
Optimal Planning with

Temporal Logic Specifications

by

Sertac Karaman

OF TECHNOLOGY

JUN 62009

LIBRARIES

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
ARCHIVES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

© Massachusetts Institute of Technology 2009. All rights reserved.

Author............
Department of

Certified by...............

Certified by /

Mechanical Engineering
May 18, 2009

C>- Emilio Frazzoli
Associate Professor

Thesis Supervisor

John Leonard
Professor

Mechanical Enginpng Faculty Thesis Reader

Accepted by
David E. Hardt

Chairman, Department Committee on Graduate Students
Mechanical Engineering Department

Optimal Planning with

Temporal Logic Specifications

by

Sertac Karaman

Submitted to the Department of Mechanical Engineering
on May 18, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Most of the current uninhabitated Aerial Vehicles (UAVs) are individually moni-
tored, commanded and controlled by several operators of different expertise. How-
ever, looking forward, there has been a recent interest in multiple-UAV systems,
in which the system is only provided with the high-level goals and constraints,
called the "mission specifications," and asked to navigate the UAVs such that the
mission specifications are fulfilled. A crucial part in designing such multiple-UAV
systems is the development of coordination and planning algorithms that, given
a set of high-level mission specifications as input, can synthesize provably correct
and possibly optimal schedules for each of the UAVs.

This thesis studies optimal planning problems in a multiple-UAV mission plan-
ning setting, where the mission specifications are given in formal languages. The
problem is posed as a novel variant of the Vehicle Routing Problem (VRP), in which
temporal logics and process algebra are utilized to represent a large class of mis-
sion specifications in a systematic way. The thesis is structured in two parts. In the
first part, two temporal logics that are remarkably close to the natural language,
namely the linear temporal logic LTLx and the metric temporal logic (MTL), are
considered for specification of a large class of temporal and logical constraints in
VRPs. Mixed-integer linear programming based algorithms, which solve these
variants of the VRP to optimality, are presented. In the second part, process al-
gebra is introduced and used as a candidate for the same purpose. A tree search
based anytime algorithm is given; this algorithm is guarranteed to find a best-first
feasible solution in polynomial time and improve it to an optimal one in finite time.

Thesis Supervisor: Emilio Frazzoli
Title: Associate Professor

Mechanical Engineering Faculty Thesis Reader: John Leonard
Title: Professor

Acknowledgments

First and foremost, I would like to thank my thesis advisor, Emilio Frazzoli, with-

out whose support not only this particular thesis, but learning all that I learned

throughout graduate school would have been virtually impossible. Together with

Emilio Frazzoli, I also would like to acknowledge Jonathan How, John Leonard,

Nancy Lynch, Asuman Ozdaglar, Seth Teller, and Alan Willsky, among many MIT

faculty, all of whom have been great mentors and most importantly a memorable

inspiration for my life after graduation. Knowing that it is far down the road, I

wish to become a researcher and a teacher like them one day in my career.

Apart from my thesis, I have worked in various projects with Jonathan How,

John Leonard, and Seth Teller. They all expanded my knowledge and my vision to

different horizons. I am very glad, I have had their support. John Leonard has also

been the mechanical engineering faculty thesis reader for this thesis, for which I

am very grateful.

Parts of this thesis was written in the Air Force Research Laboratory (AFRL) in

Dayton, OH, where I have been a visiting scholar for a couple of months. A large

part of this thesis could not have been written, if I have not been to the AFRL in

the summer of 2008. I am very grateful to Corey Schumacher and Siva Banda, who

had put a great effort to give me a place in the AFRL. I am also very grateful to

Steven Rasmussen, Derek Kingston, Ray Holsapple, Philip Chandler, and various

other coworkers in the AFRL. This thesis was shaped by their input, suggestions,

and long-lasting discussions with them.

I also would like to acknowledge Anouck Girard of the University of Michigan

and all her group. Their valuable comments and input to my work has been a

major driver for my research.

Even though it is impossible to list them all, I would like to thank my friends

I met at MIT and in Boston as well as my office mates both in the Laboratory for

Information and Decision Systems and the Computer Science and Artificial Intelli-

gence Laboratory. Some of them that have and will continue to have a remarkable

place in my life include Christiana Athanasiou, Amit Bhatia, Andrew Correa,

Michelangelo Graziano, Yola Katsargyri, Marco Pavone, Georgios Papadopoulos,

Navid Sabbaghi, Ariana, Christine, and Ricardo Sanfelice, Ketan Savla, Courtney

and Tom Temple, Kyle Treleaven, Matthew Walter, Beracah Yankama, and Yetkin

Yilmaz. I have shared my ideas with them, gotten their feedback, and shaped my

thesis accordingly. I am very grateful to them for their input and their friendship.

Finally, I would like to thank my parents and my brother. I know that my

mother deserves to see me graduate more than I do.

Contents

1 Introduction 13

1.1 Vehicle Routing Problem 15

1.2 Temporal Logics 16

1.3 Process Algebras 17

1.4 Contributions 18

1.5 Organization 19

2 The Vehicle Routing Problem 21

2.1 Preliminaries on Sequences and Graphs 21

2.2 VRP as a Graph-Theoretic Problem 22

2.3 Network Flow Formulation of the Vehicle Routing Problem 23

2.4 Set Covering Formulation of Vehicle Routing Problem 26

3 Temporal Logics 29

3.1 Transition Systems 29

3.2 The LTL x Language 31

3.2.1 Syntax of LTLx 31

3.2.2 Semantics of LTL x 32

3.3 Metric Temporal Logic 34

3.3.1 Preliminary Definitions 34

3.3.2 Syntax of M TL 36

3.3.3 Semantics of MTL 37

7

4 Vehicle Routing with Linear Temporal Logic Specifications

4.1 Vehicle Routing Transition Systems

4.2 Problem Definition

4.3 MILP Formulation of LTLx Specifications

4.4 Applications to Mission Planning Problems

4.4.1 The Network Flow Formulation

4.4.2 The Set-covering Formulation

5 Vehicle Routing with Metric Temporal Logic Specifications

5.1 Preliminary Definitions

5.2 Problem Definition

5.3 A MILP-based Formulation of VRPMTL

5.3.1 MILP Formulation of Atomic Propositions . . .

5.3.2 MILP Formulation of MTL Formulae

5.4 Multi-UAV Mission Planning Applications

6 Process Algebra

6.1 Preliminaries on Sequences and Trees

6.1.1 Sequences

6.1.2 Graphs

6.1.3 Trees

6.1.4 Binary Trees

6.2 Syntax of Process Algebra

6.3 Semantics of Process Algebra

6.4 Parse Trees of Process Algebra Terms .

39

.... 40

.... 43

.... 47

........ 53

........ 53

.. 62

77

S 77

S. 78

S. 78

S. 78

....... 79

....... 80

S 80

S 83

7 Vehicle Routing with Process Algebra Specifications

7.1 Objectives and Specificaitons

7.1.1 Atomic Objectives

7.1.2 Complex Objectives

7.2 Problem Definition

85

85

86

87

89

7.3 Tree Search Based Optimal Planning Algorithm 93

7.3.1 Structure of the Tree 94

7.3.2 Precedence of Atomic Objectives 95

7.3.3 Feasible Complete Schedules 97

7.3.4 Searching the Tree 99

7.3.5 Feasibility and Optimality 100

7.4 Example Scenarios and Simulations 103

8 Conclusions 105

A Proofs 109

A.1 Proof of Lemma 4.2.3 109

A.2 Proof of Theorem 4.3.2 109

A.3 Proof of Lemma 7.3.3 110

A.4 Proof of Theorem 7.3.4 111

A.5 Proof of Lemma 7.3.6 114

10

List of Figures

4-1 Map of the "Black-Hawk-Down" scenario 59

4-2 Simulations of the military scenario 65

4-3 Simulation results for the battle damage assessment scenario 66

5-1 Map of the example mission planning scenario. 73

5-2 Optimal scheduling for MTL specification 74

5-3 Optimal scheduling for MTL specification ' 75

6-1 The parse tree of the term (a + (b -c))lid. 84

7-1 Example schedules. Pairs of tasks and targets indicate the task being

executed at the corresponding time. The periods of traveling to the

target position are also shown. 92

7-2 Tree Structure for the rescue mission. The labels of edges are shown

on the nodes that they are directed to in order to make the visualiza-

tion more readable. 96

7-3 Scheduling that satisfies p = od - 104

12

Chapter 1

Introduction

Most of the current Uninhabited Aerial Vehicle (UAV) systems require several hu-

man operators with different expertise to operate a single UAV. However, looking

forward, multiple-UAV systems operated by a single operator are becoming a real-

ity due to the recent developments in the UAV technology. Since a single operator

cannot oversee and command all the UAVs individually, but can only provide the

system with a set of high-level goals, multiple-UAV systems have to be supplied

with effective planning algorithms, which automatically generate trajectories for

UAVs so as to fulfill these high-level goals. Moreover, one of the foremost advan-

tages of multiple-UAV systems has been the significant performance improvement

through cooperation; algorithms that can optimally exploit this property are fa-

vored in practice. Such multiple-UAV systems can provide several advantages

in both military and civilian applications, especially when the infrastructure is

weak and a diversity of capabilities (in terms of sensory and weapon systems) is

required. Optimal planning algorithms, which can handle complex constraints

and objectives, can contribute also to future logistics systems, where the variety

and complexity of operations play a crucial role. These logistics problems involve

scheduling of several deliveries, most of which take place in highly dependent

stages. The dependencies between the stages of a logistic operation may include

temporal constraints such as ordering of different events or logical constraints such

as having the chance to choose between different options. In such a scenario, plan-

ning algorithms equipped with natural interfaces can render specification of the

mission/operation fast and easy.

A large class of multiple-UAV missions, as well as other logistics problems,

can be modeled as Vehicle Routing Problems (VRP). Informally speaking, a VRP is

defined by a set of customers and a fleet of vehicles, and the objective is to find a path

for each vehicle in the fleet to visit all the customers so as to minimize a given cost

function. In the classical sense, the VRP formulations do not allow specification

of temporal constraints or high-level goals in a natural and formal manner. In

this thesis, temporal logics such as Linear Temporal Logic (LTL), Metric Temporal

Logic (MTL), as well as process algebras are studied for natural specification of

constraints in vehicle routing problems, with a special emphasis to applications in

UAV mission planning problems.

Linear temporal logics (e.g., LTL and MTL) allow mission specifications that

combine temporal and logical constraints: some simple examples of such temporal

reasoning include specifications like those appearing in "pick-up and delivery"

problems ("service Customer 1 and then Customer 2, in this order"), or priority

constraints ("only service Customer 3 if either Customer 4 or Customer 5 has already

been serviced"). In the UAV mission planning context, these constraints can model

in a very natural way rules of engagement and multi-platform coordination ("first

track a target, then engage it, then assess the damage"), where different tasks

must be carried out in a specified order, possibly by different vehicles, as well

as conditional plan execution, such as "approach the target only if the SAM site

protecting it has been neutralized."

An alternative to linear temporal logics is process algebra, which can handle

specification of ordering and logical constraints. Using process algebra, a smaller

set of constraints and objectives can be specified, however, the planning algorithms

can be computationally more effective. Moreover, in the Artificial Intelligence

literature, process algebras are generally associated with graphical models (such

as in Hierarchical Task Networks [21]), which make them easier to visualize.

This thesis is structured in two main parts. In the first part, temporal logics

are considered as a specification language to specify complex constraints of vehicle

routing problems in a natural and unifying way. This part considers two widely

used temporal logics: linear temporal logic LTL_x and the Metric Temporal Logic

(MTL). After formally introducing these languages, the vehicle routing problem

with temporal logics is formalized and, subsequently, mixed integer linear pro-

gramming formulations of the resulting problems are studied. In the second part

of the thesis, process algebras are employed to define and solve a similar prob-

lem in a computationally more effective manner. In this case, a tree search based

algorithm is proposed to solve the problem.

1.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) can be stated informally as follows (a formal

definition will be given in Chapter 2). Given a set of vehicles, a depot, a set

of customers, and the cost of traveling from one customer to another, determine a

tour for each vehicle in such a way that every tour starts from and ends at the depot,

every node is visited exactly once, and the total cost of the tours is minimized. Since

the seminal paper by Dantzig [19] (see also [18]), several extensions of the VRP have

been proposed and applied to many engineering problems of practical interest.

Even though the decision problem for the VRP is NP-complete [26, 43], several

exact (but computationally expensive) solution approaches were proposed [42, 58];

for large-scale problems, heuristic approaches to the problem were considered [14,

15, 59]. Using these algorithms real-world problem instances were solved (see for

example [5, 46, 51]).

The VRP has also been one of the foremost candidates for satisfying the need

for an algorithmic basis towards solving optimal cooperative control problems

involving multiple-UAVs. Several authors have employed Mixed-Integer Linear

Programming (MILP) formulations of the VRP and demonstrated the effectiveness

of state-of-the-art MILP solvers in handling such problems [9, 3, 37, 50, 54, 55, 60].

Two important extensions of the standard VRP that have found applications in

multiple-UAV mission planning problems are the time window and relative timing

constraints [3, 60], both of which take a step towards handling more complex

scenarios. The focus of this thesis is on another related problem, namely, the formal

specification of such temporal constraints in a unifying way using formal methods

such as temporal logics and process algebras. With the help of formal methods,

not only relative timing constraints, but also several other problem objectives can

be addressed in a systematic way; to the author's best knowledge, such constraints

and objectives have neither been dealt within the multiple-UAV Mission Planning

application domain nor considered in a more general VRP setting.

1.2 Temporal Logics

Temporal logics were first studied by philosophers as a form of modal logic. The

seminal paper by Pnueli [47] discussed its applications in computer science to

reason about temporal behavior of concurrent computer programs (see also [44]).

Since then, a large body of literature was developed especially on the algorithmic

aspects of the model checking problem, which amounts to checking computer

programs for satisfaction of desired temporal behavior. More precisely, given a set

of concurrent software and a temporal logic formula encoding the desired temporal

behavior, the model checking problem asks to either prove that all executions of

the software satisfy the formula or find an execution that violates it [17]. One of the

various algorithmic procedures that solve this problem is to construct a finite-state

machine (in particular, a Btichi automaton [16]), called the language generator,

that runs on infinite words and accepts a given word if and only if it satisfies the

temporal logic formula (see for example [63] for a tutorial). The BUichi automaton

is used in conjunction with the model of the software system to decide the model

checking problem.

Different classes of temporal logics were utilized for planning purposes in ar-

tificial intelligence [25] as well as control theory [24, 57, 22, 38, 39, 56]. Early

approaches to proving temporal properties of control systems using temporal log-

ics appeared in as early as the eighties [24, 57]. However, algorithmic approaches

to the problem of designing controllers that satisfy a given temporal logic specifi-

cation by construction were not considered only until recently [22, 38, 39, 56]. This

recent literature mainly employs Linear Temporal Logics (LTL) and its variants

for specification of temporal properties and uses the language generator automa-

ton with a discrete abstraction of the continuous state space to design trajectories,

which in turn are realized by appropriate control systems.

This thesis provides algorithms that automatically synthesize equivalent prov-

ably correct MILP formulations for temporal logic specifications. In that regard,

it should be noted that Integer Programming (IP) formulation of propositional

logic operators were studied before [27, 30, 61, 62]. Using similar IP formulations,

propositional logic was used in control theory to represent a broad class of systems

in a unifying way [10]. This thesis also adopts a formulation that is similar to the

one in [62] for formulating the propositional logic operators. None of these ref-

erences, however, consider formulation of temporal logic operators, which makes

the approach in this thesis novel in that context.

1.3 Process Algebras

While temporal logics are very expressive, they generally require computationally

intensive algorithms, especially when utilized for optimal planning purposes. In

fact, the model checking problem for, e.g., LTL, is PSPACE-complete [53]. Moreover,

MILP-based optimal planning algorithms generally run in exponential time and

are not guaranteed to return even a feasible solution within a polynomial time

bound. On the other hand, one can consider languages that, at the cost of a

more limited expressive power, allow efficient algorithms for, e.g., model checking.

For example, in [41], a fragment of LTL was used for specification of temporal

properties in reactive robotic motion planning problems, leading to polynomial-

time algorithms. In a similar spirit, the second part of the thesis will concentrate on

Process Algebra [45, 6, 23] as a specification language: while Process Algebra, in

general, is not as expressive as LTL, it is amenable to efficient planning algorithms,

while preserving the ability to describe a broad class of mission specifications of

practical interest.

Process algebra was first proposed to reason about concurrent software and

prove their correctness properties (see also [7] and the references therein), and

successively used in several application contexts (see, for example, [11, 52, 1]).

However, to the best of author's knowledge, this thesis constitutes the first appli-

cation in UAV cooperative control problems.

The main advantage in using PA as a mission specification language is that a

feasible plan (i.e., a plan that meets the mission specification) can be constructed

efficiently, in polynomial time.

1.4 Contributions

The contributions of this thesis are as follows. First, in the first part of the thesis,

which spans Chapters 2 to 5, two novel variants of the vehicle routing problem

called the Vehicle Routing Problem with Linear Temporal Logic Specifications (VR-

PLTL) and the Vehicle Routing Problem with Metric Temporal Logic Specifications

(VRPMTL), are introduced. Instances of these problems can represent the con-

straints that appear in several variants of the VRP in a natural and unifying way.

These two problems are similar except that MTL is a strictly more expressive lan-

guage than LTL. Hence, VRPMTL is a strict superset of VRPLTL. Both problems,

however, are introduced and extensively studied noting that computational prop-

erties of the two problems may differ, even though they are not studied as in this

thesis.

To solve VRPLTL, we propose a novel systematic procedure, which converts a

given LTL_x formula into a set of mixed-integer linear inequalities that are feasible if

and only if there exists a finite execution that satisfies the LTLx formula. Moreover,

those variables that render the inequalities feasible can naturally be converted to

an execution that satisfies the LTL_x formula. Using this procedure, two MILP

formulations are developed. Both formulations solve the VRPTL to optimality.

Two examples of multiple-UAV mission planning problems, relevant for military

applications, are pointed out. In a similar spirit, to solve the VRPMTL, the MTL

specification is formulated in a MILP setting and incorporated with one of the

MILP formulations of the standard VRP.

In the second part of the thesis, which consists of Chapters 6 and 7, we propose

process algebras for the specification of a large class of constraints in vehicle routing

problems. This part of the thesis is presented more towards the application domain

and multiple-UAV mission planning problems are emphasized. A computationally

effective algorithm is proposed to solve the optimal planning problem with process

algebra specifications. The computational effectiveness of the algorithm stems from

the fact that it returns a feasible plan in polynomial time and is guaranteed to return

the optimal solution in finite time.

Parts of this thesis were published in [31, 32, 33, 35]. Some related publications

of the author that does not appear in this thesis include [36].

1.5 Organization

This thesis is organized as follows. In Chapter 2, the vehicle routing problem is

introduced and two mixed integer linear programming formulations of the stan-

dard VRP are provided. In Chapter 3, both the linear temporal logic LTL_x and

the metric temporal logic are introduced. In Chapters 4 and 5, the standard vehicle

routing problem is extended to address constraints specified in LTL_x and MTL, re-

spectively. Chapter 6 is devoted to the introduction of process algebra. In Chapter 7

the vehicle routing problem with process algebra specifications is introduced and

a computationally effective algorithm to solve the problem is proposed. Finally, in

Chapter 8, the thesis is concluded with discussions and remarks.

20

Chapter 2

The Vehicle Routing Problem

This chapter introduces the Vehicle Routing Problem (VRP) [59]. First, the VRP is

introduced as a graph-theoretic problem. Then, two MILP formulations, namely

the network flow formulation and the set covering formulation, are provided.

Multiple-UAV mission planning applications of the two formulations are also dis-

cussed. The MILP formulations of the VRP are later extended to include various

types of temporal logic specifications in Chapters 4 and 5, to which this chapter

provides the preliminaries.

The rest of this chapter is organized as follows. In Section 2.1, preliminary

definitions introducing graphs are presented and, in Section 2.2, the VRP is defined

as a graph theoretic problem. Then, in Sections 2.3 and 2.4, the network flow and

set covering formulations of the VRP are given.

