libraries of several stress-related sigma factors in Escherichia coli (sigma
S, sigma E, and sigma H) and screened them for phenotypes of interest. We also
considered the alpha subunit of the RNA polymerase as a tool for phenotypic alteration,
and fruitfully used it to improve butanol and solvent tolerance, accumulation of
hyaluronic acid, and L-tyrosine production. Carefull assessment of the sigma and alpha
libraries for a few phenotypes revealed that not all the targets were equally useful, and



that succeeding at improving one trait does not imply that the same target could be used
to improve a different one.

We also extended the use of the already-proven target, sigma D, to a new species,
Lactobacillus plantarum. We constructed random mutagenesis libraries of this gene and
produced a cell library that was selected in conditions relevant to the production of lactic
acid. This chemical has attracted attention for its use as a food and pharmaceutical
additive, and in the production of specialty chemicals and biodegradable plastics. We
isolated two mutants with significantly higher growth rates in media acidified with both
lactic and hydrochloric acid, one of which is also better at fermenting lactic acid at low
pH.

The mixed results obtained during our target search forced us to re-frame the question of
what constitutes a useful library for phenotypic alteration. We hypothesized that the
phenotypic diversity of a library could be quantified and used to evaluate the potential of
different populations for strain improvement. After developing the conceptual framework
to support it, we proposed a metric to estimate phenotypic diversity and showed that it
correlates with the usefulness of a library with regard to finding an improved mutant. The
metric, termed divergence, can be used to assess the potential of different targets, to
prioritize and economize screening experiments, and, as we later proved, to optimize the
construction of libraries.

The usefulness of evolutionary methods is often times muddled by the element of chance,
and more so because failing to isolate an improved mutant does not suggest a
modification to the experimental approach. With this in mind, we tested whether the
divergence metric could be used to systematize the construction of new libraries when
screening or selection of a previous library fails to deliver mutants improved for a trait of
interest. We used the metric for successively modifying the alpha subunit library design
until a mutant of interest was isolated. We showed that this effort increases the likelihood
of finding desired clones, in our case, a butyrate-tolerant mutant that grows significantly
faster in the presence of the toxic chemical compared to the wild-type. An optimized
library, in which surface amino acids of the C-terminal domain of alpha were targeted for
mutagenesis, was constructed by gathering the information about how modifications to
the library design affected the resulting divergence. We repeated the approach with the
sigma D libraries, and considerably enhanced the diversity by targeting regions 4.1 and
4.2 of this protein for mutagenesis. We used the novel sigma factor libraries to improve
tolerance to the simultaneous stresses of overlimed bagasse hydrolysate and high
concentrations of ethanol.

Lastly, we explored the use of our divergence metric to study key determinants of
regulatory proteins (residues, regions, structures, or functionalities) that have a high
potential for altering phenotype. We modified our divergence quantification protocol to
test whether individual amino acids in the alpha subunit could be experimentally
considered as determinants for diversity. We showed that not only can single residues be
probed individually, but also that, by testing the phenotypic diversity produced by
saturation mutagenesis at different positions, we could find regions and functionalities



that are promising for further studies. We proposed this as a novel way for reducing the
search space in a particular target for the purpose of increasing the quality of a library.

What started as an effort to improve upon transcriptional engineering, soon evolved into a
general approach to optimize random search-based methods for isolating traits of interest.
We demonstrated the use of this approach for guiding the construction of transcriptional
engineering libraries, and in addition outlined the conceptual framework for extending
this work to any genetic library. As such, the work of this thesis served both theoretical
and practical goals, and furthered the understanding of how evolution can be exploited in
the laboratory.

Thesis Supervisor:

Gregory Stephanopoulos, W.H. Dow Professor of Chemical Engineering and

Biotechnology
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Chapter 1

1. Introduction

1.1 Motivation

In the most fundamental of ways, humankind owes its subsistence to the exploitation of

natural resources. Most notable are crops and animals, and a close look to our

relationship with the species that we have strived to improve for millennia evidences the

influence crops and animals have had in our history. Exploiting nature through

domestication is the clearest example and in some sense the definition of phenotypic

improvement. In this context, metabolic engineering emerges from our relationship with

the species that surround us as an enabling science that aims at systematizing efforts to

manipulate traits of interest. The basis of the science lies in the mapping between

genotype and metabolism -defined as the network of biochemical reactions that sustain

life - and between metabolism and phenotype.

One main application of the principles of metabolic engineering has been the

improvement of industrially-relevant microorganisms. In fact, the revolution heralded by



the advent of recombinant DNA technology was almost immediately applied to

improving traits in single-celled organisms, such as bacteria and yeast. Simple genetic

modifications, such as gene overexpression or deletion, have been exploited for

metabolic engineering when the mapping between the genotype and phenotype is

straightforward. For all their simplicity, directed genetic modifications are the basis of

phenomenal achievements in the production of fermentation-based chemicals.

In spite of the successes of directed genetic changes for phenotypic improvement, not

all the traits of industrial interest can be tackled with these techniques, because some

phenotypes are complex and poorly understood. Following the commonly-used recipe of

imitating nature, scientists have tried to accelerate and direct the process of evolution to

confront these sorts of challenges. Evolutionary methods consist of creating libraries of

genotypic variants and searching in them an individual that is improved with respect to

the traits of interest; therefore, they are said to be based on random searches. The

classical evolutionary approach for strain improvement, whole-cell mutagenesis and

selection, predates the advances and tools of molecular biology and continues to be useful

today.

As the challenges of industrial biotechnology become more ambitious and the

achievements of evolutionary approaches become more widespread, so grows the list of

experimental methods for random search-based phenotypic alteration. One such

technique was being developed with great promise in our laboratory not long before the

work of this thesis began, based on mutagenesis of components of the native

transcriptional machinery (Alper & Stephanopoulos, 2007; Alper et al., 2006). The

approach stemmed from earlier findings that artificial transcription factors could be used



for strain improvement (Lee et al., 2004; Park et al., 2005a; Park et al., 2003; Park et al.,

2005b), and the goal became to improve upon these tools, collectively called

transcriptional engineering.

How to improve upon transcriptional engineering quickly raises the question of what it

means to improve upon an evolutionary approach in general: it is not possible to improve

upon something if one does not know how good it is to begin with. Therefore, the

majority of the present thesis aims at developing tools to evaluate and compare

evolutionary approaches for strain improvements, and it applies them in particular to the

optimization of transcriptional engineering.

1.2 Objectives and Approach

The overarching goal of improving upon transcriptional engineering was progressively

decomposed in different specific objectives.

1.2.1 Aim 1: Find New Targets for Transcriptional Engineering

The transcriptional engineering approach is based on global perturbation of the

transcriptome in order to alter many cellular functions simultaneously, but cellular

physiology is regulated at several levels and by different nodes of the network (Ma et al.,

2004; Martinez-Antonio et al., 2008). With this in mind, we explored the use of targets

for phenotypic alteration other than the principal sigma factor of E. coli, which was the

focus of previous studies in our laboratory (Alper & Stephanopoulos, 2007).



As a first step, we constructed mutagenesis libraries of sigma factors other than the

housekeeping factor (sigma D, coded by rpoD), in particular, we focused on the stress-

associated factors sigmas S, E, and H, and later on the alpha subunit of the RNA

polymerase. We also extended the use of rpoD libraries in a different bacterial species, L.

plantarum. Each of the libraries was tried for the improvement of traits of interest in

order to test whether these targets held promise for global transcriptomic modification.

1.2.2 Aim 2: Develop a Quantitative Metric for Evaluation of

Transcriptional Engineering and other Evolutionary Approaches

for Strain Improvement

While examining targets for transcriptional engineering, we realized that not all targets

are useful for improving phenotype. To complicate matters, we observed that some

targets were successful for some phenotypes but not others. Therefore, we began to

develop the conceptual grounds for evaluating randomized libraries, which allowed us to

define a statistical metric based on the quantification of the phenotypic diversity of

different populations.

We then demonstrated the use of this metric (termed divergence) for comparing

different populations in L. plantarum, either based on error-prone PCR libraries of the

principal sigma factor or on whole-cell chemical mutagenesis. We tested the ability of

this metric to inform us on the probability that a new phenotype will be found in a

population of cells.



1.2.3 Aim 3: Optimize Transcriptional Engineering Libraries with the Use

of the Divergence Metric

At that point of the thesis, we had relied on undirected changes in the sequence of genes

of interest (accomplished by error-prone PCR, epPCR, of the entire coding region),

which theoretically can deliver a large proportion of variants of the wild-type sequence

with potentially useful phenotypic characteristics. Because epPCR hinges on creating

combinatorial arrangements of many nucleotides, the number of variants that can be

constructed is virtually infinite.

We hypothesized that optimization of libraries for strain improvement aimed at

reducing the search space could increase the probability of finding a desired mutant. The

tradeoff of such a reduction is that potentially useful mutations are forgone by delimiting

the nucleotide regions that can be changed, and we believed that our divergence metric

could aid in estimating the impact of this tradeoff. Guiding the design of libraries by

sequential probing the search space is an especially valuable time- and resource-saving

effort when an improved mutant is not readily isolated. We chose one such case to test

our optimization algorithm.

1.2.4 Aim 4: Find and Study Key Interactions of Transcriptional

Engineering Targets for Phenotypic Alteration

The reduction of the search space that resulted from optimization suggested that some

regions of a target are more important than others for their capacity to alter phenotype.

With this in mind, we extended the concept of phenotypic diversity and used it to search



for and to examine regions in our transcriptional engineering targets with most potential

for delivering traits of interest. We applied the method for quantification of divergence to

individual amino acids in the alpha subunit of the RNA polymerase, and we found that

some residues are more promising than others as targets for mutagenesis. Furthermore,

we tried to understand the potential of different amino acids and regions in the context of

their functions in transcriptional regulation.

1.3 Thesis Organization

The overall organization of this thesis follows closely the specific aims outlined above.

Chapter 2 establishes the motivation for phenotypic improvement and describes the

traditional approaches in metabolic engineering. It discusses the successes and limitations

of these approaches, and emphasizes the need for random search-based evolutionary

methods for strain improvement. Chapter 3 expands on the description and underlying

principles of evolutionary methods, and provides the background for the general idea of

transcriptional engineering.

This preamble leads to Chapter 4, which deals with the use of previously-found and

novel targets for transcriptional engineering and draws on the results of specific aim #1.

It reports on the use of these targets for improving several industrially-relevant

phenotypes. Chapter 5 sets the conceptual grounds for the development of the divergence

metric and its use to quantify the potential of strain improvement libraries. This part also

illustrates the correlation between the newly-developed metric and its use to compare the



potential of different libraries, corresponding to specific aim #2. These two chapters set

the stage for the optimization efforts that constitute a central theme of the thesis.

Chapter 6 describes the experimental approaches for optimizing transcriptional

engineering libraries of the alpha and sigma D subunits of the RNA polymerase. It

reports on the improvement of additional phenotypes of practical significance, and it

epitomizes the results of specific aim #3. Chapter 7 concerns with the last of the aims,

and exemplifies the use of the divergence metric to study key interactions that hold

potential for building better libraries. It also gives the conceptual basis for using the

divergence metric to guide the construction of libraries by reducing the search space.

Finally, Chapter 8 concludes with a summary and a list of the most important

findings, and puts forth recommendations for future work. The experimental methods are

described in Chapter 9, and references are given in Chapter 10.



Chapter 2

2. Phenotypic Improvement as a Goal for

Metabolic Engineering

Traditionally, metabolic engineering has combined genetic modification, flux

determination, and phenotype evaluation to rationally improve traits of interest (Raab et

al., 2005; Stephanopoulos, 1999). More recently, the toolset for phenotypic modification

has been enriched by the use of evolutionary and combinatorial approaches (Santos &

Stephanopoulos, 2008a). In this Chapter, we discuss the motivation for modifying

phenotypes and illustrate the traditional approaches for achieving this goal. The

principles and the many tools that have been the bedrock of metabolic engineering are

described in sufficient detail so as to emphasize the significance of phenotypic

improvement; we then turn to the limitations of these traditional methods, which have

encouraged the use and development of the evolutionary approaches described in the next

Chapter.



2.1 Motivation for Phenotypic Improvement

The mere observation that wild species have properties that are measurably different from

those that have been in contact with humans from immemorial times is a testament to our

incessant drive to manipulate nature. Regardless of how rich and diverse it may seem, our

environment does not readily provide resources optimally suited for human use and, in

essence, this is the motivation for phenotypic improvement. Both the cause and the cure

for this discrepancy are contained in the concept of evolution. Selective breeding has

been the traditional tool for guiding evolution of a few species away from their untamed

counterparts in order to preserve or enhance the properties that serve us.

Because microorganisms are invisible to the naked eye, they remained undiscovered

for most of human history, and thus they have not been a principal target for selective

breeding. Nonetheless, several species of microorganisms have evolved closely with

humans, and some degree of phenotypic modification has resulted from this rather

passive form of domestication. Staples of Western civilization such as wine, bread, and

cheese, are possible because of the fermentative metabolism of microorganisms (many

examples in other civilizations exist, but most are unfamiliar to the author). The

microscope allowed formalizing the interest in a previously hidden world into what today

is the field of microbiology. A better understanding of microbial physiology then enabled

a more scientific approach to selective breeding of microorganisms.

The industrial revolution brought about the systematization and scale-up of

production practices, and this school of thought eventually infiltrated into the food

manufacturing and processing business. Fermentation processes were not left behind, and

they soon became the target for extensive optimization. New products, from solvents



(Woods, 1995) to antibiotics (Kumazawa & Yagisawa, 2002), were soon being produced

at unprecedented scales. The microbial strains responsible for these products, even those

that had been traditionally used for the small-scale version of the processes, had to

perform in the new conditions. Industrial microbiologists could not wait for evolution to

usher the necessary adaptive changes, and thus the development of methodological

approaches for phenotypic improvement became a key goal of overall process

optimization. With the advent of recombinant DNA technology and the molecular

biology revolution, more precise genetic manipulations for trait modification were

possible, which is the basic premise behind what is now the field of metabolic

engineering.

Three parameters are of main interest to the metabolic engineer in the context of

industrial-scale bioprocesses: yield, titer, and productivity. The first refers to the amount

of product synthesized per unit of substrate; the second refers to the concentration of the

product of interest in the fermentation broth; and the third to the rate at which the product

of interest is synthesized (Marten et al., 2002; Shuler & Kargi, 2002; Stephanopoulos et

al., 1998). All three are tightly linked to the economic profitability of a production

process, and thus, all are relevant in the context of phenotypic improvement.

The strict requirement of economic viability has for a long time biased the use of

biochemical processes for the production of value-added compounds. Although we have

only been able to tap into a small part of nature's "warehouse", several products have

been exploited as pharmaceuticals, agrochemicals, pigments, and raw materials for

polymer synthesis (Demain & Fang, 2000; Kayser & Quax, 2007). Bioactive natural

products are often intriguingly complicated, making chemical synthesis economically



infeasible (Zhong & Yue, 2005) and ensuring that the biochemical or microbiological

routes remain competitive.

Increasingly, the general appeal of sustainability has directed attention to commodity

chemicals derived from renewable resources. These products are characterized by small

profit margins and large scales, and thus present a different set of pressures and

constraints on the process designers and engineers. In particular, yields must be high

because the lignocellulosic feedstock is usually a major cost driver; titers and

productivities are inherently limited because both the substrate and product mixes tend to

be toxic to the fermenting microorganism (Lynd et al., 1999; Lynd et al., 2005). Much

has been accomplished in recent years through traditional and new approaches in

metabolic engineering. The following section examines traditional approaches for

phenotypic improvement in greater detail.

2.2 Rational Approaches

2.2.1 Host Selection

The first and most obvious requirement for initiating a phenotypic improvement program

is selecting a strain to modify. Finding an optimal host for biochemical production is the

foundation of any metabolic engineering effort, but is far from trivial. In the context of

commodity chemical manufacturing, the ideal host would degrade lignocellulosic

components, ferment the resulting sugars (both hexoses and pentoses) with high yield,

and tolerate high titers of the end-product and other toxins at high temperatures (to avoid



cooling costs). The remarkably high biodiversity, especially for microorganisms, may

suggest that an ideal host for production in these conditions already exists, so that the real

challenge is finding it. Since there is no clear path for solving this needle-in-a-haystack

problem, most researchers have opted to engineer optimal hosts by combining desirable

characteristics into a host using recombinant DNA technology. Such efforts usually entail

alteration of phenotypes dictated by multiple genes. The systematic implementation of

this approach requires substantial knowledge of the host to be modified, which has

favored the use of "laboratory strains" that are research-friendly, but not necessarily

robust enough for industrial applications. The characteristics that make laboratory strains

most appealing are also to a large extent those that will be needed for a long-term

commitment to any production strain.

The first requisite is genetic competence, the ability of a strain to accept foreign DNA

in a controllable fashion. High transformation efficiencies are desirable, especially for the

successful use of combinatorial libraries for screening genes or gene variants that confer

a particular phenotype of interest (see discussion in following Chapter). Even though

transformation protocols have been used for a long time, they tend to be host-specific and

based on empirical observations rather than on underlying principles. Furthermore, their

success seems to depend on a variety of factors such as the activity of host restriction and

DNA-modification systems (Alegre et al., 2004; Matsushima et al., 1989), genetic

background (Umemoto et al., 1996), origin of replication and marker of the vector

(Aukrust et al., 1995), to name a few.

A second trait that makes laboratory strains attractive is the availability of well-

characterized metabolic engineering "modules" that allow manipulation of the genotype



in different ways. Examples include promoters of various strengths (Alper et al., 2005;

Hammer et al., 2006; Jensen & Hammer, 1998a), termination sequences, repressor-

inducer systems, plasmids (with known copy number, replication mechanism,

compatibility with other plasmids, etc.), chromosome integration cassettes for building

knockouts or stable replication of genes, etc.

A third feature is the availability of "omics" platforms and algorithms for genome-

wide characterization of cellular responses to different manipulations and environments

(microarrays, metabolic network models, etc.). A fourth, and most understated feature of

all, is the great amount of accumulated knowledge on the physiology of laboratory strains

provided by generations of researchers. Because most of these studies were initiated with

divergent goals, which at times converge in solving practical problems, similar

circumstances are hard to replicate for strains that will be ad hoc designed for production

of a particular chemical, even with significant monetary resources.

2.2.2 Genetic Modification

After a host with some or all of the above properties has been recognized and selected,

metabolic engineering programs can begin, in accordance to overall process

considerations. Since genotype-phenotype maps are complex and largely unknown,

metabolic engineering relies heavily on rigorous phenotype evaluation (with or without

flux determination) following each genetic modification. This constitutes the traditional

path for metabolic engineering. Much of the effort in strain improvement lies in trying to

explore the interconnectivity of this map, because a basic premise of metabolic

engineering is that phenotype arises from the biochemical interactions between gene



products and metabolites and not only from the gene products themselves. In addition,

recombinant DNA technology opened the door for transferring genetic determinants from

one organism into another in order to effect changes in metabolism, effectively

expanding the native genotype-phenotype map of an organism and the resulting

metabolic network.

There are various ways by which genetic-level modulations can be indtroduced into

an organism. In the context of metabolic engineering, they can be categorized in three

classes: (i) efforts that aim at altering the level of a gene product; (ii) efforts that aim at

altering the interactions between the gene product and its targets; and (iii) efforts that aim

at introducing heterologous gene products into the host. All of these genetic

manipulations rely on a handful of molecular biology tools and protocols, some of which

are explained in the Materials and Methods Chapter (if relevant to the present thesis), or

are covered elsewhere (Sambrook & Russell, 2001b; Sambrook et al., 2006).

Manipulations that belong to the first class are based on the idea that the

concentration of gene products may impact phenotype by changing the relative

significance of the nodes that constitute the metabolic network. For example, if the gene

product is an enzyme, altering its concentration may have an effect in flux, depending on

its control coefficient at the base level (Stephanopoulos et al., 1998), making the reaction

more or less important relative to others. If the gene product is a regulator, it may affect

phenotype by forcing a response that does not occur at the base level (or by eliminating

the response altogether). An increase or decrease in concentration, or complete

elimination of gene products can be accomplished in one of several ways. Replacing the

native promoter with a weaker or stronger one has been used to alter the flux through



pathways of interest and to balance intermediate pools (Alper et al., 2005; Hammer et al.,

2006; Jensen & Hammer, 1998a; Klein-Marcuschamer et al., 2007). Alteration of copy

number through the use and engineering of extrachromosomal DNA vectors has also

been used (Jones et al., 2000; Tao et al., 2005). Knockouts or gene deletions have been a

great tool for elimination of reactions that compete with the formation of products of

interest and regulatory responses that elicit unwanted phenotypes (Cirz et al., 2007;

Green et al., 1996; Shams Yazdani & Gonzalez, 2008; Sillers et al., 2008).

Manipulations that belong to the second category are based on the fact that

interactions between enzymes and metabolites or between regulators and their targets

(DNA, RNA, proteins, etc.) determine the flow of information between the nodes of the

metabolic network. For example, rendering rate-limiting or controlling enzymes resistant

to feedback inhibition has been used to unlatch the flux through metabolic pathways for

the production of valuable metabolites (Lutke-Eversloh & Stephanopoulos, 2005; Lutke-

Eversloh & Stephanopoulos, 2007; Malumbres & Martin, 1996; Sahm et al., 1996).

Although the initial isolation of these enzymes has been commonly achieved using

random search strategies (see next Chapter), only few simple and directed manipulations

are needed to replicate the results in the same or closely-related strains (and, thus, they

can be regarded as simple phenotypes). Another example of this type of manipulation is

the introduction of engineered versions of native enzymes with favorable kinetics, or with

altered substrate or product specificity (el Hawrani et al., 1996; Lunzer et al., 2005;

Munir et al., 1993; Yoshikuni et al., 2006a; Yoshikuni et al., 2006b). Yet another

example is the alteration of the interaction between a regulator and its target, interesting

instances being specialized ribosomes for the controlled translation of specific transcripts



(Brink et al., 1995; Hui & de Boer, 1987) and the manipulation of gene noncoding

regions in order to alter the signal transduction pathways that control to their expression

(Wei et al., 2008).

Manipulations that belong to the third category are based on the fact that, by

introducing non-native gene products, one may add nodes to the metabolic network that

did not exist in the wild-type host. This has allowed a wide range of applications, from

the production of fuels in easy-to-manipulate hosts (Atsumi et al., 2008a; Atsumi et al.,

2008b; Hanai et al., 2007) to transferring phenotypes like heat-shock protection from one

species to another (Liu et al., 2007).

2.2.3 Flux determination

Because metabolism is defined by the set of biochemical reactions in the cell, and

reactions are dynamic, the fluxes through the metabolic pathways are a main source of

information in the process of translating genetic modifications into observable

phenotypes. Reaction fluxes can be computed by measuring the in vivo distribution of

isotopic tracers through the metabolic network, using one or several analytical chemistry

tools, such as gas chromatography and mass spectroscopy (Antoniewicz et al., 2007;

Young et al., 2008).

A key requirement for flux determination to be useful is that a model of the metabolic

network must be available. Because of the nature of the phenotypes that were considered

in the present thesis, these techniques were not used, so we omit the details for brevity. A

more complete account of the applications of flux determination for gathering



information about the metabolic network can be found elsewhere in the metabolic

engineering literature.

2.3 Examples

Since its formal inception nearly two decades ago, metabolic engineering has achieved

sterling success in the development of novel microbial strains for use in sustainable and

cost-competitive bioprocesses. Some notable examples include the production of bulk

chemicals such as citric acid, lactic acid, propanediol, ethanol and biopolymers such as

poly(hydroxybutyrate) (PHB) and other poly(hydroxyalkanoates) (PHAs), as well as fine

chemicals such as synthetic drug intermediates, lycopene and lysine (Klein-

Marcuschamer et al., 2007; Raab et al., 2005). Let us describe some of these in greater

detail to provide a more complete description of the traditional metabolic engineering

framework.

1. Citric acid is a common flavor and acidifying additive of extensive use in the food

industry, with a worldwide market in the order of millions of tones per year (Forster et

al., 2007a). A strain of the yeast Yarrowia lipolytica has been recently engineered for the

production of citric acid from sucrose to compete with a less environmentally-friendly

process that employs the fungus Aspergillus niger. The approach combines the

introduction of a heterologous invertase enzyme from Saccharomyces cerevisiae, which

allows the utilization of sucrose, with overexpression of the native isocitrate lyase, which

minimizes the flux to the competing product isocitrate (Forster et al., 2007a; Forster et



al., 2007b). This approach exemplifies the use of two of the three classes of genetic

modifications described in Section 2.2.2.

2. Propanediol presents another instance that illustrates the success of metabolic

engineering (we consider 1,2-propanediol in particular). This achievement, added to the

fact that propanediol has been traditionally derived from petroleum, has fueled significant

interest in metabolic engineering for advancing sustainable processes. Propanediol is

employed as antifreeze and as a feedstock in the production of polyester resins,

cosmetics, pharmaceuticals, household products, among others (Cameron et al., 1998).

Introduction in E. coli of an aldose reductase from rat was shown to divert methylglyoxal

to 1,2-propanediol , which is otherwise not measurable in the fermentation broth

(Cameron et al., 1998). Subsequent optimization, which involved testing other enzymes

with reductase activity and changing the fermentation parameters, yielded improvements

in the recombinant process (Altaras & Cameron, 1999; Altaras & Cameron, 2000).

3. A final example is the production of polyhydroxyalkanoates (PHAs) in E. coli.

These are polymers or co-polymers of hydroxyacyl units; the polyester formed by 3-

hydroxybutyrate monomers, PHB, has received most attention for its potential use as a

biodegradable plastic. PHB is a clear, brittle compound, synthesized from acetyl-

coenzyme A (acetyl-CoA) in three steps. The reactions are catalyzed by the enzymes 3-

ketothiolase, acetoacetyl-CoA reductase, and poly(3-hydroxybutyrate) synthase, or their

homologues (Anderson & Dawes, 1990). Although several bacterial species naturally

produce PHB from sugars, recombinant production in E. coli has increased product yields

and simplified downstream purification steps (Nikel et al., 2006; Tyo et al., 2006). The

engineered host has been constructed by several research groups through the introduction



of the three necessary enzymes from one of several species, such as Ralstonia eutropha,

Cupriavidus necator, Alcaligenes latus, and Streptomyces aureofaciens (Choi et al.,

1998; Mahishi et al., 2003; Nikel et al., 2006). The resulting strain carries out the

conversion of acetyl-CoA, an abundant intermediate of central carbon metabolism, to

PHB and accumulates the product intracellularly. Cost reduction of PHB production has

been accomplished by the use of inexpensive carbon sources such as biomass

hydrolysates (Keenan et al., 2006; Lee, 1998), but the fact that aerobic conditions are

needed implies high energy consumption and thus negates many of the benefits offered

by PHB (Harding et al., 2007). A recent metabolic engineering effort aimed at

circumventing this limitation by placing the operon under the control of anaerobic

promoters (Wei et a]., 2008). Further genetic modifications and process improvements

could render PHB competitive with synthetic plastics, even at low oil prices.

Apart from bulk chemicals, specialty and therapeutic compounds have also attracted

the attention of metabolic engineers. Such is the case of the development of production

platforms for lycopene and other carotenoids (Klein-Marcuschamer et al., 2007),

glycosylated proteins (Hamilton et al., 2003) and other biotherapeutics (Gerngross,

2004). While most of the early success almost exclusively relied on introducing a

particular enzyme or set of enzymes into a host cell (Betengaugh & Bentley, 2008), the

recent explosion in the volume of gene and protein data significantly improved

understanding of cellular metabolism and genetic regulation. Advances in microbial

genetics and plant biotechnology have emboldened metabolic engineers to take on

grander and more pressing challenges such as energy, climate change, human health, and

others.



Admittedly, undertaking these tasks is easier said than done, but monumental as these

challenges may seem, the incessant technological developments - most notably, recent

innovations in gene sequencing (Shendure et al., 2004), de novo oligonucleotide

synthesis (Tian et al., 2004), in silico enzyme design and protein engineering (Dwyer et

al., 2004), "omics" tools (Park et al., 2008), and synthetic biology (Benner & Sismour,

2005; Sprinzak & Elowitz, 2005) - provide several reasons for metabolic engineers to

remain optimistic.

2.4 Limitations of Rational Approaches

The vast literature available about the progress of metabolic engineering using rational

approaches may suggest at first glance that phenotypic improvement can generally be

achieved by simple and directed genetic modifications. For such efforts to be

implemented, the researcher must have at minimum a working hypothesis, if not a clear

understanding, about the biosynthetic reaction network, along with its kinetics and

regulation. Not only is a hypothesis about what genetic modifications are likely to result

in the desired phenotype crucial, but it is also imperative that the trait of interest depends

on no more than a few genetic determinants. These requirements stem from the fact that

the list of genetic modifications (including gene deletions, overexpressions, alteration of

regulatory signals, relief of feedback inhibition processes, etc.), are infinite even when

considering only a few targets for manipulation. In addition, the time it takes to consider

even a handful of such modifications is long enough that simultaneous consideration of

many hypotheses is impractical. In hosts that have not been "domesticated" enough,



genetic modifications may be impossible altogether. In summary, for traditional

approaches to be adequate, the phenotype to be engineered must be mechanistically

simple and relatively well understood.

Out of the three parameters that are targeted for optimization - yield, titer, and

productivity - yield is most amenable to traditional approaches consisting of directed and

rationally-selected genetic changes. Yield depends mainly on the structure of the

metabolic reaction network, and, once the network is described, mathematical and

computational tools can be used to optimize its structure to maximize the amount of

substrate that ends up as product (Burgard et al., 2003; Durot et al., 2009). Once an

optimal network is constructed in silico, the working hypotheses can be tested in vivo.

Titer and productivity, on the other hand, depend on interactions between the entire

metabolic network and the conditions of growth (temperature, pH, media composition,

etc.), which complicates matters because the properties of allbiomolecules and their

chemical interactions are affected by those same parameters. Therefore, high titers and

productivities in a particular set of conditions are usually, though not always, complex

phenotypes. Environmental tolerance in particular becomes a target for improvement

when the process conditions that are needed for profitability differ significantly from

those in which the strain of interest is naturally found. If possible, the metabolic engineer

should select a host that has evolved under the conditions similar to those of interest, as

this would lower the likelihood of limitations arising from environmental toxicity.

The prerequisites for host selection described in Section 2.2.1, added to the need for a

robust microorganism, has stimulated the development of phenotypic improvement tools

for dealing with complex and poorly understood traits. Most of these, as will be explained



in greater detail in the next Chapter, are based on random modifications of the genetic

material and subsequent isolation of the variants that show improvements in phenotype.

In some cases, directed genotypic changes have been used to improve phenotypes that are

usually reckoned as complex. Conceptually, this is not surprising, given that cellular

systems are themselves complex with a hierarchical regulatory structure that allows them

to use a few nodes to control many others simultaneously (Jeong et al., 2000; Martinez-

Antonio et al., 2008). For example, overexpressing a regulator that coordinates the

response to a certain stress may improve the tolerance phenotype because the regulator

itself coordinates a complex set of reactions. In other cases, one or a few genes have

evolved for protecting against exactly the environmental condition that limits growth,

and, therefore, we can replicate the protecting effect with a few modifications.

One instance is illustrated by Fiocco et al., who overexpressed heat shock proteins in

L. plantarum to alleviate growth inhibition at higher-than-normal temperatures (Fiocco et

al., 2007). Examples similar to this are few and tend to be the exception rather than the

rule. More importantly, even when they deliver initial improvements, these are

commonly modest. When no additional changes are obvious, further optimization

requires the use of random methods.

Thus, comprehensive metabolic engineering programs consist of (i) constructing a

strain that catalyzes the needed biochemical conversion efficiently using directed genetic

modifications (traditional approaches), and (ii) improving its fitness to perform under the

required process conditions. The order of these two steps could probably be reversed

without much consequence to the final result, although evidence is lacking in this regard.

During the course of the research presented by this thesis, we improved several complex



phenotypes (production of lactic acid, L-tyrosine, and ethanol) in strains that were

already competent in the production of the compound of interest, either naturally or

through directed genetic modifications. In any case, it is important to emphasize that

random approaches for fitness improvement are pursued in combination with traditional

metabolic engineering approaches, and it is important to know the promises and

limitations of both to apply them productively.



Chapter 3

3. Random Searches for Phenotypic

Improvement

The rational approaches described in the previous Chapter may be the trademark of

metabolic engineering, but random approaches based on evolutionary principles have

also generated considerable interest. The list of experimental methods that belong to this

category is rapidly expanding, encouraging metabolic engineers to develop supporting

tools and to gain a deeper appreciation of the fundamentals behind them. We now turn to

explain and examine these methods in light of the general goal of the thesis.

The evolutionary process is random and, given that humans have for long depended

on natural variation for successful use of selective breeding, random searches for

phenotypic improvement are rarely a new enterprise. The scientific counterpart to this

process has consisted in both trying to understand and exploit the molecular basis of

variation and inheritance, and in developing reliable techniques for selecting the variants

of interest from a diverse population. These concepts have been used once and again for

engineering everything from biomolecules to entire cells. Although the term 'directed

evolution' has been traditionally used in the context of protein engineering, the basic



premises behind it can be applied to improvement of cellular phenotypes, which is the

connotation given in the present discussion.

In this Chapter, we first describe the principles that allow random searches for

phenotypic improvement, we then provide a set of examples that illustrate the increasing

interest in applying these principles, and finally focus on transcriptional engineering as a

particular case belonging to this family of tools. This discussion sets the stage for the

hypotheses and experiments that follow in subsequent Chapters.

3.1 Evolutionary Principles Can be Exploited for

Phenotypic Modification

Evolution has been defined in different ways throughout history, although with respect to

biological systems, it specifically refers to the change in inheritable traits produced by the

combination of three processes: variation, selection, and reproduction. Selective breeding

for improving species of interest has been conventionally based on natural variation,

partner selection, and reproduction. As such, it is the artificial character of the selection

pressure which has delivered the desired results. This process is slow, but has delivered

notable outcomes considering we have applied it for no more than a few millennia. The

molecular basis of evolution remained unknown for most of our history, but a period of

intense scientific inquiry enlightened us to the point we now apply evolutionary

principles to engineer a wide variety of biological systems.
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Figure 3.1-1. Evolutionary approaches for strain improvement

Genotypic diversity can be introduced into a cell by randomizing genetic elements, resulting in a library of

mutants. One can then search for phenotypes of interests (different phenotypes are shown by different

colors) by purifying selection. Individual mutants can then be tested separately to confirm the presence of

the trait. Iteration, in lighter gray, is optional, and is used to refine the search.

Simply put, the evolutionary approach consists of the iteration of two steps: the

creation of genotypic diversity and the isolation of the variants that have interesting

properties (Figure 3.1-1). As these overarching principles began to emerge, scientists

progressively relaxed the original attributes of the concept of evolution (which is tied to

the process of speciation). For example, molecules have become analogous to species,

and in vitro amplification akin to reproduction. Variation is no longer naturally-

engendered nor is the result of sequentially unfaithful replication of the genetic material,

but is introduced in a highly parallel manner by the experimenter. Such mental



framework has allowed the development of techniques such as SELEX (systematic

evolution of ligands by exponential enrichment), in which randomly generated and

successively amplified RNA variants are selected for their ability to bind a ligand

(Ellington & Szostak, 1990), and gene shuffling (Stemmer, 1994).

In the context of metabolic engineering, complex cellular phenotypes, such as those

described in Section 2.4, have become a major target for the application of evolutionary

methods. These are appropriate when one has the experimental tools to substitute the

effort of gaining deep mechanistic understanding of the traits of interest by (i) the

creation of cell populations (libraries) with meaningful phenotypic diversity, and (ii) the

development of a relevant selection or screening scheme that allows isolation of

improved variants.

Environmental tolerance phenotypes are particularly suited for these approaches,

since they remain poorly understood and the selection step can be associated with growth.

Metabolite overproduction has also been a major area where library-based methods have

been employed (Baltz, 2001; Demain & Solomon, 1986). Nonetheless, as will be

discussed later, selection or screening procedures are time- and resource-intensive, even

when based on growth (Bonomo et al., 2008; Demain et al., 1999; McDaniel et al.,

2001). We now examine some of the techniques commonly used for generating genotypic

diversity and for isolation of strain variants with improved traits.

3.1.1 Generation of Diversity

There is a long list of techniques that have been developed for and devoted to the

generation of genotypic diversity. When based on mutagenesis, which will be the focus



of this discussion (others will be described later), the methods differ in the location of the

mutations, the mutation bias or identity (i.e. what bases are most commonly altered,

whether transversions are less common than transitions, etc.), the type of host in question,

and others.

