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Abstract

Over their lifetime, naval patrol craft are subjected to many different types of loading scenarios,
most of which are perfectly safe. In rare instances, through a variety of different reasons, these
craft are loaded beyond their means, resulting in structural failure.

This thesis focuses on how side shell stiffened panel failure occurs from a global and local
perspective, bridging the gap between a real life problem and mechanics theory in an effort to
reduce uncertainty in the ship structural design and construction process. It incorporates aspects
of basic ship structural design theory, detailing static and dynamic shipboard loads, progressive
collapse behavior, and global causes of hull strength reduction. Locally, it examines stiffened
panel failure modes due to axial loading through a comparison analysis with consideration for
sources of panel strength loss. Finally, this thesis discusses methods for avoidance and
mitigation of failure in the future at the design, construction, and operational levels.

On the global level, this thesis draws from two incidents in the last decade where U.S. Navy and
U.S. Coast Guard patrol craft have had class-wide incidents of structural failure. These failures
have ranged from buckling, to yield, to fracture. Each ship’s background is discussed, and
primary stress calculations are presented with design margins based on classification societies,
along with an engineering analysis of the failures that occurred on each vessel. Internal and
external factors for overall hull strength reduction are examined and applied to each case,
including considerations for slamming and saltwater corrosion.

Using one of the failure incidents that took place on the U.S. Coast Guard 123, local failure
modes are examined across several analysis methods for axially loaded panels. Buckling and
ultimate load values are calculated through a parametric design space, while boundary conditions
and geometric properties are varied. Finite element analysis and proven analytical methods are
used, including those developed by Von Karman. A comparison analysis is completed using
experimental data, where local causes for strength reduction in panels are considered, including
construction imperfections, shearing, residual stresses, cracking, and initial deflection.
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Thesis Reader: CDR Trent Gooding, USN
Title: Associate Professor of the Practice of Naval Construction and Engineering
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Introduction

i. Why Discuss Ship Strength?

Before recorded time, man has been using ships of all shapes and sizes to move
themselves and materials across the globe. Today, more than 88% of the world’s trade travels by
sea — a source we count on everyday to deliver goods we depend on. Regardless of their shape
and size, the millions of ships that have been constructed both for recreation and for profit all
have one thing in common: they all rely on structural strength and the ability to maintain
watertight integrity to float. But just how strong does a ship have to be to float? This is such a
broad statement that it is almost silly to analyze it at a level like this. Clearly there are a vast
number of different factors that affect ship structural strength but the overarching variables
encompass what the ship is made of and what the payload is going to be. People often forget that
a large percentage of the structural strength of the ship is devoted to ensuring the ship does not
buckle, crack, or yield under its own weight. Naval architects work closely with marine
structural engineers during the design process to ensure that appropriate structural loading
scenarios are considered. This analysis can be accomplished in a variety of different ways.
Before it all can be completed however, design teams must first understand the design
philosophy and the reasoning behind construction in the first place.

The design philosophy is arguably the most difficult decision making process in the
realm of shipbuilding. After payload determinations are made, significant decisions relating to
range, speed, survivability, crew comfort and mission effectiveness have to be made. It is from
these building blocks that a design is born, construction occurs, and the finished product is
finally launched and put into service. But what happens if, that ship is discovered to have some
type of structural problem? What happens if the ship develops global and local buckling,
cracking, or bending? How could it have been avoided and what were the tell-tale signs that
could have served as a warning? These are questions today’s naval architects and marine

engineers hope to never ask.

