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Abstract

Differential game theory provides a potential means for the parametric analysis of
combat engagement scenarios. To determine its viability for this type of analysis,
three frameworks for solving differential game problems are evaluated. Each method
solves zero-sum, pursuit-evasion games in which two players have opposing goals. A
solution to the saddle-point equilibrium problem is sought in which one player min-
imizes the value of the game while the other player maximizes it. The boundary
value method is an indirect method that makes use of the analytical necessary con-
ditions of optimality and is solved using a conventional optimal control framework.
This method provides a high accuracy solution but has a limited convergence space
that requires a good initial guess for both the state and less intuitive costate. The
decomposition method in which optimal trajectories for each player are iteratively
calculated is a direct method that bypasses the need for costate information. Be-
cause a linearized cost gradient is used to update the evader's strategy the initial
conditions can heavily influence the convergence of the problem. The new method
of neural networks involves the use of neural networks to govern the control policy
for each player. An optimization tool adjusts the weights and biases of the network
to form the control policy that results in the best final value of the game. An auto-
matic differentiation engine provides gradient information for the sensitivity of each
weight to the final cost. The final weights define the control policy's response to
a range of initial conditions dependent upon the breadth of the state-space used to
train each neural network. The neural nets are initialized with a normal distribution
of weights so that no information regarding the state, costate, or switching structure
of the controller is required. In its current form this method often converges to a sub-
optimal solution. Also, creative techniques are required when dealing with boundary
conditions and free end-time problems.
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Chapter 1

Introduction

An original motivation for this thesis was to discover what techniques could provide an
offline, parametric assessment of engagement scenarios between a hostile watercraft
and a surfaced submarine guarded by an escort ship. Given a set of performance
characteristics, should the escort pursue the hostile ship or stay close to the submarine
and try to block? How much time will it take for the hostile ship to get around the
escort? What performance enhancements could ensure the submarine does not get
hit? Differential game theory emerged as a technique potentially suited to answer
these questions. This thesis tests the viability of the differential game approach
by surveying the current state of differential game theory and evaluating several
numerical solution methods using standard engineering software. The methods are
employed on a variety of test problems to provide insight into the future use of
differential game theory for realistic problems such as the submarine engagement
scenario.

1.1 Differential Games

Rufus Isaacs pioneered differential game theory while working for the RAND Cor-
poration in the early 1950s [1, 2, 3, 4, 5]. His series of research memorandums not
only established the study of differential games but also introduced concepts of con-
trol theory that would not be independently discovered until years later. In a review
of Isaacs' 1965 publication of Differential Games 16], a compilation of his previous
research memorandums and some new examples, Yu-Chi Ho remarked, "[Isaacs] thus
anticipated practically all the important control-theoretic results known to date by
nearly a decade. In fact, in several instances the book went beyond present control
theory knowledge" [7].

Applications of differential games to problems of conflict and warfare were sought
from the beginning [6, p. 305]. Pursuit-evasion games are a subset of differential game
theory that describe a conflict, usually between two players, in which one player acts
as the pursuer, P, and another player as the evader, E. This scenario is a zero sum
game in which one player's gain is an equivalent loss to the opposing player. Pursuit-
evasion games can be used to model numerous combat scenarios such as the movement



of ground troops, ships, missiles, satellites, or aircraft.
Using the theory established in early chapters, the majority of Isaacs' work is de-

voted to analytically solving specific differential game problems that are posed both
for the reader's instruction and enjoyment [6, p. 24]. This process can be mathemat-
ically rigorous and often requires a priori intuition regarding the switching structure
of the solution. Throughout the discipline's early decades, nearly all work in differen-
tial games was done analytically using simplified dynamics to describe pursuit-evasion
scenarios [8, 9, 10, 11, 12].

1.2 Problem Formulation

Considering Isaacs did not make his work widely available until 1965, his notation
and terminology were not commonly used and have since been abandoned in favor
of conventional optimal control terminology and problem formulation. Bryson and
Ho [13, 14, 7] derive the necessary conditions required in order for the cost function
J to have a stationary value (not explicitly the maximization or minimization of the
cost function). In a similar work, Bagar and Oldser [15] provide a set of necessary
conditions for an open-loop representation of the feedback saddle-point solution.

The differential games examined in this work will adhere to the following basic
framework. Begin with the dynamic system describing an uncoupled, forced pair of
state equations relating to each player 1

[x [p f (x, up t)
=[ E fE (XE, UE, t)

with initial conditions x (to) = xo and to < t < tf. The initial time to is fixed
(typically to = 0) and the final time tf can either be fixed or free. Not all components
of x (to) must be specified. The terminal constraints are compiled into the equation

XI (xo, xtf tf) = 0 (1.2)

xI can be a vector of multiple terminal constraints. However, for the purposes of this
thesis I is only composed of the the capture condition

1(x(tf), tf) = 0 (1.3)

In most pursuit-evasion games 1 expresses the distance or capture radius between the
two players at the end of the game.

The performance criterion or cost functional is

J = (x (tf), t) + L(x, p, E, t) dt (1.4)

and the goal of the zero sum differential game is to find the optimal controls (denoted

'Boldface denotes vector-valued quantities



by an asterisk) u* and u* such that

J (uP, UE) < J (uP, uE) J (Up, uE) (1.5)

The pursuer seeks to minimize the cost functional, J, whereas the evader seeks to
maximize it. Any deviation from the optimal control set will be to the other player's
advantage.

Two open-loop feedback strategies, typ and 7E, are introduced so that the control
policies may be expressed as functions of the initial state variables as

Up(t) yp (xp (0), t) and UE(t) E (XE(0), t) (1.6)

The value of the game

V = min max J = max minJ = J (up, u*) (1.7)

is defined as the outcome of the objective function when both players execute their
respective optimal strategies given the initial state condition xo. The existence of the
minimax value is dependent upon the system dynamics being separable [13, p. 278].

Bryson and Ho [13, p. 277] and Bagar and Olsder [15, p. 433] provide the neces-
sary conditions for the existence of an open-loop representation of the saddle-point
solution. The Hamiltonian H is defined as

H - Tf + L (1.8)

where the costate and derivative vectors are

A= E and f=[ P (1.9)

respectively, and the terminal conditions are represented as

S_ ¢ + v T (1.10)

The term ¢ is the terminal cost, and v is the Lagrange multiplier for terminal con-
straint * [13, p. 65]. Raivio and Ehtamo [16] use the multiplier a to describe the
Lagrange multiplier that corresponds to the capture condition 1.

The following variational equations hold for the costate A, assuming no integral
cost L,

A = -H, = - A (1.11)

with the costate terminal (or capture) condition

AT(tf) = O(x(tf) tf) (1.12)
Ox



The saddle-point solution must satisfy the conditions

Up = arg min H = arg min (Afp)
up up (1.13)

UE = arg max H = arg max (AfE)
UE UE

In the case of unconstrained controls this argument becomes

H T [=f ] Ap = 0

(1.14)
H T = AfT

uE- EJE = 0

with the second order conditions relating to the Hessian matrix of a saddle-point
solution

Hup 2
H > 0

(1.15)
Hu a2H < 0

HEUE =

Hupu must be positive semi-definite and HUEUE must be negative semi-definite. The
transversality condition for this free final time problem is

H (x* (tf) , up, ui, A (tf) , tf) =- - vt (1.16)
P a tO atf

Equations 1.1, 1.3, 1.11, 1.12, 1.14, 1.15, and 1.16, form a two-point boundary value
problem (TPBVP) with unknowns x*(t), u*(t),A*(t), and v.

Starting with the initial state xo, the pursuer attempts to move the evader towards
the terminal surface where capture takes place such that l(x(tf), tf) = 0. A barrier
separates the state space into two different zones: the capture zone and evasion zone
[6, p. 203]. In the capture zone, the pursuer will always be able to capture the evader
assuming that the pursuer acts optimally. Conversely, in the evasion zone no amount
of effort by the pursuer will result in a capture unless the evader cooperates and acts
non-optimally.

1.3 Numerical Solutions for Pursuit Evasion Games

Early work in pursuit-evasion games took place before the wide availability of com-
puters and software packages that were capable of solving realistic problems using
modern numerical methods. Consequently, the application of differential game theory
to useful problems has been limited, since all calculations had to be done analytically.
Breakwell and Merz [17] calculated the minimum capture radius required in order to
guarantee capture of the evader under the assumption of constant speeds and speci-
fied turn rates. Farber and Shinar [18] developed an approximate feedback solution
to a variable speed, coplanar aerial pursuit-evasion game. Rajan, et al. [191 exam-
ined the coplanar, two aircraft problem through the use of the individual aircraft's



extremal trajectory maps. Guelman, et al. [20] were able to do a similar coplanar,
aerial pursuit-evasion game that included aerodynamic drag as a function of the angle
of attack.

The solution of pursuit-evasion games with realistic dynamics must be found nu-
merically. As is the case for optimal control problems, numerical solutions for differ-
ential games often fall into two categories, direct methods and indirect methods [21].
The basic procedure for indirect methods is to take the system dynamics, form the
Hamiltonian, derive the necessary conditions, then solve the boundary value problem
numerically using information about the states and costates at the boundaries. The
theory behind this approach was outlined in Section 1.2. Conversely, direct method
solvers need only be provided with the system dynamics, control and state constraints,
and the objective function without the need for costate information.

Indirect (boundary value) methods are characterized by their use of the analytical
necessary conditions, the production of which can be a time consuming and difficult
process as the dimensionality of the problems increase. Various solvers exist that
can solve two point or multi-point boundary value problems. Often, these solvers are
based on the multiple shooting method [22] or the Simpson's method [23]. Indirect
methods are marked by their high accuracy and the production of a solution that
satisfies the necessary conditions of optimality. They are, however, very difficult to
solve without providing a plausible initial guess not only for the state trajectories but
also for the costates. With constraints on the states and/or controls, the user must
provide the solver with a guess that incorporates knowledge of the switching struc-
ture between constrained and unconstrained operation. Determining these subarcs
requires an intuition about the solution that can be difficult when realistic, nonlinear
dynamics are implemented.

Direct methods are so named because they do not make use of the analytical
necessary conditions. The continuous differential game problem is converted into
a discrete non-linear programming (NLP) problem. Direct Collocation with NLP
or DCNLP solvers discretize the state and control trajectories and use splines for
interpolation between them. Pseudospectral Methods are another collocation method
that expand the state and controls as a finite sum of Lagrange polynomials evaluated
at Chebyshev-Gauss-Lobatto points [24]. Though they may achieve less accuracy than
indirect methods, direct methods provide a means to avoid the analytical derivation
of the necessary conditions. A guess for the costate and its switching structure is no
longer needed. Costate information is not provided by the solver and would require
ex post facto computation.

Early attempts at solving differential game problems numerically used differential
dynamic programming. Jiirmark, Merz, and Breakwell [25] solved a variable speed,
tail-chase, aerial combat problem that took place in the horizontal plane. Hillberg
and Jiirmark examined a similar problem using steady turn rates and realistic thrust
and drag data. However, this approach is plagued by the "curse of dimensionality"
[26] and has been abandoned in favor of more advanced numerical techniques.

In 1993, Breitner, Pesch, and Grimm 122, 271 sought to narrow the gap in the
complexity of optimal control problems being solved at the time compared to the
meager application of differential game theory to realistic problems. Using a numerical



solver that employed the indirect, multiple shooting method, they solve a pursuit-
evasion game between a realistically modeled air-to-air missile and high performance
aircraft in the vertical plane. As is the case with indirect methods, this solution
requires extensive analysis regarding the necessary conditions and switching structure
of unconstrained and constrained sub-arcs in order to form the multi-point boundary
value problem. Breitner states that direct methods cannot be applied to pursuit-
evasion games and that dynamic programming and indirect methods are the only
appropriate methods to find numerical differential game solutions [22].

In a series of papers written in the early 2000s, Raivio, et al. [28, 161 proposed the
decomposition of the saddle point problem into two optimal control problems that
could be solved iteratively using either indirect or direct methods. Raivio opted to
use discretization and NLP to provide solutions to a variety of problems, including
a visual aircraft identification pursuit-evasion game 1291 that incorporated realistic,
nonlinear dynamics.

More recently, Horie and Conway [30] proposed a hybrid method called semi-
DCNLP. This method attempts to reformulate the differential game problem into a
form that can be handled by a numerical optimizer designed to solve optimal control
problems. This transformation is accomplished by augmenting the state vector with
the costate of one of the players and adjusting the terminal constraints. A detailed
description of the process can be found in [31, 32, 33].

Virtually all numerical solutions to differential game problems mentioned have
relied on customized software packages to solve BVPs and NLP problems. Several of
these solvers have fallen out of popular use in the decades following their introduction.
One goal of the current work is to evaluate how well MATLAB can implement the
methods mentioned above. Though not as fast as an equivalent purpose-built solver,
MATLAB offers an ease of use that lowers the barrier of entry for anyone trying to
solve differential game problems.

1.4 Two Games of Interest

As previously mentioned, surface transit protection for submarines was an original
motivation for this thesis. Due to their lack of maneuverability and armament, sub-
marines are vulnerable to USS Cole-style attacks from hostile watercraft. Of specific
interest are scenarios in which a slower escort ship, the pursuer, attempts to inter-
cept a significantly faster hostile ship, the evader, at a maximum distance from the
submarine. The evader would attempt to minimize the distance to the submarine at
the intercept time while the pursuer would try to maximize it. This thesis examines
previously established problems that contain elements similar to the submarine prob-
lem in order test the viability of three differential game solution methods for future
use during complex engagement scenario analysis.
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Figure 1-1: The Target Guarding ProbleIn

1.4.1 The Target Guarding Problem

In the target guarding problem as described )by Isaacs 16, 1)p. 19], P and E have an
equal, constant speed and sitmple motio, which means there are no restrictions on
how fast each player can change direction. E aims to get as close as possitble to
the target C while P, who is guarding the target, attemp)ts to intercept E as far as

possibl)e from the target. Thus, the objective fuinction is the distance away from the
target at the terminal (intercept) time.

The solution of' this game can be found geometrically. The dashed line in the
center of Figure 1-1 represents a centered, perpendicular line between PE that Isaacs
calls the perpendicular bisector I6, p. 191. The area above the bisector represents all
locations which E could reach before P, and the area below the bisector represents
locations that P could reach before E. The op)timal solutiomi for E is to aim for the
point along the bisector that is the closest to the target.

1.4.2 The Homicidal Chauffeur Problem

The homicidal chauffeur problem is one of the best known andl( most discussed prob-
lems in pursuit-evasion gamles. Originally posed by Isaacs 16, p. 11], the problenm was
given a more thorough treatment by Mlerz [34, 91 and was revisited )by other authors
through the years 135]. The problem can be viewed as a simplified pursuit-evasion
game b1etween a fast pui'rsluer with limited maneuverabilityv and a slower but more

agile evader.

The problem is posed such that a car and a pedestrian are located in an infinitely
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Figure 1-2: The Homicidal Chauffeur Problem

large parking lot. The oljective of the game is for the car. P. to run over the pedes-
trian. E. whose goal it is to avoid capture. Both P and E have fixed speed where
crp > 'yE. P is subject to a constraint on his turn rate whereas E has simple motion.
Capture occurs when E gets within the capture radius of P. Figure 1-2 shows an
example of a chase in which P begins at the origin with his velocity vector along the
x-axis and turns left to intercept E.

1.5 Thesis Outline

This work provides a relevaint suniinar'v of the application of differential game theory
to problems that can be solved numerically using IMATLAB. Ideally, the barrier of
entry will be lowered for other students and researchers who would like to know what

options exist for solving a differential or pursuit-evasion game problem using standard

nginleering software. The gaines of' interest addressed in Section 1.4 will provide a
baseline by which each of the techniques (call be compared.