3.1.1.1 Whole-cell Mutagenesis

The most general way of effecting mutagenesis, and historically the most common, is

whole-cell mutagenesis, which implies that all the DNA content of the cell is targeted for

modification (when followed by selection, the protocol is usually referred to as 'classical

strain improvement,' or CSI). This approach allows the researcher to treat the system as a

'black box', and is appropriate when (i) even basic mechanistic understanding about the

phenotype to be improved is lacking (or the supposed mechanism is intricate) so that one

cannot guess where mutations are likely to influence it; (ii) the host is hard to manipulate

genetically (see Section 2.2.1); or (iii) a combination of (i) and (ii).

Whole-cell mutagenesis can be accomplished by physical or chemical means.

Undoubtedly, the most widespread method for the former is exposure to ultraviolet (UV)

radiation. UV-rays cause a variety of photochemical reactions in DNA, such as the

intrastrand dimerization of adjacent pyrimidine bases, which result in mismatch repair

and eventually to fixation of the mutations (Witkin, 1976). Chemical mutagenesis is most

frequently implemented by DNA-methylating substances (e.g. methyl methane sulfonate,

dimethyl sulfate, N-methyl-N-nitrosourea, and N-methyl-N-nitro-N-nitrosoguanidine or

simply nitrosoguanidine) or by ethidium bromide. Methylating agents are electrophilic

and readily react with various nucleophilic positions in DNA, forming N-methyl or O-

methyl adducts (Wyatt & Pittman, 2006). Some of these adducts are mutagenic because



they cause mispairing and some because they lead to the formation of abasic positions

following depurination (Wyatt & Pittman, 2006). Ethidium bromide, on the other hand, is

a DNA intercalating agent that induces mutagenesis by obstructing topoisomerase

function and by causing DNA fragmentation (Schneider-Berlin et al., 2005; Turner &

Denny, 1996).

Whole-cell mutagenesis continues to be a common technique, being conceptually

straightforward and enjoying an extensive record of successes. One of the legendary

instances of this approach boasts a 4000-fold improvement in penicillin production

(Parekh et al., 2000). Another, more recent and modest (yet impressive) example of the

use of this technique for improving titers of the enzyme glucose oxidase in Aspergillus

niger fermentations was reported by Singh (Singh, 2006). Chand et al. used a similar

approach to augment the production of cellulases in a fungal strain, an application that

has immediate impact in the production of commodity chemicals from biomass-derived

sugars (Chand et al., 2005).

For all its successes, whole-cell mutagenesis has also several limitations. The

sequence space (i.e. the set of all sequences that are theoretically possible in a collection

of variants) for undirected mutagenesis of entire genomes, which are usually millions of

bases long, is for all practical purposes infinite. This implies that the probability of

success is low, or that the library to be screened must be large. As will become apparent

in the next section, large library sizes present challenges to the isolation step. Another

disadvantage of whole-cell mutagenesis is the accumulation of deleterious base changes

as the evolutionary cycle is iterated (Figure 3.1-1). The result is the isolation of



specialized, but overall unhealthy, variants that are likely to underperform when placed in

the mixture of stresses inherent of most bioprocesses (Sauer, 2001).

Genome shuffling was recently applied to circumvent the drawbacks imposed by the

appearance of crippling mutations. Although based on a combination of old concepts and

techniques, the method has awakened renewed interest. After an initial round of

mutagenesis and purifying selection, the strains are pooled together and fused via

protoplast formation. Subsequent rounds of selection, mutagenesis, and fusion are

performed until the desired result is obtained. According to the authors, this amounts to

multi-parental sexual exchange of genetic material, so that deleterious mutations can be

eliminated while favorable ones are retained and become fixed (Patnaik et al., 2002;

Zhang et al., 2002). This technique has been replicated for a growing list of applications

in the recent years (Hou, 2009; Kalia & Purohit, 2008; Shi et al., 2009; Wang et al.,

2007; Yu et al., 2008b).

3.1.1.2 Region-wide Mutagenesis

When the researcher has some clues regarding where mutations are likely to influence

phenotype, more targeted approaches can be pursued. For example, if one or a few

enzymes are known to be limiting, mutagenesis can be directed to the subregion of the

genome that codes for these enzymes. This route has been followed for relieving

feedback inhibition at enzymes that are known to be controlled by the accumulation of a

downstream metabolite (Lutke-Eversloh & Stephanopoulos, 2005). Mutagenesis of the

feedback-inhibited enzyme may result in a resistant variant that frees the flux of the

pathway and allows overproduction of the suppressive metabolite.



The advent of molecular biology brought with it tools for effecting mutagenesis

aimed at a known stretch of DNA. One of the most popular remains to be error-prone

PCR, based on in vitro replication of DNA either with mutagenic polymerases or with

conditions that compromise the ability of conventional polymerases to carry out faithful

incorporation of bases (i.e. according to complementarity). For example, engineering of a

Pyrococcus furiosus thermostable polymerase rendered it unable to perform 3'-- 5'

exonuclease-mediated proofreading, which, added to other modifications resulted in an

enzyme with overall lower fidelity (Biles & Connolly, 2004). Using nucleotide

analogues, adding manganese ions (Mn2+), or altering the ratio of bases in the PCR

mixture may also produce a mutagenic reaction (Wang et al., 2006).

One limitation of PCR-based methods is that the sequence diversity that results is

restricted and biased. With single base mutations per codon - a common assumption with

most protocols - only 5.7 amino acids are accessible per position on average, and in most

cases the resulting set of amino acids does not accurately represent the spectrum of

physicochemical properties of naturally-occurring residues (Miyazaki & Arnold, 1999).

3.1.1.3 Position-specific Mutagenesis

Although epPCR is a very common technique for relatively targeted mutagenesis, in

some instances the researcher can guess with more precision the nature or location of the

required mutations. For example, one can mutate the amino acids near or at the active site

of an enzyme in order to increase the activity, change the substrate specificity, or the

product spectrum (Ohnuma et al., 1996; Yoshikuni et al., 2006a; Yoshikuni et al.,

2006b).



Targeting changes to specific positions is usually accomplished with the use of

synthetic DNA. In contrast to amplification-based methods, synthetic DNA technology

for library construction allows, at the very least, specifying the location where mutations

are possible (e.g. saturation mutagenesis), and ultimately permits completely designing

the desired sequence diversity. A challenge for such high-resolution targeted mutagenesis

is that detailed knowledge regarding where genotype changes are likely to affect

phenotype is needed. Such knowledge can be obtained experimentally, through

preliminary rounds of error-prone PCR, or computationally, based on structural

information (Voigt et al., 2001).

In the extreme case where the sequence diversity is entirely specified, the

evolutionary effort is reduced to finding the mutant with most fitting properties. The

reduction and design of the search space is therefore a key motivation for using synthetic

DNA libraries instead of epPCR for creating sequence diversity. Synthesis technologies

based on sequential elongation of DNA molecules with codon-sized fragments will likely

become more popular for these applications (Van den Brulle et al., 2008), but

oligonucleotide-based methods have remained most popular.

3.1.1.4 Other Strategies for Diversity Generation

The three general categories of genotypic diversity generation - whole-cell, region-wide,

and position-specific mutagenesis - are all explored at different times and for different

library designs in the present thesis. Even though so far we have only discussed

mutagenesis-based methods for generation of genotypic diversity, other ways exist. For

example, a gene overexpression library, in which a genome is fragmented randomly and

placed under control of a relatively strong promoter, is a way of introducing diversity that



does not depend on mutagenesis. As such, a library so constructed and the subsequent

screening or selection step constitute a random search strategy for phenotypic

improvement. Many others exist, as will be illustrated in a slightly different context by a

few examples found later in this chapter. We now turn to describing the technical

considerations of the second step of evolutionary approaches for phenotypic

improvement: purifying selection.

3.1.2 Purifying Selection

Once diversity is introduced into a population, the variant or variants with desired traits

must be found. We assume, at least for now, that the mutant of interest is in fact present

in our diverse population, and that the remaining task is isolating it from the rest. The

term 'purifying selection' will be used to refer to any experimental technique that aims at

enriching the variant of interest with respect to other variants. Most of the literature on

the topic usually distinguishes, though rather implicitly, between the terms 'selection'

and 'screening', the former referring to enrichment using a growth advantage of the

improved mutant, and the latter referring to enrichment using discrepant performance of

mutants with respect to a phenotypic assay (e.g. metabolite analysis, cytometry, etc.).

Since both protocols serve the same purpose, we bundle them together in the concept of

'purifying selection' for the purposes of this discussion.

3.1.2.1 Selection Based on Growth

Selection based on a growth advantage of the improved mutants can be carried out

whenever the phenotype of interest can be associated with the cell's ability to reproduce,



as when dealing with environmental tolerance. For example, if a strain needed for the

production of a certain compound has been optimized for yield but grows poorly under

the actual process conditions, subjecting the library of mutants to those conditions may

enrich for tolerant variants. If the compound of interest is toxic, so that final titers remain

low, selection under high concentrations of the compound may deliver a mutant that

attains higher titers. Growth advantage may be used for metabolite or enzyme

overproduction applications by enriching in media containing a metabolic inhibitor called

antimetabolite. The antimetabolite forces the pathway in question to be hyperactive if it is

to allow faster growth. These techniques are common, so it is constructive to illustrate

them with a few examples.

1. Ethanol has gained significant attention as a potential biofuel following the recent

increase in oil prices, the need for energy security, and flourishing arguments on the

importance of reducing carbon dioxide emissions. The most common route to ethanol

today is fermentation of sugars by the yeast S. cerevisiae. To avoid cooling costs and

curb contamination, the bioprocess should be run at relatively high temperatures, but the

wild-type yeast grows optimally at 30 oC. At least two groups have successfully

implemented genome shuffling for improving thermotolerance in this microorganism.

After rounds of mutagenesis and shuffling (as described in Section 3.1.1), improved

mutants were selected for their ability to grow at high temperatures (in fact, both

temperature and ethanol were used as challenges for selection). The isolates from the two

studies (Hou, 2009; Shi et al., 2009) were able to grow at 50 and 42 OC, respectively.

2. In order to improve the assimilation of starch by a solvent-producing strain of the

genus Clostridium, Annous and Blaschek used nitrosoguanidine-mediated mutagenesis to



generate a diverse library. Then, they enriched the mutated population for strains with

enhanced amylolytic activity by growing them in the presence of the antimetabolite 2-

deoxyglucose, a glucose analogue that cannot undergo full glycolysis (Annous &

Blaschek, 1991). The improved strain was reported to produce nearly 2-fold higher

amylolytic enzyme, compared to the parental.

Selection strategies based on growth seem, at first glance, uncomplicated and

dependable as means to increase titer and productivity. Unfortunately, the conditions

during selection are not always relevant for the phenotype we try to improve; for

example, our unpublished observations show that enrichment under high concentrations

of ethanol may deliver better ethanol-producing strains in some cases, but not in others.

Other experimenters have pointed out that growth-based selection is hard to control and

poorly understood (Bonomo et al., 2008). Experiments frequently result in false-positives

and the outcomes can be difficult to reproduce.

3.1.2.2 Screening

Enrichment based on phenotypic assays is performed when an analytical method for

quantifying the differential performance of improved mutants with respect to a trait of

interest is available. Because of the large population sizes of most libraries, the

quantification method must be high-throughput, that is, it must be fast, use small

volumes, and be adaptable for studying individual colonies. Compared to the case of

selection by growth, screening is even more application-specific, and a method based on

the goal to be accomplished must be developed.

Screening based on multi-well fermentation of clones and subsequent analysis of the

fermentation broth has been a popular scheme for isolating mutants with improved



production of extracellular metabolites (Demain et al., 1999; Isett et al., 2007; Kittell et

al., 2005). Other methods include visual inspection or spectrophotometric assays, but,

once again, their applicability is highly dependent upon the properties of the compound to

be studied (Alper & Stephanopoulos, 2007; Baltz & Seno, 1981; Pfleger et al., 2007;

Smolke et al., 2001).

For example, Zhang and coworkers aimed at improving the production of the

polyketide antibiotic tylosine by sequential rounds of genome shuffling. Screening was

done spectrophotometrically by measuring the absorbance of prepared supernatants at

290 nm (Zhang et al., 2002). A different group used GFP-producing mevalonate

auxotrophs as biosensors for high-throughput visual inspection-based screening of

mevalonate-overproducing strains (Pfleger et al., 2007). More recently, members of our

group reported a colorimetric method for identification of L-tyrosine overproducer strains

based on the black pigment melanin (Santos & Stephanopoulos, 2008b). L-tyrosine, a

colorless amino acid, is a substrate in the melanin-production pathway, and thus this

colored compound can be used to spot mutants with high tyrosine production capability.

Being more widely applicable and general in scope, multi-well-based fermentations

with subsequent analysis via HPLC, GC-MS, or similar analytical techniques is still the

method of choice. In many cases, high-throughput screening methods may be automated,

but they remain a very costly and time-consuming step; when performed manually, the

capital cost incurred may decrease, but continues to be a major expense of phenotypic

improvement programs (Demain & Solomon, 1986; Demain et al., 1999; McDaniel et al.,

2001).



3.2 Random Search Strategies and Tools for Phenotypic

Improvement

The two key steps of evolutionary approaches for phenotypic improvement - diversity

generation and purifying selection - can be associated one-to-one to the words in the term

'random search'. The undirected nature of the genotypic diversity generation step

constitutes the basis of the term 'random', while the fact that one must find an improved

variant from a large population is the root of the term 'search'. Furthermore, the word

'search' alludes to the possibility that one may not find an improved variant; the approach

is, by nature, open-ended. This is still true even if a variant that has precisely the

phenotype of interest is theoretically attainable given a certain library design. Let us

examine a few reasons why this may be the case.

3.2.1 Challenges of Random Search Strategies

Firstly, search spaces in most evolution-based experimental designs are astronomically

large. For example, the number of variants that can be constructed with a DNA sequence

of length N is 4N (for a protein with N residues, the number is 2 0N), a space that is

impossible to cover experimentally unless N is very small. This implies that, if there are

only a few sets of base combinations that will deliver a trait of interest (for a sufficiently

large N), the probability of obtaining an improved individual is negligible. Consider an

epPCR library for a 300-residue enzyme that is being engineered to exhibit a new

functionality. If the only possible improved variant contains three specific mutations (e.g.



S20T, Al87G, M201R), the probability of finding it in an optimally designed library (one

with an adjusted mutagenesis rate that results in an average of three mutations per

sequence) is about 1 in 1012. Since the epPCR library sizes attainable (in E. coh) are in

the order of 106, we would need to construct and screen millions of libraries in order to be

certain to find this mutant. In fact, even if this three-mutation variant enjoyed several-fold

improvement compared to the parental, the low probability of success suggests that this

enzyme should be considered a poor choice for engineering the novel functionality. If we

now consider whole-cell mutagenesis for improving a complex phenotype that hinges on

changes in a few distant genes subject to epistatic interactions (Applebee et al., 2008), the

challenges associated with the size of the search space becomes even more pronounced.

Secondly, the experimental protocols for building and screening libraries are subject

to a variety of stochastic effects. Let us continue with our epPCR example. The desired

mutant may be present after the mutagenic amplification, but it may not be properly

cleaved during the restriction reaction or not be correctly ligated to the vector. The

mutant may cause an indirect effect in physiology so that it is subject to a negative

selection pressure, diluting its presence in the final library pool even before screening

begins. The mutant may not perform during screening as it would during the conditions

that are ultimately of interest, obscuring its presence in the library. The mutant may be

enriched significantly during screening, but it may still remain unnoticed when testing

individual clones. In summary, the fact that a mutant is theoretically attainable with a

particular library design is no guarantee that it will be eventually isolated.

Fortunately, the sum of all these factors does not prevent the discovery of improved

phenotypes, as evidenced by the overt popularity of random searches for phenotypic



alteration. We can interpret this success as a suggestion that there is a sizable subset of

library designs for which the probability of finding phenotypes of interest is within

experimental reach. It must be noted that not all library designs will serve for improving a

particular phenotype, but there are a few designs that serve for improving many traits

(e.g. whole-cell mutagenesis, genome shuffling, knockout libraries, among others). Let us

now turn to more examples of random search-based library designs that, albeit they suffer

from the aforementioned limitations, their variety adds to the potential of the

evolutionary approach in general.

3.2.2 Example Library Designs

A few library designs have been covered in Section 3.1.1, when discussing the generation

of genotypic diversity via mutagenesis. These techniques were described in great detail

for two reasons. First, mutagenesis-based methods for library construction are most

relevant to the present thesis. Second, if mutagenesis is analyzed on purely conceptual

grounds, all library designs could be theoretically based on this principle, if we allowed

the construction and searching of infinite spaces (for this to be true, we must also permit

the introduction of additional stretches of DNA, which would allow for designs that

depend on plasmid-borne genotypic determinants). Therefore, mutagenesis presents an

ideal framework for explaining many other library designs. Let us consider a few

examples.

Knockout libraries can be constructed via random insertion of an antibiotic marker

cassette, with the aid of the enzyme transposase (Santos & Stephanopoulos, 2008a). The

result is a collection of mutants with disruptions throughout the genome, allowing



inactivation of genes or operons, alteration of their regulatory features, or a combination

of both. Even for the case of a finite and relatively manageable number of genes in a

genome, transposon libraries can be infinitely genotypically diverse (assuming no

insertional bias), thus potentially suffering from the challenges associated with large

search spaces outlined previously. However, this is in practice a relatively

inconsequential problem, and transposon libraries have been used fruitfully to deliver

phenotypic improvements. For example, this approach was used to identify targets for

enhancing lycopene production in a recombinant strain of E. coli (Alper &

Stephanopoulos, 2008). Such an approach may uncover deletions that are not predicted

by in silico modeling, and yet can affect the phenotype in question due to epistatic or

regulatory effects.

Gene overexpression libraries provide an example that is seemingly opposite to the

knockout library design delineated above. A genome is randomly cut with restriction

enzymes and the inserts are cloned downstream of a relatively strong promoter (Jin &

Stephanopoulos, 2007; Lynch et al., 2007). The genotypic diversity introduced is based

on (i) the cloned gene (or genes) being expressed at a higher level compared to the wild-

type; (ii) the disruption or alteration of regulatory mechanisms to which the gene (or

genes) are subjected to; and (iii) the merodiploid nature of the resulting population, which

may become pertinent if new mutations arise. Gill and coworkers have recently used this

method for studying and optimizing selection strategies, and were able to identify genes

that confer tolerance to 3-hydroxypropionic acid and l-naphtol, among other stresses

(Gall et al., 2008; Warnecke et al., 2008).



The library designs so-far described are based on common genetic modifications, but

the list of random search-based phenotypic alteration strategies has grown significantly in

recent years, becoming ever more creative in both methods and applications. For

example, Wang et al. reported a method for constructing libraries of randomized short-

hairpin-loop RNAs (shRNAs), which can alter the phenotype globally by targeting

multiple genes both through activating and silencing pathways (Wang et al., 2008). The

method was used to enhance survivability of murine pro-B FL5.12, an interleukin-3-

dependent cell line. The improved variant was able to survive nearly two-fold better than

the parental after IL3 withdrawal (Wang et al., 2008). Even though silencing pathways

have been thought to act in a directed fashion, this and other research groups (e.g.

(Jackson et al., 2003)) have described off-target regulation by small interfering RNAs

(siRNAs), implying that randomized siRNA libraries may be helpful to alter phenotype

globally. Such library designs may therefore present interesting prospects for engineering

complex phenotypes.

One last example of library design concerns the less explored, but potentially

valuable, method based on randomized ribozymes. Similar to siRNAs, ribozymes can

target transcripts for silencing by catalyzing RNA cleavage, and until now have mainly

been used for gene discovery applications (Miyagishi et al., 2005). However, similar to

siRNAs, they can conceivably be used for phenotypic improvement: libraries of

randomized ribozymes have been used to introduce genotypic diversity, and, as long as

they produce phenotypically diverse populations, they can also be used for evolutionary

approaches for cell engineering (more of this topic in Chapter 5).



3.3 Transcriptional Engineering

Among this plethora of random search-based methods for strain improvement, there is a

sub-category that concerns to those in which diversity is introduced at the level of the

transcriptome. Naturally, given that for all evolutionary approaches the determinant that

causes an alteration in phenotype must be inheritable, this transcriptomic diversity should

be based in genotypic changes. The term transcriptional engineering, as defined here,

refers to methods and techniques based on this general premise, although the level and

scope of the transcriptomic changes may vary widely. This definition does not exclude

directed modifications to the transcriptome, but we hereby only refer to random search

strategies that aim at global transcriptional alteration when using this term.

Transcriptional engineering, in its most general way, is not a new concept. It is based

on the idea that the transcriptome is closer to phenotype than the genome is, an

observation that logically emerges from the structure of information flow in the cell.

Moreover, it is known that non-coding regions of the genome evolve faster than coding

regions, because changes in the former tend to be more forgiving to cellular physiology

(Molina & van Nimwegen, 2008). Transcriptomic information is known to vary widely in

different growth conditions and during different stages of the life cycle. A recent study

showed that rapid speciation can be partly attributed to a divergence in transcription

factor binding patterns, suggesting that changes in regulation lead to measurable

phenotypic changes in yeast (Borneman et al., 2007).

Although the sizable amount of evidence supporting the use of transcriptomic

changes for altering phenotype is not all recent, the application of this concept to



engineering complex traits is relatively novel. We now describe the research that led onto

the development of some of the methods put forth by the present thesis.

3.3.1 Background

Probably the first attempts to engineer phenotype using transcriptional regulators were

based on the use of artificial zinc-finger proteins (ZFP). The zinc-finger domain,

sometimes called Cys2-His2 or C2H2, is the most common DNA-binding motif in

eukaryotes, and has been exploited for the design of artificial transcription factors (Beerli

& Barbas, 2002). ZFPs are made of DNA-binding modules and can be easily fused with

activator or repressor domains, depending on whether one aims to upregulate or

downregulate the target genes (Segal et al., 2003).

Artificial ZFPs have been primarily applied in eukaryotic systems, and mainly with

the admitted intention of targeting specific locations in chromosomal DNA (Beerli &

Barbas, 2002). For example, Zhang and coworkers reported on a set of ZFPs that target

and activate the human erythropoietin gene endogenously (Zhang et al., 2000). A similar

experiment showed the successful activation of vascular endothelial growth factor A, an

important inducer for the formation of blood vessels that may result in embryonic

lethality if expressed at low levels (Liu et al., 2001). Other studies have illustrated similar

achievements using artificial ZFPs (Bartsevich & Juliano, 2000; Falke et al., 2003; Ren et

al., 2002).

A review of the ZFP literature suggests that what has driven research in this area is

the optimization of binding specificity, affinity, and overall stability. Maximizing

specificity is helpful for effecting directed transcriptomic modifications, simplifying



many experimental protocols in eukaryotic genetics (Jamieson et al., 2003). This school

of thought has temporarily delayed the use of artificial ZFPs for engineering complex

phenotypes, but, as we will see next, such tools have proven effective for altering many

genes at once.

3.3.2 Artificial Transcription Factor Libraries for Alteration of Complex

Phenotypes

The study that most probably was responsible for setting the stage for the use of

transcriptional engineering applied to improving complex phenotypes was that of Park

and coworkers (Park et al., 2003). The study describes the use of ZFP-based artificial

transcription factor libraries to improve thermotolerance, ketoconazole-resistance, and

osmotolerance in S. cerevisiae. The method involved random assembly of ZFP domains

and subsequent fusing with activator or repressor domains, which resulted in a collection

of artificial transcription factors (ATFs) that were transformed into yeast cells. The so-

constructed library was then used to isolate improved clones in different conditions; the

responsible ATFs were identified by sequencing.

For the case of thermotolerance, the group was able to increase the survivability of

yeast from 0.04% for the wild-type after 2 hr at 52 oC, to 10% in some of the isolates

transformed with the ATFs. The phenotype was transferrable and also dependent upon

induction of the ATF. For the case of osmotolerance, the selection conditions were 100

mM LiC1, and an up to 100-fold improvement in survivability was observed in some

cases. Finally, the libraries were exposed to 35 gpM ketoconazole, an antifungal agent that

is widely used but for which resistance may develop. In an effort to understand the



mechanism of resistance, they performed microarray analysis of three ATFs that

conferred ketoconazole-resistance. Four open reading frames (ORFs) showed more than

2-fold overexpression compared to the wild-type across the three isolates. A fraction of

the phenotype could be recovered by overexpression of one of these ORFs, identified as

YLL053C, allowing the authors to hint at a possible mechanism.

This very complete study opened the possibility for phenotypic improvement by

introducing global transcriptomic changes. It parted from the previous approach of using

ATFs for directed modifications, and focused on complex traits. Although apparently not

integral to their original hypothesis, the researchers present enough evidence to support

that the improved phenotypes arise from orchestrated changes in transcriptome. For

instance, they found that the ketoconazole-resistance phenotype was not due to sequence-

specific interactions of the ATFs. Even though they identified four ORFs that were

activated by the three studied ATFs, only one conferred resistance when overexpressed,

and only a fraction of the phenotype was recovered. Furthermore, some genes known for

their action against the drug were activated by some, but not all, of the isolated ATFs,

implying that there is more than one mechanism responsible for the observed phenotype.

All this suggests that the improvement was caused by the ability of the ATFs to make

many simultaneous changes in the transcriptome.

Ensuing studies with ZFP-based ATFs supported their use for global transcriptomic

modification for strain improvement in various systems. Lee et al. improved taxol-

resistance in a HeLa cell line using ATF libraries and various cycles of purifying

selection (Lee et al., 2004). Microarray analysis of two of the isolated studies revealed

nearly 200 differentially-regulated genes compared to the wild-type, providing further



proof that these ATFs act at many targets simultaneously. Out of these, 37 genes were

found in both microarrays. Even if it was only this set of genes which bestowed taxol-

resistance, engineering this trait with directed genetic modifications would still present an

intractable experimental endeavor.

The system was also applied to prokaryotic systems, in particular to E. coli (Lee et

al., 2008; Park et al., 2005a). In the more complete study, Lee et a]. explore the use of

ZFP-based ATFs to improve tolerance to heat, cold shock, or osmotic pressure (Lee et

al., 2008). They not only identify ATFs that can confer the improved phenotypes in a

transferrable fashion, but also attempt to explain the mechanism behind the

thermotolerant isolate. Their results complement the previous arguments stating that (i)

the improvement arises from the coordinated change in the transcription (up and

downregulation) of many genes; (ii) the trait cannot be reproduced by a few directed

genetic manipulations; and (iii) the mechanism behind the improvement is complex and

resists simplification.

3.3.3 Native Transcription Factors and Global Transcription Machinery

Engineering (gTME)

The work with ATFs provided a basis and a motivation to further the transcriptional

engineering approach, but it had overlooked the potential of manipulating the natural

regulatory mechanisms of the cell. In particular, transcription is coordinated by a few

nodes in the physiological network (Isalan et al., 2008; Martinez-Antonio et al., 2008),

and those can be targeted for altering complex phenotypes.



With this in mind, Alper and Stephanopoulos considered the use of the principal

sigma factor of E. coli, sigma D (coded by rpoD), for transcriptional engineering (Alper

& Stephanopoulos, 2007). Several studies had shown that mutations in this protein alter

the specificity of the RNA polymerase (RNAP) for its target promoters (Gardella et al.,

1989; Siegele et al., 1988; Siegele et al., 1989; Waldburger et al., 1990), and, considering

the centrality of rpoD in the physiological network (Martinez-Antonio et al., 2008), the

change in specificity would alter the transcriptome globally. They termed this approach

global transcription machinery engineering (gTME). Even though most of our description

of this method is not expounded until the next Chapter, we briefly discuss some results in

this Section to provide some background on the early achievements of the gTME

approach.

The initial study focused on ethanol tolerance, lycopene overproduction, and

simultaneous ethanol-SDS tolerance in E. coli. Ethanol tolerance was significantly

improved after three rounds of epPCR-based mutagenesis and growth selection (see

Section 3.1). The resulting mutant was analyzed using DNA microarrays, showing nearly

100 differentially-regulated genes in the absence of stress and similarly-complex

responses in the presence of it. For the case of lycopene, several rpoD mutants were

isolated that individually conferred a higher improvement in production than previously-

explored directed genetic modifications. Finally, the study explored different strategies

for enhancing tolerance to ethanol and SDS simultaneously, and found that co-expression

of independently isolated mutants was the most promising approach.

In a related study, the TATA-binding protein of S. cerevisiae was targeted for

mutagenesis, and the resulting libraries were selected under high ethanol and high



glucose stresses (Alper et al., 2006). Mechanistic studies determined that the exhibited

improvements were a complex function of the three mutations present in the best-

performing variant and of the many transcriptional changes elicited by it.

Working with the native cellular machinery has some distinguishing features

compared to ATFs. First, the approach resembles natural evolution of novel phenotypes,

as it relies exclusively on native genes. Second, isolated variants may act by molecular

mechanisms not directly related to transcription; for example, the previously-discussed

rpoD variant that conferred the highest level of ethanol tolerance was a truncated version

of the gene that most likely affects the cellular response by acting on a capacity different

from that of a transcription factor (Alper & Stephanopoulos, 2007). Third, even when the

variants act by modulating transcription, simultaneous and diverse effects may contribute

to the observed traits; for example, competition between the wild-type, chromosome-

borne factor and the mutated, plasmid-borne one for available RNAP may play a role in

the development of the improved phenotype.

The findings of these two seminal gTME studies are in tune with those based on ZFP-

based ATFs described in 3.3.2, and opened the door for finding new routes for

engineering complex traits by effecting global changes to the intracellular environment.

Before we continue on this topic extensively in Chapter 4, we must put forth a disclaimer

regarding all strain improvement approaches.



3.4 The Limited Nature of Strain Improvement

Until now, we have emphasized the potential of strain improvement through the use of

both traditional and evolutionary approaches. Before continuing with the description of

some experimental achievements of strain improvement, one last remark about the

inherent limitations of these approaches is worth stressing. Although obvious, the fact

that any genetic changes are made upon an existing genome is sometimes ignored when

pursuing a strain improvement effort. This fact implies that there is a theoretical limit for

improvement given by the maximum number of changes that can be implemented

experimentally, either in a directed or random fashion. This limitation is especially

relevant for engineering complex traits.

Let us take the engineering of thermotolerance as an example. This stress is known to

unleash a series of events that could kill the cell: unfolding and aggregation of proteins

(Villaverde & Carrio, 2003), redirection of metabolic pathways (since kinetics depend on

temperature (Moreno-Sanchez et al., 1999)), fluidization of the cellular membrane

(Shigapova et al., 2005), among others. Even if chaperones and proteases are

overexpressed, thermophilic versions of key enzymes are introduced, membrane

properties are modified, etc. with the goal of engineering thermotolerance, the makeup of

an organism that makes it tolerant to heat is a property of the system in its entirety. As

such, it defies reductionistic approaches. This does not imply that tolerance cannot be

improved with respect to that of the wild-type, but that the practical relevance of the limit

for improvement depends on the phenotype we choose to engineer. Therefore, the

prospects of finding an ideal strain for production of commodity chemicals reside on a



balance between choosing the right host as a starting point and choosing which properties

to change.



Chapter 4

4. Targets for Transcriptional Engineering in

Bacteria

In the preceding Chapters, we have introduced the universal motivation behind

phenotypic improvement, we have provided an overview of traditional approaches for

modification of phenotype, we have highlighted the many tools that have been developed

for applying these approaches, and we have discussed the limitations of traditional

methods that invited the adoption of random search-based evolutionary strategies for

strain engineering. In this way, we have progressed from the general to the particular, and

have arrived at the technique that constitutes the focus of this thesis: transcriptional

engineering. We will use this technique both as a subject of study and optimization, and

as an example of a random search strategy for testing and exploring general evolutionary

principles.

As outlined in Chapter 1, the overarching goal of this thesis has been to improve upon

transcriptional engineering in the context of other random search strategies for

phenotypic improvement. One way in which such effort was materialized consisted in

finding and evaluating new targets for global alteration of the transcriptome. In addition,



we proved that old targets (sigma D in this case) can be used in more than one species, by

extending the approach to L. plantarum.

As we will see momentarily, transcription is an intricately regulated process,

coordinated by a sequence of chemical and physical interactions centered in several

molecular complexes. Because these interactions are codified by the amino acid sequence

of the protein subunits of such complexes, mutagenesis of these proteins allows alteration

of the regulation process. As a result, the transcriptome of the cell carrying the mutated

regulator can be manipulated in the hope of educing an improvement in a phenotype of

interest. In this light, the present Chapter serves two objectives which are simultaneously

considered: first, it describes the process of transcriptional regulation and some of its key

players; and, second, it illustrates the experiments and results that demonstrate the use of

new targets for transcriptional engineering.

4.1 Transcription in Bacteria

Transcription is the first committed step in gene expression and a key step for regulating

phenotype in bacteria. The former fact is probably a reason for the latter, since, in order

to save resources, the cell should only produce the transcripts for which a product is

needed at any one condition. Therefore, transcription initiation ought to be a focal

process for manipulation of cellular phenotype, and, accordingly, will serve as a theme

throughout this Section.

Transcription in bacteria has been studied most closely in E. coli. The process is

executed by a single DNA-dependent RNA polymerase (RNAP), which encompasses



both the ability to catalyze RNA synthesis and the ability to interact with DNA and

protein effectors (activators or repressors) (Browning & Busby, 2004). It is this set of

interactions which allows differential expression of genes, thus it is this same set which

we aim at modifying during transcriptional engineering.

4.1.1 The RNA Polymerase: Structure and Function

The bacterial RNAP has a subunit composition given by C2PP'0 and is capable of

carrying out all steps of transcript synthesis except for promoter binding and initiation

(Ebright, 2000). The so-called core enzyme assembles first by dimerization of ca, and

then by aggregation of the 3 and P' subunits; finally, one of several c-factors (seven for

E. coh) binds to the core enzyme to form the holoenzyme, which may bind to promoters

and begin transcription (Gourse et al., 2000). The alpha-subunit is composed of two

domains, the amino- and carboxy-terminal domains (aNTD and cCTD, respectively); the

former is bound to the rest of the polymerase and the latter is tethered to the former by a

flexible linker and interacts with different elements at the promoter site (Figure 4.1-1).

The holoenzyme is responsible for integrating the vast array of signals into a single

output at each promoter, that is, a transcript (or lack thereof). Before we detail the source

of these signals, let us describe the general process of RNA synthesis. The material here

presented is extremely basic and can be found in any of several reviews that cover

different aspects of transcription (Browning & Busby, 2004; Ebright, 2000; Featherstone,

2002; Gourse et al., 2000; Gruber & Gross, 2003; Ishihama, 2000; McClure, 1985;

Roberts et al., 2008; Schauer et al., 1996). The first step in transcription is the binding of

RNAP holoenzyme to DNA; stronger promoters can recruit the polymerase better than



weaker ones, and can also stabilize it for longer once bound. Positioning of the RNAP at

the promoter is followed by "melting", a process in which about 10-14 base pairs

upstream of the transcription initiation site, inclusive, unwind and form the so-called

open complex. If the open complex is stable enough, the bubble formed by melting grows

and allows elongation, or polymerization of the newly-formed transcript; otherwise, the

open complex dissolves in a process known as abortive initiation.

The elongation reaction is most plainly described as a succession of three steps: (i)

the incoming nucleoside triphosphate (NTP), which is complementary to the DNA

counterpart being "read", positions itself in the catalytic site of the polymerase; (ii) the 3'

hydroxyl group in the growing RNA strand reacts with the NTP, resulting in the addition

of an NMP to the transcript and the concomitant release of pyrophosphate (the energy of

the reaction comes from the breakage of the NMP-pyrophosphate bond); and (iii) the

RNAP translocates onto the next DNA position.

Once stable elongation is underway, the polymerization reaction occurs rapidly (at

about 50-100 nucleotides per second (Roberts et al., 2008)) and usually proceeds until

termination. However, the RNAP is known to pause during synthesis depending, among

other things, on sequence features and interactions with antiterminators. Antiterminators

are proteins that interact with the RNAP at genetically-specific sites and allow it to

bypass terminator sequences and inhibit elongation pausing. Transcription ends with

termination, a process that may or may not require an RNA translocase (e.g. the rho

terminator), depending on the gene or operon being transcribed.
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Figure 4.1-1. Types of interactions of the RNAP holoenzyme at the promoter

The canonical promoter regions and subunits are indicated (the amino- and carboxy-terminal domains of

the a-subunit are indicated as NTD or CTD, respectively), A/R indicates an effector, i.e., an activator or

repressor. (A) Simple promoter, no activators or repressors present. (B) The positions at which effectors

may bind and their interactions are indicated. Most effector-binding promoters do not have both effectors

as shown (although this is possible (Busby & Ebright, 1994)); instead, they have one or the other and are

categorized as Class I or II depending on the location (see text). (C) Interaction between the aCTD and the

a-subunit is indicated. Figure adapted from (Busby & Ebright, 1994).

This oversimplification of the process presents the sequence of events that

conjunctively lead to the transcriptome, but does not suggest routes for its manipulation.

