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Abstract

The free surface impact of solid objects has been investigated for well over a cen-
tury. This canonical problem has many facets that may be studied: object geometry,
surface treatment, and diameter; impact speed and angle; and fluid viscosity and sur-
face tension. The problem is further enriched with the consideration of varying mass
ratios and rotational velocities. This thesis uses advanced high-speed imaging and
visualization techniques to discover underlying physics and further our understanding
of these phenomena through improvements to analytical solutions describing criterion
such as cavity formation, depth of deep seal, and trajectory for all impact parameters
studied. The topic is extended to the impact of high-speed projectiles or bullets.
Through experimentation the trajectory, cavity size, and forces acting on the pro-
jectiles are elucidated. Experimentation coupled with improvements to an existing
cavitation model lead to an improved bullet design that forms a narrower cavity and
achieves higher speeds.

Industrial applications include ship slamming, extreme waves and weather on oil
platforms, sprayed adhesives, paint aerosols and ink jet printing. In the field of naval
hydrodynamics there is particular interest as these problems relate to the study of
the water entry of mines and bullets, and the underwater launching of torpedos and
missiles. Physical insight can also be applied to sports performance research relating
to the water entry of athletes, reducing drag of swimmers near the free surface,
decreasing cavity formation for divers, and the entry and exit of oars in rowing.

This thesis examines the effect of several key parameters on the water entry physics
of spheres at relatively low Froude numbers including: hydrophobic vs. hydrophilic
surfaces, mass ratio and rotational velocity. Physical models that predict the depth
of deep seal and the effect of dynamic and static wetting angle on cavity formation
will be discussed. Theories are derived from physical parameters witnessed through
high-speed video image sequences using advanced image processing techniques. New
phenomena have been witnessed via these techniques including a wedge of fluid that
crosses the cavity in the case of transverse rotational velocity. Furthermore, the



images reveal the forces acting on the sphere through the entire trajectory, which
adds valuable information for future theoretical models.

The discussion continues with the water entry of bullets, which produce water
vapor cavities large enough to engulf the projectile (i.e. supercavitation). The effects
of speed, geometry and angle of attack on the formation of the subsurface cavity are
analyzed through an improved physical model and full scale experimentation. The
analytical model is then used to improve the design of projectile geometry to allow
for more efficient travel inside the cavity and experimentally validated.

Thesis Supervisor: Alexandra H. Techet
Title: Associate Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

This two-part thesis looks at the impact of projectiles on the air-water free surface.

Part I focuses on spherical projectiles with and without angular velocity, and examines

the effect of mass ratio, diameter, surface coating and spin on the cavity formation

and projectile dynamics. Part II focuses on the impact of ballistic projectiles with

and without axial rotation on the free surface at shallow angles. This work was done

in collaboration with the Naval Undersea Warfare Center (NUWC) in Newport, RI.

Free surface water entry has been the subject of scientific investigation for well

over a century. The first photographic-based investigations were performed by [36].

Similarly the work of [16], and [5], offered qualitative explanations for the observed

cavity shapes. Since then, the beauty and symmetry of spheres entering the water

surface has become appealing to many. Figure 1-1(a) shows a symmetric cavity

forming in the wake of a hydrophobic sphere. It depicts a large crown of fluid above

the free surface that is ejected upward as the sphere passes through the interface. It

also shows an hour-glass shaped cavity with the narrowest point being the location

at which the cavity will eventually collapse. This event is referred to as deep seal

or pinch-off. After pinch-off the cavity is split into two parts, one connected to the

free surface, and a smaller air cavity connected to the sphere. Two jets of fluid form

at the point of pinch-off, one passing through interior of the upper cavity passing

above the free surface and often traveling further above the free surface than the

sphere was dropped. The lower cavity also contains a jet that impinges on the top of



(a) (b)

Figure 1-1: Impact of a hydrophobic coated billiard ball with the free surface.

the sphere inside the smaller cavity. Depending on the speed of impact and surface

characteristics (hydrophobic or hydrophilic) an impacting sphere can either create an

air cavity in its wake (figure 1-1(a)) or no air cavity (figure 1-1(b)) as described by

Duez [9].

Many scientists have developed mathematical models to determine the forces at

impact and explain the characteristics of splash formation associated with these im-

pacts [15, 18, 28, 24, 4, 2, 33, 20, 22, 13, 37]. Current theoretical models predict

the forces of impact up to a half a diameter below the free surface [19], and modern

high-speed imaging techniques are discovering phenomenon previously unseen [26].

Many models also address the size and nature of the cavity shape. These models are

well developed for relatively slow impact speeds (0 to 20 m/s), but break down at

higher velocities [25, 13, 8]. Researchers have explored the changes in cavity shape as

a function of atmospheric pressure[11], sphere size [1] and discs rather than spheres[6].

While models that predict the cavity formation and forces on the sphere exist,



very few experiments that measure the forces have been performed. The work of [21]

used a force transducer attached to a sphere to experimentally determine the forces

of impact up to one radius under the free surface, but force measurements below this

depth are lacking in the literature. This thesis attempts to fill this void with detailed

experiments. For example, in chapter 3, experimental force data is presented from

impact to 12 diameters below the free surface. This data represents the first of its

kind and should help improve the models previously developed for times after impact.

This thesis also addresses the cases where impact does not form a cavity and gives

force data for those cases as well (also in chapter 3).

The problem is generally complicated further by adding a rotational component to

the impacting sphere. A full treatment of explaining the effect of rotation is presented

in chapter 4 along with a review of the previous literature, which includes the the

study of sports balls, a topic which inherently includes the study of spinning spheres.

Cavity formation is relevant to many applications including float-plane impact

[32], ship slamming [10], stone skipping [23] and drag reduction [30, 3]. Industrial

applications include structural interactions with the free surface such, as extreme

waves and weather on oil platforms. The application of sprayed adhesives on various

surfaces or the coating of objects with dyes and paints can also be related to studies

of this nature. Even the sports industry is interested in the water entry of athletes,

reducing drag of swimmers [27] near the free surface and the entry and exit of oars

in rowing [7]. Dynamic and surface treatment effects on water-entry are of particular

relevance to naval hydrodynamics in the areas of torpedo entry [17] and methods for

missile deployment [34, 35].

An extension of this research relates to the high-speed, shallow-water entry of

projectiles such as military ballistics. Most standardized projectiles are not designed

to enter the water, instead they are designed to impart all or most of the kinetic

energy they carry into the object they are impacting. This typically results in bullet

break up and mushrooming. When these projectiles impact the water at low angles

they typically do not enter the water; instead, they either ricochet off the surface or

break into many pieces. However, through improved designs, high speed projectiles



can enter the water surface. Results from tests with the NUWC and tests performed

at MIT indicate that projectiles with flat noses, tapered sections, and high length

to diameter ratios can pierce the surface at low angles, create vaporous cavities, and

continue to descend through the water column without ricochet [12], [31] as discussed

in Part II.

The following sections give synopses of the chapters contained within this thesis

and discuss some of the contributions related to each. References are given in the

bibliography of each chapter.

1.1 Part I: Water entry of spheres with and with-

out spin

Part I describes the water entry of spheres with and without spin. The forces exerted

on the spheres and the cavity dynamics of impact with the free surface are the main

focus. Spin rate, mass ratio, diameter and surface treatment can alter the forces

on the sphere and the cavity formation. The specific effects of these parameters are

investigated.

Chapter 2 describes the details of the experimental methods in a manner that is

accessible to other researchers performing similar work. Details about the equipment

used, measurement techniques, and image processing methods are included. Several

novel methods were used to determine position with sub-pixel accuracy and to extract

the spin rate of the spheres. A method for determining the roughness of a curved

object is presented and is now used in the Center for Materials Science and Engi-

neering (CMSE) at MIT. Finally, this chapter includes an introduction to a novel

spline fitting method developed specifically for this project; this method is described

in detail in Appendix A.

Chapter 3 looks at the forces on the spheres as they descend through the water

column with and without cavity formation. This chapter emphasizes the importance

of highly resolved data (in space and time) and spline fitting as a means of identifying



forces in the trajectory that affect the sphere. The data shows the unsteady nature of

the forces affecting the spheres and represents the first full scale force measurement

data of spheres impacting the free surface from 0.5 to 12 diameters below the free

surface. Previous studies only look at forces up to 0.5 diameters below the free surface

[21, 29]. Fluid forces affect the dynamics of low mass ratio (m*) spheres (e.g. acrylic,

m* = 1.2) more than higher mass ratios (e.g. steel, m* = 7.8). Furthermore, the drag

of a non-cavity forming sphere is much higher than the cavity forming counterpart.

The surface coating and roughness can affect whether or not a cavity is formed [9].

PIV data presented shows excellent agreement with viscous drag theories in the

non-cavity forming cases. In the lower mass ratio cases a vortex ring is shed into the

wake and causes the sphere to come to a near halt in its path. In contrast the PIV

of the cavity forming cases reveals a potential flow like flow field.

Chapter 4 describes the water entry of spinning spheres and comes directly from

a paper that is now published in the Journal of Fluid Mechanics [30]. This chapter

describes the effect of spin on cavity formation, lift, drag and deep seal. It also

highlights a new phenomenon first witnessed by the author in which a wedge of fluid

is drawn from one side of the open cavity to another. The cavity is formed when

the side of the spinning sphere with the least relative velocity draws water across the

cavity due to the no slip boundary condition along the sphere. This study included

a comprehensive look at many parameters that could affect deep seal, but concludes

that the only parameter that appears to affect deep seal (at these Froude numbers) is

the mass ratio. The chapter applies a scaling law that takes into account both Froude

number and mass ratio which shows good agreement with experiments.

Chapter 5 illustrates the effect of surface dynamics (transverse rotation of a sphere)

and surface treatment on the behavior of cavity formation. Transverse rotation of the

sphere or an uneven surface treatment can create altered cavity shapes and affect the

trajectory of the spheres. In the rotating cases, the no-slip boundary condition plays

a role in allowing fluid to be drawn up and around the cavity along the side of least

relative velocity. This formation creates a wedge of fluid that traverses the cavity

and bisects the cavity into two parts as mentioned in chapter 4. A theoretical model



that predicts the time for the wedge to cross the cavity is also presented and shows

good agreement with experiments. Interestingly, the same behavior can be duplicated

using an uneven surface treatment where a sphere is coated half in a hydrophilic and

half in a hydrophobic coating.

1.2 Part II: High-speed projectile water-entry

Part II discusses the underwater behavior of bullets designed for air to sub-surface

flight. Through collaboration with NUWC it was determined that improvements to

the cavity model were needed and an independent study of the cavity shape should be

performed. Using the facilities at the MIT Rifle Range, experiments were performed

with small projectiles with varying shapes. The theoretical model of [14] was re-

derived and improved to account for pitch and yaw inside the cavity. The improved

model shows good agreement with experimental data.

Chapter 6 serves as motivation for the high speed projectile study. Tests at Ab-

erdeen, MD are discussed and problems associated with that setup are used as a

means to motivate the laboratory study presented in chapter 8. One of the major

findings at Aberdeen was that in-air and underwater stability are dissimilar enough

to warrant careful consideration of each when designing projectiles that perform in

both conditions. In-air stability is accomplished through gyroscopic rotation, fins,

flares, etc. Underwater stability is accomplished by intermittent contact with the

side walls of the cavity, which require narrow and long projectiles. These long pro-

jectiles counteract gyroscopic stabilization, thus requiring fins or flares, however, fins

and flares can cause cavity rupture and erratic projectile motion when they come in

contact with the cavity wall. Considerations for both in-air and underwater stability

are presented here, but they are the topic of on going study.

Chapter 7 is a short discussion in response to the difficulty of using gyroscopic

stabilization as a means of stabilizing these projectiles in air and underwater. In

particular the equations of motion are used to derive a minimum spin rate required

to keep these projectiles stable in air, and it turns out that as the length to diameter



ratio is increased the rate of spin required grows exponentially. In practice the spin

rates required for large L/D projectiles is likely not feasible.

Chapter 8 outlines a set of experiments wherein a 0.22 caliber rifle was used to

shoot projectiles of varying shape and material. The theoretical model proposed by

[14] is presented and small adjustments made to improve the theory. A small-angle

pitch/yaw component was added for further improvement. This model matches well

with the experimental study presented and could easily be used by future researchers

and designers for more accurate underwater cavity estimates. A discussion about the

forces and moments acting on the projectiles is also presented and the use of the

side-wall as a means of stabilization is validated. This work was recently highlighted

in an episode of Time Warp on the Discovery Channel.

Chapter 9 is a conclusion to the entire thesis and outlines the possible extensions of

this work in the future. It also outlines a list of contributions this work represents and

gives a broader picture of how the presentation fits into the framework of experimental

and theoretical hydrodynamics.

The appendix contains a paper written about the spline method used to obtain

valid velocity and acceleration data. It also includes a short user guide and set of

matlab codes associated with the image processing methods. Finally, a series of

engineering drawings representing the designs for the bullets presented in chapter 8

are given.
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Part I

Water entry of spheres with and

without spin



Chapter 2

Experimental details

2.1 Overview of facility

The Impact Laboratory was built as a testing facility for small projectile impacts with

the free surface, and as a proof-of-concept online laboratory. The online laboratory

has been used several times by researchers outside MIT between 2004 and 2006,

but now mainly serves as a research center for free surface impacts and classroom

laboratories and demonstrations.

Originally, the impact laboratory was built to showcase the potential of online

laboratories to educate students that lack sufficient facilities to complete experiments

on their own. Students typically learn more if they are allowed to combine theoretical

understanding with experience and visual interaction. Theoretical understanding is

most often created in the classroom. Hands on experience and visual stimuli most

often come in the laboratory. However, many colleges do not have the same facilities as

other campuses. Putting certain laboratories on the world wide web for other college

campuses to use as a part of their teaching can help enhance teaching opportunities.

Fluid dynamics is an especially difficult field to understand without flow visualization

and images of the phenomena being discussed. The free surface impact laboratory was

developed with the intent of being used as a model for these types of visualizations

for students around the world. Through an interactive website students can perform

their own experiments in the impact laboratory. The most basic experiments allow



the user to input the spin rates and drop speeds for the spheres, which are then

released into the shooting mechanism and fired at the free surface. Data is then

retrieved from the server including: multiple video angles, water temperature, wheel

spin rates, etc. Students are then free to process the data as they see fit on their

local computers. The experiment was intended to be used both day and night as a

resource for students to further expand their experience and understanding through

manipulation of the spheres and high-speed video they gather. The laboratory also

serves as a jumping point for discussions about the interesting features of the fluid

flow formation and as a place for collaboration.

On the MIT campus it serves as a tool for classes in hydrodynamics. The lab-

oratory has been used on a bi-annual basis for a series of labs with topics ranging

from added mass to terminal velocity calculations. It is also used by researchers to

understand more about the air water interface, and how they interact when an object

impacts the free surface. As researchers learn more about this phenomenon they are

able to produce more specific models that describe the behavior more accurately. This

work is improving the methods of deployment for torpedoes, high-speed projectiles,

mines, and even future space mission recovery vehicles. The experimental facility

allows researchers to study the unsteady affects of water entry and unexplained phe-

nomenon with the use of high-speed cameras and Particle Image Tracking. These

theories becomes more complicated when the objects are spinning and three dimen-

sional effects are considered. These experiments offer experimentalists an opportunity

to capture each impact from different view points, thus making these subtle phenom-

ena easier to visualize.

2.2 Experimental Facility

2.2.1 Impact tank

Spherical projectiles are shot into a tank of water 91.4 cm (36 in) deep, 152.4 cm

(60 in) high, 152.4 cm (60 in) wide, which holds approximately 2200 liters of water



(H20). The tank is an acrylic box set into a steel frame. The acrylic box was

constructed from 1.27 cm (0.5 in) thick acrylic. The external frame is welded from

5.08 cm (2 in) square extruded steel hollow posts with 6 supporting feet. The weight

of the acrylic tank is 133 kg, the frame is 320 kg and the water when full is 2122

kg, together the combined weight is approximately 2575 kg. The outward facing

side (front) of the tank has two vertical bars that can be moved if necessary, so as

not to obstruct the field of view. The bars prevent the acrylic from bowing out and

cracking when the tank is full. In some experiments only one bar is used to increase

the viewing area. Figure 3-3 is a photo of the final tank design.

The tank drain is located in the center of the bottom panel. The drain has no

lip, and therefore allows all of the water in the tank to be drained when needed.

The drain is attached to a standard two-inch pipe, which is then pumped out to the

city of Cambridge sewer line. The water that fills the tank is filtered after coming

from cambridge city water by an Everpure E10 with an EC110 prefilter, then by an

Everpure K20 with an EC210 filter.

The transparent walls of the acrylic allow for easier video imaging and illumina-

tion. Acrylic has an index of refraction of 1.55, which is close to that of water (1.33)

though not ideal, as dictated by Snell's Law equation 2.1,

Nisin(O) = Nsin(O,) (2.1)

where Ni is the refractive index of the exiting medium, Nr is the refractive index of

the incoming medium, 9i is the angle normal to the surface interface and the light ray,

and 0, is the refractive angle of the entering light ray normal to the surface interface

(see figure 2-2 for clarification). All five sides are transparent to facilitate particle

image velocimetry (PIV) experiments, and high speed video acquisition.

2.2.2 Shooting mechanism

Several options were considered initially for the shooting mechanism. A "potato

shooter-type" device that required a fuel-air mixture, which is ignited to propel ob-
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Figure 2-1: Impact tank is made with a steel frame and 1 in acrylic. The tank is

91 cm x 152 cm x 152 cm and holds 2200 liters of water.

jects out of a barrel. Safety concerns and regulations made this high speed option

unrealistic. Pneumatic devices, similar to a large paint-ball gun, use pressurized air

to launch projectiles. Alternately a slide action device uses a slide or bolt which is

pulled back towards the butt of the gun, allowing the projectile to enter the chamber.

As the bolt is pulled back it compresses a spring and is finally held in place by a

sear gate. The sear gate is released when the trigger is pulled, which also releases the

hammer. The hammer then moves towards the back of the chamber and pushes the

valve tube into the valve seat. The valve seat forces the cup seal to become unsealed

so that the air in the inlet chamber is released into the main chamber and the ball

is forced out of the barrel. The process from trigger to firing happens within a few

milliseconds. Figure 2-3 illustrates how a paintball gun works.

After some research it became apparent how difficult the precise release of the

air would be. Since the Impact Lab design called for the shooting mechanism to be

pointed downward it was also difficult to load an object into the chamber without it
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Figure 2-2: Illustration of Snell's Law, refraction of light at the interface

of two media with different refractive indices. Photo credit Eric Weisstein

http://scienceworld.wolfram.com/physics/SnellsLaw.html

Figure 2-3: Paintball gun illustration. Care of http://www.howstuffworks.com

falling out immediately.

The shooting option chosen was a baseball pitching machine. Typically, baseball

pitching machines use one or two wheels to propel baseballs at speeds up to 44.7 mrn/s

(100 mph). This type of device could easily be retrofitted with an automatic loader

for multiple firings and could shoot objects the size of a baseball very well. However,

typical baseball pitching machines do not allow the user to adjust the size of the

chamber to fit objects other than baseballs. To allow greater flexibility in choosing

object shapes and sizes a modified baseball pitching-style shooter was required. Ob-

jects to be studied included wedges that simulate the shape of a ships hull, buoys,

torpedos, mines, cylinders, etc. In addition, computer control of shooter speeds are



unavailable in standard consumer models.

The shooting mechanism is composed of two 45.7 cm (18 in) wheels. They

are spun using independent motors (Bodine Electric A/C inverted motors model

#42R6BFPP), which can operate at different speeds allowing the user to induce spin

if so desired. The motors are controlled by LabVIEW software on the host computer,

via their own power source drivers (Bodine Electric Pacesetter model #2703). Each

wheel and motor is connected to the structure by a hub and two bearings suspended

between a frame of 80/20 ® aluminum. An optical sensor measures the speed of each

wheel in revolutions per minute (rpm), which is displayed on the users screen. A top

view can be seen in figure 2-4, the final assembly can be seen in figure 2-5.

The coordinate system in figure 2-5 represents the generalized coordinates for

the shooter itself. The angle 0 indicates the angle from which the object was fired.

Billiard balls are placed between the wheels for firing by a loading device shown in

figure 2-6. The loading device consists of two solenoids (pull-type 24 VDC) which

alternate actuation to allow one ball at a time to enter the firing chamber [4]. The

plexiglass tubing can hold seven spheres and is connected to the solenoids and shooting

mechanism by an aluminum L-bracket. The spheres are released by actuating the

solenoids through the LabView interface, which controls the PCI-7342 motion control

board, which in turn controls the Grayhill 70RDK8 relay controller.

2.2.3 Positioning mechanism

The positioning mechanism was designed to move the shooting mechanism in a hor-

izontal direction (x-direction) and to rotate the shooting mechanism about its cen-

ter of rotation (0-direction) as shown in figure 2-5. This added mechanism ensures

that the ball will land in the middle of the camera field of view at all angles of im-

pact. The entire shooting assembly is mounted onto two roller bearings that ride

on tracks supported by the Unistrut® support structure 2-4. The motion of the

entire unit is controlled by a stepper motor (Superior Electric model #KML091F07,

2.52 VDC, 3.3 Amps, 200 steps/rev, powered by a Superior Electric SLO-SYN model®

#SS200MD4 translator drive). This motor is mechanically coupled to a lead screw



Figure 2-4: Isometric view of shooting mechanism in place. 1) Stepper motor controls
rot.epsation (Superior Electric model #KML091F07), 2) Worm gear Grove Gear OE
series 130-30 gear reduction of 30:1, 3)Shaft coupling and shaft bearing, 4) Rota-
tional position shaft, 5) Plexiglass loader, 6) Solenoid controlled release of billiard
balls, 7) Roller bearing tracks, 8) Roller bearings, 9) Lead screw controls linear po-
sition, 10) 80/20® aluminum frame, 11) Wheel motors (Bodine Electric A/C in-
verted motors model #42R6BFPP), 12) Wheel motor to wheel shaft coupling, 13)
RPM sensors (Monarch Instruments ROS optical sensor), 14) Break Beam sensors
(Monarch Instruments ROS optical sensor), 15) Pitching wheels, 16) Potentiometer
(PEM model#KU5011S64) measures angle of attack.

assembly by a 12:1 gear reduction, which controls motion in the x-direction.

The rotation angle is controlled using the same stepper motor configuration as

the lead screw assembly. The torque required to rotate the shooting mechanism was

greater than the operational limit of the stepper motors coupled to the planetary gear

set. Therefore, a worm gear assembly (Grove Gear OE series 130-30 gear reduction

of 30:1) is coupled to the system to compensate for the needed holding torque. The

National Instruments motion control software controls each stepper motor through

the National InstrumentsTM motion control board model #PCI-7342.

The support structure is made of Unistrut® material. The structure is mounted

to the wall in two locations and is supported by six feet on the floor. The frame can



Figure 2-5: Frontal view of shooting mechanism in place. 1) Plexiglass loader, 2)
Solenoid controlled release of billiard balls, 3) Roller bearing tracks, 4) Roller bear-
ings, 5) 80/20® aluminum frame, 6) Break Beam sensors (Monarch Instruments ROS
optical sensor), 7) Pitching wheels, 8) Potentiometer (PEM model#KU5011S64) mea-
sures angle of attack, 9) Wheel motor shaft mounting brackets. Note: the two very
shiney spots in the picture are the reflective tape used by 6.

be moved if needed and facilitates easy mounting of future equipment. Polyurethane

sheeting is connected to the top of the support structure and provides a splash guard

to protect electronics and other water sensitive equipment. The structure also serves

as a shelf to place electronics off of the floor. A second shelf is sometimes installed to

accommodate camera equipment, lighting, etc. A photograph of the final frame with

the tank in place can be seen in figure 3-3.

2.2.4 System control

The whole experimental setup is controlled by National Instruments LabViewTM soft-

ware. The system control works on two levels. The first level is a user interface for

those working in the lab to locally control the motors and cameras. The second is a
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Figure 2-6: Loading mechanism showing the loading tube, u-bolts, solenoids, and
moutning bracket.

method for remote users to request operational control by sending a batch file, which

allows them to perform experiments and collect data. Both levels control the system

in similar ways. The main difference is that from the web, a user sends commands via

a batch file, whereas the person in the lab has more real time control over the exper-

imental setup. A flow chart of the mechanical systems and computer control can be

seen in figure 2-7. Controlling the system in the lab consists of four inputs, and four

outputs. The user can specify the speed of each wheel, the angle of release (0O - 150),

and when to fire the projectile. Two outputs come from the RPM sensors, two from

the break beams. The angle of impact is converted into an amount of steps needed

to turn the shooter to the proper angle, and the amount of steps needed to move the

shooter into a safe position for firing. The design intent is for the shots to always land

in the center of the tank for safety, but that feature can be overidden if necessary.

Each wheel is constrained to spin in such a way that its angular velocity forces the

ball downward (ie. the left wheel spins in the -Z direction and the right in the +Z

direction.) The motors rotate from 0 - 183 rad/s (0 - 1750 RPM) and the drivers

can provide 600 steps in that range. The software takes a desired RPM as input and

outputs a voltage from 0 - 10 volts DC, which informs the motor driver what speed
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to spin the motors. The motor driver then supplies the necessary AC voltage to the

AC inductive motors and the motors spin. The software then determines how fast

the wheels are spinning by looking at the output from the RPM sensors (Monarch

Instruments ROS optical sensor). The RPM sensors are optical sensors that create

a voltage pulse each time the reflector on the wheel passes by the light beam. The

frequency of these occurances is calculated by the LabVIEW software and output an

RPM reading for the user. The break beams are the same sensor as the RPM sensors,

yet they work in reverse. The light beams are normally pointed at a reflective tape.

The voltage reading is always high until something breaks the light beam. As the

ball falls through the light rays the peaks of each break are recorded, the time is mea-

sured and the velocity of the sphere is calculated using the known distance between

the rays.

The system can be controlled by either a remote user or someone in the lab.

The remote user can log into the iMarine website after obtaining a username and

password. The user then specifies the parameters for the experiment and submits

the job for processing. After submission the commands are sent to the Labview host

computer and the request is put into the queue. The computer looks through the

queue and waits until an appropriate time to run the experiment. Normally this

occurs quickly, unless there are other experiments in progress. The machanism is

positioned according to the inputs and a voltage is sent to the wheels to set them

spinning properly. The spheres are then released into the wheels and shot at the free

surface. The firing sequence (figure 2-8) begins by sending a voltage to the Grayhill

70RCK8 relay controller. The controller allows 18 volts to pass to the bottom solenoid,

which releases the ball into the wheels. Moments later the solenoid is released, then

the upper solenoid is held open so the next sphere can be loaded for firing. The

upper solenoid is then released to keep the other sphere from falling into the wheels

when firing. As the firing sequence begins, a signal is sent to the camera and data

aquisition board to begin saving data. This command lasts until the ball is fired and

the hold is released. When the holds are released the data from the camera and data

acquisition boards is saved to disk. The wheels and positioning mechanism are also



told to return to their resting postions.

The acquired images are sent to the iMarine server for download. This process is

done by a secure copy protocol. Once the download is complete, Labview sends an

email to the remote user informing him that the information is ready to be down-

loaded. The user then logs back onto the iMarine website and gathers the data they

see relevant to their study. The data can then be stored on the iMarine server for

later data mining, and helps create a database of experiments for future work.

If the user is in the lab, the lab user has priority instead of waiting in the queue

and simply enters the parameters for the wheels and position separately. When the

parameters are entered the computer executes the command immediately. When the

user is ready to fire, they simply push the fire button and the sphere is released into

the wheels. The user's data remains on the host machine but is not transfered to

the iMarine server. The images from the high speed camera are also available for

immediate viewing. The main difference in the lab is that the user is in complete

control, whereas the remote user must give up some control of the apparatus.

2.3 Calibration and reliability

The diameter of the wheels can increase as the rotation rates increase. This causes the

gap where the ball is fired to shrink, which can force the ball out of the firing line in

extreme cases. Table 2.1 illustrates the change in size due to spin. The measurements

were taken with a camera at each of the various speeds. The images were then read

into Matlab and the pixels between the wheels were measured and converted into

centimeters.

The wheel size changes proportionally to the wheel speed, therefore billiard balls

cannot be shot at all speeds without changing the wheel spacing. The wheel size will

be either too narrow or too wide at extreme spin rates. Users will be limited to speeds

that will ensure complete ball contact with the wheels. From preliminary testing and

use of high-speed video, we infer that the balls can tolerate approximately 0.64cm

(0.25inches) of wall flex in the wheels before they are forced out of the firing line.
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Figure 2-8: Loading mechanism firing and loading sequence [4].

RPM Distance Apart (cm)
186
388
590
798

1003
1215
1418
1726

5.72
5.49
5.49
5.41
5.28
5.03
4.88
4.60

Table 2.1: Wheel spacing decreases as spin rate increases, which is caused by cen-
tripetal forces.

Fire



For safety purposes a Plexiglas shield has been installed to protect the camera and

users when firing (see figure 2-5).

It is important to calibrate an apparatus like this one after design and implimen-

tation. It is fairly easy to parameterize the error involved in returning to an angular

and linear position. However, it is more difficult to determine impact angles, spin

rate, and impact velocities. This arises because the water in the tank can change

height due to evaporation, draining, and filling. Therefore, some parameters are cali-

brated and the error margins are noted. Others cannot be calibrated but an estimate

of values can be made. For instance, it is possible to determine impact velocities from

the high speed video images. Making a database of various parameters can help users

to pick regions of study and help them to not waste time taking data unnecessarily.

2.4 Image acquisition and processing

2.4.1 Hardware setup

The high speed camera (X-Stream VISION XS-3 model #XS3-000-4) in figure 2-9 is

controlled by either LabView or the IDT X-Stream Vision software. When a remote

user submits a job for experiment the high speed camera settings and triggering are

performed by LabView. This is done by using the IDT X-Stream VI (a subroutine

used by LabView to control different parameters of the computer interface) set sup-

plied by IDT . The IDT X-Stream VI set controls the camera and moves the images

to the computer by USB. The camera stores up to 4 gigabytes worth of images.

When the VI is executed it opens the camera, instructs the camera of the parameters

the user has specified, begins aquiring images when the internal trigger is set, and

then sends the images back to the computer for storage and data retrieval. Future

improvements would include the use of an external trigger (i.e. a light beam being

broken, sound triggering, etc.) to begin acquisition.

After the firing sequence begins the camera collects images until the buffer is full.

The amount of images collected depends on the size of the image taken. Table 2.2



Figure 2-9: X-Stream Vision XS-3 high speed camera.

shows how many images can be aquired given the pixel size of the image and the

related frame rates.

When the setup is run by someone in the laboratory, typically they will use the

IDT X-Stream Vision software. This allows the user a little more flexibility in the

setup. Since the camera can transfer real time images via the USB cable, the user can

check the size, exposure, frame rate, and storage capacity. The user can also capture

some data and play it back to see how much of the shot is necessary to keep, and

whether the lighting looks right. Unfortunately there is no way for the remote user

to have the same advantages. In the future that may change as the IDT X-Stream

VI set improves. The laboratory users also use an internal trigger, controlled by the

mouse, to tell the camera when to fire. This method is effective, however, an external

trigger may be easier to control for some future experiments.

2.4.2 Image acquisition and control

The X-Stream XS-3 can acquire images from 625 fps up to 57,000 fps by reducing

the size of the image (table 2.2). As the image size decreases, the number of lines

it has to write becomes less and therefore speeds up the image aquisition. The user

can also change the exposure time, which is the main factor in light sensitivity. The

amount of light entering the camera can also be changed by the aperture setting on

the lens: typically, the user will set the lens to the most open setting available, and

then work with the exposure mode. The reason this is done is that the shorter the



Table 2.2: IDT X-Stream XS-3 high speed camera resolution vs. frame rate table.
Image Resolution (Pixels) Frame Rate (fps)

1280H X 1024V 614
1280H X 640 962

1280H X 320V 1961
1280H X 160V 3910
1280H X 80V 7773
1280H X 40V 15,357
1280H X 20V 29,962
1280H X 10V 57.239

exposure time, the more crisp a fast moving object will appear. Making fast moving

objects appear still is usually the goal of high speed photography. The user also has

the option to change the gain, number of images aquired, image type (i.e. jpg, tif,

avi, mpg, etc.), double or single exposure, and triggering method.

One of the trickiest parts of high speed photography is lighting. Many different

effects of the water entry phenomenon can be emphasized by the proper lighting. The

best option for water entry is to create an abundance of light and allow the user to

step down the exposure time. A decreased exposure time will increase the accuracy

and resolution of a particular phenomenon, if the image is well lit. Therefore, two

types of light are now employed. The first are halogen bulbs facing the tank on

the same side as the camera. These bulbs produce 400 watts of light each and can

light the foreground very well if placed correctly. They do not focus the light as

well as a spotlight and allow light to scatter to the sides. It is necessary to place

these lights strategically to get proper lighting. This can be achieved by setting up

the camera in the desired position and then testing the placement of the lights while

using the IDT X-Stream Vision software to check that there is enough light. The

second method is a backlight, which consists of modular arrays of flourescent bulbs

placed behind the tank facing the camera. Each array is made up of 19 T8 series 32

Watt bulbs, supplying a total of 600 Watts of light per panel. Each panel is connected

to a track above the water tank by ball bearing rollers. The track and rollers allows

easy movement of the lights for maintenance and placement. Normally the lights are



placed between the strengthening crossmembers in the back of the tank. This light

is often too strong for the particular shot and can be softened using a white sheet

or frosted glass to soften the effect of the backlight. The backlight particularly helps

illuminate the splash and cavity formation. When using the back and foreground

lighting together the exposure time can often be decreased. This allows the faster

and more subtle phenomena to appear less blurred.

In the future, the remote user may want more control of the lighting and camera

positioning options. This could be accommodated by allowing the user to control

which lights are on, or where the camera and some of the lights are positioned. It

would also be advantageous to aquire some high power strobe lighting. This would

enable users to sync the cameras with the light and may provide better light than

that of the halogen and backlight setup.

2.4.3 Position

It is imperative to determine the trajectory of the spheres as accurately as possible. If

this is not done properly then the determination of velocity, acceleration, and forces

will be misleading due to the error propagation. Due to the nature of these impacts,

the images are the only source of data, making high-precision image processing a

necessity. Therefore, it is imperative that the trajectory be determined in a manner

that minimizes error and pixel locking.

One method of finding the trajectory involves using a template of the image to be

traced and then performing a cross-correlation between the template and the image

of interest. If this step is done properly the position of the object can be determined

to within ± 1 pixel. This method can be accomplished in a few different ways, here

a cross correlation is used between a template (provided by the user) and the next

image in the series. The cross correlation returns a matrix of values (-1 to 1) indicating

the most likely position of the sphere in the consecutive image. This process can be

continued until the position of the sphere in all frames is determined.

To begin the process the user provides a template by picking the center of the

sphere from the first image of interest. Figure 2-10(a) shows an image of the sphere



before any processing is done. The center of the sphere is then marked with a (X) and

a circle is drawn around the mark based on the radius in pixels (see figure 2-10(b)).

At this point the user can adjust the center of the sphere and the radius to improve

the fit. Once the user is finished with the adjustments the image is then cropped as

a template. The template is then cross correlated with the next image in the series.

The cross correlation produces a new matrix of values from (-1 to 1) where 1 indicates

the highest correlation or best estimate of where the sphere occurs in the next image

(see figure 3-6). This point is then extracted from the matrix and represents the

pixel position of the center of the sphere. Sometimes a large bubble or other common

pattern can get a slightly higher correlation than the actual sphere, but in those cases

the data can be either thrown out or the user can adjust the error manually.

One of the problems with this process is that the images are limited by + 1

pixel accuracy. This can often lead to pixel locking, where the center of the sphere is

actually between two pixels but is interpreted by the program to be on a certain pixel.

This can greatly affect the velocity and acceleration when the derivative is involved.

One method of overcoming this issue is to fit the data near the point of interest to

a Gaussian curve (assuming the cross-correlation peak isn't too steep). This method

can give sub-pixel accuracy and greatly improve the acceleration and velocity curves.

This process is accomplished by picking a number of points around the peak from

the cross correlation and fitting a Gaussian curve to each row and column of values.

Figure 2-11 shows the highest position data obtained by the cross correlation with

two points in both directions. The Gaussian fit is applied in both directions and the

highest point on the surface is found and marked with an (*).

The next step is to determine the optimum number of points on either side of the

peak value to apply to the Gaussian. One can see from figure 2-11 that as one moves

away from the peak the values would no longer fit to a Gaussian curve. Using four

different fitting values (s=3,5,9,21) it is apparent that using five points for the fit is

sufficient and values above 21 become erratic. Figures 2-12 to 2-15 compare these

four fitting values. These figures also illustrate the effectiveness of the Gaussian fit on

the acceleration curve. Without the fit the acceleration data is almost meaningless.



(a) (b)

Figure 2-10: Raw image of steel sphere impact with free surface. Sphere is already
3.5 diameters below the free surface. Image from figure 2-10(a) cropped for user to
observe center of sphere marked with an 'X', and outline of sphere based on radius
marked with a blue circle. User can make adjustments to sphere center and set the
proper radius.

The fit shows that the spheres decelerate as a function of frame number (time) with

a 2nd or 3rd order decay rate.
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Figure 2-11: Cross correlation of template with next image in series produces a matrix
of values from -1 to 1 in which the highest value represents the probable center of the
sphere.
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Figure 2-13: Gaussian fit to 5 points compared to no fitting parameter for position,
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Figure 2-15: Gaussian fit to 21 points compared to no fitting parameter for position,
velocity, and acceleration.
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If all of the methods are plotted for acceleration one on top of another the in-

accuracy of the 21 point fit becomes more obvious. Figure 2-16 shows all of the

acceleration data plotted over one another. In general, they all fall on top of one

another, emphasizing that increasing the amount of points used to fit the Gaussian

curve does not increase the accuracy of the measurement.

Acceleration
0.5

.R. -0.5 -

0
C5 -1

- s=3
_ X s=5

<-1.5 o s=9
-+-s=21

-10 20 30 40 50 60 70
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Figure 2-16: Acceleration plots of four different fitting values (s=3,5,9,21). Notice
that the s=21 case appears different than the rest, which is an indication that at 21
points away from the peak value the cross correlation data space is no longer Gaussian
as expected.

Now that the number of points needed to fit the Gaussian curve has been de-

termined it is important to determine how increasing the number of points used to

define the Gaussian curve itself changes the sub-pixel accuracy of the measurement.

Figure 2-17 shows the change in the acceleration curve if 1000 points as opposed to

100 points are used to define the Gaussian fit. It shows that increasing the amount

of points along the Gaussian tenfold doesn't seem to affect the outcome enough to

justify the time required to run the scripts. Of course, there is a limit to where de-

creasing the points would be ineffective. Although not plotted here it is reasonable to

assume that if the number of points along the Gaussian were reduced to 10 then the

effectiveness of the fitting would be in question because the domain space (5 pixels)

would only be doubled.
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Figure 2-17: Acceleration plot of two different point values (n=1000,100) along the
same Gaussian curve fit. The case where n=1000 is approximately the same as that
where n=100.

Post Processing

The position data is then normalized by making the free surface the origin of both

time and space in the laboratory frame, where the center of the sphere is the origin

of the sphere's coordinate system. Thus, when the sphere is centered about the free

surface it is said to be at (xo,yo,to) = (0,0,0). A line representing the free surface is

used to normalize both the time and spatial data. The easiest method for calibrating

the data to a level horizon is to determine the angle of inclination using two points

representing the free surface (0 = tan-l(xf,2-xf 81 ) / (yfs-Yfs 2) ) and applying a

rotational matrix based on this angle to the entire data set given by

(cos0 -sin0)
[x, y]= cos -sin (2.2)

sin 0 cos 0

The x and y position corresponding to the impact location is then formulated using

the new free surface location in y and the nearest frame to impact in x. By subtracting

these values to all position data the spatial origin (xo,yo,to) is now determined.