2.1 Preliminaries on Sequences and Graphs

An infinite sequence a on a set S is a map from the natural numbers N to S; a is

is also denoted as (a(1), a(2),...). A finite sequence a is a partial function defined

from a finite subset of N to S such that if n largest number that a is defined for,

then a is defined also for all n' < n, i.e., a : {0,1,...,n} --- S. Given an infinite

sequence a, a finite prefix p of a is also a map from the first L c IN natural numbers

to S, which agrees with a on the domain that it is defined, i.e., p(l) = o(l) for

l E {0,1,..., L}. A weighted directed graph G is defined by the triple G = (V, E, w),

where V = {0, 1,..., N} is the set of vertices, E _ V x V is the set of edges between

these vertices, and w : E -- IR+ is a function associating a non-negative weight to

each of the edges. Given an edge e = (u, v) E E, let Src(e) = u and Dest(e) = v. An

edge ej is said to be adjacent to another edge ej if Dest(ei) = Src(ej). A path is a

sequence (el, e2,.. , e,) of edges such that ei is adjacent to ei-1 for all i = 2,3,... ,n;

the integer n is the length of the path and the sum the weights of all edges in the

path is the weight of the path. A path p = (el, e2,... ,en) is said to visit a vertex v if

v E Src(el) ULn Dest(ei). Finally, p is called a circuit if Dest(en) = Src(el).

2.2 VRP as a Graph-Theoretic Problem

The VRP can be defined as a graph theoretic problem as follows.

Problem 2.2.1 (Vehicle Routing Problem) Given a weighted directed graph G = (V, E, w),

a depot vo e V, and an integer K 1 (the number of vehicles),find K circuits such that:

* All circuits visit the depot vertex vo.

* All vertices in V are visited by at least one circuit.

* The sum of the weights of the circuits is minimized.

In this case, each vehicle is associated with a weighted directed graph, in which

every city is represented by a vertex. Each graph conveys the information regarding

the cost of traveling from a given city to another for the vehicle that the graph is

associated with. One can safely assume, without loss of any generality, that the

set of vertices are fixed across all the weighted graphs. Note that if a given vehicle

can not visit one of the cities in the problem, then the cost of traveling to the vertex

corresponding to that particular city can be set to infinity, or equivalently the same

vertex can be removed from the weighted directed graph.

There are many variations of the VRP in which, for example, there is a limit to the

number of vertices that can be visited by a single vehicle, or there are constraints

on the time at which certain vertices must be visited [59]; problem 2.2.1 can be

extended to such cases.

2.3 Network Flow Formulation of the Vehicle Routing

Problem

Problem 2.2.1 can be formulated in a form amenable to mathematical program-

ming, e.g., as a a network flow problem, in several ways. In this section, we

study the three-index formulation of the VRP [59]. Extensions of this formulation

were recently applied to solve multiple-UAV mission planning problems [60] (see

also [37, 54, 55] for similar MILP formulations).

Let K denote a set of vehicles and let Cijk denote the cost of traversing the edge

from vertex i to vertex j for vehicle k. Let us define the binary decision variables

Xijk for all i, j c V and k e K such that the variable Xijk is equal to 1 if vehicle k

travels from vertex i to vertex j, and zero otherwise. Then, Problem 2.2.1 can be

formulated as a MILP as follows:

minimize EV EjeV EkX CijkXijk, (2.1)

subject to ~jEV~ivo Xvojk = 1, Vk c 1K, (2.2)

EkE -jeV,ifj Xijk = 1, Vi E V, (2.3)

EiEV,i*h Xihk - EjEV,jh Xhjk = 0, Vh E V, Vk E , (2.4)

where constraints (2.2) and (2.3) ensure that all the circuits visit the depot vertex vo

and all the vertices in V are visited by exactly one circuit, respectively. Constraints

(2.4) ensure that every non-depot vertex that is visited is subsequently left. Let

us note that the formulation given by (2.1-2.4) may produce more than one circuit

for one vehicle. Such a solution is said to have sub-tours. A solution with a

single circuit for each vehicle can be obtained by adding "sub-tour elimination

constraints" to the formulation and solving the resulting MILP, until no sub-tours

remain [59]. As an example, the following set of constraints is one of the many that

eliminate the subtours (see [59] for other types of subtour elimination constraints):

L s EsXijk ISI- 1, VS cV \ {v0}, IS> 2, Vk E K. (2.5)

Note that Constraints (2.5) are exponentially many with respect to the number

of vertices. For practical implementations, these constraints are added to the

formulation as necessary. That is, if the solution has a subtour involving a set S of

the vertices and a vehicle k, then the subtour elimination constraint corresponding

to that particular S and k pair is added to the formulation. This procedure is

repeated until no subtours remain.

A widely-used extension of the standard VRP is the vehicle routing problem

with time windows [59]. Let the parameters tijk denote the time it takes for vehicle k

to travel from vertex i to vertex j. Also, let the continuous decision variables ti and

tvok be the time that a vehicle reaches vertex i and the time that vehicle k completes

its circuit, respectively.' Let the continuous decision variables Sik denote the idling

time vehicle k spends at vertex j. Then, the following constraints define a feasible

flow of time and make sub-tours infeasible [59]:

tvo = 0, (2.6)

ti + tijk + Sik - M (1 - Xijk) tj, Vi c V, Vj V - {vo}, Vk XK, (2.7)

ti + tivok + Sik - M (1 - Xivok) tvok, Vi E V, Vk e X, (2.8)

where M is a big enough number. Placing upper and lower bound constraints

(time-windows) on the decision variables ti enforces the vertex i to be visited in

its own time-window. Note also that, using the new set of variables, one can

minimize E Cktvok, where Ck denotes the cost of employing vehicle k for unit time.

For mission planning applications, Ck generally indicates a risk factor for employing

vehicle k in the mission.

1Here, we make an abuse of notation and distinguish ti, tok and tijk with their number of indices.

Now let us introduce another extension to the problem which enables us to con-

sider two different types of depots: starting depots and the ending depots. In this

case, instead of finding a circuit, one has to find a path, which starts from a vehicle

specific starting depot and ends in one of the ending depots. To formulate this

extension, let £ and C denote the sets of starting and ending depots, respectively.

Also, let N denote set of all the vertices except the depots, i.e., N = V - (.L U C).

Let us further define the sets I and J of departing and approaching nodes as

I = - u N and J = N u C, respectively. Then, the multi-depot extension of the

previous MILP formulation is given as follows.

EjEc k=1 Cktjk,

Cier YEeN Xijk = 1,
=1 E.L j,jNi Xijk = 1,

EiEl,ih Xihk - Ejf,jh Xhjk

ti = 0,

ti + tijk + Sik - M(1 - Xijk)

ti + tijk + Sik - M(1 - Xijk) -

Vk E X,K

Vi e N,

=0, Vh E N,

Vi E £,

Stj, Vi I,

tjk, Vi e N,

Yk E K,

Vj E N, j

Yj E C,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

fi Vk e 9('2.14)

Vk E X. (2.15)

Another extension of the problem that is of interest to this thesis is the following.

Let rk denote the maximum amount of time that vehicle k can be employed; the

number k, in this case, indicates a range constraints. Then, the following constraints

ensure that the vehicles do not travel along paths longer than their maximum range:

tjk rk, Yj e C, Vk E X.

minimize

subject to

(2.16)

2.4 Set Covering Formulation of Vehicle Routing Prob-

lem

The set covering formulation for the VRP was first presented in [8]. This formu-

lation was later strengthened and used for developing exact algorithms for both

the standard VRP and the VRP with time-windows in [2] and [20], respectively.

In fact, MILP formulations based on set covering were shown to be quite general

(see, for instance, [28] for a crew scheduling example). Recently, multiple-UAV

mission planning applications of the formulation have also been considered both

for centralized and distributed implementations [9, 34].

The set-covering formulation of the VRP has two main advantages. Firstly, it

allows formulating more complicated cost functions. From a multiple-UAV mis-

sion planning point of view, the set-covering formulation can handle cost functions

that may nonlinearly depend on the target priorities, UAV capabilities etc. [9]. Sec-

ondly, LP relaxation of the set-covering formulation is known to be tight (see [20]

for experimental evidence and [13] for theoretical results under some special con-

ditions).

The work in [9] was later strengthened in [3] to include loitering constraints. For

notational simplicity, this paper studies the formulation presented in [9]. However,

the results can be extended to the case presented in [3].

The set-covering formulation of the VRP has a presolve phase, in which all the

possible circuits for all the vehicles are computed. Let 'K be the set of vehicles and

J(k) be the set of all feasible circuits for vehicle k E 'K. Let cjk denote the cost of

the circuit j E J(k) when traversed by vehicle k. Let us define the parameters Dijk

for all i c V, j E J(k), and k c 'K such that Dijk is equal to one if circuit j of vehicle

k traverses vertex i, and zero otherwise. Let us also define the binary decision

variables, Xjk for all j E J(k) and k E X, such that Xjk equal to one if and only if

vehicle k executes circuit j. Then, Problem 2.2.1 can be formulated as follows.

minimize

subject to

EW Ejl(k) CjkXjk,

EkE X K jE(k) Dijkxjk = 1,

EjJ(k) Xjk = 1,

Vi e V- {vo),

Vk E 9C,

(2.17)

(2.18)

(2.19)

where constraints (2.18) and (2.19) ensure that each vertex is visited exactly once

and each vehicle is issued a circuit, respectively. Notice that the cost of each circuit

can be any function of the problem parameters in the set-covering formulation.

28

Chapter 3

Temporal Logics

This chapter introduces two different temporal logics: the Linear Temporal Logic

LTLx and the Metric Temporal Logic (MTL). In Chapters 4 and 5, LTLx and MTL

will be used as natural and formal specification tools in vehicle routing problems.

This chapter is organized as follows. First, in Section 3.1, the formal definition

of a transition system is given as a preliminary for the rest of the chapter. Then, the

temporal logics LTLx and MTL are presented, in Sections 3.2 and 3.3, respectively.

3.1 Transition Systems

In several applications of computer science, computer software is modeled as a

transition system, which has a finite number of states, a set of transition rules, and

a set of observables.

The states in a transition system generally represent the internal information

of the software, e.g., the values of the variables. Indeed, it is common to define

the 'variables' of a software system first, and then derive the set of states from

those variables (see for example the formal definition of the transition system

in [44]). The transition rules, on the other hand, relate two states such that a

transition from the former one to the latter one is possible. Equivalently, they define

the allowable changes in the variables given the current values of the variables.

Finally, observables, also referred to as the atomic propositions, group states with

a similar property into classes. In this case, each state is associated with a set

of atomic propositions that it satisfies. Similarly, those states that satisfy a given

atomic proposition fall into the same class. In several applications of logics and

formal methods, the user is not interested in reasoning about the state itself, but

the specification is given in terms of the atomic propositions. One of the main

motivations is that the user only observes the atomic propositions, not the states

of the software, since states mostly refer to the internal information. Moreover,

the state space is generally very large, whereas the set of atomic propositions is

generally a smaller set.

The transition system model has been the main abstract model of computer

programs for model checking algorithms [44]. However, the definition of the

transition system is quite general. Indeed, it will be used as an abstract model for

the VRP in Chapter 4.

Transition system is formally defined as follows.

Definition 3.1.1 (Transition System) A Transition System is a tuple

TS = (Q, Qo, -, I, L),

where Q is a set of states, Qo c Q is a set of initial states, -- Q x Q is a transition relation,

-I is a set of atomic propositions, and L : Q -- 2" is a labeling function.

As mentioned earlier, the complex reasoning with temporal logics is carried out

via the atomic propositions, instead of the states of the system. More precisely,

atomic propositions are the building blocks of complex reasoning for temporal

logics.

Informally speaking, an atomic proposition is a predicate, i.e., a declarative sen-

tence, which is either True or False at a given time. The states of the transition

system are labeled by the atomic propositions that they satisfy. In other words, if

a state q is labeled with an atomic proposition p, then p evaluates to true whenever

the system is in state q.

A transition system is a set of rules identifying a particular class of sequences

Q, describing the evolution of the states of the system. These sequences are called

runs, and are formally defined as follows.

Definition 3.1.2 (Infinite Run) An Infinite Run a on a given transition system TS is

an infinite sequence of states, a = (ql, q2,...), such that (i) qi E Q, for all i IN, (ii)

ql E Qo, and (iii) (qi, qi+l) -- , for all i E IN.

Given a transition system TS on a weighted directed graph G, the set ETs of all

runs is defined as the set of all infinite runs and all their finite prefixes, called the

finite runs.

3.2 The LTLx Language

The linear temporal logic LTL is one of the most widely-used temporal logics [44].

Its variant LTLx eliminates the next operator from the language and is generally

used in problems that take place in a continuous time setting rather than discrete

time. Recently, LTL_x was used for formal specification of continuous-time control

systems [38, 39]. This section introduces the language LTLx with its syntax and

semantics.

3.2.1 Syntax of LTL-x

The syntax of the LTLx language can be defined recursively as follows. Every

atomic proposition p E I is an LTLx formula, and if 0 and tP are formulas then so

are - , A l , and OUp. That is, the LTLx grammar in Backus-Naur Form (BNF)

is

::= p -q V (3.1)

where p is an atomic proposition, q is a formula, -' is the negation operator, V is

the disjunction operator, and U is the until operator. The negation operator implies

that the property it binds is false. The disjunction asserts that at least one of the

properties it binds is true. The temporal operator until, when used as in pUq,

implies that q eventually becomes true and until then p keeps being true.

Given the operators negation and disjunction, the operators conjunction (A), im-

plication (=>), and equivalence (=>) can be defined as 01 A ()2 = -(+1l V -2),

01 = ()2 = -1q1 V)2, and 01 < 02 = (01 = (02) A i 2)02) respectively. Fi-

nally, using all these operators with until we can define eventually (0) and always

(o) as O = TVU and oq4 = -O-. It is convenient to also define the operator

Unless as plWq = (op) v (pUq). Unless is slightly weaker that the until operator in

the sense that q does not have to be true eventually, in which case p holds to be true

forever. This operator is also referred to as the weak until operator.

3.2.2 Semantics of LTL_x

Let (DLTL_x be the set of all LTL_x formulae and ETS be the set of all runs on a

transition system TS. The semantics of LTL_x is defined as a satisfaction relation,

which I will denote as 9c_ (ETs x N) x (LTLx. Given an atomic proposition p, a run

a E E of TS = (Q, Qo, -- , 1I, L), and a time instance j E N, a is said to satisfy p at

j, i.e., ((a, j), p) Ec, (also denoted as (a, j) = p) if and only if p E L(qj). Let p be an

atomic proposition, 0 and ip be any two formulas in LTL_x. Then, the semantics of

LTLx is defined as the smallest i which satisfies the following.

(a, j) p iff p L(sj), (3.2)

(O, j) - iff (, j) , (3.3)

(a, j) 0 v P iff (a, j) or (a, j) , (3.4)

(a, j) O 4 p iff 3k 2 j such that (a, k) - q) (3.5)

and for Vi, j i k there holds (a, k) I (.

Even thought the semantic rules above is adequate to define the language LTLx,

semantic rules for the derived operators can also be formalized as follows.

(0, j) 1 A P iff sj t- andsj , , (3.6)

(a, j) t- u4 iff (a, k) for Vk 2 j, (3.7)

(0, j) 0o iff 3k > j such that (a, k) 1 . (3.8)

If a run a satisfies a formula 4 at the initial time instance 1, i.e., (0, 1) t 4, then a is

simply said to satisfy 4, denoted by a i 4 with a slight abuse of notation.

Each LTL_x formula can be associated with a set of its subformulae and, conse-

quently, a height. In the rest of this section, a more precise definition of an LTL_x

formula, followed by the definitions of a subformula and height of a formula are

given. These definitions will be useful in Chapter 4.

Definition 3.2.1 (LTLx Formula) An LTLx formula on a set H of atomic propositions

is a sentence which consists of atomic propositions from H and LTL_x operators and obeys

the syntax of LTLx.

Definition 3.2.2 (LTLx Subformula) Given an LTLx formula 4, a subformula of) is

any formula which is strictly included in 4 and satisfies the syntax of LTLx. 1

Notice that a formula is not a subformula of itself. Even though an atomic propo-

sition is a formula by itself, an atomic proposition has no subformula.

Definition 3.2.3 (Height of an LTL_x Formula) The height of an atomic proposition is

zero. The height of any other LTL_x formula 4 is the largest number n such that

* ip is a subformula of 4

* q)k is a subformula of k-1 for Vk E {2,..., n}

1The formal definition of a subformula requires definition of parse trees, which is not employed
in the first part of the thesis. Interested reader is referred to [29] for a more formal definition of
subformula through parse trees of LTL formulae.

Notice that all formulae with only one operator have height one and atomic propo-

sitions have height zero. Finally, given a formula 4, a subformula 1P of 5 is called

an immediate subformula of 0 if 4' has height greater than or equal to every other

subformula of 0.

Throughout the thesis, only a finite set I of propositions and formulas with

only a finite number of operators are considered. Consequently, these formulas

always have finite height.

3.3 Metric Temporal Logic

This section introduces the Metric Temporal Logic (MTL). The temporal logic LTL_x

assumed discrete time instances, at each of which a transition occurred. These time

instances were all natural numbers. MTL, on the other hand, extends the runs of

a transition system with the time that the transition occurs. That is, in MTL the

underlying time is defined as continuous in the sense that transitions can occur

in time instances represented as real numbers. Essentially, using a dense time

coordinate, MTL is able to express qualitative properties time such as deadlines

or time-windows, which can not be expressed in LTL. The temporal logics that

assume continuous time are called real-time logics [40].

The rest of this section is organized as follows. First, in Section 3.3.1, timed

executions of transition systems are discussed. Then, in Sections 3.3.2 and 3.3.3,

syntax and semantics of MTL are presented.

3.3.1 Preliminary Definitions

This section, introduces definitions that allow formal definition of MTL semantics.

The notation introduced in this section is similar to the one in [4].

An interval is any convex subset of the real line R. The left and the right limits

of an interval I are defined as 1(I) = infx,i x and r(I) = sup,,, x, respectively. An

interval I is said to be left closed if 1(I) E I, and right closed if r(I) E I. Two intervals

I, and I2 are said to be adjacent if the right limit of I, is equal to the left limit of 12.

Given te R>0, the interval, which has its left and right limits equal to t + 1(I) and

r(I) + t and which is left closed if I is left closed and right closed if I is right closed,

is denoted as t + I. The notation I - t will be used in a similar way.

Definition 3.3.1 (State and Interval Sequences) A state sequence a = (so, 1, S2,)

is a possibly infinite sequence of states with si EQ for Vi 2 0, so c Qo and (si, si+l) E->

for Vi 2 0. Similarly an interval sequence K = (o, II, 12) is a possibly infinite sequence of

intervals which satisfy the following

* Io is left closed and l(I) = 0;

* for all i 2 0, the intervals Ii and Ii+1 are adjacent;

* every time t E R>o belongs to an interval in K.

Notice that the definition of state sequences coincide with the that of the runs pre-

sented in the previous section. The following definition extends the runs presented

in the previous section, so that each state sequence is accompanied with an interval

sequence of the same length.

Definition 3.3.2 (Timed State Sequence) A timed state sequence w = (o, K) is a pair

consisting of a state sequence a and an interval sequence K.

Informally, a timed state sequence indicates the time interval during which a state

of the transition system has been active, i.e., the state si has been active in the

interval Ii for Vi. Let me use the function s(t) : R>o -4 Q to denote the state that is

active at a given time t, i.e., s(t) = si if and only if t c Ii.

Given a timed state sequence o = (o, K) with a = (Sl, s2,...) and K = (I, 12,...),

the atomic propositions take unique values at any given time te IR>0 . The value of

the atomic proposition p I at time t e R>o will be denoted by s(t)[pi].

Finally, one can introduce the formal definition for a suffix of a timed state

sequence, which will be used to define the semantics of MTL.

Definition 3.3.3 (Suffix) Let w = (a, K) be a timed state sequence. For some t E Ii, the

suffix wo at time t is the timed state sequence w' = (a', K') where a' = (si, Si+l, Si+2,...) and

K = (Ii - t, i+1 - t, Ii+2 - t,...).

3.3.2 Syntax of MTL

The formulae of MTL are constructed using the atomic propositions along with

the operators of MTL, which are to be defined shortly. Every formula of MTL is a

proposition by itself, i.e., it is either True or False at some given time represented

with a real number.

MTL includes the usual operators of propositional logic together with a set

of temporal operators, which are bound with an interval. The syntax of MTL is

defined as follows:

o ::= pI-1" 1 A 0)2 1(PiUI2, (3.9)

where I is an interval, p E 1- is an atomic proposition, 4, 1, and 42 are MTL

formulae. -, is the negation operator, A is the conjunction operator and 'i is the

until operator. Informally speaking, the formula UI2 is true at time t if there is

some time t' E t + I for which 02 is True and)1 holds to be true within the interval

(t, t').