In order to do that, we must understand how the cell uses each of these steps, and



transcription initiation in particular, to regulate its physiology. This is the subject of the

next section.

4.1.2 Transcription Regulation

Plainly, phenotypic regulation through transcription is the result of differential gene

expression, since it is largely the relative level of proteins in the cell which determines its

physiological response to the environment. Such differential expression comes about

mainly from the integration of signals at the interface between the RNAP holoenzyme

and the promoter. For reasons of cellular economy, it makes sense to integrate most of

these signals prior to or at transcription initiation, that is, prior to open complex

formation. Because RNAP is in limiting amounts, not all operons can be simultaneously

transcribed; instead, different sites "compete" for RNAP complexes with varying degrees

of efficacy, giving rise to the differential expression alluded to earlier (Ishihama, 2000).

A recent review focused on the five molecular mechanisms that are responsible for the

differential distribution of RNAPs throughout the genome: promoters, effectors

(activators or repressors), sigma-factors, ligands, and local DNA structure (Browning &

Busby, 2004).

The promoter signals interact with the RNAP holoenzyme in different ways (Figure

4.1-1): the -10 hexamer (located at or near the -10 position with respect to the

transcription start site), the -10 extended site, and the -35 hexamer all bind sigma D or

similar factors. In addition, the UP promoter element binds the aCTD. At some loci,

transcription factors or effectors stimulate or inhibit transcription by interacting with

either the alpha- or sigma-subunits of RNAP. At class I promoters, the effector binds



upstream of the -35 hexamer and near the UP promoter site and interacts with ctCTD,

while at class II promoters, the binding site overlaps with the -35 hexamer and the

effector interacts with sigma and one or both alpha domains (Browning & Busby, 2004;

Niu et al., 1996; Savery et al., 2002). As will be discussed later in sections 4.2 and 4.3,

the sigma factor that is bound to the RNAP core enzyme determines much of its

specificity, and thus is a key factor for differential gene expression.

Small molecule ligands can also affect the affinity of the RNAP holoenzyme at some

promoters, especially under certain environmental conditions; for example, the ligand

ppGpp (guanosine tetraphosphate) can bind the RNA polymerase and either modulate its

interaction with promoters or the competition between sigma factors (see Section 4.3)

(Jishage et al., 2002; Paul et al., 2004). Other small molecules can operate indirectly

through the action of transcription factors, e.g., by allosterically stimulating or inhibiting

DNA-binding or affecting their overall conformation (Botsford & Harman, 1992; Dalbow

& Bremer, 1975). Finally, some regulation is effected by the local DNA-structure,

although this mechanism is only partly understood.

In general, the signals that are distributed throughout the cell or that are non-specific

are hard to exploit for engineering complex phenotypes. From the remaining list, the

subunits of the RNAP holoenzyme are good examples of possible targets. We now turn

our attention to describing them and their use for strain improvement.



4.2 Principal Sigma Factor (sigma D)

Bacterial genomes may encode for one (e.g. Mycoplasma genitalium) or many (e.g.

Bacillus subtilis) sigma factors (Browning & Busby, 2004). Regardless of the actual

number, there is one principal or housekeeping sigma which can transcribe at most

promoters when bound to the core RNAP, in particular under exponential growth or non-

stressful conditions. For E. coli, as it has been previously described, this housekeeping

factor is referred to as sigma D and is coded by the gene rpoD; the same is true for

another species that will be considered here, L. plantarum.

Sigma D belongs to a category of bacterial sigma factors known as the sigma 70

family, named after the molecular weight of the E. coli housekeeping factor; members of

this family share many sequence and structural features (Paget & Helmann, 2003).

Homology analysis across the sigma 70 family reveals four regions, which can be divided

further in sub-regions.

Region 1 is poorly conserved, but in some species is known to have DNA-like

binding properties, such that it functions as a protective flap for regions 2 and 4 in the

free (not RNAP-bound) factor (Dombroski et al., 1992). Region 2, and sub-region 2.4 in

particular, is highly conserved, consisting in a series of a-helices responsible for

recognizing the -10 promoter hexamer, binding the core RNAP, and melting the promoter

at the open complex (see Section 4.1) (Campbell et al., 2002). Region 3 is, similarly to

region 1, poorly conserved, and is sometimes even absent altogether; when present, it is

responsible for binding the -10 extended sequence at some promoters (Paget & Helmann,

2003). Finally, region 4 is highly conserved and has two pairs of c-helices, it contacts the



-35 hexamer, and the ctCTD or effectors at many loci (see below) (Campbell et al., 2002;

Dove et al., 2003).

Sigma D, and that of E. coli in particular, is known to regulate transcription not only

through direct protein-DNA interactions, but also through protein-protein contacts (this

fact was mentioned earlier, but rather briefly). For example, work with the bacteriophage

X cI protein (XcI) and E. coli sigma D has shown a direct activating interaction between

E34 in XcI and R588 in sigma region 4, and one more between D38 in XcI and R596 in

the same region (Li et al., 1994; Nickels et al., 2002). Other studies have shown direct

contacts involved in transcription regulation between the aCTD and sigma region 4.2

(Ross et al., 2003).

The many structural features of sigma factors involved in RNAP-promoter interaction

suggest that these proteins are central to transcriptional regulation. Indeed, several groups

who have studied the organization of transcriptional networks in E. coli place sigma

factors high in the hierarchy (Ma et al., 2004; Martinez-Antonio et al., 2008).

In one way or another, it is the regulatory functions which we try to exploit during

transcriptional engineering, although it is not obvious where (i.e. in which region(s))

mutagenesis would have the greatest impact in phenotype. During the first set of

experiments of this thesis, we assumed that non-directed mutagenesis of the entire sigma

D protein could be used for finding improved mutants. As we see in the next few

sections, this assumption turned out to be correct, at least to a first approximation.



4.2.1 Use of sigma D for Phenotypic Improvement in E. coli

Previously, in Section 3.3.3, we discussed the use of sigma D for improving ethanol

tolerance, lycopene production, and resistance to various stresses (referring to previous

work in our laboratory (Alper & Stephanopoulos, 2007)), proving the use of this target

for transcriptional engineering. An initial project of the thesis, and one that brought

further proof that sigma D was a good target for phenotypic engineering, was in the

application of a high-throughput screening method for isolating strains with enhanced

hyaluronic acid production.

4.2.1.1 Hyaluronic Acid Production

Hyaluronic acid (Hyaluronan, HA) is a valuable functional biopolymer, its importance

stemming from its structural, rheological, physiological, and biological properties.

Similar to other biomaterials with comparable attributes, it possesses a wide range of

applications in the health, cosmetic and clinical fields (Goa & Benfield, 1994; Lauren,

1998). Microbial production of HA using the group C or group A Streptococcus has been

pursued as an alternative to chemical extraction from chicken combs (Kim et al., 1996;

Ogrodowski et al., 2005). Recently, new methods using novel recombinant production

strains that utilize inexpensive media and avoid pathogenicity have been developed as

substitute of Streptococcus fermentation. The construction of a recombinant gram-

positive Bacillus subtilis has been reported (Widner et al., 2005), and more recently, our

group developed a recombinant E. coli, Top 1l0/pMBAD-sseABC to produce HA (Yu &

Stephanopoulos, 2008).

The above methods applied traditional metabolic engineering (Section 2.2) in

constructing the HA producing strains (Stephanopoulos & Sinskey, 1993;



Stephanopoulos & Kelleher, 2001), addressing issues of precursor supply and pathway

kinetics and regulation (Stephanopoulos & Simpson, 1997; Vallino & Stephanopoulos,

1994). While such methods have yielded nontrivial improvements in many instances,

especially when combined with bioreactor operation and optimization strategies (Follstad

et al., 1999; Kiss & Stephanopoulos, 1991; San & Stephanopoulos, 1984), recombinant

synthesis of HA is limited by many factors.

For example, intermediates in the pathway (such as glucose-6-phosphate and N-

acetyl-glucosamine) are also needed for important cellular functions, such as glycolysis

and cell wall synthesis; thus HA production directly competes with cell growth and

viability (Yu & Stephanopoulos, 2008). In addition, HA is highly viscous and may

interfere with the transport of nutrients and gases, imposing an additional stress on the

cell (Widner et al., 2005). Thus, HA productivity is likely limited by several factors and

random search-based strain improvement approaches become ideally suited for

increasing HA production. A key element to the implementation of such search strategies

is the availability of high throughput screens for isolating cells capable of high product

accumulation. Therefore, our laboratory developed and tested a screen for the case of HA

production in E. coli.

The two-step screen consisted of translucent colony identification followed by alcian

blue staining. High HA-producing colonies are viscous and appear clearer compared to

low HA-producers (Kim et al., 1996; Widner et al., 2005). Colony morphology is only

adequate to discern large differences in HA productivity, so a subsequent, more

quantitative approach was necessary to measure incremental improvements in HA

accumulation.



Alcian blue is a water soluble copper-phthalocyanine dye, C5 6H6 8C 14CuN 16 S4, which

can be used for the staining of sulfated and carboxylated acid mucopolysaccharides

(Penney et al., 2002). It is believed to form salt linkages with the acid groups of

mucopolysaccharides due to the presence of copper in the molecule, which decreases the

blue color. Since HA is a mucopolysaccharide, it was feasible to establish an alcian blue

staining method for quantifying the HA concentration.

The above screen was tested in an HA-producing recombinant E. coli host

transformed with libraries of the rpoD gene. The gene was first cloned into a low-copy

number vector (with a pSC101 origin of replication), and then amplified with epPCR

with three different mutation frequencies (described in (Alper & Stephanopoulos, 2007)).

The two-step high throughput screening was then applied to the resulting libraries.

Using the first identification step (translucency), 74 rpoD mutants were selected from

thousands of colonies on solid plates, and subsequently tested for HA accumulation by

the alcian blue method (sigma S libraries were screened simultaneously, but the sigma S

results shown in Figure 4.2-1 will not be discussed in detail until Section 4.3.1). The

parental strain carrying only the plasmid for HA synthesis (Topl 0/pMBAD-sseABC) was

cultured in parallel and used as a control. The selection results of both libraries are

plotted in Figure 4.2-1, showing several improved mutants; for example, the D72 strain

showed a significant increase of HA concentration relative to the control (100% line).
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The most promising mutants obtained from the primary screening described above

were further studied in shake flask cultures; the culture volume was scaled to 40 ml

medium in a 250 ml flask. The results from these experiments are shown in Table 3,

found in Section 4.3.1. From them, we can conclude that, compared to an isogenic, but

unmutated control (DO), mutant D72 shows an improvement in both HA titer and
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productivity, evidencing the value of sigma D for engineering this phenotype. Other

conclusions are found in the aforementioned Section.

Other phenotypes were improved using sigma D during the course of this thesis,

although using a different library design than that described for HA. The details will be

found in Section 6.6.3, in which we describe the use of optimized sigma D libraries for

improving the survivability of an ethanologenic E. coli strain to the combined stress of

overlimed hydrolysate and ethanol.

4.2.2 Use of sigma D for Phenotypic Improvement in L. plantarum

The use of sigma D libraries in E. coli proved that transcriptional engineering cannot only

be effected by zinc finger protein-based artificial transcription factors (Section 3.3.2), but

with native factors as well. However, it was difficult to generalize the use of the principal

sigma factor as a target for transcriptional engineering without presenting evidence from

other species. We thus turned our attention to L. plantarum, a member of the family of

lactic acid bacteria. This family of microorganisms is routinely employed in the industrial

production of precisely that organic compound, and, since it is the interest in this

chemical what motivated our study, let us delve more into the details of its manufacture.

Lactic acid is a 3-carbon organic acid with a pKa value of 3.85, commercially

produced mostly by fermentation at a scale of about 150,000 tonnes per year (in 2007)

(Sauer et al., 2008). Its uses span a wide range of applications: (i) as a preservative for

food, pharmaceuticals, cosmetics, textiles and leather; (ii) as a flavor additive; (iii) as a

chemical feedstock or intermediate for other synthesis processes; and (iv) in the



production of polylactate, a valuable, biodegradable plastic (Hofvendahl & Hahn-

Hagerdal, 2000).

In L. plantarum, categorized as a facultative heterofermentative strain, lactic acid can

be produced either by the Embden-Meyerhof-Parnas (EMP) or the phosphoketolase

pathways, resulting in a homolactic or heterolactic product mixture, respectively

(Kleerebezem et al., 2003). In the EMP pathway, two pyruvate molecules are formed

during glycolysis, both of which are converted into lactic acid by the enzyme lactate

dehydrogenase. In the phosphoketolase pathway, the hexose (e.g. glucose) is broken into

CO2, pyruvate, and acetyl-phosphate (acetyl-P); pyruvate is then converted into lactate

(as in the EMP), and acetyl-P into either acetate or ethanol (Kleerebezem et al., 2003;

Murphy etal., 1985).

The process characteristics of most interest, i.e. lactic acid yield, titers, and

productivities, are highly dependent on choices such as the strain, carbon and nitrogen

sources, temperature, pH, fermentation mode, among others (Hofvendahl & Hahn-

Hagerdal, 2000). One of the key control parameters is the pH: fermentations that are run

at low pH (at or below the pKa) are more economical than those at high pH, since the free

form of the acid can be readily separated using organic extraction and the salt form is

expensive and cumbersome to process (Patnaik et al., 2002). This fact, along with the

very high titers of lactic acid achievable in fermentations (>150 g/L, (Hofvendahl &

Hahn-Hagerdal, 2000)), implies that an industrial strain must perform well at low pH and

high lactic acid concentrations. Unfortunately, the combination of these stresses presents

a particularly big challenge.



Lactic and other organic acids are thought to hinder growth via different mechanisms.

Toxicity is pronounced at low pH because this condition favors the protonated,

uncharged form of the acid that can be transported freely through the membrane. In the

cytosol, the acid dissociates following the Henderson-Hasselbach equilibrium, lowering

the cytosolic pH and increasing the concentration of the anionic species. This sequence of

events results, first, in the partial dissipation of the proton gradient across the cell

membrane, which leads to energetic inefficiencies (McDonald et al., 1990); second, in

the buildup of protons in the cytoplasm that impact negatively many biochemical

processes (Booth, 1985; Kresnowati et al., 2007); and third, in the intracellular

accumulation of the anion and accompanying end-product inhibition (Pieterse et al.,

2005). This type of inhibition refers to the inability of L. plantarum to re-generate NAD4

effectively as pyruvate accumulates in the cell at high lactic acid conditions (Pieterse et

al., 2005). As a consequence of these effects, acidification of the media with inorganic

acids presents a milder challenge compared to organic acids (Figure 4.2-2).
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Figure 4.2-2. Test for organic and inorganic acid toxicity in Lactobacillus

The graph shows final growth of wild-type L. plantarum cells (OD, optical density at 600 nm) at different

initial pH values in media acidified with either hydrochloric acid (HCl) or lactic acid (LA).

This list of multiple physical and chemical effects translates in a similarly-lengthy list

of cellular responses. Several studies have suggested mechanisms or genes that are

involved in coping with low pH and high lactic acid conditions. For example, insertional

mutants of four different genes purportedly involved in decarboxylation reactions known

to aid during acid shock, were constructed and their ability to survive was tested at low

pH. The mutants were more sensitive to acid in some conditions, but not in others,

showing that the mechanisms behind tolerance are distributed and complex (Azcarate-

Peril et a]., 2004). In another study, insertional mutagenesis was used to find 18 new loci

that affect the ability of Lactococcus lactis, a related lactic acid bacteria, to cope with



acid stress (Rallu et al., 2000). Detailed transcriptional analysis in the presence of various

conditions faced by the cells during lactic acid fermentations also showed a genome-wide

response (Pieterse et al., 2005). Because we aim at engineering tolerance to various,

simultaneous stresses (i.e. low pH, high lactic acid, high osmolarity, etc.) that elicit a

complex, poorly-understood response, random search-based evolutionary approaches

were deemed an ideal choice.

4.2.2.1 Library Construction

In comparison to E. coli, Lactobacillus spp. are less common laboratory strains, and are

harder to engineer due to a relative scarcity of tools and experimental protocols. Of the

requirements for an appropriate host selection listed in Section 2.2.1, high transformation

efficiencies are particularly essential for constructing sigma factor libraries. We began

this study with a L. casei strain (ATCC393), given that this species is known for its

desirable lactic acid production characteristics (Hofvendahl & Hahn-Hagerdal, 2000).

Unfortunately, the transformation protocol consistently failed, even after modifying the

conditions and vectors used. Eventually, it was realized that the available type strain is

physiologically different than a homologous L. casei strain that has been known to be

transformable with reasonable efficiencies (Prof. Gaspar Perez-Martinez (CSIC,

Valencia, Spain), personal communication; and (Acedo-Felix & Perez-Martinez, 2003)).

We thus switched to L. plantarum, which was successfully transformed with a

chloramphenicol and erythromycin resistance-carrying plasmid, pGK12. This plasmid,

which contains a pWVO1 origin of replication, can propagate in both L. plantarum and

E. coli (Kok et al., 1984; Lin & Chung, 1999), although it does not contain a multiple

cloning site (MCS).



After inserting an MCS into pGK12 to form pDK12, the gene for the principal sigma

factor, rpoD, was cloned and expressed from its native promoter. The wild-type version

of this plasmid was named pDK12D (Figure 9.2-1); from it, three libraries with different

mutation frequencies were constructed via epPCR, and transformed into electrocompetent

L. plantarum. Different mutation frequencies (low, medium, and high) were achieved by

varying the amount of template DNA in the reaction. The fraction of mutated-DNA

copies and the average number of mutations per copy decrease with increasing amounts

of template DNA, as each template strand is replicated fewer times.

4.2.2.2 Mutants with Improved Tolerance to Lactic Acid and Low pH

The resulting transcriptional engineering libraries were screened for improved

phenotypes in industrially-relevant conditions. Since low pH fermentations are

characterized by high concentrations of free lactic acid and protons, both conditions were

explored. We challenged these libraries either in 5.5 g/L of L-lactate at an initial pH=4.6

(LA condition) or at an initial pH of 3.85 adjusted with inorganic acid (HCl condition).

The LA condition addresses the end-product stress directly, while the HCI condition does

so indirectly (i.e. only as the cells produce lactate). Individual clones were selected after

three rounds of subculturing and the plasmids carrying the mutant sigma factors isolated.

The latter were sequenced and retransformed by electroporation into cells with a clean

genetic background to ensure that the improved phenotype did not arise due to

spontaneous mutation of the chromosomal DNA. After confirming the phenotype, the

best clones, (mutant S6 under the LA condition and mutant H13 under the HCl

condition), were selected for more detailed analysis. Figure 4.2-3 shows the growth

profiles of the retransformed mutants and control under the same stresses used for



selection. Mutant S6 grows about 3.5-fold faster and up to a 5-fold higher OD than the

control in the LA condition. Mutant H13 reaches 86.4% higher OD and a 25% higher

growth rate than the control when grown in the HCI condition.
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Figure 4.2-3. Growth profile of retransformed strains in different stresses

The mutants bear sigma factor variants S6 and H13 and are compared to a strain bearing the control

plasmid (pDK12D). The curves show growth for each mutant in the media used for selection, i.e., LA

condition (closed symbols) for S6 and HCI condition (open symbols) for H13. The wild-type (Wt) is shown

in both conditions for comparison.



The mutants were also tested under stresses not used for selection, i.e., mutant S6 was

grown in the HCI condition and H13 in the LA condition. Acidification of the media with

inorganic acid causes a different transcriptomic response than when lactate is added to

the media (Pieterse et al., 2005), although these stresses are inseparable during

fermentation. The production of lactic acid is accompanied by acidification of the media,

while low pH increases the amount of free lactic acid that may enter the cell and effect

toxicity (Giraud et al., 1991; McDonald et al., 1990). Therefore, it is possible that the

transcriptome that protects H13 at low pH (HCI condition) also protects it against lactic

acid (LA condition). Conversely, the same may be true of mutant S6 in the HCI

condition.

To explore this transcriptomic overlap, we tested the mutants and control in both

conditions (Table 1). Mutant H13 exhibits improved growth at low pH adjusted with both

inorganic and lactic acids, but mutant S6 does not when inorganic acid is used. Most

likely, the mutants cope with these stresses differently and the underlying mechanisms

result in a convergent phenotype in lactic acid. We tried to exploit both mechanisms by

co-expressing the mutant sigma factors in the same cell, as prior work suggested that

improvements in phenotype conferred by different sigma factors may be additive (Alper

& Stephanopoulos, 2007). The phenotype of the combined mutant in both LA and HCI

was similar to that of H13, suggesting that the mechanism of action of this sigma factor is

dominant over that of S6 and wild-type (Table 1).



Table 1. Growth characteristics for Lactobacillus mutants in different stresses

Growth rate (p) and stationary phase optical density (600nm) of the mutants and control under the

experimental conditions.

LA condition HCI condition

Strain p (hr"1) Stat. OD BP (hr-') Stat. OD

S6 0.101 ± 0.001 3.0 ± 0.1 0.08 ± 0.01 1.19 ± 0.01

H13 0.057 ± 0.004 3.2 ± 0.2 0.151 ± 0.001 3.33 ± 0.08

Wild-type 0.028 ± 0.005 0.9 ± 0.2 0.12 ± 0.01 2.08 ± 0.02

S6-H13 0.058 ± 0.004 2.9 ± 0.2 0.152 ± 0.002 3.02 ± 0.01

4.2.2.3 Sequence Analysis

We also studied the sequences of the mutant factors that gave rise to the observed

characteristics. Mutant S6 has a single nonsynonymous substitution (Q345K). This

mutation was responsible for the increased growth in high lactic acid, the higher specific

productivity of lactate (between 40 and 60% with respect to control), sensitivity to HCI

(Table 1), tolerance to higher salt concentrations (qualitative observation), and probably

other traits that remain uncharacterized. The pleiotropic nature of the mutation suggests

that it changes the intracellular environment globally. Glutamine 345 is located in a

region that is highly conserved across sigma factors of many species involved in the

recognition of and interaction with the -35 promoter box, as shown in Figure 4.2-4

(Campbell et al., 2002). This mutation most likely changes the relative affinity of the

RNA polymerase (RNAP) holoenzyme for different promoter regions, similar to what has



been previously observed in E. coli (Gardella et al., 1989; Siegele et al., 1989), which

may result in a global response. As will be seen later in Section 6.6.2, the region of E.

coli sigma D that contacts the -35 hexamer has overall a large potential for phenotypic

alteration. Therefore, this mutation is in tune with later findings of this thesis.

TLEEVGKQ FDVTRERIRQIEAK 5 93
TLEEVGKVFGVTRERIRQIEAK 34 9

Figure 4.2-4. Sequence alignment of E. coli and L. plantarum sigma D

The alignment corresponds to a highly conserved stretch of amino acids in region 4.2 of the sigma factor.

The top sequence corresponds to the E. coli sequence, and the one below it to the L. plantarum equivalent.

The asterisks indicate highly conserved residues. Amino acid Q345 is highlighted, marking the location of

the mutation in variant S6 isolated in the LA condition.

Mutant H13 has several nonsynonymous substitutions (T44A, R74K, D 114A, and

S 19A) and an insertion that results in a truncated sigma factor that includes all of region

1.1 and part of region 1.2 of the protein. Region 1.1 is relatively unconserved across

species (see Section 4.1.1). Many bacterial sigma factors (like that of E. coli) have acidic

N-termini, presumably to mimic the DNA strand and prevent nonspecific binding of the

sigma subunit when not bound to the core RNAP (Dombroski et al., 1992). Others (like

that of the cyanobacterium Thermosynechococcus elongates) have basic regions that have

been suggested to be involved in direct DNA binding (Imashimizu et al., 2006). Given

that taxonomic analyses suggest that gram-positives and cyanobacteria are sister groups

(Gruber & Bryant, 1997), it is more probable that the L. plantarum sigma factor region



1.1 has the latter, rather than the former functionality. To further test this possibility, we

analyzed the first 70 amino acids of L. plantarum, and found 12 basic residues,

contrasting with 3 in the E. coli counterpart. This suggests that it is possible that region

1.1 of the H13 sigma subunit binds DNA and that this free form acts as a nonspecific

repressor. The 3-D structure of the Lactobacillus sigma subunit has not been determined,

which precluded us from doing a surface charge analysis to assess this possibility. For

both mutants, a more complete explanation of the effect of the altered factors in the

transcription process would require a multifaceted study and thus was beyond the scope

of the present thesis.

4.2.2.4 Fermentations

Fermentations were carried out to determine the lactic acid productivity of H 13 and

control. This mutant was tested as it was tolerant to both HCI and LA stresses, whereas

S6 was specifically tolerant to the LA condition (Table 1). MRS media was either

supplemented with glucose (no stress) or the initial pH was adjusted to 3.85 with no

added glucose (HCI condition). Under no stress, H13 and wild-type had similar lactic

acid titers. At an initial pH of 3.85, mutant H13 grew better and produced more lactic

acid (Figure 4.2-5).
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Figure 4.2-5. Fermentation experiments

The graphs show shake-flask fermentation of L-lactate by the H13 mutant and wild-type (Wt) in media

supplemented with glucose and unadjusted pH (no stress condition, (A)), or in the HCI condition (initial

pH=3.85 ± 0.05, (B)).



4.3 Alternative Sigma Factors

Up to date, seven sigma factors have been identified in E. coli, all of which belong to one

of two protein families. The previously-mentioned sigma 70 family, named after the

housekeeping sigma in E. coli, includes the sigma factors D, S, F, E, H, and fecI. The

second family, sigma 54, is named after and includes only sigma N, which has little

sequence homology with the rest of the factors (Burgess & Anthony, 2001; Gruber &

Gross, 2003). Table 2 summarizes the activities coordinated by each of the seven sigma

factors (Braun et al., 2006; Mytelka & Chamberlin, 1996; Nystrom, 2004; Reitzer, 2003).

In exponentially growing cells, the RNAP is almost exclusively bound to sigma D,

which orchestrates the transcription of genes related to proliferation (see Section 4.2).

The EGD complex (core RNAP bound to sigma D) is responsible for transcribing genes

involved in DNA replication, cell membrane and ribosome biosynthesis, substrate uptake,

etc. (Mooney et al., 2005; Nystrom, 2004). On the other hand, the alternative sigma

factors respond to specific stresses, environmental changes, or other growth-limiting

conditions (Nystrom, 2004; Vijayakumar et al., 2004). In E. coli, sigma S regulates the

most number of genes after sigma D; it is induced during common stress responses such

as starvation, and coordinates the stationary phase phenotype. The E s complex directs

transcription of genes needed for nutrient scavenging, DNA repair, protein turnover, etc.

(Vijayakumar et al., 2004).

Other sigma factors are in charge of sensing the environment in different

compartments in the cell. For example, sigmas E and H respond to misfolded proteins in

the periplasm and cytoplasm respectively (Ruiz & Silhavy, 2005; Zhao et al., 2005); they



react to stresses that denature proteins, such as heat and sub-lethal doses of ethanol (see

below).

Table 2. E. coli sigma factors

Sigma factor Function

D DNA replication, substrate uptake, membrane synthesis, etc.

S Stress response, DNA repair, nutrient scavenging, etc.

H Heat-shock response, cytoplasmic sensor for denatured proteins

F Flagellum synthesis and cell motility

E Envelope/periplasm sensor for denatured proteins

fecI Ferric citrate uptake

N Nitrogen assimilation, anaerobic or nutrient-limiting growth

Since the cell faces limiting resources, it cannot devote the same energy to both

reproduction and survival. Therefore, there is an inherent tradeoff between expressing

genes that promote rapid growth and those that protect against stressful conditions. It has

been argued that such tradeoff originates in the competition of different sigmas (mainly

sigma D and S) for unbound core polymerase (Fang, 2005; Ferenci, 2003). Recall from

Section 4.1.2 that RNAP is present in limiting amounts in the cell, so that not all operons

can be transcribed simultaneously. Therefore, the cell must regulate the expression and

stability of alternative sigma factors, as well as the process of sigma factor competition

for free RNAP. Furthermore, the cell should have a mechanism for tailoring the

preference of each sigma to its regulon, and, interestingly, this mechanism is not always

entirely related to promoter sequence.

The levels of sigma S are mostly regulated post-transcriptionally. A comprehensive

review of the mechanisms here enlisted can be found in a recent publication (Hengge-



Aronis, 2002). Translation of the sigma S mRNA is highly controlled, through a wide

variety of regulators such as the histone-like protein HN-S, the RNA chaperone Hfq, and

several small noncoding RNAs. The level of sigma S protein is further modulated by the

action of proteases such as ClpXP.

Because sigma S is very closely related to sigma D, they bind to nearly-identical

consensus promoter sequences in vitro (Gruber & Gross, 2003). In vivo, however, sigma

S is known to have a measurably different regulon compared to sigma D (Weber et al.,

2005), and a considerable amount of research has gone into finding the cues needed for

altering the selectivity inside the cell. Small differences in sequence seem to provide

some discriminatory basis for sigma S- and sigma D-bound RNAP (Becker & Hengge-

Aronis, 2001). Other interactions - such as those with global effectors - and other

features - such as local DNA supercoiling - have also been proposed to affect this

selectivity (Typas & Hengge, 2006).

Small ligands have too been implicated in the general competition between sigma D

and alternative sigmas. For example, the molecule' ppGpp (guanosine tetraphosphate)

accumulates during amino acid starvation conditions and binds to RNAP, which both

increases sigma S synthesis and eases the formation of the Eas complex (Jishage et al.,

2002; Magnusson et al., 2005; Nystrom, 2004). Potassium glutamate is another example

of a small ligand that changes the transcription profile based on sigma factor competition

(Lee & Gralla, 2004).

Although studied in less detail, the regulation of other sigma factors of interest to this

thesis (sigmas E and H) has also been explored. Sigma E, which directs expression of a

regulon that protects against misfolded periplasmic proteins is regulated post-



translationally through a sigma/anti-sigma mechanism (Ades, 2004; Ruiz & Silhavy,

2005). This system communicates information about envelope stresses to the cytoplasm,

where the response initiates at the transcriptional level. RseA is a membrane-bound

protein that, under normal conditions, sequesters sigma E (sigma E binds to RseA with

300-fold greater affinity than to RNAP) (Ades, 2004). The presence of misfolded proteins

in the periplasm activates a proteolytic cascade which culminates with the cleavage of

RseA, which in turn frees sigma E. The sigma factor then binds RNAP and coordinates

the stress response (Ades, 2004; Ruiz & Silhavy, 2005). The response includes the

expression of chaperones and proteases that are targeted to the periplasmic space (Ades,

2004). This system is also involved in tolerance to less common envelope stresses, such

as high metal concentration (Egler et al., 2005).

Similar to sigma S, the level of sigma H is also regulated post-transcriptionally. This

sigma protects against misfolded or aggregated cytoplasmic proteins, and its regulon

includes a set of chaperones, proteases, and other ancillary proteins (Yura &

Nakahigashi, 1999). Its mRNA forms a series of secondary structures that hinder

translation at low temperatures, but that unfold during heat shock. The structures

sequester the ribosome-binding site (RBS), which becomes accessible when the base

pairings melt (Schlax & Worhunsky, 2003); this allows the mRNA to function as an in

vivo thermometer. In addition, the sigma H protein is unstable at normal physiological

conditions, being rapidly degraded with the aid of the DnaK-DnaJ-GrpE chaperones; at

higher temperatures, these are recruited elsewhere, stabilizing sigma H and causing its

accumulation (Yura & Nakahigashi, 1999).



It can be concluded from this discussion that the activity of one sigma factor is not

independent of the activity of another, and that more than one factor could be targeted for

transcriptional engineering. This was a particularly enticing prospect since, based on their

function, the relative control of alternative sigmas over the transcriptome should

strengthen during stress. That is, these factors should be more influential in the precise

conditions of interest for a sizable fraction of strain improvement programs. We now

describe some experiments and results regarding the use of sigma S, E and H for

improving the environmental tolerance of E. coli in different conditions.

4.3.1 Use of sigma S for Phenotypic Improvement in E. coil

The general stress response sigma factor, sigma S, was deemed a good target for

transcriptional engineering given it is responsible for controlling key genes for coping

with environmental challenges (Weber et al., 2005). Sigma S libraries were constructed

in a similar way to those of sigma D (see Section 4.2.1 and (Alper & Stephanopoulos,

2007)). Briefly, the wild-type rpoS gene was amplified from genomic DNA and cloned in

the pHACM plasmid, carrying the pSC101 origin of replication and an approximate

copy-number of five per cell. The wild-type copy was amplified in an epPCR protocol

using three mutation frequencies and cloned into the same vector. These libraries were

used to transform different hosts, depending on the application.

4.3.1.1 Hyaluronic Acid Production

Simultaneously to screening the sigma D libraries for the improvement of hyaluronic acid

(HA) production, similarly-constructed sigma S libraries transformed into Top 10/
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pMBAD-sseABC (Yu & Stephanopoulos, 2008) were also screened. A thorough

description of the motivation for the study and the experimental protocols of the screen

can be found in Section 4.2.1. A total of 78 sigma S mutants were isolated from the

translucent colony identification step, and their HA titers were further confirmed using

the alcian blue method. Figure 4.2-1 in that Section shows the results and the

performance of mutant S47, one of the few mutants that recovered the parental levels of

production (most mutants exhibit a decrease in titer). Table 3 below summarizes the

results from the shake-flask experiments carried out with the isolated mutants and

controls.

Table 3. Hyaluronic acid production characteristics of isolated mutants

CO, 2.06 404.8 + 7.0 196.5 ± 3.4 -

C12 2.21 509.8 - 12.5 230.7 ± 5.6 - - - -
D72 2.12 561.4 - 5.4 264.8 ± 2.5 38.7 34.8 10.1 14.8
S474 2.11 479.0 +20.6 227.0 + 9.8 18.3 15.5 -6 -1.6
DO5  2.11 425.0 + 5.9 201.4 + 2.8 5 2.5 -16.6 -12.7
S06 2.91 695.6 ± 9.7 239.0 + 3.3 71.8 21.6 36.4 3.6

1. Parental strain Top 0O/pMBAD-sseABC with blank pHACM plasmid.

2. Parental strain without additional plasmids.

3. Sigma D mutant, see Figure 4.2-1.

4. Sigma S mutant, see Figure 4.2-1.

5. Parental strain with a wild-type rpoD gene in pHACM.

6. Parental strain with a wild-type rpoS gene in pHACM.

7. Specific productivity of HA in mg of product per mg of cell mass.

The data displayed in Table 3 shows a few interesting trends. For instance, the highest

titers are achieved in a strain that overexpresses the wild-type version of the rpoS gene
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(SO). Perhaps this overexpression, coupled with the overall stress conditions that are

intrinsic to HA fermentations (see Section 4.2.1), favors competition of sigma S for free

RNAP and results in cells that can better cope with high HA titers. Both mutants D72 and

S47 show improvements compared to the CO control, which is the HA producing host

(C1) carrying a pHACM blank plasmid. Although these results show that the mutants

improve the production compared to cells with similar plasmid burdens, this is not the

case when contrasted with the pre-engineered strain, questioning the industrial relevance

of these mutants. Regardless, this data supports the use of sigma S as an alternative target

for transcriptional engineering, albeit in a qualitative fashion.

4.3.1.2 Carbon Dioxide Tolerance

One of the earliest projects of this thesis attempted to solve the apparent inhibitory effect

of carbon dioxide in microorganism growth. Autogenous production of C0 2, summed to

large hydrostatic pressures in bioreactors causes high local partial pressures of this gas,

which leads to an overall decrease in growth and productivity (Onken & Liefke, 1989;

Shang et al., 2003). The most likely explanation is an end-product inhibition effect akin

to that discussed for lactic acid in L. plantarum (see Section 4.2.2), coupled with a

decrease in pH that accompanies the dissociation of carbonic acid in aqueous solutions

(Lacoursiere et a]., 1986).

Preliminary studies done for developing carbon dioxide tolerance in E. coli suggested

that selective pressures must be harsh enough if we intend to find outperforming

members in the library. Available libraries were screened in the presence of high

concentrations of carbon dioxide, as it was noted that the gas inhibits normal growth

(stationary phase O.D. (600nm) of a wild-type strain was compared in flat and C0 2-rich
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medium and a ten-fold difference in cell density was observed). However, screening of

sigma S (and, to a lesser extent, sigma D) libraries in the CO2-rich medium was

ineffective for isolating outperforming mutants. The ability of cells to grow in C0 2-rich

medium improved with each round of sub-culturing, but it was not possible to isolate a

clone that could still outgrow the control after re-transformation of the sigma factor-

containing plasmid. Cells seemed to adapt to high CO 2 concentrations at least as fast as

potentially improved variants grow, increasing the rate of false positives and negating the

usefulness of the libraries. In fact, it has been found that CO 2 does not kill cells even

when 100% CO 2 gas-flow is used (Lacoursiere et al., 1986).