The actual time of impact is likely not recorded due to the discrete frame rate



of the cameras. Although high speed, the impact event is a finite time and typically

happens between frames. To estimate the actual time of impact the frame above

(Xa,Ya,ta) and the frame below (Xb,yb,tb) the origin are used to estimate the true

impact time as follows,

t' = ti + Ya A (2.3)

where At = tb - ta and Ay = Yb - Ya-

The position data is essentially the only data obtained from experiments like this

one. The position data determines all other values including velocity, acceleration

and forces. Several methods exist for determining the velocity and acceleration. The

first and easiest method is a finite difference. However, this method increases error

with each difference and can lead to erroneous results when the accelerations are

determined.

Another method is to fit a polynomial of order n to the data, then the velocity

and acceleration can be determined simply by taking the first and second derivative

of the polynomial. Using a polynomial can lead to accurate results if the trajectories

are smooth, continuous, and predictable. However, as the trajectories are altered by

viscous diffusion, cavity formation, and impact with the free surface, the ability of

the curves to accurately determine the deceleration diminishes.

The accuracy of polynomial approximation can be improved by windowing the

data or analyzing only a localized set of data. At a given point y(t), we fit a line

(ait + a2) from ti-, to ti+, for all points along y(t). Using this method, each of

the lines along y(t) represents a portion of the position versus time data. The first

derivative of the estimate in time is the velocity, the second derivative is acceleration,

etc., where the derivatives are applied at the center of each localized set. This method

yields much more accurate data in the first and second derivatives. However, it results

in the data not being smooth and data near the ends becomes lost.

One way of mitigating these problems is to employ a smoothing spline. A smooth-

ing spline is a continuous, smooth piecewise polynomial of order n that has n-1 con-

tinuous derivatives at each piecewise dislocation. If the piecewise polynomial is of the
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Figure 2-18: Velocity and acceleration for m* = 3.9 and 0 = 1200 for a sphere with U
= 3.43 m/s, computed by finite difference, windowed least squares, smoothing spline,

3rd order least squares, and 5th order least squares. The order of the least squares

estimates is the order of the polynomial fitted to the position-time data.

order of the number of points in the data set then the spline represents every point in

the data set exactly. Here we use a 5th order spline (n = 5) to maintain a continuous

second derivative, and apply a novel method for finding the best spline proposed in

appendix A.

This method yields excellent results. Figure 3-8 presents a comparison of the finite
difference, windowed least squares, smoothing spline, 3rd order least squares, and 5th

order least squares methods. The position data (not shown) for all five methods is in

excellent agreement. The velocity data shows good agreement for all but the finite

difference method. Furthermore, the acceleration (second derivative) illustrates the

large discrepancies between all but two of the methods. The best fit that maintains a

derivative that is smooth, continuous, has an exact solution and has reasonable end

points is the smoothing spline.

The accelerations and velocities from this method can now be used to determine

the forces acting on the body. In chapter 4 a force model is used to determine the

coefficients of drag and lift. In chapter 3 the force model is applied to ellucidate the

unsteady nature of the drag coefficient with spheres of varying masses and surface

treatments.



2.4.4 Rotation

In chapter 4 the effect of spin on the water entry of a cavity forming sphere is pre-

sented. In that work it was necessary to determine the rotational velocity of the

spheres as a function of time. To do this the position was found as noted above

and then an algorithm was developed to determine the angular displacement between

frames.

The method begins by cropping everything but the portion of the sphere that is not

visually disturbed by the index of refraction changes associated with the cavity (e.g.

portion underwater). For the cases presented in chapter 4 the spheres were cropped

in the lower left quadrant of the sphere. Two consecutive images were compared by

calculating the residual of their difference. One of the images was rotated about the

(experimentally determined) center of the sphere from 0 to r/4 rad in increments of

r/1800 rad and then they were compared again. The result is a minimum in residual

where the best estimate of rotation occurs. Figure 2-19 shows an images of a sphere

in two consecutive images and plots the residuals for that particular case. The best

estimate for rotation is thus 0 = 11.80. In practice, non-uniform markings were placed

on the spheres with indelible marker so that the rotational correlations would remain

accurate through each time step.

The angular position can be found through a summation of these angular displace-

ments. Spin rate, Q(t) rad/s, can be calculated from the first derivative of a second

order polynomial fit to the angular position data. The sensitivity of the measure-

ment to accurate position data was calculated by determining the minimum residual

of angular displacement for the sphere at its central point and two points on either

side. The mean spin rate and standard deviation were then applied to a Students-t

distribution outlined by [3], which revealed error estimates of 4% to 9%.

2.5 Surface properties

Projectiles used underwater must be smooth and water resistant, therefore a baseball

was not the most desirable object for these experiments. Tennis balls are similar in
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Figure 2-19: Two images depicting the angular displacement between them. a) is
of image 116 in the series and shows where the program would crop the image to
compare to image 117 b). The program outputs the residual of their subtraction in
c) and shows that in this case the lowest value (highest correlation) is at 0.2059 rad
or 11.8'.



size, but aren't as dense as water and therefore float. Billiard balls and baseballs

are both 5.71 cm (2.25 in) in diameter and weigh 0.17 kg (6 oz). Billiard balls are

also smooth and water resistant, therefore a billiard ball is a perfect match for an

experiment like this one.

2.5.1 Surface roughness

Surface roughness can affect the interaction between the fluid and the sphere. Of-

ten surface roughness plays a role in how the surface is wetted. The roughness of

the spheres was determined using a profilometer. A model Tencor P-10 Surface Pro-

filometer was used to take the measurements. Raw data was obtained for all types of

spheres used in this study. Figure 2-20 shows a typical raw output for both a smooth

glass sphere and a glass sphere coated with WX2100 by Cytonix Corp.

The data indicates how dramatic a change can occur with a thin coating like this

one. It also illustrates the problem with curved surfaces. Typically, measurements for

roughness are done by coating flat surfaces. Here the curvature of the smooth glass

surface is obvious. The coated surface is also curved, however, the roughness of the

coating masks the curved effect enough to make the measurement appear non-curved.

Furthermore, if a simple root mean square (rms) value is taken from either set of data

the result is nearly the same. This is because the roughness to curvature ratio is on

the same order. The measurement that is desired is one in which the actual roughness

is quantified by some numerical value that distinguishes the rough surface from the

smooth one. In other words, it would be nice to remove the curvature of the sphere

from the measurement to make the surface appear flat.

Typically a high pass filter is used to remove the curvature of the sample. However,

it is less than ideal if the wavelength of the curvature is orders of magnitude larger

than the sample size. Therefore, this technique is not particularly well suited for use

on the surface of spheres.

Another method for determining this is to fit the data to the curvature of a sphere

with the same diameter as that of the sample. To do this an assumption is made

that the profilometer has been placed so that it passes through the highest point on
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Figure 2-20: Roughness of two glass spheres of equal diameter (9.5 mm). The non-
smooth glass sphere was coated with WX2100. Raw data shows the curvature of the
sphere, as well as the dramatic difference between the coated and uncoated spheres.

the sphere. Without this assumption it would be difficult to know which radius to

use to remove the curvature from the measurement. The user can find the highest

point of the sphere by making multiple passes with the profilometer along the sphere

in linear directions. By observing the high point on each pass and watching the

camera view of the surface the highest point can be determined. If necessary all of

the passes can be saved and processed to find the roughness over a larger statistical

range. Once the highest point of the sphere is determined, the profilometer can be

set to pass through this point and set as the zero point in the measurement. In the

case presented here that was done at 100 micrometers. A circle of radius equal to

the sample is then made using R = /(y 2  x2); and only that portion equal to the

sample length is used compared to the measured data. The coordinate systems are

then lined up using the point of contact where the profilometer was zeroed. The raw

data is then subtracted from the curve and the rms is taken.

Figure 2-21 shows how effective this process can be at flattening the raw data.



Roughness mesurements
oug ness mesuremen s

-2 -

-6

(a) (b)

Figure 2-21: Roughness of two glass spheres of equal diameter (9.5 mm). The non-
smooth glass sphere was coated with WX2100. 3-5(a) Uncoated sphere and 3-5(b)
coated sphere both showing the raw measurement, theoretical data and subtracted
difference.

The smooth glass spheres now appear flat and have an rms value of 0.158 compared

to 3.108, while the coated glass sphere now has an rms value of 2.692 compared to

3.558. It is clear that this is one method for finding a relative roughness between two

curved surfaces of similar mean height.

This method does well at removing the curvature, however, the requirement that

the measurement to be taken at the highest point along the sample is time consuming,

because one must find the highest point of the sample by performing the measurement

several times. The best way of accomplishing this is to estimate where the high spot

is on the sample and move it into position manually. Multiple passes are taken

to find the highest spot on the sample. Often, multiple rounds of multiple passes

are necessary to find the true high spot. Each round can take up to 20 minutes,

which makes this method both time consuming and frustrating. Once the data is

acquired the entire surface made from the pass can be subtracted from the surface

of a theoretically smooth sphere and used for statistical analysis, but this is still

inefficient.

A more practical method is to fit the data to a quadratic polynomial. The poly-

nomial can be approximated from the equation of a circle x2 + y2 = R 2. Rearranging

and applying a Taylor series expansion for small x y = R- -. Therefore, a quadratic

R h 
t



fit to the surface data is a reasonable approximation of the actual sphere surface. The

curvature can be removed by subtracting the polynomial from the measured data and

the more realistic rms values determined. Figure 2.5.1 shows the polynomial fit and

subtraction similar to figure 2-21 for a ceramic sphere. It can be seen from the figure

that the rms values are similar to the curvature approach, however the approach is

much more simple.
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Figure 2-22: Roughness of two glass spheres of equal diameter (9.5 mm). The non-
smooth glass sphere was coated with WX2100. 2-22(a) Uncoated sphere and 2-22(b)
coated sphere both showing the raw measurement, theoretical data and subtracted
difference.

Further data in table 2.3 shows that although the curvature of the spheres is

different the general values for roughness remain the same for similar materials. This

method was used to determine the roughness of all spheres used in this study and is

summarized in table 2.3.

2.5.2 Wetting angle

The wetting angle of the spheres plays an important role in determining whether

they will create a subsurface cavity or not. The work of Duez [2] has shown that for

sufficiently high impact velocities there is a critical velocity based on wetting angle

above which the spheres will create cavities. In general, for spheres with wetting



Table 2.3: Roughness of spheres used in this study. Spheres coated with WX2100 to
make them hydrophobic and non-coated spheres are presented for each material.

Material Diameter [mm] Coating Roughness rms Adv. Contact Angle [deg]
Phenolic 57 Coated 1.69 122
Phenolic 57 Uncoated 0.09 79
Phenolic 35 Uncoated 0.37 79
Acrylic 25 Coated 2.73 100
Acrylic 25 Uncoated 0.29 69
Ceramic 25 Coated 2.42 118
Ceramic 25 Uncoated 0.11 57
Steel 25 Coated 2.40 122
Steel 25 Uncoated 0.01 70
Delrin 38 Coated 1.59 83
Delrin 38 Uncoated 1.99 122

angles above 90' cavities form with decreasing velocity, eventually reaching a critical

regime, where spheres with wetting angles above r1600 form cavities at all velocities.

Whereas, spheres with wetting angles below 900 form cavities above a critical velocity

near 7 m/s.

The cavity formation is dependent on wetting angle as it relates to air entrainment.

When a sphere has a large wetting angle, air is entrained behind the sphere as it

falls through the free surface such that the cavity near the sphere moves outward.

The cavity grows outward until some distance underwater when the surrounding

hydrostatic pressure causes collapse. Thus, the wetting angle has an important role

in cavity formation and should be considered when performing experiments of this

type and should be measured accordingly.

The wetting angle of many materials is well known. Typically an engineer can look

up this information in a table or chart. The wetting angle may be measured in many

ways and typically on flat objects. Spheres are obviously curved, and the materials

we used can have variable wetting angles depending on the manufacturer. Therefore,

it was important to measure the wetting angle under the laboratory conditions. To

do so the sessile drop method was employed. This method is accomplished on a



spherical surface by the following. The sphere is placed between the camera and a

diffuser with a bank of florescent bulbs behind. A 105 mm micro Nikkor lens is used

to get an approximately 4 cm 2 viewing window. A 0.51L pipette was used to add a

small droplet, a photo was taken, and then another drop added and so on until four

droplets had been added to the sphere. The pipette flow direction was then reversed

to remove approximately one droplet at a time until the water is gone. This allowed

for the measurement of an advancing contact angle and a receding contact angle.

Figure 2-23 shows a diagram of the receding and advancing contact angles.

Hydrophilic Hydrophobic

Air

Solid

Cassie - Baxter Wenzel

Figure 2-23: Diagram of a droplet on a hydrophilic and hydrophobic surface [1].

Below the effect of the surface shape and chemistry on the droplet can create either

a Cassie-Baxter state in which the liquid remains suspended between the valleys in

the solid. In the Wenzel state the water penetrates into the valleys. In the case of

the spheres when a droplet is added the advancing contact line appears much like the

hydrophobic case, whereas when a droplet is removed it appears to spread and looks

more like the hydrophilic state.

The images are then processed to determine the contact angle of the droplet with

the sphere. The program finds the sphere and the droplet using an edge detection

algorithm (Canny method). A circle is fit to the sphere and the droplet. The droplet

is slightly deformed so the approximated circle is a best fit. The two circles intersect

at two locations where their intercepts are then used to calculate the wetting angle.



Another circle is fitted to only 200 points near each of the intercepts. These two circles

approximate the curvature of the droplet more closely depending on the orientation of

the droplet. Figure 2-24 shows a droplet on a sphere and illustrates how each side of

the droplet appears to have a slightly different wetting angle. Some of this difference

is due to surface energy and some is due to the non-horizontal curved surface. This

method gives a rough estimate with an accuracy of approximately ±10'.

Figure 2-24: A raw image of a droplet on the surface of a hollow polypropylene sphere
0.0254 cm in diameter. Notice how each side of the droplet has a slightly different
wetting angle.

The advancing contact angle is the most commonly used measurement for the

falling spheres. In chapter 4 these angles will be altered by rotating the spheres.

Where applicable the wetting angle is reported and was calculated using this method.
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Chapter 3

Unsteady forces on spheres during

water entry

Abstract

We present a study of the dynamics of water entry for spheres of varying masses,
diameters, and surface treatments. As in past results we show that the formation
of a cavity in the wake of a falling sphere is conditional upon impact speed and
surface treatment. We go on to show that the mass of the sphere affects both the
deep seal location, shape of the cavity, acceleration, and trajectory of the spheres.
We also present a scaling law for determining the location of the sphere at deep seal
based on impact speed, diameter, and mass ratio, given that a cavity is formed. This
investigation also notes that for small mass ratios oscillatory motion is observed in
the sphere's descent.

3.1 Introduction

The impact of a solid sphere with the free surface can create an air cavity or no

air cavity depending on the initial conditions and surface treatment. The forces

the sphere experiences, particularly at shallow depths, depends upon whether or

not this cavity is formed. The measurement of these forces has been experimentally

difficult until now and the subtleties of these differences difficult to pinpoint. Through

the use of high speed-video, sub-pixel accuracy, novel smoothing techniques, and

manipulation of the mass ratio of the spheres we elucidate the forces these two types



of impact produce.

The impacting the free surface has enamored the scientific community with its

symmetry, beauty, and complexity for centuries. The first images of this phenomenon

were recorded by [25], while more recent studies include the parameters required for

cavity formation [6] and a full characterization of the cavity dynamics ([1] and [5]).

This problem also provides a broader set of smaller problems on a smaller scale.

The small scale effects can be witnessed and characterized through observation and

analytical modeling such as the initially small but fast jet that is ejected at the

moment of impact with the free surface [22], the cavity ripples associated with the

portion of the cavity that descends with the sphere after deep seal [12] and the altered

cavity shape and lift forces due to the addition of spin [23]. The hydrodynamic

observations and measurements obtained from all of these studies can be applied to

various industries from naval hydrodynamics such as the water entry of mines to the

underwater launching of torpedos. Early studies focused on the impact of float planes

on the water surface [14], torpedo water entry [18], and general impact [24] recently

reviewed by Korobkin [15]. Industrial applications include structural interactions with

the free surface such as ship slamming, extreme waves and weather on oil platforms,

sprayed adhesives, and ink jet printing. Even the sporting industry is interested in

the water entry of athletes, reducing drag of swimmers near the free surface and the

entry and exit of oars in rowing.

Typically, the studies that focus on the dynamics of entry have chosen to keep

all parameters constant while varying the impact speed [18], atmospheric pressure

[10], impact angle [2], or surface treatment [6]. Most studies have focused on the

growth of the cavity and the pinch-off location [4], [11], [17] and [3] for both spheres

and disks. We present an experimental setup that allows us to study the variability

of these findings when multiple parameters are changed. In particular we show the

change in behavior of the spheres when surface coating is altered along with mass

ratio. This study goes on to show the differences in drag forces associated with these

two different wake features, and discusses the effect these features have as a function

of mass.



By way of introduction to these subtle differences six cases are presented in fig-

ures 3-1 and 3-2. Although all six sets of impacts have the same water entry speed

the spheres in figure 3-1 create a large cavity in their wake while those of figure 3-2

do not. The spheres in both figures have three different mass ratios which obviously

has an effect on the cavity size, trajectory, and descent rate. This paper will examine

these differences and highlight areas where these changes cause significant alterations

to the behavior of this phenomenon.

This study was accomplished with the use of a high speed digital method of gath-

ering and analyzing data and emphasizes the need to resolve the position data to

sub-pixel accuracy and apply smoothing splines before deriving velocities and accel-

erations. The results give a truer estimation of the forces resulting in a coefficient of

drag that varies in time. These varying forces come from different sources. In the

cavity forming case the unsteadiness is based upon the expanding and contracting

cavity, which alters the pressure field around the sphere and alters the forces acting

on it over time. The non cavity forming case is forced unsteadily by the vortices it

naturally sheds in its wake. Through the use of high speed Particle Image Velocimetry

and a theoretical force model the source and magnitude of this forcing is elucidated.

This work represents the only drag data available for distances greater than 1/2 a

diameter below the free surface. The methods used herein could be applied to past

and future studies to gather force data for comparison.

3.2 Experimental study

This experiment consists of dropping different types of spheres from varying heights

into a large tank of water. The size, mass, and surface makeup of each sphere was

recorded before being dropped and each impact with the water surface was recorded

by a high-speed video camera. Details of the apparatus, spheres, image processing,

and method of finding velocity and deceleration are presented in this section.



Acrylic: m* = 1.2, 0 = 1200

Ceramic: m* = 3.9, 0 = 1200

Steel: m* = 7.8, 0 = 1200

Figure 3-1: Three different spheres of the same diameter (D = 0.0254 m) dropped

from the same height (h = 60 cm), coated with the same surface treatment (advancing

contact angle 0 1200) but all have different mass ratios m* = s/p as indicated.

The time between images is 7.1 ms and the impact speed is V = 3.43 ms- 1 yielding

the same Froude number F = Vi/v-gD = 6.87 for all cases.
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Figure 3-2: Three different spheres of the same diameter (D = 0.0254 m) dropped
from the same height (h = 60 cm), cleaned in the same manner (advancing contact
angle 0 above) but all have different mass ratios m* = p/,lp as indicated. The time
between images is 7.1 ms and the impact speed is V = 3.43 ms - ' yielding the same
Froude number for all cases F = V/vgD = 6.87.
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Figure 3-3: a) Impact tank is made with a steel frame and 1 in acrylic. The tank is
91 cm x 152 cm x 152 cm and holds 2200 liters of water. b) Secondary device used to
drop the spheres. The sphere is held above the water surface by two brackets that are
attached to a set of o-rings. The brackets are attached to a set of bearings allowing
the sphere to rotate out of the plane of the illustration. A motor is attached to one
of the bearing shafts to induce a prescribed rotation (not used in this study). An
optical rpm sensor is mounted separately to detect the spin rate of the sphere before
release. An electromagnet holds the two halves of the device apart until the dropping
time at which point the electromagnet is turned off and the springs draw the device
apart allowing the sphere to fall freely into the tank of water.

3.2.1 Apparatus

The experimental apparatus consists of two different tanks of water and two different

methods of dropping the spheres. The largest tank is 91.4 x 152.4 x 152.4 cm 3 and

holds approximately 2200 liters of water and is made of acrylic (1.27 cm thick) set

into an external steel frame. The frame is welded from 5.08 cm square extruded steel

hollow posts with 6 supporting feet. The combined weight when full is approximately

2575 kg. Figure 3-3 shows the largest tank and the supporting equipment. The

smaller tank is a typical glass aquarium 30 x 50 x 60 cm 3 and was used in conjunction

with the smaller sphere diameters.

Two different methods for dropping the spheres into water were used. The method

Camera

Eh

Lights

11

Water



for dropping spheres into the smaller tank of water was to place the spheres a distance

z above the free surface in a small manual aperture, similar to an aperture in a camera.

The aperture was then opened and the sphere allowed to fall into the water. The

method for dropping the spheres into the larger tank was to place them between

two small circular plates fitted with o-rings mounted to a device held closed by an

electromagnet (see figure 3-3). The electro-magnet was then released and a spring

forced the circular plates away from the sphere letting it fall freely towards the water

surface. This more complicated device was developed to allow the spheres to spin

before being dropped, but they were not allowed to spin for this study. The majority

of the data presented here used the larger tank setup.

A high speed camera (IDT XS-3 CCD) was used to record each of the falling

spheres at 840 frames/s (fps). The image resolution was 756 x 1260 pixels and

the field of view was 28.66 x 47.77 cm yielding a 26.4 px/cm magnification. Image

data was stored as tiff images and post processed using image processing techniques

developed on the Matlab software platform.

3.2.2 Spheres

These experiments involve the use of many different spheres to determine the effects

of density, diameter, and surface treatment on entry behavior. The effect of any

of these three parameters was under investigation, therefore, multiple diameters of

varying density were used. Each unique diameter and density was either cleaned to

enhance the natural contact angle of the spheres, or coated with a hydrophobic coating

to induce a similar hydrophobic effect between all sphere types. The roughness and

wetting angle of each type of sphere and coating was then measured.

Table 3.1 shows all of the spheres tested in this study and their relevant param-

eters. The various densities were achieved by altering the material properties of the

spheres. The surface treatment was accomplished by cleaning or coating the spheres.

Cleaning was performed under a chemical hood with the operator wearing protective

eye and hand equipment. The cleaning was done by hand and the spheres were 1)

sprayed with Acetone and then wiped with KIM wipes, 2) rinsed with alcohol and



Table 3.1: Spheres used in this study. Advancing contact angles are given with error
in the measurement of ±100. Roughness measurements are also given in pm with the
error in the actual measurement of ±0.01pm.
Material Density [kg m-] Diameters [mm] Advancing Contact Angle

/ Roughness rms

Nylon 1.1 4.76, 9.53, 15.9, 25.4 81/2.14, 122/1.28
Acrylic 1.2 25.4 69/0.29, 100/2.73
Phenolic 1.9 25.4 79/0.8, 122/1.95
Glass 2.4 4.76, 9.53 50/0.03, 122/2.53
Ceramic 3.9 25.4 57/0.11, 118/2.42
Steel 7.8 1.59, 4.76, 9.53, 15.9, 25.4 70/0.01, 122/2.40

allowed to partially dry and 3) rinsed with Ethanol and allowed to thoroughly dry

in the hood. The spheres were then placed in a container that had been cleaned in

a similar manner and covered with clean sheet of aluminum foil. If the spheres were

left unused for more than 20 minutes they were cleaned again.

The spheres that are treated with a hydrophobic coating are coated in a slightly

different manner. First they are cleaned as prescribed above, then they are set on a

small railing where they are in contact with the rail at two points. The spray coating

(WX2100) is then applied gently by spraying away from the sphere and drawing

the nozzle past the sphere for just a brief moment. This process is repeated on the

opposite side. In order to insure even coating the sphere is allowed to dry for 2 hours

and then it is rotated and sprayed again. It is allowed to dry again for two hours

and is coated one last time after rotation. This seems to provide a thin even coating

without extra equipment requirements.

The coating produces both a new wetting angle and an associated roughness.

Wetting angles were measured using the static sessile drop method. Spheres were

placed on table and a drop of water placed on the top surface. Photographs were taken

using a Canon 20D SLR camera with backlighting provided behind the sphere through

a diffuser. A droplet was placed on the sphere with a pipette then a photograph

was taken. Another droplet was then added to the first and another photograph

taken. This was done until three droplets were added to the top of the sphere and

photographs taken. Then each of the droplets was removed using a Pasteur Pipette.



Figure 3-4: Four images overlaid to show the addition of each droplet on the surface

of a hydrophobic sphere. The advancing contact line can be deduced by measuring
the angle between the sphere and each droplet.

This yielded both an advancing contact angle and a receding contact angle. Only the

advancing contact angles are reported in table 3.1. Images of this process can be seen

in figure 3-4.

The coating alters the surface roughness of the spheres. Roughness measurements

were measured by using a Tencor P-10 Surface Profilometer. The profilometer data

determined surface profile of the spheres. The surface profile includes both the surface

roughness and in this case it also includes the curvature. The curvature is removed

from the data by subtracting a curve proportional to the radius of the sphere from

the data. The result is a true roughness measurement (see figure 3-5). The rms of the

roughness is then taken and reported in table 3.1. This same technique was used to

determine the roughness of both the coated and uncoated spheres. Spheres smaller

than 9.53 mm were not measured but instead assumed to be of the same roughness

as the larger diameter spheres in the material family.

3.2.3 Image processing

It is imperative to determine the trajectory of the spheres as accurately as possible. If

this is not done properly or accurately then the determination of velocity, acceleration,

and forces will be misleading due to the error propagation. Due to the nature of these

experiments the images are the only source of data, which makes validation important

and increases the need for image processing to be done accurately. Therefore, it is

imperative that the trajectory be determined in a manner that minimizes error and

pixel locking.

One method of finding the trajectory involves using a template of the image to be
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Figure 3-5: Roughness measurement of two glass spheres of equal (diameter = 9.5
mm). 3-5(a) uncoated sphere and 3-5(b) coated sphere both showing the raw measure-
ment, theoretical curvature and subtracted difference. The roughened glass sphere
was coated with WX2100.

traced and then performing a cross-correlation between the template and the image

of interest. If this step is done properly the position of the object can be determined

to within ± 1 pixel. Here a cross correlation is used between a template (provided

by the user from the most applicable image in the series) and the rest of the images

in the series. The cross correlation returns a matrix of values (-1 to 1) indicating

the most likely position of the sphere in the consecutive image (see figure 3-6). This

process can be continued until the position of the sphere in all frames is determined.

One of the problems with this process is that the images are limited by + 1 pixel

accuracy. This can often lead to pixel locking, where the center of the sphere is

actually between two pixels but is interpreted as a particular pixel. This can greatly

affect the velocity and acceleration when the derivative is involved. To overcome this

issue the data near the point of interest is fit to a Gaussian curve (assuming the

cross-correlation peak isn't too steep). This method is similar to the method used in

[20] and can give sub-pixel accuracy and greatly improve the acceleration and velocity

curves.

This process is accomplished by picking a number of points around the peak from

the cross correlation and fitting a Gaussian curve to each row and column of values.
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Figure 3-6: a) Cross correlation of template with an image in the series produces a
matrix of values from -1 to 1 in which the highest value represents the probable center
of the sphere. b) Gaussian curve fitted in both x and y directions around peak value.
This plot shows the curve fitting to each row and column as well as the sub-pixel
position of the sphere (*).

Figure 3-6(b) shows the highest position data obtained by the cross correlation with

two points in both directions. The Gaussian fit is applied in both directions and the

highest point on the surface is the new center location. One can see from figure 3-6(a)

that as one moves away from the peak the values would no longer fit to a Gaussian

curve, thus an optimal amount of points around the peak must be used to apply

this fitting parameter. Similar to the method of determining the best correlation in

Particle Image Velocimetry (PIV), the best fit occurs when the fit is applied from 1

to 2 points on either side of the peak. In this study 2 points on either side of the peak

value were used to apply the fitting parameter. This method improved the accuracy

by two orders of magnitude to ±0.025 pixels (0.00005 cm).

The increased accuracy of the acceleration data reveals an unsteady forcing on

the sphere as a function of time. Two different techniques were employed in order to

determine the unsteady forces. The first technique is used for the spheres that form

cavities. This technique traces the cavity as a function of time. This is done using a

Canny edge finding image processing technique, which detects the highly contrasted

edges of the cavity as viewed in figure 3-1.

The second technique uses a high speed implementation of Particle Image Ve-



locimetry (PIV) [19] to gather information about the cavity and non-cavity forming

flow fields. The setup is similar to that of the previous section (see figure 3-3) but

instead of using the fluorescent back lighting a laser plane illuminated a plane along

the axis of the falling sphere perpendicular to the camera. The tank was seeded with

50 pm polyamide neutrally buoyant particles, which were illuminated by the 2.2 W

Laser (LaVision) at 532 nm, which was fitted with an optical lens that produced a

200 fan of light. The IDT XS-3 camera was again used but this time the resolu-

tion was 404 x 1280 with a field of view of 8.14 x 25.80 cm yielding a 49.61 px/cm

magnification. PIV data was collected and processed using the LaVision DaVis 7.2

software package. A multi-pass, cross-correlation processing algorithm, with a final

interrogation window size of 16 x 16 pixels and 50% overlap was used for processing

all of the images. The output was a velocity field with an output of 160 x 50 vectors.

The data was further processed in Matlab to determine the moment when vortices

are shed into the wake of the sphere by evaluating the instantaneous impulse at each

time step in a manner similar to [7]. Circulation was computed using the Stokes

theorem at each time step

r= E j A (3.1)
ij

where the wj is the curl of the velocity field at a point (i,j) and 6A = (8 px) 2 = 0.163

cm 2 is the box size. The circulation depends upon the velocity in the flow field and

the area of the circulation. Determination of the area that the circulation affects can

be difficult. Gharib [9] resolved this problem by defining a line of isovorticity of a fixed

amount to prescribe the area of vorticity to consider. Here we use the same technique

and apply an isovorticity line equivalent to 25% of the the maximum circulation for

each vortex. Figure 3-7 shows an example of the circulation calculated at frame 231

or t = 86.3 ms after impact as viewed in the 15th image in the sequence of figure 3-15.

This value yielded the most effective results for all times given our field of view and

PIV spatial resolution. Further discussion can be found in § 3.3.3.
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Figure 3-7: Circulation as a function of the percentage of maximum vorticity. The
percentage of maximum vorticity defines the area used by the circulation (see equa-
tion (3.1)). Circulation is calculated at t = 86.3 ms after the center of the sphere
passed through the free surface as shown in figure 3-15 (15th image). The hydrophilic
acrylic sphere in this case was 0.0254 cm in diameter dropped from 60 cm.

3.2.4 Post processing

The position and cavity data was normalized with the free surface making the free

surface the origin of both time and space, where the center of the sphere is the origin

of the sphere fixed coordinate system. Thus, when the sphere is centered about the

free surface it is said to be at (xo, Yo, to) = (0,0,0). A line representing the free

surface is used to normalize both the time and spatial data. The easiest method

for calibrating the data to a level horizon is to determine the angle of inclination

using two points representing the free surface (0 = tan-l(f 8 2-xfs) / (yfS-yfS2))

and applying a rotational matrix based on this angle to the entire data set given by

(cosO -sinO
[x,y] = . (3.2)

sin 0 cos 0/

The x and y position corresponding to the impact location is then formulated using

the new free surface location in y and the nearest frame to impact in x. By subtracting

these values to all position data the spatial origin (xo,yo,to) is now determined.

The actual time of impact is likely not recorded due to the discrete frame rate

of the cameras. Although high speed, the impact event is a finite time and typically



happens between frames. To estimate the actual time of impact the frame above

(Xa,Ya,ta) and the frame below (Xb,Yb,tb), the origin is used to estimate the true impact

time as follows,

t' = ti + Ya A (3.3)
i ± ay

where At = tb - ta and Ay = b - Ya. The position data is essentially the

only data obtained from experiments like this one. The position data determines

all other values including velocity, acceleration and forces. Several methods exist for

determining the velocity and acceleration. The first and easiest method is a finite

difference. However, this method increases error with each difference and can lead to

erroneous results when the accelerations are determined.

Another method is to fit a polynomial of order n to the data, then the velocity

and acceleration can be determined simply by taking the first and second derivative

of the polynomial. Using a polynomial can lead to accurate results if the trajectories

are smooth, continuous, and predictable. However, the sphere is influenced by the

unsteady and nearly instantaneous forcing from impact with the free surface and

near the point of pinch-off, thus the ability of the curves to accurately determine the

deceleration diminishes when the relative magnitude of these forces is on the order of

the force of the sphere.

The accuracy of the polynomial approximation can be improved by windowing the

data or analyzing only a localized set of data. At a given point y(t) fit a line (alt +a 2)

from ti_, to ti+, for all points along y(t). Using this method, each of the lines along

y(t) represents a portion of the position vs. time data. The first derivative of the

estimate in time is the velocity, the second derivative is acceleration, etc., where the

derivatives are applied at the center of each localized set. This method yields much

more accurate data in the first and second derivatives. However, it results in the data

not being smooth and data near the ends being lost.

One way of mitigating these problems is to employ a smoothing spline. A smooth-

ing spline is a continuous and smooth piecewise polynomial of order n that has n-1

continuous derivatives at each piecewise dislocation. If the piecewise polynomial is
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Figure 3-8: Velocity and acceleration for m* = 3.9 and 0 = 1200 as seen in figure 3-1b,
computed by finite difference, windowed least squares, smoothing spline, 3rd order
least squares, and 5th order least squares. The order of the least squares estimates is
the order of the polynomial fitted to the position-time data.

of the order of the number of points in the data set then the spline represents every

point in the data set exactly. Here we use a 5th order spline (n = 5) to maintain a

continuous second derivative, and apply a novel method for finding the best spline

proposed by [8].

This method yields excellent results. Figure 3-8 shows a comparison of the finite

difference, windowed least squares, smoothing spline, 3rd order least squares, and 5th

order least squares methods. The position data (not shown) for all five methods shows

excellent agreement. The velocity data shows good agreement for all but the finite

difference method. Furthermore, the acceleration (second derivative) shows large

discrepancies between all of the methods. The best fit that maintains a derivative

that is smooth, continuous, has an exact solution and has reasonable end points is

the smoothing spline.

3.3 Results

The impact of a sphere that creates a subsurface air cavity is characterized by a few

distinct features. Figure 3-1 shows a time series for three different sphere densities.

In each case the moments near impact are characterized by an outward radial jet of



fluid and the formation of a thin sheet of fluid ejected away from the sphere. These

images begin after the moment of impact in which a cavity has already formed in the

wake of the sphere, and the cavities appear to be attached near the equatorial region.

As the sphere descends the cavity is created by the force the sphere exerts on the

fluid in the radial direction. This force causes the fluid to move outward radially with

some inertia until the momentum of the growing cavity is completely dissipated in the

fluid. By the time the fluid has lost its radial momentum the sphere has descended

some distance downward in the z direction. This outward momentum has created a

cavity which now is opposed by the hydrostatic force of the water at the given depth.

The hydrostatic force then acts in opposition to the direction the cavity formed and

moves the cavity inward, beginning the collapse event.

The collapsing event increases in velocity up until the moment of collapse where

two cavities are formed. This moment of collapse is called deep seal or pinch-off. The

top cavity is connected to the free surface and as it collapses a large jet is formed

at the point of pinch-off. The jet grows as the cavity collapses further and ascends

above the free surface well above the initial drop height of the sphere. The bottom

cavity remains attached to the sphere for a period of time. This cavity also has a

jet of smaller magnitude that forms at the point of pinch-off but descends towards

the sphere eventually impacting the sphere. For larger mass ratios the cavity remains

attached for longer times and exhibits cavity rippling [12] before the cavity is released

from the sphere and water fills in behind it. For smaller densities the cavity remains

attached for very short times and does not appear to exhibit the same cavity rippling

phenomenon.

The most obvious difference between the three mass ratios in figure 3-1 is the

the trajectories. The heaviest sphere (steel) has descended the most of the three

cases at the moment of pinch-off, while the lightest sphere (acrylic) has descended

the least. This is mainly due to the differences in inertia. Because the lighter sphere

has a smaller mass it has a reduced inertial mass even though it has fallen from the

same height as the heavier spheres. The force of drag due to cavity formation and

hydrostatic forces can be assumed to be on the same order of magnitude for all three



cases. Thus a reduced mass will result in a greater percentage of the inertia being

dissipated by the hydrostatic forces, resulting in a shallower trajectory.

Another major difference is the depth of deep seal. The depth at which this phe-

nomenon occurs changes dramatically as a function of mass ratio. As the mass ratio

increases so does the depth at which deep seal occurs. However, the non-dimensional

time to deep seal (T = td,(g/r)o'5) remains constant despite increasing mass or

changing diameter, where r is the radius and g is the gravitational constant. Many

authors have noted this agreement, here, deep seal occurred at 7 = 1.78 + 0.0752,

which is slightly larger than that reported by Gilbarg [10] (7 = 1.74) and Truscott

[23] (T = 1.726 ± 0.0688).

In the non cavity forming case of figure3-2 the entry is visually much less dramatic.

The fluid is unimpeded to travel up and around the sides of the sphere and does not

entrain air behind it, thus no cavity is formed. This phenomenon was first witnessed

by Worthington [25] when clean glass spheres were dropped in water and theoretically

explained for smooth spheres by Duez [6]. As the sphere passes through the free

surface the water it has displaced comes back together at the top of the sphere,

creating a large jet that ascends above the free surface as seen in figure 3-2. The jet

is characterized by a somewhat messy top portion that has more velocity to ascend

above the free surface to higher heights, while a more organized and slower growing

bottom layer produces a radially symmetric column of fluid that begins to neck and

form a droplet near at the top of the jet. The sphere continues its descent and in the

case of the acrylic sphere comes to a nearly complete stop near the last frame. The

ceramic and steel cases continue to fall through the fluid but the steel sphere has a

greater descent rate compared to the ceramic case.

The trajectory of each sphere is presented in Figure 3-9 which shows the traces of

the six impacts shown previously in figures 3-1 & 3-2. The most dramatic difference

in the figure is the erratic behavior of the hydrophilic acrylic sphere (m* = 1.2, 0 =

69'), which nearly comes to a complete stop in the y-direction as it descends. The

kink in the trajectory indicates the position where the sphere changed direction. This

sudden change is due to vortex shedding around the sphere as discussed in the rising



and falling of spheres with mass ratios from 0.08 to 1.41 in [13]. Further evidence

is presented in the preliminary PIV results of § 3.3.3. All of the hydrophilic spheres

have some deviation from vertical descent. The acrylic and ceramic spheres have the

greatest deviation, however, the steel spheres (m*=7.8) also display this behavior,

which is consistent with the results of [13]. Horowitz concluded that spheres falling

with a mass ratio of 1.41 or rising with a mass ratio of 0.41 would follow an oblique

rectilinear path, meaning that they would tend to fall vertically with some nearly

constant horizontal displacement in x, which is consistent with the data presented in

figure 3-9. However, spheres with mass ratios of 0.11 or less would always vibrate

in a single vertical plane. Here we find oblique rectilinear agreement with spheres of

ratios higher than 1.4, but spheres with mass ratios below 1.2 also seem to vibrate as

they descend, at least for the 12 diameters below water entry presented in figure 3-9.

The hydrophobic cases do not deviate from the horizontal as strongly. The cavities

that they produce act to prevent vortex shedding in the wake until the moment of

deep seal, where vortex shedding can then occur. Deep seal is marked in figure 3-9 by

a horizontal line. All cases have the same time to deep seal similar to the results of

[11] and [23]. Although out of the field of view of these images, it appears that below

the point of deep seal the spheres begin to exhibit similar behavior to the hydrophilic

cases and take on trajectories that drift to one side.