Even though the operators above are adequate to fully represent the MTL

language, we define the following operators as well to improve readability of MTL

formulae. Given the negation and conjunction operators, the operators disjunction

(v), implication (=-), and equivalency (<e) can be defined as 01 v 2 = A(1 1 -12),

) =1 2 =)1 V)2, and 41 <= ()2 = ()1 = (42) A ()2 = 41) respectively. Together

with these operators given the temporal operator until, the temporal operators

eventually (0I), always (n0) and unless 1W, can be defined as OI0 = TV1 , oDI =

-iOc-, and)1'WI) 2 = -(-l4UI- 2). Informally speaking, the formula OI0 is

True at some time t if 4 holds to be True at some point time in the interval t + I.

Similarly the formula oLo is True at some time t if 4) holds to be True at all points in

the interval t + I. Finally, the formula ol'WI) 2 holds at time t if and only if either

)1 is True throughout the interval or there exists a t' > t for which)2 is True at t'

and)2 is True during the interval [t', t] n I.

3.3.3 Semantics of MTL

The formulae of MTL are interpreted over the timed state sequences. Let QMTL

denote the set of MTL formulae, and ATs denote the set of timed state sequences on

a given transition system TS. The semantics of MTL is defined by the satisfaction

relation ni= (A x IR>o) x iMTL, which is defined recursively as follows.

(w, 0) t p

(w, 0) t -0

(w, 0) t=)1 A)2

(c, 0) = I01102

(cO, t) i cI)

iff p E L(so);

iff (CO, 0) J6 0;

iff (Wc, 0) t 1 and (co, 0) = 02;

iff 3t E I, ((o, t) 1 02

and Vt' E (0, t), (cw, t') t 1;

iff (cw, 0) Q(.

A timed state sequence c is said to satisfy the formula 4 if and only if (w, 0) 1 4.
Even thought the semantic rules above define the language MTL, the semantics of

disjunction, always and eventually can be given as follows.

(wc, 0) 0i V ()2

(wc, 0) 1 Oi4)

(c, 0) O0

(w, 0) > q51 or (cw, 0) 1 02;

It E I, (w, t) 1 4;

Vt E I, (W, t) 1 =.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

38

Chapter 4

Vehicle Routing with Linear

Temporal Logic Specifications

In this chapter, a new variant of the VRP, called the Vehicle Routing Problem with

Linear Temporal Logic specifications (VRPLTL), is introduced. VRPLTL extends

the standard vehicle routing problem (see Problem 2.2.1 defined in Chapter 2)

by asking to find routes satisfying linear temporal logic specifications instead of

visiting all the cities and employing all the vehicles. VRPLTL is defined using a

vehicle-routing transition system, which is a transition system model for instances

of vehicle routing problems. The semantics of LTL is well defined on a vehicle-

routing transition system, which, in turn, renders the VRPLTL well defined.

Following the problem definition, two MILP-based algorithms, both of which

solve VRPLTL instances to optimality, are presented. One of these algorithms is

based on the network flow formulation of the VRP, whereas the other one extends

the set-covering formulation (cf. Chapter 2). Both MILP formulations of the VR-

PLTL are structured around the same idea: first converting the LTL_x specification

into a set of linear constraints in mixed integer and continuous variables, and then

incorporating those constraints into the standard MILP formulations of the VRP.

This chapter is organized as follows. First, the vehicle-routing transition sys-

tems are defined in Section 4.1, followed by the formal problem definition in

Section 4.2. Then, in Section 4.3, a systematic procedure, which converts LTL_x

formulae into a set of linear constraints is introduced. Finally, in Section 4.4,

this formulation is combined with the standard MILP formulations of the vehicle

routing problem to solve VRPLTL to optimality. Section 4.4 also highlights the

multiple-UAV mission planning applications of VRPLTL.

4.1 Vehicle Routing Transition Systems

In Chapter 3, it was mentioned that a transition system is a model used for reasoning

about computer software. In this section, a transition system is adopted as a

model for VRP instances. For this purpose, let us introduce the definition of a

Vehicle-Routing Transition System, after the definition of a Single-Vehicle-Routing

Transition System.

Definition 4.1.1 (Single-Vehicle-Routing Transition System) A single-vehicle-routing

transition system (Q, Qo, -, I, L) on a weighted directed graph G = (V, E, w), with depot

vo E V, is such that

* Q = V x IR>o, i.e., the state q = (0, v) is composed by a variable 0 e IR>o which

represents a time instance, and a variable v E V which indicates the position of the

vehicle on the graph;

* Qo = {(vo, 0)}, i.e., the vehicle is in its depot initially;

* (vi, 0i) -- (vj, O) if and only if (vi, vj) E E and Oj - Oi w(vi, vj);

* I is such that there exists pi E FIfor each vi c V;

* L: (vi, 0) " (Pi} for all 0 EIR and all vi E V.

In essence, the Vehicle-Routing Transition System is defined as a parallel composi-

tion of a fixed number of Single-Vehicle-Routing Transition Systems as follows.

Definition 4.1.2 (Vehicle-Routing Transition System) A (multiple-) Vehicle-Routing

transition system (Q, Qo, --4, II, L) for K vehicles on K weighted directed graphs Gk

(Vk, Ek, wk), with depots Vk E Vk for k = 1,..., K is such that

* Q = -~ 1 (Vk X IR0o), i.e., the state q = (q, q2, ... qK), where qk = (vk, k), is

composed by the individual vehicle states on their respective single-vehicle transition

system;

* Qo = ((0, v), ... , (0, v)), i.e., each vehicle is initially at its own depot;

S((v, O), ... (vK, O)) "" ((v Ot)i...' O1 k),(v+1+1) ... (v, oK))

if and only if (vki,vk) e E, Ok > Ofor all I {1,..., K},and Ok - Ok > wk(vk k).

* I = Ukl=,...,K k such that there exists pk iI k for each vi E V.

* L ((vl, 01),...,(vK, OK)) - {pl,. . .,pK} for all Ok IR>0, k E {1,...,K} and all

vE V.

The semantics of LTL-x, introduced in Section 3.2.2, are well defined on a given

vehicle-routing transition system TS. That is, given (i) an LTLx formula) defined

on the atomic propositions of TS, (ii) a run a of TS, and (iii) a time instance j e N,

the relation 1 is well-defined, i.e., ((a, j), 0) et.

Below is an example of how one can specify several interesting properties in a

vehicle routing problem using the linear temporal logic LTL-x.

Example Consider, again, a VRP instance with two customers and a single vehicle.

Let pi, p2 be atomic propositions indicating Customers 1 and 2 being serviced,

respectively.

A simple reachability specification is, for instance, the proposition that states

Customer 1 will eventually be serviced, which can be expressed in LTLx as Opl. A

safety specification example is Customer 1 will not be serviced, which can be expressed

with the LTL_x formula O-p2. Such safety specifications may arise when a vehicle is

not capable of servicing a particular customer. An example combining reachability

and safety conditions is as follows: if Customer 2 is not going to be serviced then do not

service Customer I either, which can be expressed in LTL_x as (-Op2) =-- (Onp3).

A final example is the ordering specifications. In this case, one would like Cus-

tomer 1 to be serviced, for instance, before Customer 2. The corresponding LTL_x

specification is (_-p2)Upl. Carefully analyzing this specification, one can recognize

that it enforces Customer 1 to be serviced eventually but not Customer 2. The fol-

lowing specification ensures servicing both of the customers: [(-ip2)Up1] A (OP2).

Notice that this last specification combines reachability and ordering properties.

One may also desire that servicing both of the customers is optional, but if Cus-

tomer 2 will be serviced than Customer 1 must be serviced before Customer 2,

in which case [(--p 2)Up1] V (l-np2) (or in a more compact notation (-p 2)'WPl) is

the corresponding LTL_x specification. Notice that this last specification combines

safety and ordering properties.

More complex specifications can be built with negations, conjunctions, and

disjunctions of several of the examples above. I

Below are examples to make the definition of an LTLx formula and other related

definitions more concrete in the vehicle routing setting. Later in this chapter these

definitions will be used to formalize the algorithms.

Example Consider a VRP with two customers and a single vehicle. Notice that the

objective which states that Eventually either Customer 1 or Customer 2 will be serviced

by Vehicle 1 is indeed a temporal formula. Let pi (resp. p2) denote the atomic

proposition which states that Customer 1 (resp. 2) is serviced by Vehicle 1. Then,

one can express the temporal formula as

(= O(p v p2).

Subformulas of 4 are pi V p2, 1i, and p2. In this case, pi and p2 have heights zero,

p1 v p2 has height one, and 4 has height two. pl V p2 is the unique immediate

subformula of 0. The formula pi V p2 has two immediate subformulae: pi and p2-

I

One aspect of the vehicle routing problem that is different than model checking

computer software is that one is concerned with finding an optimal runs rather than

finding a single run, or showing that none exists. In order to search for an execution

of a vehicle-routing transition system with optimum cost, however, each and every

run must be associated with a well defined cost. The following definitions serve

this purpose.

Definition 4.1.3 (Time schedule) The running time 0 ofan infinite run a = (ql, q2,---)

of the vehicle-routing transition system TS is a sequence E = (01, 02,...) on IRo such

that

Oi max O8.
k=Ej1,...,K}

Each run is associated with a well defined cost as follows.

Definition 4.1.4 (Cost) The running cost C of a run a = (qi, q2,...) of the vehicle-

routing transition system TS is a sequence C = (C1, C2, ...) on IRo such that

K

Ci= ck k

i=1

where {c', c2 ,... , CK are given non-negative constants. The cost C, of a is defined as

Coo = lim Ci.
i--*00oo

Note that the cost of a sequence is always well defined, since the running cost is a

non-decreasing sequence.

Let a = (qi, q2,... , qL) be a finite run. Notice that its time schedule can be defined

as 0 = (01, 02,... , L) where Oi is defined as before. Similarly, the definition of

cost can be extended to finite runs in the natural way by letting Co = CL.

4.2 Problem Definition

This section is devoted to the formal definition of the Vehicle Routing Problem

with Linear Temporal Logic specifications (VRPLTL). First, a graph theoretic defi-

nition of the VRPTL will be presented. Then, a mathematical programming based

formulation will be outlined. The former definition is as follows.

Problem 4.2.1 (Vehicle Routing Problem with Linear Temporal Logic Specifications)

Given a vehicle-routing transition system TS = (Q, Qo, , FI, L) for K vehicles on K

weighted directed graphs Gk = (Vk, Ek, ck), with depots vko Vk for k E {1,2,... , K}, and

an LTLx formula) defined on I, find a run a on TS such that the following hold:

* a satisfies the LTLx specification), i.e., a 1 4).

* The cost Coo is minimized.

When compared to the standard VRP (Problem 2.2.1), the VRPLTL features the

following fundamental difference. In VRPLTL, one does not have to have all the

vertices visited exactly once, instead, has to satisfy an LTLx formula. A formal

proof to be given later in this section, it is worth mentioning here that the VRPLTL

refers to a more general class of routing problems than does the standard VRP.

Note also that the vehicles in a VRPLTL instance may need to travel an infinite

route to satisfy the specification by visiting some of the vertices infinitely often. In

a multiple-UAV mission planning context, this resembles the case of a surveillance

mission where the UAVs visit possibly a subset of the targets persistently and come

back to the base to refuel as necessary. Even though LTLx can be used to specify

the temporal properties of such infinite routes, this chapter focuses only on routes

that end in an ending depot. In the rest of this chapter, only a subclass of Problem

4.2.1 will be treated. More precisely, it is assumed that the following assumption

holds.

Assumption 4.2.2 The specification 4) of Problem 4.2.1 is of the form

A (p)
ke1,...,K)

where i~ is an LTLx formula.

In other words, after some finite time all the vehicles should go back to their

depots and stay there forever. Hence, the transition system abstraction of the VRP

instance reaches to a final state. Notice that even with this assumption Problem

2.2.1 is in the class of problems that can be modeled as a VRPLTL. Indeed, letting

S ^iE~(1...,n (VkE1,...,K)Opk) where IVkl = n + 1, reduces Problem 4.2.1 to Problem

2.2.1, which indicates that VRPLTL is a generalization of the standard VRP, even

under Assumption 4.2.2.

With this assumption, the UAV mission planning problems studied in this

chapter will be such that all the UAVs land at ending depots in the end of the

mission, as generally assumed in the existing literature (see for example [3, 9, 37,

54, 55, 60]). Therefore, even though this assumption arises as a technicality for the

computational method presented in Section 4.3 to solve the VRPLTL, it is natural in

the VRP setting. Before proceeding with a mathematical programming formulation

of the VRPLTL, note the following lemma as a consequence of Assumption 4.2.2.

Lemma 4.2.3 Let the vehicle-routing transition system TS be an instance of the VRPTL

and 0 be an LTL_x specification that satisfies Assumption 4.2.2. Then, any run a that

satisfies 0 is finite.

In the rest of this section, the network-flow and the set-covering MILP formu-

lations of the VRPTL are outlined. Let TS denote the vehicle-routing transition

system model of the problem, and 0 be an LTLx specification that satisfies As-

sumption 4.2.2, i.e., ' = Ake 1,...) Ovk A tp. Recall that the VRPTL is to find a run

a = (qi, q2,..., qT) such that a I 4. Let us define a set {1,...,T} of finite time in-

stances, where T is a large enough integer. Let Ok be continuous decision variables

defined for k E {1,...,K} and let 0 denote the vector 0 = [01, 02,... T]. For all

atomic propositions pi E I and t E {1,..., T}, let us define the binary slack variables

P' such that Pt is equal to 1 if (a, t) l Pi and 0 otherwise. Similarly, let us also define

the binary slack variables Pt which are equal to 1 if (a, t) I p and 0 otherwise.1
Let Pp, denote the vector [P., Pi,...,PT]. This vector will be called the evolution

vector of the atomic proposition pi. The evolution vector of any LTLx formula p is

defined similarly. Then, Problem can be formulated as follows.

minimize f(y), (4.1)

subject to y E Y, (4.2)

Ppi EG (y, 0), Vpi E -I, (4.3)

P4 E O,(Pp,,.. , Ppm), (4.4)

P = 1, (4.5)

t
t+1, Vt{1,2,... T- 1}, (4.6)

where y corresponds to the continuous and binary variables used to model the

VRP as presented in (2.9-2.16) or in (2.17-2.19), Y is the feasible set of the variables

y, i.e., a slightly relaxed version of the feasible sets given by (2.11 - 2.16) or (2.19)

which will be outlined shortly, Tp,(y, 0) constrains the binary variables vector Pi

such that Pt = 1 if and only if (a, t) > pi, and gq, is the set of all vectors Pp for which

the corresponding evolution of the proposition satisfies the formula i. Finally,

P1 = 1 states that the proposition ip is True at the time 1, i.e., the specification 1 is

satisfied at the initial time. Notice that Ake(1,...) Oov' is enforced by the constraint

set Y, since all the vehicles are constrained to end their route in the depot or not

start a route at all by staying at the depot at all times.

As mentioned earlier, VRPTL differs from the VRP in the sense that it requires

neither all the vertices to be visited nor all the vehicles to be employed. Computa-

tionally, this generalization is realized by slightly relaxing the MILP formulations

presented in Chapter 2. In particular, the network-flow formulation given by

(2.9-2.16) is generalized by relaxing Constraints (2.10) and (2.11), respectively, as:

i Ej IeN Xijk 1, Vk E K, (4.7)

Ek=1 EjE,j-i Xijk 1, Vi E N, (4.8)

and adding the following constraint into the formulation,

Zi:L E-jcN Xijk - LiEN LjeC Xijk = 0, Vk c K. (4.9)

Notice that the constraints (4.7) ensure that each vehicle starts from at most one

starting depot, the constraints (4.8) require every vertex to be visited at most once,

and the constraints (4.9) makes each vehicle that starts a route get to an ending

depot eventually.

Similarly, the set-covering formulation given by (2.17-2.19) is generalized by

relaxing Constraints (2.18) and modifying Constraints (2.19) to

LYjeJ(k) Xjk 1, Vk c W, (4.10)

which implies that each vehicle can execute at most one route.

Given the generalizations, the set Y can be formulated with constraints (2.12-

2.15,4.7-4.9) for the network-flow formulation, and with (4.10) for the set-covering

formulation.

In this section, the MILP formulation of Y was shown. In Sections 4.3 and 4.4,

the sets !q and T are formulated in a MILP framework.

4.3 MILP Formulation of LTL_x Specifications

This section is devoted to the definition of Gp (Pp,, .. , Ppm). Formally, gp(Pp,.. , Ppm)

is a set of evolution vectors Pp parametrized by the formula 4 and the evolution

vectors Pp, for all pi E I-. The salient property of this set is that P, E G,p(Pp,,..., Ppm)

holds if and only if the run a = (qi, q2, ... qT) with L(qt) = {p I Pt
1 = 1} satisfies 4

at the initial time, i.e., (a, 1) t 4. In the remainder of this section, G (Pp,,... , Ipm)

is first constructed for LTL_x formulae with height one, i.e., formulae with only

one operator. Then, the procedure is generalized to LTL_x formulae with arbitrary

height using a recursive algorithm.

Consider the height one-formula 4 = -'pi, the semantics of which were provided

by Equation (3.3). Notice that the set inclusion Pp E cG(Pp,) holds if and only if the

following inequalities are satisfied:

Pt = (1 - P),

0 < P' < 1, Pc IR,

(4.11)

(4.12)

t {1,..., T};

te { 1,...,T}.

Hence, by construction, if the value of p is True at a time instance t, i.e., P 1 = 1,

then the value of Pt is False, and vice versa. The set gp(Ppl) can be written also as

(Pp,) = PV, IP' = (1 - P 1),0 < Pt < 1,P~ cR for all t E 1,...,T} .

Just for the sake of brevity, however, formulations of q, for other operators will

only be given as the set of constraints that PC needs to satisfy.

Recall the semantics of the conjunction operator given by Equation (3.6). To

make the MILP formulation more compact, consider a more general operator

where conjunction of two or more propositions can be written as tP = A=lPi.

The semantics of this operator is defined by recursive application of the usual con-

junction operator, i.e., A=1 pi = (((pl ^ P2) A 3) A ... pk). Then, the set inclusion

Pp, E 9(Pp, ... PPk) holds if and only if Pp satisfies the following inequalities:

P t < Pt
4P - pi"

Pt > Ek= P - (k - 1),

0 Pt <1, Pt C R,

ic {1,...,k}, t {1,...,T};

t {1,...,T};

tE {1,..., T}.

The disjunction operator defined by the semantics equivalencies (3.4) can also

be generalized to represent disjunction of k propositions as = V= pi = (((pl V

(4.13)

(4.14)

(4.15)

... Pk) can be characterized as follows:

Pt t iltp<k ppP4 - i1 pi,
Pt > Pt
P, - Pi,

0 Pt < 1Pt E R-P - C,

t E {1,...,T};

iE{1,...,k}, tE{1,...,T};

tE {1,...,T.

Noting the semantics of the eventually operator in (3.8), the set inclusion Pp, E

4,0(Pp) for the formula ip = Opl can be characterized as follows:

Pt < ETtP
PC,- t P

Pt >2 P~,i

0 <P_ P 1<,Pj E R,

t E {1,..., T);
'r {t,...,T}, te {1,...,T};

te {1,...,T}.

For the formula 4 = opi, the semantics given by Equation (3.7) leads to the

following characterization of the set inclusion Pp, E @(Pp,):

Pt < P
4, - Pp1

p > E =t pp - (T - t)

0 Pt < 1,Pt E R

TE {t,...,T}, tEl {1,...,T};

te {1,...,T};
te {1,..., T}.

Let 4, = p'Uq and recall the semantics of the until operator given in (3.5). To

characterize the set inclusion Pp, GE (PP,, PP2) as linear constraints, let us define

the extra continuous variables at. Then, the following is a characterization of the

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

p2) V p3) V ... pk). Then, Pp, r Go(Pp,

set:

atj Pp2
+ t= P P - (j- t + 2), j E {t + 1,...,TI, t E {1,...,T - 1}; (4.25)

atj 5 Pp j{t + 1,...,T}, tj {1,..., T- 1);(4.26)

at PP re {t,...,j}, j{t + ,...,T},

t {1,..., T- 1; (4.27)

att = pt t {1,..., T}; (4.28)

P~ atj, t te {1,...,T}; (4.29)

Pt > atj; t {1,...,T}, je {t,..., T}; (4.30)

0 <P < 1,Pt E IR, t E {1,..., T}. (4.31)

The following lemma holds for the constraints (4.11 - 4.31).

Lemma 4.3.1 Given an LTLx formula p of height one defined on the set of atomic propo-

sitions H = lpl,..., Pm}, and a finite run a = (ql, q2,. .. , qT), let p i = 1 if pi E L(qt) and

Ptt = 0 otherwise for all t e {1,...,T), and Pp E qp(Pp1,...,Ppm) hold. Then, for all

t E {1,..., T}, (a, t) 1 0 holds if and only if P =1 holds.