These results revealed an important fact: a cell with a mutated regulator must outgrow

the rapidly-adapting background population by orders of magnitude, if the screening

pressure does not kill the average and underperforming cells. The months of unfruitful

efforts evidenced the known fact that purifying selection is a key time- and resource-

intensive step in random searches for strain improvement (see Section 3.1.2). This was

the first indication that not all phenotypes of interest can be easily improved.

4.3.2 Use of sigma E and sigma H for Phenotypic Improvement in E. coli

Early on, we recognized that ethanol fermentations represented an interesting application

for our approaches. As will become apparent from the discussion below, sigma E and

sigma H seemed ideal targets for improving environmental tolerance associated with

ethanol fermentations.

In order to sample a larger sequence space, we considered building libraries in which

both sigmas would be simultaneously mutated. As a first step towards this goal, we
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constructed an artificial operon expressing both rpoE and rpoH genes from a constitutive,

synthetic promoter. The genes were amplified from genomic DNA and cloned using a

triple ligation into a pZE vector downstream of the Q-variant of the PLtetO-1 promoter

(described in (Alper et al., 2005)); this plasmid has a ColE 1 origin of replication and

contains the kanamycin-resistance gene (Lutz & Bujard, 1997). The correct wild-type

sequences and operon structure was confirmed before amplification by epPCR was

implemented as previously described. The mutant libraries were transformed into a

DH10OB E. coli cell line for further studies.

4.3.2.1 Heat and Ethanol Tolerance

In general, engineering environmental tolerance against stresses commonly encountered

in ethanol and similar fermentations has been extensively explored inside and outside our

laboratory, and for a variety of microbial systems (Abdel-Fattah et al., 2000; Alper et al.,

2006; Cakar et al., 2005; Demain et al., 2005; Fiocco et al., 2007; Fischer et al., 2008;

Graca da Silveira et al., 2002; Ingram et al., 1998; Ingram et al., 1999; Klinke et al.,

2004; Lin & Tanaka, 2006; Ng et al., 1981; Yomano et al., 1998). The motivation for

most studies is establishing an efficient system for biofuel production with high titers and

productivities (a much more complete description of the problem and motivation can be

found in Section 6.4.3). This ambitious goal is one that has driven enormous efforts in

recent years and to which an equally large amount of funding has been directed.

To tackle the environmental tolerance problem, we wondered whether we could use

transcriptional engineering with alternative sigma factors to further the achievements that

started with the use of sigma D (see Section 3.3.3 and (Alper & Stephanopoulos, 2007)).

There were at least two reasons for doing this. First, the stresses encountered in ethanol
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fermentations would favor transcription of regulons controlled by alternative sigma

factors, and second, we could use the resulting mutants concomitantly with the

previously-isolated sigma D mutant to try to magnify its effect.

There are several hypotheses for the toxicity of ethanol in bacterial systems. Similar

to other alcohols, it is believed to act at the membrane, causing a general fluidization of

the lipid bilayer and resulting in ion leakage through this barrier (Graca da Silveira et al.,

2002; Sikkema et al., 1995). In turn, the leakage challenges the control of the intracellular

pH, charge, and osmolarity, leading to energy dissipation and subsequent death. In

addition, ethanol elicits a response similar to that of heat-shock, upregulating chaperones

and similar protectants, suggesting that this alcohol may elicit or potentiate protein

unfolding (Barbosa et al., 1994; Yura et al., 1993).

Another condition of interest for ethanol and other fermentations is high temperature.

Cooling is a major energy input and a general hurdle of most bioprocesses; thus, running

fermentations at higher temperature results in monetary savings and process

simplification (Abdel-Fattah et al., 2000). Ethanol production at high temperature has

been recognized to have several advantages (Ng et al., 1981), but it continues to be a

challenge. A main reason is that heat is also known to cause membrane fluidization and

protein denaturation, adding to the effects of ethanol (Missiakas & Raina, 1997;

Shigapova et al., 2005). Indeed, both ethanol and heat elicit similar responses in the cell,

mediated by either or both sigma E and sigma H (Missiakas & Raina, 1997; Srivastava et

al., 2000; Yura et al., 1993). Because these sigmas were likely to be bound to RNAP in

high temperature and ethanol conditions, their mutant versions could conceivably

produce the transcriptomic profile that could improve tolerance.
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With this in mind, we screened the epPCR libraries in 50 g/L of ethanol at 42 oC. The

challenge involved resuspending the cells in these conditions and plating them after 24

hr, and, therefore, it is termed a survivability assay. Other purifying selection techniques

were tried, such as serial subculturing in 40 g/L and 42 OC, but we will not discuss these

in detail.

Figure 4.3-1 shows representative data for 9 clones - 3 from each constructed library

- and two controls - one carrying the empty pZE plasmid and one more bearing the wild-

type operon in the same vector. The figure shows pre- and post-retransformation

survivability after 24 hr in media with 50 g/L ethanol at 42 OC. As shown, the

improvement is lost after retransformation, a trend that was observed in dozens of similar

isolates. Furthermore, the data was consistently noisy so that it was hard to determine if

the difference between pre- and post-retransformation survivability was due to genetic

differences, to environmental conditions, or simply to stochastic effects. These two facts,

added to the success we were encountering with the alpha subunit of the RNAP led to the

abandonment of the sigma E and sigma H libraries for phenotypic improvement.

From the use of the three alternative sigma factors for transcriptional engineering we

learned that not all targets are equally promising for improving a particular phenotype.

This could be either because the choice of target is not adequate for engineering the

phenotype that is being considered, which represents a theoretical limit for improvement,

or because the quality of the libraries is not high enough. The latter implies that, even

though variants of the target in question could improve phenotype, the library design is

not such that these variants can be readily found given the fact that the search space is

infinite. This issue was explained with an example in Section 3.2.1. The lack of
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information gained by this set of experiments (i.e. nothing more than the observation that

the libraries at hand were not useful) was a key motivation for the experiments described

in the next two Chapters.

1.4% ,

Let1 Let2 Let3 Met1 Met2 Met3 Hetl Het2 Het3 Empty

Figure 4.3-1. Survivability assay for sigma E -- sigma H mutants

The graph shows example survivability data (at 24 hr, in 50 g/L ethanol and at 42 oC) from high ethanol

and high temperature survivability assays. The first letter in the mutant designation shows whether it was

isolated from the library with low, medium, or high mutation frequency. Trial 1 was done before the mutant

sigmas were retransformed into the host, and trial 2 was done after retransformation. Two controls (DH10B

with an empty plasmid or one expressing the wild-type operon) are shown for comparison.
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4.4 Alpha Subunit of the RNA Polymerase

As discussed in Section 4.1, the sigma factor is not the only subunit of the RNAP in

charge of promoter recognition, although the evidence supporting alpha-promoter

interactions came later and is thus less detailed. Simultaneously to our work with

alternative sigma factors, we explored the use of the alpha subunit for transcriptional

engineering in the spirit of the general goal of this thesis. Let us now turn to the reasons

for why this protein seemed promising for phenotypic improvements.

Each RNAP complex contains two identical alpha subunits, each composed of two

independently-folding domains (the NTD and the CTD, see Section 4.1) joined by a

flexible linker. The NTD is in charge of alpha dimerization, the first step in RNAP

assembly, and, subsequently, of recruiting the P and P' subunits to form the core enzyme

(Kimura & Ishihama, 1995). Although the NTD has been commonly thought of as a

structural domain, recent findings suggest that it also has regulatory functions.

An implicit regulatory function of the NTD stems from its role in RNAP assembly.

Since the RNAP is in short supply in the cell, and this phenomenon determines the

competition of the different sigmas for free core enzyme, the NTD has an indirect effect

on the differential preference of the RNAP for the various promoters. A more overt form

of regulation by NTD takes place at some Class II promoters. Niu et a]. reported that a

patch of negatively-charged amino acids (residues 162-165 in alpha) located in the NTD

interact with the catabolite activator protein (CAP) at residues 19, 21, 96, and 101 (Niu et

al., 1996). The authors speculate that the same or nearby amino acids in NTD can have

regulatory functions at other promoters or with other effectors.
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These and similar studies suggest that NTD may be a promising mutagenesis target

for transcriptional engineering. Most of the determinants of alpha in charge of

transcriptional regulation, however, are found in the CTD. This domain is formed by a

non-standard helix (NSH) followed by four a-helices, whose structure has been

determined (Jeon et al., 1995). The CTD interacts in at least three ways at the promoter,

each of which will be discussed in turn.

The first category of CTD interactions is that with DNA. It has been have proposed

that alpha binds and recognizes bases in the minor groove, at either one or two UP

promoter elements situated between bases -59 and -38 with respect to the transcription

initiation site (Gourse et al., 2000). Structurally, the first helix and the loop between the

third and fourth helices of alpha are the regions directly in charge of DNA recognition at

the UP promoter site (Gaal et al., 1996). Estrem et al. reported on the consensus UP

sequence based on in vitro binding-selection experiments, and determined that it

consisted of an A/T-rich stretch starting at base -38 (Estrem et al., 1999). Furthermore,

they showed that proximal and distal UP sub-sites were able to stimulate expression up to

170- and 16-fold, respectively. The effect of CTD-DNA interactions varies widely from

promoter to promoter, and is not always stimulatory, but may be inhibitory in some cases

(Ellinger et al., 1994; Ross et al., 1998). This diversity in interaction effects implies that

the CTD is responsible to some degree for the differential expression across promoters. In

fact, the CTD has been recently reported to interact at most, if not all, promoters (Ross &

Gourse, 2005). Having these properties makes the alpha subunit a promising target for

transcriptional engineering.
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The second category of CTD interactions is that with activators or repressors that

bind upstream of the -35 promoter hexamer, both at class I and class II promoters. At

class I promoters the CTD is the main basis for activation, interacting with proteins that

bind overlapping the UP promoter region (Browning & Busby, 2004). A similar

arrangement of promoter elements in which the CTD interacts in an inhibitory, rather

than a stimulatory, fashion has been found for repression mechanisms, such as that

mediated by the galR repressor (Choy et al., 1995; Choy et al., 1997). At class II

promoters the protein effector binds overlapping the -35 hexamer, and the CTD is

responsible for one among many interactions (Busby & Ebright, 1999).

The third category of CTD contacts is that comprising interactions with sigma.

Several lines of research have indicated that this interface, situated in amino acids 257-

261 of alpha (Benoff et al., 2002), has several regulatory functions. For example, a

E261K mutation has pleiotropic effects in phenotype, ranging from inability to grow in

minimal media, reduced growth in LB broth, cessation of growth at 42 oC in some media,

distinct colony morphology, among others (Jafri et al., 1996). Additional evidence was

offered by a study showing that certain mutants of sigma (in particular, in region 4.2) and

others in aCTD exhibit a marked decrease in transcription from some promoters (Ross et

al., 2003). This study proposes that alpha's D259 and E261 form a direct link with sigma

D's R603. A somewhat recent paper (Gourse et al., 2000) summarizes the results from

other studies that suggest aCTD-sigma interactions.

As suggested by the multiple regulatory functions outlined here, the alpha subunit of

RNAP appeared to be a good target for transcriptional engineering. Because the amino

acid determinants for these functions appeared to be spread out, and for the same reasons
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tendered in the case of sigma D libraries, the initial approach for utilizing this target was

to construct mutagenesis libraries encompassing the entire coding region of alpha.

4.4.1 Use of the alpha Subunit for Phenotypic Improvement in E. coli

As a first step towards implementing our transcriptional engineering approach with the

alpha subunit of the RNAP, we cloned the wild-type version of the gene into the pHACM

vector (see Section 4.2). The rpoA gene was amplified from genomic DNA and inserted

downstream of the Pl,ac promoter. Although the promoter is inducible (e.g. with isopropyl

3-D-1 -thiogalactopyranoside, IPTG), observations in our laboratory suggested that the

expression from this element was leaky and did not require induction, especially in rich

or complex media.

The correct insertion and sequence were verified prior to amplification with epPCR

with three mutation frequencies. The amplified mutagenized products were then cloned

back into the pHACM vector, resulting in three libraries denoted rpoA*L, rpoA*M, and

rpoA*H, indicating their low, medium, and high mutation frequencies. The plasmids

bearing the mutagenized genes were isolated and used to transform different host strains,

depending on the application. Initially, we considered tolerance to n-butanol, and

production of hyaluronic acid and L-tyrosine as the complex phenotypes in which our

newly-developed tool would be applied.

4.4.1.1 Tolerance to n-butanol

Butanol has gained substantial attention for its potential as a biofuel, because it possesses

several advantages over the more widely-used compound, ethanol (Durre, 2007). Most
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notably, butanol has a higher energy content and is not water soluble, which greatly

facilitates its storage and handling (Durre, 2007; Wackett, 2008). However, the

hydrophobicity of butanol makes it especially toxic for the production organism. Recent

studies report the production of this and similar molecules in E. coli and allude to strain

improvement methods for increasing butanol tolerance in this strain (Atsumi et al.,

2008a; Hanai et al., 2007).

The toxicity of butanol is thought to arise from the fluidization and disordering of

membrane lipids and the consequent leakage of ions through it (Sikkema et al., 1995). In

particular, dissipation of the transmembrane pH gradient has an energy uncoupling effect

(Bomeman et al., 2007; Graca da Silveira et al., 2002), similar to that caused by ethanol

(see Section 4.3.2) and weak acids at low external pH (see Section 4.2.2) (Pieterse et al.,

2005; Valli et al., 2006).

We began by screening the rpoA libraries in butanol in a DH5c0 E. coli host. We used

serial subculturing in high butanol media for our purifying selection step, similar to that

described earlier for L. plantarum. After several mutants were isolated and retransformed

into the parental strain, a single mutant (denoted L33) was selected for further

characterization. Growth in the presence of butanol was linear in time (not exponential),

and the mutant exhibited a significantly steeper rate of growth (slope was 0.08+0.01 for

mutant vs. 0.05±0.01 for wild-type in 0.9% n-butanol, see Figure 4.4-1) and higher

accumulated cell mass (Figure 4.4-3).
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Figure 4.4-1. Growth assay in butanol

The plot shows growth curves of DH5a cells transformed with either the wild-type or the L33 mutant of

rpoA in 0.9% butanol. The assay was done in duplicate and the slopes and their confidence intervals were

calculated as given in the text.

A few points about Figure 4.4-1 are in order since the graph shows a linear growth

profile based on four data points. A more detailed growth curve (with more time points)

could not be performed, due to butanol losses by evaporation associated with opening the

tubes for sampling. This would increase the noise in the data and would make it hard to

interpret. The linear profile refers to the fact that when the experiment with a few time

points (usually 4) was repeated, a line was consistently a statistically better fit than an

exponential curve (as judged by the sum of squared errors).
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This implies that either the growth is slow and appears linear (i.e. in the vicinity of

time t=O, the tangent line of an exponential curve with a small time constant approaches

the curve itself), or that growth cannot be described as a first-order process because it is

not limited by the number of individuals in the population. In the latter case, growth

could be described as a zeroth-order process, as when limiting reactions for growth are

occurring at saturation.

Upon analyzing the rpoA plasmid isolated from L33, we found a nucleotide

substitution that changes the amino acid E244 to a stop codon, resulting in a truncated

protein that lacks the aCTD (Figure 4.4-7). Interestingly, similar rpoA mutants have been

isolated in the past and have been widely studied. A protein lacking the cCTD is capable

of being assembled into the RNAP and carrying out transcription; however, it does not

respond to signals in the DNA or to protein effectors (Igarashi & Ishihama, 1991;

Igarashi etal., 1991; Murakami et al., 1996; Ross et a]., 1993; Savery et al., 2002). For

example, alpha subunits lacking the aCTD do not respond to the strong activating signals

from the UP-region of rrnB promoters (Paul et al., 2004; Ross et al., 1993) or the cAMP-

CRP complex (Igarashi & Ishihama, 1991).

The changes associated with these interactions would be significant even in the

absence of other effects, considering that the products of rrnB promoters make up a

major fraction of the total RNA in the cell (Paul et al., 2004) and that more than 100 loci

are activated by CRP (Botsford & Harman, 1992; Savery et al., 2002). It is important to

note that because the chromosomal copy of rpoA remains intact, the observed phenotype

likely arises from the combined action of the truncated and non-truncated forms of the

protein.
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4.4.1.2 Tolerance to Other Solvents

The toxicity of alcohol solvents in bacteria is known to be related to their lipophilicity.

The higher the solubility of the alcohol is in the membrane, the higher is its

bioavailability, and the more pronounced its harmful effects are for the cell (Sikkema et

al., 1995). As a first step towards exploring the tolerance of mutant L33 to other solvents

with potential biofuel uses, we tested the growth inhibition of several alcohols for our

wild-type strain. As shown by Figure 4.4-2, there is a clear increase in toxicity with

increases in hydrophobicity, as seen from the comparison between the linear and

branched versions of propanol and butanol.

0 -! I r % e '%-- I I-

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

Concentration
3.0% 3.5% 4.0% 4.5%

Figure 4.4-2. Test of toxicity of various alcohols

The graph shows the final optical density (600 nm) for DH5a E. coli cells grown in M9 minimal media and

different concentrations of different short-chain alcohols.
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Figure 4.4-3. Growth assay for mutant and wild-type in various alcohol solvents

Overnight growth (after 24 hr) of DH5a cells transformed with either the wild-type or the L33 mutant of

rpoA in different alcohol solvents. The alcohols are named first by the carbon atom where the hydroxyl is

found and last by the number of total carbons in the molecule (e.g. 2-C4 is isobutanol). The concentration

used is in parenthesis (v/v).

Next, we tested L33 in several alcohols; we chose n- and iso-butanol and n- and 3-

pentanol since their high heating value makes them potential biofuels. We hypothesized

that if the mutant rpoA negated the effects of butanol through a decrease in membrane

fluidity or a related response, the mutant would also exhibit resistance to other solvents

that are known to act by similar mechanisms. We tested the tolerance of the mutant to

other alcohols and found that the strain performed better than the control for all cases, as
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measured by the accumulation of cell mass in the presence of the toxic solvent (Figure

4.4-3).

4.4.1.3 Tolerance to Ion Leakage of Butanol-Tolerant Mutant

In order to test the ability of the mutant to cope with ion leakage and energy uncoupling,

we measured the intracellular pH (pHi) in the presence of a weak acid at low extracellular

pH (pHe) with and without added butanol. Cells were acid-shocked by resuspending

them in potassium phosphate buffer at pHe of 4.7. By comparing the pHi of wild-type and

mutant cells in the presence of butanol to that of the control with no added butanol we

tested the capability of the strains to maintain the pHi when in contact with the alcohol.

The results are displayed in Figure 4.4-4. A negative pH difference implies that the

pHi of the strain in the presence of butanol is lower than that without butanol, which is

the expected result for the wild-type (as shown). In contrast, L33 maintains a higher pHi

throughout the experiment compared to the wild-type with the same amount of butanol,

and also compared to the control strain with no butanol (thus, the pH difference is

positive). These observations suggest that the mutant L33 copes with the stress either by

reducing the fluidity of the membrane or by increasing the rate at which protons are

forced out of the cell, or by a combination of both.
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Figure 4.4-4. Ion leakage assay for mutant and wild-type

The graph illustrates the ability of the butanol-tolerant mutant (L33) and wild-type strains to maintain their

intracellular pH (pHi) in the presence of butanol. The y-axis shows the pHi difference between cells

resuspended in buffer (pHe=4.7) with the indicated amount of butanol (v/v %) and wild-type cells

resuspended in buffer with no butanol. Error bars are not shown, but the CV of the pH measurements was

on average 0.4%.

4.4.1.4 Enhanced Production of L-Tyrosine

The aromatic amino acid L-tyrosine has several pharmaceutical and industrial

applications, thus making it an interesting target for production in E. coli (Lutke-Eversloh

& Stephanopoulos, 2007). For example, because this amino acid is the biochemical

precursor for important neurotransmitters in the brain, its use in the production of

treatments for cognitive ailments such as Parkinson's disease is being considered (Kim
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do et al., 2007). L-tyrosine is also used as an essential dietary supplement in patients that

suffer from phenylketonuria, a condition that interrupts the synthesis of tyrosine from

phenylalanine (Lutke-Eversloh et al., 2007).

Directed genetic modifications have been quite successful in increasing the titers of

L-tyrosine for creating an industrial strain. For example, Lutke-Eversloh and

Stephanopoulos reported that by introducing and overexpressing feedback-resistant

versions of two controlling enzymes in the tyrosine pathway, aroG and tyrA, and by

simultaneously deleting the tyrR transcriptional regulator, they were able to increase the

production of the amino acid from non-detectable levels to 3.8 g/L (Lutke-Eversloh &

Stephanopoulos, 2007). Additional overexpressions helped to increase the availability of

its precursors, phosphoenolpyruvate and erythrose-4-phosphate, resulting in a mutant that

reached 9.7 g/L.

Although this and comparable studies attest to the impact that traditional strain

improvement approaches can have for enhancing tyrosine production, a random knockout

search revealed that increases in titer may also arise from the modulation of seemingly

unrelated or unknown factors (Santos & Stephanopoulos, 2008b). This early lead makes

this system well-suited for transcriptional engineering studies.

We began by transforming the rpoA libraries into the pre-engineered L-tyrosine-

producing strain that contains a few modifications in addition to those previously

described: E. coli K12 ApheA tyrR: :PLTET-O01 tyAfbrarO G fbr lacZ:: PLTET-01 !yrAfbrarOGbr.

We then subjected it to a high-throughput screen based on the synthesis of the black

pigment melanin, which exploits the fact that this compound is produced from L-tyrosine

(Santos & Stephanopoulos, 2008b). The referenced study established that the titer and
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productivity of melanin correlates with L-tyrosine overproduction, and thus it is possible

to infer the level of the compound of interest based on how dark do colonies appear and

how fast does the color develop during the screen.

From an initial library size of 7.5x1 05 mutants, 30 of the darkest strains were selected

by visual inspection and tested for L-tyrosine production in MOPS minimal medium. We

were able to isolate a strain (denoted rpoA14) exhibiting a 91% increase in titer above the

parental pre-engineered strain, with a final concentration of 798 mg/L L-tyrosine (Figure

4.4-5).

1000

900

800

700

600

500

400

300

200

100

0

S24 hr

S48 hr

Parental rpoA 14 rpoA22

Figure 4.4-5. L-Tyrosine production of parental strain and mutants

The parental is an E. coli K12 ApheA tyrR::PLTET-OI tyrA fbraroGf r lacZ:: PLTET-O1 tyrAfbraroG r and the other

two harbor the mutant rpoA genes. Mutant rpoA14 was isolated from the error-prone PCR libraries, and

mutant rpoA22 from saturation mutagenesis libraries.
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It is interesting to note that the observed L-tyrosine producing phenotype required

both the background of the isolated strain and the presence of a mutant rpoA plasmid.

Therefore, it is likely that this particular strain incurred additional mutations within the

chromosome that act in concert with the mutant rpoA to enhance L-tyrosine production.

Thus, rpoA mutagenesis can also act synergistically with natural variations introduced

during normal replication processes.

Sequencing of the mutant rpoA gene revealed two amino acid changes, V257F and

L281P (Figure 4.4-7), located in the aCTD near amino acids known to contact regulatory

factors and the UP-element (Murakami et al., 1996). The first change occurred in the

NSH, while the other was located in one of the four a-helices of the aCTD (Gaal et al.,

1996). It is likely that both of these mutations alter the interaction of the aCTD with its

target proteins or sequences through changes in the aCTD structure. In particular, the

amino acid proline has been implicated in destabilizing a-helices in some conditions (Li

et al., 1996). A change in helix conformation could indirectly affect the positions of the

amino acids responsible for making contacts with the promoter, thus altering the affinity

of the RNAP for some of its targets.

In order to test whether other amino acid substitutions in positions V257 or L281

could improve the production of L-tyrosine further, we constructed a saturation

mutagenesis library with mutations restricted to these residues. The resulting library was

transformed into the parental strain and screened as before. After 40 of the darkest strains

were selected and individually tested, one was chosen for further analysis. This mutant,

denoted rpoA22, has a V257R mutation and no change in L281. As shown in Figure

4.4-5, the mutant produces similar final titers compared to rpoA14, but has a substantial
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increase in the rate of production. At 24 hr, when rpoA14 is still indistinguishable from

the parental, mutant rpoA22 has already reached nearly 90% of its final titer. Therefore,

this mutant offers an interesting opportunity for developing an industrial platform for

continuous production.

4.4.1.5 Enhanced Production of Hyaluronic Acid

As an additional phenotype to improve using our new approach, we chose hyaluronic

acid (HA) production, using the same high-throughput screening (HTS) method that we

described in Section 4.2.1.1 (Yu et al., 2008a). As a reminder, cells with increased titers

are first recognized by their translucent appearance in solid medium, and second, the HA

is quantified by precipitation of a dye, alcian blue.

Using this HTS platform, we isolated improved rpoA mutants as shown in Figure

4.4-6. The figure shows the HA concentration relative to the control, quantified using the

alcian blue method previously reported (Yu et al., 2008a). It is obvious from Figure

4.4-6 that significant phenotypic diversity was introduced to the production strain via the

rpoA mutant library, which is a qualitative indication that rpoA is a good target for

transcriptional engineering (see next two Chapters). Mutant rpoA-HA, indicated with a

hatched bar in Figure 4.4-6, was further examined. A single mutation (L254Q) located in

the so-called 'non-standard helix' (NSH) of the aCTD (Gaal et al., 1996) was revealed by

sequencing (Figure 4.4-7).
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Figure 4.4-6. Alcian blue quantification of HA production by selected rpoA mutants

The host strain and the control (black) is E. coli Topl O/(pMBAD-sseABC), while the rpoA-HA mutant is

indicated with a hatched bar. All samples were measured in duplicate.

4.4.1.6 Location of the rpoA Mutations

We have described how mutants of rpoA elicited improvements in three distinct

phenotypes - butanol tolerance, L-tyrosine production, and HA accumulation - which

opens the possibility that this technique could be used for improving a broad spectrum of

other interesting traits. The evidence presented in the previous sections suggests that this

capacity is related to the function of the caCTD, because all the mutations found were

mapped to this region. This domain of the protein has been implicated in contacting

promoter DNA and protein activators and repressors (Browning & Busby, 2004; Dangi et
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al., 2004), suggesting that it is the regulatory function of the alpha subunit which gives

rise to the pleiotropic alteration of the transcriptome that results in novel phenotypes. The

aNTD has also been shown to be a target for transcription regulation (Niu et al., 1996),

but no mutations were found there in the present study. Figure 4.4-7 summarizes

schematically the location of the mutations in the alpha protein that correspond to the

different phenotypes.

aNTD aCTD

Wild-type

L33 (Butanol)

rpoA-HA (Hyaluronic Acid)

rpoA14 (Tyrosine)

NSH 4 a-helices
NSH 4 ct-helices

Figure 4.4-7. Schematic mapping of the mutations on the rpoA protein

Gross features, such as the N- and C- terminal domains (oNTD and aCTD), the non-standard helix (NSH),

and the four a-helices of aCTD (Gaal et al., 1996) are indicated.
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4.4.2 Phenotypic Specificity of the alpha Subunit Mutants and

Comparison to Alternative Approaches for Strain Improvement

The fact that all mutations found in this study were related to the function of the aCTD,

but none is located in residues known to contact DNA or protein regulators, opens the

possibility that the isolated mutants are not highly specific to the phenotypes for which

they were selected. For example, rpoA14 may be a loss-of-function variant of the CTD,

and therefore could confer better growth in butanol (recall that L33 is a loss-of-function

of the CTD); the same could be true for rpoA-HA.

To test the specificity of the mutant genes, we transformed rpoA14 and rpoA-HA into

DH5 and measured growth in 0.9% n-butanol as before. Neither shows an improvement

similar to that of L33 (Table 4), which implies that these mutants have retained at least

some CTD functionality.

To further test the specificity, we tried a similar experiment in which L33 and rpoA-

HA were transferred into the tyrosine-producing parental strain (prepared by curing the

rpoA14-containing plasmid). As shown in Table 4, all three plasmids confer similar

increases in tyrosine production, which implies that small alterations of CTD function

(probably through partial misfolding) can increase production in this background. In

other words, the tyrosine-production phenotype is not highly specific to rpoA14, but the

butanol-tolerance phenotype is specific to L33.

Previous studies have shown the usefulness of other transcriptional engineering

targets for cellular engineering, so it is appropriate to compare the use of rpoA to other

targets for improving the aforementioned phenotypes. For the case of butanol, rpoD

libraries were tried in parallel with those of rpoA, but no rpoD variants were isolated that
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confer a growth advantage. We did not feel, however, that we have enough experimental

evidence to suggest that rpoD could not be used for improving butanol tolerance. Perhaps

such a mutant is theoretically achievable, but it was not found given the inherently finite

size of the library. For the case of tyrosine, rpoD libraries have been screened and

mutants were isolated with levels of tyrosine slightly higher than that of rpoA14. The

data supporting this observation will be the focus of a paper that is, as of now, in

preparation (Santos and Stephanopoulos). For the case of HA, rpoA mutants show an up

to -60% improvement in titer (Figure 4.4-6) compared to -40% in the case of rpoD (see

Figure 4.2-1 in Section 4.2.1.1).

Although we do not reckon these comparisons to be a good basis for determining

which target is best, we do believe that mutagenesis of the alpha subunit may

complement the use of sigma factors for strain improvement. The alpha subunit is

permanently bound to the RNAP holoenzyme and has been shown to interact with most,

if not all promoters (Ross & Gourse, 2005), circumventing the fact that some

transcriptional states may be hard to access by sigma D in certain conditions (Ishihama,

2000; Jishage et al., 2002). The next Chapter focuses on developing the conceptual

grounds and tools to make a fairer comparison between targets for transcriptional

engineering, and between random search-based libraries in general.
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Table 4. Phenotypic specificity of rpoA mutants

Phenotyp e
Butanol Ty osine2

poA14 14% 90%
SL33 129% 93%

rpoA-HA -3% 119%

1. Percent growth advantage (measured as the final OD600) of DH5a containing mutant rpoA plasmids vs.

wild-type rpoA plasmid. Experiments were conducted in 0.9% n-butanol.

2. Percent increase in L-tyrosine titer (48hr) compared to that of the parental strain. Mutant plasmids were

introduced into an rpoA14 mutant background (generated by curing the original plasmid through serial

subculturing).
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Chapter 5

5. Phenotypic Diversity as a Metric for

Evaluation of Random Strain

Improvement Libraries

The discussion in Chapter 3 (Sections 3.2 and 3.3 in particular), in which we described

several examples of random search-based library designs, insinuated that there are

different routes one can take to elicit the same phenotype. Furthermore, each route can be

applied with different experimental parameters (e.g. location and frequency of mutations,

etc.). Because time and resources are limited, not all routes or parameters can be

explored, neither simultaneously or sequentially.

The present thesis started at the time when strain improvement through engineering of

the native transcriptional machinery was being tried for altering different phenotypes, and

this technique became the focus of this work. Given the list of alternative tools for

accomplishing the same goal, it was also relevant to study and compare our choice in the

context of available options. Perhaps other library designs would work better or bring

improved strains faster, and maybe other strategies for implementing the same library
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design were more efficient. The question of how to determine the potential of different

random search-based approaches for phenotypic improvement became a central question

of this thesis.

With these factors in mind, we began concretizing our thoughts about the value of

and the means for evaluating different strain improvement approaches. In this Chapter,

we cover the motivation behind evaluating the potential of different libraries, we describe

the development of a metric for accomplishing this, and we delineate its implementation.

5.1 Motivation for Developing a Metric

Random search-based approaches for strain improvement are based on generating

genotypic diversity and finding a variant of interest. As previously argued, purifying

selection is the key time- and resource-intensive step (see Section 3.1.2); adding to the

challenge is the fact that there is a long list of possible methods available for generating

genotypic diversity. A main motivation for developing a metric for evaluating and

comparing different library designs is thus the economization and simplification of strain

improvement programs.

Evaluation of an experimental approach can be qualitative or quantitative; the latter

necessitates the definition of a metric. There are at minimum two arguments for the

usefulness of a metric for evaluating random search-based approaches for strain

improvement: (i) it can provide the basis for comparing different experimental routes for

building libraries; and (ii) it can aid in guiding and optimizing the construction of these

libraries. Both hinge on the same principle, that of comparing different libraries and
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sequentially determining what design is most promising. Let us now explore these

arguments in more detail. Throughout the discussion, one ought to keep in mind that

evaluation of random search-based approaches may be a conceptually concrete objective

but, experimentally, it must be done indirectly through evaluation of the libraries

constructed with these approaches. Therefore, two libraries constructed based on the

same design may differ in their quality because of the intrinsically imperfect

reproducibility of experiments (see Section 3.2.1 for more on this argument).

5.1.1 Comparing Different Experimental Approaches for Building

Libraries

As outlined in Sections 3.2 and 3.3, there are several ways in which genotypic diversity

can be introduced into a population, resulting in different library designs. Even if one

restricts the possibilities by only considering mutagenesis-based libraries, there is an

infinite number of designs, depending on where does one choose to target the

mutagenesis (e.g. a sigma factor, a short RNA molecule (siRNA or ribozymes), a

ribosomal protein, a rate-limiting enzyme, etc.), the mutation frequency, the identity of

mutations, etc. By changing these parameters, one can alter the characteristics of the

libraries. Different library designs comprise different theoretical sequence spaces, and

each of these spaces covers a different phenotypic space. In other words, depending on

the library design, some phenotypes may be easily achievable in the resulting population

and some may not.

Let us clarify the meaning of these ideas with an example. Imagine we are to improve

the production of compound B based on the metabolic network of Figure 5.1-1, and
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consider two library designs. The first one, let us call it L 1 (library 1), is a population of

which the promoter of enzyme e4 is randomized; the second, L2, is one in which the

active site of enzyme ell is targeted for mutagenesis. Because of the location and function

of e4 and ell in the metabolic network, it is intuitive to assume that the sequence space of

L1 will be mapped to a phenotypic space that is more likely to contain an improved

variant with respect to the production of B. That is so because there are more mechanistic

ways in which a mutation contained in L1 will translate into an improvement in the

phenotype of interest compared to L2. Note that this comparison is set forth on

probabilistic grounds: the fact that it is more likely to find the improvement in L1 than in

L2 does not mean that there is no mutant in L2 that could potentially exhibit increased

production of B (through an indirect effect).

Now, if the probable effect of e4 and ell on the production of B is not known and

cannot be guessed, then it is difficult to know a priori which design would hold more

promise for accomplishing our goal. A metric that would measure the potential of L1 and

L2 for harboring a mutant with altered synthesis of B could allow deciding which library

to screen in the absence of the mechanistic knowledge about the phenotype of interest

(this information was provided by the metabolic map in the case of our example).
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Figure 5.1-1. Example metabolic map

5.1.2 Optimizing the Construction of Libraries

If L1 fails to deliver a substantially-improved mutant, even when e4 is known to be the

rate-limiting enzyme for the production of B, one may consider optimizing the L1 library.

In other words, the library design may be relevant in principle, but the parameters chosen

to implement the design may be not. For example, perhaps the promoter randomization

included an effector binding region, but it may be that for the case of e4 this region is

critical for having any expression at all. Mutations there would inactivate the enzyme,

making it improbable to find improved variants in L1. In this case, a third library, L3,

could have been constructed by restricting base pair changes to certain promoter regions

- as in (Hammer et al., 2006; Jensen & Hammer, 1998a; Jensen & Hammer, 1998b) -

that do not include the effector binding sequence. Other designs could also be thought of,
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and, again, a metric that could allow a comparison of the options prior to screening would

facilitate the effort of finding improved variants.

5.1.3 Infiniteness of Sequence Space

In the sense given by this example, different library designs result from choosing

different targets for mutagenesis, whereas optimization results from modifying the

parameters of the library design. In both cases, the goal is to build a sequence space with

a higher likelihood of harboring a variant of interest. It is important to consider that even

for small targets, theoretical sequence spaces are astronomically large, as discussed in

more detail in Section 3.2.1.

In this context, optimization of a library design may simply involve reducing the

search space so that it is easier to find'a phenotype of interest. In other words, even when

the first design of a library could in principle contain all variants present in a subsequent,

optimized library, the latter may be better if there is a higher likelihood that the desired

mutant will be found there. Mutations in the former design are said to be diluted in

sequence space, so that particular variants are harder to be found.

Although we are considering mutagenesis-based designs, knockout and

overexpression libraries, or any other ways of generating diversity are conceptually

equivalent. In all cases, the infiniteness of the search space invites the development of a

metric that aids in navigating it. We will now examine a concrete definition of such a

metric, and explain how it can be used to guide the construction of libraries for strain

improvement.
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5.2 The Choice of Phenotypic Diversity as a Metric

The fact that, qualitatively, an optimal library design is one in which there is a high

probability that a phenotype of interest will be found is intuitively correct, but insufficient

for exploiting it in practice. In particular, as became apparent from the results discussed

in Chapter 4 and the examples of Section 3.3, it is not a priori specified what traits are of

interest, because the same libraries can be screened for improvement of different and

even distant phenotypes. This is in contrast to cases where the property of interest is

known from the start (as with most protein engineering searches), for which a better

library can be pragmatically regarded as one that delivers a better trait. An alternative

definition for a good library that is in better tune with the aforementioned requirements

is, then, one that is phenotypically diverse. The aim becomes to design a sequence space

that maps to a highly diverse phenotypic space, because in a vastly diverse population

there is a higher a priori probability that any (yet unspecified) phenotype of interest can

be found.