3.3.1 Velocity and acceleration

The velocity of each sphere as a function of time was calculated in figure 3-10. Each of

the six spheres presented is dropped from the same height and has an impact speed of

Vo = 3.4 ms- 1. The velocity shown in figure 3-10 is the velocity of the sphere beginning

with the first frame after the sphere is submerged one radius. Thus, the data does

not lie exactly on the t=0 axis. The acrylic sphere already experiences a deceleration

compared to the larger mass ratios due to its smaller mass. The terminal velocity of

each sphere can be calculated by a force balance around the sphere assuming that the

acceleration of the sphere is zero. Lumping the hydrodynamic forces into a known
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Figure 3-9: Trajectory of spheres for six different impact cases. The hydrophobic cases
(9 = 120') correspond to figure 3-1 while the hydrophilic cases relate to figure 3-2.
All spheres were dropped from the same height and all had a diameter of d = 0.0254
cm. Every tenth data point is plotted.

drag coefficient (CD=0.5) the terminal velocity becomes,

8gR
V = D (m* - 1) . (3.4)

Figure 3-10 shows the terminal velocity for each of the different spheres. For

both the hydrophilic and hydrophobic acrylic cases it appears that the spheres are

approaching the terminal velocity, however they approach them at different rates.

The hydrophilic spheres approach the terminal velocity faster than the hydrophobic

cases indicating that there is some force reducing the velocity of the hydrophilic cases

more quickly. One might think that the large cavity created by the hydrophobic cases

would increase drag and slow these spheres more quickly than the non-cavity forming

counterparts, however, it appears that the cavities formed by the hydrophobic spheres

act to mitigate the pressure drag, thus the hydrophilic spheres decelerate more quickly.

It will be shown in § 3.4 that this is indeed the case.

The accelerations of the spheres are plotted in figure 3-11 and positive values in-

dicate deceleration. The difference in deceleration between the cavity forming and

non-cavity forming spheres is dramatic. The hydrophobic cases show a smooth decel-

eration until a few moments after the deep seal phenomenon, after which the acrylic
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Figure 3-10: The velocity of the spheres presented in figures 3-1, 3-2 & 3-9. Velocities
are plotted versus time and non-dimensionalized by the time to deep seal (tds) for each
mass ratio whether hydrophilic or hydrophobic. Terminal velocity for each sphere'is
compared (.--). The time of deep seal for the hydrophobic cases (a) is indicated at

(t/tds = 1).

case displays a bit more erratic behavior. The steel and ceramic cases have very little

data after this point (out of field of view). The deep seal phenomenon does not occur

at the moment of least deceleration, indicating that these spheres are still decelerating

after deep seal.

The hydrophilic cases appear to have much greater decelerations overall. They also

appear to have some oscillatory forcing making their decelerations appear unsteady

in time. This is likely due to vortex shedding in the wake and more evidence of

this phenomenon will be shown in § 3.3.3. All of these figures indicate that the

deceleration of these spheres is neither constant nor linear, and indicates that theories

approximating these types of impact with second or third order models may miss some

of the more subtle forcing experienced by the sphere as it descends through the water

column.

The oscillatory motion of the hydrophilic acrylic sphere can also be seen in figure 3-

10(b). The smaller mass of the acrylic spheres allows the vortices in the wake to affect

the trajectory of the sphere in a more pronounced manner. Both the ceramic and

acrylic spheres in the hydrophilic cases appear to slow to velocities smaller than their

1r-
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Figure 3-11: The Acceleration of the spheres presented in figures 3-1, 3-2 & 3-9.
Accelerations are plotted versus time and non-dimensionalized by the time to deep
seal (td,) for each mass ratio whether hydrophilic or hydrophobic. The time of deep
seal for the hydrophobic cases (a) is indicated at (t/td, = 1).

theoretical limit. This is mainly due to the unsteady nature of the drag force. One

can determine the unsteady frequency of this behavior by analyzing the frequency of

shedding via the Strouhal number (St = fD/V(t)). For spheres in a uniform flow

with Reynolds numbers between 800 < Re < 200,000 the Strouhal number should be

about 0.2. Here the instantaneous Reynolds number is 12,500 < Re < 87,500. The

frequency of shedding can be calculated as f = 0.2V(t)/D. The acrylic case has an

average velocity around V(t) a 0.5. Thus, the shedding frequency should be about

4 Hz, which is approximately what the frequency of oscillation is for this case. For

the ceramic sphere the shedding frequency should be approximately 12 Hz, which

indicates a higher frequency of oscillation, however, the field of view for these cases

is not large enough to gather evidence that this is indeed the case, as the sphere falls

through the field of view too quickly to observe this frequency.

3.3.2 Coefficient of drag

The data can also be analyzed to determine the forces affecting the descent of the

sphere.



The net force on the ball in the y direction, k (positive upwards), is

my = -mg + (-fi -k)dS + f T kdS + 27rr cos (3.5)

where fi is the unit normal vector directed out of the ball and T is the viscous stress

tensor. The viscous force scales like pU2-R 2Re- , which is quite small, since the

Reynolds numbers of these experiments is on the order of 104. The surface tension

force is also quite small; comparing surface tension to gravity, we have 2irRc os p

p_ 10- 3 for these experiments. Thus, the net hydrodynamic force on the ball

is dominated by the pressure force on the ball.

The pressure forces are more formally decomposed in the coming sections, but let

us make an estimate of the drag coefficient by normalizing the two forces that are

well defined by the velocity squared as follows

CD =- + g) (3.6)
pV(t)

2 7rR 2 .

The coefficients of drag are computed for each sphere and presented in figure 3-12.

The data indicates that the drag forces are unsteady and complex. Looking first

at the comparison between hydrophobic and hydrophilic acrylic cases (figure 3-12(a))

one notices that the coefficients of drag are similar up to about 0.5 t/tds (see inset).

The hydrophobic case continues to rise and then suddenly falls before deep seal and

continues to decrease for a short time afterwards. The hydrophilic case has a steady

even exponential rise up to a non-dimensional time of about 3 t/tds. This is the time

at which the sphere virtually stops in the y direction and changes its course in the

x direction as noted in figure 3-9. After this event the drag coefficient diminishes as

quickly as it rose and reaches a minimum near 4.5 t/tds.

The ceramic cases also exhibit increased drag in the case of the hydrophilic spheres.

Some argument can be made that hydrophilic spheres have longer slip lengths and

thus a higher frictional drag coefficient, but the scaling argument reminds one that

this term is much smaller than the overall effect witnessed here. The hydrophobic

sphere has a maximum drag coefficient some time before deep seal, similar to the
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Figure 3-12: Coefficient of drag for the spheres presented in figures 3-1 & 3-2 & 3-9.
Legends in figure correspond to legend in figure 3-9. The higher wetting angles ,120'
tend to have lower drag coefficients.



acrylic case, and a minimum sometime after. This leads one to wonder why the

deep seal event is not the maximum or minimum measurement in either of these

cases (see § 3.4). As the mass ratio increases, the effect of the unsteady forcing

becomes progressively less apparent as the inertial term (my) plays an increasing role

in dampening out the visible measurement of these forces. In the case of the ceramic

sphere the drag coefficient for the cavity forming case appears to be nearly constant,

leading one to wonder if this isn't a remnant of error in the measurement or simply

an overlooked (yet simple) force. It is only upon inspection of the smaller mass ratios

that one discovers that these unsteady forces can be explained.

The ceramic hydrophilic case (figure 3-12(b)) has generally increasing drag coef-

ficient but there are two interesting points along the way to the maximum 1.47 t/tds.

The first rise and then plateau occurs around 0.4 t/tds and then CD dips slightly

around 0.8 t/td,. These two curious points can only be explained by examining the

fluid structure interaction further through PIV. The steel cases also exhibit more drag

in the hydrophilic spheres (figure 3-12(c)). The nearly constant drag coefficient for

steel explains why nearly all of the previous cavity forming studies accurately predict

the drag force using linear deceleration models.

In most of the past cavity forming studies steel spheres were used to perform

experiments. This explains why most models assume a constant drag coefficient

as shown figure 3-12. The contrast between the steel and acrylic cases emphasizes

the importance of these findings. Using only data from steel could be misleading

and ignore important dynamics of the cavity due to the large inertial component

dominating this case. Although the steel spheres seem to have very small deviations

(Cd = 0.2 to 0.3) they nonetheless experience the same forcing, but are less influenced

by its magnitude than the acrylic spheres. The maximum occurs again at about

0.8 t/tds and then decreases after deep seal to some minimum value. Here, there is

a slightly upsetting wobble in the data set around 1.15 t/tds. This discrepancy is

due to the strangely shaped bubble attached to the sphere. Since the steel spheres

appear nearly black in all images despite the lighting angle, the cavity bubble has

a few moments where it is able to alter the overall appearance of the steel sphere



enough to move the correlation peak a few pixels upward. Instead of altering these

data points by hand they are left here to show how important image processing is to

these types of studies.

Overall this data indicates that the spheres without cavities tend to have higher

drag coefficients than their cavity forming counterparts due to pressure recovery in

the wake. Furthermore. they show a non-constant drag coefficients for all cases. The

accelerations, in particular, indicate that decelerating spheres are neither constant

nor linear, when measured carefully. This leads to questions about the nature of the

forces acting on the spheres. In order to understand the forces at work on the sphere

as it descends we will consider two approaches. The first approach will consider the

effect of vortices shed in the wake of the non-cavity forming cases. Through the use of

PIV we can calculate these effects and correlate them to the rise and fall of the drag

coefficients. The second approach also uses PIV to show the nearly potential flow

associated with the cavity forming cases. In these cases the cavity acts to mitigate

the growth of vorticies in the wake allowing the flow fields to resemble a potential

flow argument with subtle differences that account for the expansion and contraction

of the cavity.

3.3.3 Non-cavity forming cases

The drag coefficient leads to a number of questions that can only be answered by

analyzing the flow around the spheres. For now let us consider the non-cavity forming

sphere cases. Using standard PIV techniques the flow field around the spheres can

be identified and the magnitudes of the forces exerted on the wake can be measured

and correlated to the times at which these events occur.

The hydrophilic acrylic spheres have the greatest decelerations and are associated

with a very large change in the drag coefficient. Similar to the formulation of drag in

equation (3.6), figure 3-13 shows the drag coefficient for the acrylic sphere presented

in figure 3-15. The coefficient of drag shown in figure 3-13(b) indicates a maximum

drag coefficient at t = 173 ms, similar to the results in figure 3-12(a).

In this study we took PIV and position data for the spheres up to a time of
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Figure 3-13: Coefficient of drag for an acrylic sphere with d = 0.0254 cm and an
impact speed of Vo = 3.43 m/s. a) coefficient of drag for all time, b) zoomed in CD
for comparison with PIV results.

t = 0.3324 s, however, the PIV data becomes difficult to interpret once the first

vortex ring is shed from the sphere for two reasons. The first is that a shadow from

the sphere blocking some of the laser light makes data difficult to gather as the vortex

ring passes by the sphere on the right. In figure 3-15 the laser comes in from the left

and the shadow appears to the right of the sphere. Therefore, we desired that the

spheres drift to the right so that the vortex on the left would be most visible. However,

the spheres are three dimensional and the shedding of these vortices in the wake is

randomly distributed. Therefore, multiple drops were required to gather data where

the spheres fell to the right. The second difficulty is that as the sphere slows its

descent the vortex ring expands, causing the ring to go out of the laser plane as it

passes by the sphere. Nonetheless we are interested in the formation and release of

this vortex ring, therefore, we present a close-up view of the drag coefficient up to

t = 0.08 s in figure 3-13(b), which is beyond the point where the vortex is shed into

the wake.

A qualitative understanding of the vortex formation can be seen in figure 3-15. As

the sphere descends the fluid along the body is moving faster than the surrounding

fluid causing it to wrap up into a vortical structure as it passes towards the back of the



sphere. On the right hand side of the sphere the circulation is counter-clockwise while

the left hand side is clockwise. As the sphere continues its descent a small amount

of circulation is left in the wake between 10.1 < t < 51.7 ms. Two larger vorticies

continue to grow in strength up until t = 74 ms where the diameter of the vortex ring

begins to grow outward. This outward growth is dominated by the negative vortex

(left side) moving further to the left, while the positive vortex moves out of plane as

it attempts to navigate its way past the sphere 75.4 < t < 119.0 ms.

As the vortex grows out and away from the sphere the positive vortex motion on

the sphere causes the sphere to move outward to the right in figure 3-15. The positive

vortex on the right has a counter-clockwise flow. When the sphere is in the center of

the vortex ring the flow field motion is downward, however, as the sphere moves to

the right the counter-clockwise rotation begins to cause the sphere to move right and

upward. This causes the sphere to slow even more and allows the vortex ring to pass

by the sphere! This phenomenon is interesting. A flow field created by the sphere

has enough force to move the sphere out of the way so that the vortex can overtake

the spheres descent. Eventually, the vortex ring moves ahead of the sphere and the

positive vortex has some influence on the sphere, moving it back to the left and down.

This motion moves the sphere somewhat back into the path it was previously in, as

can be seen in the trajectory of the acrylic case of figure 3-9.

The growth of the vortex ring beyond the diameter of the sphere indicates that

it has now become detached from the sphere and that its circulation is no longer fed

by the interaction of the sphere with the fluid. The circulation of the sphere can be

calculated by (3.1) and is presented in figure 3-15(a). Though the circulation is a

bit scattered the data shows that circulation generally increases until approximately

t = 74 ms, which can also be seen in figure 3-15 from 70.0 < t < 80.9 ms.

Using the circulation data we can also determine the overall change in momentum

of the fluid by determining the impulse force of the vortex ring. Using classical theory

for a toroidal vortex moving steadily forward [21] we have

TrD2[ 3 d2]
I(t) = prI 1 + (3.7)

4 1 4 D2I
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Figure 3-14: Vorticity contours for several steps in time of an acrylic sphere impact.
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has a diameter of d = 0.0254 cm and an impact speed of 3.43 m/s.
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Figure 3-15: Circulation and impulse from PIV for the sphere presented in figure 3-15.

where d is the diameter of the vortex core, F is the circulation (3.1), D is the diameter

of the toroid from core to core. Figure 3-15(b) shows the result and indicates a rise

in impulse force as expected.

We can now determine if this force in the fluid is what we expect. Modeling the

forces on the sphere similar to § 3.3.2 we formulate the forces acting on the sphere as

dI 1m = -mg - ma + d --IpV(t)2 CdR 2  (3.8)

where ma = 2/3irR3p is the added mass, dI/dt is the impulse force from the vortex

ring and Cd= 0.2 is the estimated drag coefficient due to form drag. Although we see

from figure 3-13 that the drag coefficient is not constant, we can use this constant

value to estimate the unsteady nature of the vortex in the wake. Solving for dI/dt

and integrating gives the theoretical line in figure 3-15(b). The theory fits accurately

up to t 80 ms where the vortex ring is beginning to shed from sphere, as seen in the

expansion between the positive and negative vortices in figure 3-15 t > 75.4 ms. Up

to this point the theoretical estimate does an accurate job of determining the impulse

force, indicating that this model works well up to this point. After t - 80 ms the

shedding of the vortex indicates that the vortex no longer interacts with the sphere

in the same manner as we assumed and therefore the theoretical estimate no longer

captures the impulse force accurately beyond this time.
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The drag coefficient of a smooth sphere in a uniform cross flow is typically Cd =

0.5 for spheres at this Reynolds number (Re = 8e10 4) [16]. In our formulation of

the impulse acting on the sphere body we used Cd = 0.2. The choice of Cd gives us

the best theoretical estimation of the impulse force for this acrylic case. We present

a second PIV case where a ceramic sphere is dropped from the same height as the

acrylic sphere in figure 3-16. As a means of visualizing the differences in the two

cases figure 3-16 is presented to show the increasing circulation in the sphere's wake.

The circulation in the wake of the ceramic sphere is formed in a slightly different

way than in the acrylic case. Here the accumulation of circulation forms more slowly

but eventually grows to larger proportions. The vortex is never shed from the sphere

and the magnitude of the circulation continues to increase for all times as the sphere

descends through the fluid (figure 3-18(a)).

In this second case the best fit for finding the impulse force is Cd = 0. This zero

coefficient means that we can neglect this portion of equation (4.2) and realize that

the impulse force in this case captures all of the drag experience by the sphere as it

descends through the fluid.

3.4 Cavity forming cases

The cavity forming spheres also exhibit an unsteady drag coefficient. The hydrophobic

acrylic sphere exhibits the greatest change in drag when compared to the higher

density ratio spheres and shall be the subject of analysis in this section. Once again

standard PIV techniques will elucidate the flow field around the cavity. The cavity

radius will also be analyzed in an effort to determine the forces exerted on the fluid

at each depth (z).

Using equation (3.6) the drag coefficient is calculated and presented in figure 3-

19 and reveals the unsteady behavior of these types of water entry. As the sphere

descends through the fluid a large increase in the drag coefficient is experienced. This

is an expected behavior as the depth of the sphere is linearly related to the hydrostatic

pressure pgz. However, just before deep seal (t = 64 ms) the drag coefficient decreases.
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Figure 3-16: Vorticity contours for several steps in time of an ceramic sphere impact.
This ceramic sphere is considered hydrophilic and does not form a cavity. The sphere
has a diameter of d = 0.0254 cm and an impact speed of 3.43 m/s.
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Figure 3-17: Coefficient of drag for an acrylic sphere with d = 0.0254 cm, impact
height h = 60 cm, and an impact speed of 3.43 m/s from figure 3-16.
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Figure 3-18: Circulation and impulse for a ceramic hydrophilic sphere in figure 3-16.
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This decrease continues through deep seal and beyond until the breaks up and water

fills in behind the sphere at t = 77 ms. After this time the drag coefficient increases

similar to the case presented in figure 3-12(a).

The cavity forming cases exhibit less vorticity in the flow, and much less organized

structures in their wakes. Figure 3-20 shows these behaviors. The vorticity measure-

ments emphasize the low amounts of vorticity in the flow and the disorganized nature

when compared to the previous PIV results. Here the vorticity that is seen in the

wake does not roll up into vortex rings emphasizing that cavity formation inhibits

the growth of vorticies in the wake, thus decreasing the viscous drag of these types

of impact. This is one of the major reasons that the cavity forming cases have lower

drag coefficients.

The velocity vectors are plotted in Figure 3-20 as arrows in the flow field. These

velocities show a very potential flow like nature with very little rotational flow being

formed. They also show that the flow moves out and away from the sphere as it

passes through and that the cavity keeps the flow moving outward to some extent.

As the cavity begins to collapse the flow moves back inward an begins to fill in

behind the sphere. This change in momentum occurs between t = 34.7 to 39.7 ms.

This corresponds to a CD that increases in slope in figure 3-19. As the drag increases

the inward flow near the pinch-off location increases until it becomes nearly the same

magnitude as the flow moving down and outward near the sphere itself at t = 54.5

ms. This is near the location where the drag curve reaches a maximum t = 55.0 ms.

When the flow behind the sphere moves inward as quickly as it is moved outward

in front of the sphere it appears that is the maximum coefficient of drag. As the

inward flow now continues to increase in magnitude as the cavity reaches pinch-off the

flow behind the sphere increases in magnitude but also exhibits a slightly downward

velocity as the cavity begins to collapse. This downward component of velocity above

the sphere continues past pinch-off until the cavity breaks up and water flows in

behind the sphere. After this point the flow around the sphere behaves more like the

case presented in figure 3-15.

Figure 3-20 also shows the maximum cavity radius at any given depth (shown in
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Figure 3-19: Coefficient of drag for an acrylic sphere with d = 0.0254 cm, impact
height h = 60 cm, and an impact speed of 3.43 m/s from figure 3-20.

red on the right side of each cavity). The maximum cavity radius at the point of

pinch-off occurs when cavity begins inward collapse at t = 34.7 to 39.7 ms. Above

pinch-off the cavity continues to grow outward even after cavity collapse near the free

surface, whereas below pinch-off the maximum cavity radius is roughly equal to the

radius of the sphere.

These PIV measurements emphasize the potential flow like nature of the cavity

forming cases, and show that the cavity mitigate the growth of vorticies in the wake,

thus decreasing the drag of these types of entry when compared to the non-cavity

forming cases.

3.5 Discussion

This paper presents the most fully resolved forces affecting the water entry of spheres

after impact to date. This study shows that the water entry of spheres is very unsteady

and that the trajectory assumptions appropriate for higher mass ratio spheres cannot

be treated in the same manner as the mass ratio decreases. In the case of cavity

formation, mass ratio affects the depth of deep seal, and the drag coefficient, but does

not affect the time to deep seal, which remains constant for all spheres regardless of

diameter or mass ratio. In the case where no cavity is formed, the mass ratio affects
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Figure 3-20: Vorticity contours for several steps in time of an acrylic sphere impact.
This acrylic sphere is considered hydrophobic and forms a cavity. The sphere has a
diameter of d = 0.0254 cm and an impact speed of 3.43 m/s, similar to the acrylic
case in figure 3-1. The cavity is marked in black along with the free surface and
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the drag coefficient and trajectory of the spheres. We have also shown that the

unsteadiness in both the cavity forming and non-cavity forming cases is a result of

both vortex shedding and cavity formation. In the cavity forming case the cavity

acts to mitigate the formation of vortices, which allows the cavity forming spheres to

maintain higher velocities after impact. However, this same cavity has an unsteady

effect of its own that becomes more noticable as the mass ratio is decreased. We note

that the maximum drag coefficient occurs for when the magnitude of the velocities

near deep seal are on the same order of magnitude as those near the sphere. We also

note that as the cavity collapses these inward velocities give rise to some downward

motion, which seems to aid in decreasing the drag coefficient past deep seal.

In the non-cavity forming cases (hydrophilic spheres) we note that the maximum

drag coefficients are much larger than their cavity forming counterparts and that

their maximums occur when the first vortex is shed in the wake. Vortex shedding

was estimated by calculating the circulation in the flow field over time through PIV

and then correlating to the maximum drag coefficient. This work emphasizes the

need to account for unsteady effects in modeling the impact of spheres, especially as

the mass ratios approach unity.
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Chapter 4

Water entry of spinning spheres

This chapter appears as: T. T. Truscott and A. H. Techet, Water entry of spinning

spheres, J. Fluid Mech. 625, pp 135-165.

Abstract

The complex hydrodynamics of water entry by a spinning sphere are investigated
experimentally for low Froude numbers. Standard billiard balls are shot down at the
free surface with controlled spin around one horizontal axis. High speed digital video
sequences reveal unique hydrodynamic phenomena which vary with spin rate and
impact velocity. As anticipated, the spinning motion induces a lift force on the sphere
and thus causes significant curvature in the trajectory of the object along its descent,
similar to a curve ball pitch in baseball. However, the splash and cavity dynamics are
highly altered for the spinning case compared to impact of a sphere without spin. As
spin rate increases the splash curtain and cavity form and collapse asymmetrically
with a persistent wedge of fluid emerging across the center of the cavity. The wedge
is formed as the sphere drags fluid along the surface, due to the no-slip condition;
the wedge crosses the cavity in the same time it takes the sphere to rotate one half
a revolution. The spin rate relaxation time plateaus to a constant for tangential
velocities above half the translational velocity of the sphere. Non-dimensional time
to pinch off scales with Froude number as does the depth of pinch-off; however a clear
mass ratio dependence is noted in the depth to pinch off data. A force model is used
to evaluate the lift and drag forces on the sphere after impact; resulting forces follow
similar trends to those found for spinning spheres in oncoming flow, but are altered
as a result of the subsurface air cavity. Images of the cavity and splash evolution,
as well as force data, are presented for a range of spin rates and impact speeds; the
influence of sphere density and diameter are also considered.
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(a) (b)

Figure 4-1: Images of the cavity and splash formations by (a) non-spinning and (b)
spinning sphere (d = 0.057 mrn) after impact into water. Impact speeds are V(a) =
5.95 mrn/s (Fr = 7.9) and V(b) = 5.45 mrn/s (Fr = 7.3). Case (b) has a spin rate at

impact of 251 rad/sec, in the clockwise direction. Both images are taken at the same
time after impact (t = 102 ms).

4.1 Introduction

The water-entry problem, by itself, is directly relevant to many different applications:

from ballistics [24] and ship slamming [11] to skipping stones [35] and the dynamics of

Basilisk lizards [14]. One of the most geometrically simple objects that can be studied

is the sphere. This canonical shape impacting on the free surface does not, however,

yield simple hydrodynamic results, and the results are even more complex when spin is

introduced [40]. An experimental study of the impact of a sphere, spinning transverse

to its velocity, on a water surface is presented herein, offering a first look into how

spin can affect water-entry behavior.

Figure 4-1 shows a comparison of the non-spinning (a) and spinning (b) impact of
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a standard billiard ball on the free surface. The air cavity and splash formed by the

spinning sphere vary distinctly from the axisymmetric cavity formed with no spin.

The subsurface air-cavity bends along the trajectory of the spinning sphere, and the

splash curtain grows vertically and collapses asymmetrically. For the spinning water-

entry problem, valuable insight into the physics can be drawn from both water-entry

and spinning sphere research.

4.1.1 Water-entry problem

Numerous experiments on water-entry of bodies seek to qualitatively and quantita-

tively characterize the hydrodynamic phenomena generated by, and forces acting, on

the impacting object. Among the first to study such phenomena, Karman [17] in-

vestigated the forces exerted on a sea plane float during landing. Subsequent, early

impact studies typically focus on ballistics investigations in military laboratories. The

experiments of May [24] are some of the most extensive studies of free surface impact

for naval ordinance applications. His research focuses on the formation of the air

cavity in the wake of spherical projectiles with high impact velocities.

High speed imaging techniques are critical for capturing the rapidly evolving stages

of impact hydrodynamics and have been used since early water-entry tests. [42]

present some of the earliest images of the splash cavity created by falling objects,

which were captured using single spark photography. Today, digital high-speed cam-

eras are widely used for imaging water-entry hydrodynamics. Extensive experimental

investigations of water entry by spheres and projectiles are presented in [5], [33],

[26, 27], [25], [22], and [1].

Investigations by [23] of the vertical entry of missiles (steel spheres) into water in-

dicate that Froude scaling is a good first approximation to use when describing cavity

behaviors such as deep closure. Several other researchers assert, however, that the

instantaneous Reynolds number is a better description of the cavity hydrodynamics

than the impact Froude number (eg. [13]).

The effect of fore- and aft-body shape on the impact is also of interest to re-

searchers in the area of naval ballistics. [26] conclude that the cavity shape is not
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dependent on the nose shape of the projectile for a given drag force. [36] image bullets

shot vertically into a tank at 342 m/s, qualitatively considering the bullets' super-

cavitating behavior; they find that for blunt leading edge projectiles, the afterbody

shape can significantly affect the splash formation.

Atmospheric pressure can also be considered a factor affecting the impact problem.

Gilbarg [13], at the Naval Ordinance Laboratory, investigate the dependence of the

cavity formation on atmospheric pressure. They conclude that surface closure, defined

when the splash crown domes over and closes, is the most important event in the

development of the water cavity and greatly influences later cavity growth, and note

that time to surface closure is inversely proportional to pressure. Deep closure, when

the cavity pinches-off below the free surface, is a function of surface closure only for

early closure times up to - 70 ms after impact [13].

Even biologists are fascinated by the problem of impact. A biological air-water

impact study, modeled after the Basilisk lizard, is performed by [14]. Disks, represent-

ing the lizard's feet, are shot into water at low speeds (compared to most ballistics

studies); high-speed video and load cells measure the forces during impact. Their

results also indicate that the time between impact and cavity closure is given by a

single value of dimensionless time. Surface closure and cavity pinch-off have also been

numerically investigated in detail for circular disks impacting the surface by [12] and

[6].

[19] employ a two-dimensional model, based on experimental observations, for cav-

ity formation and collapse taking into account the energy transfer between projectile

and cavity wall. Their work considers relatively low impact velocities, where both a

surface closure and later a deep-closure, or pinch-off, occur. Data indicate that the

time to deep closure, after surface closure, is approximately constant and not a func-

tion of the impact speed for any given sphere diameter. The location of deep closure,

however, seems to have only a weak dependence on impact velocity, and thus, Froude

number was not a good scaling parameter for the range of impact speeds that they

investigated [19]; the velocities and Froude numbers in [19] were considerably higher

than those considered in the present study. [13] also report, for low Froude numbers,
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that surface closure dominates cavity formation, and note that Froude number is not

a useful parameter in characterizing cavity growth and collapse.

In general, research has shown that there are a few key mechanisms driving surface

closure, the most important of which are Bernoulli pressure and surface tension [7,

19]. As the cavity grows, air flows in through the splash curtain, and for low-speed

impact, the local under-pressure inside the cavity is approximately pair V,2. After

the splash curtain domes over and closes (i.e. surface closure), the cavity continues

to expand due to inertial effects of the ball moving through the fluid. Assuming

the process is isentropic [19], the pressure inside the cavity decreases. Eventually,

deep closure (i.e. pinch-off) occurs when the cavity stops expanding radially and

the hydrostatic pressure of the surrounding fluid is greater than the internal cavity

pressure [13, 23, 19].

For impact cases where the impact velocity is sufficiently high, a small, axisym-

metric, horizontal jet is ejected at great velocity radially outward from the point of

contact between the sphere and the liquid surface. The jet emanates horizontally at

first and can travel radially outward at speeds up to thirty times impact velocity.

The initial jet forms between 10 and 100 ps after impact, for water solutions of up to

90% glycerin [39]. Thoroddsen et al. [39] also report that surface tension and com-

pressibility appear to have little effect on this initial jet formation. The introduction

of spin also causes a similar horizontal jet to form, albeit asymmetrically. The effect

of spin on the initial stages of impact will be discussed in subsequent sections of this

paper.

[43] reviews experimental and theoretical work on droplet impact onto thin liquid

layers and dry surfaces, focusing on the splash crown formation and initial jetting. He

notes that jetting and crowning originate from the same point irrespective of surface

shape, as a result of a sharp kinematic discontinuity. Typically the velocity of the

initial horizontal jet is significantly higher than the impact velocity and the formation

time is very small. These results are verified by [38] for liquid drops and are similar

for solid spheres impacting on the surface [39].

[30] measure the forces during impact using a load cell up to a depth of one-eighth
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of the sphere diameter. They report that for impact velocities between one and three

meters per second, 1 < Vo < 3 m/s, a maximum force occurs very quickly after

impact, at times as short as 1.5 ms or between one tenth and one fifth of the radius

below the surface. [29] conclude that the dependence of drag coefficient on Reynolds

numbers, between 0.05 < Re < 5 x 103, resembles that of a sphere in a homogenous

fluid. Their work, like much of the existing theoretical work done to determine the

force at impact, only considers impact up to a maximum penetration depth of half

a sphere diameter. [26, 27] note that the drag coefficient declines gradually towards

a value between 0.25 and 0.3 when cavity is formed; the precise shape of the curve

appears to depends on the specific gravity of the impacting object.

Direct force measurements are not easily obtained for water-entry experiments.

[33] and [26, 27] derive force components using force balance equations and position-

time curves, taken from high-speed video after the sphere is fully submerged. [18]

offers a review of these force models derived from experimental data. A similar force

balance model for determining forces is developed in this study on spinning spheres,

and data is presented in section 4.3.

4.1.2 Spinning sphere problem

Spin, by itself, imposed on a sphere in flow, acts to induce lift and alter the flight

path of an unconstrained sphere. Newton [31] first remarks on the distinct change

in the flight path of spinning tennis balls, noting their tendency toward the side

that is moving the fastest. Later, Robbins [34], interested in this problem from

his experimental observations of canon ball ballistics, shows that a spinning sphere

suspended as a pendulum experiences a lateral aerodynamic force. A similar force

is seen for spinning cylinders; this force due to rotation is widely credited as the

"Magnus Effect" [3].

The subject of spinning spheres is of special interest to many sports fans, especially

soccer, baseball, cricket and golf enthusiasts. Baseball pitchers can break their curve

balls at just the right time, or throw a knuckleball, without spin, to drop at the last

minute over the plate. Golfers hoping to gain loft, or fade or hook their shots, or
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avoid hooking their shots, rely on small spinning balls riddled with tiny dimples. A

comprehensive review of sports ball aerodynamics is presented in Mehta [28].

Attempts to predict the behavior of spinning sports balls drive experimentalists

to perform lift and drag tests, as well as flow visualization experiments on spinning

spheres. Much of the experimental force data for spinning spheres is compiled in [2].

Researchers studying cricket and baseball report that, for pre-critical Reynolds num-

bers, asymmetric boundary layer separation, due to tripping by the seams on the

balls, results in increased lateral forces [28]. Spin induced effects also lead to asym-

metrical boundary layer transition flow on one side of the sphere, which causes large

lateral forces, for example in baseball curveballs [28, 2] and golf-ball flight [4].

Interestingly, for sub-critical Reynolds numbers, experimental measurements of

the lateral forces on spinning smooth spheres in flow, by [21] and [9], show that the

lift coefficient, CL, can be negative for small values of non-dimensional spin parameter,

S = r2/V, where r is the radius of the sphere, Q2 is the spin rate in radians per

second, and V is the flight velocity. [21] shows that above spin parameter values of

S = 0.35 to 0.50, for subcritical flow around smooth spheres, the coefficient of lift

becomes positive and increases steadily up to S = 1.0, above which the lift coefficient

appears to level off. The negative lift coefficients for low spin numbers (S < 0.4) have

never been seen for roughened or dimpled spheres, or those with seams (e.g. Bearman

& Harvey [4], Watts & Ferrer [41], Smits & Smith [37], Alaways & Hubbard [2]).

Davies [9] presents a plausible explanation for the negative lift force as a result

of an asymmetric transition from laminar to turbulent flow. As the velocity of the

incoming flow approaches the limit of transition away from laminar flow, only slight

perturbations are necessary to trip the flow to turbulent. Since the sphere is spinning,

one side of the sphere experiences a higher relative velocity than the other, and could

trip before the side with a lower relative velocity thus inducing lift in the opposite

direction than anticipated. This would only be plausible for low spin parameters,

above which the force of lift from circulation is greater than the imbalance due to

asymmetric transition. Davies [9] acknowledges that this explanation only works for

very specific critical parameters and any changes in turbulence levels or velocity could
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reverse the effect. He cautions that further measurements of pressure or flows around

spinning spheres are needed in this negative lift regime.

Results from [4], for a dimpled sphere, show that the lift coefficient is proportional

to the spin parameter, S, and thus the lift force is proportional to Qr, the tangential

velocity. [37] measure the forces on golf balls (dimpled spheres), along with the spin

decay rate, in a wind tunnel. Their results suggest that the lift coefficient has some

Reynolds number (Re) dependence only up to Reynolds number 100,000. Above this

value there appears to be little, if any, dependence of the lift coefficient on Reynolds

number. This lack of dependence at Re > 100, 000 is reinforced by data in Alaways

& Hubbard [2], who present an extensive compilation of published data for spinning

spheres.

In the current investigation, spheres with nominal roughness heights of k/(2r) =

1.4 x 10- 5 are considered. While not the main focus, nor presented herein, results from

our own preliminary investigations in a water tunnel show good agreement with [21]

data for the lift and drag spinning, smooth spheres above spin parameter S r 0.35.

The forces determined using the sphere trajectories are also similar to wind and water

tunnel experiments. The effect of spin rate on the physics of the cavity dynamics,

splash formation and collapse, and the forces acting on the sphere are addressed in

the following sections.

4.2 Experimental Details

Experiments on water entry of spinning spheres were performed using standard bil-

liard balls (diameter, d = 5.72 cm; mass, m = 0.17 kg) shot vertically into a tank

of quiescent water. The steel-reinforced, clear acrylic tank was 1.5 m long, 0.9 m

wide, and 1.5 m deep. A shooting apparatus, modeled after a baseball-style pitching

machine with two rotating wheels (diameter, d, = 0.46 m), was mounted above the

tank. The spheres were released out of the loading tube and dropped between the

two wheels, which fired the spheres into the water (figure 4-2). The ball exited the

launch mechanism, with initial downward launch velocity and spin, at a height of
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Figure 4-2: Schematic of the experimental shooting apparatus. Spheres are released
from the loading mechanism, dropping between the two spinning wheels, which shoot
the spheres into the tank below. The speed of each wheel was independently controlled
in order to change the impact and spinning speed of the projectiles. (Figure is not to
scale.)

1.40 m above the surface of the water; this maximum distance above the free surface

was constrained only by the laboratory ceiling height. The wheels of the shooting

mechanism imparted spin to the sphere by rotating at different speeds. Both initial

impact velocity, Vo, and initial spin rate, Gto were varied by altering the spinning rate

of wheels of the shooting mechanism. The wheel speed and ball release timing were

controlled using a personal computer and a National Instruments LabView interface,

which also controlled the video recording system to ensure accurate, synchronized

timing.

High-speed video images of the sphere's trajectory were used to calculate the

instantaneous velocity of the sphere in the x- and y-directions. Two high-speed

video systems were used: camera #1 for the top view was an IDT X-StreamVision

XS-3 camera and camera #2 for the side view was a Redlake Motion Pro X3. It

was not physically possible to place a camera directly above the impact zone, as the

shooting mechanism obstructed the field of view. Thus, camera #1 was positioned
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adjacent to the wheels looking down at a slight oblique angle to the free surface.

Camera #2 was positioned such that it captured the motion of the sphere at least

one diameter above the water, as well as along its descent through the water, allowing

the velocity just before and after impact to be determined.

Both cameras had a maximum resolution of 1280(V) x 1024(H) pixels, however,

camera #1 had a maximum frame rate of 625 frames per second (fps) at maximum

resolution, whereas camera #2 could reach 1000 fps at maximum resolution. When

the resolution of camera #1 was reduced in one direction, the frame rate could be

increased, and thus both cameras could record at 1000 fps. At 1000 fps, camera

#1 recorded images at 480(H) x 1108(V) pixels and camera #2 recorded at full pixel

resolution; the exposure time was 234 ps per frame for both cameras. A 28 mm.,

f/2.8 lens with a fully open aperture was used and a fixed field of view (FOV) was

maintained on both cameras for all experiments. The cameras were synched in time

with the ball release mechanism through the LabView interface.

Sufficient lighting is crucial for quality high-speed video, thus lights were placed

both in front of and behind the tank. For back-lighting, thirty-six, standard, 32 W,

fluorescent bulbs were aligned vertically in a large bank that was positioned directly

behind the impact zone, outside of the tank, and projected light directly towards

the cameras. The bank of bare bulbs was 0.5 m wide x 1.6 m high. Nine separate,

out-of-phase, ballasting units minimized the 60 Hz flickering effect generated by the

fluorescent lights. A white sheet placed between the light bank and the impact zone

diffused the back light and created a more uniform backdrop. The front illumination

used six 400 W, halogen lights, positioned outside the tank and focused towards the

impact region. These six light were used to illuminate the front side of the cavity.

Three of the halogen lights were mounted vertically near the water surface in an arc

around the region of interest, which focused the light towards the impact zone. Three

more lights, also outside the tank, were stationed approximately one meter below

the surface level, and focused towards the lower half of the sphere's trajectory, again

in an arc around impact the zone. The lights in front of the tank were positioned

around the camera such that there was minimal glare off the tank wall and the sphere

122



trajectory was sufficiently lit for the image processing algorithm to detect the sphere

consistently.

The impact velocity and spin rate were calculated by analyzing the high-speed

video data. Impact speeds and initial non-zero spin rates ranged from VVo = 1.9 to

9.9 m/s and IQol = 13 to 394 rad/sec, respectively. For comparison, several test

cases had zero spin; these cases were performed at impact velocities of IVo = 1.9 to

7.5 m/s. The horizontal velocity at impact was less than 2-4% of the vertical velocity

for both spinning and non-spinning cases.

The effect of spin is considered in terms of the non-dimensional ratio between

tangential velocity, Qr, where r = d/2, and the magnitude of the velocity of the

sphere, V. The spin parameter, defined following the nomenclature of Maccoll [21] as

S = Qr/V, is akin to a Strouhal number and used in this paper to ensure consistency

with previously reported data in the field of spinning spheres. Using the shooting

mechanism described herein, it was possible to obtain initial, impact spin parameters,

So = Qor/Vo, between 0 and 2.25, using the spin rate and velocity at impact, Qo and

Vo. Data for cases with So < 1.4 are presented herein. After impact, spin parameter

also changed, in time, as a result of the changing instantaneous velocity and spin rate,

such that S(t) = Q(t)r/V(t).