Given an LTL_x formula ', let P1, P2... , Pk be all its immediate subformu-

lae. Note that I must be in one of the following forms: (i) -iqpl, (ii) Ai=l,=1...,k i,

(iii) Vi=l,...,k Pi, (iv) Op1i, (v) 0pi, or (vi) P1lUq2 . For each of the six cases, let

BasisConstraints(W, rp, P2, . - , (Pm) denote the set of evolution vectors PT, which

satisfy Constraints (4.11), (4.13-4.14), (4.16-4.17), (4.19-4.20), (4.22-4.23), and (4.25-

4.30), respectively, where 4i are substituted instead of pi, respectively, for all i.

The recursive procedure that constructs xp for W with arbitrary height is given

in Algorithm 1. If T is an atomic proposition, then Algorithm 1 returns a set

of constraints that ensures Pt takes a binary value for all t E (1,2,..., T} (Line 2).

Otherwise, it first constructs the sets i, (Pp,,... Pp.) for all immediate subformulae

pi of W by calling itself with different parameters (Line 6), then constructs the

necessary basis constraints that couple the evolution vectors of q)i with I (Line 9),

and returns the set gq(Pp,,... , Pp), which is a combination of all these constraints

(see Line 10).

1 if T E {pl,p2,---,pm} then

2 return Gp(P,,,...,P.) = {' * {0, l}for all te {1,..., T}

3 else

4 Let 91, P2, ---,q Pk be all immediate subformulae of T

s fori = 1, 2,..., k do

6 9pi := ConstructConstraints(p i,pl,...,m)

7 Define slack variables Pi,

8 end

9 G ,(P,.. ., Ppk) = BasisConstraints(, l,... ,Ok)

10 return Gv(Pp,,..., Pp,) = {(P I PW, E 0'(P,,,..., P) P ,pi E

g, (Pp.., Ppm), O P 5 1, P E IR for all i

{1,...,k and tE T{1,...,T}}

11 end

Algorithm 1: ConstructConstraints (, L, 2, ... , pm)

Example Consider the following example with 'P = O(PiVP2). To construct the con-

straints g(1 VP2)(P 1, Pp2), Algorithm 1 is called with ConstructConstraints (O(pi V P2), pl, P2)-

Notice that the unique immediate subformula of O(pl V p2) is P1 = (p1 V P2). Hence,

Algorithm 1 calls itself with ConstructConstraints((pl V P2, p1, 2)). Noting the

immediate subformulae of pi V P2 are P2 = pi and P3 = p2, this second call also calls

itself with ConstructConstraints(pl, pi, P2) and ConstructConstraint s(p2, pl, p2),

which return

g,(P,,Pp2) = PIP2 E {0,1} for all tt {1,...,T}},

P, (P,,, Pp,) = (PI P~, {0, 1 for all t e {1,...,T}},

respectively.

Then, the execution returns back to the call ConstructConstraints(p1 VP2, pl, P2),

which calls BasisConstraints(pl V p2, pl, 2), which, in turn, returns

,Vp2 (p) = {P, 1 P 1 i, for all i E 2,3} and t E {1,..., T};

Pt > P2 + Pt3 - 1, for all t (1,..., T) .

Finally, ConstructConstraints(pl V p2,pl,P2) merges the all the constraints given

above to return

p, vp2(PP, PP2) = {P, 1 P, 1 2 V3 (PP / PP2); P 2 E PI (PP, Pp2); P(3 E g 2 (Pp1 , Pp2);

0 Pt < 1,pt ER for all i1 {2,3} and t {l,..., T}},Pi- P1 "'

which yields the execution back to the call ConstructConstraints(O(pl V P2)). Go-

ing though a similar computational procedure, first, BasisConstraints(yp1, q9i)

is constructed as

T

!'lpl(P2) = {Pwv Pt < Pt, for all t E I1,..., T);

Pt P 1 , for all'r E t,..., T} and t c {1,..., T},

then, ConstructConstraintso, vp2)(Pp1 Pp2) returns

1O(,VP2)(PP1,PP2)= {Pj Py E GI(P qi);P~, E g p V (Pp,,P 2);

o<Pt < 1, P ER foralltE {1,..., T},

which is the desired set of constraints. *

Hence, the call ConstructConstraint(V*, pl,...,Pm) to Algorithm 1 returns the

set ,p(P,,,..., Pp,) of constraints. The algorithm defines slack variables before each

recursive call (cf. Line 7). Notice that the slack variables need not be constrained as

binary variables, which enhances the computational effectiveness of the method.

It is easy to see that the algorithm terminates. Indeed, it can be shown that the

number of recursive calls is linear with respect to the size of the formula, which

implies that the number of constraints is also linear in the size of the formula. It

can also be shown that the number of constraints and the slack variables is at most

quadratic with the length of the time horizon.

The following theorem states the completeness of the algorithm.

Theorem 4.3.2 Given an LTLx formula i of arbitrary finite height defined on the set of

atomic propositions I = {pi,...,Pm}, and a finite run a = (q2,q2,qT), let P*p* = 1 if

qt[pi] = True and P = 0 otherwise for all t E {1,...,T}, and P e G,(Pp,,..., Ppm).

Then,for all t {1,...T, }, (, t) 1 4 if and only if P1 = 1.

4.4 Applications to Mission Planning Problems

In this section, the sets Tp (see Equation (4.3)) are formulated within the multiple-

UAV mission planning application domain. The network-flow and the set-covering

MILP formulations of the VRPTL are fully developed in Sections 4.4.1 and 4.4.2,

respectively. Each section is provided with an example mission planning scenario

of practical interest.

4.4.1 The Network Flow Formulation

This section presents the MILP formulation of the atomic propositions followed by

modeling and solution of a complex multiple-UAV mission planning example.

Formulation of Propositions for Network Flow Formulation

Recall the definition the vehicle-routing transition system. The set of atomic propo-

sitions was composed of pk, where i and k were indices over the sets of customers

and vehicles, respectively. By definition, the atomic proposition pk is true if Cus-

tomer i is being serviced by Vehicle k.

To make the MILP formulation more compact, the set 9- is constructed such

that P' is false if Customer i is not serviced by Vehicle k as of time instance t and

is true if it has been visited at some time before t. This approach makes the big-

M formulations of MILP possible and practical as shown in the examples below.

Notice that this formulation does not incur any loss of any generality, since each pi

can be true only once throughout the execution, i.e., each customer can be visited

no more than once by the definition of VRPTL.

Let T be a big enough real number. In practical terms, T can be chosen as an

upper bound on the completion time of each meaningful execution. Notice that the

set inclusion P e T f(y, 0) (see Equation (4.3)) holds if and only if the following

constraints hold:

p (- ti) - 1 - ijk ,

1
Pt < -(ti- et),

pt <E Xijk,

Pik - ijk,

P E10,I, 1 ,

(4.32)

(4.33)

(4.34)

(4.35)

Vt e {1,...,T};

Vt E {1,...,T);

Vt E {1,..., T).

Using the LTL_x language with the atomic propositions pk, several other prop-

erties can be expressed. Consider, for example, the case when a customer can be

serviced one of the several vehicles indexed over the set K c {1,2,...,K}. The

corresponding LTL_x specification is O VkEK p . For computational effectiveness,

the proposition VkEKpp can also be represented in the MILP framework, just like pk

and treated as an atomic proposition even though it does not have the atomicity

property. Let us represent vke~ p with pl with a slight abuse of notation. Then, 1,

can be characterized as follows:

1
Pt <= (ti - Ot),

T
pt <Xijk,Pix -

kE- jff

Pt, E {0,1),

(4.36)

(4.37)

(4.38)

(4.39)

VtE {1,..., T};

Vt E {1,...,T}.

Similarly, if Vk=1...,K 4, denoted by qi, is of concern, there is even a more compact

characterization, which is as follows:

Pt - O - ti)

Pt <1- Pti - t)qi - 0,1,
pg Iqi

Vt e {1,...,T);

Vt E {1,...,T);

Another special case is when vj is an ending depot, i.e., j e C. Denoting this

atomic proposition by s, the corresponding characterization is as follows:

ijkN
iEN

- Ot),

PSjk xijk,

ieN

P tjk E {0,1},Sjk

Vt E {1,...,T};

Vt E {1,...,T};

Vt E {1,...,T}.

Similarly, one might only be interested in Vehicle k having landed on an ending

Pt 1
P3K - T

- ti) -(1 - ijk
keIC jE9

(4.40)

(4.41)

(4.42)

pit >1Sjk : (Ot
- tjk)

Sjk -- jkf

(4.43)

(4.44)

(4.45)

(4.46)

depot, i.e., sk = Vj cvi, which results in the following more compact formulation:

P tt- tjk , Vt E {1,...,T}; (4.47)
jeC

Pk jk - 0', Vt E {1,..., T}; (4.48)

P k E 10,1}, Vt E 1,.. ., T. (4.49)

Only for further illustration, in what follows, the set 7T is explicitly given for

proposition qk.

= (P t,P) Pt > - P 1- (t -Ot),P. e {0,1}, for all t e {1,... T}

For all the other propositions, the corresponding sets can be obtained in a similar

manner.

Let H' be the set of all propositions treated as atomic propositions in the for-

mula. Obviously, 1 c H'. Having defined the extra slack propositions, the follow-

ing assumption complements these definitions and improves the computational

effectiveness.

Assumption 4.4.1 The specification 4* is such that, for any subformula of ip in the form

of <91, o 0, P1V'U2, or P1 Wq 2, the following hold

* T1 e H' or -P e H',

* 92 E H' or 12 E I-'.

This assumption implies that the temporal operators eventually, always, until and

unless are only applied to either propositions in 1' or their negations, hence render-

ing the specification p a combination of conjunctions, disjunctions, and negations of

several temporal specifications of the form above. With this assumption, the num-

ber of time instances required to solve the problem can be fairly small. However,

the assumption is not very constraining in the application domain. Motivational

examples of complex specifications that satisfy Assumption 4.4.1 will follow in the

next Section. Moreover, in some cases, formula that involve nesting of operators

inside temporal operators is equivalent to formula that satisfy Assumption 4.4.1.

The following are examples for formulae of height two.

* [(O) v (00)] 4 [o(0 v I)],

* [(O(P) A (o)] < [0(0 A *)],,

* [(4/U4) V (U)] < [41(4' V q)],

• [(1/Ur) A (*'Up)] [(0 A P)U],

where 0, 4' and p are any LTLx formula. Moreover, the following implications

can also be employed, leading to a conservative solution,

" [(04) V (o)] => [O(0 V)1,

* [(/Wr) V (Ip,)] = [(4 V)].

It is possible to relax Assumption 4.4.1 within the MILP framework. One

straightforward way of doing this is to allow only one proposition to change its

value at every time instance. For this purpose, let us define a continuous variable

Pf E R with 0 5 p < 1 for every proposition pi E nI and each time instance

t E {1,2,..., T). This variable needs to be one if pi made a transition from False

to True between time instances t and t + 1, and 0 if no such transition occurs. The

following constraints ensure this property.

> t+-l p , Vpi E, Vt e {1,2,...,T}; (4.50)

P' > P-P , Vpi E -I, Vt {1,2,...,T}; (4.51)

Oft< P' + Pt+, VPiE, t E {1,2,..., T}; (4.52)

f 2 2-(PV+ P), vpi E, Vt {1,2,...,T} (4.53)

Finally, the following constraint allows no more than one transition between two

consequent time instances:

SPi < 1, Vt E {1,...,T}. (4.54)
iEP

This method, however, introduces several extra constraints and variables. More-

over, one has to define as many time instances as the number of atomic propositions.

Even though the number of variables increase polynomially with the number of

atomic propositions, the computation time increases drastically since the variables

that represent the atomic propositions are binary variables.

Examples

Consider a mission planning example and observe the changes in the resulting

mission plan for slight changes in the scenario. The example considered in this

section is motivated by a complex military operation, loosely inspired by the events

narrated in [12]. Consider an urban setting, in which a friendly unit is pinned down

by enemy units and needs to be rescued. There are three groups of enemy infantry,

denoted as T1, T2 and T3, two of which are protected by Surface-to-Air Missile

(SAM) units S1 and S2. SAM unit S1 protects only T1 and S2 protects only T2.

There are four friendly UAVs with different capabilities, which are to be outlined

shortly. The UAVs are launched from one launch site L1 and can land on one of

the two landing sites C1 and C2. See Figure 4-1 for a map of the scenario, in which

the precise positions of the units are shown. The friendly UAVs V1,V2, V3, and V4

travel with 25mph, 25mph, 40mph and 12mph respectively. Time to fly from one

node to another one is computed using the manhattan distance, since it is believed

to be a good indicator of distance in urban environments [60]. Each target also has

a servicing time of 0.25 hours, which is incorporated into the cost. The capabilities

of the UAVs are as follows: V1 and V2 can attack the targets, but they can not attack

the SAM sites; V1 is vulnerable to S1, whereas V2 is vulnerable to both S1 and S2;

V3 can not engage the targets T1 and T2, even though it can engage T3 as well as

the SAM sites S1 and S2; V4 is an autonomous road vehicle in this scenario, which

TARGET1: T1 TARGET 3: T3
SAMSITE 1 :S1

TARGET2 :T2
SAMSITE 2: S2

LAUNCH SITE 1 : L1 I LANDING SITE 2: C

LANDING 1 2 3 4 5 6 7

X (miles)

Figure 4-1: Map of the "Black-Hawk-Down" scenario

travels with relatively low speed, but it can engage any of the SAM sites or targets.

The mission objective is to destroy either T1 and T3, or T2 and T3. Thus making

a way through for the infantry from the T1 side to base C1 or from the T2 side to

base C2, respectively. Finally, if the infantry units escape from the T2 side and get

to base C2, then V4 must meet them at base C2, i.e., V4 must go to base C2 even if

it does not attack any of the targets.

The LTL-x mission specification is a combination of mission objectives and

mission constraints. Recall that the mission objective is to eventually destroy T3

along with either T1 or T2. This specification can be expressed in LTL-x as (OqT1 v

OqT2) A (OqT3) Recall that if T2 is destroyed then V4 has to get to C2, which can be

expressed in LTL-x as (OqT2) - (OSC2,V4). Moreover, if T1 is serviced by V1 or V2

then S1 has to be destroyed beforehand, i.e., (--'pTl,V1,V2))W(qsl). Similarly, for T2,

we have that (-,pT2,V2) W(qs2). Finally, recall that V1 and V2 can not destroy the SAM

sites, which is equivalent to (D-'pvi,s) A (-'pv1,S2) A (O-'pv 2,S2) A (E'pv2,s2). Similarly,

noting that V3 can not destroy the targets T1 and T2 results in (fO-PV3,T1)A (D -'pV3,T2).

Then, the overall LTL_x specification is the conjunction of all these, i.e.,

S= [(qTl V qT2) A (qT3)] A [(OqT2) -- (OSC2,V4)]

A[(O -'pTI1,(V,V2)) V (-'pT1,{V1,V2)(qsI)1

A[(O-n'T2,V2) V (-'pT2,V2)U(qS2)]

A[(OL'pvi,s1) A (0 PV1,S2) A (E-PV2,S2) A (O'PV 2,S2)]

A[(p-'V3,T1) A (Op-'P3,T2)]. (4.55)

Recall the cost function given in Equation (2.9). This cost function represents the

total risk of employing all the UAVs in the mission. More precisely, the parameter

ck represents the risk of employing UAV k in the mission per unit time. The larger

the Ck is, the bigger the risk of utilizing vehicle k will be, which will discourage the

algorithm from using k in the mission. For the numerical example, let Ck = 1 for

k E {V1, V2, V3, V4} associating equal risk to all the UAVs. The optimal solution is

depicted in Figure 4-2(a). The resulting mission plan is to use only V4 and destroy

T3 and T1 respectively. Notice that S1 was not engaged, since V4 is not vulnerable

to any of the SAM sites.

The optimal solution to many combinatorial optimization problems varies dras-

tically in structure as the problem parameters varied slightly. To demonstrate an

example, consider the case in which V4 is 2mph slower. That is V4 travels with

10mph speed. This time the solution is given in Figure 4-2(b). In this case, the

solution is to destroy T1 by V2, and S1 and T3 by V3. SAM unit S1 is destroyed by

V3 before V1 engages T1, since V2 can be hit by S1.

In addition to the modification in V4's speed, consider the case for which T1

and S1 are 4 miles to the north. The optimal solution for this scenario is depicted

in Figure 4-2(c). This time, it is more advantageous to engage T2 and T3 with V4.

Notice that V4 finally gets to C2 to deliver the necessary cargo.

To demonstrate a final example, let V4 travel with 8mph, i.e., 2mph even more

slower, in addition to all the other changes in parameters. In this case, the resulting

optimal mission plan is depicted in Figure 4-2(d). In the optimal solution, T2 and

T3 are engaged by V1. Note that V1 is not vulnerable to S2. Notice also that

V4 lands on C2 just to deliver the necessary cargo without destroying any of the

targets.

The cost function that was considered so far was an indication of the total

risk. However, in some cases, it is fairly important to complete the mission in

minimum time. To model this cost function in the MILP framework, let us define

the continuous decision variable tmax and introduce the following set of constraints

to the MILP formulation: tjk a tmax for Vj e C and Vk E 'K. The cost function is

tmax, which is minimized to complete all the mission requirements in minimum

time. Consider the scenario described before without the parameter modifications.

Figure 4-2(e) shows the optimal solution, where V1 destroys T2, V3 destroys T3,

and V4 heads out to base C2 to meet the rescued infantry without engaging any of

the targets. Notice that the minimum time solution employs as many vehicles as

possible in order to accomplish the mission as soon as possible. But, the solution

risks all three of the UAVs whereas the minimum risk solution has employed

only one UAV (see Figure 4-2(a)). Indeed, the amount of risk taken, i.e., the total

time that the UAVs have been employed, was 1.92 hours in the minimum risk

solution whereas the same function happens to be 2.62 hours in the minimum time

solution. On the other hand, the mission time, i.e., the time that the mission was

completed was 1.92 hours for the minimum risk solution. But, with the minimum

time solution, this comes down to 0.94 hours.

Noting the considerable difference of risk and time between the minimum time

and minimum risk solutions, let us employ a cost function which is a convex

combination of the previous two. Let parameter a be a real number such that

0 < a < 1 and consider the cost function a EjEc Ek kX Cktck + (1 - a)tmax. For ck = 1 for

all k E 'K and a = 0.5, Figure 4-2(f) depicts the optimal mission plan, where V3 first

destroys S1 and then T3 and comes back to base C1 whereas the relatively faster

vehicle V1 destroys S1. Note that, destruction of S1 occurs before the destruction

of T1 allowing V1 to engage T1. In this plan, interestingly, the total time that

the UAVs are employed is 2 hours and the mission time is 1.1 hours. Note that

this solution is pretty close to both the risk of the minimum risk solution and the

mission time of minimum time solution satisfying the mission specifications in a

reasonable amount of time while taking a relatively small amount of risk.

4.4.2 The Set-covering Formulation

In the previous section, the network-flow formulation of the VRPTL was developed

along with a military multiple-UAV mission planning example. This section briefly

outlines the set-covering formulation of the VRPTL and presents an illustrative

example.

Formulation of Propositions

Recall that a set LI' of propositions were defined in the previous section to denote

a set of proposition which are directly formulated within the MILP framework.

The same methodology is explored in this section as well. Before presenting the

propositions for the application domain, let us introduce two new matrices: V and

W, which are computed in the presolve phase of the set-covering formulation. The

time that Customer i is reached in Permutation j of Vehicle k, denoted as Vijk, is

computed for Vi E V, Vje J(k) and Vk e W. If kth vehicle never reaches the ith target

in its jth permutation, then Vijk is equal to T, which is a big enough real number

such that maxi,j,k Vijk = T. The time that vehicle k reaches its ith customer in its jth

permutation, denoted as Wijk, is computed for Vi E V, Vj J(i) and Vk e K.