Chapter 2 examines the boundary' value alpproach including how to create an

initial guess that achieves c(onvergence and what intuitions are necessary regarding

the structure of the costate trajectory. In Chapter 3 the Decomposition method

is iimplemented using MATLAB's fmincon function to iteratively solve a min and

inax Iroblernm. Finally, Chapter 4 surveys a new technique for solving differential

game problems numerically using neural nIetworks. The code for several of the solved

problems is provided in the appendices accomIpanied by comments to guide the reader

through the solution algorithms.



Chapter 2

Boundary Value Method

This chapter explains how to approach differential game problems using a traditional
optimal control framework. Section 2.1 discusses the transformation required to solve
a free end-time problem and explains what functions are used in the BVP solver. The
target guarding and homicidal chauffeur problems are converted into two-point BVPs
and solved by numerical methods using MATLAB in Sections 2.2 and 2.3.

2.1 Approach

The solution approach will follow the steps outlined in the problem formulation of
Section 1.2. The primary steps are to take the system dynamics, form the Hamilto-
nian equation, analytically derive the necessary conditions, and enforce the boundary
conditions at the endpoints. While any numerical boundary value problem solver can
be used, this work will focus on MATLAB's bvp4c function. This built-in function is
capable of solving two-point and multi-point boundary value problems for ordinary
differential equations. Shampine and Kierzenka [23] provide a detailed description of
how to set up and solve a variety of boundary value problems using bvp4c. Additional
information can be found in the MATLAB Product Help.

The function bvp4c integrates a system of ordinary differential equations (ODEs)
of the form

dy = f(,y,p), (2.1)
dx

subject to the general nonlinear, two-point boundary conditions

g(y(a), y(b), p) = 0

where x is the independent variable, y a vector containing the dependent variables,
and p is a vector of unknown parameters.

The solver operates on the assumption that the time period in the problem is fixed,
t E [a, b]. In order to solve a free end-time problem time (the independent variable)
must be rescaled so that T = - and solve the problem for T E [0, 1]. Because of this

scaling all the ODEs describing the time derivatives of the state and costate must be



multiplied by the final time, because

1
d7 = - dt (2.2)

tf

and
dy= tfy 

(2.3)
dT dt

An initial guess is required before bvp4c can evaluate a solution. This guess is
created with the help of the bvpinit function that takes a vector of M mesh points
and guesses at those points and turns them into a data structure that has the same
format as the bvp4c function output. This feature is useful for occasions when bvp4c
is placed in a loop where the solution of one iteration becomes the initial guess for
the next. The guesses at the mesh points can be entered manually as a vector or by
using a function handle that calculates values for y at each of the mesh-points using
the commands

>> mesh = linspace(0,1,M)
>> solinit = bvpinit(mesh,DDG_init,alpha0)

An initial guess for the scalar a, which is the Lagrange multiplier for the capture
condition, must also be provided. The ODG_init function handle returns a vector
containing the values for the states, costate, and final time as a function of the vector
of mesh-points. The initial guess is sent to bvp4c along with two function handles

>> sol = bvp4c(QDG_ode,QDG_bc, solinit)

The first function handle has the header

>> function dydtau = DGode(tau,y)

and evaluates the time derivative

dx

dy -t dtfd= tf d with - = 0 (2.4)
di dt dt

dtf

at each mesh-point. The second function handle

>> function res = DG_bc(ya,yb)

computes the residual of the boundary conditions. The residual is composed of 2N+2
boundaries which is equal to the number of unknowns. The unknowns in the problem
are the N states, N costates, the capture condition Lagrange multiplier a, and the
final time. The initial conditions, capture condition, costate terminal conditions, and
Hamiltonian terminal condition must be expressed in a residual form. For example,
if a system had the boundary conditions y(O) = 0 and y(tf) = 5 then the first rows
of the res vector would be



>> res = [ ya - 0
yb - 5

2.2 Target Guarding Problem

As explained in Section 1.4.1, the target guarding problem is a game between two
simple motion bodies. The evader, E, attempts to minimize his final distance to the
target C while the pursuer, P, attempts to intercept E at a distance as far as possible
from the target.

2.2.1 Problem Dynamics

Begin with the equations of motion for each player 1

X1 V1 COS U1

X p X ] vl sinul (2.5)x I (2.5)
: E X2 f2 -- 2 V 2 COS U2

Y2 v2 sin U2

with initial conditions [ xI(to) xio
x (to)y= y(to) y10 (2.6)X2 (t0) X20

y2(to0) Y20

where x and y refer to the location of each player on the coordinate frame. Because
both players have simple motion they are free to change their direction instanta-
neously.

In this problem the capture condition

I (xf, tf) - l(x(tf), tf) (X (tf ) - 2 (tf))
2 + ( (tf) - Y2 (tf))2 -_ d2 = 0 (2.7)

is the only terminal constraint. The game concludes when the distance between the
players is equal to the capture radius d. The objective of the game depends only on
the final state of the players, thus L(x,ul, u 2, t) = 0 and

J = (x (tf, t) + L(x,ul, 2, t) dt = (x 2 (tf) - XC) 2 + (y2 (tf) - yc) 2 (2.8)

where xc and yec are the coordinates for the target being guarded.

1To aid comparison with the MATLAB m-files the use of player 1 for P and player 2 for E will
be adopted.



2.2.2 Necessary Conditions

The Hamiltonian equation is defined as

H - ATf + L = [ A1

V1 COS U 1

Vl sin ulA2 A3 14]
V2 COS U 2

v2 sin u 2

(2.9)

(2.10)H = Alv 1 cos u1 + A20 1 sin u 1 + A3v2 cos u 2 + A4v2 sin u 2

Because there is only one terminal constraint (applying to the capture condition 1)
the single multiplier a will be employed so that

(2.11)

The time derivative of the costate

OH
Ox
OH
oa
9H
9X2
OH
9Y2

0
0
0
0

(2.12)

is equal to the negative of the partial derivative of the Hamiltonian with respect to
the state vector x.

Because A1, A2, A3, and A4 have zero time derivatives, they will be constants
throughout the game. The terminal conditions for the costate are

AT(tf) = X(tf) = - x x(t), t$) + a x 1 (x (tf) , tf) (2.13)
T ~ax =ax~ =O

AT (tf) =
X2 (tf ) -

V(XC-X2((tf)) 
2 (y-C2(tf))

2

Y2(tf)-c

(xc-C 2 (tf)) 2 (y-Y2(tf))2

+ a2 (xi (tf)
2 (y, (tf)
2X 2 (t2 f)
2 (Y2 (tf)

The transversality condition for this free final time problem is

H(x* (tf), ul, u, A (tf), tf)= -- = --r- - a-l (x (tf), tf)

Av 1 cos ul + A2V1 sin ul + A3 2 Cos u2 + A4v2 sin u 2

For the saddle point solution of this unconstrained problem,

ul = arg min H = H,, = 0
U1

) = 0 + vIp = 0 (x (tf) , tf) + al (x (tf) , tf)

x2 (tf))

Y2 (tf))
Xi (tf))
Y1 (tf))

(2.14)

(2.15)
S0

0

(2.16)



u2 = arg max H = H, 2 = 0 (2.17)
U2

The controls ul and u2 can be written in terms of the costates for each player as

Hu, = 0 = -Alvl sin ul + A2vl cos U1 (2.18)

1 A2ul = tan- 1 A
A1

Hu2 = 0 = -A 3v2 sin u 2 + 4 2 Cos U2  (2.19)

u2= tan- 1 4 (2.20)
A3

The dynamics of each player are reformulated in terms of the costate by a trigono-
metric identity, so that

1 11
_ c 1 [v cos tan-i 11V1[ - l COS U1  Cos tan- V (2.21)

V1 sin 1 ul vl sin tan- 1 A2  ]
tan- 1 1

[ v2 COS U2 1 2 COS tan 3 /
X2= V2 (2.22)

V2 sin u 2  2 si1 s tn - 1 A4 3

Because they have zero time derivatives (Equation 2.12) the costates are constants
during the entire game. Constant costates imply that the direction of travel for each
player will also be constant throughout the game since the control angles are functions
of the costates. So while simple motion allows for the freedom to change direction
instantaneously, the best strategy for both players is to follow a straight line path.

2.2.3 Solution Implementation

The following initial conditions were used in this problem:

Xlo = 1 0 m x 20 = 0 m

y1o = -50 m Y20 = 0 m
xc = 50 m yc = -40 m
vl = 1 m/s v2 = 1 m/s

Figure 2-1 shows the basic progression of the numerical solution. Given a set of initial
conditions, the bvpinit function uses an embedded function called TG_init to create
an initial guess for the state, costates, and terminal time. The initial guess is then
sent to the bvp4c function that uses the TGode and TG_bc functions to find the
solution to the boundary value problem. TGode describes the time derivatives of
all states and costates. TG_bc is composed of a residual that includes terms for the



Figure 2-1: Target Guarding bvp4c Implementation

initial and terminal boundaries. The MATLAB code for this problem can be found
in Appendix A.1.1.

2.2.4 Results

Figure 2-2 illustrates a successful target guarding interception found numerically using
MATLAB. In order to get the solution to converge properly, a good initial guess was
required. The guess incorporated the information that the pursuer and evader would
have straight line paths to the capture location because of their constant costate
terms. If an arbitrary initial guess is used, the solver fails to converge on the correct
solution.

2.3 Homicidal Chauffeur Problem

The homicidal chauffeur problem pits a slow but maneuverable pedestrian against a
faster, less agile car in an infinitely large parking lot. This problem adds a level of
difficulty over the target guarding problem because there are two phases of pursuit
for the car: the initial limited, maximum rate turn followed by a straight line pursuit
and capture.

I Final Solution I
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Figure 2-2: Target Guarding bvp4c Result

2.3.1 Problem Dynamics

The equations of motion for the pursuer (the car) and the evader (the pedestrian) are

Y1

Z2y2

with initial conditions
x (to)
yi(to)
x (to)
Y2 (to)
Y2 (t0

I
Vi COS 01

vl sin ¢1
U 1

V 2 COS U 2

V 2 sin u 2

(2.23)

(2.24)

xio

010Ylo
1io

X 2 0

Y20

where x and y refer to the location of each player on the coordinate frame and ¢1

and u2 are the player's heading angles relative to the x-axis. This game is a constant
speed pursuit where vi > v2.

While the pedestrian can change his direction instantaneously, the car has a lim-
ited turn rate. Thus, a constraint is placed on the absolute angular velocity of player
1 that

~

'B
r

r

x (to) =

lUl I Umax (2.25)

CPf2=[f
I :E 122



Again, the capture condition

W (xs, tf) = l(x(tf), tf) = (x1 (tf) - x2 (tf))2 + ( (tf) - 2 (tf))2 -d2 = 0 (2.26)

is the only terminal constraint. The game concludes when the distance between the
car and the pedestrian is equal to the capture radius d. The objective of the game
depends only on the final time of the game, thus

J = / (x (tf) , tf) = tf (2.27)

2.3.2 Necessary Conditions

The necessary conditions are found through the manipulation of the Hamiltonian
equation

v1 COS 01
vl sin 01

H -ATf +L= [ A A 2 \ 3  \ 4 5 ] U1 (2.28)

v 2 COS U 2

v2 sin u2 J
H = IAv1 cos 01 + A2v1 sin 1 + \ 3u 1 + A4v 2 COS u2 + 5v2 sin u 2  (2.29)

The single multiplier a is used for the terminal constraint on the capture condition 1,
so that

I = ¢ + VT = (x (tf) , tf) + al (x (tf) , tf) (2.30)

The time derivative of the costate is equal to the negative partial of the Hamiltonian
with respect to the state vector x

OH
Ox1  0azi 0
OH
-yl 0

A(t) = -Hx - H AVl sin l1(t) - A 2v1 cos 1 (t) (2.31)
QH 0
aX2 0
aH
19y2 -

Because A1, A2, A4, and A5 have zero time derivatives, they will be constant terms
throughout the game. The only time-varying costate is A3, which corresponds to the
car's turn rate.

The costate terminal condition is

AT(tf) = x(t) = x (X (tf) , tf) + x l (x (tf) ,tf) (2.32)
,x (09) = I09)= ¢ Ox



AT(tf) =

2 (xi (tf)
2 (y, (tf)

2(X 2 (tf)
Y2 (y tf)

(tf))
(tf))

(tf))
(tf

The transversality condition for this free final time problem is

H (x* (tf), u*, u*, A (tf) , tf) = - = o- - a- (x (t) t) = -11 tf atf at, \\f/f ~ l

(2.33)

(2.34)

so that at the final time

Alvi cos '1 + A2V1 sin 1 + A3(tf)U1 + A4v2 Cos U2 + A5v2 sin u2 + 1 = 0 (2.35)

where A3 (tf) = 0. The transversality condition is placed in the residual of the bvp4c
solver.

Because of the constraint on ul, Pontryagin's Minimum Principle must be applied
instead of simply solving Hu, = 0. The following rule for ul will minimize H:

ul = arg min H
u1

-
U l max

0lma

U1,max
Because there are no constraints on u2 ,

U2 = arg max H = Hu2 = 0
U2

The control u2 can be written in terms of the costate for player two as

Hu2 = 0 = -A 4v2 sin U2 Si+ A5 2 COS u 2

A5
u2 = arctan A5

A4

The dynamics of player two are rewritten in terms of the costate as

2 - [ 2 C OS U 2

[ v2 sin u2

2 COS arctan L

V2 sin arctan '\

1

/1+( ) 2

=V 2 i
A4

As previously mentioned, A4 and A5 are constants, which means that the direction of
travel for the evader will be constant throughout the game.

A 3 > 0

A3 = 0

A3 < 0

(2.36)

(2.37)

(2.38)

(2.39)



I Final Solution

Figure 2-3: Homicidal Chauffeur bvp4c Implementation

2.3.3 Solution Implementation

The following initial conditions and parameters were used for the solution implemen-
tation:

Xl0 = 0 m ylo = 0 m

X20 = 4 m y20 - 4 m

10 0 rad U1,max = 1 rad/s
vi = 3 m/s 2 = 1 m/s
d=lm

Figure 2-3 shows the basic progression of the numerical solution for the homicidal
chauffeur problem, which proceeds in the same manner as the target guarding problem
in Section 2.2.3. The MATLAB code for this problem can be found in Appendix A.1.2.

2.3.4 Results

Figure 2-4 illustrates a successful implementation of the boundary value method in
MATLAB for the homicidal chauffeur problem. Once again, in order to get the
solution to converge properly, a good initial guess was required. The guess incorpo-
rated the information that the pursuer would initially be on a constrained arc, using
the maximum turning rate possible until he was on a straight line trajectory with the
pedestrian. If P had simple motion and could turn instantaneously, the pursuit would
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Figure 2-4: Homicidal Chauffeur Result

occur along a 45 degree angle line directly though the evader's starting position. As
the car becomes less maneuverable, it benefits E to use steeper angles greater than
45 degrees.

2.4 Discussion

Solving differential game problems using boundary value methods presents a unique
set of challenges. Indirect methods such as this one require the calculation of the
analytical necessary conditions. However, as problems become dimensionally larger
and include nonlinear terms, the calculation of the analytical necessary conditions
becomes increasingly difficult. One means of making this process easier and reducing
the number of errors would be to use an analytical differentiation tool that could take
the derivatives of the Hamiltonian and capture conditions to form the necessary and
boundary conditions.