Froude number, Fr = Vo/v/-i, was used to categorize the initial impact velocity

of the ball, and is only given in terms of initial impact velocity. Froude numbers

considered range from 2 to 13; however, most of the data and images presented herein

were obtained at Fr = 7.3 ± 0.2, unless otherwise specified. After impact, once the

ball was fully submerged, Reynolds number was used as a non-dimensional parameter

to characterize cavity and sphere trajectory behavior. Reynolds number was defined

instantaneously along the sphere trajectory as Re = Vid/v, where Vi = V(t) is the

instantaneous velocity of the ball in time, t, and v is the kinematic viscosity of the

fluid.

The sphere's position in time was found using standard image processing cross-

correlation techniques on the whole sphere (74 pixel window size). A five point

gaussian peak-fit was used to find the location of the maximum correlation peak,
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and thus determine the displacement of the sphere with subpixel accuracy. The peak

fitting implementation was similar to that employed in Particle Imaging Velocimetry

processing algorithms (e.g. [32]). Using cross-correlation with peak-fitting, the po-

sition of the sphere was determined accurate to within ±0.025 pixels. Conversion

from pixels to meters yields an uncertainty of ±1.93 x 10- 5 m (0.0193 mm) in x- and

y-positions.

Measurement error for x- and y-position was affected predominately by image

resolution and video acquisition rate: e.g. higher resolution, or more pixels per meter,

would have given higher accuracy. The velocity and acceleration were determined

by taking the first and second derivatives of a polynomial fit to the position data.

The lowest order curve fit to both x- and y-positions was chosen such that higher

order polynomials yielded nearly identical results for both velocity and acceleration,

minimizing the error. This corresponded to a seventh order polynomial fit, with an R2

value of 0.99. Error estimates were between 2-4% in velocity, 5-10% in acceleration,

and 5-15% in lift and drag.

The rotation of the sphere was determined using an iterative, rotating cross-

correlation routine, which determined the mean and standard deviation of the angular

position from the video sequences. Random, non-uniform markings were drawn on the

sphere with indelible marker to enhance the correlation algorithm. The correlation

algorithm isolates one quadrant of the sphere in two sequential images and directly

compares these isolated regions of interest, thus eliminating the need to shift the

entire image. The quadrant from image two is rotated through a maximum rotation

of r/4 rad, in increments of ir/1800 rad. The incremental angular displacement

between time steps corresponds to the angle where maximum correlation is found

between image one and the rotated image two. The angular position data is found

by summing the incremental angular displacement over time. Spin rate, 2(t) rad/s,

was found from the first derivative of a second order polynomial fit to the angular

position data. The mean spin rate and standard deviation were applied to a Student's-

t distribution, which revealed error estimates of 4 - 9% for Q(t).

The spheres used in the bulk of this study were standard billiard balls made from
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phenolic resin with a mass ratio, m* = msphere/mfluid = 1.74. The surface roughness

of the spheres was determined using model Tencor P-10 Surface Profilometer, sensi-

tive to roughness of ±0.01 fm. The size of the spheres was large compared to the

profilometer's measurement range precluding measurement over the entire sphere sur-

face, so only a fraction of the sphere could be tested at any given time. The theoretical

smooth surface location is subtracted from the profilometer curves to determine RMS

values. The RMS value for the phenolic resin spheres is 0.8 ± 0.4 pm; the roughness

to diameter ratio was k/d = 1.4 x 10- 5 . The static contact angle made by a drop

of fluid with the surface of the phenolic resin spheres was 900 ± 100. The random

markings on the spheres did not locally alter the average roughness or contact angle.

Additional materials and sizes of spheres were also tested to determine the effect of

density and diameter on the splash and cavity physics. These spheres included small

(d = 2.54 cm) acrylic, ceramic, and steel spheres. The mass ratios of the 2.54 cm

spheres were m* = {1.2, 3.9, 7.8}, for the acrylic, ceramic, and steel spheres, respec-

tively. The spheres were coated with a hydrophobic coating (Cytonics Corporation's

WX2100TM) to have uniform surface properties; the RMS surface roughness for all

2.54 cm spheres was k = 2.4 pum, and the static contact angle was 0c = 120' + 100.

The data from these tests with the smaller projectiles are not the main focus of this

paper, and therefore unless explicitly expressed, data and images presented in the

following sections are for the standard billiard balls.

4.3 Results and Discussion

4.3.1 Overall cavity dynamics

Following the discussions of [24], we consider the impact problem in five distinct

stages: (1) the moment of contact, (2) the flow forming stage, (3) the open cavity and

splash growth stage, (4) the closed cavity and pinch-off stage, and (5) the collapsing

cavity stage. While the details of each stage may vary with impact parameters, these

five distinct stages persist for the case of the sphere impacting with spin.
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Fundamentally, the initial stages of high-speed impact of any object on the free

surface, with or without spin, are dominated by inertial effects. Figure 4-3 shows a

sequence of images taken for a standard billiard ball spinning with o = 199 rad/s

(So = 1.1) and impacting the free surface with an initial velocity of V = 5.45 m/s

(Fr = 7.3). Each image in the sequence is separated by At = 10 ms. The first image

(a) is taken 1 ms after impact. The sphere is already moving beyond stage one into

stage two in figure 4-3(a).

An initial horizontal jet of fluid forms as the sphere impacts the free surface; this

jet continues to extend radially outward as the sphere descends into the fluid. The

jet transitions from outward to upward growth during stage 2 when the sphere is

submerged approximately one quarter of its diameter. A thin layer of fluid is driven

around the lower surface of the sphere until it nears the equator, where it separates

from the sphere to form the splash crown. Below a critical impact velocity and critical

wetting angle, the flow remains attached until it surrounds the sphere completely and

meets at the top, causing a jet of fluid to form upward without the presence of an

air-cavity [10]. For the spinning sphere, in the range of impact speeds considered for

the standard billiard balls, the splash curtain appears to form symmetrically below

S - 0.30, but above this value asymmetric growth of the splash curtain can be seen

in the high speed video sequences.

In stage three of the impact sequence (figure 4-3(c-f)) the entire ball passes below

the ambient free surface and an open air-cavity begins to form in its wake. The

splash crown base, connected to the free-surface, grows in diameter, with the top of

the subsurface air cavity, and grows in height forming a vertical curtain. The sub-

surface air cavity both elongates vertically and grows radially outward as the ball

descends. At this stage the cavity is conical in shape, similar to the non-spinning

case, but curved because of the spinning motion of the sphere which induces a lift

force perpendicular to the ball trajectory.

During stage three, the sphere continues along its curved trajectory, bending the

air cavity further. The sub-surface air cavity is still open to the atmosphere and

air flows in through the splash curtain resulting in a reduced pressure, which acts
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Figure 4-3: A sequence of images depicting the splash and air cavity formed in the

wake of a spinning sphere impacting the water. The initial impact velocity is V0 --

5.4 rn/s (Fr = 7.3), and the initial spin parameter is S = 1. 1. The first frame (a)

is 1 rns after impact; subsequent frames are 10 rns apart. (Digital video is available

online for both side and top views of this run.)f_ " 1'
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Figure 4-3: A sequence of images depicting the splash and air cavity formed in the

wake of a spinning sphere impacting the water. The initial impact velocity is Vo

5.4 m/s (Fr -- 7.3), and the initial spin parameter is S - 1.1. The first frame (a)

is 1 ms after impact; subsequent frames are 10 ms apart. (Digital video is available

online for both side and top views of this run.)
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to draw the splash curtain inward as it reaches its maximum height. The splash

curtain continues to collapse inwards, eventually closing to form a dome (between

figures 4-3(g-h)).

In stage four the splash curtain is closed and no more air can flow into the cavity;

however, the subsurface air cavity continues to stretch and curve under the movement

of the spinning sphere. The cavity collapse for the case of the spinning sphere is similar

to that of a non-spinning projectile as described in [19]. Hydrostatic pressure of the

surrounding fluid retards the outward growth of the cavity and initiates the cavity

collapse. The inward inertia of the cavity forces it to neck down into a curved, yet

bottle-like shape, reaching pinch-off (deep-closure or deep seal) between figures 4-3(j)

and 4-3(k). At pinch-off the cavity splits into two distinct, closed cavities: a lower

cavity still fully attached to the sphere, and an upper cavity connected to the free

surface.

After pinch-off (stage five) the cavity begins a rapid, violent collapse (figures 4-

3(j-k)). In both the lower and upper cavities, distinct jets of fluid eject away from

the point of pinch-off in opposite directions similar to what is also seen by other

researchers (e.g. [42, 20]). The jet in the upper cavity bursts up through the free

surface with significant velocity, pulling the upper cavity almost inside-out. The jet

attached to the lower cavity is directed towards the sphere without an immediately

obvious effect on the sphere's motion. The smaller, lower cavity remains attached to

the sphere (figure 4-3(1)). Ripples in the lower cavity are seen in the video sequences,

comparable to those reported by [16]. Eventually vortex shedding begins and the

lower cavity starts to break up into bubbles that ascend to the surface.

4.3.2 Effect of spin on cavity and splash asymmetry

As spin rate increases from zero, the sphere follows an increasingly curved trajectory.

The symmetry seen in the non-spinning cases gives way to asymmetric cavity and

splash growth in the spinning cases. Asymmetry, due to spin, develops even for

relatively low spin parameters and at early stages of splash formation. For example,

the growth of the initial axial jet (at t < 1 ms) is already asymmetric as it rises
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(a) t =1 ms (b) t = 3 ms (c) t = 5 ms

Figure 4-4: Splash asymmetry is already beginning to form due to spin 1 ms after
impact (a); the splash continues to grow in (b) and (c), leading to an asymmetric
splash crown and dome. Sequence of images taken At = 2 ms apart, for a clockwise
spinning sphere with initial impact parameters: S = 2.25 and Fr = 7.0.

faster on the left-side of the sphere, which is rotating out of the water, than the jet on

the right-side of the sphere. This is more evident in higher spin rate cases (figure 4-4).

As the splash curtain develops further, the left-to-right asymmetries persist (fig-

ure 4-3(a-d)) and are most evident when the curtain ceases to grow radially and

starts its inward collapse. At this point (figure 4-3(e-h)) the splash curtain appears

to collapse earlier on the left side of the crown. The asymmetry of the splash dome

is further exaggerated, as spin rate increases, and no outward splash is formed on the

left side of the cavity for spin parameters above a critical value of S e 1.0.

A clear line of bubbles can be seen ejecting out the right side of the cavity after

surface closure and prior to deep closure (pinch-off). These bubbles persist for several

frames and do not appear to have an effect on the overall cavity behavior (figure 4-

5). Upon close investigation it becomes clear that these bubbles are generated by a

thin wedge of fluid which has traveled from left to right inside of the cavity and has

impacted the cavity wall, thus forcing air out along the line of impact. From the side

view, the presence of a wedge is indicated by a dark, diagonal line rooted near the

free surface on the left side of the cavity and extending down to the right inside of

the cavity; this line is the top of the fluid wedge (figure 4-5(a)).

The fluid wedge formation and bubble ejection are not persistent across all spin

parameters. Figure 4-6 shows images taken at four distinct impact spin parameters,

So = {0.3, 0.75, 1.1, 1.4}. The top two image rows are synchronized in time and
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Figure 4-5: Two images taken at t = 88 ms (a) and t = 95 ms (b) after impact
respectively, for initial impact parameters: S = 0.75 and Fr = 7.5. In figure (a)
the top of the fluid wedge can be seen through the cavity as a grey line descending
from the upper-left free surface to the lower right. A line of bubbles is ejected out of
the right side of the cavity. Image (b) is captured at the moment of pinch-off (deep
closure); after pinch-off two separate air cavities form.

130



illustrate how the wedge formation varies from low to high spin parameters. Looking

into the cavity from above the top of the sphere is moving to the right and a small

triangular wedge of fluid can be seen growing into the cavity. As the sphere spins

it carries fluid, drawn from the cavity walls, along its equator into the cavity. The

extruded fluid resembles a thin wedge, or sheet, that is anchored, at the top, on the

left side of the cavity and extends down the length of the cavity attaching, at the

lower end, to the sphere surface. For the lowest spin parameter presented (So = 0.30,

figure 4-6(a)), the wedge formation is weak and does not fully extend across the cavity

as it does in higher spin cases. In cases where spin parameters are less than So, 0.30

a distinct wedge of fluid is not formed; however, for all spin rates, images taken from

the top reveal that the fluid is clearly drawn across the cavity in contact with the

sphere, thus satisfying the no-slip condition.

At a later instant in time (t = 99 ms after impact) the side views of the cavity

reveal greater splash dome asymmetries with increasing spin parameter. The increase

in spin causes the wedge to form earlier and travel at a faster velocity across the cavity.

The progression of the fluid wedge from inception to the time at which the top of the

wedge impacts the far cavity wall, is illustrated in figure 4-7 for the case S = 1.1.

The first image in this 'birds-eye' sequence shows vertical striations on the left wall

of the cavity, which continue to grow into the cavity to form the wedge as the sphere

descends. Even the early splash crown and air cavity opening, at t = 10 ms, are

slightly asymmetric. The shape of the cavity cross-section eventually evolves into a

cardioid as the wedge extends across the cavity (figure 4-7(d)). At the higher spin

rates the volume of fluid pulled from the left wall of the cavity increases, detracting

from growth of the splash crown and affecting the cross-sectional shape of the cavity

(figure 4-8). The splash crown growth and collapse are increasingly asymmetric at

higher spin rates. For sufficiently high spin rates, no outward splash occurs on the left

side of the cavity; this behavior is linked to the dynamic wetting angle and pinned

contact line on the sphere as it both translates and rotates, and is the subject of

ongoing investigation.

Just moments after impact, as the sphere continues to descend through the fluid,
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Close-up t 26 ms
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Side view t = 99 ms
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a) So = 0.30 b) So = 0.75 c) So = 1.1 d) So = 1.4

Figure 4-6: Four water entry cases with increasing spin parameter (left to right). The
'birds-eye' view (off-axis viewed from above) images in the top row are captured in
synch with the images in the middle row; these images are taken at t = 26 ms after
impact. The bottom row captures the cavity at t = 99 ms after impact, near the
moment of pinch-off, showing the extent of the wedge formation for the four cases
and pinch-off behavior. Increased spin rate affects both the shape of the cavity cross
section and the overall splash symmetry. The spheres are spinning clockwise in the
side views and the top of the sphere is moving left to right in the 'bird's-eye' view,
drawing fluid across the cavity in the same direction. Froude number is Fr = 7.3±0.2
for all cases presented.
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(a) t = 10 ms

(c) t = 26 ms (d) t = 34 ms

Figure 4-7: A 'birds-eye' view of a spinning sphere impacting the water surface at a
downward speed of 5.45 m/s (Fr = 7.3). The top of the sphere moves to the right
with spin parameter So = 1.1. Images are taken 8 ms apart. The rotation of the
sphere draws fluid in from the left wall of the cavity (a) towards the right, forming
a wedge. The wedge increases in size as water continues to be brought in from the
left (18 ms) (b), and thins along the equator of the sphere forming a sheet of water
(26 ms) (c), which eventually impacts the right hand side of the cavity (34 ms) in (d).
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(a) (b)

Figure 4-8: Side and top view for a high spin parameter case, So = 2.25, for Fr = 7.0,
taken 26 ms after impact. The synched images show that the wedge has already
crossed the cavity impacting the opposite cavity wall ejecting a line of bubbles on
the right hand side of figure (a). Figure (a) also shows the asymmetry of the splash
curtain at this early stage of impact. Figure (b) from above shows a distinct cardioid
shaped cavity and shows the wedge bisecting the cavity into two distinct halves. The
spin parameter is sufficient enough to cause no splash to occur on the left hand side
of the splash curtain as witnessed in figure (b).
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the spinning motion forces an already wetted section of the sphere to move upward,

dragging fluid along the surface of the sphere and into the cavity. Due to the rotational

forces the fluid is drawn to the equatorial region. Assuming no-slip, the time the

sphere takes to turn one half of a full rotation, or 7r radians, should be coincident

with the time at which the wedge first impacts the cavity wall, such that t, = r/Q0.

During the time tz, the sphere will have traveled some number of diameters, ad, below

the free surface. Assuming that the sphere's forward velocity changes only minimally

in this short time, then ad = Vot,, such that

V= r 7 (4.1)
Qod 2So

If the sphere is located at some depth, yw, when the wedge impacts the wall then

a = yW1 d.

Plotting y,/d as a function of Vr/Qod, reveals a linear relationship (figure 4-

9(a)). However, the slope of the data is not equal to -1 as expected from equation 4.1.

Instead the slope of the data is closer to -1.3, indicating that the depth of the sphere

at the moment of wedge impact, y, is over-estimated. y, is determined by looking

closely at the video sequences taken from the side view (camera #2), and choosing

the frame at which the bubbles first eject from the cavity near the sphere. There is

a slight lag between the time that the leading edge of the wetted surface reaches the

far wall and the time when a sufficient mass of fluid from the wedge hits the wall,

causing air to eject from the cavity, which leads to an over estimation of y,. For very

low spin rates relative to impact velocity, it is possible that the wedge will not even

reach the opposite side of the cavity before pinch-off, which is the case for data shown

at Fr = 7.3 and S < 0.3.

Since the ratio of spin rate to downward velocity strongly affects the wedge for-

mation, the top of the fluid wedge forms a shallower angle to the free surface as spin

rate increases; the top of the fluid wedge is illustrated clearly in figure 4-5(a). The

leading, top corner of the wedge traverses across the cavity at approximately 60% of

the tangential velocity, Qor, of the sphere. As the cavity grows radially outward and
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then begins collapsing, the distance the wedge must travel across the cavity grows and

shrinks. It appears that the wedge is traversing the cavity at a nearly constant rate,

however, the oscillation of the cavity wall makes the relative velocity between the

wedge and opposing wall non-uniform. For cases where S >> 1 the wedge impacts

the side of the cavity early and violently, typically causing a line of bubbles, almost

the length of the entire cavity, to eject from the cavity at nearly the same moment

in time, not just one particular impact site (figure 4-8). For lower spin parameters

the initial wedge impact zone is typically near the top of the sphere, at the bottom

of the cavity, and progresses up the cavity wall towards the free surface.

As a result of the no-slip condition at the solid boundary, the fluid velocity at the

sphere surface must match the sphere surface normal and tangential velocities, and

thus fluid is dragged along the surface of the sphere as it rotates. Frictional, viscous

forces on the surface of the sphere act to reduce the spin rate of the spheres along the

trajectory by causing a viscous torque that opposes rotation. Figure 4-9(b) plots the

spin rate, Q(t), as a function of time, for four cases, normalized by the spin rate at

impact. Ultimately, if allowed to travel in an infinite viscous fluid, the spheres would

cease to spin due to the viscous torque opposing the rotation of the sphere. The rate

of decay appears to have a dependency on spin parameter, increasing with increasing

initial spin parameter, So.

Based on figure 4-9(b), it would be expected that the time that it would take

a sphere to cease spinning, tlQ(t)=o, would decrease with increasing initial spin pa-

rameters. Figure 4-9(c) shows tlQ(t)=o, given the linear decay rates extracted from

figure 4-9(b), as a function of initial spin parameter, So; this spin relaxation time

is found by extrapolating the lines in figure 4-9(b) to the zero-crossing point on

the time axis. Plotted as a function of impact spin parameter, the data reveal an

asymptote beyond So, 0.5, where the relaxation time tends towards a value of

tln(t)=o - 0.3 ± 0.1 seconds.

The decrease in relaxation time, or increase in spin decay rate, as a function of

increasing spin parameter is not wholly unexpected. As the spin parameter increases,

so does the relative velocity on the surface of the sphere on the side where the tangen-
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Figure 4-9: (a) The normalized depth of the sphere at which the wedge first impacts
the opposite cavity wall as a function of the dimensionless parameter Vr/Qod. Sym-
bols are for experimental data, and solid line represents theoretical line with slope -1,
from equation 4.1. (b) The decay of spin rate, normalized by the impact spin rate,
as a function of time for the four spinning cases from the standard billiard balls at
Fr = 7.3. The highest spin rates see the largest reduction of spin in time. (c) The
relaxation time, at which the spin rate would decay to zero, is found by extrapolating
the data from (b) down to the point at which the line crosses the horizontal axis.
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tial velocity due to rotation is additive with the sphere's forward motion. This acts

to trip the boundary layer sooner on the side of the sphere with the highest relative

velocity, thus transitioning it to a turbulent regime with higher viscous boundary

layer drag. This increased viscous drag leads to a higher viscous torque that opposes

the rotation and acts to slow the sphere at a faster rate than the spheres with a slower

initial spin rate.

4.3.3 Sphere trajectory

The most obvious and anticipated change in behavior of the spinning sphere, com-

pared to the non-spinning case, is the curvature in its trajectory. The lift force

induced by the rotating motion, coupled with forward velocity, moves the sphere

along a curved path. Sphere trajectories for five different spin parameters, So =

{0, 0.3, 0.75, 1.1, 1.4}, are plotted in figure 4-10, for one impact velocity (V = 5.6 +

0.4 m/s); only position data after impact are presented. The x and y positions are

normalized by the diameter of the sphere, d, and the free surface corresponds to a

value of y/d = 0.

The zero spin case shows a straight descent until after pinch-off. In figure 4-10,

below y/d - 7, the sphere moves to the left; all non-spinning spheres tended to

move away from their vertical trajectories at some time after pinch-off. This is most

likely due to vortex induced forces. Data in Govardhan & Williamson [15] indicates

that tethered spheres, without spin, tend to present a sinusoidally oscillating motion

in the axial direction due to vortices being shed in the wake. Before pinch-off, the

cavity attached to the sphere retards classical vortex shedding from the sphere; thus

it is only after pinch-off that the effects of vortex shedding would become noticeable.

The lift force significantly increases with spin, in the range of spin rates investi-

gated, and results in greater curvature of the sphere trajectory (figure 4-10). Path

curvature is evident for all cases, indicating positive lifting force even at lower spin

parameters (e.g. S = 0.30). If spin parameter is held constant but Froude number

increased, for a constant diameter sphere, the trajectories, x/d versus y/d, are very

similar for each increasing Froude number (not shown). Differences in trajectories for
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Figure 4-10: Five different trajectories of a billiard ball impact with the free surface.
Each trajectory is marked by its corresponding spin parameter (So = R,r/Vo) at
impact. Froude number at impact was Fr = 7.3 ± 0.2. The diamond marks the
location of the sphere when pinch-off occurs for each case.
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increasing impact velocity are seen in the position as a function of time, as higher

Froude number spheres reach deeper depths, and further horizontal excursions, earlier

in time than cases with lower impact velocities. Since gravity plays a significant role

in the motion of the sphere, the mass of the sphere should also be considered. Lower

mass ratios should yield greater curvature assuming that the lift force results from

increased circulation around the sphere. The mass ratio of the billiard ball used here

is quite high, m* = 1.74, yet the curvature is still significant.

For the same impact parameters, So and Fr, lower mass ratios experience greater

lateral excursion due to lift. The force of lift is expected to be similar for a given

diameter, velocity and spin rate, but as the sphere travels along a curved trajectory

the force of gravity tends to stretch the trajectory downwards and thwarts lateral

movement; the gravitational force is greater for increasing body mass. Mass effects

are considered using three different spheres, with constant diameter but varying mass

ratios. Figure 4-11 shows the trajectories, x/d versus y/d, at Fr = 6.7 and So = 0.65,

for the three different types of spheres. The lighter spheres (acrylic) tend to have

more curvature in their trajectories than the heavier spheres (ceramic and steel).

After the sphere leaves the camera's field of view, the acrylic sphere moves almost

exclusively in a horizontal direction, whereas the heaviest spheres always have some

downward motion. For low mass ratios, m*, inertial forces are diminished compared

to hydrodynamic forces, and added mass and lift forces become more significant. For

m* near unity, e.g. acrylic spheres, lift force has a considerable effect on the sphere's

trajectory and velocity in the horizontal direction. For high m*, e.g. steel spheres,

the inertial forces dominate and spin has little effect on the overall trajectory of the

sphere.

Video images from the 'birds-eye' view and the side view for the acrylic, ceramic,

and steel spheres, captured at t = 21 ms after impact for Fr = 6.7 and So = 0.65, are

shown in figure 4-12. These images were obtained just prior to the time that the top

two rows of images were acquired in figure 4-6. The top-view images in figure 4-12(a-

c) show a distinct difference in cavity cross-section for the three materials despite

the identical impact parameters. No outward splash is generated on the left side of
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Figure 4-11: Trajectories for three 2.54 cm spheres with increasing mass ratios: acrylic
(m* = 1.2), ceramic (m* = 3.9), and steel (m* = 7.8). The three spheres impact
the water at the same Froude number (Fr = 6.7) and the same spin parameter
(So = 0.65). The diamond markers indicate the depth of cavity pinch-off.

141



the cavity for the steel spheres resulting in a distinct cardioid cross-sectional cavity

shape, compared to the rounder cross section of the acrylic and ceramic spheres. The

spheres all have the same surface roughness, k = 2.4 rm, thus we should expect

a similar frictional force to drag the fluid around as the sphere rotates. However,

since wedge formation is dependent on the ratio of tangential velocity to downward

velocity (figure 4-9(a)), the qualitative difference in wedge formation makes sense.

After impact, the acrylic spheres experience a more rapid deceleration compared to

the ceramic and steel spheres, since inertial effects are not as large, and thus have

lower instantaneous velocities compared to the ceramic and steel spheres. The higher

deceleration of the acrylic spheres is seen in the side view images in figure 4-12(d-f);

the steel sphere is deeper in the water than the acrylic sphere at the same time after

impact.

The heavier the sphere, the higher its kinetic energy is upon impact. The energy

transfered to the fluid upon impact affects the splash and cavity formation. In the

acrylic spheres a clean, almost vertical splash is formed; this is similar for the ceramic

spheres, but in figure 4-12(e) the splash crown is just beginning to collapse. However,

for the steel sphere the splash has already begun to dome over. The bubble line,

resulting from the wedge impacting the far wall of the cavity, can also be seen on the

right side of the cavity for the steel sphere in figure 4-12(f). No outward splash is

seen on the left side of the cavity for the steel spheres in either the 'birds-eye' or side

views resulting in a distinct cardioid cross-sectional cavity shape.

The diamond markers in figure 4-11 indicate that the depth of the sphere at the

moment of pinch-off increases dramatically as mass ratio increases. The depth of

pinch-off for the steel sphere is deeper than that of the ceramic and acrylic spheres.

These trajectory plots do not reveal information about the velocity of the spheres'

descent, but qualitative velocity differences are seen in the images in figure 4-12. As

a result of the differences in velocities after impact, the time at which each sphere

reaches a certain depth, e.g. pinch-off, changes dramatically between materials. Thus,

to further investigate the effect of mass on pinch-off, or cavity collapse, looking at the

time to pinch-off is warranted.
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Figure 4-12: High speed images of the cavity formation for three different 2.54 cm
spheres with increasing mass ratio: acrylic (m* = 1.2), ceramic (m* = 3.9), and steel
(m* = 7.8). The spheres all impact the water at the same Froude number (Fr = 6.7)
and the same spin parameter (So = 0.65). Images of the 'birds-eye' view in the top
row (a-c) correspond to images of the side view in the bottom row (d-f) and are
captured at the same instant in time (t = 21 ms). In images (a-c) the equatorial
line of the spheres is moving to the right and the spheres are rotating in a clockwise
direction in images (d-f).
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4.3.4 Cavity pinch-off

Cavity deep seal is initiated by an imbalance in pressure inside and outside of the

sub-surface cavity. After surface closure the cavity continues to expand for some

time as the sphere descends. Since air no longer flows into the cavity, the pressure

inside must decrease if cavity expansion is considered to be an adiabatic isentropic

process [19]. Hydrostatic pressure outside the cavity grows with depth and the radial

expansion of the cavity slows, and eventually stops, without new energy added to the

system. The cavity starts to collapse and finally pinches off when it can no longer

resist external pressures. The moment of pinch-off is taken when the subsurface air

cavity has completely necked down; after pinch-off two distinct, separated cavities

form.

To find a scaling relationship for deep seal, the non-dimensional time to deep seal

is considered. Figure 4-13(a) shows the relationship between non-dimensional time,

t* = Vt/d versus Froude number, and that data for all mass ratios, diameters and

spin rates collapse onto one line. The slope of the linear fit to the data reveals that

t* = 5/4 Fr, over the range of mass ratios tested herein. However, in this figure the

initial impact velocity dominates for both the x- and y-axes, making t* a less than

ideal scaling parameter. [13] use a non-dimensional time scaling for deep seal using

small spherical projectiles under varied atmospheric conditions, at Froude numbers

much higher than those considered here. [14] propose a single value of dimensionless

time, T = t V/r, for which deep seal reduces to a single number for all impact speeds

and disk diameters. Data obtained herein reveals that r = 1.726 ± 0.0688 (2 ± a; n

= 118 trials), over the range of impact velocities and sphere diameters tested. This

is similar to T = 1.74 for spheres as reported by [13], and can be contrasted with

- = 2.285 ± 0.0653 (n = 47 trials) for disks as reported by [14].

The location of the sphere at the time of pinch-off is indicated in figure 4-10 by

the diamond-shaped marker. The sphere's location at pinch-off is clearly affected by

initial velocity and mass, but not spin. For constant Froude numbers, but increasing

spin parameters, the depth, y/d, of pinch-off increases only slightly, and the distance
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traveled by the sphere along its trajectory before pinch-off remains nearly constant.

The distance traveled along the trajectory is the arc-length-to-pinch-off distance,

-/d = ds/d, where ds is an elemental length along the trajectory path, s.

For higher impact velocities and mass ratios, both the depth of pinch-off and

arc-length-to-pinch-off distances increase due to larger inertial effects and greater

energy available to feed cavity growth. Both -/d and y/d are plotted as functions

of Froude number in figure 4-13(b) and 4-13(c). The data plotted in these figures

also include, in addition to the standard billiard ball data, data obtained from three

different one-inch (d = 0.025 m) spheres: acrylic (m* = 1.2), ceramic (m* = 3.9) and

steel (m* = 7.8). Data plotted includes all spin rate cases for each Froude number

considered, including the non-spinning cases, revealing a minimal effect of spin on

the deep seal phenomenon. While each specific mass ratio reveals a linear trend with

Froude number, the data show that mass ratio is an important parameter affecting

the depth and arc length at which pinch off occurs. Taking into consideration the

mass ratio effect, the normalized depth of pinch off collapses neatly as a function of

Froude number times the square root of the mass ratio (figure 4-13(d)).

4.3.5 Lift and drag forces on the spinning sphere

Force model

Lift and drag forces on the standard billiard balls are calculated using the position

data acquired from the video sequences. The coefficients of lift (CL) and drag (CD) are

found by normalizing the forces by !pV 7rr2 . A force balance on the sphere is written

in vector form based on the free body diagram in figure 4-14(a). The hydrodynamic

forces (FH) acting on the sphere are balanced by gravitational forces, added mass

forces and surface tension:

FH = mg+ (m + m)a' - FB - F, (4.2)

where m is the mass of the sphere, g is gravity, ma is the sphere added mass, a

is the acceleration of the sphere, and FB is the buoyancy force. The force due to
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Figure 4-13: (a) Non-dimensional time to pinch-off plotted against Froude number and
(b) normalized arc-length-to-pinch-off as a function of Froude number; (c) normalized
depth to pinch-off as a function of Froude number and (d) normalized depth to pinch-
off as a function of Froude number and mass ratio. Data includes tests from standard
billiard balls (.), 2.54 cm acrylic spheres (o), 2.54 cm ceramic spheres (0), and 2.54 cm
steel spheres (A). Each material has a different mass ratio; m* is indicated in the
legend for figure (a).
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surface tension, Fa, can be neglected as it is less than 1% of the gravitational force

for the standard billiard balls. The buoyancy force FB = pgVj, where V is the sphere

volume, and the added mass is found from ma = CmpV, where Cm is the added mass

coefficient. For this study Cm was chosen to be constant over the entire run, Cm = 0.5.

Cm likely changes over the course of the run, depending on how much of the sphere

is submerged in water. Running the force model with a constant drag coefficient

(CD = 0.4) for the non-spinning case, shows that after the sphere is fully submerged,

added mass coefficient could vary from as low as 0.2, just after the cavity is formed,

to as high 0.5, after pinch-off. Choosing an added mass coefficient Cm = 0.25, a 50%

reduction in added mass, reduces the results for CD and CL by 8-10%, well within

the error bounds of this study. For a mass ratio closer to unity (m* ? 1) the added

mass term will play a larger role and the choice of Cm will be more critical. Force

data is presented only for the standard billiard balls and assumes Cm = 0.5.

To determine the lift and drag components of the forces, equation 4.2 can be

broken into cartesian vector components in the x and y directions

FHi + FHj = mg) + (m + m,)()3 + i) - FB3 (4.3)

where i and j are unit vectors in x and y respectively. Rewriting equation 4.3 in the

reference frame of the sphere makes determining lift and drag forces along the curved

trajectory more straightforward. The unit vector tangent to the sphere trajectory, 9,

is written in terms of the x and y components of instantaneous velocity, V,

Vi Vi V
S = + -j. (4.4)

The unit normal vector, ft, is defined as the cross product of the unit tangent vector

with the unit vector in the z direction, k:

h = 9 x k. (4.5)

The forces of lift (transverse), FL, and drag (in-line), FD, can be determined from
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(a) (b)

Figure 4-14: Free body diagram of the forces affecting the sphere after water entry

is drawn in figure (a). The dashed curve represents the sphere's trajectory. Figure

(b) illustrates the changing magnitude of the lift and drag force components in time

along the trajectory superimposed on one image taken from the same video sequence,
t = 141 ms after impact. The vector origins correspond to the location of the center of

the sphere along the trajectory at the same time step when the forces were calculated.

Impact parameters for this case are So = 1.4 and Fr - 7.3.
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equation 4.2, in terms of unit vectors from equations 4.4 and 4.5 as

FL = (FH -ri)ri (4.6)

and

FD = (FH - ) ^, (4.7)

respectively. Lift is considered positive in the +fi direction and causes curvature to

the left in the images presented herein (the sphere is spinning in a clockwise direction).

The acceleration of the sphere is necessary to determine the force of lift (FL)

and drag (FD). Directly differentiating the raw data does not result in accurate

acceleration data and presents significant scatter and error. Thus a polynomial curve

is fit to both the x and y data. A 7th order polynomial fit was chosen for both the x-

and y- position data; this was the lowest order to ensure convergence in acceleration

for all cases. The R2 values for the position fits are 0.99. The acceleration in the x-

and y- directions is calculated from the second derivative of the polynomial fits to

position. Similarly velocity is obtained by taking the first derivative of the polynomial

fit. The x- and y- positions, velocities and accelerations are plotted in figure 4-15 as

a function of time for the five cases considered here.

Forces acting on the sphere change along the sphere's trajectory with changing

velocity and acceleration. The coefficients of lift (CL) and drag (CD) are found by

normalizing the forces by !pV o
2 r2 . Figure 4-14(b) shows a sphere at time t = 141 ms

after impact (So = 1.4, Fr = 7.3). The sphere's trajectory is indicated by the curved

line through the cavity. Superimposed on this line are pairs of orthogonal vectors

representing the lift (normal) and drag (inline) forces; the length of the vector arrows

indicate the relative magnitude of the forces on the sphere when it was located at the

origin of the force vector pairs. As the sphere descends through the fluid column the

forces of lift and drag decrease. Figure 4-14(b) also illustrates the asymmetry of the

cavity formation around the sphere trajectory, with greater growth in the negative h

direction than in the positive h direction.
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Figure 4-15: Position, velocity and acceleration in the x- and y-directions as
a function of time, resulting from a 7th order polynomial fit to the raw posi-
tion data for standard billiard balls with Fr = 7.3. Impact spin parameters are
So = {0.O 0.3, 0.75, 1.1, 1.4}; legend for ay is valid for all plots.
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Figure 4-16: Lift (a) and drag (b) coefficients determined using the force model as a

function of instantaneous Reynolds number R = V(t)d/v. Impact conditions for the

five cases are: So = {0.0, 0.3, 0.75, 1.1, 1.4} for Fr = 7.3 ± 0.2. The legend in figure
(b) also corresponds with figure (a).
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Forces as a function of Reynolds number

Calculated values for lift and drag coefficients are plotted in figure 4-16 as a function

of instantaneous Reynolds number (R = Vd/v), for the five cases presented in fig-

ure 4-6. The Reynolds number is greatest at the moment of impact and varies with

instantaneous velocity along the sphere's descent. The impact region is identified by

the Roman numeral I. Surface closure is marked by a vertical grey band (region II)

around Reynolds number of R 1 1.6 x 105. The range of Reynolds numbers, at which

the five cases reach pinch-off and form two distinct cavities, is marked by the second,

darker vertical band (region III) around R - 1.1 x 105.

For increasing spin rates, the overall lift coefficient increases with the circulation

around the sphere. Looking at the two higher spin parameters, So = 1.1 and 1.4, it

appears that there may be a maximum possible amount of lift that can be gained

by increasing spin; a plateau in lift coefficient is seen above S - 1.5 in the data for

smooth spinning spheres reported by [21]. Over the course of the sphere's decent the

lift coefficients rise to a maximum at or near the point of pinch-off, in similar fashion

to the drag coefficient. Drag coefficients, just after impact, are on par with the

measured drag coefficient for a fully wetted sphere in flows at comparable Reynolds

numbers (see figure 4-18). In the absence of vortex shedding, while the cavity is still

fully intact, it might be expected that the drag coefficient would be lower than the

fully submerged sphere at similar Reynolds numbers. Choosing a lower coefficient of

added mass, e.g. Cm = 0.25, reduces the overall drag coefficient to a value lower than

published values for similarly rough, but fully submerged, spheres in the range of

Reynolds numbers considered. The choice of added mass coefficient Cm = 0.5 could

account for the drag coefficient after impact being near to that of a fully submerged

sphere.

Forces as a function of spin parameter

To further investigate the effect of spin on the forces incurred by the sphere, the

coefficients of lift and drag are plotted as functions of instantaneous spin parameter,
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Figure 4-17: Coefficient of lift versus instantaneous spin parameter, S(t). Data for the
spinning sphere impacting the free surface is plotted for five instantaneous Reynolds
numbers between R = 1.2 x 105 and 1.8 x 105 . These Reynolds numbers are taken
from cases with different initial spin parameters but the same impact velocity, and
correspond to the instantaneous, and changing, Reynolds number of the sphere along
the trajectory. The number at the right of each curve is the corresponding Reynolds
number divided by 105. For comparison, data for dimpled spheres from Smits and
Smith (1994) and Davies (1949) are plotted along with data from Maccoll (1928) for
smooth spheres.
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S(t), in figures 4-17 and 4-18 respectively. Figure 4-17 presents lift coefficient as a

function of instantaneous spin parameter for five instantaneous Reynolds numbers,

using data from figure 4-16(a). Data from smooth spheres measured by [21] and

dimpled spheres (golf balls) measured by [37] and [9] are plotted for comparison.

Data show that the lift coefficient increases to a local maximum value of CL

0.46 at spin parameter S(t) = 1.8 for Reynolds number R(t) a 1.08 x 105; this

instantaneous Reynolds number corresponds to the speed of the sphere near the time

of pinch-off, but no obvious plateau has been reached. Data for higher instantaneous

spin parameters were not obtainable for any given case, thus an overall maximum

was not obtained. The trend in lift coefficient is similar at higher Reynolds numbers,

but the maximum coefficient is diminished with increasing Reynolds number. Higher

Reynolds number curves in figure 4-17 correspond to points along the trajectory where

the cavity is still intact and growing. The curvature of the trajectories increases as

the sphere continues along its path, indicating that the lift forces due to spin could

be more dominant, compared to cavity effects, as the sphere and cavity growth slows.