Let T be a real number which is slightly larger than T. Let pik denote the

proposition, which states that "Customer i has been serviced by vehicle k". Then, the

set inclusion Ppa 7~ (y, O) holds if and only if the following inequalities hold:

Pk 2 -T VijkXi , Vt E (1,...,T); (4.56)
j=1

Ptk <1 V ijk , Vt e {1,...,T); (4.57)
t 1.,T (458j=)

P' C=10,11, w e1,..., T). (4.58)

As an other example, let qk be the proposition stating that "Customer k has been

serviced". Then, a more compact characterization of the set Tk (y, 0) can be given

as follows:

1 iM (i)

tk VijkXij + (N - 1) ,Yt E {1,..., T}; (4.59)
qk - i=1 j=1

P 1 - i (N - 1) Vt E (1,..., T); (4.60)
i=1 j=1

P k E {0,1}, Vt E {1,..., T). (4.61)

Consider the following final example. Let rk, be an atomic proposition which

stands for the statement Vehicle k has serviced more than z customers. Then, the

following set of constraints is a characterization of the corresponding set Tkz(Y, 0):

Pr 1 (t E- WijkXij , Vt E {1,..., T); (4.62)

j=1

Pr 1- N WijkXij -t , Vt E {1,...,T; (4.63)

Prkz E {0, 1}, Vt Ef {1,..., T}. (4.64)

Simulations of the Set-covering Formulation

Consider a simple illustrative mission with two UAVs: V1, V2, and three targets:

T1, T2 and T3. The mission objective is to engage target T3 as well as to engage

either T1 or T2. Also, if T2 is engaged then the destruction of T3 has to be verified

by visiting T3 again after its destruction. But if T1 is engaged then there is no

need for such a verification. Let us will denote the destruction of T3 by T3a and its

verification by T3b.

The objective of the mission can be denoted by the LTL_x specification OqT1 V

OqT2, which is equivalent to stating that either T1 or T2 has to be destroyed even-

tually. One of the mission constraints can be represented as (-qT3b)UqT3a, which

implies that T3 can only be verified after its destruction. Note that this specification

also implies that the destruction of T3 (denoted by T3a) will eventually happen.

Recall that if T1 is not visited then destruction of T3 must be verified, which can be

expressed as (-OqT1) = (OqT3b). Finally, to make the problem more interesting, let

us impose the condition that V2 can not be used for destruction of T3, and V1 can

not be used for the verification of the destruction. These conditions can be specified

as O-pT3a,V2 and o-PT3a,1 respectively. Then, the LTLx mission specification is

= [cqT1 V *qT2] A [(-'qT3b)UqT3a

A[(-lqT1) => (OqT3b)] A [O-PT3a,V2] A [O-nT3b,Vl]. (4.65)

A map of this mission is given in Figure 4-3(a); and the optimal solution for this

scenario is illustrated in Figure 4-3(b). Notice that, in the optimal mission plan,

T1 is not destroyed. Instead, the optimal plan is to destroy T3 and then verify

the destruction by V1. Furthermore, V2 engages T2 in order to satisfy the mission

specification. 0.1 hours after mission starts, the destruction of T3 takes place, which

is followed by the verification after 0.01 hours after the destruction. The destruction

of T2 takes place 0.17 hours after the mission start.

(a) Simulation 1

T3

V4
T2

S2

Launch Site Li
iteLanding Site 2

LLanding Site C1

bite L i mlt
Site C1 ngSeC2

(b) Simulation 2

T1

(c) Simulation 3 (d) Simulation 4

VT V2 V3

vi S2

52-

V4

Landing Site C2 i Land
0Landing Site C

(e) Simulation 5 (f) Simulation 6

Figure 4-2: Simulations of the military scenario

T1

T2

..
T3

V1i V2
II i i i

1 2 3

X (miles)

(a) Map of the battle damage assessment scenario (b) Solution for the battle damage
assessment scenario

Figure 4-3: Simulation results for the battle damage assessment scenario

Q

4 5

Chapter 5

Vehicle Routing with Metric

Temporal Logic Specifications

In this chapter, the real-time temporal logic MTL is considered as a candidate for

specification of temporal and logical constraints in a vehicle routing setting. MTL

allows specification of qualitative properties of time such as deadlines and time

windows. In this regard, it differs from the linear temporal logics discussed in the

earlier chapters and is a strict superset of LTL-x. In the spirit of the previous chapter,

the problem is first formalized, and then a mixed-integer linear programming

formulation is developed to solve it to optimality.

5.1 Preliminary Definitions

Recall the definition of a vehicle-routing transition system from Chapter 4. To

model instances of the vehicle routing problem with metric temporal logic speci-

fications, vehicle-routing transition systems can also be adopted. Recall also that

the semantics of MTL are defined on timed state sequences of transition systems,

rather than their runs. Hence, one needs to define the timed state sequences of

a given vehicle routing transition system to formally define the VRPMTL. Notice,

however, that the vehicle-routing transition system implicitly conveys this infor-

mation in a given run. More precisely, the states contain the information regarding

the exact time of the state transition, using which a timed state sequence can be

derived given a run.

Formally speaking, each run of a vehicle-routing transition system map to a

timed state sequence on the vehicle routing transition system as follows.

Definition 5.1.1 (Timed State Sequence of a Run) Given a vehicle-routing transition

system TS, a run a = ((vl, 01), (v2 , 02), ... , (vn, 0n)), the corresponding timed state se-

quence c of the run a on TS is defined as follows.

co = (a, K),

K = (I1,12,--.. ,In),

where the left limit l(Ii) of Ii is equal to Oi for all i = 1, 2,..., In and the right limit r(In) is

equal to infinity.

Noting that the subsequent intervals in K are all adjacent, this definition suggests

that Ii is indeed the time interval, in which all the vehicles are in the same vertex,

for all i = 1, 2,..., n.

Notice that given a run a, the corresponding timed state sequence c is uniquely

defined for all finite a according to Definition 5.1.1. Recall also that given a finite

run on a vehicle-routing transition system, the cost of a is well defined according

to Definitions 4.1.3 and 4.1.4.

5.2 Problem Definition

A formal definition of the VRPMTL is the following.

Problem 5.2.1 Given a vehicle-routing transition system TS = (Q, o, - , H, L) for K

vehicles on K directed graphs Gk = (Vk, Ek, ck) with depots vko Vk for k E {1,2,...,K},

and an MTL formula 0 defined on F, find a run a on TS such that the following hold:

* the timed state sequence a that corresponds to a according to Definition 5.1.1, satisfies

the MTL specification, i.e., aw t O,

* the cost Coo is minimized.

Notice the similarity between the Problems 4.2.1 and 5.2.1. The difference,

however, stems from the fact that the element of reasoning (timed state sequences,

in this case), convey information about the exact time that the events happen.

Hence, in the latter problem, this information can be specified via the formula,

whereas in the former problem the reasoning problem is based, rather, on ordering

of events. For this reason, MTL allows incorporating real time constraints including

but not limited to deadlines and time windows, in a unifying manner.

The rest of this chapter is devoted to the introduction of a MILP-based algorithm

for solving VRPMTL instances under some assumptions on the structure of the MTL

formula q5.

5.3 A MILP-based Formulation of VRPMTL

In this section, a MILP based formulation of the VRPMTL is developed. The MILP

formulation of the VRPMTL is in the same sprit with the that of the VRPLTL;

first, the MTL formula is converted into a set of equivalent mixed-integer linear

constraints and then the resulting constraints are incorporated into one of the MILP

formulations of the standard VRP.

5.3.1 MILP Formulation of Atomic Propositions

Let us associate the following two variables to the evolution of an atomic propo-

sition p: a binary variable p and a continuous variable Tp. p = 1 if the atomic

proposition p stays False forever; p = 1 if p becomes True at some point in time.

Then, zp indicates the earliest time that p switches to True, if p = 1; it is meaningless

if rp = 0.

In the rest of this section, some examples of atomic propositions will be provided

in the application domain. Consider, for example, the atomic proposition p, which

states that "Target j is serviced by UAV k". In this case, the constraints on ,p and

'r, become

P Xijk; Tp = tj.
iEI

Next, consider the atomic proposition p which states that "Target j is serviced".

Notice that the parameters p E {0,1) and '(p E IR>0 can be defined using the

following linear constraints over the variables of the VRP formulation presented

in Chapter 2.

cp= j Xijk; Tp tj.

iel ke

Another example is the atomic proposition p, which states that "UAV k landed

on landing site j". For this atomic proposition the linear constraints turn out to be

p E Xijk; Tp = tjk.
iel jeC

Let us note the following final example. This time, the atomic proposition p

states that "UAV k is launched from launch site i", for which the constraints on p

and 'p can be written as

P = Xijk; Tp = Sik.

Notice that this proposition uses the loitering time at the launch site which corre-

sponds to the launch time of the UAV.

5.3.2 MILP Formulation of MTL Formulae

This section is devoted to the introduction of a systematic procedure which con-

structs a set of linear inequalities over the variables p, and rp for any given MTL

formula 4 under some assumption on the structure of 0. Given some timed state

sequence wo = (a, K), where a = (sl,S2 ,...) and iK = (I1,I2,...), let 5p = 1 and Tpi < t

if s(t)[pi] = True, and p = 0 if s(t)[pi] = False, for Vpi C H. Then, for any given

timed state sequence c, the aforementioned set of linear constraints are satisfied if

and only if w 1 0, where 4 satisfies the following assumption.

Assumption 5.3.1 The temporal operators ofMTL are applied only to atomic propositions

and their negations.

Even though this assumption seems constraining, many interesting complex tem-

poral specifications already satisfy this assumption.

The algorithm, which generates the set of MILP constraints from the MTL

specification, runs in two phases. In the first phase, it eliminates all the temporal

operators from the formula, whereas in the second phase it considers the remaining

non-temporal formula to construct the MILP constraints.

More precisely, in the first phase of the algorithm, for each temporal operator

and the propositions it binds, a set of constraints is generated. Noting that, by

Assumption 5.3.1, each temporal operator is either applied to an atomic proposition

p or its negation -'p, this set of constraints can be defined considering the four

cases of the binary operator until, and two cases of the unary operators eventually

and always. Let us first consider the until operator. Let pl, p2 e FI be the set

of atomic propositions with their corresponding variables 4p,' Tpl and 4p,, rp1,

respectively. Then, P1UIP 2 with I = [a, b] is satisfied at time t = 0 if and only if

(,p2 = 1, Tp2 b) A ((Tp2 a) v (p, = TP1, l < Tp2)). For _p-1IP2, the constraints are

(p2 = 1, T 2 b) A ((TP2 a) V ('p 2 < TP1)). For the cases P{lUI-p2 and -'PIU 1-,p 2 the

only constraint is TP2 -a, which is same for both since both force p2 to be False

throughout the interval.

Given the interval I = [a, b], the constraints corresponding to the formula OIpl

are p, = 1, Tpl b, whereas the ones corresponding to the formula OI-'pl are pI, > a.

Considering the always operator, the constraints corresponding to the formula

Orlpl are pl, = 1, Tpl : a, and the constraints corresponding to the formula OI-1pl are

Tpr >b.

Every constraint above is of the form ajz : bj. In the next step, each such

constraint is bound with a binary variable yj e {0,1} which satisfies yj < 1 -

1 (ajz - bj); yj 2 -j (ajz - b), where M is a big enough number. Notice that yj = 1

if ajz 5 bj holds and yj = 0 otherwise.

In the second phase, all the temporal subformulae are replaced with the corre-

sponding binary variables yj in the formula q, and we apply the following rules

recursively to the remaining formula 4, composed of negations, conjunctions, and

disjunctions of yi. Initially, 1 = m + 1 and then,

* for any negation of a single variable yj a slack variable y R, 0 5 yl 5 1 is

defined, which satisfies y, = 1 - yj;

* for any conjunction of m single variables yl,..., yl, a slack variable y E IR,

O < y 5 1 is defined which satisfies yl 1 yj, j E {1,..., J}; y1 2 , E=li - (J - 1);

* for any disjunction of m single variables yl,..., yl, a slack variable yr e R,

o0 y 5 1 is defined which satisfies y, < =1 Yj; y1 > yj, j e {1,..., J}-

Then, at the end of each step, the variable yl is substituted in the formula instead of

variables and the operator it represents; and 1 is incremented by one. This recursive

procedure is continued until 0 is becomes a single variable, as in 4 = yL. Finally,

the following constraint is added to the formulation: YL = 1, which states that the

formula is True at the initial time, i.e., for any feasible solution of the VRP instance

the corresponding timed state sequence satisfies wo0 I .

5.4 Multi-UAV Mission Planning Applications

In this section we present a simple example in order to illustrate the framework

presented in the paper. Let us consider a scenario with three UAVs, one launch

site, two landing sites, and five targets. The spatial distribution of the targets and

the sites are shown in Figure 5-1. The three vehicles K1, K2, and K3 can travel at

15, 18, and 20 mph respectively. The servicing time of each of the targets is 0.05

hours. When calculating the time required to from a node to another we consider

rectilinear distances which is assumed to be a good model for urban environments

[60].

-1 0 1 2 3 4(miles)
X (miles)

Figure 5-1: Map of the example mission planning scenario.

The objective in this mission is to either service targets N1, N4, N5 within the

first 1.5 hours, or to service targets N2, N3 within 0.7 hours. If the former option

is taken, then eventually K must land on the landing site C2, after target N4 is

serviced, even if it does not service any of the targets. Furthermore, target N4 can

only be serviced after 0.4 from the beginning of the mission only by the UAV K2.

If the latter option is taken, servicing of the second target must always be avoided

in the first 0.6 hours. Moreover, target N3 must be serviced before target N2. To

model this problem in MTL, let us define the following atomic propositions,

* pi: Target N1 is serviced;

* p2: Target N2 is serviced by UAV K2;

* p3: Target N3 is serviced by UAV K3;

* p4: Target N4 is serviced by UAV K2;

* Ps: Target N5 is serviced;

* P6: UAV K1 is on landing site C2,

N, N2

N3

S 5N4 N5

2

R. I I I I

. I .

... ...

..

using which the specification can be written as

= (0[0,1.s]pi A O[0,1.5]P4 A 0[0,1.5]p5

AO1 o,1 .5]P6 A O[o,o.4]-'P4 A (-p6)Up4)

V(O[0,0.7]p2 A (-np2)U[0,0.7]P3 A O[0,0.6]-np2)

The optimal solution for the mission is shown in Figure 5-2. Notice that K2

services the targets N 1, N2, and N3 and K1 directly flies to landing site C2, even

though it does not service any of the targets. The landing times of K1 and K2 are

0.4334 and 0.8667 hours, and the servicing times of targets Ns, N4, N1 are 0.3278,

0.4334, and 0.5945, respectively. K1 loiters around the launch site L1 before starting

its route for 0.0501 hours. Notice that the solution also satisfies the constraints that

the target N 4 is not serviced within the first 0.4 hours of the mission. Notice also

that the optimal solution makes UAV K1 loiter for a while at the launch site in order

to delay its arrival to C2 and satisfy the constraint that UAV V1 is not landed on C2

before target N4 is serviced.

V2

V2

Li

N4 V2 N5

V2

Figure 5-2: Optimal scheduling for MTL specification

As a slightly different example let us consider a scenario in which VRPMTL

instance is the same except that the MTL specification changed to 0' which differs

from 0 by requiring that N4 can not serviced within the first 0.5 hours of the mission

instead of 0.4 hours. The corresponding optimal solution of the mission is shown

in Figure 5-3. Landing times of UAVs K2 and K3 are 0.7611 and 0.6, the servicing

times of the targets N 2 and N 3 are 0.6 and 0.4, respectively. In this solution UAV K2

loiters at the launch location L1 for 0.1056 hours before starting the mission.

V2

L .hl V3 W1
Figure 5-3: Optimal scheduling for MTL specification 0'

76

Chapter 6

Process Algebra

The second part of the thesis addresses problems in which the specification is

given by a process algebra term instead of a temporal logic formula. The main

motivation behind studying process algebra is its nice computational properties:

A feasible execution that satisfies a given process algebra term can be found in

time polynomial with respect to the size of the term, whereas the model checking

problem for, e.g., LTL is known to be PSPACE-complete [53].

In this chapter, several definitions that introduce process algebra are provided.

These definitions constitute preliminaries for the material that will be presented

in the next chapter. Subsequently, in the next chapter, the motivation for employ-

ing process algebra specifications in multiple-UAV mission planning problems is

further discussed.

This chapter is organized as follows. In Section 6.1, some preliminaries are

introduced; these definitions will be used throughout Chapters 6 and 7. The syntax

and semantics of process algebra are introduced in Sections 6.2 and 6.3, respectively.

6.1 Preliminaries on Sequences and Trees

This section presents preliminary definitions on sequences, graphs, and trees, in

subsequent sections. Note that sequences and graphs were defined previously as

necessary. In this section, those definitions are reminded and extended.

6.1.1 Sequences

Given a set S, a (finite) sequence a of (distinct) elements from S is an injective

function, which maps {1, 2,..., K) to S, where K e N. The number K, denoted by

lal, is called size of the sequence a. The empty sequence has size 0 and is denoted

by A. For notational convenience, a will be denoted as a = (a(1), a(2),..., a(K)).

An element s E S is said to appear in the sequence a, denoted by S E a with

an abuse of notation, if there exists some k such that a(k) = s. Element sl is said

to precede element s2 in a, denoted by sl <, S2, if S1 , S2 E a and a-'(sl) < a-1(S2)

Given a sequence a = (a(1),..., a(K)), any sequence j = (o(1),..., a(l)), where I < K,

is called a prefix of a. Given two sequences al = (a1(1), al(2),... , a(K)) and a2 =

(a2(1), a2(2),... , 2(K')), their concatenation a' = (al(1),...,al(K), a2(1),... , a2(K'))

is denoted by al * a2. Given a set S, the set of all sequences that can be defined on

S, which includes A, is denoted by Es.

6.1.2 Graphs

A graph G = (N, E) consists of a set N of nodes and a set E c N x N of edges. The

edge e is said to be an incoming (or outgoing) edge of a node n if e = (n', n) (or

e = (n, n')) for some n' e N. Two edges e, e' E E are said to be adjacent if e = (n, n')

and e' = (n', n") for some n, n', n" E N. A path on G is a sequence p = (el, e2,... , el)

of edges such that ei E E for all i E {1, 2,... ,1) and ei and ei+l are adjacent, for all

i E {1,2,...,l - 1}. The graph G is said to include a path p, if p is a path on G. The

path p = (el, e2,... , el) is said to start at node ns and end at node ns if el = (ns, n') and

el = (n", ne) for some n', n" E N. A path is called a cycle if it starts and ends at the

same node.

6.1.3 Trees

A tree T = (N, E) is a graph that does not include any cycles. It can be shown that

every tree has a node, called the root node, that has no incoming edges. Given a

tree T, the unique root node of T will be denoted by Root(T). It can also be shown

that all other nodes in the tree have exactly one incoming edge each. Let n be a

node in tree other than the root. Let e = (n', n) be the unique incoming edge of

n. The node n' is called the parent of n and will be denoted by ParentT(n). Let

el = (n, nl), e2 = (n, n2),..., el = (n, n) be all the outgoing edges of n. Then, the set

{nl, n2, ... , n}, which will be denoted as ChildrenT(n), is the set of children of n. If

a node n has no outgoing edge, then it is called a leaf node. The function LeafT(n)

is used to decide this case; it returns True if n is a leaf node and False otherwise.

A labeled tree is a tree T = (N, E), in which each node in N is associated with

a label from an alphabet EN and each edge is associated with a label from another

alphabet EE. Given a node n (or an edge e), its label will be denoted by LabelT(n)

(or LabelT(e)).

6.1.4 Binary Trees

A binary tree B = (N, E) is a tree, each node of which has either no outgoing edge or

exactly two outgoing edges. If a node has two outgoing edges, then exactly one of

them is labeled as right and the other one as left. Let n be a node and el = (n, nt) and

er = (n, nr) be its outgoing edges labeled with left and right, respectively. Then, n1 is

called the left child and nr is called the right child of n, denoted by LeftChildB(n)

and RightChildB(n).

A labeled binary tree is a binary tree B = (N, E), in which each node in N is

associated with a label from an alphabet EN. Given a node n, its label will be

denoted by LabelB(n).

These definitions will be useful throughout the paper. In particular, a labeled

tree structure, called the assignment tree, will be introduced in the next chapter

and it will be denoted by T = (N, 8); a labeled binary tree structure, denoted by

D = (M, -), called the parse tree, will be presented in Section 6.4.

6.2 Syntax of Process Algebra

The syntax of Process Algebra (PA) is defined by a set of terms. More formally,

Definition 6.2.1 (Terms of Process Algebra) Given a finite set A of actions, the set T

of BPA terms is the least set that satisfies the following:

* each action a E A is in T;

* ifp, p' ET, then p + p' T, p p' T, and p IIp' ET.

Each element of T is called a PA term.

The compositions p+p', p-p', and p II p' of processes p and p' are called the alternative,

sequential, and parallel compositions, respectively. Intuitively, the process that is

composed only of the term a E T, where a E A, can execute a and then terminate.

The process p + p', behaves either like the process p or process p', i.e., p + p' executes

either a behavior of p or one of p', which introduces a logical coupling between the

actions. The process p -p', on the other hand, first executes a behavior of process p

and then, after p terminates, executes a behavior of p'; the process p -p' terminates

when p' terminates. Finally, p II p' executes the actions of p and p' in an interleaving

manner and terminates when they both terminate. A process which has terminated

and can execute no further actions will be denoted by V.