ii. Motivation

Structural problems were much more prevalent in the past than they are today. During the
eight years during and following World War II, the 2,710 Liberty ship fleet built exclusively to
help with the war experienced significant structural problems. In all, nearly 1500 instances of
significant brittle fracture or other sources of structural damage were reported. In 12 cases, a
Liberty ship literally broke in two without warning, including one particularly tragic instance
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the “spectacular ship failure” event where a ship just suddenly breaks in two will not occur,
chiefly due to the ductility of today’s structural steel. Rather, it is often that two or three or more
significant sources of loading, coupled with various factors that reduced design strength,
ultimately cause worn steel to surpass its yield point. In worst case scenarios, steel surpasses its
ultimate failure point and subsequent fracture strain. The question is, with the proper design
software tools of today, how does this occur? Proper safety margins incorporated in
classification society rules based on principle hull dimensions, hull materials and primary
missions should mitigate any and all occurrences of such incidents. Furthermore, advanced
design and analysis software also plays an increasingly important role in predicting a vessel’s
structural strength. Regardless, what is seen on a computer screen in a theoretical design is
slightly to significantly different from the finished product because after all, human hands create
ships through the manipulation and molding of natural resources and are by no means always
identical to computer modeled theory.

1. Incidents

To explore these questions, two specific instances were examined where U.S. Naval and
U.S. Coast Guard patrol craft experienced longitudinal failure of various kinds. Failure included
cracking with propagation and buckling in several different instances and modes. Traditionally,
the U.S. Government has had no problems designing and constructing sound vessels through
traditional contract means. Although the ship design and construction process for each of these
two ships were two completely separate entities, they share several commonalities: Both ships
were built by the same shipyard, both are based on the same proven British hull design, and both
ships were retrofit with a stern launch consisting of 9* and 13’ for the U.S. Navy and U.S. Coast
Guard, respectively. The timeline of failure is different for each class of ship however, as the
U.S. Naval Ship failed pre-extension while the Coast Guard Cutter only failed after the extension
process was completed. Additionally, it should be noted in the applicable case that by itself, the
retrofit cannot be ruled a primary cause of failure. The classes of ships in question are the U.S.
Navy Cyclone Class PC 179’ (originally a 170’) and the U.S. Coast Guard Cutter Island Class
WPB 123 (originally a 110°) (2) (3). These ships can be seen on the following page in Figures 3
and 4. While the 179” PC (and its pre-retrofit 170’ siblings) is still in service today performing
various critical missions for the Department of Homeland Security and the Department of
Defense, the fleet of U.S. Coast Guard 123 WPB’s sit idle in Curtis Bay, Maryland, as a result
of a decision made at the highest levels of uniformed service (2).
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reduce the strength of ship hulls. Additionally, a local level analysis and comparison of axially
loaded stiffened side shell panel of the 123" in experimentation, finite element, and analytical
areas from a baseline level show how design ideals and computer analysis leave out or
inadequately model many of the uncertainties and strength degradation factors in ship building.
The science of ship structural design is, in no uncertain terms, one of the most complicated and
dynamic processes in the design spiral. This is a look at a single, though very important, sliver
from this particular field that is still evolving every day.



This Page Intentionally Left Blank



Chapter 1: The Ship Design and Construction Process

1.1 Fundamentals of Ship Structural Design

Ships are, by no small margin, man’s largest moving engineering marvel. From the giant
supertankers surpassing 300,000 LT to the U.S. Navy’s 90,000 LT super carriers, the complexity
and ingenuity of ship structural design rivals some of the world’s greatest structures. In
fundamental terms, the reason a ship floats is simple and is given by Archimedes principle:

Mg = pgV

If Mg =W, and pg = vy, then
W =yV

(2]
This balance of forces in the vertical direction causes a ship to float and satisfy Newton’s laws of
static equilibrium. This is the most basic “law” of ship design. Structural loads consisting of the
ship’s own weight (internal loads) and outside forces (external loads) create a need for hull
design that goes beyond a simple balance of forces. This chapter will examine these basic
principles not only from an engineering approach, as expected, but also (and more importantly)
from a design approach.

1.1.1 Longitudinal Strength

The analysis of longitudinal strength starts with a simplifying assumption that in terms of
structural response, a ship can be modeled as large girder. This girder is supported by the force
of buoyancy pushing upward and weighted down by the steel, machinery, equipment and
personnel that make up the ship. Along with the basic principle that these two forces are equal,
knowledge of the loading distribution, and the location of the vertical and transverse center of
gravities (VCG) and (TCG), play a role in determining longitudinal strength.