Another primary difficulty of the boundary value method is providing the solver
with an accurate initial guess. This difficultly primarily stems from the need for a
guess of the costate A and the Lagrange multiplier a. Some analysis is required to
figure out what the sign of the costate should be and whether it should be constant,
increasing, or decreasing. Choosing an a is even more difficult, as there is no obvious
way to know what the value should be at the final time.

Continuation methods offer one way to aid the creation of the initial guess for more
difficult initial conditions. The solution to the previous problem becomes the initial
guess for the next problem with slightly different initial conditions. This technique
allows the movement of the players' initial conditions to locations that could not pre-



viously be solved using an ad hoc initial guess method. Continuation could also allow
the user to introduce increasingly tighter constraints on states and controls. Another
possible method for initial guess creation is the use of a genetic algorithm to create
the initial guess. This technique was explained by Conway [31] and implemented for
his semi-DCNLP method for solving differential game problems.

Another issue with boundary value method is the determination of the control
switching structure. In the target guarding problem, both players had constant
costate terms so the game took place on a single, unconstrained arc that resulted
in a straight line pursuit and capture. There were limits on the turning radius of the
car in the homicidal chauffeur problem so the car began the game on a constrained
arc, using the maximum turn rate possible, then switched off to zero turn rate for
capture in a bang-off control scheme. In a realistic problem with multiple constrained
control terms it would be difficult to know how the game should proceed and what
form the control switching structure would ultimately have.

2.5 Conclusion

The boundary value method offers a straightforward way to solve differential game
problems for those familiar with optimal control terminology and solution approaches.
This methodical technique is a welcome departure from Isaacs' ad hoc approach for
solving specific problems. However, even problems with easy to understand dynamics
equations can become unmanageable during the calculation of the analytical necessary
conditions. In addition, the boundary value approach requires an accurate guess for
the costate trajectory which is often a non-intuitive quantity that requires knowledge
of the control switching structure. Ultimately, the boundary value method is useful
since it enables some actual differential game problems to be solved using built-in
MATLAB functions. However, it is difficult to recommend this method for larger,
non-linear problems without additional methods for developing initial guesses.



Chapter 3

Decomposition Method

This chapter explains how to approach differential game problems using a direct
method that iteratively solves optimization problems for each player until conver-
gence to a dual-optimal solution is achieved. Section 3.1 discusses the history of the
decomposition method and provides a detailed description of the solution method. A
MATLAB specific implementation of this method is provided in Section 3.2. Sections
3.3, 3.4, and 3.5 demonstrate the use of the decomposition method for the target
guarding problem, the homicidal chauffeur problem, and the game of two cars.

3.1 Approach

Raivio proposed the decomposition method for solving differential game problems
through a series of publications compiled into a doctoral dissertation [36]. This
method has been applied to several different problems including the homicidal chauf-
feur problem [16], visual aircraft identification [29], and optimal missile guidance [28].
These works demonstrate how direct methods can solve differential game problems
without the explicit computation of the necessary conditions.

The decomposition method for numerically solving differential game problems
works by iteratively solving minimization and linearized maximization problems for
the pursuer and the evader, respectively. If the iterations converge on a final solution,
then this solution will satisfy the necessary conditions described in Equations 1.1-1.16
[16, p. 181]. References [16], [28], and [291 provide a detailed description of the solution
process for the decomposition method.

Given the dynamics
c = f (x, U1, u 2, t) (3.1)

for the game and the initial conditions x(O) = xo, the controls ul(t) and u 2(t) are
found, which solve the minimax (or maximin) value problem

V = min max J = max minJ (3.2)
U1 U2 U2 U2

The cost functional is simply
J = (x (t), tf) (3.3)



because there is no integral cost in this formulation (ff L(x, Ul, u 2, t) dt = 0)
The first step of the iterative method is to find the trajectory of P that minimizes

the cost functional
mm ¢(x (tf), x ° (tf), tf) (3.4)
Ul,tf

given an arbitrary initial trajectory xO(t) of E (the superscript describes the iteration
count k beginning from k = 0). The terminal condition for this pursuit is

1(Xl (tf) , X2 (tf) tf) = 0 (3.5)

The solution to the minimization results in the P trajectory x ° and the capture time
to. Let the capture point be the evader's location at capture eO x° (tO). The
solution to the x ° trajectory, x °, can also be viewed as the solution to the problem
given the fixed point eo and fixed time to. The value function for P can be written
as

V (e, tf) = min { (xi (tf) ,e, tf) I 1 (t) = fl (xi(t), ul(t), t) ,t E [0, tf], xl(0) = xlo
U1

1 (xl(tf), e , tf) = 0}
(3.6)

such that
V (eo, to) = (x (t) , eo, t ) (3.7)

The objective for the evader is to maximize the pursuer's value function

max v (X2(tf), tf)
u2,tf

in the vicinity of (eo, t) where

2 (t) = f2 (x 2 (t), u 2(t), t) and x 2 (0) = X2o (3.8)

Because there is no analytical expression for V, the solution to the evader's problem
above cannot be found directly. Instead, an approximate solution will be found by
creating a linearized gradient for the value function in the neighborhood of (eo, t).
The solution for the maximization is then extended into the interval [t, to + At]
where At > 0. The linear approximation for the value function about eo is

V (e , t) + V (e, to) (e - eo) (3.9)

and the gradient of the value function is

- V (eo, tf) = a (x° (t) , eo, tf) + Cao (x (t) , eo, t) (3.10)
ae 9ee 1

where a is the Lagrange multiplier that applies to the terminal constraint (the cap-
ture condition) l(x(tf),tf) = 0. The gradient for the value function in Equation



3.10 can be found analytically thus avoiding numerical differentiation. Note that the
gradient is composed of the partial derivatives of the cost function and the capture
condition with respect to the capture point eo

Given the dynamics

2 (t) = f2 (x 2(t), u 2 (t), t) and x 2 (0) = X20  (3.11)

the maximization for E can be rewritten as

max c (X2 (t) - eO)
u2,tf

where

c e V (eo tf e ) ,eo, t) + co e ( x ° (tf) , eo, tf) (3.12)

The solution x(t), t E [0, tO] is extended onto the interval [t, to + At] , At > 0 by
the linear approximation

x ( t + h) = x (tf) + i(tf)h , h [0, Atf] (3.13)

The extended solution x' becomes the trajectory that is used during the next mini-
mization of the pursuer's trajectory. The minimization results in a new capture point
el that is used during the next linearized maximization step for E. The process con-
tinues until successive iterations converge no longer change the final value of the game
within a user defined tolerance e.

3.2 MATLAB Implementation

The solution procedure outlined below describes a possible implementation of the
decomposition method using MATLAB:

* Begin with a set of initial conditions for P and E.

* Create an initial trajectory, x (u (t), t), for E.

* Create an initial guess for P's control trajectory uo(t) and a guess for the
terminal time tf which will be used by the fmincon solver in MATLAB.

* Let k = 0 and tol > c

* While tol > e

- Solve P minimization using the fmincon function. The solver minimizes
the cost function by manipulating the pursuer's controls and the intercept
time found in the y-vector.

>> [y, ... , alpha] = fmincon(Ocost_fun, y_guess, ... , Omycon)



* The solution is y = [ ul(r) uk+1 (2T) ... uk 1+(NT) tk+1 ]Twhere
tk+1

N-1

* alpha is the Lagrange multiplier found by the solver that applies to
the terminal constraint 1 (xi (tf), x2(tf), tf) = 0.

* @costfun is a function handle that returns the scalar terminal cost
of the game

Syguess = [ u(_r) uk(2T) ... k (NT) t ]T

•* mycon contains equality and inequality constraints including bound-
ary conditions (initial and final) for ul and the terminal constraint

(capture condition) on xl(tf).

- Calculate ek+1, which is the location of the evader at the final time tk+1

- Calculate c = + ak+1 using terminal state and time information

- Solve E maximization using fmincon function

>> u2 = fmincon(Oval_fun,u2_p,. . .,mycon2)

* u2 [ u k+ 1 () uk+I(2T) ... uk (NT) ]

•* val_fun is the scalar function that represents that linearized gradient
for the value of the game: cT (X2 (tk+l) ek + l)

* u2_p = [ uk( -) uk(2T) ... uk(NT)

* Qmycon2 is contains the constraints and boundary conditions for the
control

- Set the tolerance tol = norm (u k - u2 +1 ) and k = k + 1

- u k+l is now the basis from which the next P minimization step is made.

The while loop continues until the control trajectory for the evader converges to a final
solution within a user defined tolerance. The procedure above thus demonstrates how
to turn a differential game problem into a MATLAB solvable iterative optimization
problem for each player.

3.3 Target Guarding Problem

This section will examine the target guarding problem and how it can be solved using
the decomposition method. As before, the problem dynamics can be written as

SV1 COS U1
v = sin ul(3.14)
V2 COS U2

v2 Sill U2



with initial conditions
xi(to) o[ X

x (to) = y1(to) Y10 (3.15)Z2 (to) X 20
Sx2 (to) Y20

where x and y refer to the location of each player on the coordinate frame. Because
both players are assumed to have simple motion, there are no constraints on the
controls. In this problem the capture condition is the only terminal constraint, given
by

W (Xf, tf) = l(x(tf), tf) = (x 1 (tf) - x 2 (tf))
2 + (Y (tf) - Y2 (tf)) 2 - d2 = 0 (3.16)

The game concludes when the distance between the players is equal to the capture
radius d. The objective of the game depends only on the final state of the players,
thus L(x,ui, U2, t) = 0, and

J = (x (tf), tf) = /(x 2 (tf) - x) 2 + (y2 (t) - c) 2  (3.17)

where xc and yec are the coordinates for the target being guarded. Each of the
problems below had the following initial conditions:

Z10 = 5 m x 20 = 0 m

ylo = 0 m Y20 = -0.5 m
v= 1 m/s v2 = m/S

Figure 3-1 illustrates the progression of the solution. The TG-init function takes
in an initial guess for where the optimal aim-point for the two players might be
and then generates a control and state trajectory based on that aim-point. The uo
trajectory and to are sent as the initial guess for the solution to the P minimization.
The minimization takes place with respect to the xo(t) trajectory. By convention,
differential games are written such that P is minimizing the cost functional and E is
maximizing it. Since P in this game wants the intercept to happen as far as possible
away from the target, fmincon minimizes the negative distance of E from the target
at capture.

Convergence was a significant difficulty with the target guarding problem. For a
given set of initial conditions for P and E, convergence was heavily dependent upon
the location of the target, C, represented in the figure as an X. Figure 3-2 shows
how the iterations jumped back and forth across the actual solution denoted with a
circle. The arrow at the intercept point shows the direction of the linearized value
function c - + a. With the target at position (10,10) even slight adjustments
of the evader's control direction have a large impact on the position at the final time.
However, when the target is at location (15,5) as shown in Figure 3-3 the optimal
aim-point is closer to the evader's initial position and convergence is achieved. As the
distance between the evader's initial position and the optimal aim-point increases,
changes to the control angle have a greater effect on the final outcome. Table 3.1
shows the initial conditions for both the convergent and non-convergent cases.
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Figure 3-1: Decomposition Method for Target Guarding Problem

Table 3.1: Convergent and non-convergent cases for the target guarding problem
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3.4 Homicidal Chauffeur Problem

As before, the equations of motion for P and E are

X1 vil cos 01
Y1 Vl sin 0 1

x = ¢ 1  = u1  (3.18)

Z2 V 2 COS U 2

SY2 2 sin u 2

with initial conditions
x 1(to) zo
yi(to) Ylo

x (to) = q1(to) = ~10 (3.19)
x2(to) X20
x 2 (to) J y20

where x and y refer to the location of each player on the coordinate frame and 01 is
the pursuer's heading angle relative to the x-axis.

While the pedestrian E can change his direction instantaneously, the car P has
a limited turn rate. Thus, a constraint is placed on the absolute angular velocity of
player 1,

U1ll < Umax (3.20)

The capture condition

XI (xf, tf) = l(x(tf), tf) = (x1 (tf) - x2 (tf))2 + (Y (tf) - Y2 (tf))2 - d 2 = 0 (3.21)

is the only terminal constraint. The game concludes when the distance between the
car and the pedestrian is equal to the capture radius d. The objective of the game
depends only on the final state of the players, thus L(x,ui, u2 , t) = 0 and

J = (x(tf), tf) = tf (3.22)

The scenarios below each had the following initial conditions, which were also used
in Raivio's work 116]. Using these parameters will provide a basis by which to validate
the MATLAB approach for solving problems using the decomposition method.

xio = 0 m Yio = 0 m
10 = 0 rad Ul,max = 1 rad/s
S= 3 m/s v2 = 1 /s

d=lm

Several different scenarios of the homicidal chauffeur problem were solved using
the decomposition method. Each test case was chosen to demonstrate the method's
ability to solve problems that interact with dispersal surfaces. The dispersal and
barrier surfaces for the homicidal chauffeur game are described in [6]. Case I, Figure
3-4, is the simplest with E in front of P. In case II, Figure 3-5, E is behind P and must
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Figure 3-4: Hoimicidal Chauffeur with Decomposition Method: Case I

cross a dispersal surface during the pursuit. C(ase III. Figure 3-6. solves a i)rol)lemn
where the initial conditions are near the barrier. In case IV', Figure 3-7, the game
takes place on the other side of the barrier. The final results and comparisons to
solutions found in 1161 can be found in Table 3.2.

As expected,. the solutions fall on a universal surface resulting in a tail-chase
scenario. In case II, the mirror inmage solution would also be acceptable. The initial
guess determlines which of the mirror solutions is returned by the solver. It is an
insntntaneou's mi'xed probleil in which there is niore than one optimal solution at the

starting point of the gaime 16. p. 1361. These (lileIinias can be solved 1)by forcing one

player to make an arbitrary selection if two or more equally good solutions present
themiselves.

One limitation of the decomposition Imethod appears in case IV both in this MAT-

LAB simulation and in [161. It would actually b)ehoove the pedestrian, E, to move
towards the car and force the vehicle to drive away and turn around b1efore completing

the game in a tail chase scenario. As shown the gamie converges to a maximin solu-
tion in which E does not play optinlally. As currentlY formulated, the deconlmposition

method will not solve for eq'uivocal su:faces whose tributaries are not solutions of the

miaxmnin problemi 116. pi. 1841].

3.5 Game of Two Cars

The ganie of two lars 1[37 is simiilar to the homicidal chauffeur problem: however,
the pedestrian is replaced with another car that is also restricted in turn rate. In
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Figure 3-7: Homicidal Chauffeur with Decomposition Method: Case IV

Table 3.2: Homicidal chauffeur problem solved by the decomposition method

Case I II III IV

(X20 Y20 ) (4,4) (-7,0) (2.5,7.5) (-1,3)
Iterations 5 10 6 7

Terminal Time (s) 2.508 8.98 4.14 9.76

I _ I_ _ I I



Isaacs' treatment of the problem [6, p. 237], the state space is reduced from six states
to three by using a relative coordinate frame. The boundary of the usable part is
defined after a series of analytical calculations. The decomposition method does not
require the state reduction and can be used to find the actual solutions to problems
without determining the boundaries and barriers that exist in the state space.