The size of a term is defined as the number of actions and operators in it.

Without loss of any generality, we assume that each action appears at most once in

a term.

6.3 Semantics of Process Algebra

In process algebra, each term represents a process, and thus a set of behaviors. A

behavior is formalized as a sequence of actions, referred to as a trace, that a process

can execute. Indeed, each process can be associated with a set of traces, which

describes all its behaviors, i.e., all the traces that the process can execute. Unlike

temporal logic formulae, semantics of process algebra terms are not defined using

transition system models. Instead, a function that maps each one of the processes

in T to a set of traces that it can execute is defined using a process graph.

Definition 6.3.1 (Process Graph) A process graph Po e T is a labeled transition sys-

tem (Q, A, =*) together with a root state qo e Q and a function n : Q -- T, where

* Q is a set of states;

* A is a finite set of actions;

* -c Q x A x Q is a ternary relation;

* n associates each state q e Q with a term t E T such that qo is mapped to Po.

On the process graph of a given process, a transition from a state ql to another

state q2 with action a E A, denoted by ql -- q2, exists if and only if (ql, a, q2) E= .

If there is a transition ql =* q2 such that n(ql) = pi, n(q2) = P2, then pi is said
a

to evolve to p2 after executing action a, denoted as p1 -- p2. If there is a set of

actions al,...,ak E A and a set of processes Po,...,Pk E T such that pil -- pi for

all i E {1,..., k}, then process po is said to evolve to process pk after executing the

sequence (al, a2,. .. , ak) of actions. The corresponding sequence of transitions is
al a2 ak (a1 ,a2, ,ak)

denoted as po -- -P . --- pk, or equivalently, po -- pk.*

Definition 6.3.2 (Trace) A trace of a PA term pi is a sequence y = (a,, a2 ,... ,an) of

actions, for which a corresponding sequence (p2, P3,- - -, pn+l) of processes exists such that

Pi E T and pi 4 pi+ for all i E (1,2,..., n}. The set of all traces of a term p is denoted as

Fp.

Note that if the process graph of a process p is known, then the set Fp is well-

defined. Thus, the next step is to define the process graph for each process. Ob-

viously, given a finite set A of actions, the process graph for all the processes in T

can be defined by giving the labeled transition system (Q, A, --), root state qgo, and

function n, explicitly, for all p e T. Instead of this exhaustive approach, however,

operational semantics can be used to define the process graph of each process with a

finite set of transition rules.

A transition rule is defined as follows.

Definition 6.3.3 (Transition Rule) A transition rule p is an expression L, where H is a
a

set of transitions p A p', called the positive premisses of p, and n is a transition p > p',

called the conclusion of p, where p, p' E T.

Intuitively, if the set H of premisses are possible transitions, then so is n. A set of

transition rules will be referred to as a transition system specification. The transition

system specification of PA is given as follows:

Definition 6.3.4 (Operational Semantics of PA) The operational semantics of the pro-

cess algebra is given by the following transition system specification:

pl-p a + p

P1 + P2

a

p p-- P

a
Pi * P2 " P2

p2

p1 + P2

a
Pi -* p 1

a
pi * P2 P * P2

P2 A p,
a

p1 + p2 P2

aaplAV _/ p_ _ P_

P llP2 A> P2 plllp2 - P'11P2

where a E A and p1,' ,p2, P2 c T

p2 A

pl1ll2 - Pi

P2 - P2

plIIp2
- PulIP;21 22 22

The definition above yields a process graph for each process in T. By the first rule,

the process a c T where a is an action, i.e., a E A, can only execute the action a and

then terminate. The rest of the rules obey the intuition presented after the syntax

of process algebra.

6.4 Parse Trees of Process Algebra Terms

Recall that each process algebra term is composed of other terms, called the sub-

terms. The parse tree of a process algebra term p defined on a set A of actions is a

labeled binary tree, denoted as fBp = (Mp, T), in which the nodes are labeled with

the alphabet {+, -, II } U A. The labels are assigned such that only the leaf nodes are

labeled with actions from A, and all other nodes are labeled with operators from

set {+, -, II}. More formally, the parse tree of p is defined recursively as follows:

* if p = a, then Bp = (Mp, Tp) is such that Mp = {nj and T7p = 0 with Label(n) =

a.

* ifp = PI opr with o e {+, , II }, then Bp = (Mp, T) is constructed as follows. Let

fp, = (Mpl,, r~,) and pr = (Mpr, ~,) be the parse trees of P, and Pr, respectively.

Then, M, = {n} U Mp, U M,, and p = {el, er) U Tp, U Tpr, where Labelp (n) = o,

el = (n, nl) and er = (n, nr) are the left and the right outgoing edges of n,

respectively, with ni = Root(Bp) and nr = Root(p,r).

For an illustration, consider the following example.

Example Consider, for example, the term p = (a + (b -c))lld, where a, b, c, d E A. The

corresponding parse tree is given in Figure 6-1. As more easily seen from the parse

tree, pi = (a + (b -c)) and p2 = d are subterms of p, and are bound using the operator

II. Similarly, p3 = a and p4 = (b -d) are subterms of pl, and p5 = b and P6 = d are

subterms of p4. *

Given a node n in the parse tree Bp of a process algebra term p, let NI be the

set of all leaf nodes, to which there exists a path on Bp starting from n. Noting

that each leaf is labeled with an action, the set {Label(n') I n' e NI) of labels will be

denoted as ChildrenActionsp(n).

Several algorithms that operate on the parse tree of a given process algebra

term will be introduced in the next chapter, where these definitions will prove to

be useful.

Figure 6-1: The parse tree of the term (a + (b -c))lld.

Chapter 7

Vehicle Routing with Process Algebra

Specifications

In the previous chapter, the syntax and the semantics of process algebra were

introduced. This chapter is devoted to the definition of a vehicle routing problem,

where the specification is given a process algebra term. Unlike the first part of the

thesis, the presentation of the material in this chapter is oriented more towards the

multiple-UAV mission planning application domain.

This chapter is organized as follows. In Section 7.1, several definitions presented

in the previous section are adapted to multiple-UAV mission planning problems.

Then, in Section 7.2, a formal definition of the problem is provided. An algorithm

that solves the problem to optimality is presented in Section 7.3 and an example

scenario is investigated in Section 7.4

7.1 Objectives and Specificaitons

Recall the definitions related to process algebra presented in the previous chap-

ter. In this chapter, several definitions that were presented in the previous chapter

are utilized to reason about temporal and logical constraints in vehicle routing

problems, or, more specifically, its application in solving multiple-UAV mission

planning problems. Accordingly, the actions defined in the previous chapter will

refer to the individual tasks such as classifying a target, a sector search, or a recon-

naissance mission, that are performed by exactly one UAV, in this chapter. Each

mission plan will be associated with a behavior, i.e., a temporal ordering of indi-

vidual tasks. Finally, each process will denote a mission specification. Of course,

the actions in UAV missions are not necessarily done instantaneously as they may

have a start time and a completion time as in an area search task. In the next

section, the necessary theory to introduce a well-defined problem definition will be

given. This section presents preliminaries and a couple of examples demonstrat-

ing multiple-UAV mission planning problems specified with process algebra. For

this purpose, in this section, the aforementioned individual tasks are formalized

under the name of atomic objectives, first; then, atomic objectives are combined

into represent more complex objectives in the mission using process algebra.

7.1.1 Atomic Objectives

An atomic objective is, in essence, an abstraction of a generic individual task [48].

Each atomic objective is associated with two spatial parameters and one temporal

parameter: the initial and final points, and the duration of the task, respectively.

Intuitively, the initial point is a coordinate that the UAV has to get to in order to

start executing the task. Similarly, the final point refers to the coordinate that the

UAV gets to after completing the task. The duration, on the other hand, is the

execution time of the task. Finally, each atomic objective is associated with exactly

one UAV, which is capable of executing the task'. Formally, an atomic objective o

refers to the tuple

where x , x are the initial and final coordinates, T e IR>0 is the duration, and

U0 'U is a UAV.

From a practical point of view, the initial and final points may vary depending

1In practice, there might be a number of UAVs that can accomplish a given atomic objective. Yet,
for reasons to be clear in the next section, assuming that a single vehicle can execute a given task
does not incur any loss of generality.

on the current position of the UAV. Moreover, the atomic objectives can be terminal

action in the sense that the UAV executing it may not be able to execute any other

task. The approach presented here can easily be extended to cover all these cases.

Examples of atomic objectives include the classification, attack, and verification

tasks as well as object tracking, reconnaissance, area search, and communications

relay (cf. [48]).

7.1.2 Complex Objectives

A formal definition to be provided in the next section, this section informally intro-

duces a specification and points out a hierarchical methodology for constructing

the mission specification, through two small examples.

The Target Engagement Scenario

Consider a target engagement scenario with n targets and 2 UAVs, where each

target has to be (i) classified, (ii) attacked, and (iii) verified for damage inflicted,

in this order. The problem is to assign these tasks to UAVs in such a way that

(i) all three tasks are executed on each target and (ii) the time that the mission is

completed is minimized.

Let Ou,t,c, ou,t, and ou,t,v be the atomic objectives for classify, attack, and verify

tasks on Target t performed by UAV u. Then, the set of atomic objectives 0 is

identified as

0 = {ou,, ,,, Ou1 ,,A, Ou1, 1,,v, Ou 2,tl,c, Ou2,tla, Ou 2 ,tl,v I

Oul,tn,c, Oul,tnpa Dultnvt Ou2,tnc Ou2,fn, Ou2,t nV}"

Even though this scenario is simple enough to write the specification immediately

from the atomic objectives, let me consider two middle layers. In the first layer

let me define the complex objectives of classifying, attacking, and verifying the

damage inflicted on target ti as ot,,c, o,, ot,, , respectively. Using process algebra

terms, ot;,c = Ou,ti c + U 2 Ci, Oti,c = Oul,tib + Ou2,tii, and oti,v = oul,ti + ou2,ti,V In the

second layer, let the term ot = oti,c -o,, -o,v denote engaging target ti. Finally, the

specification is

p = ot ot2 ... Otn' (7.1)

A hierarchically specified task can be modified quickly in different levels, as

in similar hierarchical task networks type of specifications [21]. Consider, for

example, the case in which there exists an attack option with a powerful UAV that

does not require a verification of the damage inflicted. However, assume that this

attack option applies to only some of the targets. Let me denote this attack option

with ou,tia, which is also an atomic objective. Introducing a new objective of such

that the corresponding term is defined as of, = ot,, -(ot -oti,v + ot,,), the specification

p can be rearranged as: p = ot, II ot II ... k II f I... o.

The Rescue Mission

In this section a scenario similar to the one depicted in Chapter 4 is presented.

Recall that in this scenario, a friendly infantry unit is pinned down by enemy in a

certain location. There are three targets, T1, T2, and T3, that needs to be neutralized

for the friendly unit be rescued. Two of the targets, T1 and T2, are protected by

missile sites, S1 and S2, respectively. There are two friendly bases: Base B1 and

Base B2. There are three types of friendly UAVs: the first type, V1, can only engage

the targets, the second type, V2, can only engage the missile sites, and the third

one, V3, can engage any of them, but it is a relatively low-speed asset. A map

of this scenario can be seen in Figure 5-1. In order to successfully accomplish

this mission, the infantry unit can either escape to Base B1, by the targets T1 and

T3 being neutralized, or to Base B2 after the UAVs neutralize targets T2 and T3.

Moreover, if the latter option is chosen a V3 type UAV has to head to B2 with

necessary health equipment, even if it does not engage any target along the way.

Let p be the main objective, i.e., the mission specification, which states that

the infantry unit must be rescued by either escaping to Base B1 or Base B2, i.e.,

p = OB1 + OB2, where oB and oB2 are complex objectives. Noting that both targets

T1 and T3 have to be engaged in order to accomplish the objective OB1, one can

write oB1 = OT1 II OT3, where OT and oT3 denote the objectives of neutralizing targets

T1 and T3 respectively. Similarly, oB2 = OT2 11 OT3 1I OV3@B2, where o1 2 is the objective

of neutralizing Target T2 and 0 V3@B2 is the objective of moving a V3 type vehicle

to Base B2 with the necessary health equipment. Even though OV3@B2 is an atomic

objective, notice that oT1, T2, and oT3 are still complex objectives that need to be

identified in terms of atomic objectives. As noted before there are two possible ways

of neutralizing Target T1: (i) either the missile site S1 can be attacked by a vehicle

of type V2 after the neutralization of T1 by a vehicle of type V1, (ii) or T1 can be

neutralized directly using a vehicle of type V3. Hence, OT1 = (OV2@S1 OV1@T1) + 0 V3@T1-

Similarly, OT2 = (OV2@S2 OV1@T2) + OV3@T2. Noting that Target T3 is not protected by

any missile sites, it is the case that OT3 = OVI@T3 + 0 V3@T3. TO summarize:

p = oB + 0 B2 = (OT1 11 OT3) + (OT2 11 OT3 11 OV3@B2)

= ((OV2@S1 OV1@T1) + OV3@T1 I OV1@T3 + OV3@T3)

+((0V2@S2 * OV1@T2) + OV3@n2 II OV1@T3 + OV3@T3 II OV3@B2). (7.2)

7.2 Problem Definition

The previous section provided a brief introduction to specification of multiple-UAV

missions using process algebra terms. This section first formalizes the definition of

specification and then presents the problem definition.

Let me fix a set U of UAVs and a set O of atomic objectives. The problem

parameters consist of the time required to execute the atomic objective o, denoted

by T E IRo0, and the time required for a UAV u to travel from the exit point of

atomic objective ol to the entry of atomic objective 02, denoted by Tt ,,02 E IR0, for

all u e U and all o, or, o2 E O.

The mission planning problem to be outlined shortly asks to schedule a subset

of the atomic objectives to satisfy a given specification. Hence, the solution to the

problem assigns a set of atomic objectives together with their respective execution

times to each UAV. This assignment is formalized in the definitions to follow.

Definition 7.2.1 (Single-UAV Schedule) A single-UAV schedule aufor UAV u e U

is a sequence of pairs (T, o), where T E IR>o denotes an absolute time, o e 0 is an atomic

objective such that au satisfies the following constraint:

* for all (o, T) E au with o = (x , x, T~, Uo), there holds Uo = u,

* for all l E {1,...,aul - 1}, there holds r + T1 + T < T+1, where ou(1) = (Ti, or)

and au(l + 1) = ('1+1, 01+1).

Intuitively, the first condition on au states that UAV u can be assigned only those

atomic objectives that it is capable of executing; the second condition ensures that

before executing an atomic objective o1+l, UAV u must be given enough time to

execute the previous atomic objective ol in its schedule and travel to the entry point

of oz+1. A complete schedule is then formalized as follows.

Definition 7.2.2 (Complete Schedule) A complete schedule is a set S of single-UAV

schedules, which includes exactly one single-UAV schedule au for each UAV u E U.

An atomic objective is said to be scheduled in a complete schedule S if there exists

a au E S and a t E JR0 such that (o, t) appears in au.

To employ the techniques presented in Chapter 6, one would like to associate

complete schedules with sequences of atomic objectives and check whether the

corresponding sequences are traces of the specification, Formalizing this intuition,

the following definition leads to a simple and intuitive way to define the behavior

of a schedule.

Definition 7.2.3 (Observation) Given a complete schedule S, an observation of S is a

sequence n = (ol, o2,..., Ol) of atomic objectives which satisfies the following constraints:

* oi appears in n if and only if it is scheduled in S.

* there exists T1, T2, ... , TI E R 0 such that (i) Ti 5 Ti+l for all i E {1,..., 1- 11, (ii)

ti 5 zi 5 ti + Ti, where ti is the execution time of oi, for all i E {1,...,)l and (iii)

oi <7 oj implies Ti 5 Tj for all i, j {1, 2,..., 1}.

The set of all observations of S is denoted by Us.

Hence, every schedule S is associated with a set Us of observations, which, in

essence, describes the behavior of S. More precisely, the observations n e I-I

together represent the ordering of the atomic objectives in S without referring to

the time interval of execution of the atomic objectives that are scheduled in S.

Importantly, observations make the following formal definition of the specification

possible.

Definition 7.2.4 (Specification) Given a set 0 of atomic objectives, a specification

defined on O is a process algebra term p that is defined on O. A complete schedule S

is said to satisfy a specification p if and only if every observation of S is a trace of p, i.e.,

nsI cFr.

In the following, these ideas are illustrated with an example.

Example Recall the target engagement scenario described in Section 7.1.2. Con-

sider an instance of this scenario with two UAVs and two targets, each of which

have to be classified, attacked, and verified in this order. Let U = {ul, u2) be the set

of UAVs. Furthermore, let the atomic objectives ou,t,c, ou,ta and ou,t,v, respectively,

denote the classification, attack, and verification tasks on target t performed by

UAV u. Regarding the parameters of the problem, let the execution times of the

atomic objectives be T =3, T 2,j,k = 2 for all j E O, all k e {c, a, v} and the traveling

times be Tt = 6, Tt = 11, T ,u,2, Tt = 4 for all k,l E {c, a, v} and
UOOijtm bku UlOcu,0u 702,ku,02,u

all u E U. An example complete schedule is S = {al, 2}, where

au,= ((11 , o 1,tZc), (14, oUl,t 2 a))

oU2 = ((6, O (2,tC), , Ou2 1,a), (10, OU2,1,V), (17, oU2 2,t,))

The complete schedule S is depicted in Figure 7-1 on a timeline. Notice that the

observations of S are

71 = (ou2,tlc, OU2,tla, Ou 2,tl1 , Ou1 ,t 2 ,c, Ou,t2,a Oul,t2,v)

72 =
(OU 2,t 1 ,c, Ou2,tl,aP Ou,t 2 ,c, Ou2 ,t,v, OU1,t2,a OUlt2,),

both of which are traces of the specification of the target engagement scenario (cf.

Equation (7.1)). 1

UAv, I r , ,---_--_I , -I-_ I
UAV2 r, I;tot, .1 1 0 -ra -__t2 I t2.3

I I I I I
0 5 10 15 20

Figure 7-1: Example schedules. Pairs of tasks and targets indicate the task being
executed at the corresponding time. The periods of traveling to the target position
are also shown.

Given a single-UAV schedule au = ((ol, tl),..., (ol, t)), let T,u denote the com-

pletion time of au, i.e., r,, = tl + Toe, where TI is the duration of ol. A complete

schedule S can be associated with a cost in several ways, using the variables T2,

for all ou E S. Two widely-used cost functions are

rC , max Tau. (7.3)
auES uES

The former one can be interpreted as a type of risk, since it denotes the total amount

time each vehicle was employed in the mission, whereas the latter one directly

addresses the mission completion time. Minimizing the former cost function will

enforce the optimal schedule to employ as few vehicles as possible and treat the

mission completion time as a secondary objective. Minimizing the second cost

function on the other hand will lead to a schedule that completes the mission as

quickly as possible, perhaps by utilizing every possible UAV there exists. Another

interesting cost function is obtained as a convex combination of the the two given

in Equation (7.3) to model a combination of risk and mission time and represent the

trade-off between the two with one parameter. Recall that similar cost functions

appeared in Chapters 4 and 5. Such cost functions all share common properties,

which will be formalized in the next section.

The Task Assignment Problem for Complex UAV Operations is formally defined

as follows:

Problem 7.2.5 Given a set U of vehicles, a set 0 of atomic objectives, and a specification

p, the is to find a plan S such that:

* S satisfies p,

* the cost of S, given by (7.3), is minimized.

In the next section, a state-space search algorithm that solves Problem 7.2.5 will

be presented.

7.3 Tree Search Based Optimal Planning Algorithm

This section is devoted to the presentation of an algorithm that solves Problem

7.2.5. Inspired by the tree-search algorithm in [49], the algorithm presented in this

section constructs a minimum cost complete schedule by searching a finite tree

structure. A more formal definition to follow shortly, for any given specification

p defined on a set O of atomic objectives, there exists a labeled tree such that each

node is labeled with a process algebra term that p can evolve to and each edge is

labeled with an atomic objective in O. Moreover, each path starting from the root

node and ending at a leaf node is associated with a complete schedule that satisfies

the given specification p. It is guaranteed that at least one of them achieves the

minimum cost. In the rest of this section, these two claims in the rest of this section

are formalized and proved.