Basic beam theory is used in naval architecture practice to make estimations of the
maximum load, shear, and bending moment distributions found along the hulls of high speed
naval vessels. Beam theory, as it is applied to ships, is discussed at length in Zubaly’s Applied
Naval Architecture, (4). In order to determine the distributions that are present in the beam-
theory hull girder approach, several underlying assumptions must be made as listed below:

® Plane sections remain plane
® The girder is prismatic by nature

* Any and all responses are not coupled
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¢ The girder material is homogenous and elastic

Beam theory develops relationships between weight and buoyancy as it is distributed along the
length of the beam and can be expressed by b(x) and w(x), buoyancy and weight per unit length
“).

Buoyancy per unit length depends on the “fineness” characteristic of the ship and 1s
described most often by the Prismatic Coefficient (Cp). In the case of this type of naval vessel,
the buoyancy per unit length at either end will be much less than at the mid-ship section. The
weight per unit length is dictated by the distribution of weight within the ship. Complex weight
distribution analysis in the final iteration of design will usually yield the most accurate results for
weight for various loading conditions. The net force in the vertical direction 1s the load,
described below in Equation 3:

I(x) =w(x) = b(x)
(3]

Graphically over the length of the ship, /(x) has a zero net area, which is required in equilibrium.

As in beam theory. the location and magnitude of the shearing forces present is written as
the integral of the distributed load, /(x). Equation 4 below describes this function:

FP
V(x)=f I(x)dx

AP

(4]
The relationship between the bending moment distribution and shear force distribution 18
identical to that of the shearing force and loading per unit length. The magnitude of the bending
moment, M(x), is calculated by integrating V(x) over the length of the ship:

FpP

M(x) =J V(x)dx

AP

(5]
An example of the load-shear-moment diagram as a function of ship length (along with weight
and load components) for an arbitrary ship is shown in Figure 5. It must be noted that the
maximum bending moment that is estimated by this static equilibrium method is only one part of
the maximum allowable bending moment. This is known as the still water bending moment. In
reality, the maximum bending moment is made up of both static and dynamic loads contributing
to the overall stressing of the hull (4).






1.1.2 Primary, Secondary, and Tertiary Stresses

Bending moments discussed in the preceding section are a result of the net vertical forces
subjected to a ship’s hull that is modeled in its simplest form as a beam. When a beam is
subjected to a moment, the reaction of the beam is to compress and extend linearly according to
the magnitude of that moment. The resulting stresses can be computed according to the well
known flexural formula, seen as Equation 6. This derivation can be seen in Hibbler’'s Mechanics
of Materials (6) or any other strength of materials textbooks and is the result of beam theory and
its associated moment curvature relationship.

(6]
In this case, the bending stress ¢ over a girder with a given moment and moment of inertia is
maximized farthest from the neutral axis, where y is the distance from that axis. When this holds
true, y=c and the relationship between the moment of inertia and c is called the section modulus.
It essentially quantifies the ship’s ability to resist bending, seen below (4):

(71
Unless the hull’s neutral axis is at exactly half the depth of the hull. there will be two section
modulus calculations, one for the deck and one for the keel. Generally, the neutral axis of the
midship section is typically found at 0.4*Depth, that is, 40% of the way from the keel to the
strength deck. This implies the largest bending stresses will usually occur at the strength deck.
In a structural failure scenario, various factors can reduce the effective section modulus of a
ship’s hull, which in turn can increase the bending stresses on the hull past a given threshold
(usually the yield stress) to failure (5).

The different types of stresses experienced by the hull can be broken down into three
distinct categories: primary stresses and its associated shear stress, secondary stresses and
tertiary stresses. Visual representations of each of these stresses can be seen in Appendix 1.1.