Lift coefficients obtained here follow similar trends, as a function of instantaneous

spin parameter, to those found by [21], however it is unclear whether this similarity

continues above spin rate S ? 2.0. In [21], negative lift coefficients were observed at

very low spin parameters, below S = 0.35 to 0.45. Negative lift was not witnessed in

this study, nor in the golf ball studies done by other researchers, but was verified by

[9] for very smooth spheres. [13] noted that the average measured drag coefficients of

the projectiles in their study were independent of cavity shape. Data presented here

indicate that changes in cavity shape due to spin do affect drag; however variable

added mass forces should also be considered in future studies.

Drag coefficients as a function of spin rate are plotted in figure 4-18, for the

same five instantaneous Reynolds numbers used in figure 4-17. The value for drag

coefficient in the non-spinning case, CDo, is calculated at each instantaneous Reynolds

number using the force model from section 4.3.5. CDo is subtracted from each curve

in figure 4-18, such that each curve has zero drag at S = 0. Thus figure 4-18 closer

represents the spin-induced drag forces on the sphere, CDs, without cavity effects.
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Figure 4-18: Coefficient of drag versus instananeous spin parameter at Reynolds
numbers ranging from 1.2 x 105 - 1.8 x 105.Figure (a) shows the contribution due
to spin only (CD8 ); the numbers to the right of the data curves are instantaneous
Reynolds number divided by 105. Figure (b) plots the drag coefficient (CDo) for
the zero-spin water entry case with identical impact velocity as the spinning cases
(circles). Standard drag coefficient data for smooth, roughened and dimpled spheres
taken from Blevins (1984) is plotted for comparison.
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The total drag coefficient acting on the sphere is the sum of the zero-spin drag and

the spin-induced drag: CD = CDo + CD,. A negative CDs represents a reduction in

drag coefficient due to spin. The effect of spin appears to decrease the drag coefficient

over the course of a run compared to a non-spinning case, above an instantaneous

Reynolds number R ? 1.2 x 105 and S(t) - 1.5.

Figure 4-18(b) presents the coefficient of drag calculated for the zero spin case,

CD at So = 0. Data are plotted along with standard drag curves for smooth and

roughened spheres taken in flow tunnels taken from [8]. The cases investigated herein

fall in the laminar-turbulent transition region, and figure 4-18(b) illustrates how the

introduction of spin can easily tip the balance in favor of turbulent flow.

4.4 Conclusions

The effects of spin on the flight path of a sphere impacting into water are not ulti-

mately surprising. However, high speed video reveals the formation of unique and

elegant splash and cavity morphologies when spin is introduced. As the spin rate of

the sphere is increased, for a constant impact speed, the sphere's trajectory exhibits

greater curvature, in a similar fashion to curve-balls in sports like golf, cricket and

baseball. The trajectories of higher mass projectiles are not as affected by spin as

their lower mass counterparts. The bent cavity for the spinning case holds a similar,

albeit curved, form compared to the non-spinning case, and the splash formation and

collapse and the cavity pinch-off behaviors are fundamentally similar.

Unique to this problem, however, is the nature of the sub-surface air cavity, and

the formation of a secondary fluid feature, namely the fluid wedge, that forms in

the cavity. Since there is no slip between the sphere surface and the fluid, fluid is

drawn along with the sphere, which is fully wetted after one half a rotation, and the

wedge is extruded into the cavity as the sphere descends. Data show that the ratio

of spin rate to downward velocity strongly affects the wedge formation. If allowed to

travel in an infinite viscous fluid, the spheres would cease to spin due to the viscous

torque opposing the rotation of the sphere. The rate of spin decay increases with
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increasing spin parameter, up to about So, 0.5, after which the spin relaxation time

appears to plateau. The effect of mass ratio on wedge formation is played out in

the instantaneous downward speed of the sphere. Since the lighter spheres decelerate

more rapidly than the heavier spheres, the instantaneous spin parameter for the light

spheres is lower for the same impact velocity and the wedge formation is not as

obvious.

Spin appears to have minimal effect on cavity pinch-off and collapse, compared to

Froude number. The depth and arc-length to pinch-off do not scale well with Froude

number when mass effects are considered, yet scale well with Froude number times

the square root of the mass ratio. Dimensionless time does collapse the pinch-off data

as a linear function of Froude number, for all mass ratios; data for non-spinning cases

collapse in an identical fashion to the data for spinning cases.

Several distinct regimes can be identified within the range of spin parameters

studied. First, at zero spin rates the traditional water impact behaviors are identified.

Using a force balance equation, the drag coefficient is found to increase for decreasing

instantaneous Reynolds number, along the trajectory of the sphere, up to the point

of pinch-off where the sphere separates from the large cavity. The cavity and splash

formation and collapse are symmetric in the absence of spin and the calculated lift

coefficients are zero.

For very low spin parameters (0 < S < 0.35), where [21] notes negative lift

coefficients, the spinning spheres studied here do not show negative lift, but instead

tend to bend in the direction of positive lift, yielding the lowest calculated values for

CL. The drag coefficients calculated for the S = 0.30 case were also the lowest of all

the spin parameter cases run. Already at this low range of spin parameter, asymmetric

splash and cavity formation and collapse are notable. No distinct wedge formation

grows into the cavity, but the visible striations associated with wedge formation are

evident (figure 4-6a; top row). Close observations of the 'birds-eye' videos indicate

that there is no-slip between the fluid and the sphere at any spin rate.

As spin parameter increases (0.35 < S < 0.7), the lift data from [21] transitions to

positive and the data recorded herein show a local minimum in drag coefficients for
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spin parameters between 0.5 and 0.6, yet lift coefficient shows a steady increase in this

region. The asymmetry in cavity and splash formation and collapse is exaggerated

with increasing spin parameter, and a fully formed fluid wedge traverses across the

cavity. Despite the wedge formation the cavity is still relatively round in cross-section

at lower spin parameters, compared to spin parameters above So, 0.7. At the highest

spin parameters So > 1.0, the splash crown formation is significantly altered by spin.

Minimal outward splash arises from the left side of the impact region (as seen in

the 'bird's-eye' images) and the cavity has a distinct and elegant cardioid shape and

a dominant wedge that fully transects the cavity from surface all the way down to

pinch-off.

Overall, the fundamental nature of water entry is not destroyed when spin is

introduced, but instead altered in a unique fashion. Splash crown and sub-surface air

cavity do form and collapse in similar stages, but a new fluid wedge is formed that

can dissect the cavity in half in the presence of spin. Preliminary tests show that

static surface contact angles can affect the formation of the splash crown, as well as

the fluid wedge; these effects warrant further investigation.
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Chapter 5

The dynamic effect of spin and

varied surface treatment on cavity

formation during water-entry of

spheres

Abstract

Air cavities formed in the wake of falling spheres are affected by impact velocity and
wetting angle, but can be further altered through dynamic effects, mainly transverse
rotation (9). The rotating sphere alters the position of the contact line by moving it
up and around the sphere from the side of least relative velocity to the side of greatest
relative velocity (V = Vo + ORcos(Oq) o). This forms a wedge of fluid that crosses
the cavity bisecting it into two separate cavities attached to the sphere. Eventually,
both of the cavities collapse in an event known as deep seal. These phenomenon can
occur for both hydrophobic and hydrophilic spheres of sufficient impact velocity. In
the case of hydrophilic spheres that typically do not form cavities, if the rotational
velocity is sufficient a cavity is formed on the side of greatest relative velocity. The
rotating spheres have a lift force due in part to the coupling of the rotational and
forward motion. The most interesting result, however, is that the same behavior
can be replicated by coating the spheres half in a hydrophobic coating and half in a
hydrophilic.
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5.1 Introduction

The impact of a spherical object upon the free surface can create a sub-surface air

cavity much larger than the sphere's volume (figure 5-1). At low enough velocities

the formation of this cavity is dependent upon many factors including impact veloc-

ity, surface properties, and viscous effects [1]. We present the additional importance

of dynamic motion upon the shape of the cavity formed. In particular, we demon-

strate that manipulation of this phenomenon can produce irregularly shaped cavities

through both dynamic means such as rotational velocity and surface properties such

as wetting angle. Qualitatively, the effects of both cases are similar. The trajectory

of the sphere moves towards the side of the most wettable surface and away from the

side of least wettable surface for both rotating and non-rotating spheres.

Cavity formation is relevant to many applications including float plane impact [2],

ship slamming [3], stone skipping [4] and drag reduction [5, 6]. Industrial applications

include structural interactions with the free surface such as ship slamming, extreme

waves and weather on oil platforms, sprayed adhesives, and ink jet printing. Even

the sporting industry is interested in the water entry of athletes, reducing drag of

swimmers near the free surface and the entry and exit of oars in rowing. Dynamic

and surface treatment effects on water-entry are of particular relevance to naval hy-

drodynamics in the areas of torpedo entry [7] and methods for missile deployment

[8, 9].

The impact of spheres and droplets on the surface of water has been studied

extensively for over 100 years [10]. One of the main features of these types of impacts

is the development of an underwater air cavity. [10] observed that when an already

wetted sphere was dropped into a pool of water no underwater cavity was formed.

He also noted that when the spheres were coated with soot (residue from a carbon

based fire) the spheres made more definite cavities. Recently, [1] characterized the

nature of this phenomenon and explained the behavior based on the wetting angle

inherent to the sphere surface. Their study noted that for clean, smooth spheres

there was a critical velocity U* > 7 m/s, above which all surface coatings created
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Figure 5-1: Case I (top): The water-entry of a hydrophilic billiard ball (9 = 670)
impacting at V = 1.72 m/s. A large vertical jet is formed in the wake of this non-
cavity forming case. Case II (bottom): The water-entry of a hydrophobic billiard ball
(0 = 120') impacting at Vo = 1.72 m/s. The sphere is completely encased in a thin
layer of air, a large cavity is formed in the wake, and the splash crown is uniquely
vertical.
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a cavity. More importantly their theoretical model couples two predictable values

(impact velocity and statically measured contact angle) with the occurance of this

dynamic phenomenon. This extraordinary finding makes the phenomenon appear

easy to understand despite the century of work by many ([10, 11, 12, 13, 14, 15, 7,

16, 17, 18, 19, 20] and others).

The phenomenon becomes more complicated by simply adding a rotational com-

ponent. Although a large body of work exists on the free surface impact phenomenon

of spheres there is very little research done on the impact of rotating spheres [21].

Spin alters the effective wetting angle of an object impacting on a liquid surface. As a

sphere rotates, the relative surface velocity at any given point on the sphere changes.

This affects how the cavity is formed, thus changing the overall cavity shape. In the

case of the spinning sphere, the relative velocity on one side is significantly higher than

on the other, often causing cavity formation around only a portion of the sphere. Fig-

ure 5-2 illustrates this effect, the sphere is rotating counterclockwise which becomes

an added velocity on the right hand side and a subtracted one on the left. The al-

tered speed of impact now plays a role in the formation of the cavity for all statically

measured wetting angles.

The experiment was conducted using standard billiard balls with diameters of

d = 0.0572 m, densities of p = 1740 kg/m 3 and an impact speed in all cases of Uo

= 1.72 m/s. Two types of surface treatments were used to create useful wetting an-

gles. Hydrophobic spheres (0 = 120' ± 10") were created by spraying a thin coating

of a chemical treatment known as WX2100 by Cytonix Corp. Hydrophilic spheres

(9 = 68' ± 100) were created by cleaning the spheres with acetone, isopropyl alcohol,

ethanol, respectively and then allowing them to dry thoroughly. The roughness to di-

ameter ratio of the hydrophobic coating was k/d = 1.96 x 10- 5 , whereas the uncoated

spheres had values of k/d = 0.80 x 10- .

Experiments were performed using an apparatus that could both spin the spheres

and drop them from a given distance above the free surface (figure 5-3). The sphere is

held above the free surface by between two plates connected to two shafts supported

by bearings and held together with an electro-magnet. A motor attached to the
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Figure 5-2: Cutaway view of how the water is affected by the surface of the sphere. On
the left, the increased relative velocity creates an advancing contact line, increasing
the dynamic wetting angle, thus allowing air entrainment and cavity formation. On
the right, the relative velocity is actually in the upward direction creating a receding
contact line, thus keeping the fluid in contact with the spheres surface.

shafts prescribes the rotation, which is monitored via an optical sensor. When the

electro-magnet is turned off the mechanism opens and the sphere is free to fall with

a prescribed initial spin rate. For the non-spinning cases the motor is not used, thus

no rotational component of velocity is induced.

Four distinct cases are presented where cavity formation is clearly dependant on

the wetting-angle driven air-entrainment of cavity formation. Cases I and II show the

effect of hydrophobic and hydrophilic spheres with evenly coated surface treatments

and no rotational velocity. They are similar to the results shown by a myriad of

previous authors. The wetting angle is dynamically altered in cases III and IV by a

dynamic effect (counter-clockwise rotational velocity), and by surface treatment only

in case V. The velocity of impact for all cases presented is V = 1.72 ± 0.1 m/s.

Case I is presented in figure 5-1(top) and shows a hydrophilic sphere impacting

the free surface without rotation. The images show how the sphere enters the fluid

column and does not make a cavity in the wake, but does form a large jet at the free

surface.

Case II is presented in figure 5-1(bottom) and shows a hydrophobic sphere impact-
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Figure 5-3: Device used to drop the spheres. The sphere is held above the water
surface by two brackets that are attached to a set of 0-rings. The brackets are attached
to a set of bearings allowing the sphere to rotate out of the plane of the illustration.
A motor is attached to one of the bearing shafts to induce a prescribed rotation (not
used in this study). An optical rpm sensor is mounted separately to detect the spin
rate of the sphere before release. An electromagnet holds the two halves of the device
apart until the dropping time at which point the electromagnet is turned off and the
springs draw the device apart allowing the sphere to fall freely into the tank of water.

ing the free surface without rotation. The figure shows the classic cavity formation

and splash growth that occurs. The hydrophobic nature of the coating allows the

sphere to be coated in a thin layer of air over most of its surface as it enters the

water. The tendency for the sphere to remain non-wetted allows air to become en-

trained in its wake, thus opening a cavity in the water column. The cavity grows

as the sphere descends, eventually collapsing some distance above the sphere. The

collapse of the cavity begins when the momentum imparted by the sphere on the

fluid is halted by the surrounding hydrostatic pressure, which then acts to close the

cavity. The cavity collapses at the narrowest cavity radius (pinch-off) and two dis-

tinct cavities are formed, one attached to the sphere, and one connected to the free

surface. After collapse two jets are also formed at the pinch-off point, one that ejects

up beyond the free surface, and the other that passes through the cavity attached to
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the sphere, impacting the sphere from above.

By comparison, case III (figure 5-4) illustrates the effect of rotation on a similar

impact. The top images are taken from directly above the sphere, allowing us to

look into the cavity, and the lower images are taken from the side to view the profile.

The rotation rate of this impact is w = 218 rad/s, which yields a spin parameter

of S = wr/Vo = 3.6). The spin parameter is an indicator of the magnitude of the

rotational velocity to the impact velocity. In the non-spinning case the sphere has

the same relative velocity compared to the free-surface at all points on the sphere. In

the spinning cases these speeds differ depending on the location along the sphere in

cylindrical coordinates as

V = Vo0 z + Rcos(O) o. (5.1)

Any one given point on the sphere will have a changing relative velocity in z at all

times, except the two points that lie on the z-axis. Figure 5-2 shows the differences

in velocities along the equatorial line. For spin parameters equal to one (S = 1), the

left hand side of the sphere has a velocity equal to twice the impact velocity, whereas

the right hand side has no relative velocity. For spin parameters greater than one

(S > 1), the left hand side of the sphere has a velocity greater than twice the impact

speed, and the right hand side has an upward velocity. The left hand side of the

sphere in contact with the water becomes an advancing angle, while the right hand

side becomes a receding angle. The antisymmetric nature of the two sides creates

an altered cavity shape. Typically, as seen in figure 5-1 the sphere has an axially

symmetric circular cavity. The altered velocities along the surface in figure 5-4 form

a wedge along the equatorial line of the sphere. This wedge is drawn in and across

the cavity due to both the no slip condition at the surface and the receding nature of

the wetted surface along the right hand side of the sphere.

Looking down into the cavity from the top reveals the formation of the wedge

more clearly. In figure 5-4, the wedge is formed by the line of fluid in contact with

the sphere that is drawn up and around the sphere through the no-slip boundary
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Figure 5-4: Case III (hydrophobic: 0 = 1200, V - 1.72 m/s, w = 218 rad/s.): Top

and side views of a spinning billiard ball with hydrophobic coating. Viewed from
above, the sphere creates a cardiod shaped splash curtain and subsurface air cavity
as it descends in the fluid. The dynamic wetting angle is high on the left side of
the sphere due to an advancing contact line forming a large outward splash. On the
right, the relative velocity is upward, creating a receding contact line which inhibits
splash growth and helps to draw a wedge of fluid across the cavity, bisecting it into
two separate cavities. Note that the first four images are spaced by t = 6.25 ms while
the next four are spaced by 25 ms.

condition. The out of plane component of velocity is reduced by cos(). The images

illustrate that indeed the greatest amount of fluid is drawn along the equator with

less fluid being drawn into the cavity as one moves towards the polar regions. We

can estimate the number of revolutions it will take the wedge to cross the cavity with

a simple model. Using figure 5-5(b) we assume that at to the sphere is just now in

contact with the fluid along the mid-horizontal line of the sphere. At tl/4 the sphere

has rotated 7r/2 radians. At this point the wedge of fluid not in contact with the

sphere must cross the cavity, however, the cavity is growing with a rate of Uc. The

time of impact is denoted by tp. The wedge will travel with a speed wR from tl/4 to

tp and traverse a distance Ucto + R. This produces the following relationship

wR(to - t1/ 4) = Ucto + R (5.2)

which can be simplified to
R + woRtl/ 4  (5.3)

WOR - Uc

letting to equal to the time to rotate P revolutions gives tp = P and the time to
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Figure 5-5: a) Illustration of the distance the wedge must travel to cross the cavity
and its relationship to the expanding cavity. b) Number of revolutions from when
the sphere is half way submerged in the water to when the wedge of fluid impacts the
opposite cavity wall measured by the first frame in which a deformation in the cavity
wall appears as a function of spin parameter (S = wor/V).

travel 1/4th a revolution tl/4 = . Thus, simplifying this relationship to a useful

format to find the number of revolutions to impact we have

=( 1 + 1 svo (5.4)

This estimate is plotted in relation to the experimental data in figure 5-5(b). The

only term we are not sure of is the value of U,, which is the expansion rate of the

cavity. This value can be calculated by analyzing the cavities. The entire value u is

simply the rate of expansion of the cavity versus the velocity of the sphere. This is

the rate of energy transfered from the sphere to the fluid, which seems necessary in

calculating the wedge formation. It can be assumed that u = 0.3 by noting that 3

should go to infinity as the spin parameter approaches S = 0.3.

Wedge formation occurs for both hydrophobic and hydrophilic rotating spheres.

In fact, for hydrophilic rotating cases a cavity can be formed on the left hand side
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Figure 5-6: Case IV (hydrophilic: 0 = 680, Vo = 1.72 m/s, w = 192 rad/s): Top
and side views of a hydrophilic spinning billiard ball. This case has the same impact
speed and nearly the same rotation rate as Case III, however the top view reveals
a less pronounced cardiod cavity shape, but still divides the cavity into two halves
before pinch-off. Due to the lower wetting angle of the hydrophilic sphere, the splash
radiates outward only from the left half of the sphere. In contrast, the splash forms
around almost two-thirds of the sphere in Case III. Note that the first four images
are spaced by t = 6.25 ms while the next four are spaced by 25 ms.

of the sphere, whereas a similar non-spinning sphere would normally not create a

subsurface cavity. Case IV (figure 5-6) shows a spinning hydrophilic sphere, which

exhibits similar behavior to case III. However, the subsurface cavity is not as large

and the wetting nature of the sphere's surface has a tendency to draw more fluid

along the surface than for the hydrophobic counterpart. Thus, the subsurface cavity

is much less pronounced and the above surface splash formation is more dramatically

altered. Indeed, the splash crown is only formed on the left hand side of the initial

impact point as fluid ejected from the right hand side is quickly moved upward and

leftward, leaving the right hand side of the splash curtain missing. This is similar

to the non-spinning hydrophilic case I, where no cavity is formed. Here the cavity is

formed on the left hand side due the high relative velocity, while the right hand side

remains wetted due to the upward velocity and low static wetting angle, which both

act to inhibit air entrainment. Fluid is also pulled across the cavity to form a wedge

like structure similar to case II, however, this wedge appears wider in this case.

The most interesting part of this study is that these dynamic effects can be nearly

duplicated by simply coating a non-spinning sphere half in a hydrophobic coating

and leaving half hydrophilic. Figure 5-7 shows a half hydrophobic (left half), half
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Figure 5-7: Case V (half hydrophobic and half hydrophilic: ,e ft 120', Oright 680,
Vo = 120 m/s, w = 0 rad/s): Top and side views of a non-spinning billiard ball half
coated with a hydrophobic coating and half hydrophilic. The hydrophobic surface
coating encourages air entrainment in the wake, forming a cavity on the left hand
side. The hydrophilic nature of the right hand side inhibits cavity formation, allowing
fluid to be driven up around the sphere, funneling it to the left and inward, toward
the equator of the sphere forming a fluid wedge. Amazingly, a cardioid shaped cavity,
similar to the spinning cases, is formed for this non-spinning case and the sphere
moves to the right as it descends despite having no initial horizontal velocity or spin
rate. Note that the first four images are spaced by t = 6.25 ms while the next four
are spaced by 25 ms.

hydrophilic (right half) sphere entering the water with the same impact velocity as

cases I, II and III (V = 1.72 ± 0.1 m/s). The sphere enters the water and the right

hand side draws water up along the hydrophilic surface, creating a sheet of fluid that

converges toward the upper most part of the sphere, however, the left hand side has

created an air cavity allowing air entrainment. Since the left hand side of the cavity

is moving outward there is nothing to stop the sheet from the right hand side from

converging and crossing the cavity, thus forming a fluid wedge similar to the one in

cases III and IV. The altered cavity shape forces the sphere to the right similar to

the spinning cases, but after pinch-off the effect of lift is diminished and the sphere

falls downward more vertically than the spinning cases as the lifting effect becomes

negligible (not shown).

Using the theoretical estimates for impact velocity V as presented in [1], figure 5-

8 shows how each of the cases presented here fits into the general picture for how

cavities are formed. The figure shows cavity formation as a function of velocity and

statically measured wetting angle. The dashed lines depict the predicted values above
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which cavities should form. All of the cases herein have an initial impact velocity of

Vo = 1.72±0.1 mrn/s. In our study we noticed that our hydrophobic coating allowed the

spheres to create cavities at lower impact velocities than in previous studies, however,

our coatings were not considered smooth and therefore we report the roughness (see

above).

-2-

0 20 40 60 80 100
Wetting Angle o0 [deg]

120 140 160

Figure 5-8: Likelihood of cavity formation as a function of impact velocity (V0 ) and
static wetting angle (0). Case I(1E) and II(0) have constant velocities for all points
on the sphere. Case III (0 hydrophobic) and Case IV (x hydrophilic) have a rota-
tional velocity that span a vertical portion of the chart. Case V (') is coated half in
hydrophilic and half hydrophobic, spanning the chart horizontally. The dashed line
is the theory proposed by [1], above the line a cavity is formed, below no-cavity.

The trajectory of the sphere is affected as well as the cavity shape and splash

crown. Here we do not elucidate the altered trajectory for spinning spheres but one

can read more about this effect in [21]. We would like to point out, however, that

cases III, IV and V are very similar and that the lift force seems to have approximately

the same effect on the non-spinning case before pinch-off, which could be of interest

in the work of cavity guided missile technology [8, 9].
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The altered velocities (V0) of the sphere span the theory presented by [1]. Figure 5-

8 shows the theoretical line of cavity formation (dashed) and the cases presented here.

The figure shows cavity formation as a function of velocity and statically measured

wetting angle. The dashed lines depict the predicted values above which cavities

should form. Cases I and II are represented by merely points on the plot and show

good agreement that case II should form a cavity whereas case I does not. Cases III

and IV span the chart vertically based on their respective coatings. Case III is clearly

cavity forming at its greatest surface velocity at (IIIL) and clearly non-cavity forming

where its surface velocity is negative (IIIR). Case IV just enters the cavity forming

behavior where its greatest surface velocity is marked by (IVL) while its negative

surface velocity obviously falls in the non-cavity forming regime. Finally, Case V

spans the figure horizontally and shows good agreement that the hydrophobic side

should form a cavity while the hydrophilic side should not.

In conclusion, this study has shown that air cavities formed in the wake of spheres

can be altered in a similar manner through surface treatment and the dynamic effects

of relative surface velocity. In the case of cavity forming spheres that are rotating in

the transverse direction a wedge of fluid is formed which traverses the cavity from the

side of least relative velocity to greatest relative velocity and bisects the cavity into

two halves. A method of determining the time it takes for this fluid body to cross the

cavity is presented. This effect can be replicated for both hydrophobic and hydrophilic

spheres when the critical relative velocity (V0) is exceeded (figure 5-8). Furthermore,

these effects can be duplicated without rotating the spheres by coating the spheres

half in a hydrophobic and half hydrophilic coating. This simple yet elegant extension

of the work of [1] has applications to many naval hydrodynamics problems and should

be taken into consideration when trajectory and/or cavity shape are important factors

in engineering applications.
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Part II

High speed projectile water-entry
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Chapter 6

Motivation and recent projectile

studies

Until recently, naval underwater combat consisted of slow moving torpedoes traveling

with speeds that allowed ships to respond with countermeasures and evasive maneu-

vering. Today new threats to ocean-going vessels include underwater supercavitating

torpedos that travel hundreds of meters per second, thus greatly decreasing the time

surface ships have to respond defensively. These torpedos are characterized by small

flat tips that form vaporous cavities in their wake. Near the tip, ventilation ducts add

gas to the liquid vapor cavity allowing the torpedos to travel inside an underwater air

column, thus ensuring a greatly reduced drag. Figure 6-2(a) shows a supercavitating

torpedo known as a VA-111 Shkval torpedo; notice the round disk-like tip and nearby

vents. The vents serve as an opening for gas to be released into the wake of the disc

and envelop the torpedo in gas [1].

Systems similar to those used in ground-to-air missile defense could counter these

increased underwater threats. When missiles attack ships from the air, a computer

controlled gunner fires thousands of bullets at the missile in an effort to destroy it

before it reaches the ship. In a similar manner, projectiles shot underwater from

the deck of a ship could destroy the supercavitating threats as well as conventional

torpedos.

An extension of the research presented in Part I is the high-speed, shallow-water
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(a) (b) (c)

Figure 6-1: a) to c) Series of images taken from a high speed camera showing the

water entry of a high speed cavitating underwater projectile [3]. This projectile did

not successfully enter the water but ricocheted off the surface. d) image of 0.50

caliber projectile used in images a) to c) bullet length is - 8 in. Impact speed is

approximately 975 m/s, water entry angle 3.00. Time between images is unknown.

entry of projectiles such as military ballistics. Projectiles that impact the water at low

angles typically do not enter the water, instead they either ricochet off the surface. If

they do pierce the surface, they often break up or tumble several meters underwater

due to instabilities in their trajectory (see figure 6-1). Reducing these instabilities

and increasing the likelihood that they will travel straight and far is important for

improving defensive weapon technology.

Objects traveling at high velocities (Re > 106) underwater can cause the water to

cavitate, i.e., change from liquid to vapor. The high velocity reduces the pressure in

the fluid; if the pressure is reduced to that of the vapor pressure, cavities of steam will

form. As an example, the tip of a propeller is a common place for cavitation to occur

because the speed of the tip is so much greater than the speed of the hub. If the leading

edge of an object creates enough cavitation, the object can become encompassed by a

vapor cavity. This phenomenon is referred to as supercavitation. Projectiles designed

to travel inside these cavities are called supercavitating projectiles, as opposed to the

super-ventilated cavities torpedos mentioned above. The tips of these projectiles are

blunt and present a small surface area into the flow field, which creates cavitation.

Their body shape is made to fit inside these small cavities, thus reducing the frictional
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Figure 6-2: a) Supercavitating torpedo VA-111 Shkval c/o
http://en.wikipedia.org/wiki/VA-111_Shkval. b) Underwater photograph of a
high speed supercavitating projectile [6].

forces associated with underwater travel (see Figure 6-2(b)).

Results from tests performed by a group at the Naval Undersea Warfare Center

(NUWC) in Newport, RI reveals that projectiles with flat noses, tapered tips, and

high length to diameter ratios (L/D) can pierce the surface at low angles and con-

tinue to descend through the water column without ricochet [4, 6] (see figure 6-2(b)).

Experiments performed by NUWC [6] and also those presented in chapter 8 reveal

that these types of projectiles are stabilized underwater through the hydrodynamic

planing of the rear portion of the projectile against the cavity side walls. However,

if the body does not fit inside the cavity properly then the projectiles can experience

extremely large forces, which may cause break-up, bending (see figure 6-3), or altered
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Figure 6-3: Projectile bent during underwater testing of supercavitating bullets [6].

trajectories.

Several experimental studies have looked at vertical air-water impact of high-speed

projectiles such as [10, 2] and more recently revisited by [15]. Likely the most com-

plete published study to date was performed by [6], in which they studied a fully

developed underwater cavity by firing projectiles underwater, avoiding the free sur-

face interaction, and creating optimal conditions for determining the mechanisms of

underwater stability and nearly steady state vapor-cavity size estimates. Several full-

scale, shallow-angle, air-to-water studies have been performed by different researcher

groups but none have been published to date. Several theoretical cavity models have

been developed as well. [8] and [13] have developed analytical models for cavity for-

mation and cavity oscillations based partially on empirical data and mostly on control

volume analysis while others such as [14] have focused more on the projectile stability.

[5] wrote an entire volume of work on the subject of hydroballistics, which includes

a excellent summary of both quantitative and qualitative experimental data taken

by Albert May ([10, 11, 9]. More recently [12] used a numerical simulation employ-

ing preconditioning to estimate the cavity shape, temperature, shock formation, and

pressure inside and outside of the cavity of bullet water entry. [5] comments on the

need for experiments that include oblique entry from air to water.

Although the side wall acts to stabilize the bullets underwater, the large L/D
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makes them aerodynamically unstable in air. These difficulties have made air-to-

water testing quasi-repeatable. In air, projectiles must contend with aerodynamic

forces of drag and lift to maintain level flight. To do this, they use gyroscopic and/or

fin stabilization techniques. Fins counteract the overturning moment by providing

increased lift and drag at the back of the projectile. This moves the aerodynamic

center of pressure behind the center of gravity, thus making the projectile inherently

stable. Fins are typically used on larger and longer projectiles (e.g. rockets, missiles,

etc.), while rotation is typically used for smaller fire arms such as rifles and pistols.

Experiments using fin stabilized projectiles aimed at shallow angles to the water

surface have flown in air and entered the water. However, once underwater, finned

projectiles do not travel in a straight path and tend to break into pieces since their

fins often come in contact with the cavity side walls [7].

Gyroscopic stabilization is characterized by an axial spin rate, which provides a

gyroscopic righting moment to counteract the aerodynamic pressure or overturning

moment. Tests done at Aberdeen, Maryland have shown that gyroscopically stabilized

projectiles can travel underwater successfully. However, these tests used rotation rates

that are orders of magnitude too small for proper stabilization in-air (as presented

in chapter 7) and showed that these types of projectiles still use the cavity walls

for stability. Furthermore, NUWC reported that air-to-water tests performed at the

same facility showed that rotation can incite the first mode of vibration.

Full scale experiments performed at Aberdeen produced a general understanding

of some of the problems associated with these types of water entry. In particular,

the cavity shape and validity of the theoretical model was still under scrutiny as it

seemed that sometimes the cavities were large enough for the projectiles and other

times they were too small. It was also unclear if the cavities were the source of stability

or if they were destabilizing the projectiles. Figure 6-4 shows a few frames from high

speed videos of the tests performed at NUWC and shows a projectile that successfully

entered the water and proceeded downrange to its intended target. Figure 6-5 shows

a corresponding underwater camera view of the projectile in figure 6-4. None of the

images clearly show the bullet inside the cavity, but do show the trailing cavity and
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(a) (b) (c)

Figure 6-4: a) to c) Series of images taken from a high speed camera showing the water

entry of a high speed cavitating underwater projectile [3]. This projectile successfully

entered the water. d) image of 0.50 caliber projectile used in images a) to c) bullet

length is - 8 in. Impact speed is approximately 975 m/s, water entry angle 2.80.

Time between images is unknown.

emphasize the need for more controlled experimentation. Figure 6-1 shows the same

projectile type which ricocheted off of the surface yet was under the same initial

conditions.

The full scale experiments were performed in a pond at the Aberdeen testing

grounds. The pond provided a nearly quiescent flow field in which to perform the

experiments. A photograph of the testing grounds is shown in figure 6-6. The nature

of the pond and difficulty in placing cameras at points of interest easily demonstrate

the need to perform smaller, laboratory scale, controlled experiments presented in

chapter 8.
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Chapter 7

Determination of the minimum

spin rate required to keep a bullet

stabilized in air.

High speed underwater projectiles use large length to diameter ratios to increase their

stability. This increased ratio means that the projectiles are long and narrow and

allows them to fit within the underwater cavities that they create. It also decreases

the tumbling tendency inside the cavities. The unsteady behavior at the tip of the

projectiles has a tendency to cause a pitching or yawing moment. This rotates the

back end of the projectile into contact with the side wall, creating a small hydroplaning

surface which in turn produces a righting moment forcing the projectile back into the

cavity.

In air projectiles must be stabilized by more traditional means such as axial ro-

tation, fins, flaring, etc. Perhaps the simplest and easiest tactic to employ is axial

rotation or gyroscopic stabilization. This method consists of spinning a projectile

up to rotational speed through the grooving along the rifling of the barrel, or by a

motor which spins the projectile inside of a sabot before firing. In either method it

is essential to determine the spin rate needed to maintain stable flight in air.

This chapter outlines a first order method of determining the minimum axial

spin rate necessary to keep a projectile in stable flight in air. First, a reference to
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the gyroscopic stability criterion, and a method of making an estimate of the forces

involved with that calculation is presented. Second, a derivation of the criterion using

first principles is presented. This chapter was written in an effort to estimate what

spin rates are necessary for stability of a given projectile, especially in the development

stage, and to help design a series of projectiles that would travel stably in both air

and water.

7.1 Introduction

Projectiles traveling at high velocities encounter large aerodynamic forces as they

travel through the air. The ability of the projectile to resist axial direction changes

(pitch and yaw motion) is important for stable flight. If the projectile begins to

yaw it may hit the intended target at an angle, or in worse cases it may veer off in

random directions as it precesses, and not impact the target at all. Projectiles can

be stabilized by fins or by spinning about the axis of symmetry producing gyroscopic

stabilization. A projectile with insufficient spin rates is considered under-stabilized.

Conversely, if the projectile has a larger spin rate than is necessary it is considered

over-stabilized.

Over stabilization can also be a problem for projectiles. Excessive rates of spin

can cause above normal wear inside the barrel, or may tear bullets apart depending on

the material. Furthermore, extreme spin rates may cause the accuracy of the bullet

to be lessened. As the bullet travels down the barrel the axis of the bullet coincides

with the axis of the barrel; however, as it leaves the barrel the projectile axis moves

to its center of mass. If the center of mass doesn't line up with the axis of the barrel

(aka, radius of gyration) then when the bullet exits the barrel it rotates erratically.

This is caused by non-uniform bullet making or voids in the bullet, deformation of

the bullet, or undersized bullets in certain rifles. Furthermore, bullets with only a

small percentage of their surface area in contact with the barrel can have stability

issues. Radius of gyration effects are typically many orders of magnitude smaller

than the effects of insufficient spin rates. Therefore, bullets that are over-stabilized
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are typically much more accurate than those that are under-stabilized.

7.2 Gyroscopic Stabilization

In air, projectiles must overcome aerodynamic forces of drag and lift to maintain level

flight. They use gyroscopic or fin stabilization techniques to overcome these forces.

The former is characterized by an axial spin rate in the z-direction (figure 7-3), which

provides a righting moment when a force such as a cross wind is applied to the tip.

The equations of motion (see section 7.3) are used to derive the non-dimensional

gyroscopic stability criterion, which can be represented as,

I 2  Rotational effects

S 2IpAsDU2Cm, Aerodynamic effects

where D is the diameter of the projectile, Izz is the axial moment of inertia about

the center of mass, I is the transverse moment of inertia about the center of mass,

p is the density of air, U is the velocity, w is the angular spin rate, C,, is the

overturning moment coefficient, and As is projectile reference area (typically 2).

The criterion compares the force of gyroscopic rotation of the body to the aerodynamic

forces externally applied to the body. The comparison shows that if the rotationally

induced forces dominate, the aerodynamic forces can be overcome. Conversely, if the

aerodynamic forces are greater than the rotational effects, then the projectile will not

be able to resist those forces. The criterion requires that S9 must be larger than unity

before the projectile is considered stable.

Sg > 1 (7.2)

A projectile traveling in level flight will encounter small perturbations away from

the intended trajectory. If Sg is greater than unity, then the projectile will have a

tendency to return to level flight. If Sg is smaller than unity, then it will deviate from

its intended course erratically.

From the gyroscopic stability criterion (equation 7.1),a minimum spin rate can be
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determined by solving for w and allowing Sg to equal unity.

2IpAIDU2C "
I = A 2  [rad/s] (7.3)

zz

Since the moments of inertia, velocity, projectile shape, and fluid densities are known,

the determination of the overturning moment coefficient becomes the leading factor

in determining the minimum spin rate. The overturning moment can be difficult

to calculate and is typically found by experiment. However, a relatively close esti-

mate can be determined by estimating the aerodynamic drag force on the object (see

equation 7.26).

F, = 2pU2A = 2pU2RhcosO (7.4)
2 2

Where h is the height of the cone and R is the radius. The overturning moment

coeffecient can then be determined by multiplying the force Fp by the moment arm

and dividing by the force of drag'.

Cm = 1pU2AD (7.5)

To determine the range of spin rates desired for a given projectile a plot of the

spin rate versus the overturning moment can be plotted for the given conditions. An

example plot appears in figure 7-1.

Notice that the magnitude of the required spin rate changes as the square root

of the overturning moment. This is good news because a small range of spin rates

will have a broader effect on the overturning moment. A 50% increase in overturning

moment translates into a 30% increase in spin rate. Of course, a different plot will be

generated for each projectile due to geometry and velocity, but the concept remains

the same. Therefore as a first order estimate of the required spin rate an estimate of

the force using equation 7.4 can be compared to a plot similar to figure 7-1 using the

proper geometry and velocities.

Finally, the spin rate can be converted into the required rifling measurement (turns

1For more information on how this is determined see chapter 2 of reference [1].

192



3

1

1 2 3 4 5 6 7 8 9 10
Cm

Figure 7-1: Spin rate versus Cma for Sg = 1. In this case w is scaled by wo. The plot
shows that w scales as the square root of Cm..

per inch).
a [turn] (7.6)

U27r in

when U is in m/s and K = 0.0254 m/in or when U is in ft/s K = 1/12 ft/in.

It should be noted that this is a first order approximation, however if one were to

expand the coefficient of overturning moment term to

Cm. = Cmo + Cm 2,6
2  (7.7)

where Cmo is the linear overturning moment coefficient, and C,a 2 is the cubic over-

turning moment coefficient, the criterion can become a more accurate estimate2 . For

a more complete solution non-linear effects and smaller forces involved with projec-

tile motion should also be added. Robert McCoy outlines a numerical solution to the

complete set of non-linear equations in his book "Modern Exterior Ballistics" [1].