The metric for library evaluation must measure phenotypic diversity, as concluded

from the previous paragraph, but the question remains of how to do this in practice.

Because cellular physiology can be described as a highly interconnected network and we

are manipulating central nodes of this system (Jeong et al., 2000; Martinez-Antonio et

al., 2008), we do not need to evaluate the phenotype that we are immediately interested

in. Instead, we can assume that if we measure diversity for a complex phenotype, dictated

by the activity of many nodes in the network, we are indirectly sampling diversity for

many distant phenotypes. This idea is supported by the observed pleiotropy of the

mutations introduced in rpoA and rpoD (Chapter 4). Therefore, we hypothesized that we
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could use diversity in complex phenotypes to evaluate and compare strain improvement

approaches.

5.3 Divergence: a Normalized Phenotypic Diversity

Metric

We based our metric for capturing phenotypic diversity on the concept of speciation.

Since the appearance of new species is not a discrete process, but one that results from

the accumulation of traits, we envisioned that the engineering of new phenotypes can be

regarded as small steps akin to those that arise during speciation. The individuals of a

species are thought of as forming a tight cluster based on genotypic or phenotypic

characteristics (Cummings et al., 2008); therefore, a highly diverse population would be

composed of many clusters, whereas a homogeneous population would form one or a few

clusters.

In this case, we framed our effort for quantifying diversity in terms of a phenotypic

cluster, and defined a metric based on phenotypic distance:

d = (d,,j)vi, j
d,j (Eq. 1)

In Eq. 1, the phenotypic distance is calculated as the Euclidean distance between pairs of

individual phenotype values (Pi and Pj), and the average phenotypic distance, d, is

calculated as the average across all pairs. The value of d measures how different, on
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average, the members of a population are to each other with respect to a specific trait,

quantified by P.

There are many mathematical substitutes for this formulation, the most obvious being

the standard deviation, i.e.

d= (P-(P))2 (Eq. 2)

The standard deviation can be thought of as a measure of the mean phenotypic

distance between each member of the population and the average phenotype. Because the

average phenotype is not necessarily a physically-meaningful value (as in the case of

tight and distant clusters), we did not use the standard deviation in our definition of a

metric. Nevertheless, a few informal calculations with our data showed a good correlation

between the average phenotypic distances given by Eqs. 1 and 2.

It is well known that all populations, including those that are clonal, possess a certain

inherent variability and biological noise (Elowitz et a]., 2002; Kaern et al., 2005; Swain

et al., 2002). This means that the distribution of a phenotypic value is not uniform and,

therefore, the corresponding phenotypic distance is non-zero. Hence, the distance value

by itself is of little value unless it is properly normalized. The average phenotypic

distance of a library population should then be compared to that of the unmutated control,

yielding the "additional" phenotypic distance introduced in the library, which we called

"divergence".

Because we consider a subsample of a population when measuring the average

phenotypic distance (or else the experimental protocol and calculations would become
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intractable), the value of d has a distribution (i.e. the sampling distribution). Therefore,

the normalization alluded to earlier must account for both the mean and the dispersion of

the distribution of d; in general, this can be done using so-called statistical distance

measures. We chose Bhattacharyya's equation (Eq. 3) to normalize the average

phenotypic distance of a library by the distance of the control population (Hansen et al.,

2003):

1 _-1
BD= - ( P - C

) r  pc)+ 1 In 2 (Eq. 3)82 2 ,I lzcl

Where I is the covariance matrix, p is the mean vector, and the subscripts l and c are

for the library and control populations, respectively. This form of the equation implies

that the distribution of d is normal.

The divergence value given by Eq. 3 can be calculated with more than one phenotype.

In that case, the distance is higher-dimensional, and so are the vectors and matrices in Eq.

3. The two-dimensional case (i.e. for two phenotype values) is exemplified by Figure

5.3-1, in which the distributions of dare graphed for a library and wild-type for two

conditions (or phenotypes).
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Figure 5.3-1. Schematic illustration of the divergence normalization method in 2-D

The distribution of average phenotypic distance, d, is shown in each axis for a generalized library (library

X) and wild-type, clonal control (Wt). The dotted circles represent these histograms in 2-D. The

"divergence" is the average phenotypic distance of a library population compared to that of the control. In

the diagram, the divergence is represented by the double-headed arrow, except that the statistical measure

used (Bhattacharyya distance) accounts also for the dispersion of the distributions (i.e. the "diameter" of the

dotted circles).

To illustrate why it is important to account for the dispersion of the distribution when

calculating the divergence, consider the case where the standard deviation of the two

distributions in Figure 5.3-1 increases while the mean is unchanged (i.e. the dotted

circles become larger but remain centered around the same mean). As this happens, the
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difference between the distributions diminishes, yet the distance between the means does

not. The Bhattacharyya distance between the library and control vectors is thus a

statistically relevant measure of the divergence between these populations.

5.4 Quantification of Divergence Using Growth in Solid

Media

The first system in which we chose to test the aforementioned ideas was in sigma D

libraries of L. plantarum, described in Section 4.2.2. We chose growth rate as the

phenotype for measuring diversity for two reasons. First, because it is a complex

phenotype (i.e. dictated by many factors) of practical importance. Second, because it can

be readily determined with high throughput by measuring colony area. This is possible

because L. plantarum was shown to form round, very regular colonies when plated in

MRS medium.

5.4.1 Validation of Growth as a Phenotype for Diversity Quantification

Before applying the experimental protocol to library evaluation, its efficacy in

distinguishing colonies of various sizes was assessed to ensure that growth rate is a

reliable phenotype for diversity quantification. This test was based, for the same reasons

alluded to earlier, in the concept of clustering. We reasoned that if two clones that are

different with respect to the phenotype to be measured can be reliably clustered together
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when mixed, then that phenotype would be a reasonable choice for diversity

quantification.
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Figure 5.4-1. Validation experiments for growth as a phenotype for diversity

quantification

(A,B) Colony size distributions of two mutants plated separately. The smooth line was constructed by

fitting the histogram to a lognormal distribution. (C) Colony size distributions of the same two mutants of

A and B plotted on the same graph for easier appreciation of the difference in colony size between them.

(D) Silhouette (clustering) analysis for a mixture of mutants 1 and 2. The silhouette value (Eq. 4) for each

colony is a measure of how similar (phenotypically) that colony is to colonies in its own cluster compared

to colonies in other clusters, and ranges from -1 to +1. The plot shows that the populations may be clearly

separated in two clusters with members of large silhouette values (most are larger than 0.5).
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Two sigma factor mutants that formed colonies of different sizes were plated either

separately or in a 50:50 mixture and the colonies were photographed and analyzed. As

can be seen from Figure 5.4-1 - A and - B, the areas of clonal populations of both

mutants follow the same distribution (roughly lognormal), but their means are very

distinct (Figure 5.4-1 - C). The data generated by the mixed population was also

analyzed to determine whether a clustering algorithm could separate the two clones based

on colony size. Figure 5.4-1 - D shows the silhouette value for the two clusters, a

normalized measure of how similar is each individual colony to members of its own

cluster compared to members of the other cluster; in general, this value ranges from -1

(for misplaced objects) to +1 (for accurately placed objects). Most silhouette values in

our analysis are close to +1, indicating that the clusters are tight and that this method can

be used to distinguish mutants based on colony size. The silhouette value was calculated

for each object i using

b.-a,
,max (Eq. 4)

max I a,, b

Where bi is the minimum of the average distances of object i to all objects in other

clusters and aj is the average distance of object i to objects in the same cluster (in this

case, object i is the value Pi for colony i and a cluster is a group of colonies that have

similar values of P).
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5.4.2 Determination of Divergence Using Growth

The phenotypic diversity of four different populations was initially quantified (including

the control). Three libraries of the principal sigma factor (rpoD) of L. plantarum were

constructed by error prone PCR (epPCR) differing in their average mutation frequency as

explained in Section 4.2.2. More than 4000 clones from each library were plated in

different conditions and their colony areas were analyzed.

The phenotype used for quantification was actually the logarithm of the colony area,

as its values were observed to be log-normally distributed. Then,

I = In 4 (Eq. 5)

The log-normal distribution could have at minimum two explanations: (i) the colonies

grow exponentially, with a normally-distributed rate constant; or (ii) the colonies grow

linearly, as when one assumes that the expansion is only due to growth of cells at the

periphery (Panikov et al., 2002), with a log-normally-distributed lag phase. Since the

study of colony growth dynamics was not the focus of our work, we did not investigate

this particular issue further, though we did find it interesting.
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Figure 5.4-2. Experimental procedure for phenotypic diversity quantification

Populations (libraries or controls) are plated, photographed, and analyzed (left panel). Homogeneous

populations have small average phenotypic distances, while diverse populations have larger ones (right

panel). The illustration shows average phenotypic distances as distributions that result from the

bootstrapping algorithm. The divergence is schematically shown for this one-dimensional case (one plating

condition) as the separation between these distributions.

First, the average phenotypic distance was calculated for each population in the non-

stressful condition; a larger distance implies a larger phenotypic dissimilarity among

members of a population (schematically shown in Figure 5.4-2). The original size of

each library (>105) is significantly larger than the number of clones that were analyzed,

so the calculated average phenotypic distance (d, in Eq. 1) is in fact a sample average (as

discussed in Section 5.3).

In order to assess the statistical significance of this metric, the value of the average

phenotypic distance was bootstrapped to obtain its distribution (to input into Eq. 3). The
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bootstrap algorithm (Efron & Tibshirani, 1993) involves re-sampling (with replacement)

the population and calculating the value of d for every such sub-population according to

Eq. 1. Thus, the result is easily displayed in a histogram that reflects the probability that

the "true" average phenotypic distance has a certain value (Figure 5.4-2 and Figure

5.4-3).

Figure 5.4-3 shows the distributions obtained in this manner for the three libraries of

varying mutation frequencies and wild-type control under non-stressful conditions. The

graph shows that increasing the mutation frequency increases the average distance

between the members of the populations. Furthermore, this increase of phenotypic

diversity as a function of sequence diversity is statistically significant (there is little

overlap between the distributions). The procedure was repeated for each of the three

libraries (low, medium, high) and control, plated under each of three stress conditions

(low pH (adjusted with HC1), osmotic/salt stress, and lactic acid) to determine whether

this trend is also followed under stress. Because L. plantarum has different transcriptomic

responses to these stresses (Pieterse et al., 2005), plating in these conditions would

contribute additional information to the diversity metric.

Then, we used Bhattacharyya's distance to calculate the divergence according to Eq.

3. Recall that because in each of the 4 conditions (no stress plus three stress conditions)

the average phenotypic distance has a distribution (introduced by bootstrapping), this

normalization must account for both the mean and the dispersion of the distributions. The

results are shown in Figure 5.4-4.
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Figure 5.4-3. Distributions of the average phenotypic distances

The average (d, Eq. 1) of populations with different mutation frequencies (low, medium, high) is shown.

These libraries and wild-type were plated under non-stressful conditions, photographed and analyzed to

calculate their average phenotypic distance. The histograms were obtained by bootstrapping and reflect the

probability that the "true" average phenotypic distance has a certain value.

5.4.3 Comparison between Libraries Constructed via Transcriptional

Engineering and Classical Strain Improvement

Finally, we carried out the same analysis for a population that had been mutagenized

using NTG (N-methyl-N'-nitro-N-nitrosoguanidine). This reagent is widely used in

classical strain improvement to create cell diversity by introducing random mutations in
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the chromosome (see Section 3.1.1.1); it is regarded as one of the most effective chemical

mutagens (Parekh et al., 2000). One of the main goals of this part of the thesis was to

compare the potential of libraries constructed by transcriptional engineering to those

obtained by this well-established method.
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Figure 5.4-4. Divergence of the Lactobacillus libraries

The bars show the divergence from the unmutated control (which has zero divergence, as indicated),

calculated using Bhattacharyya's equation (Eq. 4). This value is a statistical measure that describes the

additional phenotypic distance of the libraries compared to that of the wild-type, and summarizes the

information obtained from the four conditions considered in this study.

The results of the analysis are summarized in Figure 5.4-4, depicting the divergence

given by Bhattacharyya's equation for each of the above four libraries. Because

divergence is a normalized metric, the value for the unmutated control is zero, by
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definition. The graph shows that our NTG-mutagenesis library diverged less from the

control than any of the sigma factor libraries. In other words, more phenotypic diversity

was introduced by mutagenesis of the sigma factor than by genome-wide mutagenesis

with NTG (at 40-50% killing).

5.5 Correlation of the Divergence Metric with the

Probability of Finding an Improved Mutant

To investigate the predictive power of our diversity quantification method for improved

phenotypes, we tested whether there was a correlation between our diversity metric and

the probability of finding an improved mutant in a new stress. We screened each library a

total of 192 times in 96-well plates under malic acid stress and calculated the probability

that a screening event (i.e. a well) was successful (i.e. grew better than the control). We

scored as "improved" the wells that exceeded the maximum OD found in the wells with

wild-type cells (Figure 5.5-1). The results parallel the findings of the diversity metric

indicating that improved diversity increases the probability of isolating mutants with

improved phenotype.
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Figure 5.5-1. Estimate of the probability of finding novel phenotypes

The plot shows the percent improved wells with respect to the maximum wild-type OD reached under

malic acid stress. Each library (and control) was screened under stress in a 96-well plate in two independent

experiments, for a total of 192 times. The percentage represents the fraction of 'successful' screening

events (wells) and is a measure of the probability of finding improved mutants in a population.

5.5.1 Implications

The results of the analysis support the following conclusions: (i) that mutations in the

sigma factor allow introduction of phenotypic diversity; (ii) that this variability increases

with mutation frequency; (iii) that localized mutagenesis of the sigma factor enhances

diversity better than NTG mutagenesis of the entire genome (at 40-50% killing, following

previously-established practices (Miller, 1972)); (iv) that the increased diversity is
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observed in different conditions (i.e. the mutations are pleiotropic); and (v) that diversity

was correlated to the probability of finding improved mutants.

Conclusion (i) implies that the sigma factor is a good target for phenotypic alteration,

and could have been derived, qualitatively, from the successful use of sigma factor

engineering for isolating improved strains (see discussions throughout Chapter 4). Now,

we confirmed it using a quantitative method.

These results are taken one step further by conclusion (ii). The increase in phenotypic

diversity with rpoD sequence diversity argues that conclusion (i) is not accidental.

Furthermore, these results echo previous studies in protein engineering (Drummond et

al., 2005), which establishes that it is possible to tackle strain improvement problems

with protein engineering approaches, and suggests the use of other protein engineering

techniques to optimize transcriptional engineering. Optimization would be especially

useful when considering that as the mutation frequency of the library increases, so will

the fraction of nonfunctional, misfolded mutants. As this fraction increases, the

phenotypic diversity is expected to decrease, as more mutants will exhibit a phenotype

that results from expressing misfolded proteins (i.e. upregulation of chaperones,

proteases, etc. (Jurgen et al., 2001)). An example of such a trend was observed later in

the thesis, as discussed in Section 6.2.

Conclusions (iii) and (iv) have important practical consequences; the former because

it establishes that targeting the global transcription machinery compares favorably to

traditional techniques for evolving new strains, the latter because it evidences the

versatility of this approach. Such versatility and the results that led to conclusion (v)

imply that libraries of transcriptional regulators can be screened in multiple conditions.
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The diversity quantification method presented can aid in prioritizing the screening efforts

when libraries of other regulators are considered. Furthermore, the resulting metric can be

used for optimizing and refining existing or novel strain improvement methods (see

Chapter 6).

We found a good correlation between the diversity of the libraries and the probability

of finding improved clones. In the condition tested, we found that it was about 5-fold

more probable to find improved mutants in the sigma factor library with high mutation

frequency than in the NTG-mutagenesis library, similar to the fold improvement in the

divergence value. These results suggest that our diversity quantification method allows

categorization of libraries according to a quantitative metric, which can be used for

predicting the outcome of a strain improvement effort.

Even the highest probability of success was not extraordinary (-45%), but this is

likely related to the strict definition used for scoring 'successful' screening events (one

where the OD was higher than the maximum OD for the wild-type). 'Unsuccessful'

screening events may also have improved mutants, but maybe in such low concentrations

that they could not overtake the population in a single round of culturing.

The fact that mutagenesis at the chromosomal level was less effective than localized

mutagenesis of the sigma factor may seem counterintuitive. After all, it may be argued,

mutations in the sigma factor are a subset of the possible mutations in the chromosome. A

similar argument was presented in Section 5.1.3, and then refuted based on the fact that

favorable changes are diluted when the sequence space is too large (more on this below).

Additionally, because the mutations are introduced in an additional copy of the sigma

factor, we are effectively evolving an "alternative" sigma factor that confers the
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improved response. This mimics the process of gene duplication and function

specialization that may have led to naturally-occurring alternative sigma factors

(Errington, 1991).

The preceding discussion leads to the following question: is there an inherent

advantage of targeting sigma (or other regulatory proteins) for phenotypic alteration? The

results of the aforementioned experiments argue so, but previous findings are also closely

in tune with our work. Transcription factor-binding variation has been recently found to

supersede gene variation in closely related species, indicating that rapid phenotypic

specialization is largely due to changes at the gene regulation level (Borneman et al.,

2007). Therefore, our comparison of the phenotypic diversity in sigma factor versus

NTG-mutagenesis libraries seems to describe a natural mechanism of evolution. Most

probably, mutations introduced by NTG are diluted in the large sequence space of the

genome, so that it is uncommon that enough beneficial changes accumulate and cause a

significant improvement in phenotype. On the other hand, mutations in the sigma factor

may explore the "regulatory space" more efficiently.

Because we are targeting trans-acting regulatory mechanisms, a high degree of

pleiotropy is expected. This was indeed observed, and it implies that small changes in

these targets introduce profound phenotypic changes. As such, these preliminary results

suggest that the principles of transcriptional engineering are fundamentally useful for

whole-cell directed evolution, and that the diversity quantification method presented may

allow optimization of this and similar approaches (see Chapter 6).
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5.6 Other Complex Phenotypes for Quantification of

Diversity

Growth, as measured by colony area, proved to be a reliable and uncomplicated

phenotype to measure diversity, given the colony morphology displayed by L. plantarum

in solid media. When we tried to adapt the method for E. coli, we observed a pronounced

irregularity in colony sizes and shapes, which made the protocol for quantifying the

colony area hard to replicate in this species. We concluded that other phenotypes would

be needed. Ideal candidates should be complex, so that they can be used as a proxy for

widespread transcriptomic changes, and should be easily measured in a high-throughput

fashion. Flow-cytometry was deemed an ideal experimental platform, because of the

wide variety of fluorescent dyes that are currently available and because single cells can

be probed. Several complex phenotypes that can be studied with flow cytometry were

considered.

For example, the dye 1,6-diphenyl-l,3,5-hexatriene (DPH) can be used to measure

membrane fluidity, which changes in response to environmental cues such as osmolarity,

temperature, the presence of solvents, and others (Gantet et al., 1990; Muller et al.,

2000). The probe intercalates in lipid membranes and anisotropy measurements allow

determining the relative ease with which DPH molecules can move when in the

membrane (Bernal et al., 2007; Bock et al., 1989). Because membrane fluidity depends

on the composition of the membrane (e.g. degree of lipid saturation, polar group in

phospholipids, etc.) and in its adaptability when extracellular signals are present, DPH

fluorescence can be amounted to a complex phenotype for diversity quantification. The
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method can be effortlessly adapted for use in flow-cytometry, so that individual cells are

monitored and their distribution determined.

Another example, and one that was repeatedly used in the present thesis, is

intracellular pH (pHi). The pHi can be used for quantification of diversity because it is

affected by the relative levels of proteins and metabolites in the cell even when it is

maintained in a narrow range (Kresnowati et al., 2007). In addition, there are several

probes for quantification of the pHi, both in growing and non-growing conditions. In

Section 4.4.1.3 we discussed how the pHi was measured for assessing the increased

tolerance of our solvent tolerant mutant, L33, to ion leakage through the membrane.

These measurements were performed using a pH-sensitive variant of GFP (Miesenbock

et al., 1998). For quantification of phenotypic diversity based on pHi, we chose a

combination of carboxyfluorescein ester (CFSE) and 2'7'-bis-carboxyethyl-5,6-

carboxyfluorescein ester (BCECF-AM) (Franck et al., 1996; Spilimbergo et al., 2005).

The GFP variant was not used in an effort to minimize the burden on the metabolism of

the cell when studying the different libraries. Both the small molecule dyes (CFSE and

BCECF-AM) allow ratiometric quantification of the pH, so that the amount of probe per

cell is normalized implicitly.

The divergence metric was calculated using the ratio of emissions (E) at the two

different wavelengths (X1 and X2) as explained in Section 9.3.8. The phenotype for

quantification is defined as

P= E - (Eq. 6)
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5.6.1 Validation of Intracellular pH for Phenotypic Diversity

Quantification

Before using pHi for phenotypic diversity quantification, we tested our staining and

probing protocol for distinguishing cells with changes in transcriptome. These changes

were introduced by growing the cells in different media, as nutrients are common cues to

reprogram metabolic pathways. We compared cells grown in M9 minimal media with

glucose to cells grown in either rich media (LB) or M9 media with glycerol instead of

glucose.

After cells were grown (to approximately the same OD), they were washed twice with

PBS to make sure differences in pHi were not due to extracellular effects. Cells were

stained with BCECF-AM as explained in Section 9.3.8, and washed again with PBS.

Finally, cells were resuspended in PBS with glucose as an energy source, to allow cells to

equilibrate their pHi. Fluorescence was measured in a spectrophotometer with the same

parameters as before and the ratio calculated.

Cells grown on glucose could be distinguished from those grown in LB with a p-

value of 0.03, and they could be distinguished from those grown in glycerol with a p-

value of 0.05. The difference in transcriptome is expected to be much wider in the first

comparison, and thus is not surprising that it corresponds to a smaller p-value.

5.7 The Relative Nature of the Divergence Metric

The divergence metric for a population is not an absolute number, even when the same

phenotypes are used to compute it. The reason is that the phenotypic diversity of a
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population is sensitive to the experimental conditions, and therefore, it is essential that

great care is taken for recording the specific parameters of a protocol. For example, for

the case of using colony sizes of L. plantarum described in Section 5.4, the high salt

condition resulted in average phenotypic distances that were significantly larger than for

the lactic acid condition. This was true for all libraries tested, as well as for the control,

and it can be regarded as inherent to our experiment; this difference in variability

explains why normalizing the values of the libraries with that of a clonal, wild-type

population is crucial. Normalization is also vital in order to account for imperceptible

day-to-day fluctuation in experimental conditions, yet it cannot deal with all sources of

variation. As a result, and in order to make statements about the evolutionary potential of

different populations, one must always compare similarly-prepared libraries, and carry

out the experiments for them in parallel.

The relativity of the divergence value is particularly pronounced when the phenotype

used for diversity quantification is itself relative. For example, the fluorescence reading

of a flow cytometer can be tuned with the dials of the instrument, and its values have no

physical significance in themselves. In fact, the reading of a cytometer is given in

arbitrary units. Because flow cytometry produces single-cell data with high-throughput

and many complex phenotypes can be characterized with this technique, the limitation of

a relative measurement is relevant to many situations of interest. Normalization allows

foregoing a linear calibration (e.g. as in the case of pHi), but the variability of the

fluorescence value will be a function of the cytometer's parameters and protocol

specifications. These changes in variability translate to changes in divergence, and the
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disparity in the divergence values that result from different experiments can be quite

marked.

One must keep in mind, therefore, that it is the trends given by the divergence metric

that are most informative in our efforts. These trends were found to be very reliable and

constant even when experimental parameters were altered. When a result seemed to

contradict previously-established trends, or when there was a nonsensical divergence

value in our analysis, it was always possible to track the root to experimental errors. In

that sense, it proved highly useful to check the quality of the data before using it to

calculate divergence values, i.e., ensuring that the phenotypic distributions appeared well-

behaved.

The intrinsic relativity of the divergence metric implies that it cannot be used to

compare populations produced in different laboratories or at different times, which may

be a limitation. However, as it will become obvious in the next Chapter, this must not

present a problem for optimizing random strain improvement libraries. Let us now turn to

the discussion of how the divergence metric developed in the present Chapter was used to

optimize libraries of the targets found most useful in Chapter 4.
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Chapter 6

6. Optimization of Transcriptional

Engineering Libraries Using Divergence

Having developed a metric for comparing the evolutionary potential of different libraries,

we are now in a position to answer more rigorously the question of whether

transcriptional engineering can be improved. Recall that we are not interested in a

particular phenotype, but we want to improve the tool in general. We have used,

nonetheless, particular phenotypes throughout this thesis to evidence the practical

significance of the tools we employed.

In this Chapter we focus on the two most promising targets for transcriptional

engineering in E. coli: the principal sigma factor and the alpha subunit of the RNA

polymerase (RNAP). Recall that the alpha subunit of the RNAP was established as

another protein for performing phenotypic engineering in an effort to improve upon

transcriptional engineering. We now turn to using the divergence metric to optimize this

new target with the same goal in mind. Then, we apply the principles derived from this

endeavor to the principal sigma factor.
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Throughout this Chapter, one must be aware that, without the divergence metric we

would not be able to make any statements about the quality of the libraries as we change

their design, and therefore, it would not be possible to call the effort "optimization." Let

us then turn to defining the term optimization in the context of strain improvement

programs, and to describe the use of the divergence metric for guiding the construction of

random libraries.

6.1 Optimization as a Reduction of the Search Space

Optimization, loosely defined, is the attempt of finding the best solution among all the

feasible solutions of a particular problem. In order to undertake such a task, we must have

a way of quantifying the progress we make towards the best solution. To solve an

optimization problem, even partially (i.e. when the absolutely best solution is not

required or attainable), we should therefore be able to evaluate the present and past states.

Analogous to this formulation, we now aim at finding better strain improvement libraries,

and thus, we need a method for evaluating our progress. The divergence metric can be

used for this purpose, since it allows quantification of the potential of different

populations and thus permits comparing the past and present states (as they apply to

library design), albeit in relative terms. With these arguments in place, optimization of

random search-based libraries becomes an effort of sequentially designing libraries,

evaluating them using the divergence metric, and altering the design in the hope that the

divergence of the new library increases.
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Given the infiniteness of sequence space and the difficulty in finding interesting or

improved variants, we can safely say that a large fraction of the members of a library

have uninteresting phenotypes. This amounts to our earlier argument that useful

mutations are essentially diluted in the vastness of the search space, so that improving

traits of interest becomes an experimentally intensive task. We must therefore focus our

search space to regions that can potentially increase the divergence. In different terms,

optimization can be understood as sequentially delimiting the search space by ignoring

genetic determinants that when altered result in phenotypically redundant variants, but

keeping those that result in new phenotypes.

Another reason for the redundancy in phenotypes even in the presence of genotypic

diversity is robustness. At a systems level, the cell must maintain key functions in spite of

mutations or changes in the extra- or intracellular environment (Kitano, 2004). This

implies that phenotypic diversity will tend to be damped by adjustments in the system as

a whole that aim at keeping the healthy metabolic state of the cell. Since this tuning will

show up in at least some changes to the intracellular environment, and since these same

adjustments also allow evolution (Kitano, 2004), the general mapping between diversity

and evolutionary potential should still hold as a general principle.

Now that we understand optimization as it applies to the improvement of random

search-based libraries for strain improvement, we can illustrate this concept with an

example. As we will momentarily see, the divergence metric does not only allow

evaluating the present and past states with respect to evolutionary potential, but it also

provides useful information that suggests how future modifications to a library design

should be effected in order to increase the quality of the library.
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6.2 Optimization of alpha Subunit Libraries for

Improving Butyrate Tolerance

In Section 4.4, we proved the usefulness of the alpha subunit of the RNAP for improving

complex phenotypes, such as butanol tolerance and the production of L-tyrosine and

hyaluronic acid. At that point, we used three libraries in which the entire coding sequence

of rpoA was mutated with three mutation frequencies, resulting in libraries rpoA*L,

rpoA*M, and rpoA*H with low, medium, and high frequencies, respectively.

We were also interested in a butyrate-tolerant mutant, because this compound can be

used to produce butanol (in a two-step fermentation (Tashiro et al., 2004) or catalytic

reduction (Gustafson et al., 1989)) and propane (Fischer & Peterson, 2008), both of

interest as renewable fuels. The toxicity of butyrate is thought to arise from dissipation of

the pH transmembrane gradient, similar to other weak acids, although limited research

has been conducted in this regard (Zigova & Sturdik, 2000).
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Figure 6.2-1. Test of toxicity of butyrate

The graph shows the growth inhibition of different concentrations of butyrate for E. coli in rich medium.

The initial pH was close to neutral and an initial OD = 0.05 was used from a stationary-phase culture. The

media was prepared from stock solutions of 2X LB and 150 g/L sodium butyrate.

In order to assess the toxicity of butyrate to E. coli, preliminary studies were

performed in rich media (LB broth). As shown in Figure 6.2-1, there is a clear

dependence between final growth and the initial amount of butyrate in the media. We

also wanted to investigate whether butyrate has a bacteriostatic effect (i.e. it prevents

growth) or a bactericidal effect (i.e. it kills the cells). Figure 6.2-2 shows a killing curve

of E. coli in minimal media supplemented with 30 g/L of butyrate and glucose as a

carbon and energy source. For this study, the pH was adjusted to 5, close to its pKa,

which has a value of 4.8.
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Figure 6.2-2. Bactericidal effects of butyrate

The graph shows the killing curve of E. coli with 30 g/L sodium butyrate, with an initial pH of 5. The assay

was done in M9 minimal media, with glucose used as a carbon source. The killing rate was calculated by

plating culture dilutions and counting surviving colonies per unit volume at different time points.

6.2.1 Optimization of Random Search-Based Strain Improvement

Programs

The need for optimization of strain improvement libraries was not obvious in Section 4.4,

in which we reported the successful use of the alpha subunit of the RNAP for finding

traits of interest. In fact, undergoing an optimization program would make most sense

when screening existing libraries fails to produce variants of interest. Recall that in the

majority of library designs, we cannot cover the search space experimentally, which

becomes a particularly relevant problem when screening for phenotypes of interest fails
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to deliver improved variants. In this case, the result of one experiment rarely suggests

ensuing experiments, because it is difficult to ascribe the failure to particular steps of the

random search protocol. This changes if we can evaluate and improve the libraries

themselves.

When we screened the rpoA*L, rpoA*M, and rpoA*H libraries in butyrate, we were

unable to isolate improved mutants, even when several screening conditions were tried

(see next Section). With the divergence metric in place, we proceeded to formalize the

idea of optimization as it refers to a strain improvement program. We can regard a

"random approach for finding an improved mutant" as an iteration of two steps: building

a library and screening it. Because screening is the resource- and labor-intensive step

(Demain et al., 1999; Kittell et al., 2005), it makes sense to carry it out only if the

expected outcome of the experiment is better than that of constructing a new library, that

is, if the a priori probability of finding a good mutant is greater than it was in the

previous iteration. This process can continue until constructing new libraries becomes

expensive (e.g. for fully-synthetic libraries) or no obvious way of improving the library is

available (e.g. by changing the mutation frequency, the localization of mutations, etc.).

6.2.2 Utilization of Previously Constructed Libraries

We began our quest for a butyrate-tolerant mutant by screening the three rpoA libraries

with different mutation frequencies throughout their coding region that had been

fruitfully used to isolate mutants (see Section 4.4). Several screening techniques were

used, such as survivability in butyrate (based on the results of Figure 6.2-2) and serial

subculturing.
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We also altered the screening conditions, as these are known to influence the

phenotype that is enriched. For instance, Warnecke and coworkers recently reported that

a strategy that consisted in decreasing stress in serial batch cultures increased the

selectivity and sensitivity of their selection (Warnecke et al., 2008). Another example of

a screening parameter that can be changed, and one that is rather intuitive, is culture

volume. Reducing the volume per batch, and concomitantly increase the number of

batches to keep the number of individuals to be screened constant, makes it easier to

distinguish a culture with a mutant that grows faster than the background population.

Taking these facts into account, we ran several selection experiments with different stress

gradients (increase or decrease concentration of butyrate) and volumes per batch. We also

altered other environmental parameters that can affect butyrate toxicity such as amino

acid supplementation, pH, choice of buffer (M9 or MOPS), and level of oxygenation

(aerobic vs. microaerobic cultures).

Figure 6.2-3 shows the results from four of the above listed conditions for each of the

three libraries that had been previously screened for butanol tolerance and L-tyrosine and

hyaluronic acid production. The graph shows the maximum recorded growth advantage

of the libraries vs. the control populations, which gives a rough sense of the concentration

of faster-growing variants during our selection experiment (i.e. the theoretical

enrichment). Even though positive enrichments were recorded, not a single mutant was

found that grew significantly faster than the wild-type when tested individually in the

same conditions used for selection. Although a few improved mutants were sporadically

found in the initial test experiments, all proved to be either due to background
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chromosomal mutations or adaptation, since the phenotypes were lost upon re-

transformation.
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Figure 6.2-3. Selection experiments in butyrate

The graph shows the maximum recorded advantage in OD (600 nm) of cultures of the libraries relative to

the control in different screening conditions, that is, the theoretical enrichment of improved clones. The

conditions are: 1. M9 medium, 15 g/L butyrate throughout screening; 2. MOPS medium supplemented with

amino acids (5%), decreasing butyrate concentration (18, 15, 12 g/L); 3. MOPS medium, 15 g/L butyrate

throughout screening; 4. MOPS medium supplemented with amino acids, 15 g/L butyrate throughout

screening. For ctCTD*L, two repeats of the last set of conditions are given by runs aCTD*L 5 and 6. For

rpoA*L, rpoA*M, and rpoA*H, some conditions were tried more than once (not shown) to rule out

experimental error as the reason for not obtaining improved mutants (see discussion in the text). Even

though a positive theoretical enrichment is shown for all cases, no improved mutant was isolated in any

library except the ucCTD*L, suggesting that transient advantages in OD of up to -15% can be considered

noise.
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We hypothesized that either (i) the alpha subunit of the RNAP was not a good target

for improving butyrate tolerance; (ii) our existing libraries did not contain mutants that

showed such improvement even when this was theoretically possible; or (iii) the

improved mutants were present in such low concentrations that they could not be

sufficiently enriched by the selection experiments. If the true cause was either of the

latter two options, an optimization program could increase the probability of finding a

mutant.

6.2.3 Improvement of Libraries by Reducing the Search Space to the C-

terminal Domain

We began by focusing on the existing libraries. Using pHi, we quantified the diversity in

the rpoA*L and rpoA*H libraries, which we had extensively screened in butyrate, albeit

with no results (see Section 5.6). As shown in Figure 6.2-4, there is an increase in

divergence when sequence diversity in rpoA is increased, but our inability to find

improved mutants suggested that a new, more phenotypically diverse library was needed.

Our previous study on the alpha subunit resulted in three improved mutants, all of which

had nucleotide changes in the otCTD (see Section 4.4). Therefore, we hypothesized that

diversity could be increased by directing mutagenesis to this region of the protein. We

constructed a library in which this region was mutagenized with high frequency, after

observing that highest phenotypic diversity is accomplished with extensive mutagenesis

(Figure 5.4-4, Figure 6.2-4, and Sections below).
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Quantifying the phenotypic diversity of the new library (denoted cCTD*H)

contradicted our expectations (Figure 6.2-4). Not only did the diversity not increase by

focusing the mutations to the cCTD, but it actually decreased. Although the prospect of

finding an improved mutant in this library was low, we screened in butyrate to test our

strategy. This screening step could have been eliminated if time was of essence or if the

protocol was too costly. Four independent selection experiments confirmed our

expectations; we were unable to isolate improved mutants, thus a new library was

needed.

We thought of two possible explanations for the decrease in diversity in aCTD*H

compared to rpoA*H: (i) that by focusing the mutations to this domain we lost diversity

because mutations in the N-terminal domain (acNTD) also confer novel phenotypes (e.g.

by modulating the assembly of RNAP complexes (Kimura & Ishihama, 1995) or by

transcriptional regulation at class II promoters (Niu et al., 1996)); or (ii) that the mutation

frequency was too high, and that the diversity was lost because when a useful mutation

was obtained, its effect vanished due to subsequent mutations. In other words, high

mutation frequencies may reduce the diversity in our library because many clones display

the same phenotype: that of expressing an alpha subunit with a non-functional CTD (a

similar argument was briefly described in Section 5.5.1).
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Figure 6.2-4. Divergence of rpoA libraries during optimization

The values shown here are based on intracellular pH as the phenotype for quantification both in growing

and non-growing cells. Note that the divergence value is a relative measure and that it is used only for

comparing different populations; thus, all the values shown were experimentally determined at once.