Primary Stresses and Shear Stress

Primary stresses encompass how the hull responds as a whole. The theory rests on beam
theory and holds the same assumptions as we see in a basic longitudinal strength analysis
discussed in 1.1.1. Primary stresses can occur in the vertical, lateral, or torsion directions.
Generally, the primary stresses caused by moments in the lateral and twisting directions are
orders of magnitude less than that of the vertical primary stresses and therefore are not a driving
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Stiffeners are traditionally assumed to act as simply supported boundary conditions for each sub-
panel section.

Tertiary Stresses

Tertiary stress is caused by the bending and deformation of the individual plates that
make up a stiffened panel. Like stiffened panels subjected to secondary stresses, these plates are
subjected to axial loading and have specified boundary conditions made up of the attached
stiffeners. Tertiary stresses can potentially make up a large portion of the stresses that add to
failure. Typically, consideration for tertiary stresses can be included using the Heller-Jasper
method, discussed in References (8) and (4). Graphical examples of all three types of stresses
can be seen in Appendix 1.1.

1.2 Structural Design Methodology

The first section of this chapter described the basics of longitudinal strength, the
responses of the hull girder and familiarized terms that are prevalent in the structural design
process. But what exactly drives structural design requirements? Why even build a certain type
of ship in the first place? What are the relative important portions of design considerations such
as safety, survivability, upfront cost and lifecycle cost? These questions are usually answered in
the early stages of design and embodied in the design philosophy.

1.2.1 Philosophy

The design philosophy of a warship (U.S. Navy, or otherwise) derives from the capability
and cost requirements for the ship. A capabilities document typically outlines required missions,
weapon and defense capabilities, speed, range and endurance capabilities, and habitability
concerns. As with any design, various trade-off studies are required in order to achieve any sort
of optimal finished product. In one particular method of optimization, specific weights are
assigned to each chosen design parameter and fed into an evaluation framework (or calculator of
sorts) that produces what is often known as the “Overall Measure of Effectiveness” (OMOE) (9).
A sample model of this method and further discussion can be seen in Appendix 1.2.

It is important to understand that design philosophy affects ship structural design at its
very highest level. The design philosophy and the types of missions that the warship will
eventually hold determine the type of hull that will be used. Traditional high speed naval vessels
(patrol boats, fast destroyers and frigates) typically have a mono-hull, sleek, high length-to-width
ratio look about them. After the hull selection process is completed. actual structural design of
the hull falls on the structural engineer.
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1.2.2 Design Approaches

In the Naval Architecture world, there are essentially two major paths to take when
working on the structural design of a ship. Both methods require geometric properties be
essentially known and a specific design philosophy to be completed, and each method is
intended to achieve a similar end result. Regardless of the method, ship structural design focuses
on two major aspects of the ship: Hull Girder Design (discussed in section 1.1.1) and Midship
Section Design. The midship section is essentially the strongest portion of this beam and
represents the ability or inability for the ship to flex as load-induced stresses are dissipated
throughout the hull. The two approaches that are available to achieve these designs are the
“Rules” based and “Rationally-Based Optimization” approaches (5). A third method which uses
portions of both methods is currently employed by the U.S. government for warship structural
design (9).

Classification Societies and the Rules-Based Approach

When those in the maritime community talk about a vessel being in compliance with the
“rules,” they are referring to various groups or organizations that are explicitly non-
governmental, that regulate and check applicable standards for the design and construction of all
ships. A table of some of the predominant classification societies can be seen in Appendix 1.3.

As there is no law that binds any shipbuilder to follow the standards set forth by these
societies, these classification societies bear no financial or legal burden on the ship itself and
merely provide guidance on construction and implementation of the ship and its systems (10).
As it turns out however, almost every ship and/or boat all over the world is built to the standards
of one of these classification societies. This is due to flagging and insurance requirements
imposed by countries and insurance companies that will ultimately hold some, if not all, of the
previously discussed legal and financial responsibility.