2For more information on how this is done see chapter 13 of reference [1].
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7.3 Generalized equations of motion for a torque

free body

When a projectile leaves the barrel of a gun axial torque and forward momentum are

no longer supplied. The body is now only under the influence of forces within itself,

gravity, and aerodynamic forces. That is to say that no torque is being applied to

the body directly. Let the body be defined by a coordinate system xyz fixed to the

projectile (see Figure 7-2). Let the axial spin rate be prescribed by 4 while xyz is held

fixed on the body. The coordinates xyz are then allowed to move about the XYZ

coordinate system with angles 0 and 0. The coordinate XYZ is allowed to travel

with the point G but not to spin. Z is the direction of the forward velocity of G, and

is also the direction of the precession rate , which corresponds to a precession of the

xyz coordinate system about Z. The angle 0 represents the angle between Z and z,

and is known as nutation; 0 represents the angle between X and x, and is known as

precession; and 4 is the angle between x and x' (not shown) is known as spin.

Z

Z Y

G Y

x

Figure 7-2: Relationship of XYZ and xyz reference frames. Directions of ¢, 4, and
9 are shown as positive. G is at the origin.

To determine the equations of motion the relationship between the angles (0, 0, 4)
and the angular velocities (Q, w) must be defined. Notice that xyz is not allowed to
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spin in the f direction. Therefore, the xyz-reference frame is rotating with Q, and

the body-fixed reference is rotating with W, where both are defined as follows.

Q = Oe'x + sin(O)e + cos(O)z (7.8)

W = xe + sin(0)e + (si + cos(O))e' (7.9)

The angular momentum of center of mass can be defined as follows.

HG = I'3 (7.10)

Where the moment of inertia IG can be defined as,

IXz IY Ixz Ix 0 0

IG Iyy Iyz Iy 0 (7.11)

Izz Izz

notice that the products of inertia (IXy, Az, Ixz) become zero when the axis of sym-

metry falls on the axis z, which reduces the complexity of the problem immensely.

The equations of motion can then be found by summing the moment about point G.

d -
M = dtG HG = HGlyz + x = x F (7.12)

Where F is the force of interest and r is the distance from the force to the point

at which the moments are taken. The vector HG cyz represents the derivative of HG

in the xyz direction, therefore the derivative of the unit vectors in xyz do not need

to be taken, and are encompassed in the term Q x HG. Since Ix = I,,, we will let

I = Ixx = Iyy. The angular momentum equation 7.10 then becomes:

HG = Ix + I sinOey + Izz(0 + zcosO)ez (7.13)

Combining equations 7.12 and 7.13 returns the moment equations in the xyz-reference
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frame.

E M, = r + (Iz - I)q2sinOcosO + I5z,,sine

E My = ICsinO + 2I(OcosO - IzzO( + qcosO) (7.14)

E Mz = Izz( + cos - 0*sinO)

7.4 Minimum axial velocity required to balance

the aerodynamic pressure force (first order es-

timate).

This section outlines a first order approximation of the minimum axial spin rate

required for a projectile traveling along a straight path through an air filled medium.

In order to apply the generalized set of equations from section 7.3 to the case of

a spinning projectile the following assumptions must be made. The weight of the

projectile acts through the center of mass at point G (see figure 7-3). The force

F, acts through a point some distance I along the z-axis. This force represents

the aerodynamic pressure associated with travel through the air medium. Like the

center of mass, this pressure force can be integrated over the surface of the body to

estimate a point at which it acts. For a first order estimate this will be sufficient, but

the complexity of the pressure forces on a projectile are more complicated than this

assumption. Furthermore, if we assume that the radius of gyration is zero when the

projectile leaves the barrel, then we can set up the problem as follows. Figure 7-3

illustrates the coordinates used in analyzing this projectile.

The forces due to Fp can be decomposed into the xyz coordinate system.

Fp = Fpcos6Oz - FpsinOe4 (7.15)

Where the initial conditions are

1 = 1e (7.16)
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\X

Figure 7-3: Projectile traveling in Z direction. G is center of mass, and FP is the
acting point of the aerodynamic pressure.

0 = constant --+

0 = constant -+ = 0

= 0

(7.17)

= constant -+ = 0

Summing the moments about the point G and substituting equations 7.16 and 7.17

into 7.14.

(7.18)EM = lx F

SM = FplsinOex = Izz 2sinex +± I 2sin0cosO + IzzOVsin

Remembering that wez = + qcos0 then equation 7.19 can be rewritten as,

M = F,1 = Iz - i 2cos0e

and solving for using the quadratic formula yields the following.

-IzzWz + I 2z W- 4IPlcosO

2IcosO

(7.19)

(7.20)

(7.21)
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If we look at the term under the square root, we can analyze the critical wzIcr to keep

the projectile on a stable path. To keep from taking the negative square root and

getting imaginary numbers we see that the left hand term in the square root must be

greater than or equal to the one on the right.

Iz zw > 4IFplcosO (7.22)

Thus, wzicr is,

Wzcr 2 sO (7.23)
Izz

The moment of inertia of a cone can be expressed as,

3
Izz = -- mR 2  (7.24)

10

3
I = -m(4R 2 + h 2) (7.25)

80

where h is the height of the cone and R is the radius. The force F, is determined

by the drag force acting on the cone, and can be estimated as, where CD is the drag

coefficient.

F, = -CDU2A = -pCDU2RhcosO (7.26)
2 2

Combining equations 7.23 through 7.26 wzler becomes,

5hU p
5Wzcr > I o cosO(4R2 + h2) (7.27)2m24R 10

Figure 7-4 shows how the critical rate of rotation increases as a function of length

to diameter ratio. There is an exponential increase in the spin rate required to

maintain stability of a large length to diameter ratio projectile. This explains why

most projectiles with length to diameters greater than about 3 have other types of

stabilization mainly fins or flaring. For instance, missiles use fins for both stabilization

and direction control, while many rockets use flaring and rocket directed thrust to
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Figure 7-4: Minimum spin rate required as a function of length to diameter ratio
(L/D). This particular case had a D = 0.4 in, and a varying mass from 1 to 42 grams.

maintain stable flight. For projectiles that will travel underwater the reduction of

fins and flares makes gyroscopic stabilization a desirable criterion, but may not be

feasible with these excessive spin rates.

7.5 Conclusions

In cooperation with the tests performed in Aberdeen, MD mentioned in chapter 6

projectiles were tested in air at Indian Head, MD in an independent study. The

studies at both Aberdeen and Indian Head included non-rotating, rotating, and fin

stabilized projectiles. During the Indian Head study it was found that the non-

rotating projectiles were just as unstable as the rotating ones. This is likely do to the

insufficient spin rates required for gyroscopic stabilization of these long projectiles.

The rifles used in Aberdeen and Indian Head had rifling of 1 turn in 15 inches. The

projectiles were fired at 3200 ft/s. This translates into a rotation rate of 16085 rad/s.

Using equation 7.27 the minimum spin rate is roughly 420000 rad/s, or 26 times more

rotation than used in these studies. This translates into 1 turn in 0.56 inches. It is

possible that this rifling would be difficult to make, and could require the projectiles

to be spun up to speed before being shot through a non-rifled barrel. Furthermore,
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if the radius of gyration was not centered about the barrel of the rifle, the bullets

could potentially rip themselves apart as they leave the barrel. Obviously, the design

of these types of bullets would have to be reconsidered. On the positive side, if these

spin rates could be reached the bullets would not require other means of stabilization.

This study emphasizes the excessively large spin rates required to gyroscopically

stabilize large length to diameter ratio projectiles in air. This is in contrast to the

need for these types of stabilization techniques underwater, where projectiles can

be stabilized through contact with the underwater vaporous cavities they inherently

create.
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Chapter 8

Shallow angle bullet entry

An extended abstract of this chapter has been approved for a full paper submittal

to the 7th International Symposium on Cavitation CAV2009 conference in Ann Ar-

bor, MI and will appear as: Tadd T. Truscott, David N. Beal and Alexandra H.

Techet, Shallow Angle Water Entry of Ballistic Projectiles, Proceedings of the 7th

International Symposium on Cavitation. August 17-22, 2009. Ann Arbor, Michigan.

8.1 Introduction

Through the use of high-speed videos, better testing facilities, and increasing per-

formance from computational methods, the ability to predict and design underwater

ballistics is progressing. One of the challenges left in determining design criterion is

to validate an axisymmetric theoretical model for predicting cavity size and shape.

The current model is determined from the tip diameter and forward velocity. Here

we present a validation technique using an experimental testing facility built to test

22 caliber projectiles. During the study the cavity model was closely scrutinized and

improvements were made that provide a better fitting parameter and a small an-

gular rotation component. The experiments show good agreement with the revised

cavity model. They also show the tendency for smaller length to diameter ratios to

tumble once underwater, and emphasize the role the cavity plays in stabilizing these

projectiles.
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The experimental setup provided a more controlled environment in which higher

quality and faster frame rate images could be acquired. This was a direct improvement

over the full scale tests at Aberdeen which had poor lighting, cloudy water, and

relatively slow camera speeds. Here, three high-speed cameras were used to obtain

better resolution and higher frame rates of the water-entry phenomena. Thus, the

experiments were more controlled, image quality was greatly improved, and motion

of the bullet and cavity was captured more quickly. One of the drawbacks of using

the facilities at MIT was the limited speed and size of the bullets that could be fired

due to safety concerns. Compared to the Aberdeen tests, the projectiles used here

have smaller calibers and lower speeds. Therefore, the results may not be completely

comparable to the larger speeds and size of the bullets tested in Aberdeen. However,

these experiments increase the understanding of high-speed projectile water-entry at

shallow angles. In particular, the mechanisms of water-entry are discussed, the cavity

size relative to impact speed and tip geometry is shown, the deceleration rates of

water-entry are given, the forces associated with water-entry are estimated, and the

associated cavity formation is analyzed.

8.2 Experimental details and methods

The high speed nature of these projectiles required a well thought out experiment

capable of precise timing and remote triggering. Extensive thought and care was

taken to make these experiments simple, elegant, reproducible, and safe. Some of the

considerations included: where to perform these experiments, how to make a tank

that would allow visualizations but would not shatter if a bullet strayed off course, and

timing the impact of the bullets to coincide with the camera frame rates, to name a

few. These restraints guided the design, setup, and procedures of this experiment. All

tests were approved through the proper authorities before testing could commence,

and all systems and procedures were overseen by both the Safety Office and Athletics

Department at the Massachusetts Institute of Technology.
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8.2.1 Impact tank

The impact tank is made of 0.75 in bullet-proof Lexan to ensure that if a bullet did

hit the side of the tank that it would not break and leak water onto the floor. The

tank is 6 ft long, 2 ft wide, and 2 ft deep on three sides which only 18 in deep on the

bullet entry side. The lower entry side allows the bullet to enter the water at very

shallow angles, while the higher sides help keep water inside the tank after bullet

entry and allow the cameras to see the action without the visually disturbing line

formed by the top of the tank (see figure 8-1). An aluminum frame made of 2-inch

square extrusions from 80/20@Inc. was constructed around the tank for support.

The entire frame and tank rests on two large dollies for support and transportation.

Figure 8-2 shows an image of the tank in place. The back of the tank is protected

from bullet impacts by two large 0.5 in steel plates, one of which rests on the bottom

of the tank, while the other is inclined at an angle towards the bullet entry direction

to deflect bullets down and into the water after impact (see figure 8-1).

By the end of the study a few bullets impacted the tank directly. Although

evidence is clearly visible, the tank withstood these impacts without shattering and

the glued seams appeared to sustain no damage.

Steel Plates Rifle
Impact Tank ao

SpTripod

Rifle-mount

Figure 8-1: Gun and impact tank set up viewed from side. The gun is mounted on
a tripod and aimed at a shallow angle (a) to the free surface inside the tank. The
trajectory appears to pass through the front side of the tank (right side in image),
but in reality the front wall is shorter to accommodate for this. Two steel plates help
decrease ricochet and impact with the back of the tank (left side).
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Figure 8-2: Photograph of the experimental setup as seen from a position next to the

rifle. The tank is visibly lit from the right hand side by a bank of 32 florescent bulbs.

A spot light is seen on the left aimed at the free surface. Three video cameras are

also aimed at the surface and are controlled by the computers located on the far left.

Plastic placed under the tank and hanging from above prevents water from wetting

the floor and ceiling.

8.2.2 Shooting Range

These experiments were performed in the rifle range at MIT. The range is under-

ground with cement walls. The range is 50 ft long with a vented steel backstop. The

width of the facility is 50 ft and the ceiling height is 12 ft. All of the supporting equip-

ment took up three full shooting lanes and only about half of the length of the range

was needed. Permission to perform the experiments was granted by both the MIT

physical fitness faculty and the MIT Chief of Police. Experiments were performed in

cooperation with the MIT shooting range faculty, namely Will Hart. All shots were

performed by Mr. Hart and his long hours and hard work are much appreciated.

The bullets were fired into the impact tank at a shallow angle, which caused a

splash large enough to reach the ceiling of the rifle range. Plastic sheeting was placed
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above the impact tank to ensure that the ceiling did not become wet. The tank was

placed inside a large containment area comprised of a large plastic sheet (12 x 12 feet

square) inside of a frame with 6 inch sides to ensure that if the tank did leak it would

not leak onto the floor.

The gun was mounted in a wooden gun mount attached to a Manfrotto 410 geared

head (three axis) and placed on a Bogen tripod. The setup could easily be adjusted

to half a degree increments along all three axes. When aiming the gun a laser site

was used to help determine the point of impact. A digital level was used to determine

the angle the gun was in relation to the free surface. After each shot the gun was

checked for alignment and angle. The setup was very reliable; alignment and angle

measurements were nearly constant between shots and were only needed when new

parameters were introduced.

8.2.3 Bullets

The unusual design required for water entry bullets typically includes high length to

diameter ratios and blunt tips. These types of bullets are not common; most bullets

have small L/D and ogive tips. In general, standard bullets are designed to split apart

or mushroom after impact with a target. Typically, this ensures the most damage

upon impact. Since most targets have a high percentage of water contained within,

impact with the water surface can cause bullets to break apart. Therefore, custom

made bullets were designed with high length to diameter ratios, special tips, and

materials strong enough to resist breakup.

The bullet designs were constrained primarily by the weight and size of the 22

caliber rifle barrel. The weight was set to be the same as that of a typical 22 caliber

bullet. This was done to ensure that the 22 caliber powder and cap would have

a similar accelerating affect on the prototype bullets as the standard manufactured

brand. The maximum weight was thus set to 40 grains, which is 2.59 grams, and

the maximum diameter set to 0.22 in or 5.5 mm. The bullets were also designed

to have the same shoulder length as the standard rounds. The shoulder is the part

of the bullet in contact with the rifling (see figure 8-3). The shoulder is also a key
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Figure 8-3: Drawing of a standard and modified 22 caliber bullet with the nomencla-

ture used to describe them (not to scale).

factor in producing the same amount of thrust for each bullet. If the shoulder doesn't

penetrate as much of the rifling then some of the pressure from firing can leak past

the bullet and reduce the back pressure, decreasing the velocity of the bullet down

the barrel. It was initially assumed that velocities would be similar if the shoulders

were prescribed the same. However, this assumption is somewhat false since it is

probable that all of the materials used for the modified bullets could not penetrate

as much of the rifling since they were considerably harder than the standard lead

bullets. Thus it was expected that the modified bullets would travel at lower speeds

than the standard bullets.

A wide range of bullet designs were designed and tested. Three materials were

used to make these bullets: Bronze, Steel, and Aluminum. Each material is less

dense than the lead bullets used in standard 22 caliber rounds (11,340 [kg/m 3]). The

lower densities allow the bullets to have larger length to diameter ratios. Table 8.1

highlights the tip design, density, and dimensions of the bullets used. A schematic of

the general bullet shape and list of terms can be seen in Figure 8-3.

The foot portion of each bullet was predetermined using the standard 22 caliber

bullets as a guide. The foot portion of the bullets rest inside the casing (see figure 8-

3). This portion of the bullet must have a diameter large enough to stay inside the
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Table 8.1: Bullet types and their respective tip diameters (dtip), density (p), and L/dtip
ratios. Not all of the bullets in this table were used in the experiment but all were
manufactuered. Those bullets that were used have a corresponding number associated
with them which relates to their association in post processing (see table 8.2).

# Name Bullet type Tip diameter [in] Density [kg/m 3 ] L/drip

9 12Aluminum 0.12 2700 13.9

12Steel 0.12 7850 5.3

12Bronze 0.12 8300 4.9

13tipAluminum 0.13 2700 13.3

12 13tipSteel 0.13 7850 5.4

13tipBronze 0.13 8300 4.8

8 15Aluminum a 0.15 2700 10.5

15Steel 0.15 7850 4.0

11 15Bronze 0.15 8300 3.7

7 22Aluminum 0.22 2700 7.2

22Steel 0.22 7850 2.5

10 22Bronze 0.22 8300 2.4

13 06Aluminumshoulder 0.06 2700 29.5

14 06Aluminumshouldertaper 0.06 2700 29.5

15 06Aluminumtaper 0.06 2700 29.5
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shells after being press fit (0.204 in). It is important to ensure a good press fit to gain

the best back pressure possible when fired. Back pressure is one consideration when

estimating the projectile speed for manufacturers. If the back pressure is too low the

bullet will move very slowly, if it is too high it may alter the shape of the projectile

or damage it. A balance is required to ensure uniform velocities from projectile to

projectile. Therefore, tight tolerances were required to fit the bullet into the casing

at the neck. Directly above the foot of each bullet is the shoulder. The shoulder

has the largest diameter of the entire bullet. As the bullet passes through the barrel

the shoulder engages with the rifling. This ensures that the pressure created after

firing remains behind the bullet (not leaking past the sides of the bullet) pushing

it through the barrel, and ensures that the bullet rotates about its symmetry axis.

Rotation ensures stability of the bullet in air through gyroscopic stabilization (see

Chapter 7). This rifle in this study has a turn ratio of 1/16 or one rotation in sixteen

inches. Typical speeds of the bullets used here were estimated at the end of the rifle

to be - 1200 ft/s, which yields a spin rate of - 5650 rad/s. This rotation rate is not

sufficient according to equation 7.27, which should be - 53000 rad/s. This high spin

rate translates into a rifling of 1 turn in 1.7 inches. The design and fabrication of a

new rifled barrel with these specifications is outside the realm of this study. Therefore,

we accepted the 1/16 standard and shot the bullets a maximum of 4 meters from the

free surface to decrease the distance the projectiles had to become unstable.

The final design of the bullets is based upon the tip shape. Once the tip shape

was known, the bullets could be designed to fit within the desired weight. The cavity

shape was determined using a cavity model based on empirical evidence gathered by

Logvinovich [1]. The model is derived, explained, and improved in Section 8.4 and is

based on the tip diameter and velocity. The cavity shape can be determined using

any mathematical solver and plotting function. The bullet can then be designed to

fit within the cavity. The run-out of the bullet is lengthened until the bullet mass

is equal to 40 grains. The final bullet drawings that were used to manufacture the

bullets can be found in Appendix B.

In general, reloading 22 caliber rim fire rounds is not common, nor recommended
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by the manufacturer. This procedure requires great care and caution to ensure that

no one is hurt and that the rounds are not accidentally fired. Proper eye protection

must be worn and the loading should be done in a rifle range. The reloading should

be performed while keeping the face and body away from the axis of the bullet and

casing. The first step in reloading is to remove the bullets and expose the shell. This

was done by placing the bullet in a pre-made 0.5 in thick plate made to fit the bullet

snugly using the rim and casing to hold the bullet in place. By placing the assembly

on the table and grasping the bullet with vice-grips, the bullet was gently pulled out

of the casing. It is essential that caution be used to ensure that the neck is not bent

in the process and that the powder is left inside the casing. The bullet was disposed

of in a lead recycling bucket. Then the casing was gently placed on a rubber pad and

the metal reloading template was placed over the casing. The reloading template is a

steel block (3 in x 2 in x 2 in) machined to fit both the casing and the bullet, and is

used to press the bullet into the casing. A modified bullet was placed in the top of the

reloading template and a bronze rod and a mallet was used to set the modified bullet

into the casing. Once the two parts are securely seated the bullet-casing assembly is

removed and the bullet is ready for firing.

8.2.4 Image Acquisition and Processing

In this experiment it was very important to obtain high quality images that capture

the entry phenomenon. Thus, three different video cameras and two SLR cameras

were used. As with all image capture techniques, lighting and event timing were also

crucial elements for success. Images were then digitally processed, used to measure

various parameters and compared to models for validation.

Hardware

All of the hardware used in this setup was chosen for specific purposes. The first

high speed camera of choice was the Shimadzu HyperVision HPV-1 ultra-high-speed

video camera, which can take images up to 106 frames per second (fps) at 312 x 260
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pixel resolution, but can only store 103 images before the buffer must be emptied.

This camera was extremely useful and enabled the best close up images of the bullets.

Although timing of this camera proved to be a bit difficult, it was easy to use and

often captured 100 frames of the bullet entering the field of view, impacting the water

surface, and exiting the field of view.

The second camera used was a Phantom 7.3 manufactured by Vision Research.

Images were captured at 25 x 103 fps with a resolution of 512 x 256 pixel resolution.

This camera can store up to 8,000 images, which is almost 4 seconds worth of data,

making timing of the event trivial. This camera was used to take an overview of the

entire event. It was positioned either above looking almost isometrically at the target

or from the side looking above and below the surface of the water.

The third camera was an IDT X-Stream VISION XS-3. Images were captured at

2,300 fps with 1280 x 460 pixel resolution. This camera can store up to 6000 images,

allowing it to record for nearly 3 seconds, which is more than enough time to capture

these events making timing trivial. The images from this camera had the largest pixel

resolution, improving image processing. This camera was also used as an overview of

the event and was most often placed to the side of the event with both the water and

the air in focus.

A fourth type of camera was used in conjunction with a Discovery Channel shoot

done a year after the first study was completed. The cameras used for this shoot were

Photron Fastcam S Al, which captured images at 10,000 fps at a resolution of 768 x

768 pixels. Timing is also trivial with this camera's large 8,000 frame storage capacity

and circular triggering mechanism. Two of these cameras were used simultaneously

for some of the shots, allowing both a side profile and a head on profile. The head

on views were taken by placing a mirror in the tank near the steel plates and angling

it so that the camera from the side could see the bullet coming toward the mirror.

These shots were valuable in showing both the precession of the bullets in the cavity

and the axis-symmetry nature of the impacts.

To gather higher quality images with color and potentially better lighting two

single lens reflex (SLR) cameras were used. The entire setup had to be modified to

210



(a) (b)

Figure 8-4: a) Photograph of a 0.22 caliber bullet entering the water viewed from the
side. Camera settings: 2s exposure, 500 ns flash, F-stop 5.0. b) Photograph of the
same bullet and time viewed from above using another camera.

use these cameras and the major goal in using them was simply to gain the highest

resolution images possible to highlight this body of work. The setup was modified

by placing a wooden frame around the tank (4 x 4 x 16 ft 3 ). A thick black plastic

sheet was stapled in place on top of the framework to create a dark room for the

cameras. Each camera aperture was set open by a remote switch just before the

bullets were fired, and a second trigger was used to set off the strobe which provided

1000 watts of light for less than 2 millionths of a second. The camera apertures were

then closed. One camera was placed to get a view of the impact from the side slightly

above the free surface, while the other took images from above by being placed in an

aquarium. Figure 8-4 show two of the images obtained using the SLR cameras. The

splash from entry is clearly shown from the side while the image from above reveals

the axisymmetric nature of water entry.

Lighting consisted of both back lighting and forward lighting. Back lighting was

provided by a bank of 32 florescent bulbs next to one another. Foreground lighting

was done slightly off angle by a 1000 W spotlight to the right of the images. Lighting

is one of the most difficult parts of any image study and this was no exception. The
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backlighting was the major key to allowing the images to be processed for cavity size

and also letting the bullet be seen within the cavities when the cavities were large

enough.

Timing and image acquisition

The short duration of a bullet impact requires precise timing, especially for cameras

with short memory and lighting with short durations. However, all cameras had to

be externally triggered and therefore a timing system was devised. It consisted of a

central electronic timer (TimeMachine by Mumford Micro Systems) and two different

types of external triggers (more below). Output cables were manufactured in house

to deliver the five volt rise required to alert the high speed video cameras to begin

acquiring data. SLR cameras were by the default output of the electronic timing

device.

The first trigger used was an infrared (IR) optical sensor. The IR sensor is made

of two sensors and two emitters. The emitters emit IR light and the sensors sense the

light. When the light stream is broken by a solid object the IR sensor is triggered.

The two sensors are placed on a piece of PVC pipe 6 inches apart. The sensor was

mounted to the end of the rifle. When the bullet was fired the time between the two

IR sensors triggering was used to determine the speed of the bullet. The electronic

trigger calculates the speed of the bullet and sends a pulse to the cameras at a time

delay based on a known distance to the target entered by the user. This sensor gave

sporadic results after the first day of shooting and after the study was complete the

manufacturer determined that the unit was broken.

The second trigger was a flat disc sound sensor. This sensor detects both sound

and pressure waves when the gun is fired. It was determined early on that if the sensor

were mounted to the gun mount that simply touching the gun mount or having ones

hand on the gun and talking could set it off. Therefore, placing this sensor downrange

helped decrease false triggering. This sensor was used most often.

Once the sensor is working it is important to determine how much time must

elapse or delay before the cameras should begin acquiring data. In the case of the
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All cameras receive trigger,
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Figure 8-5: Time line diagram depicting how timing mechanisms interact and capture
the projectile impact.

IDT, Phantom and Photron cameras there is ample time in the buffer to capture all

of the bullet entry in essentially every timing configuration. The Shimadzu and SLR

cameras must have a delay set by the electronic trigger. This time delay is crucial to

capture the bullet in the field of view.

These types of triggers are often used when photographing bullets. The sound

waves from the bullet set off the trigger and the timing switch can delay the moment

when the strobe is illuminated. Our particular electronic timing device can only be

delayed in increments of 0.0001 seconds which is the time it takes the bullet to travel

about 3 cm, which was a fourth the size of the Shimadzu viewing window. In order

to get this type of trigger to work with these viewing windows one can adjust the

internal digital trigger of the camera itself, which is not always a successful measure

nor possible in the case of the SLR cameras. Another alternative is to adjust the

trigger by physically moving it a few millimeters closer to or farther from the target

of interest. Through trial and error one can find the point where the sound waves

from the bullet trigger the event properly. A combination of these two techniques and

patience was employed for the photographs and the Shimadzu camera acquisitions.

A diagram of the timing issues addressed here is presented in figure 8-5.

Image Processing

The data collected was then processed to determine pertinent pieces of information.

The position of the bullet was extracted and used to determine the forces at play
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during impact. The cavity shape and splash formations were also extracted in each

image. These pieces of information have been used as a method for quantifying the

general path and cavity formation for each of the bullet types. They also are also used

as an empirical check against the Logvinovich model presented in section 8.4. Most of

the data collected required some heavy user input to keep the finding algorithms from

gathers too much or too little data. However, computer extraction was the preferred

method to keep things consistent from image to image and case to case.

The position of the bullet was determined using two different methods. The first

method allows the user to view the image, zoom into the area where the bullet is

located and click on the corners or points of interest of the bullet. Using this data

the computer then calculates the approximate center of the bullet for the position

of the bullet. The second method uses an algorithm built into Matlab that scans

the data set for transitions from high valued pixels to low ones (i.e. edge detection).

Here we chose the Canny method of edge detection. This method differs from other

methods because it uses both a strong and weak edge detector. It uses the weak

edge detector results only if the the weaker edge is connected to a stronger one. This

method normally yields more edges, making it slower, but more accurately gathering

information for the user. The user is then shown an image of the result (see figure 8-

6). The user can then click as many of the edges of interest they like. The edges

become highlighted and the number corresponding to the selected edge is displayed

in the title of the screen. When the user is done they simply click off of the image and

the data is combined and saved into a cell. This method works well in determining

the bullet edges, but doesn't seem to work as well for the tip and aft portion of the

bullet, probably because the thresholding is too high. However, if the thresholding is

turned too low then everything is outlined and seeing the bullet becomes too difficult.

Nevertheless, the user retains the ability to adjust the thresholding at any point in

the program.

The bullet is typically no larger than 9 pixels in diameter in these images. Al-

though this makes data collection easier it becomes difficult to estimate the exact

location of the bullets. Furthermore, to get the true center of gravity of the bullets
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Figure 8-6: Typical output of a bullet impact image that has been zoomed, rotated,
and an edge detection (Canny method) has been applied. The numbered outlines
indicate edges that were detected. The user is prompted to select edges of interest at
this point.
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it must be assumed that the bullets are in plane and that if they are rotated around

their planar axis their center of gravity can be found. In reality the bullets precess

around their axis of symmetry, which causes them to rotate in and out of plane and

thus the center of gravity location is not exact. However, a rough estimate of their

position and velocity can be made.

The cavity is one of the easiest edges to find in each image. The cavity exhibits a

very strong dark outline with lighter shading on either side, making it very detectable.

The process of finding the cavity is similar to the second method of finding bullet

position. The user is again prompted to pick the relevant portions of the cavity to

keep as data. This is done because the edge detection also picks up spurious and

unnecessary portions in the image, which would be difficult to sift through later (see

figure 8-6).

The outline of the chaotic splash formation is determined in a similar fashion.

The user is prompted to choose lines representing the outline of the splash above the

free surface. The user chooses the ones they wish to keep by clicking near the edges

of interest and the data is saved to a cell. Figure 8-6 shows the outline of the edges

of the cavity marked in green by a number 1. The bullet is outlined in red by the

number 2. However, notice that in this particular image the outline continues past

the bullet and outlines the interior portion of the cavity between x = 55 to 225 and y

= 105 to 120 pixels. The free surface is partially outlined by the green number 4. At

this point the user would typically select the boundaries of interest. If more than one

contour represents the body of interest then more than one contour can be selected.

Three different cameras were used in this study and required that the image

processing codes determine which cameras had pertinent information and only allow

the user to work with applicable images. The Shimadzu camera was aimed at the

point of impact and data is processed for that camera if it exists. The IDT and

Phantom cameras were aimed either above the free surface looking down at impact

or aimed directly from the side to get the best possible back lighting and outlined

side view of the bullet shot. The side view images are processed while images looking

down on the free surface are simply used for visual qualitative evidence as necessary.
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During the course of this study over 150 bullets were fired into the water tank. Of

those only 99 were captured for data processing. Those not saved were normally not

captured properly, or they were bullet types that had already been captured multiple

times at a specific impact angle. In total the data sets comprise approximately 9

Gigabits of data. Each data set contains 100 images (on average) that need to be

processed. Coupled with the storage of long strings of numbers representing edges

of the cavity, bullet, and splash formation stored in memory, the task was daunting.

The use of Matlab and heavy dependence on structs to store the data made the task

much more bearable. Each case was represented by a struct which was composed of

three key numbers; the first number represents the bullet type, the second represents

the angle between the gun and the free surface, and the third represents the shot

number of that type on that particular day. Table 8.2 shows how each of these

three key pieces of information dictates where the data is stored. The data set then

includes information ranging from whether or not the bullet skipped off the surface

to the position of the bullet in each of the applicable cameras. All of the information

gathered is organized into table 8.3.

The structures are filled as the user runs through each of the data sets and each

individual image. The user first determines which cameras have applicable data and

which images should be processed. Images are then brought on screen and the user is

prompted to either determine the edges of the bullet, zoom in on a particular region of

interest, or to choose applicable edges that outline cavity, splash, or bullet locations.

Once the data is gathered the results can begin to be post-processed. Appendix B

contains both the Matlab code used to outline the structure and the Matlab code

used to gather the data as outlined.

8.2.5 Forces and moments

One of the most useful measurements made from a study of this nature is a comparison

of forces and moments acting on the projectiles as they pass through the water column

inside of the cavities they form. The determination of these forces and moments is

very similar to the techniques used in chapters 3 & 4. The diagram presented in
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Table 8.2: Outline of method used to uniquely store information about each impact
case. Three numbers describe each case and correspond to bullet type, angle of attack
in degrees, and the shot number at that angle with that bullet.

# Bullet Name Bullet Type # Angle of attack Sh
[degrees]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A- CCI Standard velocity Model# 0032 22LR
no jacket

B- CCI Longs Model# 0029 22LR 1215 ft/s
copper jacketed

C- CCI Velocitor Model# 0047 22LR 1435 ft/s,
copper plated hollow bullet

D- CCI Short, high-velocity, Model# 0027
1080 ft/s, copper plated

E- CCI 17HMR Full metal Jacket, Model#
0055 2375 ft/s, copper jacketed, use different
gun H&R 17 HMR sportster model

G- Eley 22LR Pack WS1130

22Aluminum

15Aluminum

12Aluminum

22Bronze

15Bronze

13TipBronze

06AluminumShoulder

06AluminumShoulderTaper

06AluminumTaper

8.3

10.7

10.8
10.9
12.3
13.5
13.8

14

15
16
17
18
19
etc.
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Table 8.3: Each case number is designated by a structure that contains the cells
specified in this table. Each of the cells contains information that can be extracted
to find relevant data. Not all cases have data within each cell. For instance, the
Shimadzu camera may not have captured any images for a given run and therefore
data regarding that camera will not appear in that particular case number.

Cell name Description
wt Weight [grams]
d Diameter [mm]
spd Speed of bullet as given by cartridge box.
skip Skip [1], No-skip [2]
camrate Camera capture rate [fps]. Given as three values IDT, Phantom, Shimadzu cameras

respectively.
wcam Camera to analyze yes [1], no [2].
img Images of interest: [FirstlDTlmage, LastlDTmage, FirstPhantomlmage,

LastPhantomimage, First_Shimadzulmage, LastShimadzulmage].
freesurf Free surface [unused]
phnimgnum Phantom camera image number.
phncavity Phantom camera cavity. This cell contains outlines of the cavity using edge finder

for each image number.
phnpos Phantom camera position. This cell contains points of the corners of the bullet

using user designated points for each image number.
phnsplash Phantom camera splash. This cell contains outlines of the splash formation using

edge finder for each image number.
phnbullet Phantom camera bullet. This cell contains outlines of the bullet using edge finder

for each image number.
shmimgnum Shimadzu camera image number.
shmbullet Shimadzu camera bullet. This cell contains outlines of the bullet using edge finder

for each image number.
shmpos Shimadzu camera position. This cell contains points of the corners of the bullet

using user designated points for each image number.
shmsplash Shimadzu camera splash. This cell contains outlines of the splash formation using

edge finder for each image number.
shmcavity Shimadzu camera cavity. This cell contains outlines of the cavity using edge finder

for each image number.
idtimgnum IDT camera image number.
idtsplash IDT camera splash. This cell contains outlines of the splash formation using edge

finder for each image number.
idtbullet IDT camera bullet. This cell contains outlines of the bullet using edge finder for

each image number.
idtpos IDT camera position. This cell contains points of the corners of the bullet using

user designated points for each image number.
idtcavity IDT camera cavity. This cell contains outlines of the cavity using edge finder for

each image number.
idtfs IDT free surface position.
idtbulletbest IDT better edge finding of the bullet position. This cell contains outlines of the

bullet using edge finder for each image number.
shmfs Shimadzu free surface position.
shmbulletbest Shimadzu better edge finding of the bullet position. This cell contains outlines of

the bullet using edge finder for each image number.
phnfs Phantom free surface position.
phnbulletbest Phantom better edge finding of the bullet position. This cell contains outlines of

the bullet using edge finder for each image number.
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Figure 8-7: Free body diagram of bullet entry. The projectile center of gravity (CG)
is traveling in the direction of V, but is inclined with angle 0.

figure 8-7 shows how this straightforward formulation is derived. Assuming planar

travel the forces of water entry are summed about the center of gravity (CG) and

lumped into one term FH follows (similar to section 4.3.5)

FHi + FHJ = mg)3 + (m + ma)(j + ±i) (8.1)

where i and j are unit vectors in x and y respectively. Here, we neglect the forces

of surface tension by assuming sizes greater than the capillary length and buoyancy

because the projectiles are much denser than the vaporous cavities. The unit vec-

tor tangent to the projectile trajectory, 9, can be written in terms of the x and y

components of instantaneous velocity, V(t),

S (t) Vx (8.2)
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The unit normal vector, i, is defined as the cross product of the unit tangent vector

with the unit vector in the z direction, k:

S= x k (8.3)

The transverse force (FL) and in-line force of drag (FD) can then be determined as

FL = (FH " )h (8.4)

FD= (FH..) (8.5)

Here, we present the transverse force using the subscript L, which is often called

lift, however, we recognize that this force is merely orthogonal to the drag force and

is not a true lifting force in this case. The coefficient of lift and drag is computed

by normalizing these quantities by p V(t)| 2A, where A is the frontal area of the

projectile.

The moments acting on the sphere are calculated by again assuming planar pitch

angles. Evidence from camera angles looking head on at the projectiles show that

the projectiles precess in and out of the plane, but in order to interpret the data this

assumption must be made. Future work could include a method to resolve the forces

in three dimensions. The moment can also be calculated using the moment of inertia

about the approximate center of the bullet (CG) and the angular acceleration as

7 = I1. (8.6)

where I = hm(3R2 + L2) is the moment of inertia, and R is the radius. The moment

coefficient is then computed by normalizing these quantities by 1p V(t)I 2Ah.
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8.3 Experimental Results

8.3.1 Ricochet and tumbling

The typical bullet shapes have a tendency to skip out of the water when shot at shallow

angles to the free surface. Each set of data was analyzed to determine whether the

bullets skipped off the surface. Figure 8-8 shows the relationship between the angle

at which the bullets were shot and their tendency to skip off the surface. Notice

that most standard bullets would resist skipping when fired above 110, whereas the

modified 22 caliber aluminum bullet #7 in table 8.2 can resist skipping up to 5'. A

few other bullet types also resisted skipping at these angles including numbers 8, 9,

13 and 15, all of which are made of aluminum with large L/D values.

Although the 22 caliber bullets did not skip off of the surface at angles above 110,

they did tumble inside their cavities almost immediately after impact. Furthermore,

bullet types 10, 11, and 12 (bronze) also tumbled shortly after entry even though

they did not skip off of the surface. Part of this is due to the small length to diameter

ratio of these bullet types. The larger length to diameter of the 22 aluminum slug

style bullet allows it to lean against the cavity as it begins to pitch or yaw, creating

a planing force that forces the bullet back into the cavity before it can tumble. This

reduces the velocity of the bullet, but allows it to maintain some stability as it passes

through the water column.

Although many different bullets were fired and thousands of images were gathered,

there are essentially three typical types of bullet impact. First, the case when a

standard bullet enters the water and tumbles until it either skips off the free surface,

or tumbles to the bottom of the tank (figure 8-8, bullet type 1). Second, a successful

water entry of a modified bullet with a large tip, which slows down rapidly and creates

a cavity nearly four times larger than the aft portion of the projectile (figure 8-8 bullet

type 7). Third, a modified bullet with a smaller tip that successfully enters the water

and maintains a large velocity and kinetic energy after impact (figure 8-8 bullet type

15). The following section highlights one case from each of these bullet types. The

magnitude of the forces and the different cavity shapes will be discussed.
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Figure 8-8: Bullet tendency to skip when shot at given angles to the surface. The
angles shown here are the angle of the gun to the water surface. Bullet types are
given by numbers and correspond to bullet types in table 8.2. Colors and symbols are
referenced in the legend. The three bullet types presented in more detail are marked
by images above chart, from left, 0.22 standard caliber bullet (type 1), 0.22 aluminum
(type 7), 0.06 tapered aluminum (type 15).
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8.3.2 0.22 standard projectile

A standard 0.22 bullet was shot into the water at an angle of 10.7' as seen in figure 8-

9. The impact shows the sporadic nature of these types of water entry. Even at t = 0

ms the projectile is already traveling with a 0 = 900 angle of attack. As the projectile

travels through the water it is able to remain under the surface. Bubbles in the wake

at t = 0.4 ms indicate some sort of forcing event occurring in the cavity. The bullet

appears to be tumbling through all times and the non-uniform nature of the cavity

is an indicator that this is indeed the case.