Nomenclature: rpoA*L and *H are epPCR libraries of the entire coding region of the alpha subunit with

low and high mutation frequencies; aCTD*L and *H are epPCR libraries of the CTD of alpha with low and

high mutation frequencies; aCTD*t is a library in which amino acid changes are restricted to a few surface

residues located in the CTD.

To test these hypotheses, we constructed a library in which the mutagenesis is

focused on the cCTD, but with lower mutagenesis rate (denoted aCTD*L). Quantifying

the diversity of this library favored the second hypothesis (Figure 6.2-4). This library has

in fact higher diversity than that of the rpoA library with high mutation frequency

throughout the coding region (rpoA*H). The mutation frequency in the CTD of rpoA*H

is comparable to that of caCTD*L, but the latter has markedly more diversity. Thus, the
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most likely explanation for the diversity in rpoA*H is that it arises from changes in the

aCTD in the context of an aNTD with transcriptional functions that are either not as

important as those of the CTD or are sparsely found in sequence space.

6.2.4 Isolation and study of Butyrate-Tolerant Mutants

When we screened the aCTD*L library, now the library with the highest divergence, in

the same conditions that were previously tried, we observed higher enrichments in some

conditions (Figure 6.2-3). Following a similar experimental protocol than as with the

other libraries, we selected a few dozen colonies for further characterization, isolation of

the mutant plasmids, and re-transformation into a fresh background. From the resulting

pool, two strains were selected. The mutants show a 23% and 40% improvement in

growth rate in the presence of 15g/L butyrate (Figure 6.2-5).
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Figure 6.2-5. Growth in butyrate of wild-type and mutants

Growth rate of K12 recA- transformed with wild-type or mutant versions of rpoA under the control of two

promoters (lac and spc). Mutants #16 and #1 have the same amino acid sequence, but an additional

synonymous mutation in #16 changes a common codon for glycine to a more uncommon one. As shown,

increasing the expression level of the mutant (using Psp) increases the growth advantage over the wild-type

by up to 60%.

6.2.4.1 Sequence Analysis

The two plasmids isolated from these strains were sent for sequencing. Not

coincidentally, the two mutants have the same amino acid sequence and only one amino

acid change with respect to the wild-type (S299T), consistent with the diversity

assessment suggesting that small changes in sequence in the aCTD result in large

changes in phenotype. Amino acid S299 is directly involved in interacting with UP
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promoter elements (Gaal et al., 1996); therefore, the mutation should alter the affinity of

the RNAP for several targets, resulting in the novel phenotype.

The mutant with lower improvement (23%) differs from the mutant with higher

improvement (40%) in a synonymous substitution that changes a codon that is frequently

used in E. coli (GGT for glycine) with an unusual codon (GGA). In other words, a likely

explanation for the change in growth rate given that the two mutants have the same

amino acid sequence is that the difference in improvement stems from differences in

protein level, with the one having the common codon (and the highest growth advantage)

being expressed better.

6.2.4.2 Promoter Replacement

Since all of the mutants in our library are merodiploids for the rpoA gene, the new

phenotype should arise from the interplay between wild-type and mutant alpha subunits,

perhaps even in the same RNAP complex (recall that each complex has two alphas).

Therefore, the relative level of the mutant vs. wild-type alpha protein should be a

parameter that influences the observed traits. This was suggested by the codon usage

difference between the two isolated mutants, but we wanted to test whether we could take

advantage on this fact to increase butyrate tolerance further.

With this in mind, we placed the mutant and wild-type genes under a stronger

promoter (Pspc) to see if we could improve the growth rate further. This promoter is a

constitutive promoter, and it has been suggested to be the promoter that initiates most of

the native rpoA transcription (Cerretti et a]., 1983; Post et al., 1978). With this

modification, we obtained an up to 60% improvement in growth rate (Figure 6.2-5). This
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advantage is substantial, considering that productivity of a metabolite in a continuous

reactor is related to growth rate.

Our success with increasing the tolerance when increasing the promoter strength

invited the use of a yet stronger promoter. No further increase was observed, however,

when expression was placed under the PN25 promoter (Brunner & Bujard, 1987).

Actually, a slight decrease in overall growth rate was seen, suggesting that the cell may

be experiencing a burden when expressing the protein from the stronger promoter.

Further improvements could have been achieved by manipulating the relative levels of

mutant and wild-type alphas without changing the total amount of this protein. However,

this would have entailed a lengthy effort, and we deemed it to be unnecessary to advance

the main arguments of this thesis.

6.3 Relationship between Divergence and Posterior

Probability of Finding Improved Mutants

The mutants we isolated were theoretically present in all the libraries that we had

constructed before the aCTD*L library, given the parameters used to construct these

populations (i.e. targeted regions, mutagenesis rate, identity of mutations, etc.). In other

words, all library designs could have delivered the improved variants. This fact raises the

question of whether the divergence metric actually reflects a probabilistic difference for

finding the mutants in the different populations. Ideally, the metric would point in the

direction of the population most likely to deliver the butyrate tolerant mutants. However,

this generalized correlation is only strictly true when analyzing the results across many
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selections for a variety of traits, since the divergence metric is a measure of phenotypic

diversity and not of the probability that a particular phenotype will be found in a

population.

With this in mind, we analyzed the probability of finding the S299T mutant (the

posterior probability) in the different libraries that we constructed, using information

about the length of the fragment that was subjected to mutagenesis, the average mutation

frequency of each library, and assuming that the mutations follow a Poisson distribution

(Firth & Patrick, 2005). We assumed this distribution for simplicity, although more

recent studies have reported that a modification to this formula is more accurate in certain

cases (Drummond et al., 2005). The assumption proved correct, as no significant

discrepancies were found when the more intricate algorithm was used.

Table 5 shows that the S99T mutant could be found most frequently in the oXCTD*L

library, more than an order of magnitude more frequently than in any other library tested.

It is important to note that this is the frequency of amplified PCR products at the DNA

level, not the frequency in the cell library (see discussion in Section 3.2.1). The

distinction is vital since different variants will be amplified with respect to others

depending on their effect on growth rate in the steps prior to purifying selection; only

then would the improved variants exhibit an advantage.

The table shows that the population with the highest phenotypic diversity had the

highest probability for the improved mutant to be found, which implies that we did not

find the mutant in the aCTD*L library accidentally. An even more compelling argument

for the information contained in the divergence metric is the fact that all mutants that

have been isolated up to date have 1 or 2 mutations in the cCTD. This argument is more
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in line with the definition of the divergence metric as reflecting the a priori probability,

and not the posterior probability as calculated here.

Table 5. Posterior probability calculation
in different libraries

for finding the improved mutant (S299T)

Bases
subject to

mutagenesis

Probability
of having 1
mutation
occurring

Probability
of having

the
mutation

in the right
base

Probability
of the

change
being the

one
required

Frequency
of mutant
(one in:)

rpoA*L 1300 7.33E-02 7.69E-04 0.33 5.32E+04
rpoA*M 1300 6.38E-03 7.69E-04 0.33 6.11E+05
rpoA*H 1300 1.11E-03 7.69E-04 0.33 3.51E+06
aCTD*L 250 3.58E-01 4.00E-03 0.33 2.09E+03
aCTD*H 250 1.49E-02 4.00E-03 0.33 5.04E+04

6.4 Exploiting Information Derived from Divergence

for Constructing an Optimized alpha Subunit

Library

6.4.1 Design and Construction of the aCTD*t Library

Although the goal of isolating an improved mutant had been achieved, we had gathered

enough information to optimize our libraries further. Given that the diversity of aCTD*L

is higher than that of caCTD*H, we hypothesized that this domain of the protein is very

sensitive to mutations. Non-specific amino acid changes may prevent the aCTD from
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folding properly so that it cannot attain the conformation necessary for interacting with

promoters. This suggested the construction of a library in which mutations were restricted

to surface amino acids of this domain, thereby introducing diversity and at the same time

preventing the formation of many non-functional, unfolded variants.

There was an obvious argument against such a design. Mutations in amino acids that

function in key interactions may affect the phenotype to the point of lethality. This was in

fact a problem with a similarly-designed library of the principal sigma factor in E. coli, in

which mutations were located in DNA-binding regions. This design had resulted in small

library sizes with little sequence diversity (both of which cause reduced phenotypic

diversity; see Section 6.6). In other words, localizing mutations to vital regions of central

regulators may be counterproductive (a similar argument was offered for leaving key

conserved amino acids of y-humulene synthase intact during protein engineering of this

enzyme (Yoshikuni et al., 2006a)); indirect changes in transcription factor function may

be better at altering the transcriptome while preventing lethal effects.
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Figure 6.4-1. Design of the aCTD*t library

The C-terminal domain of the alpha subunit (from (Jeon et al., 1995)) was modeled using PyMOL (DeLano

Scientific LLC), and the surface amino acids (blue and red) surrounding amino acid R265 (in pink) were

considered further. This amino acid is known to contact DNA (Murakami et al., 1996), so it was chosen as

a point of reference. From these, the red were selected as targets for mutagenesis.

We first constructed a library in which the chosen surface amino acids (12 in total) were

mutated with fully-degenerate codons (Figure 6.4-1). The choice of amino acids was

suggested by structural information (Jeon et al., 1995) and previous studies (Murakami et

al., 1996) (see Methods for E. coli, in Section 9.3, for the list of mutated residues), but

our selection is most probably sub-optimal. The experiment was considered proof-of-

concept, and the exact design was deemed less important than the principles behind it.

We observed very low transformation efficiencies, probably because the average

number of mutations per sequence was too high. Figure 6.4-2 shows the approximate

probability of a sequence in our design having a certain number of base pair changes

176



(assuming each mutation is a Bernoulli trial). The number of amino acid changes (x-axis)

is calculated assuming that a base pair change will be non-synonymous 70% of the time

(Drummond et al., 2005) (this may be a rough approximation, yet serves the purposes of

the present argument). One curve shows the probabilities for the design in which the 12

amino acids are fully-degenerate. This design allows substitution of any amino acid with

any other one, but results in a very high average number of mutations (17-21 amino acid

changes are most frequent). The very low transformation efficiency probably reflected

the fact that the presence of several mutations in these central residues is lethal, as

mentioned earlier.

To address this concern, we investigated a different library design, in which bases at

the chosen positions are spiked with non-wild-type bases with a certain probability. At

first, we selected 6% as the probability of substitution with each of the non-wild-type

bases, resulting in the second curve shown in Figure 6.4-2. This design yielded a

reasonable library size (-40,000 clones), and reflected that lower mutation frequencies

indeed produced viable variants. We quantified the divergence of this library, and

obtained a marked increase in diversity (Figure 6.2-4). This result suggests (i) that

surface amino acids in the CTD are indeed a good target for altering phenotype, and (ii)

that the new design, with lower mutagenesis rate, still exhibited a useful degree of

diversity.
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Figure 6.4-2. Distribution of amino acid changes in different aCTD*t library designs

The graph shows the probability to find a variant with a particular number of mutations, depending on the

design of the aCTD*t library. The library has amino acid changes restricted to 12 locations, and base pair

mutations are allowed either with degenerate bases (i.e. each base is found with probability 25% at each of

the corresponding locations in the DNA coding sequence), or spiked (6% and 3% refer to the probability

that each non-wild-type base will substitute the wild-type).

6.4.2 Effect of Promoter Strength, Mutagenesis Rate, and Library Size in

Divergence

One main product of our optimization study was the UaCTD*t library with 6% spiked

non-wild-type bases (in the following discussion, we will refer to this library simply as

aCTD*t), in which several surface amino acids in the C-terminal domain were targeted
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for mutagenesis. We hypothesized that further modifications to the library could increase

the diversity it conferred. From Section 6.2.4 recall that, at least in some instances,

changing the promoter strength that controls the expression of the mutant alpha subunit

has an effect in the phenotype of interest. This was the case of butyrate tolerance, in

which increasing the level of expression of the mutant rpoAs (by substituting the lac

promoter with the spc sequence (Post et al., 1978)) resulted in a concomitant increase in

growth rate in the presence of the toxic compound. No further increase was observed,

however, when expression was placed under the yet stronger PN25 promoter (Brunner &

Bujard, 1987).

These observations raised the possibility that increasing the promoter strength in a

library could have an effect in diversity. Thus, we constructed a new library under the

control of the stronger spc promoter, quantified the diversity, and analyzed the

aforementioned effect. (For these experiments, only the pHi in the growing condition was

used for diversity quantification). As shown in Figure 6.4-3, increasing the promoter

strength does increase the diversity, suggesting that at the lower level of expression, some

mutants do not have a perceivable effect in phenotype, as determined by pHi.

Incidentally, during optimization of the experimental protocol, two libraries with

different sizes were constructed, and thus the effect of library size could also be studied.

As expected, a larger library has more diversity. The reason is that, even though two

libraries with the same design have the same theoretical search space, any actual,

physical library encompasses a subset of this space (unless in the rare cases where the

search space is significantly smaller than the obtained physical library). A larger physical
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library contains a larger subset than a smaller one, resulting in a higher divergence value,

as observed.

We also tested the effect of mutation frequency on diversity for the same library

design by lowering the fraction of non-wild-type bases in the spike mixture to 3%

(instead of 6%, see Figure 6.4-3). This experiment was suggested by the success of

lowering the mutagenesis rate from our initial trial, one which used degenerate bases. An

additional lesson from the optimization effort was that for the case of otCTD*t, a lower

mutation frequency lowers the diversity, an outcome that has been repeatedly observed in

libraries constructed via error-prone PCR (e.g. see Chapter 5 and previous Sections in

this Chapter).
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Figure 6.4-3. Simple variations to a library design

The graph shows the divergence value of different aCTD*t libraries, all of which have amino acid changes

restricted to a few surface amino acids in the C-terminal domain of the alpha subunit. The x-axis shows the

promoter (lac or spc) and the mutation frequency per base change (i.e. 6% means that each of the 36

selected base pairs has 6% chance to mutate to a non-wild-type base). Library sizes are indicated.

6.4.3 Use of aCTD*t Library for Improving Ethanol Productivity in

Ethanologenic KO11 E. coli strain

6.4.3.1 Cellulosic Ethanol as a Biofuel

Ethanol, today's predominant biofuel, is currently manufactured using feedstocks such as

cane-derived sucrose and corn-derived starch. In Brazil, sugar cane juice and sugar cane
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molasses are used as sources of sucrose. Using Saccharomyces yeast strain as the host

organism, industrial ethanol yields on sucrose are up to 93% of the stoichiometric

maximum. Both continuous and batch production is used, with residence times in the

fermentors being in the order of 6-10 hrs (da Silva et al., 2005). Production is more than

15 billion gallons per year (bgpy).

In the US, the predominant feedstock is maize. Studies have reported industrial

yields in the range of 2.65 to 2.71 gallons per bushel of maize, which amounts to

approximately 93.6 to 95.8% of the stoichiometric maximum (McAloon et al., 2000;

McLeod et al., 2002). Ethanol titer post-fermentation is around 9% by weight (McAloon

et al., 2000).

The process for production of ethanol from these sources is highly efficient (from the

standpoint of conversion), although several arguments impede a wider or longer-term

acceptance of this route. In particular, the utilization of food sources for fuel has been

generally unpopular, but other concerns such as net energy ratio (especially for corn-

derived ethanol) have emerged.

Cellulosic biomass, on the other hand, enjoys a much more massive resource base

than what is available from maize or sugarcane (Perlach et al., 2005). It is expected to

play a dominant role in biofuels production in the near future. However, cellulosic

biomass is more difficult to convert into fermentable sugars than is corn or sugar cane,

because (i) five-carbon sugars, mainly xylose, account for 10 - 25% of the total

carbohydrates, which cannot be utilized by the native yeast; (ii) the presence of lignin, a

highly recalcitrant network polymer of aromatic alcohols that accounts for 17 - 25% of

common cellulosic biomasses (van Maris et al., 2006), makes cellulose much more
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resistant to hydrolysis than starches and simple oligosaccharides; and (iii) when

hydrolyzed, the resulting broth contains a variety of toxic compounds, which adds to the

harmful effects of ethanol (see, also, Section 4.3.2).

The first obstacle can be overcome through the selection and/or engineering of

fermentative microbes capable of anaerobic fermentation of xylose and other five-carbon

sugars to ethanol. The third can be tackled with the methods described in the present

thesis.

6.4.3.2 A Traditional Metabolic Engineering Approach for Developing an

Ethanologenic E. coli Strain

The laboratory of Prof. L.O. Ingram developed an E.coli strain that is able to ferment

sugars to ethanol much more efficiently than the wild-type. This strain was constructed

by plasmid-bome overexpression of pyruvate decarboxylase (coded by the gene pdc) and

alcohol dehydrogenase (coded by adhB) from Zymomonas mobilis (Ingram & Conway,

1988; Ingram et al., 1987). The first enzyme catalyzes the conversion ofpyruvate to

acetaldehyde and carbon dioxide, and the second enzyme reduces the acetaldehyde to

ethanol in a NADH-dependent fashion. The recombinant strain benefited from the high

glycolytic flux of E. coli and the ease of its manipulation, while at the same time

exploiting the ability of this species to utilize both 5- and 6-carbon sugars.

Although this initial approach was successful in producing an ethanologenic E. coli

strain, two additional modifications were needed to construct an industrial platform for

ethanol production. First, because the production of organic acids from pyruvate was still

significant, additional modifications were needed to increase the yield from sugar.
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Second, because the two key genes for ethanol production, pdc and adhB, were expressed

from a plasmid, the phenotype was unduly unstable.

A marked increase in yield was achieved by elimination of carbon sinks that

competed with ethanol. For example, a deletion in pyruvate formate lyase (coded by pfh),

which drains the pyruvate pool to produce formate and acetyl-CoA, decreased the

production of acetate by 70% (Ohta et al., 1991). The same study reported a deletion in

fumarate reductase (coded by frd), which almost eliminated succinic acid production.

The challenge of plasmid instability was tackled through chromosomal integration of

the pdc-adhB cassette; the operon also contained a chloramphenicol resistance gene (i.e.

to act as a selective marker for integration), resulting in the widely-studied strain KO 11

(Ohta et al., 1991). The decrease in copy number due to integration was compensated by

an overexpression of the operon achieved by selecting in high chloramphenicol

concentrations (up to 600 pg/mL). A spontaneous mutant that overproduced

chloramphenicol acetyltransferase (coded by cat) also showed overexpression of pdc and

adhB, with a concomitant increase in ethanol production. Our laboratory received a

derivative of KO 11 of which the cat gene had been excised. Our control was this

derivative strain transformed with a plasmid-borne wild-type copy of rpoA.

6.4.3.3 The Challenge of Fermenting Biomass Hydrolysates

The challenge of cellulosic biomass utilization has been undertaken in different ways. For

example, so-called consolidated bioprocessing (CBP) uses highly cellulolytic and

ethanologenic organisms like the thermophilic Clostridium thermocellum either

exclusively or in co-culture with other thermophilic, higher-producing sugar fermenters

(Lynd et al., 2002; Ng et al., 1981). These organisms permit cellulase production,
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cellulose hydrolysis, and fermentation to occur anaerobically in the same process vessel.

The difficulty in genetically modifying Clostridia and large energetic demand for

anaerobic cellulase production (Lynd et al., 2002), have invited efforts with organisms

that ferment sugars in solution. The development of KO 11 strain described in the

previous section is one such approach.

When the production strain cannot degrade lignocellulosic material directly, the

substrate for fermentation may contain toxic compounds. This has been widely discussed

in the biofuels literature for feedstocks derived from lignocellulosic hydrolysates, as pre-

treatment by acid hydrolysis produces a mixture of oligosaccharides, organic acids,

phenolic derivatives, and furans (Sakai et al., 2007), all but the first of which are

inhibitors of growth for many microorganisms. Let us discuss a few from the variety of

efforts pursued for coping with the challenge of environmental challenge in order to

appreciate the significance of our work.

Lignocellulosic derivatives that have received most attention are furfural,

hydroxymethyl furfural (HMF), acetic acid, and phenolic compounds. The amount and

identity of the inhibitors after detoxification of hydrolysates depends on the method used

(overliming, laccase treatment, charcoal, etc.) (Klinke et al., 2004). Although toxicity and

detoxification issues have been mostly explored for ethanol, some studies for other

fermentations such as butanol exist (Ezeji et al., 2007).

Because different compounds exert toxicity through different mechanisms and their

effects appear to be coupled (Ezeji et al., 2007; Klinke et al., 2004; Taherzadeh et al.,

1997b), solving the problem of environmental tolerance to the substrate cocktail by

rational approaches and simple process modifications seems unlikely. However, partial
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successes from this front have been reported. For example, overexpression of ADH6 in S.

cerevisiae, an 5-HMF reducing enzyme, has enhanced conversion of the inhibitor which

could be probably used in detoxification, but no increase in ethanol productivity was

reported (Petersson et al., 2006). A similar effort with ZWF1, encoding a glucose-6-

phosphate dehydrogenase, resulted in higher furfural tolerance (Gorsich et al., 2006).

Simultaneous overexpression of the genes would probably be synergistic, as the reduction

of the inhibitor by ADH6 is NADPH-dependent, and ZWF1 is hypothesized to help this

step by committing its substrate to the pentose-phosphate pathway, which produces the

reduced cofactor. Overexpression of the enzyme phenylacrylic acid decarboxylase (coded

by PAD 1) resulted in Saccharomyces strains improved in ethanol productivity in the

presence of ferulic and cinnamic acids (Larsson et al., 2001).

Manipulation of the fermentation pH has been used for alleviating tolerance to acetic

acid, as toxicity is mainly effected by the protonated species (Lawford & Rousseau,

1998; Taherzadeh et al., 1997a). However, pH control is undesirable because of the

additional cost associated with it, and because low pH reduces the risk of contamination

as discussed above. Transferring a gene of acid-resistant Oenococcus oeni that responds

to different stresses resulted in an E. coli strain with improved low pH tolerance (Morel et

al., 2001). These or similarly constructed hosts may be better suited for fermentations at

low pH.

Improvements from random approaches have also been reported. Genome shuffling

of ethanologenic Candida krusei has delivered acetic acid-resistant mutants that perform

better than the parent in ethanol fermentations in the presence of the inhibitor (Wei et al.,

2007). The usefulness of classical strain improvement (i.e. mutagenesis and selection)
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methods for improving tolerance of yeasts to lignocellulosic hydrolysate components has

also been reported (Liu et al., 2005; Sonderegger et al., 2004). Similarly, studies describe

that Pichia stipitis long-term adapted to increasing concentrations of hardwood

hydrolysate partially neutralized or alkalinized with lime had higher ethanol productivity

and titer (Nigam, 200 l1a; Nigam, 200 1b).

We discussed in Section 4.3.2 our attempt of using sigma H and sigma E libraries for

improving ethanol tolerance in E. coli, although at that point we did not use an

ethanologenic strain, nor we challenged our cells in biomass hydrolysate medium. In an

effort to construct a better platform strain for ethanol production from biomass, we

focused on the development of a KO 11-derived strain that is also able to withstand the

compounds present in the fermentation of cellulosic hydrolysates. The background

offered in this Section serves also as a reference for the experiments described later in

Section 6.6.

6.4.3.4 Selection and Isolation of Improved Mutants

We began by transforming the aCTD*t library with a mutagenesis rate of 6% expressed

from the spc promoter (see Section 6.4.2) into the ethanologenic KO 11 derivative (which

we will call the 'parental strain'). Two selection routes were chosen, either based in

liquid or solid media (Figure 6.4-4). The mutants we describe in this section were

isolated by subjecting the cells to 40 g/L of ethanol, and plating in non-stressful solid rich

media after 48 hr.
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Table 6. Survivability of different mutants in 40 g/L ethanol at 48 hr

Colony CFU/mL Colony CFU/mL
1 4.38E+06 11 2.10E+06
2 7.53E+06 12 1.28E+06
3 1.90E+06 13 2.52E+06
4 5.35E+06 14 6.11E+06
5 6.42E+06 15 5.28E+06
6 3.31E+06 16 2.69E+06
7 8.65E+06 17 2.05E+06
8 4.52E+06 18 >8.65E+06
9 8.23E+06 19 3.39E+06
10 4.71E+06 Control 3.10E+04

Table 6 shows the results from 19 colonies tested individually after selection, in the

same challenging conditions. These were re-transformed into the parental strain and re-

tested for ethanol tolerance. Three improved strains were obtained, shown in Figure

6.4-5.

fl Plate part of Library on

plates with various stresses

stock of
library Recover Library
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y to points
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individual
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Figure 6.4-4. Routes for isolating an ethanol- and hydrolysate-tolerant mutant

The route used to select for the mutants described in this Section is in black; an alternative path used in

other experiments is shown in grey.
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The fermentations shown in Figure 6.4-5 were obtained by inoculating overlimed

bagasse hydrolysate, with a total sugar concentration of 10 wt-% (this concentration was

adjusted with a concentrated xylose solution and ensured by HPLC). The media was

enriched by 5% corn-steep liquor, which provides a mix of nitrogen sources. At 36 hr, a

fed-batch strategy was adopted in which additional xylose and corn-steep liquor were

introduced to maintain ethanol production.
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Figure 6.4-5. Fed-batch hydrolysate fermentation of three improved mutants and

control

The three mutants are symbolized by the diamond, square, and triangle, while the control, denoted XZ030,

is symbolized by a circle.

As shown by Figure 6.4-5, the ethanol productivity of the mutants is significantly

improved (in the statistical sense) by -10-15%. Concurrent measurement of sugar

consumption was used to determine the yield for ethanol production, and we observed
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that both mutants and control show a similar value of 0.45 g/g, or about 88% of the

theoretical maximum.

6.5 Divergence in a Single-Locus Phenotype

In Chapter 5, we described the use of complex phenotypes as proxies to quantify the

impact of a particular library design on the global intracellular environment. We argued

that, since we are interested in the a priori probability that a new phenotype will be

found, we can measure this diversity using a measurable phenotype that is impacted by

many nodes in the physiological network.

The bacterial RNAP, being the only enzyme complex in charge of transcription, must

itself integrate all the signals that result in disparate expression of the different promoters

in the cell (see Section 4.1). Not all promoters are regulated in the same way: some are

simple and depend only in their DNA sequence, while others rely on a combination of

activation, lack of repression, local structure of the chromosome, etc.

For the case of a simple promoter, mutations in the promoter region are known to

cause wide changes in expression (Alper et al., 2005; Hammer et al., 2006; Jensen &

Hammer, 1998a; Jensen & Hammer, 1998b). We hypothesized that the same could be

observed if we mutated the discriminatory determinants of the RNAP, instead of those at

the promoter. Diversity in the affinity of RNAP for a promoter would show as divergence

in a simple phenotype, for example, the expression of a single gene.

In order to test this, we constructed a strain that expressed green fluorescent protein

(GFP) in a very low-copy number plasmid (Jones & Keasling, 1998; Jones et al., 2000),
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and from a constitutive promoter (we induced the Ptre promoter present in pKLJ03 with

IPTG). We then transformed three of our rpoA libraries or a wild-type copy into this

strain, and measured their fluorescence, which was then used to calculate the divergence

as determined by GFP expression. All the libraries express the rpoA from the weaker Plac

promoter (i.e. this aCTD*t library is the same shown in Figure 6.2-4).

250

200

150

100

50

rpoA*L aCTD*L aCTD*t

Figure 6.5-1. Divergence in a simple phenotype

The divergence was calculated using fluorescence of GFP as a single-locus phenotype for diversity

quantification.

As shown in Figure 6.5-1, the observed trends are in accord with those established

using a complex phenotype (pHi). This fact suggests that some of the diversity that we

observed using the complex phenotype had to be due to an alteration of the affinity of

RNAP for promoters, at least at the DNA level (i.e. without considering protein
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effectors). Moreover, it suggests that the promoter discrimination function of the alpha

subunit is affected following the same trend as for complex phenotypes, with the aCTD*t

having the highest fraction of variants with altered interactions. From this fact, it follows,

though not strictly, that the DNA determinants of a sizable number of promoters dictate a

significant fraction of regulation (as opposed to protein effectors or other signals), which

makes intuitive sense.

6.6 Optimization of sigma D Libraries

During our optimization efforts of the alpha subunit libraries we learned that it was

possible to reduce the search space to regions that are important for transcriptional

regulation, and we concluded that such a reduction led to a marked increase in

phenotypic diversity. As a second test case for proving the usefulness of the divergence

metric to optimize libraries, we chose the principal sigma factor, sigma D, which had

already proven successful for improving traits of interest in L. plantarum and E. coli

(Chapter 4).

A key advantage of doing this was that the structure and function of the E. coli sigma

D protein has been studied in great detail (Campbell et al., 2002; Dombroski et al., 1992;

Dove et al., 2003; Gardella et al., 1989; Nickels et al., 2002; Ross et al., 2003; Siegele et

al., 1988; Siegele et al., 1989; Waldburger et al., 1990). These reports, and especially the

one by Campbell (2002), allowed us to apply some of the lessons that led to the

development of the aCTD*t library on optimizing libraries of sigma D.
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6.6.1 Targeted Mutations in Promoter-Contacting Residues

Based on the fact that targeting a few amino acid changes in the surface of the otCTD

responsible for some of alpha's regulatory functions was the most successful approach

for increasing divergence, we aimed at emulating this design. Recall from Section 6.4.1

that the design in which the chosen codons were substituted by degenerate triplets

suffered from lethal effects, which suggested that a similar effect was possible for the

case of sigma D. Therefore, spiked oligonucleotides were preferred for imparting

localized mutagenesis.

We chose surface and DNA-contacting residues based on two criteria: structural

information, obtained mostly on the results from Campbell (Campbell et al., 2002), and

sequence information, based on an alignment of the six sigma factors in E. coli that

belong to the sigma 70 family (Figure 6.6-1). The first criterion follows directly from the

evidence put forth by the rpoA divergence trends for complex and simple phenotypes.

The second was provided by the hypothesis that, because all promoters in the cell must be

recognized by one of the sigma factors, mutating amino acids with conserved

physicochemical properties across more than one factor (but not in all of them) may

change the pattern of recognition of sigma D to that of a different sigma.

With these facts in mind, we designed two libraries with surface residues

hypothesized or known to be important for transcription targeted for mutagenesis: one

library was constructed with amino acids that contact the -10 promoter region, and a

different library with those that contact the -35 promoter region. The mutation frequency

of each library was adjusted so that the total number of amino acids to be mutated was,
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on average, the same as that for the otCTD*t library with 6% base-exchange rate. A

detailed design is shown by the highlighted residues in Figure 6.6-1.

-10-binding region

RPOD ECOLI
RPOS ECOLI
RP32 ECOLI
FLIA ECOLI
RPOE ECOLI
FECI ECOLI

-35-binding regioi
RPOD ECOLI
RPOS ECOLI
RP32 ECOLI
FLIA ECOLI
RPOE ECOLI
FECI ECOLI

FLDLIQEGNIGLMKAVDKFEYRRGYKFSTYATWWIRQAITRSIADQARTI
LLDLIEEGNLGLIRAVEKFDPERGFRFSTYATWWIRQTIERAIMNQTRTI
QADLIQEGNIGLMKAVRRFNPEVGVRLVSFAVHWIKAEIHEYVLRNWRIV
LDDLLQAGGIGLLNAVERYDALQGTAFTTYAVQRIRGAMLDELRSRD-- -
LTDQV ------ LVERVQKGDQKAFNLLVVRYQHKVASLVSRYVPSGD---
-----------MSDRATTTASLTFESLYGTHHGWLKSWLTRKLQSAF---

n

THDVLAGLTAREAKVLRMRFGIDMNTDYTLEEVGKQFDVTRERIRQI EAK
IVKWLFELNAKQREVLARRFGLLGYEAATLEDVGREI GLTRERVRQIQVE
LTDAMQGLDERSQDIIRARW-LDEDNKSTLQELADRYGVSAERVRQLEKN
VMEAIETLPEREKLVLTLYY---- QEELNLKEIGAVLEVGESRVSQLHSQ
VFRTIESLPEDLRMAITLRELDGLSYEEIAAIMDCPVGTVRSRI FRAREA
LDSMLDGLNGKTREAFLLSQLDGLTYSEIAHKLGVSISSVKKYVAKAVEH

Figure 6.6-1. Sequence alignment of different sigma factors in E. coli

All the featured factors belong to the sigma 70 family of sigma factors. The left-hand side before the

sequence shows the name of the gene corresponding to the following (from top to bottom): sigma D, sigma

S, sigma H, sigma F, sigma E, and sigma fecI (see Section 4.3). The numbers at the right-hand side

correspond to the amino acid position given by the last letter of the sequence. The amino acids chosen for

mutagenesis are highlighted.

Two libraries were constructed because, in contrast to the alpha subunit of RNAP,

sigma D has two clusters of amino acids that contact the promoter, instead of one.

Experimentally, this means that the two regions are hard to target simultaneously,

because the spiked triplets are introduced with the aid of mutated oligonucleotides.

Having two libraries instead of one also opened the possibility of comparing the two

designs with the divergence metric and learn which region of sigma D can impart more
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diversity. In other words, the structural (and functional) separation of the two sigma

regions provided a natural division into two search spaces. This would later be exploited

for reducing the space in the course of optimization.

When we performed the experiments for constructing these two libraries, we

observed very low transformation efficiencies, even after extensive troubleshooting.

Figure 6.6-2 shows the transformants per mL of different such experiments; although we

focused on perfecting the -10-binding region library, we initially observed equally poor

efficiencies for the case of the -35-binding region.

We hypothesized that, if mutations in the chosen residues were lethal, we could

calculate the expected number of transformants by calculating the probability that a

variant in DNA library had no mutations. Assuming a Poisson distribution for the number

of mutations (as before), and assuming a transformation efficiency that would result in

-104 CFU/mL, we estimated that about 400 colonies would survive if only unmutated

plasmids resulted in non-lethal clones. This value is in the observed order of magnitude,

suggesting that our hypothesis could be valid. In order to confirm this, we sequenced a

few clones that were produced in one of the transformations. Indeed, all clones were

genotypically identical, which would result in a population with low or null divergence.
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Figure 6.6-2. Initial size of -10-binding region libraries

The graph shows the number of transformants obtained in three different trials (in which different enzyme

stock solutions were used) undertook to construct the library with targeted mutations to the region of sigma

that contacts the -10 promoter hexamer. The two bar colors refer to experiments in which gel

electrophoresis was either performed (protocol 1) or not performed (protocol 2) prior to ligation.

Although the lethality of mutants in the chosen amino acids continues to be our

working hypothesis, other possibilities were later imagined. For example, poor primer

quality could result in a large fraction of variants containing deletions or insertions

instead of spiked base changes; in that case, lethal effects would be caused by gross

changes in sigma D structure, not the more subtle effects of nonsynonymous

substitutions. It is also possible that the toxic effects of the chosen substitutions were

restricted to the -10-binding region library, and that we could have obtained larger library

sizes for the -35-binding region library if we had extensively troubleshot it as we did for
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the former. In any case, the experiments described here suggested the need for libraries

with a modified design.

6.6.2 Targeted Mutagenesis of Promoter-Binding Regions

Targeting mutations to particular DNA-binding amino acids in sigma D proved

ineffective, but we still believed that reducing the sequence space as a means of

optimizing the rpoD libraries was possible. One way of attaining this goal would have

been choosing a different set of amino acids to target for mutagenesis. Because it was not

obvious which residues to target for a new design, we instead chose to select the regions

that contained the surface amino acids that were previously selected (spanning a couple

of hundred base pairs each).

The libraries of the region of sigma D that binds the -10 promoter hexamer, which we

denoted -10*L and -10*H according to their mutation frequency, were constructed by

epPCR of a base pair sequence between amino acids 422 and 456; this region includes all

of region 2.4 and parts of regions 2.3 and 3.0 (see supplementary material of (Campbell

et al., 2002)). The libraries of the region of sigma D that binds the -35 promoter hexamer,

denoted -35*L and -35*H, were similarly constructed by targeting the region from amino

acid 546 and until the stop codon; this region contains most of region 4.1 and all of 4.2

(same source as above). Figure 6.6-3 illustrates the design of these four libraries

schematically.
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-10 binding-region targeted library: -10o clones, 2 mutation rates
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-35 binding-region targeted library: -10 clones, 2 mutation rates

Figure 6.6-3. Design of the libraries targeted to the 2.4 and 4.2 regions of sigma D

Generalized mutations are indicated in red for schematic purposes only; they are not intended to show the

actual location or frequency of mutations in our libraries.