The rest of this section is organized as follows. First, in Section 7.3.1, the struc-

ture of the tree is presented and the algorithm that constructs the corresponding

complete schedule is given in Sections 7.3.2 and 7.3.3. Then, in Section 7.3.4, this

schedule construction algorithm is used effectively by utilizing the tree search

methods outlined in [49] to arrive at a close-to-optimal solution quickly and an

optimal one eventually. Afterward, it is formally proven, in Section 7.3.5, that the

complete schedules associated with the leaf nodes are feasible, i.e., they all satisfy

p, and at least one of those schedules is optimal.

7.3.1 Structure of the Tree

Given a specification p, the assignment tree of p is a labeled tree Tp = (Np, 8p), in

which every node is labeled with a process algebra term and every edge is labeled

with an atomic proposition as follows 2:

* the root node nr is labeled with the specification p,

* for any node n' e Np, if n' is labeled with a process algebra term p and there

exists an atomic objective o and a process algebra term p" such that p' - p",

then there exists a node n" E Np labeled with p" such that (n', n") E E and the

edge (n', n") is labeled with the atomic proposition o.

This definition has the following implications. Firstly, by definition, the root node

is labeled with the specification p. Secondly, each leaf node is labeled with the

terminated process /. Finally, the following lemma holds.

Proposition 7.3.1 Let y = (ol, o2, ... , Ol) be a sequence of atomic objectives. The sequence

y is a trace of p if and only if there exists a path (el, e2,... , el) on the tree Tp such that (i)

the path starts at the root node and ends in one of the leaf nodes, (ii) for all i = {1, 2,... ,1},

the edge ei is labeled with the atomic objective oi.

In the following example, the tree structure is illustrated.

2The assignment tree Tp = (Np, 8p) of p should not be confused with the parse of p, which was
denoted by Bp = (Mp, 7,)

Example Consider the rescue mission example of Section 7.1.2. Recall that the set

O of atomic objectives was

0 = {OVI@Tlr OV1@T2, OV2@Sl,

OV2@S2, 0V3@T1, OV3@T2, OV3@T3, OV3@B2 ,

and the specification was given by (7.2). The tree Tp corresponding to this specifi-

cation is given in Figure 7-2.

7.3.2 Precedence of Atomic Objectives

Let me introduce the following partial order on the set O of atomic objectives

determined by the specification p. This partial order will prove to be useful in

the next section, when generating the feasible schedules corresponding to the leaf

nodes of the assignment tree.

Definition 7.3.2 (Precedence of Atomic Objectives) Given a set 0 of atomic objec-

tives, a specification p defined on O, and two atomic objectives 01,02 E 0, 01 is said to

precede 02 in p, denoted by ol <<p 02, if and only if the following conditions hold:

* there exists at least one trace of y of p such that o01 and 02 both appear in y and

o0 <y 02 holds,

* there is no trace y' of p such that 02 <y' o01 holds.

Given an atomic objective o, let Predp(o) denote the set of atomic objectives that

precede o in specification p. Note that Definition 7.3.2 does not devise an efficient

algorithm for computing Predp(o).

In the rest of this section, an algorithm, which computes Predp(o) in time poly-

nomial with respect to the size of the specification, is introduced. This algorithm

operates on the parse tree of the specification p. In order to make the presenta-

tion of this algorithm easier, let me introduce the following notation. Recall that

the root node of the parse tree Bp = (Mp, p) of p is not labeled, the leaf nodes

95

Figure 7-2: Tree Structure for the rescue mission. The labels of edges are shown on
the nodes that they are directed to in order to make the visualization more readable.

96

1 S:= 0
2 m := n
3 while m * Root(Bp) do
4 m' := Parentg(m)
s if LabelB,(m) = (-) and RightChildB(m') = m then
6 S := S U ChildrenAO (LeftChildg~(m'))
7 end
8 m:= m'

9 end
10 return S

Algorithm 2: Computation of Predp(o)

are labeled with actions (or equivalently the atomic objectives), and all the other

nodes are labeled with operators. To indicate these distinctive cases, given a node

n e Mp, let me define the functions AtomicObjectiveBp(n) and Operatorg(n),

which both evaluate to Labelp(n), but the former function is defined for the leaf

nodes whereas the latter one is defined for all the nodes except the root and leaves.

Let me also write ChildrenAOgg(n), referring to children atomic objectives, instead

of ChildrenActions(n) just for clarification.

The algorithm that efficiently generates Predp(o) is based on the following

lemma.

Lemma 7.3.3 (A Characterization of Precedence) Given a set O of atomic objectives,

a specification p defined on 0, and two atomic objectives ol, 02 E 0, let n, mi, m 2 E Mp be

nodes in the parse tree of p such that (i) mi = LeftChild4p(n), ol C ChildrenAOP(ml)

and (ii) m2 = LeftChildp(n), 02 E ChildrenAOBP(m 2). Then, ol <<p 02 holds if and

only ifOperatorp(n) = (-).

A procedure that computes Predp(o) for any p and o e O is given in Algorithm 2,

The correctness of the algorithm can be proven using Lemma 7.3.3.

7.3.3 Feasible Complete Schedules

The essence of the algorithm that solves Problem 7.2.5 is a search procedure that

explores the assignment tree p = (Np, Fp) of p using a best-first branch-and-bound

search heuristic. During the exploration process, the algorithm associates each

node of the tree with a complete schedule. Denoting the unique path starting at

the root and ending at a node n E Np of the tree with (ei, e2,..., el), the schedule

S associated with n is such that an atomic objective o is assigned in S if and

only if o is the label of one of the edges ei, i E 11,2,..., 11. The construction of the

complete schedule at each node is done such that every observation of the schedule

S corresponding to a node n E Np is a prefix of some trace of the specification p.

Moreover, if n is a leaf node, then every observation of S is indeed a trace of p.

The salient property these schedules is that a schedule corresponding to a given

node n can be computed from the schedule corresponding to the unique parent

of n in the tree. Let Schedule(n) denote the schedule associated with node n. In

what follows, a formal definition of Schedule(n) for all n E Np is presented. This

definition can easily be converted to an efficient algorithmic procedure.

* If n is the root node, then

Schedule(n) = {au, au2,. .. ,uK,

where au, = A, for all i E 11, 2,..., K).

* For any node n other than the root, let n' be the unique parent of n and

Schedule(n') = {a', aI 2,... , aK}. Let also the edge (n', n) E 8p be labeled by

the atomic objective o. Then,

Schedule(n) = 1{au,... a,,,_, u,,,,..., - ,

such that a,u = al o (o, t) where

t = max{' C, ,d(o)

and " redp(o) is the maximum completion time of the all the atomic objectives

that are assigned in Schedule(n') and are predecessors of o in p, i.e., Tred(o)

max{tf 1 E Predp(o), and there exists au, E Schedule(n') such that (5, t) E auj.

Note that if the schedule Schedule(n) is known, then the schedules for all the

children of n can be computed.

7.3.4 Searching the Tree

The assignment tree Tp of p is searched using a best-first branch-and-bound search

heuristic. The search algorithm marks each node of tree either as evaluated or not

evaluated. The function EvaluatedqT(n) returns True if n is marked as evaluated

and False otherwise. Initially, Evaluatedp(n) = False for all nodes of Tp.

This search procedure is given in Algorithm 3, which gets the root node of the

tree as an input and returns the leaf node that has the corresponding minimum

cost complete schedule. The algorithm always maintains a current node, n, that

it is working on and a node minNode which refers to the node with smallest cost

complete schedule that was explored so far. The algorithm sets n to the root node

(line 1) and minNode to the null node A (lines 2-3), initially. If node n has at least

one child that is not evaluated (line 6), then the algorithm first determines the child

of n with minimum cost (lines 7-15). If the cost of this child is less then the cost of

minNode (line 16) and this child is a leaf node (line 17), then an assignment with

a smaller cost is found and minNode is modified to be the child node (lines 18,19).

In that case, the leaf node is marked as evaluated (line 20). If, on the other hand,

the child node has a cost smaller than minNode but it is not a leaf node, then the

search continues by assigning n to the child node (line 22) and exploring the child

node (as in the best-first search methods). Finally, if the child node has a cost

that is more than the cost of minNode, then the child node is marked as evaluated

(line 25) and the branch starting from the child node is cut (as in the branch-and-

bound methods). Finally, if all the children of n are evaluated, then n is marked

as evaluated and the search continues with the parent of n (lines 28,29) in order to

explore the rest of the tree. The algorithm ends when there is no more nodes to

explore (line 4).

Algorithm 3 employs the functions Children (n) and ParentT (n). One straight-

forward implementation of these functions for the tree Tp could be to use the def-

inition of Tp given in Section 7.3.1 and construct Tp before starting Algorithm 3.

However, then the spirit of best-first and branch-and-bound methods are lost.

Instead, the tree has to be created on demand, i.e., on-the-fly, as the algorithm

proceeds.

First, notice that Algorithm 3 runs the function Parentr (n) only if it had run

ChildrenP(n') before, where n' is the parent of n in Tp. Hence, the on-the-fly tree

construction reduces to determining the set Children-(n) for any given n, since

Parentq (n) can be evaluated with some extra bookkeeping.

Given a process algebra term p, the procedure given in Algorithm 4 returns the

set of all atomic objective and process algebra term pairs (o', p'), for which p -_ p'

holds. The correctness of this algorithm is follows directly from the semantics

given in Definition 6.3.4.

The existence of an efficient procedure to compute the children nodes is crucial,

since it allows implementation of the best-first and branch-and-bound heuristics.

7.3.5 Feasibility and Optimality

In this section, let me first prove that each schedule that corresponds to a leaf node

of the assignment tree is feasible. Later in this section, it will be shown that at least

one of those schedules achieves the minimum cost.

As far as feasibility is concerned, the following theorem formalizes the claim.

Theorem 7.3.4 Given a set 0 of atomic objectives, a specification p defined on O, let

Tp = (Np, 8p) be the assignment tree of p, and n be any leaf node in the assignment tree.

Then, any observation of Schedulep(n) is a trace of p.

The proof of this theorem is rather technical and is provided in the appendix.

Regarding optimality of the algorithm, the following lemma plays a key role.

100

1 n := Root(TP)
2 minCost := oo
3 minNode := A
4 while n # A do
5 S := Children(n)
6 if Evaluated(S) = False then
7 minChildCost := oo
8 for all m E S do
9 if Evaluated(m) = False then

10 if Cost(m) < minChildCost then
11 minChildCost := Cost(m)
12 minChild := m
13 end

14 end
15 end

16 if minChildCost < minCost then
17 if Leaf(m) = True then
18 minCost := minChildCost
19 minNode := m
20 Evaluated(m) := True
21 else

22 n := m
23 end
24 else
25 Evaluated(m) := True
26 end
27 else
28 Evaluated(n) := True
29 n := Parent(n)

30 end

31 end

32 return minNode
Algorithm 3: Best-First Branch-and-Bound Tree Search

101

1 switch p do
2 case pi + p2
3 return Next(pl) U Next(p2)
4 case pl -p2

s return {(p P2 t) (t') = Next(p 2))
6 case pl 11 p2

7 return {(p II P2 tp2) (pt') = Next(pl)} U

{(pl II p, t') I (p, t') = Next(p2)}
s otherwise
9 return {(, y)}

to end
11 end

Algorithm 4: Computation of Next(p)

Assumption 7.3.5 Let S = {aur, au 2,... , a n and S' = {a',, a',. .. ,a } be two feasible

complete schedules such that T,,urk T.k and o,, = T, for all i e U \ {Uk}, where 'o, is

the completion time of the single UAV schedule au. Then, the cost function is such that the

cost of S is less than or equal to the cost of S'.

Assumption 7.3.5 basically suggests that increasing the completion time of a single

UAV schedule can not decrease the cost of its complete schedule. Let me note

that several cost functions of practical interest satisfy this assumption, e.g., cost

functions 7.3. Indeed, it is unintuitive and impractical to have the cost of the

mission decrease by increasing the completion time of one of the UAVs while fixing

the completion time of all the others. This assumption, however, is presented here

to view the applicability of the results more concretely with the following lemma.

Lemma 7.3.6 Let the cost function in Problem 7.2.5 satisfy Assumption 7.3.5. Given a

specification p, and a complete schedule S that satisfies p, let n = (o01, 2,... , Ok) be an

observation of S. Furthermore, let n be the node in the assignment tree Tp of p such that

the unique path (el, e2,... , ek) from the root node in Tp leads to n, where Label(ei) = oi for

i = 1, 2,..., k. Then, we have that Cost(Schedulep(n)) < Cost(S).

This lemma is fundamental to the results of this chapter in the sense that it partitions

the (uncountably infinite) set of all complete schedules that satisfy p into a finite set

102

of classes, where any schedule with an observation n as in the above theorem is in

the class of schedules that contains Schedulep(n) 3. Notice that each class contains

uncountably many schedules and one computable schedule in each class has the

the minimum cost given a very mild assumption on the cost function holds. Since

there is a path for each and every trace of p on the assignment tree of p, it is enough

compute the cost of only those schedules that are in the tree to obtain a minimum

cost complete schedule for Problem 7.2.5.

Theorem 7.3.7 Given a specification p, let T-p denote its parse tree. Then,for at least one

of the leaf nodes n in T-p, its corresponding complete schedule Schedulep(n) minimizes the

cost function of Problem 7.2.5, given Assumption 7.3.5 is satisfied.

The proof of this theorem follows directly from Lemma 7.3.6.

7.4 Example Scenarios and Simulations

Consider a simple illustrative scenario where two UAVs are required to first attack

six targets and then search for possible new targets in the same area. Let Od

and os denote objectives for the engagement of six targets and the search mission

respectively. Then, the specification of the mission is p = Od - os. The objective

Od is equal to Od1 11 Od2 II Od3 II Od4 11 Od5 II Od6, where Odi denotes the atomic objective of

attacking the target i for i = 1, 2,..., 6. The objective os, on the other hand, requires

searching the there regions in parallel, i.e., Os = os 11 o02 11 Os3 II 0,45, where os, Os2, Os3

denote the atomic objectives for searching the regions sl, s2 and s3, respectively.

To make the matters more complicated, let it be the case that searching either area

s4 or s5 is adequate for accomplishing s3, but not both, i.e., Os45 = Os4 + Os5, where

0 s4 and Os5 are the atomic objectives corresponding to searching the regions s4 and

s5, respectively. A solution of this problem instance is presented in Figure 7-3,

which was generated in less than a second of computation time, after exploring

1000 nodes of the tree.
3Note that a complete schedule can be in more than one class, since it may have more than one

observation.

103

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Figure 7-3: Scheduling that satisfies p = Od Os.

104

Chapter 8

Conclusions

This thesis studied novel extensions of the standard vehicle routing problem, where

complex constraints of the problem can be specified naturally. Applications in

multiple-UAV mission planning were highlighted and several motivating example

scenarios of interest were presented, in which formal methods allow the precise

formulation of complex mission specifications given in natural language.

The thesis was structured in two main parts. In the first part, linear tempo-

ral logics were considered as candidates for specification of constraints in Vehicle

Routing Problems (VRPs), whereas in the second part, process algebras were con-

sidered for similar purposes. The temporal logics discussed in the first part are

known to be more expressive than the process algebra of the second part. However,

process algebra specifications lead to computationally more attractive algorithms.

In particular, in this thesis, we presented an anytime algorithm, which returns a

best-first feasible solution in polynomial time (with respect to the size of the speci-

fication) and improves this solution to achieve an optimal solution in finite amount

of time.

Two temporal logics were studied as candidates for natural specification of com-

plex constraints in Vehicle Routing Problems (VRPs). The temporal logic was the

linear temporal logic LTLx. A new variant of the VRP, called the Vehicle Routing

Problem with Linear Temporal Logic Specifications (VRPLTL), was proposed. In

the problem formulation, the complex constraints of the problem were modeled

105

using a high-level formal language called LTLx. A systematic procedure that

outputs a set of linear constraints in mixed binary and continuous variables for

any LTL_x was given; it was shown that, under some technical assumptions, an

LTLx formula is satisfied if and only if the corresponding set of inequalities hold.

Using this procedure a MILP-based computational method was proposed which

solves VRPTL to optimality. Throughout the examples, it was shown that interest-

ing multi-UAV mission planning scenarios can be modeled naturally using LTLx,

while optimal plans for problems of practical sizes can be computed in reasonable

amount of time. Even though only multiple-UAV mission planning applications

have been considered, it should be noted that several other logistics problems with

complex timing constraints can be modeled using the VRPTL.

Two different MILP formulations of VRP were studied and adapted for solving

VRPLTL. Based on the experiments presented in the thesis, the network flow based

formulation had a smaller number of variables and tended to give solutions more

quickly. Moreover, it did not require a long pre-solve phase. The set covering

based formulation, on the other hand, had exponential number of variables in the

size of customers; and it had a computationally intense pre-solve phase. But the

advantage of set covering based formulation was that more general cost functions

could be used. The LP relaxation of the set-covering formulation was known to be

very tight for the VRP; however, for the VRPTL, similar observation did not follow

in the experiments presented in this thesis because of the LTL_x constraints. The

exact CPU times for the examples were not presented, but none of the examples in

this thesis require more than a few seconds of computation time.

Next, the real-time temporal logic, metric temporal logic (MTL) was consid-

ered. MTL differs from LTLx in the sense that it allows specification of constraints

that involve qualitative properties of time; examples include deadlines, time win-

dows, and qualitative relative timing constraints. Another novel variant of Vehicle

Routing Problem, which we have called Vehicle Routing Problem with Metric Tem-

poral Logic Specifications (VRPMTL), was introduced. A MILP-based algorithm

that solves the problem to optimality was proposed. Applications to multi-UAV

106

mission planning were considered, where high level complex mission tasks were

specified naturally via Metric Temporal Logic.

Then, we considered process algebra as a specification language in vehicle rout-

ing problems. This part of the thesis was presented more towards the multi-UAV

mission planning application domain. The task assignment problem with process

algebra specifications was introduced and some problem instances of interest were

pointed out. The problem was solved using a computationally effective algorithm,

which returns a best-first feasible solution to the problem in polynomial time and

terminates with the optimal solution in finite time. These algorithmic properties of

the solution method were formalized and proven.

A challenge for future work is a unifying study of the languages for their

suitability to optimal planning. In particular, it is of interest to determine the class

of languages for which a feasible plan can be found in polynomial time and an

optimum one can be found in finite time. The development of algorithms with

nice properties such as constant factor approximations for such problems would

be very valuable for applications. A second future direction is the consideration of

optimal planning with dynamics. In this case, the key objective is to identify the

class of dynamics, for which effective optimal planning algorithms exist.

107

108

Appendix A

Proofs

A.1 Proof of Lemma 4.2.3

Proof Let TS = (Q, Qo, -, I-, L). Given that Assumption 4.2.2 holds, a 1 0 implies

a /k~ll{...K) (ccpk) and a 1= 4 according to (3.6). Using the former consequence

with the semantics definitions (3.7) and (3.8), there exists a finite j _ 1 such that

Vj' _ j we have (a, j') > pk for all k e {1,...,K}. Noting that pk I, there holds

p E L(qj,), which implies that qj, must satisfy q, = ((01, v), ... , (OK, v0)) for some

01,..., 8K E IR. This is true for j. But for all other j' > j, we have (qj,-, qj,) V-> by

the definition of the vehicle-routing transition system. Hence, a = (ql, q2,... qj),

which implies the lemma. I

A.2 Proof of Theorem 4.3.2

Proof (Sketch) The proof is an induction on the height of the LTL_x formula 1P,

which is a common proof technique in mathematical logic [29]. The base case of

formulae with height one holds by Lemma 4.3.1. Assume that the theorem holds

for formulae of height n, then given a formula V) of height n + 1, note that 4t is
composed of at most two height n formulae bound with an operator. Let us denote

these formulae by o, and T2. By the hypothesis we have Pi C G (Pp,..., Ppm) for

i = 1, 2. Moreover, with algorithm 1 we also have Pp E G(P 1,, P , 2). These together

109

mean, by set inclusion, P, E G(Ppl,..., Ppm). This implies the result by induction,

since the formula tp has a finite height. *

A.3 Proof of Lemma 7.3.3

Before proving Lemma 7.3.3, let us note the following lemma, which states that if

a specification p includes an atomic objective o in its parse tree, then there exists at

one trace y of p such that o appears in y. More formally,

Lemma A.3.1 Given a specification p, let 8p denote its parse tree and n = Root(Bp). For

any atomic objective o, if o E ChildrenAO(n), then there exists a trace y e Fp such that o

appears in y.

Proof The proof of this lemma is by induction on the depth of the parse tree'. If

the depth of the parse tree is one, then the specification p is of the form p = o, where

o is an atomic objective. Trivially, o is the only atomic objective in ChildrenAOp(n)

and o appears in the only trace y = (o) of p.