The American Bureau of Shipping, one of the predominant classification societies is the
basis for the rules-based design approach of many U.S. vessels. Although there is no specific
requirement to follow these rules, they provide effective safety margins and robust design
approaches to limit complications that could cause failure. Standards in ship strength set forth by
ABS can be broken down into three categories or “minimums” (11). They are as follows:

¢ Maximum bending stress midships (M= Mgy + My,)
* Nominal permissible bending stress (calculated based on ship characteristics)

® Required section modulus (calculated based on ship characteristics)

29



If some or all of these criteria are not met. the ship cannot be certified. The overall premise
creating a design using the rules-based approach is essentially a simple iterative process. More
information can be seen in References (10) and (12).

The rules-based approach 1s very robust and sound, however in a volatile economy and
an overarching concern for cost, it often provides too much (or too little) of a safety margin.
Unknown safety margins and overdesign can potentially bring significant cost increases and
unwanted weight issues to the table. The alternative approach helps mitigate some of these
concerns.

The Rationally-Based Optimization Approach

The ratuonally-based design approach is a type of structural design that emphasizes user
defined inputs coupled with computer optimization to create an efficient, structurally sound
finished product. Dr. Owen Hughes has been a pioneer in the field of structural design, who
defines this approach in his ship structures book published by The Society of Naval Architects
and Marine Engineers or SNAME: “Design which is directly and entirely based on structural
theory and computer-based methods of structural analysis and optimization, and which achieves
an optimum structure on the basis of a designer-selected measure of merit” (5). This approach
requires four major analysis procedures:

¢ (Calculation of loads
e (alculation of the ship’s response to those loads
e (Calculation of limiting values of each response

¢ Optimization of the loads and responses

By its own definition, it is clear that this method is out of necessity. computer based. While this
method, enabled by computing power. has led to to major strides in ship design, the industry still
requires classification societies to ensure rules compliance due to insurance needs.

Warship Design

Before the emergence of major independent ship design firms, Coast Guard and Naval
warships were designed completely in-house (9). As times have changed, however, so have
methods, though these methods have not evolved completely into today’s commercial design
industry. In the U.S. government’s most recent shipbuilding projects, the ship’s concept design
was born from a single or multiple concept designs coupled with mission capability
requirements. In-house, preliminary design is typically completed with all major systems
incorperated and analysis completed for payload, weight, strength and so forth. This design is
then taken to industry where various companies have the opportunity to bid on a “winner take
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all” or “joint” contract. In recent contract awards both in the Navy and Coast Guard ship
construction projects, joint contracts have been awarded where several large companies or
shipyards have worked together to create detailed concept design and a finalized product. These
projects have seen great successes but also have met great failures (13) (9). Naval structural
design methodology has evolved over time and publications have been written to govern the
design under a modification of the rules-based approach. These publications were published,
and are still maintained by the Naval Sea Systems Command, otherwise known as NAVSEA.
The NAVSEA structural design manual details the different aspects of the way the U.S. Navy
has conducted ship design in the past and present (14). In recent years, the U.S. government has
taken the requirements set forth by NAVSEA and its understanding of special requirements of a
surface combatant and developed a set of new documents titled “The Naval Vessel Rules” (9), in
incorporation with ABS. These rules are not available to the general public for security reasons
and essentially have provided U.S. Navy naval architects and their contractors with the
specifications and allowances for the future of the U.S. fleet.

1.3 Warship Construction

Until now, discussion has primarily focused on how ships are designed. In the preceding
sections, the rules-based approach and the rationally-optimized design approach have been
examined and compared over a variety of different criteria. At the conclusion of the design
phase, when all feasibility and cost studies have been completed, it is then up to the construction
company or companies to put the design to fabrication. In the case of naval warship detailed
design and construction, the designer and the fabricator are usually one and the same (9). These
companies are not left up to their own measures, however. In-house oversight, consisting of
senior technical advisors employed by the government (both military and civilian personnel),
follow and approve as necessary each step of the construction process. On the construction side
this is usually accomplished in the form of inspections during fabrication and upon completion of
various ship systems. The generic, military construction process based on shipyard operations
today in the United States is briefly discussed in the following sections, as well as specific
circumstances that shipyards often encounter when retrofitting and repairing ships already in
service.