The equations of motion for the pursuer and the evader are

i1  V1 cos 1

Yl vl sin ¢ 1

Svcos (3.23)
' 2 V2 COS 02

Y2 v2 sin 52
2 J L U 2

with initial conditions
Xi(t) Xl0

yl(to) Yio

x (to) 1 (to) 010 (3.24)
x 2(to) X20
x 2(to) Y20

02 (to) 20

where x and y refer to the location of each player on the coordinate frame and 01
is the pursuer's heading angle and 02 is the evader's heading angle relative to the x-
axis. Both cars have a limited turn rate. Thus, a constraint is placed on the absolute
angular velocity of each car

U 1 I U1,max (3.25)

IU2 ' U2,max (3.26)

Like the homicidal chauffeur problem, the capture condition is the only terminal
constraint

T (xy, tf) = 1(x(tf), tf) = (x 1 (tf) - Z(tf)) 2 + (Y (tf) - Y2 (tf))2 - d 2 = 0 (3.27)

The game concludes when the distance between the cars is equal to the capture
radius d. The objective of the game depends only on the final state of the players,
thus L(x,ul, 2 , t) = 0 and

J= (x (tf), tf) = tf (3.28)

The following initial conditions and parameters were used in both cases and case
specific conditions can be found in Table 3.3.

x 10 = 0 m X20 = 4 m

yio = 0 m y20 = 4 m
d=lm

The solution was obtained in the same manner as previous problems. A limit
on the turning rate of the evader was added to the constraint function of the E
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maximization. Figures 3-8 and 3-9 show the solutions to two different two-car sce-
narios. In both cases, P and E use their maximum turning abilities until they reach
their final heading direction. This control switching structure is the same banrg-off
pattern observed for P during the homicidal chauffeur scenario. The two car game
demonstrates how easily thie decomlposition method can be adapted to solve problems
without having to endure the rigorous mathematics required by Isaacs' approach.

Table 3.3: Two cars problem solved by the decomposition niethod

Case

oi) (rad)
(2o (rad)

II
2wi

S(m s) 2 3
(2 (in s) 1 1

1 . (rad s) 1 0.66
112,,,,,,. (rad s) 2 1.25

Iterations
Terminal Tiime (s)

15
8.00

13
9.848

>, 2V
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Figure 3-9: Game of Two Cars with Decomposition Method: Case II

3.6 Conclusion

While the decomp)osition method demonlstrated an ability to solve a variety of prob-
lems. the issue of convergence in the target guarding problem is an area of concern. It
may 1)e possible that with some scaling and adjustment of the solver tolerances that

the optimal solution could be found for any initial placement of the players and the
target. The fact that the initial conditions had such an influence on convergence is a
significant source of concern regarding the viability of the (lecomposition method for
solving more difficult problems with realistic dynamics such as the submarine problem
where variable speed and realistic thrust and drag profiles might )e used.

Another issue this miethod shares with the boundary value method is that the

final solution of the game (toes not result in a control policy. The assumption is that
both players act optimally. Thus. the decomposition method is really an open loop

solution that applies only to the specific initial conditions given for one problelm. It
would be useful to have the closed loo1001) policy for each player that could then be
applied to a variety of initial conditions in the state space. Though not a requirement
for the stated goal of parametric assessment of game scenarios, understanding the
control policy could aid the future development of real-tinime guidance laws for the

security ship guarding the submarine that would have to handle incomplete, noisy
information about the state of the gamie.



Chapter 4

Neural Networks for Differential
Games

This chapter explains how neural networks can be used to govern the control policies
for each player in a differential game. Section 4.1 provides insights into the solution
approach including a basic overview of neural networks and an introduction to the
TAPENADE Automatic Differentiation engine. In Section 4.2 the viability of the
neural network method is illustrated through the solution of several optimal con-
trol problems. Finally, Section 4.3 demonstrates the use of neural networks to solve
differential game problems using MATLAB.

4.1 Solution Approach

The control policy for each player is formed by manipulating the weights and biases of
a neural network. The input to the network is the current state of the game, including
exogenous inputs if they exist, and the output is a control signal. MATLAB's fminunc
solver uses gradient information provided by an automatically generated adjoint code
to adjust the weights and biases of the neural network to minimize the value or
cost of the game. Once the first player's strategy is established, the second player's
weights are optimized against that strategy. The first player then optimizes to the
second player's new strategy, and the process continues until both players arrive at
an optimal set of weights. The end result is the min-max or saddle-point solution in
which one player minimizes the cost functional while the other player maximizes it.

4.1.1 Neural Networks

A basic overview of neural networks will be provided before describing the differential
game solution method in detail. More comprehensive information can be found in
[38] and [39]. The most basic unit of a feed-forward artificial neural network is the
single input neuron as shown in Figure 4-11. An input p is scaled by the neuron
weight w and shifted by the neuron bias b. The net result n = wp + b becomes the

'Neural network Figures 4-1 through 4-4 adapted from [39]
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Figure 4-1: Single-Input Neuron

input to the transfer function f that has the scalar output a. The transfer function
can be linear or non-linear. One popular choice is the log-sigmoid transfer function
that scales the output between 0 and 1. The majority of the simulations conducted
for this thesis use a scaled inverse tangent function a = tan-'(n) which results in
an output range -1 < a < 1. One benefit provided by these functions is that they are
differentiable. Transfer function differentiability enables the analytical calculation of
gradient information, which will later be used during the solution of optimal control
problems.

To form a one layer neural network, a set of R inputs connects to a layer of S
neurons as shown in Figure 4-2 and in an abbreviated form in Figure 4-3. Each
input connects to each node, and there is a corresponding weight associated with
every connection. Most neural networks have more than one layer. With each added
layer, the output of the previous layer acts as the input to the next layer as shown
in the three-layer network in Figure 4-4. For control problems, the inputs to the first
layer are the relevant states assuming there are no external inputs to the system.
The hidden layers, the layers in between the input and output, have a user-selected
number of nodes that vary according to the complexity of the problem. The output
layer contains the control signal that is scaled according to the constraints on the
controller and the type of node transfer function used.

4.1.2 Automatic Differentiation

Another feature of the approach outlined below is the use of an automatic differ-
entiation (AD) engine. The TAPENADE AD software works line by line through
FORTRAN code to create an adjoint code that contains analytical expressions for
the desired derivatives or gradients. Adjoint methods are less computationally in-
tensive and more accurate than finite difference methods, which are susceptible to
round-off errors. This gradient information can be directly used by an optimization
tool such as MATLAB's fminunc function. More information about AD can be found
in [40, 41, 42].
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Figure 4-4: Three-Layer Neural Network

4.1.3 Method

While artificial neural networks have numerous uses, this thesis focuses on their ability
to act as controllers. Typical control architectures for neural nets apply them as
universal function or plant approximators that are inverted and used to develop a
control solution [39]. Another technique trains neural networks on a set of known
optimal trajectories in an attempt to forge a guidance law that applies to other
locations within the state-space of the training set I43]. The approach outlined below
assumes known plant dynamics and uses the neural net as the controller. The inputs
to the neural net are the relevant plant states and the output is the control signal. The
output of the network for a given input depends on the weights and biases established
for each node.2 The weights define the control policy that determines how the player
will respond given the current state of the game.

The solution for differential game problems requires the computation of optimal
control policies for each player. To find the optimal policies, an arbitrary control
policy is first set for the evader, E. The pursuer, P, initializes the neural net control
policy to a random, normal distribution of weights. The plant dynamics, neural net
controller, cost functions, and Runge-Kutta integration algorithm are all combined
into one FORTRAN main function as shown in Figure 4-5. The inputs to this func-
tion are the initial state conditions, the neural net weights, and a time vector. The
outputs are the state trajectory, control trajectory, and final cost. Additionally, the
FORTRAN main function is analytically differentiated line by line using the TAPE-
NADE Automatic Differentiation Engine [411. TAPENADE creates an adjoint main
function whose output is the cost J and the cost gradient - also shown in Figure 4-5.
The cost gradient output provides the sensitivity of the final cost to each weight. Both
the main function and adjoint main function are compiled into MATLAB MEX-files,
which enables them to be called from MATLAB as if they were native functions.

MATLAB's fminunc solver minimizes the cost output of the MEX-function by
adjusting the weights as shown in Figure 4-6. The solver begins with a random,
normal distribution of weights, determines the cost, changes the weights according to
the direction indicated by the cost gradient, then runs the simulation again with the

2The generic term weights will be used to describe both node connection weights and node biases.



NN Weights ~--~

Initial State

Ve\ tol

Cost:J

Padrtial

Derivative of
(ost: dJ/,,1.

ost:J

State

Ti aje torv:
i ti

(ontr ol

Tr ajectory:

uit)
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new weights. This process is repeated until adjustnment of the weights can no longer
reduce the final cost. With the pursuer's neural net weights established. the process
to find the evader's optimal weights begins.

As before, the weights for the control policy of E are initialized with a random
normal distribution. The weights for the control policy of P remain unchanged while
fminunc ad justs the weights for E. Once fminunc produces a new set of weights, the
cycle repeats. This time, however, fminunc uses the previous weights for P rather
than a new normal (distribution. The weight optimizations continue until both P and
E have optimnal policies.

Because the TAPENADE AD engine requires FORTRAN77, FORTRAN95, or C
code, it was necessary to create an interface between MATLAB and the FORTRAN
main files. Gnuimex [44] facilitated the creation of the MEX-files from FORTRAN95
code compiled by GFortran 145]. Once created, the MEX-file operates like any other

IMATLAB fuinctioni.

4.2 Optimal Control Problems

Before attempting a differential game problem, several one-player optimal control

p)roblems were examined in order to determine how the neural network control policies

compare to the known optimal solutions.
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4.2.1 1D Optimal Problem

The first problem is a one-dilnensional constrained optimal control p)roblem 146]. The
goal is to design the control inputs that miniize the following cost functional.

Inin = -. (tf) + I (t) dt (4.1)

where i = :r + i, .:(0) = 0, u(t) < 5. and t = 4. Using a traditional optimal control
approach of analytically deriving the necessary and boundary conditions. The optimal
control strategy

t5 < t
(t) = 4, (4.2)

is found. which results in the state trajectory

:'(t) = (4.3)-, 1' t+ (t-(5 -2 ') t > t ,.

where t.= 4 - ln(10).

The neural network was set up with a single input (the state z), two hidden layers.
and a single output (the control ii). The tan function was used for all the neurons.
The initial weights were a ranhdom, nornial distribution scaled by 0.10. Figure 4-7

illustrates the agreement of the optimal control and neural network approaches.
While the neural network method usually resulted in the optimal solution, on
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occasion the solver converged to a sub-optimlal solution as shown in Figure 4-8. In
the sub-oI)rtmal cases the conitrol coirnrIand typically reinained constant throughout
the entire simulation. Convergence to the optirmal solution was dependent upon the
initial vector of rani(domi weights. Several initial weight vectors should b)e used b)efore
deeminiig any solution optimal., as it is possible that the solver did not converge to the
global minimuiri cost for a particular problem.

4.2.2 Missile Intercept Problem

In his pIopular work on missile interceptor guidance. Zarchan discusses how a lag in the
missile guidanice syst em results in miss (listance betweei the interceptor and the target
at the final time when using pIroportional navigation and augmented proportional
navigation 147. p. 155. The interceptor guidance system d(lynamnics are represented
by a single lag

S(4.4)
n,. 1 + sT

where 11L is the achieved acc(eleration, 'n, is the collnantded acceleration, and T is
the guidance system time constant. The( dynamlics can be written in state-space form
as

) 0 1 0 0 1 0

T () () () n. 0
i() () () L I L
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where iri is the lateral target maneuver. The goal of
the cost functional

J = 2(tj) + , dIt

the intercep)tor is to ininiIize

(4.6)

where -. is a user-selected gain that weights t he importance of tihe integral term.
Smaller places imore eml)hasis on miss distance at t f.

Figure 4-9 shows how the p)erformanc(e (of the neural net control policy was con-

I)arab)le to the op)tirral solution. However. this result was obtained after adding an
additional penialty J' y! (1) (It for miss distance dulrinig the gaine. Without the extra

peiialty. the solver focused oi zero miss at tf witi less consideration for miss distance
through the rest of the game.

4.2.3 Orbit Raising Problem

Brvson and Ho preseiit a p)rob)lem regarding the maxiimum radius orbtit transfer in

a given time [13. p. 6611481. In this pIroblemi thrust direction O(t) is used to transfer
a vehicle with a constaiit thrust rocket engine fromi ain initial circular orbit to the

largest pIossible circular orbit in a fixed amount of time. The cost functional is

J = r(t) (4.7)

The following terms will be uised:

. 1 II I I"""
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r radial distance of spacecraft froin attracting center
t = radial component of velocity
V = tangential component of velocity

-n = mass of spacecraft

-i fuel consumption iate (constant)
o = thlrust direction angle
p = gravitational constant of attracting center

The svsten has the dyIlnamics

(4.8)

(4.9)
ST sinll (5

r r2 to- I t

u I T cos 0
- +
r Imo- I t t

(4.10)

/1,

with the initial conditions r(0) an

conditions u (tf) 0 and r() -) - \ I 0.

In order to enforce the terminiial conditions. additional p)enalty terims
in the terminal cost so that

3i. ( ) ~-elf)

I the terminal

were included

(4.11)

1

0

ro., u(O) = 0. and r(O) =

J= (t) - i (" (ts)
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The terins (i and 3 are user selected weights that scale the penalty for a violation of
the terminal conditions during the maximization of tlihe cost J.

Figures 4-10 and 4-11 demonlstrate the ability of the neural network. represented
bY dashed lines. to provide a solution that is close to the optimal solution provided
by more traditional optinlal control methods. The final solution varied according
to the number of nodes and layers,. the size of the normal distribution of weights.
and the magnitude of the terminal condition penalties. Adjusting these termn or
adding additional initial conditions to the training set could help the neural network
controller achieve a closer correlation with the optimal solution.
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4.3 Differential Game Problems

4.3.1 Homicidal Chauffeur

Once again the equations of motion for P and E are

X1 Vi COS 1
yl v1 sin 01

5C= =1 U (4.12)

X 2  V 2 COS U 2

-y2 v2 sin u 2

with initial conditions
xl(to)
yi(to) Yio

x (to)= 01 (to) 10o (4.13)
2 (to) 20

Z 2 (to) Y 20

where x and y refer to the location of each player on the coordinate frame and 01 is
the pursuer's heading angle relative to the x-axis.

While the pedestrian, E, can change direction instantaneously, the car P has a
limited turn rate. Thus, a constraint

IU1  Umax (4.14)

is placed on the absolute angular velocity of P. The capture condition

I (Xf, tf) = 1(x(tf), tf) =(x (tf) - X2 (tf))2 + (Y1 (tf) - Y2 (tf))2 - d2 = 0 (4.15)

is the only terminal constraint. The game concludes when the distance between the
car and the pedestrian is equal to the capture radius, d. This game begins in the
capture zone so P is guaranteed to catch E. The objective of the game of degree
depends on the time of the game at capture thus,

J = 4 (x (tf) , tf) = tf (4.16)

As explained in Section 4.1.3, MATLAB's fminunc solver is used to find the
optimal weights for each neural network control scheme. E is initially assigned a
strategy to move away from P. The solver finds the optimal weights for P against
this assigned strategy. Once the weights for P are established, another simulation
series is run in which the pursuer's weights are held constant while the solver adjusts
the evader's weights. The optimizations for each player continue until the solver
converges to optimal strategies for both players. For the homicidal chauffeur scenario
shown in Figure 4-12, the solution was found within five iterations.

A set of ten initial conditions was used to train the neural network for this problem.
When evaluating a training set, MATLAB runs each initial condition through the



Figure 4-12: Homicidal Chauffeur Problem by Neural Network Method

FORTRAN MEX-file and sums the resulting cost and gradient outputs. The final
summation of both those figures is sent to the fminunc solver to provide the search
direction for the next weight adjustments. Figure 4-13 shows how the solver trained
the weights in the first step for P to chase E. In order to achieve this result for the
large training set, however, the cost function was changed to

J = V(Xl (tf) - x 2 (tf))
2 + (Yi (tf) - Y2 (tf))2  (4.17)

in order to account for the fact that the capture time would not be the same for each
scenario. This cost function substitution works because the trajectory for a minimum-
time capture is the same as the trajectory that minimizes the distance between the
players at the final time. Once the neural networks are trained for both players using
the training set of initial conditions, the cost function can be changed back to J = tf
and MATLAB's constrained minimization solver fmincon can find the capture time
subject to the terminal constraint of Equation 4.15.