Further evidence of tumbling can be seen in figure 8-10 in which the same bullet

as figure 8-9 is viewed from head on. This particular image was obtained by placing a

mirror in the tank which reflected this image to a camera. In the figure the projectile

appears in two places because the reflection from the top of the cavity. At t = 4.4 to

13.3 ms it is apparent that the projectile is tumbling as it travels. The projectile not

only tumbles from this view point but it also appears to precess as the angle it makes

with the horizon appears to change in time as well. This projectile is eventually

ejected from the underwater cavity through the free surface (not shown here).

The data is more easily dissected by looking at the velocities and accelerations.

Figure 8-11 shows the position, velocity and acceleration of the projectile in figures 8-9

& 8-10. The position in x is fairly constant as the bullet momentum is mainly in this

direction, while the position in y becomes more altered as the instabilities in flight

affect this direction the most. The position data is approximated using a quintic

spline as per the method presented in appendix A and is presented in figure 8-11 as

a solid line.

The velocities of this projectile show the dramatic deceleration over this short

distance, from 250 m/s to nearly 50 m/s in less than a meter. These large decelerations

occur as a result of the large body of fluid that must be moved out of the way the

projectile passes through the water column. The accelerations reflect this as they

show that the greatest decelerations occur at early times in x-direction but that

decelerations in y fluctuate through flight and are an order of magnitude smaller
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Figure 8-9: Images of a modified 22 caliber aluminum bullet case number (1,14,2).
This bullet was fired at 1250 ft/s from the rifle barrel at an angle of 10.70 (see
table 8.2). The camera acquired images at 10000 f/s, and every fourth image is
shown here.
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Figure 8-10: Images of a modified 2
viewed looking at bullet head on. 7
was fired at 1250 ft/s from the rifle
camera acquired images at 2260 f/s,

2 caliber aluminum bullet case number (1,14,2)
This bullet type corresponds to bullet name #1
barrel at an angle of 10.70 (see table 8.2. The
and every image in series is presented here.
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Figure 8-11: Position, velocity, and accerlation in x and y for projectile impact shown
in figure 8-9.
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than in the x-direction.

The forces associated with water entry are presented in figure 8-12. As expected

the drag coefficient is larger than the transverse component and appears to be ap-

proximately r rad out of phase with the moment coefficient. The moment coefficient

is determined from an estimate of the pitch angle. The forces and moments have

an approximate frequency of 1000 Hz. In general, the forces and moments presented

here reveal the unsteady nature of this type of water entry.

8.3.3 0.22 modified aluminum projectile

The behavior of the standard projectile can be greatly improved by altering the tip

shape and increasing L/D. A modified aluminum 0.22 bullet, characterized as bullet

type (7,14,7) in table 8.1, was shot into the water at an angle of 10.70 and is shown

in figure 8-13. This projectile forms a cavity that has a more uniform shape which

grows both radially and forward through each time step. The projectile can be seen

clearly inside the cavity.

As the projectile passes through the water column the cavity grows, and a portion

of the cavity splash is entrained into the cavity. It can be seen as a growing gray

portion of the cavity on the left hand side of the images. As the projectile continues

its downward descent it begins to pitch down. As it does so it eventually comes in

contact with the upper portion of the cavity (t = 2.8 to 3.6 ms). The contact between

the cavity and the tail of the projectile deforms the cavity and leaves evidence of this

event in the wake. The projectile is then forced back into the cavity and begins to

pitch up (t = 4.0 to 4.8 ms).

Contact with the top of the cavity can be seen more closely in figure 8-14 in which

the same projectile is viewed from head on with the aid of a mirror as mentioned in

the previous section. The images reveal the tendency of these projectiles to pitch up

in the fluid. At time t = 13.3 ms the projectile is impacting the top of the cavity. The

impact with the cavity, seen at the top of the image, is the same event witnessed in

the side profile of the event in figure 8-13. The times in this image do not correspond

to the same times as in figure 8-13 due to the different arbitrary location of t = 0
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figure 8-9.
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Figure 8-13: Time series of a modified 22 caliber aluminum bullet case number
(7,14,7). Images are marked with a timestamp in the upper right hand corner in-
dicating the time from the first image in the series. The darker patch in the upper
left hand corner of t = 0 ms is a portion of the vaporous splash that is ejected upon
impact. The camera acquired images at 10000 f/s, and every fourth image is shown
here.
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ms. In the side profile images, t = 0 corresponds to the moment when the projectile

first enters the frame, whereas in the front profile the first image shown is arbitrarily

selected as t =0. Since no correlation other than qualitative visualization is used here,

no effort to link the two in time was performed.

Looking at the velocities and accelerations it becomes apparent that this projectile

is traveling in a much straighter path. Figure 8-15 shows the velocity in the x-direction

decreases from approximately the same amount as that of the standard 22 presented

above despite the difference in cavity shape. This is likely due to the frontal area

of this aluminum case. The standard 22 caliber bullet has an L/D of 2 and at any

moment during its flight the frontal area of the projectile is between 7rR 2 or 8R 2 , since

L = 4R. For the aluminum case (7,14,7) the frontal area is maximized at 7rR 2. These

values are very similar and since the impact speeds are nearly identical, we expect the

drag coefficients to be similar and the decelerations to also be of a similar magnitude,

as is indeed the case in figure 8-15. The y-velocity and acceleration has nearly the

same magnitude of the standard 22 case, however, the unsteady oscillations appear

smaller.

Coefficients of drag, transverse drag, and torque are presented in figure 8-16. The

transverse drag coefficient CL shows a nearly constant value except for near the end

of the field of view. As the projectile slows the pitching motion has a larger effect

on the direction the projectile travels, which is apparent in this figure. For drag, the

constant force gives way to an unsteady oscillation near the point where the projectile

begins to pitch up and tap the cavity wall. The moment coefficient reveals how the

projectile travels straight and true through the cavity compared to the standard 22

caliber case (1,14,7). Here, the aluminum projectile slowly alters its pitch angle,

changing the value of the moment acting on the projectile, until it gently touches

the upper portion of the cavity and is forced back into the cavity. The figure shows

that the moments acting on the projectile actually begin to oscillate as the projectile

passes through the center line of the cavity. In the future it would be interesting to

do this same experiment and be able to see this projectile further downstream to see

if the moments are of the same magnitude as the projectile decreases its speed. A
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Figure 8-14: Images of a modified 22 caliber aluminum bullet case number (7,14,7)
viewed looking at bullet head on. This bullet was fired at 1250 ft/s from the rifle
barrel at an angle of 10.7" (see table 8.2). The camera acquired images at 2260 f/s,
and every image in series is presented here.
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Figure 8-15: Position, velocity, and accerlation in x and y for projectile impact shown
in figure 8-13.
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critical moment size and forward velocity should be necessary to keep the projectile

in the cavity. Overall, the forces and moments reveal that this projectile is able to

maintain generally stable and level flight, but also uncovers some of the unsteadiness

of the drag force as the projectile slows inside the fluid volume.

8.3.4 0.06 tapered aluminum projectile

The projectile shapes used in the previous sections produce cavities nearly four times

larger than the diameter of the projectiles. The straight and level flight achieved by

the 22 caliber aluminum projectile could be improved if the projectile were constrained

to make a cavity with a diameter comparable to that of the bullet. Furthermore, the

velocities the projectiles travel with could be greatly enhanced by decreasing their

frontal area in contact with the fluid. Using the cavity model presented in section 8.4,

a better projectile was designed that could travel underwater at roughly twice the

velocity of the previous projectiles, with a more straight and level flight throughout.

This bullet was then built and tested and the results are presented here.

The improved projectile shape behavior can be seen in figure 8-17. The cavity

shape is greatly improved and the projectile fills much more of the cavity radially. At

time t = 0.3 to 0.5 ms the size of the projectile inside the cavity size can be seen. Here

the bullet entry point is in the field of view whereas the other projectiles impacted

slightly out of the viewable window. This skews the velocity data in favor of this

projectile over the previous ones because data above the free surface is available and

the actual entry speed can be determined. Furthermore the entry splash can be seen

quite easily. The strange v-shaped splash above the projectile from t = 0.1 to 0.5 is

probably due to the projectile being slightly off-axis during entry, not because of the

altered projectile shape.

The projectile appears to lean against the cavity from t = 0.5 to 1.1 ms. It

is difficult to tell, but it does seem like the projectile is leaning against the cavity

throughout this set of images. Ideally, the projectile would not lean against the cavity

at all in an effort to keep the drag as low as possible and the trajectory straight.

Through improved observations our understanding of how these projectiles behave
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figure 8-13.
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Figure 8-17: Time series of a modified 22 caliber aluminum bullet case number
(15,14,10). Images are marked with a time stamp in the upper right hand corner
indicating the time from the first image in the series. The darker patch in the upper
left hand corner of t = 0 ms is a portion of the vaporous splash that is ejected upon
impact. The camera acquired images at 10000 f/s, and every image is shown here.
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will lead to more efficient designs.

Figure 8-18 shows a front view of the same projectile impact as in figure 8-17.

Unfortunately, the projectile goes out of the field of view of the camera before too

many details can be observed. It does appear that the projectile is leaning against

the cavity wall from t = 4.4 to 13.3 ms. This could indicate that this projectile does

not oscillate inside the cavity but instead continually leans against the cavity wall.

The image also reveals the much smaller cavity size. The short time span that the

projectile is in view is also an indicator of an increased velocity. The projectile goes

on to break the mirror used to produce this shot just milliseconds after these images

were taken (not shown). This is in contrast to the previously highlighted projectiles,

which often impacted the mirror and bounced off, but did not break the mirror. That

this projectile had enough kinetic energy to break through the mirror adds evidence

of its decreased drag and increased velocity.

The velocity and acceleration of this projectile are presented in figure 8-19. The

projectile appears to hold a constant velocity for a short time before it begins to

decrease more rapidly. This is because a few frames before impact were captured

and we get to see the initial moments of entry in which the projectile does not slow

down as much. One thing to note in this data series is that only 13 frames of data are

available where the projectile is in view. The velocity also shows that these projectiles

are traveling at nearly twice the speed of the previous projectiles even at the end of

the field of view. Although the field of view here includes the impact zone, whereas

the other projectiles had already contacted the free surface, the velocities here are

much faster, due to the reduced frontal area of the projectile. The deceleration in

x decreases but never really reaches the deceleration rate of case (7,14,7), which is

expected.

The coefficients of transverse drag, CL, shows a generally increasing drag up to

about 0.001 in figure 8-20. The drag is negative here due to the acceleration above the

free surface. There is likely no acceleration above the free surface after the projectile

is released from the rifle. Thus, this data shows the possible magnitude of error

associated with these tests. It is difficult to determine the exact center of gravity for
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Figure 8-18: Images of a modified 22 caliber aluminum bullet case number (15,14,10)

viewed looking at bullet head on. This bullet type corresponds to bullet name #1

was fired at 1250 ft/s from the rifle barrel at an angle of 10.70 (see tale 8.2. The

camera acquired images at 2260 f/s, and every image in series is presented here.
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Figure 8-19: Position, velocity, and accerlation in x and y for projectile impact shown
in figure 8-17.
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each projectile and the exact speeds are uncertain. Here, we present this data in an

effort to show the trends involved with these impacts not to authoritatively resolve

the accelerations or forces involved.

The coefficient of drag, CD, shows a dip and then rising value around t = 0.5

ms. This is near the point where the projectile impacts the side wall of the cavity.

This impact could affect the index of refraction of the cavity and alter the apparent

shape of the projectile, making the position values skewed one way or another. The

moment coefficient does not show a large change in the torque at that time, which

may indicate that the projectile is not being forced back into the cavity, but instead

is riding along the cavity wall. Perhaps the contact with the cavity wall causes an

increased drag momentarily as the projectile tail pushes through the cavity wall, but

is then decreased as the projectile only skims along the surface of the cavity as it

rides along inside.

This data set represents the evolution of small caliber high-speed water-entry pro-

jectiles from standard bullet shapes to specially designed projectile types. Standard

projectiles do not travel well underwater as expected. Modified blunt tip projectiles

with large L/D make axially uniform cavities and travel well inside of them. The

performance of these projectiles can be greatly improved by decreasing the tip size

and adapting the overall shape to fit inside the cavities they form. The design is

based on a well formulated theoretical model described in the following section.

8.4 Theoretical Cavity Model

Following the derivation of the Logvinovich cavity model [1] we can find an approx-

imation for the profile of an axisymmetric cavity. The cavity is formed by a disk of

radius Ro placed in a uniform flow of V. We assume that the flow is ideal and incom-

pressible, which holds true where velocities do not exceed several hundreds of meters

per second and temperatures remain below the boiling point. In reality, high-speed

videos reveal that the surface of the cavity is mottled with inconsistencies, droplets,

and disturbances. However, this approximation assumes that overall the cavity re-
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figure 8-17.
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tains some 'macroscopic' smoothness, thus we ignore these disturbances. Figure 8.4

shows a two dimensional sketch of the disk in the flow field and the associated cavity.

Cavitation occurs when the pressure of the cavity is much smaller than the pres-

sure of the surrounding fluid. The cavitation number is an excellent dimensionless

parameter used to characterized the potential of the fluid to cavitate. It is the ratio

of the difference between the free stream pressure (Pk) and the vapor pressure of the

fluid (P,) to the kinetic energy per volume (q = pV 2). The cavitation number is

defined as,
Pk - (8.7)

pV2

where fully formed cavities form when a < 0.1.

The profile of the cavity can be broken up into two parts. The leading part which

extends from the tip of the disk to ' < 3 to 5 can be expressed approximately from

empirical evidence as

R= Ro 1+ (8.8)

where x is the distance downstream from the disk. This equation is only valid for

cavitation numbers below a < 0.1

The second part of the profile is determined by applying the momentum theorem.

Figure 8.4 is used to apply the cavity profile and points of interest in deriving the

momentum theorem. Consider a disk creating a cavity behind it in a free-stream with

velocity V4. The plane NN is where the disk is located. The cavity is formed between

NN and N'N', and the bubbly foamy flow behind the cavity is ignored. To determine

the force of drag Wo acting on the plane AA we introduce six planes of interest to form

a control surface enclosing a control volume. The first S1 is far upstream of the disk

in the y-z direction. The second is S2 which is in the y-z plane and passes through the

plane AA. The third, S3, and fourth, S4, are far away from the x-axis at a distance

R 3 . Similarly, S5 and S6 are a distance R3 in the y-direction away from the x-axis

but in and out of the plane and not shown in figure 8.4. The force balance of the

drag on the body is determined by applying the momentum theorem to the control

surface now defined. The momentum theorem states that the summation of the
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Figure 8-21: Two dimensional sketch of disk NN in a velocity (Vo) and pressure (Po)
field. The control surfaces S1, S2, S 3, S4 define a control volume. The volume includes
S5, and S6 (in and out of the plane) but they are not shown here. Along the control
surface S3 the plane AA defines the cavity and the velocity components at the surface
of the cavity are shown in the enlarged view. The back of the cavity is cut-off at the
plane N'N' due to the chaotic and non-uniform closure typical of these cavities.

pressures and momentum fluxes across the control volume should be zero, assuming

the disk is traveling in a steady flow, and has the coordinate system is fixed to it. The

momentum flux across S3 and S4 is neglected due to the far field assumption. The

pressure along S3 is balanced by the pressure in S4, thus no net contribution to the

force from either surface. Similarity provides the same explanation for eliminating

the momentum flux across surfaces S 5 and S6. The summation of forces along the

surface S1 is a function of the incoming velocity and the ambient pressure pVo2 + Po.

Along the surface S2 , the velocity of the flow field is near zero inside the cavity and

only the pressure Pk has an effect at r < RA. Outside the cavity the velocity field is

affected by the ambient velocity and the increased velocity due to the presence of the
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cavity V. The momentum theorem is then defined as

Fd (pV2 + P)dA - -rR
/ / rR2

(pV2 + P)dA - 2fo foRA

This equation can be further simplified by defining the velocity in the x-direction

as Vx = Vo + ix and in the y-direction by V, = ,, where ix and , are the perturbed

velocities. The determination of this velocity comes by adding the free stream velocity

to the velocity in the x-direction of the flow near the cavity wall. The pressure P can

be expressed by applying the Bernoulli theorem between S 1 and S2 as

pV 2  pV 2 pV2
P = P + 2 2 2 (8.10)

where y > RA. Simplifying the pressure P yields:

-2
P = P - pVov _

2
2Pvy
2

(8.11)

Substituting the pressure term and velocities into equation 8.9 expands to

Fd= S(pVo2+ o) -P
-2 Po

P(Vo+V2Vo-x + +-- -p
- 2)dA - 1rRAPk.
2

(8.12)

Simplifying and substituting the area of the cavity at RA as S, = irR2

Fd = S,(pV2 + Po ) - S 2 + Po) + Sx(pVj+2Po)+ ( 2
-2

S-Vx Vo0 x)dA- SxPk.
2

(8.13)

The surface S1 and S2 are the same size and therefore similar terms cancel. Using

the continuity equation for the fluid region bounded by Si, S2, and Sx of the cavity

to define the following

Substitution then yields

Fd = Sx (Po - Pk) +

2 -Sx

O dA.

sT 2

-2
PX )dA
2

(8.14)
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Figure 8-22: Two dimensional sketch of cavity cross section illustrating the control
area CA confined by the control surfaces CS1 and CS2.

For a specific value of Po - Pk, equation (8.14) defines the drag Fd for each cross-

sectional area of the cavity S, = -rR' and the perturbed velocities vx and i, within

the fluid plane S2. Equation (8.14) can be modified further by computing the terms

of the integrand. Examining the term , we can replace the velocity ,y with the rate

of "cylindrical" expansion as determined from mass conservation around the cavity.

A two dimensional slice of the cavity is shown in figure 8.4. The cavity has an initial

radius of Ro and a growing radius of R(t). The control surface is defined by the wall

made by the cavity at R(t) and the imaginary wall a distance y away from the center.

If we assume a small slice of the cavity dx then the conservation of mass equation

takes the two-dimensional form:

d (I pdA) + l p(V - Ecs,)dS +J P(2 CS- 2 )dS = 0 (8.15)
dt ( A CS1 S2

where CA is the control area, CS1 and CS2 are the control surfaces, V is the velocity

of the fluid through the control surface, and Vcs is the velocity of the control surface.

Since p is constant, the change in the control area in time can be approximated as

the first derivative of the control area A = r( 2 - R 2 (t)), which is dA = -2rR(t) dR(t)

Along control surface CS1 , the velocities of the control surface and the velocity of

the fluid are equal, thus they sum up to zero. The velocity of the control surface
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CS2 is zero since it is a fixed distance from the center of the cavity. Further, the

velocity of the fluid through the control surface CS2 must be non-zero (V 2 $ 0) and

represents the velocity of the fluid expanding normal to the cavity (,y) for all values

of y > R(t). Equation 8.15 can now be reduced to

dR(t)
-27pR(t) dt= -2pV2 (8.16)

which simplifies to
R(t) dR(t)

V2 =Y = dt (8.17)

2

The term 2 in equation 8.14 can now be represented as

00 p2 co 2 0 p R(t)pjy f, ~ ,~ pR(t) &R(t)
dA --- = -2-ydy = at yfidy (8.18)

s 2 d R 2 R(t) &

This integrand is solved by making two observations. The partial derivative of the

surface S, (related to the S2 plane) inside the cavity is - = Vs a =- Vo - 2R- .

Further, the velocity potential at the cavity boundary can be defined as

W = - jOd (8.19)

Applying these relations to the right hand side of equation 8.18 yields the equation

/f pR= 1 OR 1 SX (8.20)
at 'by27rd -p2irR - Yd = 'pc (8.20)o

J 2y 2 a R 2 at

The second term ( -) inside the integrand of equation (8.14) can be determined by

first finding the drag of the cavity at the maximum cross section KK. Here the velocity

,y is zero and the velocity z becomes maximum, thus equation (8.14) becomes

Fd(K) = SkAP - xdA = SkAPk

sk
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where the right hand side describes the total drag as some proportion of the total pres-

sure. This method of solving is useful when empirical data is available to determine

k, which can now be defined as

1 00
k = 1 Sk dA. (8.22)

In most of the literature the value of k is reported as 0.875 < k < 1.0, and is

used as a correction factor to estimate drag. For any given position x in the cavity

past the empirical solution near the tip the value of k_ can be written as k' =

1 - 1 P'S dA, which becomes k at the maximum cross section of the cavity KK.

Because ix becomes a maximum at the maximum cross section of the cavity it can

be assumed that in the central part of the cavity k, , k. Since the value of k is

near 1.0 then the value of kx is also near 1.0, thus, , = 1. Dividing equation (8.14)

by k and replacing the terms inside the integrand yields

Fd APSX(t) 1 8SxI 1 dA pvPS
k k 2 t k k Jsk 2

Fd APSx(t) 1 S 1 APS(t)(1 - k) APSk- = 2 tpp = APSk
k k 2 at k k

Fd 1 DS,
F - APS(t) - -pP a (t) = APSk (8.23)k 2 at

where 4(t) is a correction function introduced to replace the term I, and APSk is

the force of drag at the largest cross sectional area KK, where the radial velocity goes

to zero.

The potential W can be determined from the unsteady Bernoulli equation defined

here as
Op 1 AP

±+ -v + = 0 (8.24)
at 2 P

along a surface contour sx which is the surface of the cavity, which makes the vapor-

fluid interface. The derivative of the potential can be re-written in the form o3p =

2(2- + )±)ay) where = R, and 9o = i = R? along the surface of the cavity.
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Replacing these quantities in equation 8.24 and solving for 2 yields

By 2AP R2 a\2t - 2P - 2 ( (8.25)
at p Kat)

and integrating both sides

o(t) 2AP (tk - t)- ( 2 + ( ) 2 )dt. (8.26)
P ta

The cavity profile can now be determined by evaluating (tk) = 0 at the maximum

cross section of the cavity KK, assuming the cavity is in steady state. The constant of

integration is then equal to zero. Rewriting the equation becomes p(t) 2APt, (1 -

t ) and setting the correction factor to a constant 4(t) = X and replacing terms yields

t Stk

-Xtx(1 - ) S - Sk (8.27)tk at

Setting u = (1- and du and noticing that S = 7rR 2, Sk = rR', and

a= 2Rat - aoR2 can reduce the solution to

as, 1 1
at (Sx - Sk) Xta(X - t)

d(R 2) 1 du
= (8.28)(R2- R) X

Integrating both sides when the cavity contour passes through a specified point R =

R 1 at t = 0 gives
R2 -R t)1/x

R = 1- - (8.29)
R - Rk tk

Solving for R gives the cavity profile up to the point I < 1.5 where the boundaries

of the cavity begin to break up and form foam.

Solving for R(t) gives the contour of the cavity radius,

R = R 1k / 1- ~1 (8.30)
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and taking the derivative yields the cavity growth rate becomes

k (= i- ') 
(8.31)

2tkx - - ) (1- _ (1

The radius of the cavity is now defined and can be solved for. The term R1 is

determined where the empirical result meets the numerical approximation at x =

xl = aRo and yields R = Ro(1 + 3a)1/3 as defined by equation 8.8. Rk is defined

as the maximum cavity radius and is calculated by equation 8.21 at xk. Solving Rk

where Sk = rR2 and noticing that Fd = 1/2pv27rR2CX. Experiments show that the

drag coefficient for the non-zero cavitation case is approximately Cx ? Cxo (1 + a)

where Cxo = 0.82 is the drag coefficient of a disk with a cavitation number of zero.

Rk then becomes

C,/ (1 + a)
Rk = Ro (8.32)

Equation 8.31 can now be solved at the point where R is defined by the empirical

formula in equation 8.8 at the point where R(xl) = R1, replacing x = Vot and taking

the derivative yields
3Vt 1 2

Rx) V + Ro )- (8.33)

realizing that at R1 the value of tl = xl/V and replacing yields

2
= V(1 + 3a)-3. (8.34)

This is the derivative at the point xl. The value of a is given as a = 2 herein. It

is now possible to calculate the value of tk. Using equation 8.27 and solving for tk

instead of R gives

tk = ) + t. (8.35)
249ROR
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Reducing this equation by noticing that t = 0 at R1 yields

R k (1-R
tk = 2R k) (8.36)

8.5 Discussion

The radius of the cavity can now be determined analytically. This method yields

cavities that are continuous for all values of x despite the empirical model used near

the tip. The original theory of Logvinovich required a lot of adjustment in order to

get a continuous cavity near the transition from the empirical to theoretical models.

To illustrate this, figure 8-23 shows the discrepancy. Both models have the same

input parameters but the Logvinovich model shows a slight jump near x = 2Ro,

indicating that the newer model is easier to apply and its continuity is more robust

than previous models. In order for the Logvinovich model to fit with the new model

the value of a must become a = 11, which is beyond the accuracy of the empirical

results for the near tip geometry. Using a = 11 also forces the cavity to be larger than

it should be down stream. Both the newer model and the Logvinovich one are based

on the same assumptions and as they approach xk they approach the same Rk value.

Section 8.3 discusses further the accuracy of the model with experimental results.

During experiments it was noted that the projectiles have a tendency to pitch and

yaw inside the cavity. One way of improving the two dimensional model presented

here is to add an angular component to capture this behavior. Figure 8-24 shows a

diagram of how this model can be conceived. Assume that the projectile tip can be

represented by a two dimensional disk with an angle of 6 traveling in the direction

of V. Assuming small angles, the disc can essentially be remodeled as a disc with a

reduced diameter in the plane of rotation angle (6). The cavity is then created by a

disc with a diameter of D,y = 2Rcos(6) in the plane of 6, whereas the diameter of

the disc normal to this plane is Dzy = 2R. The upper and lower cavities are then

translated to match with the location of the disc edge. The upper cavity translates

by [x = x - Rosin(6), y' = R(x) - Rocos(6)], and the lower cavity translates

250



.........................
................

....... Logvinovich
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- Modified Logvinovich (ML)
- - -ML reduced diameter (MLRD)
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Figure 8-23: Cavity outlines for four different theoretical approaches. (...) represents
the cavity formed by the Logvinovich model as discussed in [1]. (0) represents the
matching point location for the Logvinovich model. All cases use this point as the
transition point from the empirical model at the tip to the analytic model. (-)
represents the modified Logvinovich model and (--) represents the same model but
uses the altered tip diameter based on the angle (6) the disc now makes with the
vertical.
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Figure 8-24: Sketch of the cavity near the tip of the disc illustrating how the cavity
size is determined when the disc is at an angle (6) to the incoming flow field. The
projected area of the disc tangent to the flow direction is used as the new radius for
determining the cavity size. Then the new cavity is moved to align with the edge of
the disc, the top portion of the cavity is moved to the position [X' x - Rsin(6),
y'T = R(x) + Rcos(6)], while the bottom portion is moved to [x = x + Rsin(6),
y'B = R(x) - Rcos(6)]. The inset shows the disk rotated by an angle 6 compared to
the vertical and shows how the area facing the flow Vo is reduced.

to [x' = x + Rsin(6), y' = R(x) - Rcos(6)]. A comparison of the Logvinovich

model, the modified model, and the modified model with angled disc are shown in

figure 8-23.

The theoretical model can be compared to the empirical results by tracing the

cavities using an edge detection algorithm. Figure 8-25 shows the results of the

comparison for case (7,14,7) and compares with results presented in figures 8-13 to

8-16. Overall, the results show good agreement with the cavity model. The subtleties

of the cavity size are difficult to compare. Although the Logvinovich model has been

improved, it is not clear from these figures alone whether the improved cavity model

explains the cavity shape better than in the past. Preliminary data from NUWC does

conclude that the Logvinovich model is generally a bit too large but exact amounts of

its discrepancy are not available for comparison at this time. The images also reveal

that the cavity is in contact with the free surface and so the upper portion of the

cavity is not accurately represented by the steady state model.
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Figure 8-25: Modified Logvinovich model compared to cavity from case (7,14,7).
Experimental cavity obtained from images in figure 8-13. Every fifth data point is
plotted from the experiment in red, and the cavity model is in black. For ease in
processing these images are flipped horizontally from figure 8-13.
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Further comparison can be made with case number (15,14,10) in figure 8-26. The

projectile presented here corresponds with the data presented in figures 8-17 to 8-20.

The figures show good agreement between the model and experiment and emphasize

the usefulness in using a theoretical model like this one when designing projectiles for

optimum underwater flight.

The data presented in this chapter represents both experimental and theoretical

analysis of the water-entry of high speed projectiles. While the data is specific to 0.22

caliber bullets, it can easily be applied to higher speed projectiles. The experimen-

tal data shows the evolution of small caliber high-speed projectile water-entry from

standard off-the-shelf bullet shapes to specifically designed underwater projectiles.

Modified projectiles with blunt tips and large L/D perform significantly better than

the ogive tip small L/D counterparts. The design is greatly enhanced through the

application of a modified cavity model which accounts for small pitch angles. Using

the cavity theory higher performing projectiles were designed and tested and results

agree that the model is an accurate representation of the cavities observed.

Further work on the theoretical model including the effects of the free surface,

changing from a steady to an unsteady model, and the introduction of the planing

force associated with the stability of the projectile. The experimental improvements

include higher resolution of the event, along with more down range information in

an attempt to gather more steady-state-like data. Further improvements include

testing what might occur if there are bubbles of varying sizes in the flow field and

determination of how the projectile will behave as it passes through these voids in

the medium.
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Figure 8-26: Modified Logvinovich model compared to cavity from case (15,14,10).
Experimental cavity obtained from images in figure 8-17. Every fifth data point is
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Chapter 9

Summary and conclusions

In summary, this thesis examines the water entry of spheres and projectiles through

the use of high speed imaging. Multiple methods and considerations for improving

data obtained from high speed imaging are outlined which attempt to expand our

physical understanding of this problem. An overview of the major contributions and

conclusions with suggestions for future work are given in this section.

In Part I, quality imaging allowed the positions, velocities, accelerations and forces

of spheres impacting the free surface to be resolved from impact to well below pinch-

off. Past experimental studies have only measured forces at impact up to one-half

a diameter below the free surface. Resolving the forces associated with impact well

below the free surface is an important step in improving the numerical and analytical

models, especially as it relates to underwater mine deployment, launching of missiles

and torpedos, and industrial coating techniques. The determination of the forces act-

ing on the sphere was enhanced through the development of a tool used to determine

the best spline fit of position data. In contrast to least squares fitting to position,

a spline fit is an analytical solution that matches the position data more accurately,

which improves the determination of velocities, accelerations and forces acting on the

sphere. Furthermore, the methods developed in this thesis can easily be applied to

other imaging problems. The optimized spline fitting tool is especially well suited

for use with PIV measurement smoothing in both time and space and is the topic of

ongoing study.
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The sphere data shows that the forces associated with impact and descent through

the fluid column vary dramatically between the cavity forming and non-cavity forming

cases. In particular the cavity forming case actually has a lower drag coefficient than

the non-cavity forming counterpart. This is potentially counter-intuitive as many have

informally commented that the large cavity would appear to create a larger drag on

the sphere. PIV results yield evidence that cavity forming spheres have a tendency

to inhibit vortex formation in the wake, which makes this argument plausible (Re

= 75,00 to 300,000). In the non-cavity forming cases the spheres with lowest mass

ratios (m* = 1.14) nearly stop their descent approximately nine diameters below the

free surface. PIV data shows that these spheres shed a vortex ring just before this

slowing event and the vortex ring grows radially, eventually passing spheres in the

vertical direction. For larger mass ratios it does not appear that this happens, which

is likely due to the larger inertial forces. PIV data from the cavity forming cases shows

near zero vorticity in the flow field, which suggests a potential flow field solution may

provide insight . Future work is necessary to apply a potential flow model to the

cavity forming spheres in an effort to accurately determine the unsteady nature of

the forces on the spheres presented.

Emphasis on the general mechanisms that can alter the dynamics of cavity forma-

tion including surface treatment and transverse rotation have been presented. The

dynamic effects of rotation can mimic the effects of altered surface treatment. In

particular, coating a sphere half in a hydrophobic coating and half cleaned to be hy-

drophilic will alter the cavity shape to resemble that of a rotating hydrophobic sphere

with sufficient spin rate. These two effects alter the cavity shape of the sphere and

form a wedge of fluid that crosses the cavity, which is described and quantified for

the first time here. Rotation also adds a component of lift, which is presented in the

context of lift and drag coefficients on a transversely spinning sphere impacting the

free surface, and this is the first time these components are presented to the general

community.

Interestingly, the trajectory of the half uncoated and half coated spheres move

away from the cavity forming side of the sphere until the pinch-off, after which the
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spheres begin a more vertical descent. Similarly, the spinning spheres experience a

lifting force due to the coupled forward and rotational velocities, which cause de-

viations in their vertical trajectory that continue well after deep seal. An obvious

extension of this work includes the effect of roughness on cavity formation. Future

work could also examine the physical behavior of the air-water-solid interface as the

sphere moves dynamically through the free surface.

Finally, for all of the cavity forming spheres tested, regardless of spin rate, mass

ratio and diameter, the non-dimensional time to deep seal (7 = ti2g/D = 1.726 ±

0.0688) remains constant, similar to results of previous studies [1, 2, 3]. Here we also

note that the depth of the sphere at deep seal can be scaled by the Froude number

F = V/ gDand mass ratio as F,(m*)1/2 . This is a direct application to industrial

and naval applications that need to know where deep seal occurs for materials used

in underwater applications that vary in density from steel to kevlar. Because 7

is constant, all theoretical work related to determining the deep seal location and

times can be nearly approximated by a third order polynomial fit to position, even

though this experimental work emphasizes that this is an approximation and more

precise spline fitting should be used for numerical methods. Ongoing work in this

area includes an analytical model that describes the deceleration of spheres of varying

mass ratio as it relates to deep seal location. This method is currently in preparation.

Efforts are also being made to determine a physical model that explains the unsteady

forces from impact to approximately 10 diameters below the free surface for both

cavity and non-cavity forming spheres.

High speed (>300 m/s) projectile studies shown herein emphasize the need for

laboratory conditions in order to improve our understanding of these phenomena.

Through a full scale laboratory experiment, measurements of the forces, moments

and cavity shapes were performed and show that projectiles that travel underwater

do indeed use the vaporous cavity side walls they form for stability. Although these

bullets are stable underwater, further work in determining optimal methods of stabi-

lization in air is required. An emphasis on gyroscopic stabilization is presented and

describes the minimum spin rate needed for gyroscopic stabilization as a function of
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LID. An existing theoretical cavity model is improved and a small-angle rotational

component is added that improves the cavity size estimates and agrees well with

the data. Using the improved model, a modified bullet shape is proposed and suc-

cessfully tested, which shows excellent down range velocity and smaller cavity shape

improvement over the initial design.

Overall, this thesis represents an experimental step towards a full understanding

of the problem of water entry. The major contributions can be summarized in two

categories: experimental methods and physical insights.

In the area of experimental methods, major contributions of this thesis include:

* High speed imaging of fluid-structure interactions using technically advanced

lighting, image acquisition timing, and imaging concepts to obtain high quality,

high-resolution images.

* The application of advanced image processing techniques to improve object

tracking algorithms, including sub-pixel position resolution, accurate determi-

nation of angular rotation, and optimized spline fitting to accurately infer object

accelerations and forces.

* Experimental facilities for the testing of spinning and non-spinning sphere water

entry, as well as bullets at shallow water entry angles.

This thesis marks the first time that the problem of water entry by spinning

spheres has been addressed in the literature and several novel features of cavity for-

mation were observed. Major physical insights presented in this thesis include:

* Significant curvature of the water entry cavity under the influence of spin-

induced lift

* The formation of a fluid wedge for spinning spheres during water entry

* The effect of surface coating on cavity dynamics for both spinning and non-

spinning spheres
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* Empirical force model for prediction of forces acting on objects from water entry

to beyond the point of cavity collapse

* Reporting time resolved drag and lift forces

* Consistent trends in cavity collapse: non-dimensional time to deep seal remains

constant across all geometric and kinematic parameters investigated and the

depth to deep seal is not constant for varying mass ratios but can be scaled as

Fr (m*)1/ 2

* The minimum spin rate required for stability versus L/D was determined for

ballistic projectiles with axial spin, and confirmation that supercavitating pro-

jectiles can use contact with cavity side walls for stabilization

* An improved cavity model for high speed projectile impact with an added pitch

component that can be used to design modified bullets geometries which exhibit

enhanced performance underwater

Although these contributions are significant aids in improving theoretical models

and physical understanding of free surface interactions, there are many questions

left unanswered that warrant further investigation. In addition to developing an

analytical model that describes the deceleration of varying mass ratio spheres as it

relates to deep seal location, which is currently in preparation, several suggestions for

continuing work in this field include

* Developing a potential flow model using the empirical cavity shape as a bound-

ary condition to determine the unsteady forces acting on the spheres

* Exploring the effect of roughness on cavity formation

* Examining the physical behavior of the air-water-solid interface as the sphere

moves dynamically through the free surface

* Improving cavity models to include unsteady effects
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* Developing a coupled model for ballistic projectile stability in air and underwa-

ter

* Further optimizing projectile design using improved cavity model

* Determining how a bubbly flow field might affect projectile stability

Advances in digital high speed-imaging continue to improve time and spatial res-

olution while reducing costs; making the exploration of high speed events more and

more accessible to the world at large. As improved observation continues, scientific

inquiry and discovery will enhance our current understanding and capacity to manip-

ulate our environment. Within the realm of fluid mechanics these discoveries could

lead to things once thought impossible such as walking on water or constraining fluids

to a volume without a solid interface. Whether or not these extreme phenomena are

ever reproduced or the Navier-Stokes equations are ever fully solved, our fascination

with the fluids that surround us will continue to be the topic of visually stunning

photography and scientific curiosity for eons.
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Appendix A

A robust method for curve fitting

and evaluating derivatives of

experimental data using smoothing

splines

This appendix is in preparation for submission to Measurement Science and Tech-

nology as: Brenden P. Epps, Tadd T. Truscott and Alexandra H. Techet, A robust

method for curve fitting and evaluating derivatives of experimental data using smooth-

ing splines, Meas. Sci. Technol. In preperation.

Abstract

It is well known that performing data regression using smoothing splines is the best
method for predicting instantaneous derivatives of noisy experimental data. This
paper presents a novel and robust method for choosing the best spline fit.

Typically, a smoothing spline is fit by choosing the value of a smoothing parameter
that controls the tradeoff between error to the data and roughness of the spline. This
method is unreliable, because a poor choice of the smoothing parameter drastically
degrades the spline fit. An alternate view of the problem is to choose an error tolerance
and to find the spline with the least roughness possible, given that the error must be
less than this tolerance.

In this paper, we systematically explore the relationship between error tolerance
and the minimum possible roughness of smoothing splines. We find that there exists
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a critical error tolerance, corresponding to the spline that has the minimum error to
the data possible, without also having roughness due to the noise in the data. We
present a method to find this critical error tolerance and show that this in fact yields
the best spline fit.

A.1 Introduction

Finding the rate of change of a measured quantity is a ubiquitous experimental task.

Consider experimental measurements

yi = y(ti) + Ei (A.1)

made at times, t1 ,..., tN, where y(ti) is the true value of some smoothly-changing

quantity and i is the measurement error 1. The goal of the present work is to examine

experimental y(ti) data and find the true function it represents, as well as its first few

derivatives
dy(t) d2y(t) d3y(t)

' dt ' dt2 ' dt3

Typically in experimental work, the true function is either unknown or too complex

to be represented by a simple parameterized model (e.g. a single polynomial with

unknown coefficients). In this case, the appropriate way to represent the unknown

function is to fit the data with a smoothing spline. This spline does not require any

knowledge about the true function (aside from assuming that it is somewhat smooth),

and derivatives of this spline can be computed exactly.

A smoothing spline can be formed by a piecewise polynomial of degree n, with

n - 1 continuous derivatives at each break point. Typically, cubic (n = 3) or quintic

(n = 5) polynomials are used. A particular spline, s(t), can be characterized by its

1Assume for all examples in this paper that the time at which each measurement took place can
itself be measured exactly. Also note, the curve fitting procedure discussed herein is not restricted
to functions of time. Semantically, 'rate of change...' implies '... in time', so examples in which
time is the independent variable are given herein.
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error

J(s) - i - s(t,)J2dt (A.2)

and roughness, which is defined for cubic and quintic splines as follows

StN d2 2

R 2 (s) = j dt (cubic spline) (A.3)
St dt s 2

R3(s) = tN d dt (quintic spline) (A.4)

Further background can be found in references [5, 11, 15].