1.3.1 The Construction Process

It is very difficult, nearly impossible even, to create a single “checklist” of tasks that
describe how to build a ship from design plans. Every shipyard as a separate entity completes
tasks a little differently, has different procedures and a different way to monitor work. In a
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general sense, the end product is the same, but the method to create the product once the design
is complete is usually somewhat different (15).

Each shipyard involved in production will have a certain “Production Approach,” which
governs the flow of material into the finished product. Lamb’s Ship Design and Construction
details some of the criteria examined when deciding on the type of approach (16):

* Product demand

* Demand variability and predictability

¢ Product complexity

¢ Product mobility

* Material type and associated joining technology
* Product variety within a single production system

® Degree of customization or variation among products of any single type

Although none of the afore mentioned criteria will be described in detail, the result of an analysis
for a government contract has almost always resulted in a customized modeled from a fabrication
technique known as the “Group Technology Approach.”

To apply the group technology approach in ship construction, shipyards look at and then
optimize the similarities between intermediate-type products. They then evaluate demand and
create production lines that optimize both quality and economics due to these similarities. In a
typical naval shipyard, these production lines are located either right next to the main assembly
areas or a short drive away. It is from these production lines that the pieces for eventual
subassembly and ship erection are found (16).

1.3.2 Dry-Dock Repairs and Retrofitting of Naval Ships

For any vessel, let alone a naval combatant, regular scheduled dry docks are a normal
part of the ship’s lifespan. In some cases, the maintenance and repair dry-dock periods are
performed where the ship was built, but more often they are completed (especially when it comes
to the Government) at a nearby shipyard who happens to be the lowest bidder. When it comes to
lifespan. the U.S. Navy tends towards decommissioning ships at or before their predicted service
life, and building new vessels. The U.S. Coast Guard on the other hand, continuously stretches
cutters past normal life expectancy through programs such as Deepwater (to be discussed later)
and the Mid-life Extension Project, or MEP. The MEP project is basically a fancy name for an
extensive, multi-million dollar dry-docking, retrofit, and repair period ranging from 6 months to
a year in length. Cutters undergoing the MEP process are brought to the U.S. Coast Guard Yard
from all over the United States, where in-house supervision can take place.
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In extreme scenarios meant to extend the service life of a ship, along with new systems
and updated compartments, the actual hull is extended to better serve the mission profile of the
ship. This was the case with the ships that will be discussed in this study. With any dry-
docking, repair, or retro-fit however, comes some risk that the ship will actually be worse off
than before. This is better understood once the effects of human limitations and uncertainty in
the design and construction process are considered.

1.3.3 Understanding the Effects of Human Limitations and Uncertainty

Optimists might say that the abilities of humans to design and build are limitless. In a
sense, they are correct. The technological advances seen over the last 100 years surpass the
advances of the last thousand years 10,000-to-1. Still, any man-made structure cannot be ideal in
every way. Advances in computers, automation, and robotics have enabled the construction
process to approach such a point, but humans will never truly be able to create anything with
absolutely no flaws.

Ships, by nature, are constructed using advanced steel forming and welding techniques
that have been fine tuned throughout the history. Still, these techniques are not an exact science.
Additionally, there are vast uncertainties about the environments that the ship will encounter
through its lifetime. The definition of “ideal” in this context then becomes “made within certain
tolerances and margins” (17). Structural failure, then, occurs when the actual differs from the
predicted by more than the tolerances and margins allowed for. A good example of a design
tolerance is seen in the U.S. Navy design standards for hull girder strength, SDS 100-1. This
standard incorporates a minimum of 1.0 Ton-per-square-inch stress margin for combat ships that
accounts for weight growth, changes in the loading distribution, and the uncertainties associated
with corrosion, residual stresses, deflection and imperfections. This is the standard for warship
construction today, and this thesis touches on the uncertainties of the strength reduction factors
that can ultimately cause a ship to fail.
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Chapter 2: Ship Strength and Loading

The analysis of the structural strength of a ship requires a mutual understanding of
structural loading, the associated stresses, and the response of the ship as a whole. The strength
assessment starts with determining the material properties for calculations and only ends when
every one of the thousands of structural members have been designed with appropriate safety
margins and validated by a governing authority, government or otherwise. It is typically easiest
to commence the structural analysis of a warship by first examining the associated material
properties and then determining loads and finally potential risks for hull strength reduction that
have to be taken into consideration during design and construction.