4.3.2 Football Problem

The football problem examines the interaction between two players during a hypo-
thetical kick-off return. This problem is particularly useful as a framework from
which to eventually build a combat scenario with realistic dynamics. As proposed by
Breakwell and Merz [12], both players have fixed speed and simple motion yielding
the dynamic equations

1 v 1 CO S U1
1 Y1 vl sin 1 ul[= f = = S (4.18)

f2 2 2 COS u2
L y2 J L2V sin J

XL~ ~
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with initial conditions

x (to)= Y1(to) yO Y I (4.19)
2(t (to) 2

L y2(to) I [ Y20 
The offensive player, E, begins near his own goal line (Y20 = 0) and attempts to run
up-field along the positive y-axis as far as possible. The resulting cost functional for
the game is

J = y2(tf) (4.20)

The pursuer, P, seeks to capture E or push him out of bounds as far down-field as
possible. Capture takes place when E enters the capture radius of P according to the
condition

l(x(tf), tf) = (x (tf) - x 2 (tf))2 + (yl (tf) - Y2 (tf))2 - d = O (4.21)

In the case where E has a slight speed advantage and both players begin in the
lateral center of the field, the optimal strategy for E is to run directly towards P
then arc towards either sideline while running just outside of the capture radius. In
the free time problem, a wide field or a large speed advantage will allow E to move
off this arc and run directly up-field avoiding both capture and the sideline. The
neural net implementation below uses a fixed final time and does not enforce sideline
boundaries.

In order to provide a valid gradient search direction to the fminunc solver, the
cost function must be written so that adjustments to the weights do not cause dis-
continuous jumps in the cost. For example, if the current policy allowed E to skirt
around the capture radius of P and make it up-field without getting caught, a slight
change to the policy might cause E to get captured at half the distance as the previ-

~

I I I I I I I I



ous policy. The jump in final cost would cause a discontinuity in the gradient search.
To mitigate this problem, the cost calculation is posed so that the transition between
a game without capture and a game with capture is continuous. The following code
demonstrates how the final cost for each game is calculated:

EYdist = x(4,nt);
do i=nt-1,1,-1

beta = 0
distPE = sqrt((x(4,i)-x(2,i))**2+(x(3,i)-x(l,i))**2)
if (distPE < CR) then

beta = exp(-alpha*(distPE-CR))-l+alpha*(distPE-CR)
end if

EYdist = (beta*x(4,i)+EYdist)/(beta+l)
end do
C = -EYdist

EYdist begins as the up-field position y2(tf) of E at the final time of the simulation.
A search along the state history is conducted to see if E enters the capture radius
(CR) of P at any time during the game. The beta term

/ = e(- a (distPE- C R ) ) - 1 + a(distPE - CR) (4.22)

is plotted for several values of alpha in Figure 4-14 with CR of 0.5. This term is used
to continuously transition the cost of the game from the up-field position at the final
time to the up-field location where capture actually occurs. The beta function has
a zero derivative when distPE = CR. Another beta calculation can be conducted to
penalize movement out of the side boundaries as well.

P is initially given the strategy to move towards E as shown in Figure 4-15. Once
the weights for E are established, P is then allowed to find his optimal strategy.
Rather than minimize the EYdist from the normal distribution of weights, a more
general cost function

J= (Xi (t) - X2 (t))
2 + 2 () 2 dt (4.23)

is assigned. This cost function directs the weights to minimize the distance between
P and E during the entire game. The result of this training is shown in Figure 4-16.
These weights are used as the starting point for the weight adjustments of the real
cost function to minimize EYdist. After several iterations the result shown in Figure
4-17 is achieved where the bold lines represent the neural net method solution and
the faint lines are the optimal solution.

The x and y displacements between the players serve as the input to the neural
network during this fixed time solution where tf = 7 s. There are three hidden
layers with 5, 7, and 7 nodes, respectively. Each network has a single control output
indicating the heading angle for the player. Seven initial conditions make up the initial
training set. The evader begins at the origin (0, 0) in each scenario and the pursuer



begins at scattered locations up-field. The primary initial condition of concern is
the one in which P is directly in front of E at location (0, 5). The capture radius
for P is 0.5. E has a speed advantage over P so that =- 1.10. After the first two
rounds of iterations, the training set is reduced to three points in the vicinity of (0, 5).
Reduction of the training set often improves the solution for the next optimization,
but this result comes at the risk of over-training. For example, if P over-trains to a
capture of E on the left side of the field, during the next optimization E might break
right and then move straight up-field while P continues to move towards the left side
of the field completely disregarding the evader's change of strategy.

Based on the Breakwell's solution description, the result from the neural net poli-
cies is sub-optimal. The evader in Figure 4-17 moves right too early in the game and
gives up substantial up-field distance compared to the optimal solution. One issue
is that this problem is what Isaacs calls an instantaneous mixed problem. In the
optimal solution, at the location just outside the pursuer's capture radius, the evader
can either go left or right on the arc just outside the capture radius. In the neural net
solution, however, E tends to pick one direction and then optimize strictly to that
option. Whether the left or right arc is chosen is a function of the initial random
weights used to establish the network. Once the strategy for E is established in one
direction, P can take advantage of that tendency and move out in front E in order
to decrease the pursuer's down-field distance at final time. The optimal strategy for
E would direct him to the left if P was using the strategy shown in the figure.

Some deviation from the optimal solution also may have resulted from the use of
the beta function to keep the cost continuous. In the optimal solution, the move-
ment from the head-on collision course to the arc towards the sideline occurs instan-
taneously just outside the capture radius of P. The ramp up of the beta function may
cause this instantaneous direction change to smooth out. As with previous uses of
the neural net method, this problem is affected by the size of the neural network used
as well as the breadth of the training set. More trials need to be conducted in order
to determine what training sets produce the best results.

4.4 Discussion

The neural network method provides control policies for optimal control and dif-
ferential game problems without knowing the structure of the solution beforehand.
This benefit is a welcome departure from the boundary value method where plausible
guesses for the state, costate, and control trajectories are required in order to achieve
convergence. In addition, the solution comes in the form of policies that can apply
to any games within the state-space of the training set.

There are some difficulties that still remain to be explored before the viability of
this method for solving optimal control and differential game problems can be con-
firmed. One of the primary challenges is how to deal with boundary conditions. For
the optimal control problems such as the orbit raising problem, boundary conditions
were enforced by adding penalties to the final cost of the game. In the homicidal
chauffeur differential game problem, the capture condition required a different simu-
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lation end time for each initial condition set. To get around this limitation the game
was solved with a modified cost function. In the football problem E operated on an
arc just outside the capture radius of P. A slight weight change could discontinuously
drop the final down-field distance from the end of the arc to the beginning. The cost
function had to be carefully reformulated so that there were no discontinuities. Each
optimal and differential game problem examined required some ingenuity to achieve
desirable results.

Another difficulty with this method is the sheer number of parameters that can be
adjusted before solving a problem. There are no set rules for determining an adequate
number of nodes, layers, or what type of transfer function to use. The scaling of the
initial set of weights was also a result of trial and error. In addition, there is no ideal
size for a training set in terms of the number of initial conditions or the spread of the
conditions throughout the state-space. Future development of software routines that
could do batch processing could aid the convergence to optimal solutions.

The issue of mixed situations, where two optimal solutions exist, presents a sig-
nificant barrier to the viability of the neural network method for differential game
problems. The network often optimizes to one direction and allows the other player
to take advantage of that self-imposed limitation. If the neural network were captur-
ing the optimal behavior, it would switch to the other optimal strategy if the opposing
player tried to take advantage of a particular trajectory choice. Finally, the related
issue of over training against the opposing player's control policy can also have dis-
astrous results during the next weight optimization. A player that over trains to a
particular trajectory will not be able to adapt during the next player's optimization
process.

4.5 Conclusion

The use of neural networks to form control policies for optimal control and differential
game problems is still in its infancy. Of all the techniques examined in this thesis,
however, this method provides the most potential for the solution of large problems
where the switching structure may not be readily apparent. With more study regard-
ing how to solve free end-time problems and enforce boundary conditions this method
could provide a sufficient means to do the type of parametric analysis that originally
motivated this work.



Chapter 5

Conclusions

Three methods for solving differential game problems numerically have been exam-
ined. Each method offers advantages and disadvantages when compared with the
other techniques. Sections 5.1 through 5.3 provide an overview of the benefits and
shortcomings of each method discussed in this thesis. In section 5.4 recommendations
are made regarding what solution method to use depending on the type of differential
game problem encountered. Finally, Section 5.5 discusses what future work could aid
the solution of differential game problems using numerical methods.

5.1 Boundary Value Method

The boundary value method is a mathematically rigorous approach that has many
similarities to the classical method for solving optimal control problems. The basic
procedure is to take a set of dynamics governing the motion of both players, form the
Hamiltonian, analytically derive the necessary conditions, and enforce the conditions
at the boundaries thus creating a boundary value problem. The final solution includes
state, control, and costate information that can then be used to verify the optimality
of the solution. Numerous software packages have been developed for a variety of
programming languages that can solve these two-point and multi-point boundary
value problems. In particular, the MATLAB bvp4c function provides a means for
rapid construction and solution of boundary value problems.

While it may be appropriate for simple problems, the boundary value approach
becomes much more difficult as the complexity and nonlinearity of the dynamics
increases. The approach solves both the homicidal chauffeur and target guarding
problems but requires significant help by way of good initial guesses for the state
and costate trajectories in addition to the terminal time for the problem. The initial
guess must incorporate knowledge of the switching structure that arises as the players
move on and off the state and/or control constraints. Also, coming up with an initial
guess for the costate can be non-intuitive yet have a significant impact on the final
convergence of the problem. The costate requirement is a primary drawback of all
indirect solution methods.

The boundary value method also requires analytical derivation of the necessary



conditions that can be cumbersome for higher order problems. In addition, the bound-
ary constraints are highly dependent on the nature of the problem such as whether
there is free or fixed terminal state or end time. An additional difficulty arises when
solving differential game problems because knowledge of whether the game begins in
the capture zone or the evasion zone is required. The zone will determine how the
value function is defined as either a game of kind (does capture occur?) or a game
of degree (how well does the player perform during the capture?). Finally, when the
boundary value method does converge to a solution it only applies to the specific
problem at hand where both players are acting optimally and does not reveal the
policy of each player. Thus, a new simulation must be conducted for every situation
being examined.

5.2 Decomposition Method

The decomposition method provides a linearized search method that can be used to
solve differential game problems. In this approach, an initial arbitrary trajectory is
provided for the evader, and the pursuer's course is optimized to minimize the value
(cost) function. At the capture location an approximate linearized gradient of the
value function is evaluated in the neighborhood of the capture point. The direction
of the gradient indicates where the evader's final aim-point should be moved in order
to maximize the value of the game. The pursuer's trajectory is optimized against the
evader's new trajectory and the cycle repeats until changes to the evader's trajectory
no longer increase the payoff.

As a direct method, one of the benefits of the decomposition approach is that it
does not require any information about the costate. While the lack of costate infor-
mation increases the likelihood of achieving convergence it remains more difficult to
verify the optimality of the solution after the fact. Another benefit of the decom-
position method is that it can be implemented using a variety of readily accessible
solvers including MATLAB's fmincon function. This implementation enables easier
handling of the boundary conditions and constraints compared with other more cum-
bersome, customized solvers. Another shortcoming of this approach is that the initial
conditions often affect the final convergence of the problem. Certain target locations
in the target guarding problem cause the evader to jump back and forth across the
optimal solution without ever converging to the final solution. There is no way to
know what initial conditions will result in convergence.

5.3 Neural Network Method

The method of neural nets provides a way to directly solve for the control policies
for optimal control and differential game problems. In this method a set of weights is
given to a neural network that determines the output of the network for a given input.
The relevant system states are the inputs to the neural network and the output is the
control signal. The input to the simulation is a set of weights w, the initial conditions



(or training set of initial conditions), and the time period, and the output is the final
cost J and a cost gradient 3. The MATLAB solver adjusts the weights based on the
direction indicated by the gradient in order to further reduce the cost. The simulation
is then repeated with the new weights and the solver once again adjusts the weights to
further reduce the cost. The solver continues to adjust the weights until the minimum
cost is found. The final weights define the control policy. Once the policy for one
player is found, the other player's weights are optimized against the previous player's
policy. The weights which govern the control policies are optimized iteratively until
a dual-optimal solution is found.

This method requires no knowledge of the costate or of the control switching
structure. The initial guess for the set of weights is a random, normal distribution.
Once the weights for the control policy are established, the policy can be used for
any initial condition within the range of the training set. With an adequately large
training set, the weights will be able to provide a closed loop policy for a variety of
different initial starting conditions with no need for further analysis. There are no
guarantees of good player behavior when a situation arises that is outside the range
of the neural network training set. There is also no certainty that the solution that
the solver converges to is globally optimal as the set of random weights can often
cause convergence to local minima.

Several optimal control problems were solved using the neural network method.
While the method produced agreeable solutions that matched or closely followed the
optimal solutions, some additions had to be made to the cost functions in order to
achieve the desired results. Specifically, dealing with terminal conditions presented a
challenge. Currently, the only way to enforce them is to add a penalty to the terminal
cost for any violation of a terminal condition.

The neural network method was also applied to two differential game problems.
The homicidal chauffeur problem demonstrated the difficulty of using neural networks
when dealing with free end-time problems that are typical of pursuit-evasion scenarios.
The football problem revealed how careful formulation of the cost function is required
so that no discontinuous jumps occur while the solver adjusts the weights of the control
policies. This problem also demonstrated how the networks can often over-train
against the opposing players policy. Over-training reduces the ability of the policy
to adapt during the next player's control policy optimization. Additional difficulties
are encountered when instantaneous mixed arise and a player has two equally good
trajectory options.

5.4 Recommendations

For smaller problems, the boundary value or decomposition methods may require the
least amount of preparation before actual problems can be solved in MATLAB. The
boundary value method provides the most mathematically rigorous option and has
very high accuracy. It can also provide costate information for the verification of the
optimality of the solution. The decomposition method is not as difficult to set up
but is limited in that there is no clear way to know what problems will converge to a



final solution. As demonstrated by the target guarding problem, a simple movement
of the initial conditions can make the difference between a simulation that converges
and one that does not. If the goal is to solve more realistic, nonlinear problems, then
the neural network method may be the best option, though the optimality of the
solution is not guaranteed. Further improvement of the solution procedure regarding
how to choose the number of nodes, layers, training set, and initial distribution of
weights will help establish the method as a viable option for the parametric analysis
that motivated this work.

5.5 Future Work

Because the boundary value and decomposition methods have received thorough
treatments in the literature, the primary area for future work is with the neural
network method. One specific area for research concerns how the neural networks are
established and trained. Currently, the number of layers and nodes, the size of the
initial random distributions, and the number of initial conditions in the training set
are all established through trial and error. More research could aid the determination
of general guidelines for network creation based on the complexity of the problem.