After constructing the libraries, we used the protocol for quantifying the divergence

using pHi, except that only growing conditions were used as phenotypes for measuring

diversity (recall that we had used both growing and non-growing conditions to produce

the data of Figure 6.2-4 in Section 6.2.3, but we later simplified the protocol further). We

also quantified the divergence of a library of rpoD with high mutation frequency

(rpoD*H) in order to compare the new libraries to the best sigma factor library available

then. In addition, we included the aCTD*t in our analysis to judge the new libraries in

light of the library that showed the highest level of divergence so far. The results are

shown in Figure 6.6-4.
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Figure 6.6-4. Divergence of the libraries targeted to the 2.4 and 4.2 regions of sigma

D

The divergence was calculated using pHi in growing conditions, and contrasted to that of a rpoD library

with high mutation frequency throughout the coding region (rpoD*H) and to that of the otCTD*t library

that had showed highest divergence so far.

From Figure 6.6-4, we can observe that (i) localizing mutagenesis to regions in

charge of DNA-binding is effective for imparting phenotypic diversity; (ii) such diversity

is significantly greater than that of non-targeted mutagenesis to rpoD; (iii) such diversity

compares favorably with that of previously-optimized rpoA libraries; (iv) mutagenesis of

the region that binds the -35 promoter hexamer can introduce higher phenotypic diversity

than that of the region that binds the -10 promoter hexamer; and (v) higher sequence
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diversity translates into higher phenotypic diversity for the case of the new targeted

libraries.

Observations (i) and (ii) imply that an optimization effort based on reducing the

search space from -2 kbp (as for rpoD*H) to 200-300 bp is an effective means of

improving the library design. They also reinforce our hypothesis that the divergence

metric can help in finding regions rich in phenotype-altering potential located in the

midst of uninteresting regions.

Observation (iv) implies that it is easier to modify the specificity of sigma D for the

promoter by changing its interactions at or near the -35 promoter hexamer than at or near

the -10 promoter hexamer. The most likely explanation for this is that region 4 of sigma

has regulatory functions in addition to contacting DNA, as it is known to interact with

protein effectors and with the C-terminal domain of alpha (Dove et a]., 2003; Nickels et

al., 2002; Ross et al., 2003). Recall from Section 4.2.2.3 that one of the L. plantarum

mutants (S6) had a mutation in this region, which could have been taken as an early lead

to the potential of the -35* libraries for phenotypic improvement.

On the other hand, the regions that were chosen for mutagenesis in the -10* libraries

are also known to be responsible for DNA melting during transcription initiation (see

Section 4.1). Mechanistically, it is easy to imagine how mutations in these regions could

not only change the affinity of sigma for the -10 promoter hexamer, but at the same time

interfere with transcription initiation. If that is the case, it is possible that some variants of

the -10* libraries would not be able to function in promoter melting, reducing the

effective size of the library and decreasing the divergence. This possibility adds to the

explanation for observation (iv) given above.
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Finally, observation (v) is in tune with the majority of the evidence obtained from the

divergence metric: that increased sequence diversity leads to increased phenotypic

diversity. Notable exceptions are the trend observed for the aCTD*L vs. the aCTD*H

libraries (see Section 6.2.3), and the case of the aCTD*t libraries with fully-degenerate

codons vs. that with 6% spiked non-wild-type bases (see Section 6.4.1). Before

concluding our description on optimization of transcriptional engineering libraries, let us

turn to a final instance that illustrates how the divergence metric can be employed for

guiding the use of libraries to quicken selection experiments.

6.6.3 Use of sigma D Optimized Libraries for Improving Survivability in

High-Ethanol Overlimed Hydrolysate

Even though the main goal of the thesis was to develop an understanding and the

necessary methods for optimizing random search-based approaches for phenotypic

improvement, we screened our libraries for traits of interest to illustrate the practicality of

our approaches. So far, we have explained the use of transcriptional engineering libraries

to improve several phenotypes in L. plantarum and E. coli. Since we had also explored

our optimization method on libraries of sigma D in E. coli, we felt compelled to prove

their usefulness with regard to a phenotype of interest.

For the same reasons given in Section 6.4.3, we sought mutants that were tolerant to

conditions present in ethanol fermentations of biomass hydrolysate. We transformed our

previously optimized libraries into the ethanologenic industrial strain (derived from

KO 11) and selected for survivors in 50 g/L ethanol and overlimed bagasse hydrolysate.

Since the -10* and -35* libraries may act through different mechanisms, we not only
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performed the selection experiments in the -35*H library - the one with highest

divergence -, but we tested both -10*H and -35*H libraries.

35% -

30% -

25% -

• 20% -
I-}

e-S15% -

10%.

10%

5%-

0% --

32.1%

*4 hr
H15 hr

6.7%
5.6%

).011%
I

).003%

-10*H -35*H Wt

Figure 6.6-5. Library selection in ethanol and overlimed hydrolysate

The bars show the fraction of cells surviving at 4 and 15 hr of the two tested libraries and the control (Wt;

host strain transformed with a plasmid-borne copy of rpoD). The data was calculated by counting colonies

initially and at the different time points. Since the trends are hard to distinguish at 15 hr, the value

represented by each bar is printed as well.
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Figure 6.6-6. Qualitative illustration of library selection in ethanol and overlimed

hydrolysate

The same volume of media was plated from each library (at 15 hr). The data shown in the previous figure

was calculated using both this dilution and a dilution plated at time zero.

The results of the selection experiment are shown, quantitatively and qualitatively, by

Figure 6.6-5 and Figure 6.6-6, respectively. As shown, the trends shown by Figure

6.6-5 are in good agreement with those extracted from the divergence metric, although

this needed not be the case. For example, it is possible that the -35*H library has more

diversity than the -10*H library, but that a smaller fraction exhibit the phenotype selected

for by this protocol. The reason is that this experiment has a "digital" outcome: either a

variant survives or it does not. A more relevant indication that the divergence of the -

35*H library confers useful information is that the mutant found to be improved was

obtained from this library.
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Figure 6.6-7. Improved mutant from our selection in ethanol and overlimed

hydrolysate

The experiment was carried out similarly to that of selection. Mutant E7 was found in the -35*H library.

After testing several mutants from both libraries, the best individual (denoted E7)

was chosen for further characterization; this mutant was indeed isolated from the

population with highest divergence, the -35*H library. We isolated the mutant plasmid

and re-transformed it into a fresh background to test the ability of the mutant rpoD to

cause the improved phenotype. As shown by Figure 6.6-7, mutant E7 has a higher

survival rate compared to the control at all time points tested. Upon sequencing the

mutant, we observed two mutations A549V and R560H located in the region that was

targeted for mutagenesis. It is interesting to note that, as shown by Figure 6.6-8, these

mutations are adjacent to amino acids previously identified as critical for sigma D

interactions (see Section 6.6.1). In addition, both cause amino acid substitutions with
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similar physicochemical properties to the native residues. This suggests that subtle

changes located near important regions can be effective for altering phenotype.

A549V

R560H

1613

DVLAGLTAREAKVLRMRFGI DMNTDYTLEEVGKQFDVTRERI RQI EAK

Figure 6.6-8. Sequence analysis of ethanol and hydrolysate tolerant mutant

The location of the mutations is indicated with red arrows. Amino acids that were chosen for localized

mutagenesis, described in Section 6.6.1, are highlighted in yellow.

When we calculate the posterior probability of finding mutant E7 in all the

previously-constructed rpoD libraries, it is naturally greatest in the -35* libraries. In fact,

it is slightly higher in the -35*L library than in the -35*H library. For the same reasons

given by the opening paragraph in Section 6.3, this does not contradict the information

given by the divergence metric. The fact that we were able to find a valuable mutant most

easily in the library with the most diversity, in contrast, does reflect the usefulness of the

divergence metric for directing strain improvement efforts.

In order to complete our analysis, we tested mutant E7 for its ability to ferment

overlimed hydrolysate, similarly to the mutants isolated from the caCTD*t library

(Section 6.4.3). Our experiments showed no improvement in ethanol productivity or titer

205



when comparing the mutant and control strains. This was in spite of the survivability

advantage of E7 compared to the same control strain. There are many explanations for

why survivability in the stress conditions does not translate to increases in productivity or

titer, but, practically, it suffices to say that the selection conditions used did not enrich for

the phenotype of interest. "You get what you screen for", the classic adage of protein

engineering, has an equivalent in cellular engineering which must be kept in mind when

designing selection experiments.
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Chapter 7

7. The Divergence Metric as a Tool for

Studying Interactions that Alter Phenotype

In Chapter 6, we described the use of the divergence metric for guiding and optimizing

random search-based libraries. Although we stressed the practical aspect of the metric,

we suggested, at times implicitly and at others explicitly yet succinctly, that the

information provided by the divergence metric can be used to learn something about the

protein targeted for mutagenesis. Concretely, we can study which domains, regions, or

amino acids can affect the phenotype of the cell globally. Because we are working with

transcriptional regulators, we can study which determinants of the chosen proteins can

alter the transcriptome most effectively.

From the results of the previous Chapters, we have also seen that, when targeted

appropriately, a reduction of the search space leads to an increase in diversity. But, what

are the structures or functionalities that are most important for the diversity observed in

the reduced space? What is the smallest sequence that can be regarded as the basis for

diversity? How does one find these regions experimentally? In this Chapter, we aim at
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answering all these questions, by studying the alpha subunit in yet more detail. We expect

that the methods presented here could be applied to targets other than alpha in the future.

7.1 Determinants of Diversity

While optimizing the transcriptional engineering libraries, we considered proteins, their

domains, regions or sub-regions within those domains, and even groups of amino acids as

targets for mutagenesis. Because libraries of these targets were shown to alter phenotype,

they can be regarded as "units" of diversity, or, in the terminology of this thesis, as

determinants of diversity. Conceptually, a determinant of diversity could be decomposed

in sequences, structures, or functionalities; such decomposition may help explaining and

exploiting the underlying mechanisms that give rise to the observed effect in phenotypic

alteration.

For example, in Section 6.2 we showed that the C-terminal domain of alpha (aCTD)

could be regarded as a determinant of diversity within the protein that concentrated useful

functions for phenotypic alteration. We also deduced that the aCTD had more potential

than that of the N-terminal domain (or NTD). The basis for selecting the CTD as a

determinant for diversity was founded mostly in structural arguments, given that this is an

independently-folding region of the protein, and it harbors several functions (see Section

4.4).

The potential of the determinants, quantified by the divergence metric, depends on the

ability of the targets to affect key regulatory functions effectively when mutated. We

have concluded that this efficacy is a balance between centrality - so that the chosen
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determinants can alter the phenotype globally and through different mechanisms - and

sequence plasticity - so that the chosen determinants can be mutated without disrupting

the cellular physiology to the point of lethality. We will refer to the combination of these

qualities as "regulatory flexibility".

In this way, we can rephrase some of the conclusions of the preceding Chapters in

light of the new terminology. For example, one can say that the group of amino acids

chosen for position-specific mutagenesis in the surface of regions 2.4 of rpoD (see

Section 6.6.1) has little regulatory flexibility, but the group located in the surface of the

aCTD has significantly more. Note that this property, which is a quality of the group of

residue positions at hand and not necessarily the positions individually, can be studied by

comparing the divergence of different library designs. Framing the potential of different

determinants as sources of regulatory flexibility can aid in obtaining information while

optimizing a library or when comparing targets for mutagenesis

7.2 Single Residues as Determinants of Diversity

The smallest determinant of diversity considered so far has been groups of amino acids.

The tCTD*t library, which has the highest phenotypic diversity of the rpoA libraries,

was constructed by allowing mutations in a few amino acids located in the surface of the

aCTD. The selection of those amino acids was to some extent arbitrary, and therefore,

the aCTD*t library may be sub-optimal. Amino acids not considered in this design could

be important, and some of those included could be dispensable.
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These remarks raise the question of whether one can experimentally consider single

amino acids as determinants of phenotypic diversity. If so, regions and sub-regions of

proteins could be probed for their capacity to alter the intracellular environment with any

resolution. This is because an amino acid is the smallest physicochemical determinant of

a protein coded by DNA, and because it can be substituted independently to all other

similarly-defined determinants.

Considering single amino acids as determinants for diversity would allow

determining which structures or their associated functionalities are central to regulation

and are worth exploring in more detail. Also, it would open the possibility to reduce the

search space to the point where it can be comprehensively screened, which necessitates

that only a small number of amino acids are targeted for mutagenesis.

Similar methods for directed evolution based on structural information or other

rational arguments have been described (Reetz & Carballeira, 2007), but given that the

proteins of interest regulate transcription through several mechanisms and that the

libraries will be screened for improving many, possibly unrelated phenotypes, these

cannot be readily used. Moreover, residues chosen because they have central roles in

transcription are not indisputably desired, as mutations in these amino acids can be lethal

or under strong selection pressures, which leads to small regulatory flexibility. The

diversity quantification method can again serve to evaluate potential target residues.
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7.3 Amino Acids in the alpha Subunit C-terminal

Domain (aCTD) as a Test Case

7.3.1 The Difference between Residues with Low and High Regulatory

Flexibility

As proof-of-concept, we constructed saturation mutagenesis libraries of two amino acids

in the aCTD, based on their function and degree of conservation across species. The

positive control (one expected to confer significant diversity) was R265, which has been

described as a side-chain essential for aCTD-DNA interactions (Benoff et al., 2002; Jeon

et al., 1995; Savery et al., 2002). On the other hand, V242 was chosen as a negative

control, since it is located in the flexible linker between NTD and CTD and is poorly

conserved (Murakami et al., 1996); therefore, a library at this position is expected to

result in low diversity.

The quantification protocol was modified to deal with the fact that different amino

acids are likely to play a more important role in some growth conditions than in others

(Benoff et al., 2002; Fritsch et al., 2000; Lochowska et al., 2004). Therefore, we

measured the pHi in different media that varied on the choice of carbon source, on the

absence or presence of amino acids, and availability of complex nutrients. The initial

analysis of these two libraries indicated that the R265 library had an order of magnitude

larger divergence compared to that of V242 (see Figure 7.3-1 in next Section).
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7.3.2 A More Complete Account of Function-Diversity Relationships

To complete the study, several amino acids in the aCTD were chosen based on structural

and functional information. In particular, residues in three determinants responsible for

transcriptional regulation were selected: (i) D259, L262, K271, and E273 on or near the

"261 determinant" (some have proposed the existence of an overlapping "273

determinant" but we do not for simplicity); (ii) R265, N268, and C269 on the "265

determinant"; and (iii) E286 and L290 on the "287 determinant" (Benoff et al., 2002;

Fritsch et al., 2000; Kedzierska et al., 2007; Luscombe & Thornton, 2002; Savery et al.,

2002). These residues were chosen because their function has been described in the

literature and because they were all randomized in the aCTD*t library; therefore, their

combined effect on diversity had already been studied.

Figure 7.3-1 shows the results of quantifying the diversity of the saturation

mutagenesis libraries of the chosen amino acids, and Figure 7.3-2 shows the data

averaged by determinant. As shown by Figure 7.3-1, the V242 library has the lowest

diversity, as expected, while the D259 library has the highest. The latter has been

implicated in a direct intersubunit interaction with amino acid R603 located in region 4.2

of sigma D, in the vicinity of the contact of the sigma factor with the -35 promoter box

(Ross et al., 2003).
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Figure 7.3-1. Divergence of individual amino acids in the aCTD

The x-axis denotes the identity and the location of the amino acids, while the color of the bar denotes the

determinant to which the amino acid belongs (red, green, and blue for the 261, 265, and 287 determinants

respectively). The negative control, V242, is shown in gray for comparison.
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Figure 7.3-2. Divergence of the aCTD averaged by determinant
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In addition, all residues tested in the "261 determinant" produce high diversity,

suggesting that this face of the protein has the largest potential for transcriptional

engineering through rpoA. In contrast, members of the "287 determinant", located in the

opposite face of the CTD and mainly implied in protein-protein activation at class-I and

class-II promoters (Savery et al., 2002), showed the lowest diversity, suggesting that this

activity of alpha has a lower potential to alter global phenotypes (i.e. a lower regulatory

flexibility). Residues in the "265 determinant", which are responsible for alpha-DNA

contacts at the UP promoter site, produced an intermediate level of diversity (Figure

7.3-3).

It is possible to conclude that saturation mutagenesis libraries can be used to study

how diversity-conferring potential varies with position along the sequence of the

regulator, giving leeway for probing regions of proteins with high precision. The

structure/location-function correlations used to explain the diversity trends are a good

indication that the methods presented give meaningful results, which could be exploited

when testing regulators that have been studied with less detail. However, some

knowledge regarding where influential residues are likely to be found is desirable, if not

compulsory, in order to keep the number of libraries and evaluation experiments

tractable. This may complicate the use of the presented protocol in proteins that have

been barely explored.
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Figure 7.3-3. Location of the determinants mutated in otCTD

(A) The amino acids belonging to the corresponding determinants are shown in the structure of the CTD

solved by Jeon et al. (1995). (B) Schematic representation of the determinants interacting with different

promoter elements. The 261 determinant is shown in contact with the sigma factor, the 265 determinant is

shown interacting with DNA at the UP region, and the 287 determinant is shown in contact with an

activator ("ac").

7.4 Key Interactions between the RNA Polymerase and

the Promoter for Phenotypic Alteration

After gathering the information from all diversity quantification experiments presented in

this thesis, the results from the different library designs can be put in a more general
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context. This information comes from two fronts: the alpha subunit and sigma D subunit

libraries. The high diversity of the aCTD*L, and eventually of the aCTD*t libraries,

pointed to the surface of the aCTD as a useful determinant for diversity. Previously in

this Chapter, we pinpointed further the region with highest regulatory flexibility and

ascribed it to the face of the aCTD that interacts with sigma. On the other hand, the

optimization experiments with sigma D point to the region 4 of this protein as the most

promising one for altering phenotype. In this last Section, we recapitulate the findings

and suggest possible implications of the observed trends.

7.4.1 Residue D259 and the 261 Determinant of the aCTD

The trends given by considering individual amino acids in the surface of the aCTD, and

in particular the high divergence obtained in the case of residue D259, suggest that the

diversity introduced by the 261 determinant may be directly or indirectly caused through

interactions with sigma. As pointed out earlier, this amino acid in alpha has been

implicated in a direct intersubunit interaction with amino acid R603 located in region 4.2

of sigma D, in the vicinity of the contact of the sigma factor with the -35 promoter box

(Ross et al., 2003). As noted in Section 4.4, other mutations in this face of the atCTD

have also been reported to impact the phenotype globally. In that Section we discussed a

paper that noted the pleiotropic effects of a E261K mutation, ranging from inability to

grow in minimal media to distinct colony morphology (Jafri et al., 1996).

Considering that rpoD is known to control expression of more genes than the number

acted upon by activators of aCTD (Martinez-Antonio et al., 2008), an indirect effect
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through the action of sigma should not be surprising. The result is still significant,

however, as the aCTD is known to contact the UP promoter region at most promoters

(Ross & Gourse, 2005). The construction and evaluation of targeted libraries of the sigma

D region that recognizes and binds the -35 promoter box provides some further proof that

the effect of mutating the 261 determinant may be indirect (see Section 7.4.2 below).

Although the hypothesis that the diversity introduced by mutagenesis of the 261

diversity is an indirect consequence of intersubunit interactions at the RNAP-promoter

contact seems probable, additional effects may occur concurrently. In fact, the data

gathered so far merely indicates that the interaction between the aCTD and sigma is

important, but many mechanisms may explain this phenomenon; for example, the aCTD-

sigma interaction may alter contacts between regulators and their amino acid targets in

region 4 of sigma. Another possibility is that the 261 determinant could contact regulators

by itself or simultaneously with sigma. The combination of these mechanisms may result

in the high regulatory flexibility we have measured with the use of the divergence metric.

The results offered by the diversity introduced by mutagenesis of the 261 determinant

suggest that this face of the protein could be targeted for constructing libraries in the

future. The lower diversity of the aCTD*t library compared to that of the -35* libraries

(see Figure 6.6-4) may be taken to imply that this effort would be in vain. However, this

observation is flawed for two reasons. First, the aCTD*t library design allowed

mutations in locations other than the 261 determinant, which may act antagonistically to

those shown to impart greatest diversity. Second, the aCTD*t library has many amino

acids targeted for mutagenesis, so that its search space could not be covered

experimentally; the coverage may be significantly increased with a different library
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design. In fact, a library with mutations restricted to the 261 determinant would explore

the significance of both these factors simultaneously.

7.4.2 The -35-binding region of sigma D

Optimizing the libraries of sigma D by reducing the search space to regions in charge of

transcriptional regulation indicated that region 4 of the protein has most regulatory

flexibility. This region is in charge mainly of promoter recognition at the -35 hexamer,

but it harbors other regulatory functions as well. For example, it binds activators such as

XcI, CRP, RhaS (which controls L-rhamnose metabolism), and others (Dove et al., 2003).

It has also been shown to be the target for transcriptional inhibitors, such as the anti-

sigma factor Rsd (Jishage & Ishihama, 1998). In addition, region 4 of sigma has been

suggested to be regulated through its interaction with the RNAP 3-flap, a contact that

ensures proper spacing between regions 2 and 4 at the promoter -10 and -35 hexamers

(Colland et al., 2001; Dove et al., 2003).

The fact that the principal function of the region that produced the highest phenotypic

diversity is contacting the -35 hexamer led us to suggest in the previous Section that the

effect of the 261 determinant was caused by an indirect effect through this promoter

element. However, the variety of ways in which region 4 functions reiterates the

possibility that several effects take place simultaneously in the same cell, though

probably the mechanisms that alter the phenotype are distinct at different promoters. If

that is the case, then highly targeted mutagenesis of DNA-contacting amino acids, such

as that initially proposed during our optimization of the sigma D libraries, would not

exploit all possible routes for producing new traits. This is in spite of the improvement in
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ethanol and hydrolysate tolerance exhibited by mutant E7, which had two substitutions

very close to DNA-contacting residues (Figure 6.6-8, Section 6.6.3). Also, recall that the

S6 mutant isolated in L. plantarum libraries has a mutation in a residue located in a

DNA-contacting patch of the protein, suggesting that the DNA-binding functions of

sigma D in that species are important for phenotypic alteration (Figure 4.2-4). Two

observations are evidently not sufficient to eliminate the multiple-mechanism hypothesis.
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Chapter 8

8. Recommendations and Conclusions

8.1 Summary

We have demonstrated a method for guiding and optimizing the construction of libraries

for random search-based strain improvement, and have applied it for the case of

transcriptional engineering. The overarching goal was initially to develop tools for

advancing this evolutionary approach, but resulted in a method that can be generally

applied to any library design.

Firstly, we explored the most practical and simple way of improving transcriptional

engineering: we aimed at finding new targets to expand the options of this framework. In

addition to using previously-constructed E. coli sigma D libraries for improving the

production of hyaluronic acid, we investigated other sigma factors, such as sigmas S, E,

and H for enhancing traits such as tolerance to carbon dioxide, ethanol, and heat. We

were also able to find several new phenotypes with sigma D libraries in a new bacterial

species, L. plantarum, some with important industrial applications. One new target for
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transcriptional engineering in E. coli proved to be the most promising: the alpha subunit

of the RNA polymerase. We successfully used libraries of this protein to improve

unrelated phenotypes, such as tolerance to butanol and other solvents, and production of

hyaluronic acid and L-tyrosine.

Secondly, we developed a metric to quantitatively compare different targets for

transcriptional engineering. The method, based on the premise that highly phenotypically

diverse populations are likely to harbor new traits, was first applied to libraries of sigma

D and chemical whole-cell mutagenesis in L. plantarum. The so-called divergence metric

statistically compares the diversity in a measurable phenotype between a library

population and a wild-type, clonal population. We showed that this metric correlates

qualitatively with the probability that an improved mutant will be found in a library.

Thirdly, we used the divergence metric to optimize transcriptional engineering

libraries by successively evaluating and modifying different library designs. We proved

that this effort could be used to reduce the search space of a library design so that the

overall quality of a population to be screened, as judged by its phenotypic diversity,

progressively increases. We applied this idea to the problem of finding a butyrate tolerant

mutant in libraries of the alpha subunit of the polymerase, since our initial selection

experiments were unsuccessful even though they had delivered other improved

phenotypes. This optimization exercise not only resulted in butyrate-tolerant mutants, but

it also provided information about which determinants of the alpha subunit had most

potential for phenotypic alteration. We also applied our optimization algorithm to

libraries of sigma D, and used the resulting populations to improve the survivability of an

ethanologenic strain of E. coli to biomass hydrolysate and high ethanol conditions.
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Lastly, we explored the use of the divergence metric for studying key residues,

regions, structures, or functionalities that can confer greatest phenotypic diversity when

mutated. We demonstrated that single amino acids can be experimentally considered as

determinants of diversity, and explored which locations in the otCTD lead to greatest

diversity. We put forth the concept of regulatory flexibility, which refers to the potential

of a determinant to create phenotypic diversity by allowing genotypic diversity.

8.2 Conclusions

The results of this thesis permitted us to arrive at the following conclusions:

1. Transcriptional engineering can be performed for strain improvement by mutating

various protein targets, in addition to the previously identified sigma factors

(mainly sigma D, coded by the gene rpoD). In particular, we found great potential

for phenotypic alteration in the alpha subunit of the RNA polymerase, coded by

the gene rpoA.

2. Both rpoD and the newly found rpoA are good targets for transcriptional

engineering, as indicated by (i) the phenotypic diversity of their libraries, and (ii)

our ability to obtain several new phenotypes in a few species and strains during

the course of this thesis. These include: lactic acid tolerance, increased lactic acid

production, low pH tolerance, malic acid tolerance (in L. plantarum), butanol

tolerance (and general solvent tolerance in the same mutant), enhanced titers and

productivity of L-tyrosine, increased hyaluronic acid accumulation, butyrate

tolerance (in E. co1h), ethanol tolerance, increased ethanol productivity, and
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tolerance to overlimed bagasse hydrolysate (in an ethanologenic KO 11-derivative

strain of E. col).

3. Diversity in complex phenotypes can be quantified experimentally and utilized to

evaluate the evolutionary potential of strain improvement libraries.

4. The divergence metric derived from such quantification can be used to:

a. Find and compare targets for mutagenesis.

b. Restrict mutagenesis to specific regions to probe their potential for

affecting phenotype and to study their function.

c. Optimize the construction of libraries by changing parameters such as

size, promoter strength, mutagenesis rate, etc.

d. Identify key residues, regions, structures, or functionalities that can be

targeted for mutagenesis. A comprehensive evaluation at the single-amino

acid level opens up the possibility to construct libraries that contain all

possible combinations of desired changes.

5. In L. plantarum, transcriptional engineering using rpoD was more successful at

introducing phenotypic diversity, as judged by the divergence metric, than

chemical mutagenesis of the entire genome (using NTG at 40-50% killing).

6. Successive evaluation and delimitation of the search space can be achieved by

ignoring genetic determinants (or regions) that when altered result in

phenotypically redundant variants, but keeping those that result in new

phenotypes. This approach led to the construction of optimized rpoA and rpoD

libraries.
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7. Thorough study of rpoA using the divergence metric led to the following

conclusions:

a. That this target is a useful one for strain improvement in different E. coli

strains (e.g. K12, DH5a, KO 11 derivative, tyrosine-producing parental

strain, etc.).

b. That mutagenesis of the aCTD, with low mutation rate in particular, holds

great promise for altering complex phenotypes.

c. That reducing the search space to surface amino acids in this domain

results in a marked increase in divergence.

d. That expression from the native spc promoter leads to improved

divergence compared to that from the weaker lac promoter.

e. That the residues in the "261 determinant", responsible for contacting

region 4.2 of sigma D, are especially useful for impacting phenotype and

thus have highest regulatory flexibility. This fact suggests that an indirect

change in specificity, probably through modified interactions with any of

the sigmas, results in the observed trends. Other effects related to sigma or

cCTD interactions (e.g. with activators, inhibitors, etc.) may play a

concurrent role in the high regulatory flexibility.

8. We saw a good correlation between the phenotypic diversity of rpoA libraries in

complex and simple phenotypes. This indicates that the transcriptional diversity

of these libraries is likely due to the alteration of the transcription process itself,

and not due to an indirect effect (e.g. nonspecific protein-protein interactions,

secondary responses, etc.)
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9. A similar approach with rpoD led to the following conclusions:

a. That this target is a useful one for strain improvement in different bacterial

species and different strains (e.g. L. plantarum and E. coli K12, DH5ac,

KO 11 derivative).

b. That increasing the mutation rate when targeting the entire coding region

increases the level of divergence.

c. That targeting the -10 and -35-binding regions (corresponding to parts of

regions 2 and 4 of sigma D, respectively), which are known to be

responsible for protein-DNA interactions and thus for much transcriptional

regulation, produces the libraries with highest diversity. Furthermore, we

learned that increasing the mutagenesis rate to an average of -4-5 base

pair changes per sequence also has a positive effect on diversity.

d. That targeting the -35-binding region holds greatest potential for altering

phenotype, even when comparing with previously isolated and optimized

rpoA libraries. This fact is also supported by conclusion 7e, above.

10. That amino acids impacting transcriptional regulation through direct contacts are

not indisputably desired as targets for mutagenesis, as they may be under strong

selection pressures. The result is low genotypic diversity, which in turn leads to

low phenotypic diversity.

11. Simultaneous consideration of the divergence data for all libraries constructed so

far indicates that the regions of the RNA polymerase in charge of its interaction

with the promoter at or close to the -35 element have a larger regulatory flexibility

than either of the regions that contact the -10 or UP elements. This may suggest
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that the -35 promoter region (with all its DNA and protein elements) has a more

important role in differential expression across different operons than the other

promoter regions.

8.3 Recommendations and Future Work

The work of this thesis could branch into many directions, depending on the goal or

application one is interested in pursuing. In order to keep the recommendations rooted in

the results presented here, the list of possible directions given by this Section is restricted

to short-term prospects. These are in addition to the many recommendations made

throughout this document.

Earlier in our discussion, we framed transcriptional engineering in the context of a

variety of random search-based approaches for strain improvement. When the trait of

interest is thought to be complex, then the randomization strategy should have the

capability of altering the cellular physiology globally. In this way, many nodes of the

network can be manipulated at once, giving rise to otherwise unreachable phenotypes. In

fact, the divergence metric relies both in the global character of the perturbation and in

the interconnectivity of the physiological network. This suggests that other global

regulators could be targeted for randomization, and their regulatory flexibility could be

measured with the divergence metric. For example, determinants in charge of regulating

transcript termination, mRNA degradation or protection (mRNA chaperones), translation

initiation, translation elongation, protein degradation, etc. could be considered.
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The effort of considering and deciding between targets could be aided by judicious

use of the divergence metric. For example, one could evaluate and compare libraries of

the several subunits of the transcription machinery of eukaryotes, which is significantly

more complex than that of bacteria. One could also compare mechanisms of

physiological control by testing targets responsible for different regulatory routes (e.g.

compare transcription initiation vs. transcript degradation).

Promising targets should have a characteristic in addition to their ability to perturb the

network globally: they should have a discriminatory mechanism to distinguish between

the cellular components on which they act. Many of the mutant sigmas that were isolated

previous to this work are truncated versions of the protein or have many mutations. The

sigma factor has many functions located throughout the protein, and it is unlikely that the

previously-isolated variants retain most of these. In fact, expert opinions gathered from

scientific meetings during the term of this research seem to suggest that these mutants

would not act as transcription factors, but impart the observed phenotype through an

indirect effect. Alper and Stephanopoulos (2007) recognize this in their paper, and we do

the same for a L. plantarum rpoD mutant described in Section 4.2.2.3. These

observations, summed to the conclusion that determinants that function in transcription

have high regulatory flexibility, lead to the importance of targeting the regions in charge

of discriminating between loci. The success of zinc-finger protein-based artificial

transcription factors for strain improvement enforces this hypothesis. Therefore, a key

recommendation put forth by this Section is to compare the potential of artificial

transcription factors to native ones for phenotypic alteration, and decide which is most

effective.
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Our work with the alpha and sigma subunits already opens several possibilities for

future strain improvement approaches through the use of transcriptional engineering.

First, because each RNAP complex contains two alpha subunits, cooperation between

two mutant alphas could take place within the same RNAP or, alternatively, could result

in several versions of RNAP within the same cell. Thus, the introduction of two (or

more) mutant alphas could potentially allow exploration of a larger phenotypic space.

Second, since the alpha and sigma units regulate promoter preferences by different

mechanisms, combining these mutants within the same strain could result in synergistic

transcriptional responses unachievable by either subunit tested separately. Although

such combinations significantly increase the number of possible libraries, the use of the

phenotypic diversity metric could aid in designing better ones, e.g., by increasing or

decreasing the mutagenesis rate or reducing the search space (as explained in Chapter 6)

in these expanded libraries. Yet another possibility, suggested by the experiments

describing promoter replacement of the butyrate-tolerant mutants (Section 6.2.4.2), is to

tune the levels of mutant and wild-type subunits in the cell to find an optimal balance

between them.

One more recommendation is to use the methods developed by the present thesis to

reduce the search space of targets that have been already proven worthwhile. This could

be done either in successive steps (like the effort described for the isolation of butyrate

tolerant clones), or by considering individual amino acids. For example, this could be

applied to improve the quality of libraries of the sigma D, sigma S, and the TATA-

binding protein of yeast (the latter described in Alper et al., (2006)). It could also be

applied to the 261 determinant of the ctCTD. In general, it would be possible, and
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sometimes desirable, to reduce the search space to the point it can be comprehensively

covered experimentally (based on the transformation efficiency of the species of interest).

Finally, the divergence metric could be applied to random search-based libraries to be

used for purposes other than strain improvement. For example, it could be used in protein

engineering efforts to distinguish determinants that have "enzymatic flexibility" (to

borrow the term from that introduced by this thesis). The key remaining challenge would

be to develop high throughput assays for the phenotypes that will vary across the

members of the protein population to use in the diversity calculation.
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Chapter 9

9. Materials and Methods

This Chapter contains the experimental protocols used throughout this thesis. In order to

render the previous Chapters comprehensible, they were purposely written without

making much reference to the Materials and Methods Section. Therefore, in this Chapter

we merely complement the details for those experiments that were not fully described by

the main text or the figure legends.

9.1 Reagents and Enzymes

All DNA manipulations, such as genomic DNA isolation, restriction enzyme digestion

and ligation, were performed by standard procedures (Sambrook & Russell, 2001 a;

Sambrook et al., 2006). Some protocols were adapted following the product-specific

instructions provided by the manufacturer.

Restriction enzymes, Antarctic phosphatase, and Phusion DNA polymerase were

generally obtained from New England Biolabs (Ipswich, MA). Antibiotics and

biochemicals such as lysozyme, mutanolysin, and penicillin G, and other organic reagents
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such as lactic acid were from Sigma-Aldrich (St. Louis, MO). Media was usually from

Difco (Sparks, MD). Primers were designed with Vector NTI (version 10.1.1) and

ordered either from Invitrogen (Carlsbad, CA) or from Integrated DNA Technologies

(Coralville, IA). Fastlink ligase was from Epicentre Biotechnologies (Madison, WI). For

error-prone PCR (epPCR), the GeneMorph II Kit from Stratagene (La Jolla, CA) was

used according to manufacturer's instructions. For inserting or deleting restriction sites,

directed base pair changes were introduced with the QuikChange Multi Site-Directed

Mutagenesis Kit (Stratagene). PCR purification of DNA was done with QIAprep kits

(Qiagen, Valencia, CA). Gel purification was done using a GeneClean kit (Qbiogene,

Morgan Irvine, CA), unless otherwise noted.

9.2 Methods for L. plantarum

9.2.1 Bacterial Strains, Plasmids and Growth Conditions

L. plantarum was obtained from ATCC (BAA-793) and E. coli DH5a for subcloning of

some of the plasmids (see below) was obtained from Invitrogen. Lactobacillus was

routinely grown in MRS (bioMerieux, France) medium and E. coli in LB. Media was

supplemented with chloramphenicol to 8 gtg/mL for Lactobacillus and 5 pgg/mL for E.

coli as needed.

Plasmid pGK12 (Kok et al., 1984), obtained from Todd R. Klaenhammer, confers

erythromycin and chloramphenicol resistance and was propagated unmethylated in E.

coli GM1829. Plasmid pDK12 was constructed by inserting the multiple cloning site
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(MCS) of plasmid pUC18 into the NsiI and Clal sites of pGK12. Primers MCSs and

MCSa (primer sequences for L. plantarum are given in Section 9.2.7 and 9.2.8) were

used to amplify the MCS, the PCR product was cut along with pGK12 and the two

fragments were ligated.

The new plasmid (pDK12) is capable of alpha-complementation in DH5oX. The

control plasmid, PDK12D, has the unmutated rpoD gene amplified from L. plantarum

genomic DNA ((Kleerebezem et al., 2003); NCBI Accession No. AL935257, region

219202-220308) with primers Xma-rpoprom and Xba-rpoterm. The reverse primer

includes the transcriptional terminator of the pin operon (NCBI Accession No. X94434).

The insert and pDK12 were cut with XmaI and XbaI and ligated. The correct structure of

pDK12D was confirmed by sequencing (Figure 9.2-1).