Assume that the hypothesis holds for specifications with parse trees of depth

k' < k. Let p be a specification with a depth k parse tree $p. Recall that n = Root(Dp).

Let m, and m2 be the left and right children of n in Bp. Moreover, let Pi and p2 be

the specifications that have parse trees BP, and Dp2 rooted at nodes ml and m 2,

respectively. Since ,Bp has depth k, the parse trees Bp, and Dp2 both have depth

strictly less than k.

Let o be an atomic objective with o e ChildrenAOBP(n). Then, we have that

either o E ChildrenAOP(ml) or o E ChildrenAO0p(m 2) hold. Without loss of any

generality, let us assume that the former one holds. Since Dp, has depth less than

k, by the hypothesis, there exists a trace yi of pi such that o appears in yi.

To show that there exists a trace y' of p, with o E y, let us consider the three

cases: OperatorDp(n) = (+), (-), (II). If OperatorDp(n) = (+), then y' = yl is a trace of

1The depth of the parse tree is defined as the length of the longest path from the root to a leaf
node.

110

p with 0 E y. If, on the other hand, Operatorg e {(.), (II)}, then y' = y * y2 is a trace

of p with 0 e y, where Y2 is any trace of p2. Hence, the lemma follows by induction

on k. I

Proof of Lemma 7.3.3 First, let us show the sufficiency. Let Operator P(n) = (-)

hold; we would like to show that o0 << 02 holds, i.e., (i) there exists a trace of p in

which ol precedes 02, (ii) there is no trace of p in which o2 precedes o. To show (i),

let pi and p2 be the specifications that have the parse trees rooted at nodes m, and

m2, respectively. Let also yi be a trace of pi such that oi appears in yi, for i = 1, 2.

Note that yi exist by Lemma A.3.1. Notice that y = y1 * Y2 is a trace of p such that ol

and 02 both appear in y and o0 <y 02 holds. To show (ii) by contradiction, assume

that there exists a trace y' of p such that ol <,' o2. Notice, however, that for any

trace y' of p can be written in the form y' = y' * y', where y' and y' are traces

of pi and p2, respectively. Since o1 appears in y', it must appear in y' (not in y2)-

Moreover, since 02 precedes o01, 02 must also appear in y', which contradicts the fact

that 02 is not in the tree rooted at mi.

To prove necessity by contradiction, assume that ol << 02 holds, but OperatorBg

(-). Consider the two cases: Operatorsp is (+), (11). In the former case, there is no

trace of p, in which ol and 02 appear both. Hence, ol << 02 does not hold, since

the first condition in Definition 7.3.2 is not satisfied. In the latter case on the other

hand, one can construct a trace y of p, in which 02 precedes ol. More precisely, let

yi be a trace of pi such that oi appears in yi, for i = 1, 2. Note that the existence of

yi is guaranteed by Lemma A.3.1. Then, y = Y2 * Yl is a trace of p, where ol, o2 E y

and 02 <y o01, which contradicts the second condition in Definition 7.3.2. *

A.4 Proof of Theorem 7.3.4

Before presenting the proofs, let us note three lemmas. The first lemma yields a

characterization of the following definition.

111

Definition A.4.1 Alternative Atomic Objectives Given a set 0 of atomic objectives, a

specification p defined on 0, and two atomic objectives ol, 02 E 0, o0 and 02 are said to be

alternatives if the following condition holds:

* for all traces y of p, either o01 E y or o02 y, but not both.

The following lemma is a characterization of the alternative atomic objectives.

Lemma A.4.2 Characterization ofAlternatives Given a set 0 of atomic objectives, a spec-

ification p defined on 0, and two atomic objectives ol, 02 e O, let n, mi, m2 E Mp be the

nodes in the parse tree of p such that (i) m, E LeftChildB(n), o01 ChildrenAOBP(ml)

and (ii) m2 = LeftChildsp(n), 02 e ChildrenA0BP(m 2). Then, ol and o2 are alternatives

if and only if peratorp(n) = (+).

The proof of is this lemma is similar to that of Lemma 7.3.3 and is omitted here.

The second lemma is the following key lemma that simplifies the proof of

Theorem 7.3.4.

Lemma A.4.3 Given a set 0 atomic objectives, two specifications (PA terms) p, p' both

defined on O, a sequence y defined on 0, and two atomic objectives ol, 02 E 0, if p o p'

and ol V Predp(o2) both hold, then p p' also holds.

Proof Consider the nodes n, ml, m2 E M in the parse tree of p, for which the

following hold: (i) mi E LeftChildp(n), ol E ChildrenAOP4(mi) and (ii) m2 =

LeftChildB(n), o2 e ChildrenA0o(m 2). It is given that ol V Predp(o2); hence,

Operatorgp(n) * (-) by Lemma 7.3.3. Moreover, notice that there exists a trace of

p, in which ol and 02 appear together, since there exists a y', for which p' 4 /

holds and, consequently, p , p' V; hence, y * (01,02) * y' is a trace of p.

This, however, implies that o0 and 02 are not alternatives, which in turn implies that

Operatorgp(n) * (+).

Given Operatorgp(n) * (-), (+), there holds OperatorgB(n) = (II). Let, pi and P2

denote the processes with parse trees rooted at nodes m and m2 , respectively. Let p

be such that p -4 p) p'. Note that the term p contains pllIp2 as a subterm, where

112

as p' contains pj IIP' as a subterm, where p' and p' are such that pi -4 pf and p2 p.

Other than these subterms, p and p' are the same. Notice that p -4 p" 2 p' also

holds, where p" is the same as p except that instead of pi II p2, it contains p' I p2 as

a subterm. Let p"' be a term which is the same as p, except, it contains pi II p' as a

subterm instead of pi II P2. In this case, p 4 p'" - p' also holds, which implies that
Y*(o2,01)

p Y(-,) p' holds. I

Lemma A.4.3 has particular importance, since it suggests that two adjacent atomic

objectives in a trace can be exchanged if the one that appears before does not precede

the other one in p. An important corollary of Lemma A.4.3 is the following.

Corollary A.4.4 Given a set 0 atomic objectives, two specifications (PA terms) p, p' both

defined on 0, two sequences yl, Y2 defined on 0, and an atomic objective d E O, if

p 12* .() p' and for all o e y 2we have o 4 Predp(a) hold, then p () p' also holds.

This corollary follows by successive application of Lemma A.4.3.

The third lemma is the following that follows from Corollary A.4.4.

Lemma A.4.5 Given a set 0 of atomic objectives, a specification p defined on O, let

Tp = (Np, 8p) be the assignment tree of p. For any node n' e Np and for any observation y

of Schedulep(n'), we have that p -A p', where p' is the specification that node n' is labeled

with.

Proof The proof is an induction on the length of the unique path from the root

node in Tp to n'.

For the base case, i.e., when the path length is equal to one, we have that n' is

one of the children of p in 'p. That is, there is an edge (n, n') e 8p in the assignment

tree of p, which implies, by the definition of T', that p (-- p', where p' = Labelg,-P(n')

and 6 = LabelT ((n, n')) in the assignment tree Tp. By definition of Schedule(n'),

only the atomic objective 5 is assigned, the only observation of this schedule is (0),

for which p -+ p' holds.

Let R be a node in Tp, to which the unique path from the root node of Tp has

length k - 1. Let p = Labelqp; by definition the induction hypothesis, we have that

113

p -y p holds for all observations y of Schedule(R). Consider any children n' of ii;

note that the unique path from the root node to n' has length k. Let p' = Label-(n');

note that, by definition of Tp, we have that p -+ p' holds, where a = Labelp. Note

also that, by its recursive definition, ant observation of Schedule(n') is of the form

y1 * (0) * Y2, where y1 * y2 is an observation of Schedule(F) and for all 0 E Y2,
Y 1 O 2 P 12 () I p . T h e nthere holds o 4 Pred(). Recall that p + p ; that is, p p' Then, by

Corollary A.4.4, we have that p , p' holds. Hence, the lemma follows. I

Lemma A.4.5 simply suggests that the observations of a schedule associated with

a node n' in the assignment tree complies with the label p' of the same node, in the

sense that by executing every such observation, p evolves to p'.

Proof of Theorem 7.3.4 Noting that each leaf node is labeled with the terminated

process V and that every sequence y with p -r / is a trace of p, Theorem 7.3.4

directly follows from Lemma A.4.5 as a special case. I

A.5 Proof of Lemma 7.3.6

Let me state and prove a slightly stronger lemma, from which the proof of Lemma 7.3.6

easily follows. Let me fix a given set O of atomic objectives; any specification that

will be referred to is defined on O.

Lemma A.5.1 Given a specification p, and a complete schedule S, let p' be a process

algebra term such that there exists a sequence y with p - p', and for all observations 7n

of S, there holds p -' p'. Let 71 = (01, 02, ... , Ok) be an observation of S. Furthermore, let

n be the node in the assignment tree Tp of p such that the unique path (el, e2,... , ek) from

the root node in 'T leads to n, where Label(ei) = oi for i = 1, 2,..., k. Then, for all oi E7

and ti, E JR, where ti and Fi are such that (oi, ti) E S, (oi, Ti) E Schedulep(n), there holds

ti !ti.

Proof This lemma is shown by induction on the size of n. If t is of size one, i.e.,

n = (o) for some o E O, then the hypothesis trivially holds, since Schedulep(n)

114

will schedule the only atomic objective o at the earliest time the UAV it is assigned

to arrives at the initial coordinates of o. The schedule S can not assign the same

atomic objective earlier to the same UAV, since the UAV will not be able to arrive at

the initial coordinates of o on time. Moreover, S can not assign o to another UAV,

since, by definition, there is only one UAV that is capable of executing o.

Let the hypothesis hold for n of size k - 1; let us show that it also holds for

size k. Let n = (01,02, ... ,Ok) be an observation of size k. Consider the schedule

S, which is the same as S, but ok is not assigned. Let Pi, P2,..., Pk-1 be such that

P - p1 -- P2... Pk-1 O p'. Notice that H = (ol, o2,..., k-1) is a size k - 1 observation

of S. Let ~i be the parent of n in the parse tree of p. Hence, for all oi with

i E (1,2,...,k - 1), there holds ti 2 ti, where (oi, ti) e S and (oi, i) E Schedules(R).

Hence, for all oi with i E (1,2,..., k - 1}, there holds ti > ti, where (oi, ti) E S and

(oi, ti) e Schedulep(n), since S' and S differ only by (oi, ti) and Schedulep(R) and

Schedulep(n) differ only by (oi, ti). Now, it remains to show that same holds for

ok, i.e., tk _ tk. To prove by contradiction, assume it does not. Then, ok must be

scheduled before one of its predecessors in p, i.e., there exists oi e 7n such that

oi E Predp(ok) and tk < ti. In this case, notice that there exists an observation n' of S,

in which ok appears before oi. However, there is no such trace of p, by the definition
7' p

of precedence; hence, p -- p' does not hold and we reach a contradiction. *
Lemma A.5.1 is stronger than Lemma 7.3.6 in two ways. Firstly, the node n is a

leaf node in the latter one, whereas in the former one it is any one of the nodes

in the tree. Secondly, in the latter one Assumption 7.3.5 is assumed, whereas in

the former one there is no such assumption and the result is stated in terms of the

execution times of the atomic objectives. Given these facts, it is easy to show that

Lemma 7.3.6 is a special case of Lemma A.5.1.

Proof of Lemma 7.3.6 Letting p' = V in Lemma A.5.1 proves the claim, given that

the cost function in Problem 7.2.5 satisfies Assumption 7.3.5.

115

116

Bibliography

[1] P. Adao and P. Mateus. A process algebra for reasoning about quantum
security. Electronic Notes in Theoretical Computer Science, 170:3-21, 2007.

[2] Y. Agarwal, K. Mathur, and H.M. Salkin. A set-partitioning-based exact algo-
rithm for the vehicle routing problem. Networks, 19(7):731-749, 1989.

[3] M. Alighanbari, Y. Kuwata, and J.P. How. Coordination and control of multiple
uavs with timing contraints and loitering. In American Control Conference. IEEE,
2003.

[4] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality.
Journal of the Association for Computing Machinery, 43(1):116-146, 1996.

[5] E. Angelelli and M.G. Speranza. The applications of a vehicle routing model to
a waste-collection problem: two case studies. Journal of the Operational Research
Society, 53:944-952, 2002.

[6] J.M.C. Baeten. Process Algebra. Cambridge University Press, 1990.

[7] J.M.C. Baeten. A brief history of process algebra. Theoretical Computer Science,
335:131-146, 2005.

[8] M.L. Balinski and R.E. Quandt. On an integer program for a delivery problem.
Operations Research, 12(2):300-304, March-April 1964.

[9] J. Bellingham, M. Tillerson, A. Richards, and J.P. How. Coopertive Control:
Models, Applications and Algorithms, chapter Multi-Task Allocation and Path
Planning for Cooperating UAVs. Kluwer Academic Publishers, 2001.

[10] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35:407-427, 1999.

[11] J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Theo-
retical Computer Science, 335(2-3):215-280, 2003.

[12] M. Bowden. Black Hawk Down: A Story of Modern War. Atlantic Monthly Press,
Berkeley, CA, 1999.

117

[13] J. Bramel and D. Simchi-Levi. On the effectiveness of set covering formulations
for the vehicle routing problem. Operations Research, 45(2):295-301, March-
April 1997.

[14] 0. Braysy and M. Gendreau. Vehicle routing problem with time windows, part
i: Route construction and local search algorithmsh time windows, part i: Route
construction and local search algorithms. Transportation Science, 39(1):104-118,
February 2005.

[15] 0. Braysy and M. Gendreau. Vehicle routing problem with time windows,
part ii: Metaheuristics. Transportation Science, 39(1):119-139, February 2005.

[16] J. E. Buichi. On a decision method in restricted second order arithmetic. Z.
Math. Logik Grundlag., 6:66-92, 1960.

[17] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

[18] G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12:568-581, 1964.

[19] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management
Science, 6:80-91, 1959.

[20] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm
for the vehicle routing problem with time windows. Operations Research,
40(2):342-354, March-April 1992.

[21] K. Erol, J. Hendler, and D. Nau. Semantics of hierarchical task network plan-
ning. Technical Report CS-TR-3239, University of Maryland, 1995.

[22] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas. Hybrid controllers for path
planning: A temporal logic approach. In American Control Conference. IEEE,
2005.

[23] W. Fokkink. Introduction to Process Algebra. Springer, 2000.

[24] A. Fusaoka, H. Seki, and K. Takahashi. A description and reasoning of plant
controllers in temporal logic. In Proceedings of the 8th International Joint Confer-
ence in Artificial Intelligence, pages 405-408, August 1983.

[25] D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 2 of Oxford Logic Guides, chapter
Intervals and Planning. Oxford Science Publications, 1994.

[26] M.R. Garey and D.S. Johnson. Computers and Intractibility: a Guide to Theory of
NP-completeness. W.H. Freeman Co, New York, 1979.

118

[27] E. Hadjiconstantinou, C. Lucas, G. Mitra, and S. Moody. Tools for reformu-
lating logical forms into zero-one mixed integer programs: Software tools
for mathematical programming. European Journal of Operational Research,
72(2):262-276, 1994.

[28] K.L. Hoffman and M. Padberg. Solving airline crew scheduling by branch-
and-cut. Management Science, 39(6):657-682, June 1993.

[29] M. Huth and M. Ryan. Logic in Computer Science: Modeling and Reasoning about
Systems. Cambridge University Press, 2nd edition, 2004.

[30] R.G. Jeroslow. Logic Based Decision Support: Mixed Integer Model Formulation.
Elsevier Science, 1989.

[31] S. Karaman and E. Frazzoli. Complex mission optimization for multiple-UAVs
using linear temporal logic. In American Control Conference, 2008.

[32] S. Karaman and E. Frazzoli. Optimal vehicle routing with metric temporal
logic specifications. In IEEE Conference on Decision and Control, 2008.

[33] S. Karaman and E. Frazzoli. Vehicle routing with linear temporal logic spec-
ifications: Applications to multi-uav mission planning. In AIAA Guidance,
Navigation, and Control Conference, 2008.

[34] S. Karaman and G. Inalhan. Large-scale task/target assignment for uav fleets
using a distributed branch and price optimization scheme. In IFAC World
Congress, 2008.

[35] S. Karaman, S. Rasmussen, D. Kingston, and E. Frazzoli. Planning complex
UAV operations: A process algebra and tree search approach. In American
Control Conference, 2009.

[36] S. Karaman, R.G. Sanfelice, and E. Frazzoli. Optimal control of mixed logical
dynamical systems with linear temporal logic specifications. In IEEE Confer-
ence on Decision and Control, 2008.

[37] D.B. Kingston and C.J. Schumacher. Time-dependent cooperative assignment.
In American Control Conference. IEEE, 2005.

[38] M. Kloetzer and C. Belta. A fully automated framework for control of linear
systems from temporal logic specifications. IEEE Transactions on Automatic
Control, 53:287-297, 2007.

[39] M. Kloetzer and C. Belta. Temporal logic planning and control of robotic
swarms by hierachical abstractions. IEEE Transactions on Automatic Control,
23(2):320-331, 2007.

[40] R. Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2:255-299, 1990.

119

[41] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where's waldo? sensor-based
temporal logic motion planning. In IEEE Conf. on Robotics and Automation,
2007.

[42] G. Laporte and Y. Robert. Exact algorithms for the vehicle routing problem.
Annals of Discrete Mathematics, 31:147-184, 1987.

[43] J.K. Lenstra and A.R. Kan. Complexity of the vehicle routing and scheduling
problems. Networks, 11(2):221-227, 1981.

[44] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[45] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[46] H. Onal, B.M. Jaramillo, and M.A. Mazzoco. Two formulations of the vehicle
routing problem: An emprical application and computational experience.
Logistics and Transportation Review, 32:177-190, 1996.

[47] A. Pnueli. The temporal logic of programs. In 18th annual IEEE-CS Symposium
on Foundations of Computer Science, pages 46-57, 1977.

[48] S.J. Rasmussen and D. Kingston. Assignment of heterogeneous tasks to a set
of heterogenous unmanned aerial vehicles. In AIAA Guidance, Navigation, and
Control Conference and Exhibit, 2008.

[49] S.J. Rasmussen and T. Shima. Tree search algorithm for assigning cooperating
UAVs to multiple tasks. International Journal of Robust and Nonlinear Control,
18:135-153, 2008.

[50] A. Richards, Y. Kuwata, and J.P. How. Experimental demonstrations of real-
time MILP control. In Guidance, Navigation, and Control Conference. AIAA,
2003.

[51] R. Ruiz, C. Maroto, and J. Alcaraz. A decision support system for a real vehicle
routing problem. European Journal of Operational Research, 153:593-606, 2004.

[52] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and reasoning on web ser-
vices using process algebra. International Journal of Business Process Integration
and Management, 1(2):116-128, 2006.

[53] P. Schnoebelen. The complexity of temporal logic model checking. In 4th
Workshop on Advences in Modal Logics, 2002.

[54] C. Schumacher, P. Chandler, M. Pachter, and L. Pachter. UAV task assignment
with timing constraints via mixed-integer linear programming. In AIAA 3rd
Unmanned Unlimited Technical Conference, Workshop and Exhibit. AIAA, 2004.

120

[55] C. Schumacher, P.R. Chandler, M. Pachter, and L.S. Patcher. Optimization of
air vehicles operations using mixed-integer linear programming. Journal of the
Operational Research Society, 58:516-527, 2007.

[56] P. Tabuada and G.J. Pappas. Linear time logic control of discrete-time linear
systems. IEEE Transactions on Automatic Control, 51(12):1862-1877, 2006.

[57] J.G. Thistle and W.M. Wonham. Control problems in a temporal logic frame-
work. International Journal of Control, 44(4):943-976, 1986.

[58] P. Toth and D. Vigo. Models, relaxations and exact approaches for the ca-
pacitated vehicle routing problem. Discrete Applied Mathematics, 123:478-512,
2002.

[59] P Toth and D. Vigo. The Vehicle Routing Problem. SIAM, 2002.

[60] A.L. Weinstein and C. Schumacher. UAV scheduling via the vehicle routing
problem with time windows. Technical Report AFRL-VA-WP-TP-2007-306,
Air Force Research Laboratory, January 2007.

[61] H.P. Williams. Logic applied to integer programming and integer program-
ming applied to logic. European Journal of Operational Research, 81:605-616,
1995.

[62] H.P. Williams and S.C. Brailsford. Advances in Linear and Integer Programming,
chapter Computational Logic and Integer Programming. Oxford Science Pub-
lications, 1996.

[63] P. Wolper. Constructing automata from temporal logic formulas: A tutorial.
Lecture Notes in Computer Science, 2090:261-277, 2001.

121