Another area worthy of future work regards the convergence rate for the neural
network method. While this thesis demonstrated that neural networks can be used to
emulate the optimal solutions of some small problems, a better understanding of how
fast and how well the method converges to the optimal solution is necessary before
its viability can be confirmed. In principle, highly dimensional nonlinear problems
are difficult to solve (Bellman's "curse of dimensionality" [26]), but in some cases the
optimal control solutions can be represented in simple terms. As the complexity of
the solution increases the more neurons will be required to accurately capture the
solution behavior and the rate of convergence may slow and fail to reach the optimal
solution.

Assuming that neural network methods can find solutions to optimal control prob-
lems, there is still no guarantee that they will be able to solve differential game
problems. As demonstrated during the football problem, over-training can become
a significant issue when dealing with a differential game. The other primary issue
is dealing with what Isaacs refers to as instantaneous mixed locations where two or
more equally good solutions exist. Further study needs to be done to determine if it is
possible that the correct switching behaviors will emerge or if it possible to introduce
logic to the neural networks in order to capture these behaviors. Lastly, if the issues
of over training and mixed problems can be solved for small problems such as the
football problem, work must be completed to determine how the networks and train-
ing sets can be altered in order to obtain the optimal solutions for highly dimensional
problems with realistic, nonlinear dynamics.



Appendix A

Differential Game Code

A.1 Boundary Value Problems

A.1.1 Target Guarding Problem
function BVPTG

global cO x1O x20 v w 1

%%% Initial Conditions

cO = [50; -40]; % Target position

xlO = [10; -50]; % P initial position

x20 = [0; 0]; % E initial position
v = 1; % P speed

w = 1; % E speed

1 = 0.03; A "Armlength" distance of P
alphaO = .7;

Tg = 47;
params = [alphaO, Tg];

% Initial Solution
solinit = bvpinit(linspace(0,1),cTG_init,params);

% Run Solver
options = bvpset('stats','on');

sol = bvp4c(@TG_ode,TG_bc,solinit,options);
alpha = sol.parameters(1)
max = size(sol.y,2);
dist = norm(sol.y(1:2,max)-sol.y(3:4,max))
p = sol.y(5:8,max)
tf = sol.parameters(2)
A Final Solution Plot

hold on

state = sol.y(1:4,:);
plot(state(3,:),state(4,:),'r:','LineWidth',1.5)
plot(state(1, :),state(2,:),'b--','LineWidth',1.5)

plot(cO(1),c0(2), 'x','LineWidth' ,2,MarkerSize',12)

grid off

xlabel('x',' FontSize',14);ylabel('y','FontSize',14);

% Plot perpendicular bisector
xm = ( xl0(1)-x20(1) )/2; ym = ( x10(2)-x20(2) )/2;
m = -( (x10(2)-x20(2))/(x10(1)-x20(1)) )^-1;



bl = ym - m*xm;

xb1 = -10; xb2 = 60; ybl = m*xbl+bl; yb2 = m*xb2+bl;

hold on

b2 = c0(2)+1/m*cO(1);
x_cpa = (b2 - bl)/(m+1/m); ycpa = m*xcpa + bl;

scatter(xcpa,ycpa);
plot([xbl,xb2], [ybl,yb2],k--');
axis equal

end

function dydt = TG_ode(t,y,params)
global cO x10O x20 v w 1

T = params(2);

pl = y( 5 ); p2 = y(6 ); p3 = y(7); p4 = y(8);

cosul = 1/sqrt(l+(p2/pl)^2);
sinul = (p2/pl)/sqrt(1+(p2/pl)^2);

cosu2 = 1/sqrt(1+(p4/p3)^2);

sinu2 = (p4/p3)/sqrt(l+(p4/p3)^2);
dydt=T*[v*cosul;v*sinul;w*cosu2;w*sinu2;0;0;0;01;
end

function res = TG_bc(ya,yb,params)

global cO x1O x20 v w 1

alpha = params(1);

T = params(2);

Tmin = 20;

if T < Tmin

W = Tmin;

else

W = T;
end

pl = yb(5); p2 = yb(6); p3 = yb(7); p4 = yb(8);

cosulb = 1/sqrt(l+(p2/pl)^2);
sinulb = (p2/pl)/sqrt(l+(p2/p)^2);

cosu2b = 1/sqrt(l+(p4/p3)^2);

sinu2b = (p4/p3)/sqrt(l+(p4/p3)^2);
res = [ ya(1)-x10(1);ya(2)-x10(2);

ya(3)-x20(1);ya(4)-x20(2);
norm(yb(1:2)-yb(3:4))-1;

yb(5) - alpha*(yb(1)-yb(3))/norm(yb(1:2)-yb(3:4));
yb(6) - alpha*(yb(2)-yb(4))/norm(yb(1:2)-yb(3:4));
yb(7) - (yb(3)-cO(1))/norm(cO-yb(3:4)) -

alpha*(yb(3)-yb(1))/norm(yb(1:2)-yb(3:4));
yb(8) - (yb(4)-cO(2))/norm(cO-yb(3:4)) -

alpha*(yb(4)-yb(2))/norm(yb(1:2)-yb(3:4));

yb(5)*v*cosulb+yb(6)*v*sinulb+yb(7)*w*cosu2b+yb(8)*w*sinu2b];

% T-WI;
end

function g = TG_init(tau)
global cO x10O x20 v w 1

% Guess End Location: True x - 43 y - -17

xg = 43;

yg = -30;

% Calculate End Time
%Tg = norm(x10-[xg;yg])/v;
%Tg = norm(x10-cO)/v;



Tg = 1*47;
ulg = atan2(yg-x10(2),xg-x10(1));
u2g = atan2(yg-x20(2),xg-x20(1));

t = tau*Tg;
xp = [v*t*cos(ulg)+xlO(1);v*t*sin(ulg)+x10(2)1;
xe = [w*t*cos(u2g)+x20(1);w*t*sin(u2g)+x20(2)];

pl = cos(ulg); p2 = sin(ulg); p3 = cos(u2g); p4 = sin(u2g);
g = [xp;xe;pl;p2;p3;p4];
end

A.1.2 Homicidal Chauffeur Problem
function BVPHC

clc

close all

clear all

%%% Initial Conditions

% Pursuer
x10 = [0;0];

philO = 0;

% Evader
x20 = [4;4];

% Parameters
vi = 3;

v2 = 1;
ulmax = 1;
1 = 1;

% Initializing variables for the initial guess
t-p = 0; philp = phil0;

xlp = x10(1); ylp = x10(2);

x2_p = x20(1); y2_p = x20(2);

% Initial guess for lagrange multiplier of terminal cond.
alpha0 = .6;

% Threshold for p3 below which p3 = 0
thresh = 0.02;

N = 100;

mesh = linspace(0,1,N);
% Create initial guess for state and costate
solinit = bvpinit(mesh,@HCinit,alpha0);

% Run BVP Solver
options = bvpset('stats','on');

sol = bvp4c(@HCode,@HCbc,solinit,options);
alpha = sol.parameters

max = size(sol.y,2);
tf = sol.y(11,max)
% Plot Results

if 1

figure

hold on

Pstate = sol.y(1:2,:);
Estate = sol.y(4:5,:);
plot(Estate(, :),Estate(2,:)
plot(Pstate(, :),Pstate(2,:)

,'r:','linewidth',1.5)

,'b--','linewidth',1.5)



plot(x20(1),x20(2),'rx','LineWidth',1.5,'MarkerSize',10);

plot(xlO(1),xlO(2),'bd','LineWidth',1.5,'MarkerSize',6);

legend('Evader Path','Pursuer Path','Evader Init. Pos.', ...
'Pursuer Init. Pos. ','location','NorthWest');

axis equal

xlabel('x', 'FontSize',14);ylabel('y', 'FontSize',14)

shg

hold off

figure

P3 = sol.y(8,:);

tout = tf*sol.x;

plot(tout,P3);
end

function dydt = HCode(t,y,alpha)
% States
xl = y(1); x2 = y(4);

yl = y(2 ); y2 = y(5);
phil= y(3);

% Costates
pl = y(6 ); p4 = y(9);
p2 = y(7); p5 = y(1O);

p3 = y(8);
% Final Time
T = y(11);

ul = -p3;

if ul > thresh

ul = ulmax;
elseif ul < -thresh

ul = -ulmax;

end

cosu2 = 1/sqrt(1+(p5/p4)^2);
sinu2 = (p5/p4)/sqrt(l+(p5/p4)^2);
xl_d = vl*cos(phil);
yld = vl*sin(phil);

phil_d = ul;

x2_d = v2*cosu2;

y2_d = v2*sinu2;

pld = 0;

p2_d = 0;

p3_d = pl*vl*sin(phil) - p2*vl*cos(phil);

p4_d = 0;
p5_d = 0;

dt = 0;
dydt = T*[xl_d; yl_d; phild; x2_d; y2_d; ...

pl_d; p2_d; p3_d; p4_d; p5_d; dt];

end

function res = HC_bc(ya,yb,alpha)

p3T = yb(8);

ulT = -p3T;
if ulT > thresh

ulT = ulmax;

elseif ulT < -thresh



u1T = -ulmax;
end

cosu2

sinu2

= 1/sqrt(1+(yb(10)/yb(9))^2);
= (yb(10)/yb(9))/sqrt(1+(yb(10)/yb(9))^2);

res = [ya(1)-xlO(1);ya(2)-xlO(2);
ya(3)-phil0;

ya(4)-x20(1);ya(5)-x20(2);
norm(yb(1:2)-yb(4:5))-1;
yb(6) - alpha*(yb(1)-yb(4))/norm(yb(1:2)-yb(4:5));

yb(7) - alpha*(yb(2)-yb(5))/norm(yb(1:2)-yb(4:5));

yb(8) - 0;

yb(9) - alpha*(yb(4)-yb(1))/norm(yb(1:2)-yb(4:5));

yb(10)- alpha*(yb(5)-yb(2))/norm(yb(1:2)-yb(4:5));

yb(6)*vl*cos(yb(3))+yb(7)*vl*sin(yb(3))+yb(8)*ulT+...

yb(9)*v2*cosu2+yb(10)*v2*sinu2+1];
end
function v

Zu2g
u2g
phi_Tg

%Tg

Tg

= HC_init(tau)
= 58*pi/180;

= 45*pi/180;
= u2g;

= 2.5;
= 2.3;

if phil_p < phi_Tg
p3 = -1;

else

p3 = 0;
end

ul = -p3;
phil_d = ul;
t = tau*Tg;
dt = t - t_p;

phil = phil_p + dt*phil_d;
pl = -1;

p2 = 2*pl;

p4 = -pi;
p5 = -p2;

cosu2 = 1/sqrt(l+(p5/p4)^2);

sinu2 = (p5/p4)/sqrt(l+(p5/p4)^2);

xl_d = vl*cos(phil);
yl_d = vl*sin(phil);

x2_d = v2*cosu2;

y2_d = v2*sinu2;

xl = xl_p + dt*xl_d;

yl = yl_p + dt*yl_d;

x2 = x2_p + dt*x2_d;

y2 = y2_p + dt*y2_d;

v = [xl;yl;phil;x2;y2;ply2;p2;p3;p4;p5;Tg];

phil_p = phil;

xl_p = xl;

yl-_p = yl;
x2_p = x2;

y2_p = y2;



t_p = t;
end

end

A.2 Decomposition Method

A.2.1 Target Guarding Problem

function Decomp_TG

% Other Initial Conditions
N = 50; % Number collocation points
v = 1; % P speed

w = 1; % E speed

d = 0.001; % "Armlength" distance of P
if 1 % Target Guarding
%% Initial conditions of Pursuer and Evader
cO = [15; 5]; % Target position
xlO = [5; 0]; % P initial position
x20 = [0; -.5]; % E initial position
end

%%% Initial conditions for P:min %%%
A = []; % Linear inequality constraints
b = []; % A*X <= b
Aeq = []; X Linear equality constraints
beq = []; % Aeq*X = Beq

lb = [] ; Bounds
ub = []; % Ib <= X <= ub
% Initial Guess
% xg = 2.1;
% yg = 3.7;
xg = 5;

yg = 5;
Exl,x2,ul,u2,T1,T2] = TGinit(xg,yg);
T2_step = linspace(0,T2,N);
% Loop parameters
tol = 1;
count = 0;
options = optimset('Display','final');
while tol > 0.0050

u2_p = u2;
count = count + 1

%%% P: min

Ex,fval,exitflag,output, lambda] = fmincon(©distfun, ...
[ul;T1],A,b,Aeq,beq,lb,ub, mycon,options);

% Store lagrange multiplier associated with capture condition 1 = 0
lagrange = lambda.ineqnonlin(1);
Ti = x(N+1); % Final time at intercept
ul = x(l:N); % P control angle to achieve optimal intercept



eO = x2_f;

%Partial derivative of payoff, q, WRT changes in eO
dqde = -[(eO(1)-cO(1))/norm(cO-eO);

(eO(2)-cO(2))/norm(cO-eO)];
% Partial derivative of capture condition, 1, WRT changes in eO
dlde = [(eO(1)-xl_f(1))/norm(xif-eO);

(eO(2)-xl_f(2))/norm(xlf-eO)] ;

% Gradient of the value function
c = dqde+lagrange*dlde;

%%% E: max
%u2 = fmincon(@val_fun,u2_p,A,b,Aeq,beq,lb,ub, mycon2,options);
u2 = fminunc(Oval_fun,u2_p);

bound = 10Opi/180;
u2 = fmincon(©valfun,u2_p,A,b,Aeq,beq,u2_p-bound,u2_p+bound);

tol = norm(u2-u2_p);

T2_step = linspace(O,T1,N);
end

% Plot Commands
if 1

hold on;

plot( x2(1,:), x2(2,:),'r:','LineWidth',1.5)

plot( xl(l,:), xl(2,:),'b--','LineWidth',1.5)

plot(cO() ,c0(2), 'x','LineWidth' ,2,'MarkerSize' ,12)

xm = ( xlO(1)-x20(1) )/2; ym = ( xlO(2)-x20(2) )/2;

m = -( (x10(2)-x20(2))/(x1l(1)-x20(1)) )^-1;

bi = ym - m*xm;

xbl = 1; xb2 = 3; ybl = m*xbl+bl; yb2 = m*xb2+bl;
b2 = cO(2)+I/m*cO(1);
x_cpa = (b2 - bl)/(m+1/m); y_cpa = m*x_cpa + bl;
scatter(xcpa,y_cpa);

plot(x20(1),x20(2),'rx','LineWidth',1.5,'MarkerSize',10);
plot(xlO(1),xlO(2),'bd','LineWidth',1.5,'MarkerSize',6);

legend('Evader','Pursuer','Target','Intercept');

axis equal
xlabel('x', 'FontSize',14);ylabel('y', 'FontSize',14);
.title({'Decomposition Method','Homicidal Chauffeur Problem'})
disp(['Final Time = ', num2str(T1)]);

plot([xbl,xb2],[ybl,yb2],'k--')

end

function q = distfun(x)
T = x(N+1,1); % Final Time

% Final positions of E



x2_f = [interpl(T2_step',x2(1,:),T,'linear','extrap'); .
interpl(T2_step',x2(2,:),T,'linear', 'extrap')];

q = -norm(cO-x2_f);
end

function [ciq, ceq] = mycon(x)

. Values being optimized

ul_fn = x(l:N,1); % Control ul at discrete points
T = x(N+1); % Final time
% Final positions of E
x2_f = [interpl(T2_step',x2(1,:),T,'linear','extrap'); ...

interpl(T2_step',x2(2,:),T,'linear', 'extrap')];