2.1 Ship Material Properties

The construction of U.S. warships is nearly a 100% steel market. In some cases, the
superstructure of a warship is made out of lighter weight aluminum, fabricated through explosion
welding techniques. Typically, the entire structure is made up of a single type of steel, but with
retrofits, dry-dock repairs, and any other dockside repairs, there 1s a possibility for the type of
steel to vary.

Why Steel?

The use of steel in ships has evolved over time but the reasoning behind the use of any
material in construction is relatively the same. In Applied Naval Architecture by Zubaly, (4) the
author lays out a set of basic criteria for the materials used to form the structural core of a ship.

These criteria are listed below:

e Availability and cost

e Uniformity

e Ease of fabrication

¢ Ease of maintenance

¢ Resistance to distortion with applied load

When these requirements are set forth, it is easy to see that steel is often an appropriate choice.
Amongst this list lies the chief cause for concern in ship building: strength versus weight at cost.
In this market, mild to mid range steel has proven to be inexpensive to make, inexpensive to
build with, and easy to fix.
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adjustments coming during structural repairs. In the case of both ships discussed in this study,
this weight was changed substantially during the hull extension. The discussion of shipboard

loads is generally divided into several categories, namely static loads, dynamic loads, and impact
loads (20).

2.2.1 Static Loads

Static loads make up those that define opposing forces in a particular loading condition of
a ship. These loads do not have an instantaneous change and generally have a pre-determined
centroid location on the ship depending on their distribution. The main static shipboard loads are
the overall displacement of the ship in its loading condition and the equal and opposite buoyant
force. These loads only change when the overall ship displacement changes due to a variety of
different circumstances. Some of these are below, but this list is certainly not all-inclusive (4).

¢ Change in liquid load (fuel, potable water, ballast, grey water, sewage)
¢ On/Offload of Cargo

¢ Change in Structure

In design, ships are usually afforded a growth margin that accounts for a gradual increase in
overall displacement over time due to the accumulation of sea growth and material buildup. In
addition to these main contributions to the static load aboard ship, thermal effects and hydrostatic
hull pressures contribute to hull stresses. Ships must also be designed to withstand the infrequent
static load conditions imposed by dry-docking evolutions and minor grounding events (20).

2.2.2 Dynamic Loads

Dynamic loads are loads that vary over a given time frame. These loads can be
quantified by assigning an amplitude (A) and frequency of vibration (Hz) or even described
mathematically as a probabilistic spectrum. The latter is usually used to describe wave induced
loads since this type of loading extends well into the probabilistic realm. The response, however,
to the load is often simplified into vibration amplitude-frequency data (20). Dynamic loading,
especially excessively violent dynamic loading, is often the ultimate difference in structural
failure. Both low frequency and high frequency dynamic loading are discussed in the proceeding
sections.

Low Frequency

Low frequency dynamic shipboard loading are varying loads that have a nominal
frequency up to several seconds in length. This frequency between load peaks is generally lower
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than the first mode of the natural frequency of the vessel. Low frequency dynamic loads include,
but are not limited to, the following (20):

® Wave induced loads.
e Inertial movements as the ship accelerates and decelerate in its six degrees of freedom.

Low frequency loads make up a great portion of the dynamic loads that exert stresses on the ship.
During the design process, it is these loads and the requisite static loads that derive the baseline

strength requirements in a design.