In the vast majority of the smoothing spline literature, researchers try to find the

'best' smoothing spline fit by minimizing the quantity

J(s) = pE(s) + (1 - p)R(s)

where the smoothing parameter, p, controls the amount of smoothing. Note that p

must be chosen a-priori. If you pick p = 1, then minimizing J(s) requires minimizing

E(s), which happens when the spline passes through every data point. If you pick

p = 0, then minimizing J(s) requires minimizing R(s); roughness is zero for a cubic

spline that is composed of linear segments (and zero for a quintic spline composed of

quadratic segments). For any p E [0, 1], there exists a unique spline that minimizes

J(s) [5]. Let us call this problem of identifying the best p and minimizing J(s) the

'deBoor formulation'.

Several researchers have developed numerical procedures to identify the 'best'

smoothing parameter for a given data set (e.g. [14], [3] [2], [16], [7], [9], [6], [17], [12]).

However, to the author's knowledge, none of the codes developed therein have been

implemented in MATLAB, which is widely-used for experimental data post-processing

and analysis.

One freely-available tool is an implementation of one of deBoor's codes in the

MATLAB function csaps(t, y), which attempts to choose the optimum p and then
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determine the spline which minimizes J(s). The solution of the deBoor problem in

csaps requires solving a linear system of equations whose coefficient matrix has the

form p - A + (1 - p) - B, where the matrices A and B depend on the data. The

default value of the smoothing parameter in csaps is chosen such that p -trace(A) =

(1 - p) -trace(B) [4]. This ad-hoc method for selecting p often results in inadequate

smoothing.

This paper is motivated by the poor performance of csaps and the lack of any

alternative implemented and freely-available for use in MATLAB. The implementa-

tion of the method described herein has been done in MATLAB, but the theoretical

results and methodology can be implemented in any other programming language, if

researchers desire to do so.

Our approach to the spline fitting problem follows Reinsch [10]: We choose an

error tolerance, E, and find the spline with the least roughness, given that the error

must be less than or equal to this error tolerance:

minimize R(s)

requiring E(s) < E

One can show that this roughness minimization problem, hereafter referred to as

the 'Reinsch formulation', is equivalent to minimizing J(s) in the above 'deBoor

formulation' [5]. Note that E = 0 in the Reinsch formulation is equivalent to p = 1

in the deBoor formulation, and E -- oc in the Reinsch formulation is equivalent to

p = 0 in the deBoor formulation. An implementation of the Riensch formulation is

available in MATLAB; the function spaps(t, y, E) returns the smoothing spline, s(t),

that has the least roughness possible, given that the error must be less than or equal

to the given tolerance, E. The problem now is to choose the 'best' error tolerance,

E, for a given data set.

The Reinsch problem, as implemented in spaps, provides a relationship between

minimum roughness and error tolerance, R(E). One could evaluate spaps(t, y, E)

for several values of the error tolerance and compute the roughness of each resulting
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spline. In doing so, one would generate an 'efficient frontier' of smoothing splines

that are viable candidates for the best fit. For any given error tolerance, splines exist

with more roughness than the one on the R(E) frontier, but these are undesirable.

We find that there exists a critical error tolerance, Ecr, which can be used to

identify the 'best fit' spline. For error tolerances greater than Ecr, a spline fit to noisy

data will still be smooth. For error tolerances less than Ecr, the minimum-roughness

spline is still very rough, since it must follow very closely to the error-ridden data

points.

In this paper, we present a method for selecting the 'best' smoothing spline by

identifying the critical error tolerance on the R(E) frontier. This 'best' spline fit is

the one that most closely follows the true function, y(t); it has the minimum error

possible and as much of the roughness of y(t) as possible, without capturing any

roughness due to the noise in the data.

The remainder of the paper is parsed into four sections: analytical example, al-

gorithm summary, experimental example, and conclusions. The algorithm described

herein has been implemented in MATLAB, and the code is available from the first

author.

A.2 Analytic example

The solution of the Reinsch problem for several error tolerances produces an efficient

frontier of smoothing spline choices. For a given error tolerance, no spline exists with

less roughness than the spline represented by the point on this frontier. In this section,

we consider an analytic example, and we examine the efficient frontier of roughness

versus error tolerance. The shape of this frontier will allow us to determine the best

smoothing spline. Since the true function is known in this example, we can compare

our spline fits to the true function.

Consider noisy "experimental" data constructed using the function y(t) = e- t

sin(t) and normally-distributed "measurement error" with zero mean and standard
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Figure A-1: (a) Example analytic function y(t) = e - t sin(t) and noisy 'data' y(t) =

y(t) +n(0, e2) with c = 10- 2. (b) Roughness, R 3, versus error tolerance, E, of quintic

splines found by solving the Reinsch problem. Note: each point represents a particular

spline fit. The roughnesses of the spline fits to the analytic data, '*', asymptotically

reach the analytically-computed roughness of y(t), whereas the roughnesses of the

spline fits to the noisy data, '*', follow this trend for E larger than a critical error

tolerance, Er, but increase several orders of magnitude for E < Ecr. (c) Selected

splines fit to the analytic data. (d) Selected splines fit to the noisy data. Spline n2 is

the fit with the smallest error tolerance that still mimics its corresponding spline fit

to the analytic data.

deviation, 6. That is,

y(tj) = e - t "i sin(ti) + N'(O, e2) (A.5)

with ti = i -At and i = 1... N. These data are shown in figure A-la, with C = 10- 2,

At = 10-2, and N = 103.

By evaluating spaps(t, , E) for several error tolerances, one can determine the

relationship between R and E for the frontier of least-roughness quintic smoothing

splines. Two such frontiers are shown in figure A-lb, one corresponding to splines fit
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to the noisy c = 10- 2 data ('*'), and one corresponding to splines fit to the analytic

y(ti) data ('.'). One striking feature of the c = 10-2 frontier is that there is a kink

at E = 1.3 10- 3.

There are three interesting regions of the R(E) frontiers in this example, namely

E > 2.5. 10-2, 1.3. 10- 3 < E < 2.5. 10-2, and E < 1.3. 10- 3. For E > 2.5. 10- 2,

roughness is zero, since the smoothing spline is allowed such a large error that it can

be composed of segments which have no roughness. As E is decreased from 2.5 -10-2

to 1.3 - 10- 3, the resulting smoothing splines are required to pass more closely to the

given data. In doing so, each successive spline captures more of the roughness of the

true function. This is illustrated by splines al and a2 in figure A-1c and splines n1

and n2 in figure A-1d. Note the similarity between the spline fits to the analytic data

versus the noisy data; splines al and n1 look virtually identical, and splines a2 and

n2 look quite similar as well. These figures show that for error tolerances larger than

the critical error tolerance (Ecr = 1.3 -10- 3 in this example), a spline fit to noisy data

is quite comparable to a spline fit to the analytic data.

For error tolerances less than the critical value (i.e. in the region E < 1.3. 10- ), a

smoothing spline fit to noisy data is now required to follow the data so closely that the

measurement error is captured by the smoothing spline. In other words, the spline is

not permitted enough error tolerance to ignore the measurement error. Consequently,

many wiggles are introduced into the spline fit, and the roughness increases by ten

orders of magnitude over a relatively small range of E. Splines a3 and n3 (shown in

figures A-1c and A-1d) were computed for an error tolerance just less than that of

Ear. Note that spline a3 follows the analytic y(t) function more closely than spline

a2, whereas spline n3 is quite noisy, because it is attempting to follow the noisy data.

Smoothing spline n2, as well as its first three derivatives, are compared to the

analytic function in figure A-2. The spline fit itself lays nearly on top of the analytic

function in figure A-2a, and the first two derivatives are also quite accurate. The

second derivative does not capture the nature of the analytic function near time

t = 0, because the third derivative of the analytic function is non-zero at that time,

and one requirement of the quintic spline fitting procedure is that the third derivative
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Figure A-2: Comparison of the analytic function y(t) = e-t -sin(t) and spline fit n2

(see figure A-1), as well as their first three derivatives with respect to time.

is zero at the endpoints. If one desires to accurately represent the third derivative at

the endpoints, a spline of higher degree than quintic must be used.

The results shown in figures A-1 and A-2 indicate that the 'best' smoothing spline

corresponds to the one for which E = Ecr. This spline has the minimum error

tolerance, without the introduction of much roughness due to measurement error.

We define Ecr as the error tolerance for which the R(E) frontier has its maximum

positive curvature; this definition allows one to automate the process of determining

Ecr, as will be discussed in section A.3.

A.2.1 Roughness and Error scaling

Why, in this example, is the critical error tolerance Ecr = 1.3. 10-3, and why is the

maximum roughness R3,max = 3.1 -1010? What would happen if we had 'measurement
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Figure A-3: (a) Example analytic function y(t) = e- t . sin(t) and noisy 'data' (t) -
y(t) + V(0, 2 ) with E = f10

- 1, 10- 2, 10-3}. (b) Roughness of quintic splines, R3,
versus error tolerance, E.

error' with standard deviation, say = 10- 3 or 10-1?

Example data with measurement error, E = {10 - 1, 10- 2, 10-3}, and their cor-

responding R(E) frontiers are shown in figures A-3a and A-3b, respectively. The

E = 10- 2 data is the same as figure A-1. The E = 10- 3 data have a lower critical error

tolerance than the E = 10-2 data, as shown in figure A-3b. The e = 10-
3 data more

accurately represent the analytic function than the e = 10-2 data, and as a result,

the spline fit to the e = 10- 3 data at its critical error tolerance more accurately rep-

resents the analytic function than the spline fit to the e = 10-2 data at its critical

error tolerance. The R(E) frontier corresponding to the E = 10-1 data has no kink,

since the noise level is so large that the analytic function cannot be resolved from

these data.

To develop scaling arguments for the critical error tolerance and maximum rough-

ness, consider a hypothetical data set, y(ti) = (-1) -e with t - i -At and i = 1 ... N,

as if the true function were y(t) = 0 and this data set represents measurement noise

in an average sense.

The critical error tolerance is the minimum error with which the spline still rep-

resents the true function (i.e. s(t) 0). Thus, the critical error tolerance scales as

Ecr ]_ i Y(ti) - 012 drt , N 2At (A.6)
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In our analytical example, N = 103, e = 10-2, and At = 10-2, so by (A.6), Ecr

103 . 10- 4 . 10- 2 = 10- 3 , which agrees with the computed value of Ecr = 1.3 - 10- 3

up to an 0(1) constant. Note that for the E = 10- 3 data, (A.6) predicts Ecr - 10- 5 ,

which also agrees with the computed value of Ecr = 1.3. 10- 5 shown in figure A-3.

The maximum roughness occurs when the spline passes through every data point.

To scale the maximum roughness, we need to scale the second and third derivatives,

which we can do using the forward divided difference formulae on our hypothetical

error data set

d2s(ti) Si+2 - 2Sil + S 4E
dt2  At At 2

d3s(ti) S,+ 3 -
3 Si+2 + 3si+l - si 8 (A8)

dt3  At At3

Thus, the maximum roughness scales by

JtIN 2 2 4c 2

R 2 ,max 2- dt N At = 16NAt-3c2  (A.9)

R 3 ,max- i2 dt N At = 64NAt- 562  (A.10)
t3 At 3

For our example E = 10-2 data, (A.10) predicts R 3 ,max ~ 64.103.1010. 10-4 = 6.4 1010,

which agrees with the computed value of R3,max = 3.1 - 1010 up to an 0(1) constant.

To improve upon the roughness scaling formulae (A.9) and (A.10), consider the

following Monte Carlo experiment. Create a data set of Gaussian noise, where y(ti) =

.(0, 62), again ti = i - At and i = 1... N, and the true function is y(t) = 0, as with

our scaling arguments. Now, fit a natural interpolating spline through that data

(E = 0), and compute its roughness. By repeating this procedure several times, with

several different N, e, and At, we observe that on average

R 2,max e 36NAt-3 c2  (cubic spline) (A.11)

R 3,max r 31NAt - 5E2 (quintic spline) (A.12)

Surprisingly, the front-factors in formulae (A.11) and (A.12) appear to be insensitive
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Figure A-4: (a) Roughness, R2 , versus error tolerance, E, of cubic splines fit to the
example c = 10- 2 data. The spline fit by csaps has E = 2.9 -10-4 and R 2 = 2.5. 105.

(b) The spline fit by csaps is quite rough, whereas spline 4 smoothly approximates
the analytic function.

to probability distribution. To show this, one may repeat this computational exper-

iment, this time drawing the random numbers from a uniform distribution on the

range v' -[-1, 1]. (The front factor, v/e, makes this probability distribution have a

standard deviation of E, which is equivalent to the above normal distribution.) If one

repeats the Monte Carlo experiment with the uniform distribution, one finds that the

roughness formulae (A.11) and (A.12) still hold true. The fact that the front-factors

in (A.11) and (A.12) are insensitive to error probability distribution means that no

matter how error actually is distributed, (A.11) and (A.12) still give a good estimate

of the maximum roughness of the data. More importantly, since R2,max and R3,max

can be computed for an experimental data set, equations (A.11) and (A.12) can be

used to estimate the measurement error!

A.2.2 Comparison between csaps and the present method

An efficient frontier of minimum roughness cubic splines (fit to the e = 10-2 data)

versus error tolerance is shown in figure A-4a. It exhibits a kink at, Ecr = 1.3 - 10-3
,

which is the same critical error tolerance as with the quintic smoothing splines (see

figure A-lb). This is to be expected, since the critical error tolerance scaling equation

(A.6) does not depend on fit type. This kink allows one to select 'spline 4' as the
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Figure A-5: (a) Predictive error, P, versus error tolerance, E, of quintic splines fit to
the example e = {10 - 1 , 1, 10 10- 3} data. (b) Predictive error versus error tolerance
of cubic splines. The spline fit by csaps to the e = 10-2 data has E = 2.9 - 10-4 and
P = 4.8 - 10- 4 , and spline 4 has E = 1.3 - 10- 3 and P = 2.7 - 10- 4 .

best fit to the data using cubic smoothing splines, which yields a smooth curve in

figure A-4b.

Figure A-4 illustrates that our method fits a smooth spline to the noisy data,

whereas the present implementation of the MATLAB function, csaps, does not. In this

case, the smoothing parameter selected by csaps corresponds to an error tolerance

lower than the critical value, which is why the csaps fit does not smooth the data

adequately.

On a side note, the maximum roughness predicted by (A.11) is R 2,max . 36. 103.

106 . 10 - 4 - 3.6 . 106, whereas the maximum roughness of these cubic spline fits to

our noisy (e = 10- 2) data is R 2,max = 4.0- 106, which is about 10% larger than the

predicted value.

A.2.3 Predictive error

Let us now turn our attention to the spline predictive error, P, which is defined as the

integral of the squared deviation between the smoothing spline and the true function:

P(s) = f ly(t) - s(t)12dt (A.13)
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Since we know the true function in our analytical example, we can compute P for

each spline on the R(E) frontier. Plots of P versus E for the example analytic data

with three noise levels, E = {10 - 1, 10- 2, 10-3}, are shown in figure A-5. These plots

show that, for both noise levels, e = {10 - 2, 10-3}, and for both cubic and quintic

splines, the spline with the critical error tolerance has nearly the minimum predictive

error. The spline with the minimum P has slightly more roughness than the spline

corresponding to Ecr; thus, our definition of Ecr strikes a balance between minimizing

predictive error and minimizing roughness.

These figures show that the 'best' spline fit, which is the one that balances both

having the minimum predictive error and having the minimum roughness, is indeed

the spline fit given by solving the Reinsch problem with an error tolerance of Ecr. In

the next section, we describe a method for automating the process of determining Ecr

and finding the best fit spline for a given data set.

A.3 Algorithm

The 'best' smoothing spline is the one generated by solving the Reinsch problem with

E = Ecr, which corresponds to the point on the R(E) frontier that has the maximum

positive curvature in log-log space. To find this point of maximum curvature, we

employ a procedure inspired by the 'bisection method' of root finding. The general

idea is to create a stencil of trial E values, solve the Reinsch problem for each E

in the stencil, compute the roughness of each resulting spline, use these roughness

values to estimate the curvature of the R(E) frontier, select the stencil point with the

maximum positive curvature, refine the resolution of the stencil in the neighborhood

of the selected point, and iterate until the stencil becomes acceptably fine.

In order to have three choices for the point on the R(E) frontier that has maximum

positive curvature, we employ a five-point stencil. The endpoints of this stencil must

bound Ecr, and the central point of the stencil should be at an educated initial guess

for Ecr. We can make such a guess by combining equation (A.6) with (A.11) or (A.12)
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to yield

es R 2 ,max (cubic spline) (A.14)
Ecr,guess - 36/t - 4

Er,guess R,ma (quintic spline) (A. 15)
crguess -31 At - 6

where R2,max or R3,max is found by computing the roughness of the natural interpo-

lating spline fit through the data.

In order to determine the endpoints of the initial E stencil, we must bound error

tolerance. The lower bound for E is, of course, zero. However, it is more practical

to implement a finite value, say 10- 14, which is two orders of magnitude larger than

the typical machine zero and yields stable behavior. An upper bound for the error

tolerance, Eub, in the cubic/quintic case is the error tolerance that allows spaps to fit

the data using linear/quadratic piecewise polynomials, which have zero second/third

derivative and hence zero roughness. Since it is possible to fit data with less error us-

ing piecewise linear/quadratic polynomials rather than using a single linear/quadratic

polynomial fit to the entire data set, the single polynomial can be used to compute

an upper bound for the error tolerance. Thus, Eub is found by performing a lin-

ear/quadratic least squares fit to the entire data set and computing the error of that

curve.

Using the upper and lower bounds as the endpoints of the initial E stencil, a

five-point stencil is generated with

E = 10-14

E2
1 = 10E-14 - Eaguess

= Ecr,guess

El = /Ecr,guess ub

E = Eub

where the superscript indicates iteration number and the subscript indicates stencil

point number. The value of E2 is set such that loglo E2 = (loglo E + loglo E3) (i.e.2 11 3\IC
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log10 E2 bisects its neighbors).

The five points on the R(E) frontier corresponding to this initial stencil are com-

puted as follows: for each E) (j = 1, ... , 5), find the corresponding smoothing spline

using spaps(t, y, EJ), compute its derivatives, and compute the roughness, R. The

curvatures (in log-log space) at points j = 2, 3, and 4 are estimated using divided

differences

loglo(R+ 1 ) -lo g l o (R) )-glo lo (R 1

[d(loglo R) 10 (E'+ )-1oglo(E) loglo(E1)-loglo(E- 1 ) (A.16)
d(loglo E) E) E=E (l 1 0 EJgl0E ) - log(E_)

The stencil is then refined in the neighborhood of the point that has the maximum

curvature. If the maximum curvature lay at point p in the kth iteration, then the

stencil for the (k + 1)th iteration would be:

Ek+ 1 =Ek1 p-1

Ek = pEk
Ek+l Epk

E k+1 k

5 E+ 1

Such that point Ek becomes the center of the new stencil, and points E k +1 and E k+ 1

bisect points from the previous stencil in log space.

In the bisection method, a three-point stencil is refined by bisecting one of the two

stencil intervals. In the present method, our five-point stencil is refined by bisection

two of the intervals: since we perform two bisections during each stencil refinement,

we call this the double-bisection method.

The double-bisection procedure iterates until the stencil is deemed fine enough.

In the present implementation, when the criterion

loglo Ek - loglo E k
l< E1%

log10 E4
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is satisfied, E k is selected as the error tolerance corresponding to the 'best' fit smooth-

ing spline. For N - O(10 ) and 6 - 0(10-2), this typically requires less than ten

double-bisection iterations, which corresponds to solving the spaps problem for less

than 25 smoothing splines in total. Evaluating spaps is computationally-intensive and

accounts for most of the computing time of the algorithm. In the double-bisection

algorithm, three of the points from the previous stencil carry over, so only two new

smoothing splines need to be determined during each iteration.

Using the present double bisection procedure automates curve fitting process. Of

course, if a researcher were to fit a smoothing spline manually, it would be prudent

to compute the entire R(E) frontier and to manually choose a spline near the kink in

the curve.

One final note: A less aggressive method for choosing the smoothing spline would

be to choose the spline at which the R(E) frontier has zero curvature. Since the R(E)

frontier should have negative curvature for the entire time it follows the true function,

if the experimental data R(E) frontier had zero curvature, this would indicate a

departure from the true R(E) frontier. Practically speaking, automating this method

may be less stable than the 'maximum curvature' method above, and this is one point

of ongoing work.

A.4 Experimental example

To demonstrate the utility of the present spline fitting method, consider a laboratory

experiment in which a billiard ball falls into a quiescent pool of water, as shown

in figure A-6. In this prototypical problem, we need to determine the velocity and

acceleration of the ball using position data collected during the experiment. In this

case, the velocity and acceleration are complicated functions of time, so simple time-

averaged rates of change do not represent the data adequately. Instead, we must fit

a curve to the position data in order to determine the instantaneous rates of change.

The goal of the experiment is to compute the force coefficient (i.e. the net hydro-
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Figure A-6: A billiard ball falls into a quiescent pool of water. Position, y, is measured
in each timestep, t, by inspection of the images.

dynamic force, normalized by the dynamic pressure force [8])

F(t)CF(t) = (A.17)Cf(t) 1 P[V(t)]2A

where F(t) = ma(t) + mg is the net force on the billiard ball, m = 0.17 kg is the ball

mass, a(t) = () is the instantaneous acceleration of the ball, g = 9.8 m/s 2 is the

acceleration due to gravity, p = 1000 kg/m 3 is the density of water, V(t) = d() is

the instantaneous velocity of the ball, A = 7 (4)2 = 0.0026 m 2 is the cross-sectional

area of the ball, and d = 0.057 m = 2.25 inches is the ball diameter.

In order to compute the force coefficient accurately, one must accurately evaluate

the first and second derivatives of the y(t) position data. This physics problem

demonstrates the utility of the present curve fitting methodology.

A.4.1 Experimental details

In the present experiment, a high-speed digital camera acquired N = 230 still images

at 1000 frames per second (At = 0.001 s) as the ball plunged into the basin.

The position of the center of the billiard ball, y(t), is measured in meters above

the quiescent free surface, and time, t, is measured in seconds after impact (i.e. t = 0

when the center of the billiard ball is at the quiescent free surface height). Note that
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the timing of the camera and thus, the time of the measurement, is assumed to be

exact.

The following is a summary of the procedure used to acquire the y(t) position data

from the images with sub-pixel accuracy; this procedure is explained in detail in [13].

First, the selected image is cross-correlated with a template image of the billiard ball

in a known location. This yields a 'cross-correlation value' for each possible y-pixel

position. Second, the 'cross-correlation value vs. y-pixel position' data are fit with a

Gaussian curve2, and the peak of this Gaussian is assumed to lie at the y position of

the ball. Finally, the y data are normalized by the optical zoom (0.762 mm per pixel)

to give measurements in physical units.

The experimental y(t) position data are shown in figure A-7a. (Note that the

abscissa represents time, so this is the trajectory of the ball in time. The ball falls

nearly straight down in space.) The data are very well resolved in time and evolve

smoothly; every fifth data point is shown.

A.4.2 Application of the present spline fitting method

The present spline fitting method is now used to determine the velocity and acceler-

ation from the position data. The minimum roughness versus error tolerance frontier

is shown in figure A-7b for quintic splines. Quintic splines must be used in order to

obtain a smooth second derivative (i.e. acceleration). This chart shows a kink at

critical error tolerance Ecr = 2.5 . 10- 9. The roughness increases six orders of magni-

tude as E is decreased below Ecr. The maximum roughness, which corresponds to the

interpolating spline (E = 0), is R 3 ,max = 1.7 - 1010. It is expected that the smoothing

spline corresponding to the critical error tolerance contains little of the noise due to

the measurement error and best captures the true y(t) curve.

The maximum roughness equation (A.12) and critical error tolerance equation

(A.6) can be used to derive estimates of the error in our experimental measurement

2Here, we know that the cross-correlation procedure should produce a Gaussian 'cross-correlation
value vs. y-position' curve, so it is appropriate to choose the form of the curve fit.
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Figure A-7: (a) Position of the billiard ball as a function of time, (t). Every fifth data
point is shown. (b) Roughness of quintic smoothing splines, R 3 , versus error tolerance,
E. The kink in this R(E) frontier is at critical error tolerance, Ec, = 2.5 .10-9

of ball position.

S Rmax = 0.048 mm
31NAt-5

EcrS~ N = 0.11 mm
NAt

These estimates agree up to the 0(1) scaling factor in (A.6) and are equivalent to

about 0.1% of the ball diameter. Also note that 0.11 mm = 0.14 px, so this estimate

agrees with the assertion that our experimental procedure has sub-pixel accuracy.

The selected spline fit and its derivatives are shown in figure A-8. Note that

y position is defined positive upwards: The ball falls downwards, so its velocity is

less than zero, and it decelerates downwards (i.e. it accelerates upwards), so its

acceleration is greater than zero. The smoothing spline, as well as its three derivatives,

all evolve smoothly in time, which is expected in a physical system which evolves

smoothly. The only physically unrealistic feature of these curves is the slope of

the acceleration at time t = 0 (and therefore, also the value of s"'(t = 0)). This

implies physically that the net force is unchanging at the moment of impact, which is

obviously not true. This result occurred because the quintic spline fitting procedure

requires that s"'(t) = 0 at the endpoints. Therefore, these portions of the s"(t) and
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Figure A-8: The selected smoothing spline fit, s(t), and its derivatives s'(t), s"(t),
and s"' (t). Note that the ball experiences more than 4g - 39 m/s2 acceleration at
impact: An aggressive roller coaster may subject its passengers to 4g at the bottom
of the first drop [1].

s'(t) curves are simply ignored. The velocity and acceleration can now be used to

compute the net hydrodynamic force on the billiard ball.

Figure A-9 shows the force coefficient during the water entry event 3. For reference,

the force coefficient for a ball of the size and speed in this experiment, when immersed

in a free stream of steadily-flowing water, is about 0.2 - 0.5 [8]. The data in figure A-9

show that the force coefficient increases from initial water impact until time t = 83 ms.

Between 83 ms and 113 ms, the force coefficient drops dramatically during the cavity

pinch-off process; cavity pinch-off occurs at t = 98 ms (just after the sixth image

31t is misleading to examine the force directly, because as the ball slows down during the course of
the experiment, the expected force decreases. Thus, a lower force at later times during the experiment
(when the ball is going slower) does not necessarily imply that the ball is 'more streamlined' then.
The astute reader will note that force is linearly related to acceleration, so graphs of these two
quantities have the same form.
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Figure A-9: Force coefficient versus time for the billiard ball water entry experiment:
(A) local maximum force coefficient; (B) pinch-off; and (C) local minimum force
coefficient.

shown in figure A-6). A local minimum of force coefficient occurs at t = 113 ms,

as the lower cavity sheds from the sphere and begins to disintegrate into bubbles.

Further discussion of the fluid dynamics can be found in [13].

To the authors' knowledge, this is the first published data of force coefficient during

cavity impact for times when the ball is deeper than one radius below the surface.

Using the present spline fitting method was critical in obtaining reliable velocity and

acceleration data, which made these force coefficient predictions possible.

A.4.3 A check for the derivatives s'(t), s"(t), and s"'(t)

It is desirable to perform a check on the derivatives of the smoothing spline, which we

can do by comparing them to estimates made from the noisy experimental data. For

this, we need a regression technique which behaves like a non-parametric model --

one in which the fitting parameters are free to change along the length of the curve.

As a check of the first derivative, a line may be fit to a small window of data using

least squares regression. The slope of this line represents the 'slope' of the data at the

center of the window4 . Mathematically speaking, to find the first derivative of y(t)

data at time, t., one can fit a line (alt + a2) to the data within the window [ti-,, ti+,].

4 This is equivalent to performing a Taylor series expansion about the center of the data window.
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Table A. 1: Windowed least squares estimates of the first, second, and third derivatives
of noisy y(t) data.

windowed least squares fit derivative estimate

linear: alt + a2  ywls(t) e a1

quadratic: alt2 + a2t + a3  y ls(t) 2 al

cubic: alt3 + a2t2 + a3t + a4 y ts(t) 3 2 -al

The width of the window is 2w+ 1 data points, where a larger w yields more smoothing

of the data but a less localized estimate. The first derivative of this linear polynomial

(namely aL) is the estimate of the first derivative of the data at time, ti. This process

would be repeated with the window centered at each t, 4 1l _ ti < tN-w to obtain the

derivative estimate for each time. Since this procedure involves performing a least

squares fit to a small window of data, we call this the windowed least squares (WLS)

method.

Higher order derivatives can also be estimated using windowed least squares. At

each discrete time, a least squares linear polynomial fit gives an estimate of the first

derivative at that time, a quadratic polynomial fit gives an estimate of the second

derivative, a cubic polynomial fit gives an estimate of the third derivative at that

time, and so on. The windowed least squares fit types and derivative estimates

are summarized in table A.1, and the estimates of the first and second derivatives

are shown in figure A-10. These data agree quite well with the derivatives of the

smoothing spline, as expected.

The estimates of the second and third derivatives obtained using windowed least

squares can also be used as a check of the roughness of the true function:

N-w

R2,wls(S) = E I lys(ti)12 At (cubic spline) (A.18)
i=l+w

N-w

R 3 ,wls(S) = E IYs(ti)j 2 At (quintic spline) (A.19)
i=l+w

It is expected that the roughness of the true function and hence, the roughness of the
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Figure A-1: Velocity, y'(t), and acceleration, y"(t), computed by: finite difference
~~* windowed least squares; third-order polynomial least squares fit to the entire data

~~-set; seventh- -7th order polynomial least squares fit to the entire data set; and the selected
-smoothing spline, for which E Ecr.or (A.19).(b)

The windowed least squares third-order polynomial least squares fit to the derivatire dataof

the function, because the generrder polynomial least suares fit to the entire data surrounding each point is capturedsmoothing spline, for whica smooth function as the window is moved along the data set. It

best fit smoothince the wsplindoe, would be approximatedly equalyond to the value given by (A.18)

The windowed naleast squarethods method provides a good estimate ofng the deritvatives are also shown in fig-

urby the A-1 least squares regression t tehnique. However, this metho, and finite differs not ensure thats.he derivatives a smooth function as the windo is moved along the data are inherently ques-It

tialso fails to predictause the derivative near the end of the ddata intset. Clearly, one

tca N-w), sincme that the dynamics of our billiarextend balleyond the durin terval of available(e.g. durinata.

cavity forma question) able mthods for estiatige same as the dynamics during later tives are also shown in fig-y
ure A-10: least squares regression to the entire data set, and finite differences.

The derivatives of a least squares regression to all the data are inherently ques-

cannot assume that the dynamicsl our billiard ball during early times (e.g during

collapse). Fitting a single polynomial to all of the data implicitly demands that the

physics at all times be the same, which is clearly not true in this experiment.

It would be appropriate to fit a polynomial to all of the data (using least squares)

if the physics were the same throughout the experiment and the form of the true
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function is known (e.g. a quadratic polynomial fit to position data of a ball falling in

a vacuum). However, if the form of the true function is unknown (which is usually the

case in scientific research), then this method can give misleading results. For example,

both 3rd-order and 7th-order polynomials fit well to all of the position data in the

billiard ball example problem. However, their second derivatives are quite different,

and neither agrees with the smoothing spline prediction or windowed least squares

estimate (see figure A-10b).

Finite difference methods amplify measurement noise, yielding poor estimates of

derivatives. For example, the central divided difference formula predicts

dy(ti) i+1 - 1i-1
dt 2At

y(ti+) - y(ti- 1 ) Et+1 - Ei- + O(At 2)
2At 2At

dy(ti) + Edy(ti) +O t + 0 (At 2) (A.20)

where O( ) denotes the order of magnitude of the error in the prediction. For a small

timestep, At < 1, the measurement error, e, is amplified. The noise is amplified again

upon taking each successive derivative, yielding derivatives with unsatisfactorily-large

error on the order of

dt At dt2  At 2  dt3 At3

Similarly, all finite difference methods amplify measurement noise, even when a larger

time step is used5 . This error amplification is quite noticeable in the acceleration

estimates in figure A-10b.

5 Even if n timesteps are skipped on either side of the data point, the central difference formula
predicts

dy(t,) _ y(ti+n) - y(t-n) + o + (n 2

dt 2nAt nAt

which may never have satisfactorily-small error.
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A.5 Conclusions

We have shown that performing data regression using smoothing splines is the best

method for predicting the derivatives of noisy experimental data. It agrees well

with the windowed least squares method, which is a good means to approximate

the instantaneous derivatives. Other methods, such as finite differences or fitting a

polynomial to the entire data set yield poor estimates of the derivatives.

Finding the derivative of noisy data amounts to fitting a curve which captures

most of the behavior of the true function that the data represents. The spaps(t, , E)

function, available in the MATLAB Spline Toolbox, fits a smoothing spline to the

given (t) data, with error at most equal to E. The method described herein is a

procedure for selecting the E value which produces the 'best' spline fit, one which

follows the roughness of the true function but does not introduce roughness due to

the measurement error.

The present computational tool is based on two critical insights. First, by sys-

tematically exploring the R(E) relationship implicit in the Reinsch problem, we dis-

covered that the R(E) frontier has a kink at a critical error tolerance, Ecr. Second,

we showed both graphically and with scaling arguments that Ecr corresponds to the

spline with the minimum error to the data possible without introducing roughness

due to the noise in the data. In our analytical example, we also showed that the

spline corresponding to Ecr has nearly the minimum possible predictive error, P,

which supports our claim that E = Ecr produces the best possible smoothing spline.

The critical error tolerance corresponds to the point on the R(E) frontier with

the maximum positive curvature (in log space). The present computational tool

works by finding this critical error tolerance for a given data set, using the double-

bisection procedure developed herein. For many experimental measurements, with

high-precision (small c) and high-resolution (large N), the present method robustly

smoothes the data and yields the desired instantaneous derivatives.
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A.6 Appendix

A.6.1 Non-dimensional equations

Readers who prefer to consider the arguments made herein using non-dimensional

quantities may normalize the data as follows:

Y - E =t-t1

Y Y Y T

where Y is a reference length scale (such as the total distance traveled by the billiard

ball) and T = tN - tl is the duration of the measurement times.

In non-dimensional form, the experimental data are

y = ( ) + 2i (eqn. A.1)

The non-dimensional error tolerance and roughness are

E=
Y 2T

2 = R 2T 3
Y2

R 3T 5

3 y2

- S(^)(2di
fo1 d2 i 2

1 d2A 3

dp3 di

(eqn. A.2)

(eqn. A.3)

(eqn. A.4)

and the non-dimensional critical error tolerance and maximum roughness are

Er cr "2
r Y 2T

R2,maxT 3

R2,max - 2,ma 36N 4 62

R3,max = R3max 31N 6 e2
Y2

(eqn. A.6)

(eqn. A.11)

(eqn. A.12)

These roughness formulae indicate that the total time interval, T, does not affect the

prominence of the kink in the R(E) curve; rather, the number of data points, N, and

the non-dimensional error, 2, affect the prominence of the maximum roughness due
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to measurement error, versus the roughness of the true function itself.

We can also show that, in non-dimensional terms, error is amplified when esti-

mating derivatives by finite difference schemes. The measured data have error on the

order of O(E). The central difference formula predicts

) + o + (AP)
dt 2At Ai

Since the non-dimensional time step is small, At = = < 1, measurement noise

is amplified by the finite difference procedure, O (i).

These non-dimensional equations show that as the temporal resolution of the mea-

surements increases (i.e. as N increases) and as the measurement precision increases

(i.e. as e decreases), the smoothing spline fitting procedure described herein becomes

more accurate.
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Appendix B

Bullet designs

This appendix includes all of the drawings for the individual bullet types that were
used in the bullet study.
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Made of Bronze

Weight - 40 grains = 2.592 grams
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SIZE DWG. NO.

A 12bronze
SCALE 2:1 WEIGHT: SHEET I OF 1

Bronze 0.12 in tip with 0.192 in angled shoulder.
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.
2.) Machined to fit bklunt end inside 0.22 caliber LR cartridge
Made of Aluminium

Weight - 40 grains = 2.592 grams
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SIZE DWG. NO. REV

Ntip_aluminiumt Q

A~rnAUnMs SCALE: 21 WEIGHT: SHEET 1 OF 1

Aluminum 0.13 in modified tip with two steps 0.15 in long.Figure B-4:



82
0C

a

0. 150

0 1 50 ±+0 001
0 000

0.315 -0.002

O D80 +0 002

1 .) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Steel

Weight - 40 grains = 2.592 grams
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SIZE DWG. NO.

A 13tipsteel
SCALE: 2:1 WEIGHT: SHEET 1 OF 1

Steel 0.13 in modified tip with two steps 0.15 in long.
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Figure B-5:
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Bronze

Weight -~ 40 grains = 2.592 grams 62,
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SCALE: 2: 1 WEIGHT: SHEET I OF 1

Bronze 0.13 in modified tip with two steps 0.115 in long.
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight - 40 grains = 2.592 grams
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Figure B-7: Aluminum 0.15 in tip with 0.22 in shoulder.
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1 .) Can be shorter or longer to make the weight as close to 40 grains as possible.
2.) Machined to fit blunt end inside 0.22 caliber LR cartridge
Made of Steel

Weight - 40 grains = 2.592 grams
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SIZE DWG. NO.

A 15steel
SCALE: 21 WEIKHT:

Steel 0.15 in tip with 0.21 in shoulder.

SHEET I OF 1

Figure B-8:
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Bronze

Weight - 40 grains = 2.592 grams

UOi&S O04PVOIE SPECFIEr

rivISC-4! Artlitr LOA~. *Ali

TrXc"' rult -trNCMVArr ":) t, nt YrIr

n o r L I Cr nrCMqAL *

"TPr riACr otCNAo * i

Pi A CATt

TITLE:

FPorMrTA$ AND CNf1iA &

C (741JriIrc III ItCr .r

LVA0.1140 1'. TM '. Ott M.-rrry r Z
Wstt, coVmon HAN'ta Htrt o

rnrr ot ourc u<PA a A Tf"47I IM4 M Sl

10UAC0 T
,,!JLJ*ICf 1
- ATtIA

11 *LT '.r

Q &.

SiZE DWG. NO.

A 15bronze
SCALE 2:1 WEIGHT:c, tic C &,rE A vio

3

SHEET 1 OF I

Bronze 0.15 in tip with 0.165 in shoulder.
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.
2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight - 40 grains = 2.592 grams
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A22aluminium
SCALE: 2.1 WEIGHT: SHEET I OF 1

Figure B-10: Aluminum 0.22 in tip with no shoulder.
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1.) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight ~ 40 grains = 2.592 grams
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SIZE DWG. NO.
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Figure B-11: Stee 0.22 in tip with no shoulder.
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1 .) Can be shorter or longer to make the weight as close to 40 grains as possible.

2.) Machined to fit bknt end inside 0.22 caliber LR cartridge

Made of Bronze

Weight -~ 40 grains = 2.592 grams
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SIZE DWG. NO.

A 22bronze
SCALE: 21 WEIGHT: SHEET I OF 1

Bronze 0.22 in tip with no shoulder.
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Figure B-12:
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1.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight - 40 grains = 2.592 grams
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06cauminumshoulder
SCALE: 2:1 WEIGHT: SHEET 1 OF 1

Figure B-13: Aluminum 0.06 in tip with no two shoulders.
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1.) Angle is -6.5 degrees.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight - 40 grains = 2.592 grams
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Bronze 0.06 in tip with shoulder and taper.
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1.) Angle is -15.8 degrees.

2.) Machined to fit blunt end inside 0.22 caliber LR cartridge

Made of Aluminium

Weight - 40 grains = 2.592 grams
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Figure B-15: Bronze 0.07 in tip with taper only.
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