% Position of P at each time step
dt = T/(N-1);
xl(:,1) = xlO(1:2,1);
for i = 1:N-1

xl(:,i+1) = [ v*dt*cos(ul_fn(i)) + xl(1,i);
v*dt*sin(ul_fn(i)) + xl(2,i)];

end

xl_f = xl(:,N); % Final Position

% Inequality constraints
ciq = [norm(xl_f-x2_f)-d]; % Capture condition

% Equality constraints
ceq = [01;

end

function v = val_fun(x)
% Value being optimized
u2 = x;

% New E path final after changing u2
x2(:,1) = x20(l:2,1); % [x, y, t]
dt = Tl/(N-1);
for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(l,i);
w*dt*sin(u2(i))+ x2(2,i)];

end

x2_f = x2(:,N);
% Value function (linearized)

v = -( c'*(x2_f-eO) );

end

function [xl_g, x2_g, ul_g, u2_g, T_gl, T_g2] = TG_init(x_g,y_g)
% Initial Angle

ul_G = atan2((y_g-xlO(2)),(x_g-xlO(1)));
u2_G = atan2((y_g-x20(2)),(x_g-x20(1)));
T_gl = norm([x_g;y_g-xlO(1:2))/v;
T_g2 = norm([x_g;y_g]-x20(1:2))/w;

ul_g = ul_G*ones(N,1);
u2_g = u2_G*ones(N,1);
dt = T_gl/(N-1);
xl_g(:,l) = x10(1:2);
for i = 1:N-1

xl_g(:,i+l) = [ v*dt*cos(ul_g(i)) + xl_g(l,i);



v*dt*sin(ulg(i)) + xlg(2,i)];
end

dt = Tg2/(N-1);

x2_g(:,1) = x20(1:2);
for i = 1:N-1

x2_g(:,i+1) = [ w*dt*cos(u2_g(i))+ x2_g(1,i);
w*dt*sin(u2_g(i))+ x2_g(2,i)];

end

end

end

A.2.2 Homicidal Chauffeur
function Decomp_HC
% Other Initial Conditions

N = 75; % Number collocation points

v = 3; % P speed

w = 1; % E speed
d = 1; % "Armlength" distance of P
ulmax = 1; % Limitation of P angular rate

case2 = 0;

case4 = 0;

if 1 % Homicidal Chauffeur 1

%%% Initial conditions of Pursuer and Evader

xlO = [0;0;01; % P initial state [x10,ylO,phi10]
x20 = [4;4;1.0783]; % E initial state [x20,y20,phi20]
end

if 0 % Homicidal Chauffeur 2

x10 = [0;0;0];

x20 = [-7;0;01;

case2 = 1;

end

if 0 % Homicidal Chauffeur 3

x10 = [0;0;0];

x20 = [2.5;7.5;01];

end

if 0 % Homicidal Chauffeur 4
x10 = [0;0;0];

x20 = [-1;3;0];

case4 = 1;

end

%%% Initial conditions for P:min %%%
A = []; % Linear inequality constraints

b = []; % A*X <= b
Aeq = []; % Linear equality constraints
beq = []; % Aeq*X = Beq

lb = []; % Bounds
ub = []; ' lb <= X <= ub

%%% E initial trajectory (arbitrary, away from P)
u2g = atan2( (x20(2) - x10(2)),(x20(1)-x10(2)) );
% Game time guess
T = norm(x10(1:2)-x20(1:2))/abs(v-w); % Vrelative/InitDistance
if case2



T = 9; % for case 2
end

% Form initial guess for E (moving away from P in time)
u2 = u2g*ones(N,1);

% ul Condition for case 4
if case4

T = 8;

ang = 74*pi/180;

u2 = ang*ones(N,1);

end

% The E Trajectory in x,y coordinates
x2(:,l) = x20(1:2);

dt = T/(N-1);

for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(1,i);
w*dt*sin(u2(i))+ x2(2,i)];

end

x2_f = x2(:,N);

T_step = linspace(O,T,N);

%%% Form initial guess for P
ul = u2g*ones(N,1); % Assume ul = u2
% ul Condition for case 4
if case4

T = 8;

ang = 74*pi/180;
ul = [linspace(O,-2*pi+ang,4*N/9)';(-2*pi+ang)*ones(5*N/9+1,1)];

end

% Loop parameters
tol = 1;

count = 0;

options = optimset('Display','off');

while tol > 0.0050

u2_p = u2;

count = count + 1

%%% P: min
[x,fval,exitflag,output,lambdal = fmincon(@time_fun, .

[ul;T],A,b,Aeq,beq,lb,ub,@mycon,options);

% Store lagrange multiplier associated with capture condition 1 = 0
lagrange = lambda.ineqnonlin(1);

T = x(N+1); % Final time at intercept

ul = x(l:N); % P control angle to achieve optimal intercept

eO = x2_f;

%Partial derivative of payoff, q, WRT changes in eO

dqde = -[0;0];

% Partial derivative of capture condition, 1, WRT changes in eO
dlde = [(eO(1)-xl_f(1))/norm(xl_f-eO);

(eO(2)-x1_f(2))/norm(xl_f-eO)];

% Gradient of the value function



c = dqde+lagrange*dlde;

%%% E: max

u2 = fmincon(@valfun,u2_p,A,b,Aeq,beq,lb,ub,Qmycon2,options);

tol = norm(u2-u2_p);

Tstep = linspace(O,T,N);

end

X Plot Commands
if 1

figure

hold on;

%grid on

plot( x2(1,:), x2(2,:),'r:','LineWidth',1.5)

plot( xl(1,:), x1(2,:),'b--','LineWidth',1.5)

plot(x20(1),x20(2),'rx','LineWidth',1.5,'MarkerSize',10);

plot(x10(1),xlO(2),'bd','LineWidth',1.5,'MarkerSize',6);

legend('Evader Path','Pursuer Path','Evader Init. Pos.', .
'Pursuer Init. Pos.','location','NorthWest');

axis equal

xlabel('x','FontSize',14);ylabel('y','FontSize',14);

%title({'Decomposition Method','Homicidal Chauffeur Problem'})

disp(['Final Time = ', num2str(T)]);

end

function q = timefun(x)
% Value function being optimized (Min Time)

q = x(N+1,1);

end

function [c, ceq] = mycon(x)

% Values being optimized

ul_f = x(1:N,1); % Control ul at discrete points

T = x(N+1); % Final time

% Final positions of E
x2_f = [interpl(T step',x2(1,:),T,'linear','extrap'); ...

interpl(Tstep',x2(2,:),T,'linear','extrap')];
% Position of P at each time step
dt = T/(N-1);

xl(:,1) = x10(1:2,1);

for i = 1:N-1

xl(:,i+l) = [ v*dt*cos(ulf(i)) + xl(1,i);
v*dt*sin(ulf(i)) + xl(2,i)];

end

x1_f = xl(:,N); % Final Position

% Calculate (N-i) derivatives of the path
for i = 1:N-1

ul_d(i,1) = abs(ul_f(i+1)-ulf(i))/dt;
end

' Inequality constraints
c = [norm(xl_f-x2_f)-d % Capture condition

ul_d - ulmax]; % Turn rate constraint



% Equality constraints

ceq = [x10(3) - x(l)]; % Enforce initial condition of phil

end

function v = val_fun(x)
% Value being optimized

u2 = x;

% New E path final after changing phi2

x2(:,l) = x20(l:2,1); % Ex, y, t]
dt = T/(N-1);

for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(l,i);
w*dt*sin(u2(i))+ x2(2,i)];

end

x2_f = x2(:,N);

% Value function (linearized)
v = -( c'*(x2_f-e0) );

end

function [c, ceq] = mycon2(x)

% Values being optimized
u2 = x; % Control ul at discrete points
% Position of E at each time step

x2(:,l) = x20(l:2,1); % [x, y, t]
dt = T/(N-1);
for i = l:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(l,i);
w*dt*sin(u2(i))+ x2(2,i)] ;

end

x2_f = x2(:,N);

% Inequality constraints

c = []; % No constraint on E turn rate

% Equality constraints
ceq = [x20(3) - x(l)]; % Enforce initial condition of phi2

end
end

A.2.3 Game of Two Cars

function Decomp_2C
close all

clear

clc

N = 50; % Number collocation points

if 0 % Two Cars 1

%%% Initial conditions of Pursuer and Evader

x1O = [O;O;pi]; % P initial state [x10O,y1O,phi10]

x20 = [4;4;-pil; % E initial state [x20,y20,phi20]
v = 2; % P speed

w = 1; % E speed

d = 1; % "Armlength" distance of P
ulmax = 1; % Limitation of P angular rate
u2max = 2; % Limitation of E angular rate
end



if 1 % Two Cars 2
%%% Initial conditions of Pursuer and Evader

x1O = [0;0;-2*pi/31; % P initial state [xlO,y1O,phi10]
x20 = [4;4;-2*pi/31; % E initial state [x20,y20,phi20]

v = 3; % P speed

w = 1; % E speed

d = 1; % "Armlength" distance of P
ulmax = .66; % Limitation of P angular rate
u2max = 1.25; % Limitation of E angular rate
end

% E initial trajectory (arbitrary, away from P)
u2g = atan2( (x20(2) - x1O(2)),(x20(1)-x10O(2)) );
% Game time guess
T = norm(x10(1:2)-x20(1:2))/abs(v-w); % Vrelative/InitDistance

%%% Initial conditions for P:min %%%

A = []; . Linear inequality constraints

b = []; A*X <= b
Aeq = []; % Linear equality constraints

beq = []; % Aeq*X = Beq
lb = []; % Bounds

ub = []; Ilb <= X <= ub
%%% Form initial guess for P
ul = u2g*ones(N,1); % Assume ul = u2

dt = T/(N-1);

xl(:,1) = x10(1:2);

for i = 1:N-1

xl(:,i+1) = [ v*dt*cos(ul(i)) + xl(l,i);
v*dt*sin(ul(i)) + xl(2,i)];

end

xl_f = xl(:,N);

%%% Form initial guess for E (moving away from P in time)
u2 = u2g*ones(N,1);

x2(:,1) = x20(1:2);

for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(1,i);

w*dt*sin(u2(i))+ x2(2,i)];

end

x2_f = x2(:,N);

T_step = linspace(O,T,N);

% Loop parameters

tol = 1;
count = 0;

options = optimset('Display','off');
while tol > 0.0050

u2_p = u2;

count = count + 1

7, P: min
[x,fval,exitflag,output ,lambda] = fmincon(@time_fun, .

[ul;T],A,b,Aeq,beq,lb,ub,@mycon,options);

% Store lagrange multiplier associated with capture condition 1 = 0



lagrange = lambda.ineqnonlin(1);
T = x(N+1); 7 Final time at intercept
ul = x(1:N); % P control angle to achieve optimal intercept

eO = x2_f;

%Partial derivative of payoff, q, WRT changes in eO
dqde = -[0;0];
% Partial derivative of capture condition, 1, WRT changes in eO
dlde = [(eO(1)-x_f(1))/norm(xf-eO);

(eO(2)-xlf(2))/norm(xl_f-eO)];

% Gradient of the value function
c = dqde+lagrange*dlde;

%%% E: max
u2 = fmincon(val_fun,u2_p,A,b,Aeq,beq,lb,ub,ubmycon2,options);

tol = norm(u2-u2_p);

T_step = linspace(O,T,N);

end
% Plot Commands

if 1
figure
hold on;
%grid on
plot( x2(1,:), x2(2,:),'r:','LineWidth',1.5)
plot( xl(1,:), x1(2,:),'b--','LineWidth',1.5)
plot(x20(1),x20(2),'rx','LineWidth',1.5,'MarkerSize',10);
plot(xlO(1),xlO(2),'bd','LineWidth',1.5,'MarkerSize',6);
legend('Evader Path','Pursuer Path','Evader IP', ...

'Pursuer IP','location','NorthWest');
axis equal
xlabel('x', 'FontSize',14);ylabel('y', 'FontSize',14);
%title({'Decomposition Method','Two Cars Problem'})
disp(['Final Time = ', num2str(T)]);

end

function q = time_fun(x)

% Value function being optimized (Min Time)
q = x(N+1,1);
end

function [c, ceq] = mycon(x)

% Values being optimized
ul_f = x(l:N,1); % Control ul at discrete points
T = x(N+1); % Final time
% Final positions of E
x2_f = [interpl(Tstep',x2(1,:),T,'linear','extrap'); ...

interpl(Tstep',x2(2,:),T,'linear','extrap')];
% Position of P at each time step
dt = T/(N-1);



xl(:,1) = xi0(1:2,1);
for i = I:N-I

xl(:,i+l) = [ v*dt*cos(ul_f(i)) + xl(l,i);
v*dt*sin(ul_f(i)) + xl(2,i)];

end

x1_f = xl(:,N); % Final Position
0. Calculate (N-i) derivatives of the path
for i = 1:N-1

ul_d(i,l) = abs(ul_f(i+1)-ul_f(i))/dt;
end

% Inequality constraints

c = [norm(xl_f-x2_f)-d % Capture condition

ul_d - ulmax]; % Turn rate constraint
% Equality constraints

ceq = [xlO(3) - x(1)]; % Enforce initial condition of phil

end

function v = val_fun(x)

% Value being optimized
u2 = x;

% New E path final after changing phi2

x2(:,l) = x20(1:2,1); % Ex, y, t]

dt = T/(N-1);
for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(l,i);
w*dt*sin(u2(i))+ x2(2,i)];

end

x2_f = x2(:,N);
% Value function (linearized)
v = -( c'*(x2_f-eO) );

end

function [c, ceq] = mycon2(x)
% Values being optimized
u2 = x; % Control ul at discrete points

% Position of E at each time step

x2(:,l) = x20(l:2,1); % Ex, y, t]

dt = T/(N-1);
for i = 1:N-1

x2(:,i+l) = [w*dt*cos(u2(i))+ x2(l,i);

w*dt*sin(u2(i))+ x2(2,i)] ;
end

x2_f = x2(:,N);
% Calculate (N-i) derivatives of the path
for i = 1:N-i

u2_d(i,l) = abs(u2(i+1)-u2(i))/dt;
end

A Inequality constraints
c = [u2_d - u2max]; % Constraint on E turn rate

% Equality constraints
ceq = [x20(3) - x(1)]; % Enforce initial condition of phi2

end

end



A.3 Neural Nets

A.3.1 Optimization Framework

opt_football.m
global wl w2 w3 w4 w5
close all

x= [ 0 5 00
.5 4.75 0 0

-.5 4.75 0 0
1 200

-1 200

-2 400

2 4 0 01';
t = 0:0.01:7;

options = optimset('GradObj','on','Display','on, 'LevenbergMarquardt',
'on','DerivativeCheck','off','LargeScale','off','Diagnostics',...

'on','HessUpdate','bfgs','TolFun',le-9,'TolX',le-9,'Maxlter',250);
if 1

nwel = MakeMexFunctionsWin3('footballEl')
s = 0.05;

wO = randn(nwel,l)*s;

[We, fval] = fminunc(@(w)myfunTGE1b(w,X,t,footballEl'),wO,options);

We = wl;

x = X(:,1);
[J,xt,u] = footballEl(x,We,t);
figure
clf
plot(xt(1, :),xt(2,:), 'b--','LineWidth' ,1.5);
hold on

plot(xt(3,:),xt(4,:),'r:','LineWidth',1.5);
axis equal
hold off

end

if 0
nwp = MakeMexFunctionsWin4( 'footballP')
s = 0.05;

wOp = randn(nwp/2,1)*s;
wO = [wOp ; We];

%wO = wl;

[W, fval] = fminunc(@(w)myfunTGP(w,X,t,'footballP'),wO,options);
Wp = wl(l:nwp/2);

end

if 0
nwe2 = MakeMexFunctionsWin4('footballE2')
wO = [Wp; We];

%wO = wl;

[W, fval] = fminunc(@(w)myfunTGE2(w,X,t,'footballE2'),wO,options);
We2 = wl(nwe2/2+1:end);

end

if 0



w = wi;
x = X(:,1);

[J,xt,u] = footballE2(x,w,t);

plot(xt(1,:),xt(2,:),'b--','LineWidth',1.5);
hold on

plot(xt(3,:),xt(4,:),'r:','LineWidth',1.5);
axis equal
hold off

end

A.3.2 Mex function build
function y = MakeMexFunctionsWin3(name,varargin)

%Y = MakeMexFunctionsWin3(NAME);

%Y = MakeMexFunctionsWin3(NAME,APP);

%Creates MEX functions based on files stored in the directory referred to
%by NAME. In general, this funcion will look for a file named
.'dynamics.F90' (and a few other files as well), if a second input is
%given, the file ['dynamics' APP '.F90'] will be used.