To co-express the rpoD mutants, we fused them into the same plasmid. They were

amplified with either Asc-H13s and H13a or with Asc-S6a and S6s primers so that each

was expressed from its own promoter. The first insert was cut with XmaI and AscI and

the second with AscI and XbaI. Cut inserts were simultaneously ligated to cut pDK12

and then electroporated into Lactobacillus. The correct structure was confirmed by PCR

and sequencing with primers pGK12s and pGK12a, located in pDK12 external to the

insertion site, and others (see below).
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Figure 9.2-1. Schematic illustration of plasmid pDK12D

The restriction sites relevant for the cloning of the MCS and the rpoD gene are shown, as well as the

relative location of the regions of sigma that bind the -10 and -35 promoter hexamers. The markers for

chloramphenicol and erythromycin resistance are also indicated (Cm and Em, respectively).

9.2.2 DNA Extraction and Purification

For plasmid extraction, the QIAprep kit was used for both Lactobacillus and E. coli,

except that for Lactobacillus the overnight culture (5 mL) was first washed with EDTA

buffer (50mM pH 8.0), resuspended in the same (2.4 mL) and lysozyme and mutanolysin

were added to a final concentration of 2 mg/mL and 42 U/mL, respectively. The mixture

was incubated for at least 1 hr at 37 oC with shaking, and then the plasmid prep protocol

was followed using this mixture. Genomic DNA from L. plantarum was obtained using
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an UltraClean microbial DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA) with no

pretreatment of the culture. PCR products were purified using the QIAquik kit (Qiagen)

prior to restriction and ligation reactions. Gel purification of the products of epPCR was

done using a GeneClean kit.

9.2.3 Transformation by Electroporation

Transformation efficiency is a key determinant of library size. Therefore, an

electroporation protocol previously described (Aukrust et al., 1995; Posno et al., 1991)

was optimized prior to library construction. An overnight culture was diluted (1:50) in

fresh MRS, incubated with shaking at 37 oC, and penicillin was added to a final

concentration of 10 Rg/mL after 1 hr of inoculation. The OD 600 was monitored until it

reached -0.5 (usually 2.5 hr after penicillin addition), and the culture was immediately

placed on ice. All subsequent steps were done at 4 oC. The chilled cells were spinned

once for 5 min at 1500 x g, washed twice with 3.5X EB (Sucrose IM, MgC12 3.5mM)

and then resuspended in 1/100 of the original culture volume. Electroporation was done

in a Gene Pulser (Bio-Rad Laboratories, Hercules, CA) at 2.5 kV and 100 Q, using a 0.2

cm cuvette. Immediately after the pulse, cells were resuspended in 1 mL MRSSM (MRS

media supplemented with 1 M sucrose and 100mM MgCI2), grown for 2 hr at 37 oC with

shaking, and plated in MRS agar with 8 gg/mL chloramphenicol.
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9.2.4 Library Construction and Phenotype Selection

Plasmid pDK12D was used as the template for the epPCR reaction, using primers Xma-

rpoprom and Xba-rpoterm. Mutation frequency was varied by using different amounts of

target; 560 ng for low, 280 ng for medium, and 28 ng for high, as suggested by the

manufacturer. The inserts were cut with XmaI and XbaI, gel-purified, and inserted into

linearized and dephosphorilated pDK12. The ligation reaction was electroporated into

freshly prepared electrocompetent cells as described above. After overnight incubation,

the colonies were scraped off from the plates and the liquid libraries were stored at -80 oC

until phenotype selection. The total library size was >105. The NTG library was prepared

from an unmutated strain as previously described (Miller, 1972).

Each library was challenged either in 5.5 g/L of L-lactate at an initial pH of 4.60 +

0.05 (LA condition) or at an initial pH of 3.85 1 0.05 (-pKa) adjusted with HCI without

added lactate (HCl condition). The pH was measured using a Symphony pH meter

(VWR, West Chester, PA). Libraries were subcultured twice 20-30 hr after inoculation,

and then plated to isolate individual clones. The plasmids carrying the mutant sigma

factors were extracted, retransformed into fresh cells by electroporation, and the

phenotypes were confirmed using the same conditions used for challenging.

9.2.5 Measurement of Colony Size of L. plantarum for Diversity

Quantification

Colony area was measured by plating cells in one of four conditions (all in MRS agar

with chloramphenicol): 900 mM NaCl (high osmotic pressure), 60 mM HC1, 4 g/L L-
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lactate, or no stress. Cells were diluted and plated in low enough concentration to be able

to distinguish individual clones. Plates were put at 4 oC overnight to stop growth before

photographing using an AlphaImager 3400 system (Alpha Innotech, San Leandro, CA).

Images were processed using MetaMorph version 6.2 (Molecular Devices, Sunnyvale,

CA). All data analysis was done with MATLAB (MathWorks, Natick, MA).

9.2.6 Fermentations

Overnight cultures of each clone were diluted in shake-flasks to an OD 600=0.02 in either

MRS supplemented with glucose to 100 g/L (pH not adjusted) or MRS with no added

glucose and initial pH adjusted to 3.85 ± 0.05 with HCl (same as HCl condition described

previously). Glucose supplementation was added to ensure that this nutrient was not

limiting, following previously established practices (Giraud et al., 1991; Patnaik et al.,

2002). L-lactate in the supernatant was measured with a YSI 2700 Select Biochemistry

Analyzer (YSI, Yellow Springs, OH) as in (Patnaik et al., 2002).

9.2.7 Primers for Amplification and Cloning

All primers are named as follows:

Name: Sequence (5' --, 3')

MCSs: GCGCGCATCGATTGAGTGAGCTGATACCGCTCGCC

MCSa: GCGCATGCATCGTCAGCGGGTGTTGGCG

Xma-rpoprom:GCGCCCCGGGTTTGGTTCAGCAGTTAACGTTGGC
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Xba-rpoterm: GCGCTCTAGAAAAATAGCCCAAAACCTCGTTAGGA

GATTTTGGGCTATTTTATCGATGGTTAGTCAGACGTCATCATCTGGTGATTAT

Asc-H13s: GGCGCGCCTTTGGTTCAGCAGTTAACGTTGGC

H 13a: TAAAACGACGGCCAGTGCCAAG

Asc-S6a: GGCGCGCCAAAATAGCCCAAAACCTCGTTAGGAGATT

S6s: AGGAAACAGCTATGACATGATTACGAATTC

9.2.8 Primers for Sequencing

pGK12s: TACTTTTTACAGTCGGTTTTCTAATGTCACTAACCT

pGK12a: AATTGACGATTTAAACAATATTAGCTTTGAACAATT

seql a: TTTCATCAACAACACTAATCCCAGCA

seq2s: GAAATTGGTCGTGTCGACTTGTTAACG

seq3a: GGCGAATCCACCAAGTCGCG

seq4s: GGTTCGTGAAATCTTGAAGATCGCAC

seq5a: CAATTGGCGTTTCCAATGAAACGG

seq6s: GCAAAGGCAAAAGCAACGACGGAATA
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9.3 Methods for E. coli

9.3.1 Construction of sigma D and sigma S Libraries

9.3.1.1 Error-prone PCR Libraries

A low copy host plasmid (pHACM) was constructed as previously described (Alper and

Stephanopoulos, 2007). The genes encoding the sigma D subunit and the sigma S subunit

of RNA polymerase, rpoD and rpoS, respectively, were amplified from E. coli genomic

DNA, using the following primers: rpoD-F-SacI and rpoD-R-HindIII for sigma D, and

rpoS-F-SacI and rpoS-R-HindIII for sigma S (primers for E. coli can be found in Sections

9.3.10 and 9.3.11).

Fragment mutagenesis was performed using the Genemorph II Random Mutagenesis

kit (Stratagene) with various concentrations of initial template to obtain low, medium,

and high mutation rates as described in the product protocol as well as previously

described (Alper and Stephanopoulos, 2007). Following the error-prone PCR, the

mutated fragments of rpoD and rpoS were purified using a Qiagen PCR cleanup kit,

digested by the respective restriction enzymes overnight (HindII/SacI), ligated overnight

into a digested pHACM backbone, and finally transformed into E. coli DH5a competent

cells. Cells were plated on LB-agar plates and scraped off to create a liquid library. The

total library size was approximately 106. The plasmid library was extracted using the

Qiagen Miniprep kit (Qiagen) and stored at -80 oC.
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For diversity quantification experiments, new rpoD libraries were constructed with a

similar design, except the epPCR products were gel-purified. This was done to eliminate

the possibility of truncated factors that were previously reported.

9.3.1.2 Targeted and Position-Specific Libraries of sigma D

For the position-specific libraries of rpoD, primers rpoD-10A and B or rpoD-35A and B

were used to amplify the pHACM harboring the gene and cut with either BsaI or Clal,

respectively (in addition to DpnI to digest unamplified vector). The chosen bases (those

shown in Figure 6.6-1) were spiked so that the total average mutation rate of each library

corresponds to that of the aCTD*t library with 6% spiked bases (see Section 9.3.3.3,

below). The plasmid was re-circularized overnight by ligation and transformed into

DH10OB.

For libraries with targeted mutagenesis to the -10 and -35 binding regions, primers

rpoD-BsaI-10a and rpoD-BstBI-10s or rpoD-Dra-35s and rpoD-Hind-35a were used for

error-prone amplification, respectively. The protocol was adapted so that the two

mutation frequencies were similar to the previously-constructed aCTD*L and aCTD*H

libraries (see Section 9.3.3.3, below). Then, they were cut with Bsal/BstBI or

DraII/HindIII and cloned into similarly cloned into rpoD-bearing pHACM vectors. The

resulting libraries were transformed into DH1B, miniprepped, and re-transformed into

K12 recA- for diversity quantification.
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9.3.2 Construction of sigma E-sigma H Libraries

The sigma E and H fused libraries were constructed first by constructing an artificial

operon containing the rpoHand the rpoE genes cloned between the KpnI and Mlul sites

of the pZE-Q plasmid. The rpoHgene was amplified with Phusion polymerase using

primers rpoH-KpnI-s and rpoH-ClaI-a and was cut with NEB's Clal and KpnI, while the

rpoE gene was amplified with primers rpoE-ClaI-s and rpoE-AscI-a and cut with ClaI

and AscI (the latter with complementary overhangs to the Mlul site of the plasmid). The

resulting fragments were fused and cloned in a triple ligation behind the Q-promoter of

plasmid pZE (from Alper et al., 2005).

Error-prone PCR was performed as before on the entire operon with primers rpoH-

Kpnl-s and rpoE-AscI-a, but cut with restriction sites KpnI and MfeI. The library of

fragments was cloned to the plasmid cut with the same restriction sites, and transformed

into E. coliDH1B (Invitrogen).

9.3.3 Construction of the alpha Subunit Libraries

9.3.3.1 Error-prone PCR Libraries

The native rpoA gene was amplified from genomic DNA using Phusion DNA polymerase

(NEB, Ipswich, USA) and cloned into the ApaLI and XmaI sites of the multi-cloning site

of pHACM (Alper & Stephanopoulos, 2007), using NEB restriction enzymes. Primers

rpoA-XmaI-s and rpoA-ApaLI-a were used for cloning. The correct insert was verified

by sequencing and strains transformed with this plasmid are denoted 'wild-type'

throughout our work.
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Error-prone PCR was carried out with the same primers using the GeneMorph II kit

(Stratagene) as before, and the mutation frequency was varied by changing the initial

amount of target DNA from 700 ng, 250 ng, and 25 ng for rpoA*L (low), rpoA*M

(medium), and rpoA*H (high), respectively. After ligation with Fast-link ligase

(Epicentre, Madison, USA), the libraries were transformed into DH10OB cells

(Invitrogen), plated in LB agar, and pooled together after overnight growth. The plasmids

were recovered by miniprep (Qiagen) and used to re-transform the three host strains. The

original size of the library was approximately 105.

9.3.3.2 Saturation Mutagenesis Libraries of the L-tyrosine Producing

Mutant (rpoA14)

The saturation mutagenesis library for rpoA14 was constructed with the QuickChange

Multi Site-directed mutagenesis kit (Stratagene, La Jolla, USA) by designing primers

according to the manufacturer's instructions with degenerate bases to substitute for the

codons corresponding to V257 and L281.

9.3.3.3 Targeted and Position-Specific Libraries of the aCTD

For aCTD*H and aCTD*L, a BsiWI restriction site was introduced by a point mutation

T707C (slightly upstream of the CTD) using a QuikChange Multi Site-Directed

Mutagenesis Kit (Stratagene). The CTD sequence was amplified by error-prone PCR

with primers rpoA-B and rpoA-C (resulting in -5-6 and -1-2 mutations per sequence, for

aCTD*H and aCTD*L respectively) and cloned between the newly-introduced BsiWI

and the ApaLI present at the 3'-end.
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For the aCTD*t libraries, two oligonucleotides (rpoA-D and rpoA-E) either

containing degenerate codons or spiked at the target positions with 6% (or 3%) of non-

wild-type bases were constructed, and an artificial BglII site was introduced at the 5'-end

of each primer to allow for re-circularization of the plasmid (the BglII site was introduced

by a T835A mutation between amino acids E273 and E286). The residues targeted for

mutagenesis in aCTD*t were: D259, L262, R265, N268, C269, K271, E273, E286,

L290, G296, K298, and S299. The entire plasmid was amplified with Phusion DNA

polymerase using the spiked oligonucleotides rpoA-D and rpoA-E and cut with BglII and

DpnI to rid the mix of the unmutated plasmid. Neither of the newly-introduced BsiWI nor

BglII sites changed the amino acid sequence of rpoA.

The exact same protocol was used for the aCTD*t library expressed from the Pspc

promoter (Post et al., 1978), except a pCL1920 vector was used (Lerner & Inouye, 1990);

the rpoA gene was first cloned using primers rpoA-F and rpoA-G, which include the Pspc

promoter and T1 terminator, respectively, for efficient use in the pCL1920 vector.

9.3.3.4 Saturation Mutagenesis of Individual Amino Acids in aCTD

Degenerate codons were substituted at the specified locations using the QuikChange

Multi Site-Directed Mutagenesis Kit from Stratagene, with primers rpoA-R265, rpoA-

V242, rpoA-D259, etc. The libraries were isolated by miniprep from XL10-Gold (from

the kit), and retransformed into K12 recA- for diversity quantification.
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9.3.4 Hyaluronic Acid Methods

9.3.4.1 Host Strain

Hyaluronic acid production experiments were completed with recombinant E. coli Top 10

/pMBAD-sseABC in LB liquid medium supplemented with Mg2+, using L-arabinose as

inducer. Plasmid pMBAD (Yu & Stephanopoulos, 2007) was constructed by the

introduction of a 62 bp multi-cloning site (MCS) sequence containing XbaI-BamHI-StuI-

KpnI-SacI-EcoRI-HindIII restriction sites into the plasmid of pBAD (Invitrogen) with an

ampicillin resistance marker. E. coli Top 10 (Invitrogen) was used as the expression host

of the plasmid pMBAD-sseABC, which was constructed by the insertion of the fragment

sseABC into the backbone of pMBAD (Yu & Stephanopoulos, 2007). The sseABC

operon consists of the genes sehasA, hasB and hasC. The sehasA was synthesized by

assembly PCR (Hoover & Lubkowski, 2002) according to the protein sequence of the HA

synthase from Steptococcus equisimilis (NCBI-AAB87874.1, GI:2655100). The

functionality of hasB and hasC were provided by the genes ugd and galF of E. coli K12

MG1655, coding for the UDP-glucose 6-dehygrogenase and the glucose-l-P

uridyltransferase, respectively. E. coli Top 10 /pMBAD-sseABC is an L-arabinose

inducible recombinant strain for HA production (Yu & Stephanopoulos, 2007), while E.

coli ToplO /pMBAD was used as the null control. E. coli DH5a (Invitrogen) was used

for routine transformations as described in the protocol. An approximately equal

concentration of the plasmid libraries was transformed into E. coli Top 10 /pMBAD-

sseABC by electroporation and plated on selective plates after dilution.
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9.3.4.2 High-Throughput Screen and Quantification with Alcian Blue

LBSMA (Bellemann et al., 1994) medium (LB Medium supplemented with sorbitol,

MgC12, ampicillin and L-arabinose) was used for the translucent colony identification

step. This constituted the first stage of the screen, and was followed by quantification

with the alcian blue dye.

The alcian blue solution was prepared by the following procedure: 1.0 g alcian blue

8GX (Sigma Aldrich) was dissolved in 100 ml 3% glacial acetic acid and the pH was

adjusted to 2.5 using acetic acid (WebPath: Internet Pathology Laboratory). The solution

was filtered through a 0.45 gim syringe filter (VWR, USA), and a crystal of thymol was

added. It was stored at room temperature and found to be stable for 6 months. The

optimized procedure for high throughput HA quantification is as follows: 400 gL of

fermentation broth containing HA was aliquoted into a 1.5 mL centrifuge tube pre-filled

with 550 [L 3% acetic acid. Then, 50 gL Alcian blue solution was added followed by

vortexing, and the mixture was microwaved for 30 seconds; after centrifugation, the tube

was cooled at room temperature for 2.5 h. The solution was centrifuged at 10,000 rpm for

1 min, and 200 jiL of supernatant were loaded into a 96-well plate, and the OD540 was

measured using the plate reader. A standard curve was generated using 400 pL of 50,

100, 200, 300 and 500 mg/L commercial HA standards (VWR). All experiments were

repeated 3 times except where specifically noted.

9.3.4.3 HA Quantification by HPLC

HA titers were measured by a modified HPLC method (Kakizaki et al., 2002).

Fermentation broth samples were incubated first with an equal volume of 0.1% w/v

sodium-dodecyl-sulfate (SDS) at room temperature for 10 min to free the capsular HA
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(Chong & Nielsen, 2003). Subsequently, the HA product was precipitated out from the

medium samples with 1.5 volumes of ethanol (Ogrodowski et al., 2005) incubating at 4

'C for 1 h. The precipitate was collected by centrifugation (2,000 g for 20 min at room

temperature) and resuspended in 1 volume of 0.2 M NaCl for 10 min. Then the re-

dissolved samples were centrifuged for 8 min at 3000 g, filtered through a 0.45 Im

syringe filter (VWR), and applied to the modified HPLC assay. Gel Filtration

Chromatography (GFC) in combination with a UV photodiode array detector (Waters

2695-996) was used to determine the concentration of the HA products in the broth. The

column was a model Shodex SB-806M OHpak (8x300mm, Thompson, USA) supporting

molecular weight (MW) analyses from 103 to 2x 107 Da. HA products with MW of

6.8x 105 Dalton, purchased from Lifecore Biomedical Inc., were prepared into around 300

mg/L aqueous standards in 0.2 M NaCl. The detection was carried out at wavelength of

206 nm and room temperature, with 0.2 M NaCl as the effluent buffer at flow rate of 0.5

mL/min.

9.3.5 L-Tyrosine Methods

9.3.5.1 Host Strain and Screening

L-tyrosine production experiments used a parental strain of E. coli K12 ApheA

tyrR::PLTET-01 ~yrAfb aroGf1br lacZ: PLTET-O1 fyrAbrarOGbr /pTrcmelAmut1 ((Lutke-Eversloh

& Stephanopoulos, 2005; Lutke-Eversloh & Stephanopoulos, 2007) and C.N.S. Santos

unpublished data). These were performed at 370 C with 225 rpm orbital shaking in 50 mL

245



MOPS minimal medium (Teknova, Hollister, USA) cultures supplemented with 5 g/L

glucose and an additional 4 g/L NH4C1.

Libraries of L-tyrosine production mutants were constructed by transforming the

parental strain E. coli strain with the rpoA libraries. Approximately 7.5x10 5 viable

colonies were obtained and subsequently screened for L-tyrosine production as described

previously (Santos & Stephanopoulos, 2008b).

9.3.5.2 Quantification of L-Tyrosine

Cell-free culture supernatants were filtered through 0.2 jim PTFE membrane syringe

filters (VWR International) and used for HPLC analysis with a Waters 2690 Separations

module connected with a Waters 996 Photodiode Array detector (Waters) set to a

wavelength of 278 nm. Samples were separated on a Waters Resolve C18 column with

0.1 % (vol/vol) trifluoroacetic acid (TFA) in water (solvent A) and 0.1 % (vol/vol) TFA

in acetonitrile (solvent B) as the mobile phase. The following gradient was used at a flow

rate of 1 ml/min: 0 min, 95 % solvent A + 5 % solvent B; 8 min, 20 % solvent A + 80 %

solvent B; 10 min, 80 % solvent A + 20 % solvent B; 11 min, 95 % solvent A +

5 % solvent B.

9.3.6 Selection Experiments

9.3.6.1 Carbon Dioxide Tolerance

Selection of CO 2-tolerant mutants in sigma S libraries consisted of serial subculturing of

the libraries in MOPS media prepared with carbonated water. Capped 32-mL borosilicate

glass tubes were purchased from VWR to hold the pressure and CO2 inside the tube. This
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water was purchased pressurized to -250 kPa (according to manufacturer) from Polar

Beverages, Inc. (MA, USA). The composition of the media was as follows:

Media component mL added
MOPS 10X 3.2
Glucose 200 g/L 0.32
Yeast extract 50 g/L 0.32
Thiamine, 1M 0.032
Dipotassium phosphate (4M) 0.01056
Adjust volume to: 4
Carbonated water added 28

The libraries were subcultured approximately every 12 hrs for 6-8 rounds, at which

there was appreciable and perdurable enrichment (>10-20%) of a library compared to the

control. At this point, cells were plated in rich media supplemented with antibiotics to

isolate individual clones. These were tested prior and subsequent to re-transformation in

order to confirm the phenotype of interest.

9.3.6.2 Heat and Ethanol Tolerance

We screened the epPCR rpoH-rpoE libraries in 50 g/L of ethanol at 42 oC. The challenge

involved resuspending the cells in LB media subject to these conditions and plating them

after 24 hr. Single clones were chosen from the plates with highest survivability, and they

were tested individually in the same conditions used for selection. Two controls were

used for comparison, one bearing an empty plasmid, and one bearing plasmid with a non-

mutated operon.
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9.3.6.3 Butanol and Solvent Tolerance

DH5a cells transformed with the alpha subunit libraries (5xl 106 colonies were obtained)

were pooled together, and cultured on LB liquid medium at 37 OC with shaking for 2 hr

before placing them under selection conditions. Selection for butanol tolerance was

carried out in screw-cap shake flasks in 0.9% butanol (v/v). The culture was grown

overnight, and used to re-inoculate fresh selection medium. This process was repeated

twice before plating cells to test individual colonies. For verification of the phenotype,

plasmids were isolated and reintroduced into a clean background, grown overnight in LB

and inoculated to OD=0. 1 in 5 mL of medium in the presence of different concentrations

of 1-butanol (1C4), 2-butanol (2C4), 3-pentanol (3C5) or 1-pentanol (1C5). Tubes were

sealed with parafilm to avoid evaporation of alcohols.

9.3.6.4 Butyrate Tolerance

MOPS medium with 15 g/L butyrate was used for both selection and growth assays

(initial pH adjusted to 7.0 with 6N HC1), except when trying the conditions described in

Figure 6.2-3. For selection, 30 mL of media were inoculated and cells were grown for

about 20-24hr, then a sample was transferred to a fresh batch of media. This procedure

was repeated thrice, after which cells were spread in solid media overnight and individual

colonies were picked for further study. Clones #1 and #16 in oCTD*L were chosen for

their faster growth in butyrate, and their plasmids were purified and re-transformed into a

clean K12 recA background to confirm the phenotype (Figure 6.2-5).

For growth assays, cells were cultured overnight in 15g/L butyrate to avoid

adaptation-related distortion of the first few measurements and then diluted in the same

media to obtain their growth curves. The mutant genes from clones #1 and #16 and the
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wild-type rpoA were transferred to a pCL 1920 plasmid (which has the same origin of

replication than pHACM, but confers streptomycin resistance, (Lerner & Inouye, 1990))

and expressed from the Pspc promoter (Post et al., 1978). Primers rpoA-F and rpoA-G

were used as explained in Section 9.3.3.3 above.

9.3.6.5 Ethanol and Hydrolysate Tolerance of KOll Derivative

Mutants in the aCTD*t libraries were selected by subjecting the cells to 40 g/L for 48 hr

in media containing 5% corn-steep liquor (CSL) and 25 g/L glucose at 37 C. After

stressing them, cells were plated in LB medium supplemented with antibiotics. Individual

retransformed clones were tested for their ability to produce ethanol in overlimed bagasse

hydrolysate (provided by Verenium, San Diego, CA) with 5% CSL, and pH-adjusted to

6.5 with HCl (6N). Xylose was added initially to obtain 100 g/L of total sugars, and was

also added in the fed-batch phase using a 50 % sterile solution at an equivalent rate of

about 2 g/L hr.

Mutants in the rpoD -35*H and -1 OH libraries were directly selected for survivors in

overlimed bagasse hydrolysate with 5% CSL and 50 g/L ethanol, adjusted to pH of 6.5.

Dilutions were plated in LB medium initially and at several time points to quantify

survivability of libraries. The same conditions and procedures were used to test

individual clones before and after re-transformation.
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9.3.7 Intracellular pH Determination for Measuring Ion Leakage of

Butanol- Tolerant Mutant

The intracellular pH was monitored by expressing a pH-responsive GFP (a present from

G. Miesenbock and J. Rothman, (Miesenbock et al., 1998)). The response of the GFP

variant was monitored as the excitation ratio at 395 nm over 475 nm, and the emission

was measured at 530 nm. A standard curve was constructed by resuspending DHcS cells

in various buffers as described previously (Karagiannis & Young, 2001), without a

carbon source for 45 min at 37 oC. For pHi difference quantification, cells were grown in

LB and resuspended in potassium phosphate buffer (50 mM, pHe = 4.7) with 0.5%

glucose as an energy source in the presence and absence of butanol.

9.3.8 Intracellular pH Determination for Phenotypic Diversity

Quantification

All libraries were quantified for diversity in an E. coli K12 recA- background. We used

the intracellular pH in growing and non-growing cells as phenotypes contained in the

divergence metric (see Chapter 5 for equations). For determination of pHi during growth,

cells were stained with CFSE (Invitrogen) as suggested by the product manual and grown

in MOPS media with 250 mg/L of each D-xylose, D-galactose, L-arabinose, and glycine.

Several carbon sources were used to prevent favoring the growth of a subset of mutants,

while at the same time allowing for full induction of the plasmid-borne rpoA. We kept the

same conditions when expressing this gene from the constitutive promoter or for the case

of rpoD, in order to allow for a fair comparison. Variability introduced by the choice of
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carbon sources or other details in the protocol was accounted for by normalization with

the control.

Media was withdrawn at different time points from each library and control cultures,

put on ice and measured by flow cytometry (using a BD FACScan). The pHi was

calculated as the ratio of 585 to 530 nm emission when excited at 488 nm (Spilimbergo et

al., 2005). Each time point was considered an entry in the distance vector for

quantification of divergence.

Two more entries of the distance vector were composed of pHi values in non-growing

cells, except when indicated in the main text. For the case of non-growing pHi

determination, cells were stained with BCECF-AM (Invitrogen), and resuspended in

10mM phosphate buffer at either pH 5.0 or 7.0 immediately before FACS analysis (pHi

with this probe was calculated as the ratio of 650 to 530 nm emission when excited at 488

nm, as per manual recommendations). A sub-sample of 1500 data points was taken at

random from each library and control data sets, and this sub-set was used to calculate the

divergence; the algorithm was run 50 times and the divergence was averaged to smooth

out the effects of sub-sampling.

For saturation mutagenesis libraries of individual residues in the aCTD, the

quantification protocol was modified to deal with the fact that different amino acid

positions are likely to play a more important role in some growth conditions than in

others (Benoff et al., 2002; Fritsch et al., 2000; Lochowska et al., 2004). Therefore, we

measured the pHi in different media that varied on the choice of carbon source, on the

absence or presence of amino acids, and availability of complex nutrients. Four

conditions were used: LB, MOPS supplemented with L-arabinose instead of glucose,
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MOPS-L-arabinose supplemented with 0.5% casamino acids, and MOPS with mixed

carbon sources as used for the other libraries.

9.3.9 Phenotypic Diversity Quantification at a Single Locus using GFP

The plasmids bearing the libraries were transformed into a K12 recA- strain that harbored

an pKLJ03 plasmid (Jones & Keasling, 1998), modified to express an unstable variant of

GFP (Andersen et al., 1998). The fluorescent protein was cloned downstream of the Ptrc

promoter of pKLJ03. After transformation, the cells were plated in M9 minimal media

with galactose (instead of glucose) and ImM IPTG to fully induce both the plasmid-

borne rpoA and the GFP genes.

Fluorescence of the library populations was determined by flow cytometry (using a

BD FACScan) by exciting at 488 nm. The emission from the FLI channel (at 530 nm)

was taken as the phenotype for diversity quantification.

9.3.10 Primers for Amplification and Cloning

All primers are named as follows:

Name: Sequence (5' -- 3')

9.3.10.1 Sigma D and Sigma S

rpoD-F-Sacl: AACCTAGGAGCTCTGATTTAACGGCTTAAGTGCCGAAGAGC

rpoD-R-HindIII: TGGAAGCTTTAACGCCTGATCCGGCCTACCGATTAAT

rpoS-F-SacI: AACCTAGGAGCTCAGACTGGCCTTTCTGACAGATGCTTACT

rpoS-R-HindIII: AACCTAGGAGCTCAGACTGGCCTTTCTGACAGATGCTTACT
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(A star implies the preceding base is either spiked or fully randomized)

rpoD- 10A: GCATATGATTGAGACCATCAACAAGCTCAACCGTATTTCTCG

rpoD- 10B: TTGTTGATGGTCTCAATCATATGCACCGGAATACGGATGGTGCGC

GCCTGATCCGCGATAGAG*C*G*G*G*T*GATCGCC*T*G*ACGGATCCAC*C*

A*GGTTGCG*T*A*GGTGGAGAACTTGTAACCACGGCGGTATTC

rpoD-35A: TTTCGGTATCGATATGAACACCGACTACACGC*T*G*G*A*A*GAAG

TGGGTAAACAGTTCGACGTTA*C*C*C*G*C*G*A*A*C*G*T*ATCC*G*T*C*A*

G*ATCGAAGCGA*A*G*GCGCTGCGCAAACTGCGTCACCCG

rpoD-35B: TGTTCATATCGATACCGAAA*C*G*CATACGCAGAACTTTTGCTTC

A*C*G*CGCGGTCAGGCCAGCCAGCACG

rpoD-BsaI-10a: CGGTTGAGCTTGTTGATGGTCTCAATC

rpoD-BstBI- 10s: GATGAAAGCGGTTGATAAATTCGAATACC

rpoD-Dra-35s: GGCAACGCACGACGTGCTGG

rpoD-Hind-35a: CTATGACCATGATTACGCCAAGCTTTAACG

9.3.10.2 Sigma E and Sigma H

rpoE_AscI-a: GCGCCCGGCGCGCCCCCAATTGCCACGCCTGATAAGCG

GTTGAACTTTGTT

rpoE_ClaI-s: CGCGCTAAATCGATATGAGCGAGCAGTTAACGGAC

rpoH_ClaI-a: CACACCTATCGATTTACGCTTCAATGGCAGCA

rpoH_Kpnl-s: GAGAAAGGTACCATGACTGACAAAATG

9.3.10.3Alpha Subunit

rpoAApaLI-a: GCGCGGTGCACTGGCGCATGACCTTATCCTTCTCAGTA
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rpoA_XmaI-s: GCGCGCCCGGGACGTTGTAAGCATTCGTGAGAAAGCG

rpoA-B: GCGCGGTGCACTGGCGCATGACCTTATCCTTCTCAGTA

rpoA-C: ACGTGACGTACGTCAGCCTGAAGTGAAAGAAGAGAAACC

(A star implies the preceding base is either spiked or fully randomized)

rpoA-D: TATCGGAGATCTGGTACAGCGTACCG*A*G*GTT

GAGCTCC*T*T*AAAACGCCTAACCTTG*G*T*AAAA*A*A*T*C*T*CTTACTGA

GATTAAAGACGTGCTGGCTTCCCGT

rpoA-E: TGTACCAGATCTCCGATATAGTGGATACGT*T*C*TGCT*T*T*AA

GG*C*A*G*T*T*AGCAGAG*C*G*GACAGTC*A*A*TTCCAGA*T*C*GTCAACA

GGGCGCAGCAGGATCGGAT

rpoA-F: GCGAGCGATCTAGACTCAGAAATGAGCCGTTTATTTTTTCTACCC

ATATCCTTGAAGCGGTGTTATAATGCCGCGCCCTCGATATGGGGATTTTTGTG

T ATGCTGGCAAGATGGAAGGTACGTTTA AG

rpoA-G: CGGCGCGCCCGGGTTTATAAAACGAAAGGCCCAGTCTTTCGACTG

AGCCTTTCGTTTTATGTGCACTGGCGCATGACCTTATCCTTCTC

rpoA-R265: CGATCTGGAATTGACTGTCNNSTCTGCTAACTGCCTTAAAGCAG

rpoA-E286: CTGGTACAGCGTACCNNSGTTGAGCTCCTTAAAACGCC

rpoA-L290: CGTACCGAGGTTGAGCTCNNSAAAACGCCTAACCTTGG

rpoA-D259: CCTGCTGCGCCCTGTTGACNNSCTGGAATTGACTGTCC

rpoA-L262: CCTGTTGACGATCTGGAANNSACTGTCCGCTCTGC

rpoA-N268: GGAATTGACTGTCCGCTCTGCTNNSTGCCTTAAAGCAGAAGC

rpoA-C269: GACTGTCCGCTCTGCTAACNNSCTTAAAGCAGAAGCTATCC
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rpoA-K271: GTCCGCTCTGCTAACTGCCTTNNSGCAGAAGCTATCCAC

TATATCG

rpoA-E273: CTGCTAACTGCCTTAAAGCANNSGCTATCCACTATATCGG

rpoA-V242: CTTACGTGATGTACGTCAGCCTGAANNSAAAGAAGAGAAACCA

GAGTTC

9.3.11 Sequencing Primers

9.3.11.1 Sigma D

seqla: ACCCGATGTCCTTCAGCCGTTAA

seq2s: CAGATCAGATCGAAGACATCATCCAAATG

seq3a: CAATTTCGCCTTCGCGGGTCA

seq4s: GCCACTCACGTCGGTTCTGAGCTT

seq5a: GACAGTTTCAGGATCTCTTCCTGAGCG

seq6s: CCAGCGATACCTGGTTCAACGC

seq7a: AACCAGACGTAAGTTCGCTTCAACCATC

seq8s: GATCAGGCGCGCACCATCC

seq9a: AGATGCGAATCTTCATCATCACCGA

seq O0s: AAACAGTTCGACGTTACCCGCGAA

9.3.11.2 Sigma S

seqls: CGAAGAGGAACTGTTATCGCAGGG

seq2a: TTACTCTCGATCATCCGGCGGC

seq3s: ATACGCAACCTGGTGGATTCGCC
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seq4a: TCCAGTTGCTCTGCGATCTCTTCC

seq5s: ACCACGCAAGATGACGATATGAAGCAGAG

seq6a: CTCGCGGAACAGCGCTTCG

9.3.11.3 Sigma E

seqls: ATGAGCGAGCAGTTAACGGACC

seq2a: GCACTACCAGTAAGTTAAAGGCTTTCTGA

seq3s: GCTATGTGCCGTCGGGTGATG

seq4a: CGCCCCTGAGCAACCAGGTAAT

seq5s: AGTCCCTCCCGGAAGATTTACGC

seq6a: ACGCCTGATAAGCGGTTGAACTTTG

9.3.11.4 Sigma H

seqls: ATGACTGACAAAATGCAAAGTTTAGCTTTA- 3'

seq2a: GCCATGGTAATGCAGCTTTTCAGC- 3'

seq3s: CTATGGCCTGCCACAGGCG- 3'

seq4a: GCTTTGATCCAGTGAACGGCGA- 3'

seq5s: GTAACCAGCAAAGACGTACGTGAGATGG-3'

seq6a: CATCTTCAATGCCGTCGGCAA- 3'

seq7s: GCGCGCTGGCTGGACG - 3'

seq8a: CGCTTCAATGGCAGCACGCAAT- 3'

9.3.11.5Alpha Subunit

seqls: GCTTTACTCCAAGTAAAGCTTAGTACCAAAGAGAG- 3'

seq2a: ATTTCCAGGATATCTTCCTGAACGCCT- 3'
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seq3s: CGGTGATGTCGAAATCGTCAAGC - 3'

seq4a: CTCTTCAGGATCGATTGTGCCGTT - 3'

seq5s: GTTGACGATCTGGAATTGACTGTCCG - 3'

seq6a: GCGCGGTTTTAGAAACTCTGTCACA - 3'
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