%Examples:

%name = 'pendulum'; pendulum.F

%name = 'gliderl'; app = '-con'; gliderl-con.F90

if nargin == 1;
app = ";

elseif nargin ==2;
app = varargin{1};

end;
%function y = MakeMexFunctionsWin(name)

% Based on Prof. Steven Hall's MakeMexFunctions.m

% Function that makes the appropriate mex functions in the directory

% 'dir' to allow optimization of a neural net control strategy

% The following files must be in the directory 'name':

% parameters.m parameters for neural net controller, dynamic system

% dynamics.F90

cr = [' \' char(10)];

sp = [' '1;
%...Set up the directory names used throughout
Xbasedir = [dirname('MakeMexFunctionsWin') '\']; %apparently DIRNAME no
%longer works in Matlab newer than 7.4

basedir = [fileparts(which('MakeMexFunctionsWin3')) ];

dynamicsdir = [basedir '\..\' name 1;
builddir = [dynamicsdir '\build'];

tapdir = ['C:\tapenade3.1'];

fortrandir = [basedir '\..\FortranTemplates'] ;
stackdir = [fortrandir '\ADFirstAidKit'];

%Clean up directories

curdir = pwd;



cd(tapdir);

fclose all;

cd(builddir);

fclose all;
cd(curdir);

%Read data from the parameter file

%Change from MakeMexFunctions.m:

%Instead of copying parameter.m to basedir, just run it from the
%dynamicsdir

disp('Reading from parameter file ... ')
cd(dynamicsdir);

parameters; %Runs parameter.m to load needed parameters into workspace
cd(curdir);

%Using data from the parameter file, set up the neural net controller
disp('Generating neural net program ...');
[s,nw] = makennl(nInputs,nNeurons,neuronType);
filel = [builddir '\nn.F90'];
fclose all;

fid = fopen(filel,'w');
if fid == 0

disp(['Couldn"t open file ' filel])
end

n = fwrite(fid,s);
if n ~= length(s)

disp(['Couldn"t write to file ' filel])
end;

% --------------------------------------------------------
, We need to find the adjoint code, using TAPENADE. To do this, we
% first preprocess the fortran code, since TAPENADE doesn't recognize
% compiler directives. So first compile all the files with the -E compiler
% directive, to replace all the symbolic values with numeric values.
disp('Stripping compiler directives from code ...')
file2 = [fortrandir '\main.F90'];
file3 = [dynamicsdir '\dynamics' app '.F90'];
file4 = [builddir '\nn.F90'] ;
file5 = [builddir '\' name app '.f90'];
%Combine RK integration routine (main.F90), equation of motion for the
%problem (dynamics.F90), and the neural net (nn.F90) into one file.
command = ['gfortran -E -DNX=' num2str(nx) ' -DNU=' num2str(nu) ' -DNW=' ...

num2str(nw) ' -DNY=' num2str(ny) sp '"' file2 '"' sp '"' file3 "' sp '"' file4 '"' sp ..
' > ' '"' file5 '"'];

disp(' ');

disp(command);
[status,result] = system(command);
if status

disp(result);

return

end

% Now we must comment out remaining compiler directives
fclose all;
fid = fopen(file5,'r');
s = fread(fid,'*char')';
fclose all;
s = strrep(s,'#','!#');



fid = fopen(file5,'w');
n = fwrite(fid,s);
if n ~= length(s)

disp(['Failed to write to file ' file5])
end

% --------------------------------------------------

% Now we are ready to call TAPENADE
command = ['"' tapdir '\bin\tapenade' '""...

' -inputlanguage fortran95 ' ...

'-outvars "j" -vars "alpha w" -head main4 -reverse -o ' name app ...
' -outputlanguage fortran90 -0 ' '"' builddir "'I ' -diffvarname '...

'_b -i4 -dr8 -r4 ' '"' file5 '"'];

% Took out -parserfileseparator "\" from command

disp(' ');
disp(command);
[status,result]=system(command);

disp(' ')

disp(result)

if status, return, end

%filel = [fortrandir 'testmain.F90'];

file3 = [builddir '\' name app '.F90'];

file4 = [builddir '\' name app '_b.F90'];

%file5 = [builddir name];

file6 = [stackdir '\' 'adBuffer.f'];

file7 = [stackdir '\' 'adStackNoUnderscore.c'];

% Do the MEX command for the forward case.
filel = [fortrandir '\' 'gatewaylwinl.F90'];

%Also need mexinterface.mod compiled from mexinterface_c.f90 ...

%Make sure mexinterface.mod is accessible by MEX, and is up-to-date

command = ['mex '...

'-DNX=' num2str(nx) ' -DNU=' num2str(nu) ' -DNW=' num2str(nw) ...

' -DNY=' num2str(ny) ' -output ' name app ...
' ' '"2 filel '"' ' ' '"' file3 '"' ] ;

disp(command);

eval(command);

% Do the MEX command for the reverse case.
filel = [fortrandir '\' 'gateway2winl.F90'] ;
command = ['mex '...

'-DNX=' num2str(nx) ' -DNU=' num2str(nu) ' -DNW=' num2str(nw) ...

' -DNY=' num2str(ny) ' -output ' name app '_b' ...
' ' '" filel '"' ' ' '"' file3 '"' ' ' '"' file4 "' ' ' '"' ...

file6 '"' ' ' '"' file7 '"'];

disp(command);

eval(command);
y=nw;

fclose('all');
return

A.3.3 Minimization function

function [F,G] = myfunTGPI(w,X,t,func)
global wi w2 w3 w4 w5
w5 = w4;



w4 = w3;
w3 = w2;
w2 = wl;
wl = w;
persistent N
if length(N) == 0, N = 0; end
N = N+1;
W =w;

F = 0;

G = 0;

if nargout ==1

for i=l:size(X,2);

x = X(:,i);
[f] = eval([func '_b(x,w,t)']);
F = F + f;

end

else

for i=l:size(X,2);

x = X(:,i);
[f,g] = eval([func '_b(x,w,t)']);
F = F + f;

G = G + g;
end

end

if mod(N,10) == 0

fprintf('%i, %f\n',nargout,F)
clf

for i=1:size(X,2)

x = X(:,i);
[J,xt,u] = eval([func '(x,w,t)']);
plot(xt(l,:),xt(2,:),'b--','LineWidth',1.5);
hold on

plot(xt(3,:),xt(4,:),'r:','LineWidth',1.5);
axis equal

end
hold off
drawnow

end
return

A.3.4 Dynamics
# if NX-4
error: Should have NX =
# endif
# if NU-1

error: Should have NU =
# endif

# if NY-2
error: Should have NY =
# endif
!This file contains the
! cost

4

1

2

following:



! f dynamics of the pursuer

subroutine cost(x,u,L)

implicit none

real(8) :: x(NX), u, L

intrinsic sqrt

L = 0

return

end subroutine

subroutine general(x,u,nt,t,C)

implicit none

! !Input variables

integer :: nt, i

real(8) :: x(NX,nt), u(nt), t(nt)

! !Output variables

real(8) :: C

! !Working variables

real(8) :: EYdist, distPE, distEB, beta

real(8), parameter :: alphal = 50, CR = .5

real(8), parameter :: alpha2 = 5, OB = 1.0, width = 20

intrinsic sqrt, exp, abs

EYdist = x(4,nt);

do i=nt-1,1,-1
beta = 0

distPE = sqrt((x(4,i)-x(2,i))**2+(x(3,i)-x(l,i))**2)

distEB = width/2-abs(x(3,i))

if (distEB < 0) then
distEB = 0

end if

if (distPE < CR) then

beta = exp(-alphal*(distPE-CR))-l+alphal*(distPE-CR)

end if

if (distEB < OB) then

beta = exp(-alpha2*(distEB-OB))-l+alpha2*(distEB-OB)
end if

EYdist = (beta*x(4,i)+EYdist)/(beta+1)
end do
C = -EYdist

return

end subroutine

subroutine terminal(x,u,t,dJ)

implicit none

real*8 :: x(NX), u, t, dJ

dJ = 0

return

end subroutine

subroutine f(x,w,x_dot,u2)

implicit none

real(8) :: x(NX), w(NW), x_dot(NX), y(NY), T

real(8), parameter :: v1 = 1.ODO, v2 = 1.1DO, PI = 3.14159265
real(8), parameter :: u2max = 4, width = 12.0

real(8) :: u2, cosul, sinul, quo



real(8) :: xdisp, ydisp, distPE
intrinsic sin, cos, atan2, sqrt, abs, acos

xdisp = x(3)-x(1)

ydisp = x(4)-x(2)
distPE = sqrt(xdisp**2+ydisp**2)

! NN control input
y(l) = xdisp
y(2) = ydisp

call nn(y,u2,w)
u2 = u2*2/PI*u2max

! Assigned Control input for Evader
quo = -u2-(atan2(ydisp,-xdisp)+PI/2)

cosul = cos(quo)

sinul = sin(quo)

! Dynamics
x_dot(1) = vl*cosul
x_dot(2) = vl*sinul

x_dot(3) = v2*cos(u2)

x_dot(4) = v2*sin(u2)
return
end subroutine

A.3.5 Parameters

% parameters.m
global nx nu ny nInputs nNeurons neuronType

% Parameters of dynamic system and controller

nx = 4;

nu = 1;

ny = 2;

% Parameters of neural net controller

nInputs = ny;
nNeurons = [5 7 7 1];

neuronType = {'atan';'atan';'atan';'atan'};

A.3.6 Main file

subroutine mainl(xO,w,t,nt,J)

implicit none
!Input variables

integer :: nt
real*8 :: xO(NX), w(NW), t(nt)
! !Output variables

real*8 :: J
! !Working variables

integer :: i
real*8 :: dt, xI(NX), xf(NX), ul(NU), dJ, x(NX,nt), u(NU,nt), C
! !Initialize cost, state vector



J = 0.

Sx1 = x0

x(:,1) = x0
! !Integrate the dynamics and cost forward in time

do i=1,nt-1
!Find the time increment to pass to Runge-Kutta routine

dt = t(i+1)-t(i)
I !Do the Runge-Kutta step

xl = x(:,i)
call rk(xl,w,dt,xf,dJ,ul)

x(:,i+l) = xf

u(:,i) = ul
xl = xf

J = J + dJ
end do

u(:,nt) = u(:,nt-1) !**** FIX! *****

call terminal(x(:,nt),u(:,nt),t(nt),dJ)
J = J + dJ
call general(x,u,nt,t,C)

J=J+C
return

end subroutine

subroutine main2(x0,w,t,nt,J,x)
implicit none
! 'Input variables

integer :: nt

real*8 :: xO(NX), w(NW), t(nt)
! !Output variables

real*8 :: J, x(NX,nt)
! !Working variables

integer :: i

real*8 :: dt, xl(NX), xf(NX), ul(NU), dJ, u(NU,nt), C
!Initialize cost, state vector

J = 0.
x(:,l) = x0

!Integrate the dynamics and cost forward in time
do i=l,nt-1

! !Find the time increment to pass to Runge-Kutta routine

dt = t(i+1)-t(i)
!Do the Runge-Kutta step
xl = x(:,i)
call rk(xl,w,dt,xf,dJ,ul)

x(:,i+l) = xf
u(:,i) = ul

J = J + dJ
end do

u(:,nt) = u(:,nt-1) !**** FIX! *****

call terminal(x(:,nt),u(:,nt),t(nt),dJ)
J = J + dJ
call general(x,u,nt,t,C)
J=J+C

return

end subroutine



subroutine main3(xO,w,t,nt,J,x,u)
implicit none
! !Input variables

integer :: nt

real*8 :: xO(NX), w(NW), t(nt)
! !Output variables

real*8 :: J, x(NX,nt), u(NU,nt)
! !Working variables

integer :: i

real*8 :: dt, xl(NX), xf(NX), ul(NU), dJ, C
! !Initialize cost, state vector

J = 0.

x(:,1) = xO
! !Integrate the dynamics and cost forward in time

do i=1,nt-1
! !Find the time increment to pass to Runge-Kutta routine
dt = t(i+l)-t(i)
! !Do the Runge-Kutta step

xl = x(:,i)
call rk(xl,w,dt,xf,dJ,ul)

x(:,i+l) = xf

u(:,i) = ul
J = J + dJ
end do

u(:,nt) = u(:,nt-1) !**** FIX! *****
call terminal(x(:,nt),u(:,nt),t(nt),dJ)

J = J + dJ
call general(x,u,nt,t,C)

J=J+C
return

end subroutine

subroutine main4(xO,w,t,nt,J,alpha)
implicit none

! !Input variables
integer:: nt
real*8 :: xO(NX), w(NW), t(nt), alpha
! !Output variables
real*8 :: J

! !Working variables

integer :: i

real*8 :: dt, xl(NX), xf(NX), ul(NU), dJ, x(NX,nt), u(NU,nt), C
I !Initialize cost, state vector
J = 0.
x(:,l) = xO
! !Integrate the dynamics and cost forward in time

do i=l,nt-1
! !Find the time increment to pass to Runge-Kutta routine

dt = t(i+1)-t(i)
! !Do the Runge-Kutta step

xl = x(:,i)
call rk(xl,w,dt,xf,dJ,ul)

x(:,i+l) = xf



u(:,i) = ul
J = J + dJ
end do

u(:,nt) = u(:,nt-1)
call terminal(x(:,nt),u(:,nt),t(nt),dJ)

J = J + dJ
call general(x,u,nt,t,C)

J=J+C
J = J*alpha

return

end subroutine

subroutine rk(xl,w,dt,xf,dJ,ul)

implicit none
i !Input variables

real*8 :: xi(NX), w(NW), dt
I !Output variables

real*8 :: xf(NX), dJ, ul(NU)
I !Working variables

real*8 :: x2(NX), x3(NX), x4(NX)

real*8 :: xdotl(NX), xdot2(NX), xdot3(NX), xdot4(NX)

real*8 :: Ji, J2, J3, J4, u2(NU), u3(NU), u4(NU), Li, L2, L3, L4
! !Find xdot and L (Jdot) at each sample point

call f(xl,w,xdotl,ul)
call cost(xl,ul,Ll)
x2 = xi + xdotl * (dt/2.)
call f(x2,w,xdot2,u2)

call cost(x2,u2,L2)

x3 = xi + xdot2 * (dt/2.)

call f(x3,w,xdot3,u3)

call cost(x3,u3,L3)

x4 = xi + xdot3 * dt

call f(x4,w,xdot4,u4)
call cost(x4,u4,L4)
! !Find the final point, and increment in cost
xf = xl + (xdotl + 2.*xdot2 + 2.*xdot3 + xdot4) * (dt/6.)

dJ = (L1 + 2.*L2 + 2.*L3 + L4) * (dt/6.)
return

end subroutine
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