Highly accurate evaluation of wave-induced loading requires extensive knowledge of
hydrodynamics and an understanding of how time varying fluid forces interact with inertial
motions of the hull. To simplify these variables, a process called strip theory is used. Strip
theory allows engineers to use the relatively large length to width ratio of the wetted surface of a
ship to eliminate variables and boundary conditions in a very complex and dynamic problem
(20). The elements considered in strip theory are listed below:

¢ Froude-Krylov Force

e Wave-Diffraction pressure Force
e Hydrostatic Restoring Force

¢ Damping Force

¢ Added Mass Force

All of these forces accounting for low frequency dynamic loads on the hull are sufficiently
discussed in any hydrodynamics textbook. It is the compilation of these forces that the naval
architecture community has simplified into the quasi-static trochoidal wave seen in many CAD
programs that analyze ship structural design (20). The trochoidal wave is discussed in Section
4.2.

High Frequency

High frequency loads are described as loads that meet or exceed the first mode of natural
vibration of the ship (20). These dynamic loads range from forced vibrations due to machinery
or shafting to hydrodynamic in-balances in the propulsive equipment. The magnitudes of these
loads usually are comparatively small, but coupled with natural frequency characteristics, large
~ loads can develop through resonance.

2.2.3 Impact Loads

Impact loads make up another area of concern for naval architects. Impact loading is
often violent and unexpected and usually, if the magnitude of the load is great enough, causes the
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ship to essentially shudder, or vibrate fiercely. Types of impact loading found in warships
include large grounding events, impact with other vessels, piers or structures or weapons
discharge, although the most common type of impact loading is the slamming phenomenon.
Slamming occurs when the resultant of wave loading and inertial forces draw the bow of the ship
out of the water and then subsequently slams back down into the water as the ship tries to
achieve static stability in the seaway (21).

Unlike low frequency dynamic loads or static loads which have a direct and often
immediate impact on the overall strength of the ship, high frequency and impact loads are,
coupled with other factors discussed in the following sections, often the cause of hull strength
degradation over time (20). It is this strength degradation that leads to direct failure in static and
low frequency dynamic load response scenarios.

2.3 Factors in Strength Reduction

The question of strength reduction (from design standards) over time or during the initial
construction phase comes up again and again after a ship suffers a debilitating or catastrophic
failure due to excessive loading. There are many possible causes for strength reduction due to
the inherently complex nature of ships and the variety of different and unpredictable loads they
must withstand. The major causes for structural failure are discussed in the following sections
but it must be noted that these causes are not all inclusive; they merely describe the most likely
causes based on evidence and an understanding of the properties of shipbuilding materials.

2.3.1 Residual Stresses

Residual stresses in steel are often overlooked because of their “residual™ nature. They
can exist in a solid elastic body (that includes metals used in ship construction) and are present
regardless of external loading. These stresses can be caused during forming, cold working, or
welding of the material, or even during simple thermal expansion due to temperature gradients.
Studies by the Ship Structures Committee (SSC) show that compressive-like residual stresses can
cause reduce buckling loads by a substantial amount if left unchecked (22). Most often. residual
stresses are a result of fabrication techniques required in ship construction, namely rolling and

welding.

During the rolling of fabrication steels, residual stresses are caused by uneven cooling. In
rolling, residual stresses are typically a function of the geometry. In some cases. if left untreated,
residual stresses during rolling can reach as high as 80 MPA (23).
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On the most basic level. it is through the solutions to this analysis in the context of the specific
material, geometric, and fabrication parameters that the distribution of incompatible strains can
be determined. The sum of the area of the compression and tension sections of the calculated
stresses in this diagram can all be equated to zero and satisfy the definition of residual stress
(23).

Residual Stresses Caused by Welding

Residual stresses that are produced by the process of welding come in two forms: Those
that are produced by the welding of two pieces of metal that are unrestrained. and those that are a
result of post weld reactions due to prior restraint during welding. Figure 10, seen on the
previous page, shows the typical distribution of stresses in the unrestrained. fairly simple, one
pass weld.

Estimations of residual stresses in simple plates is best completed by assuming a typical
residual stress exists and, in the tension zone next to the weld, the magnitude of the residual
stress equals the yield stress. These assumptions allow for the derivation of Equation 10:

2n
[10]
In this case, 77 is the eccentricity ratio which can be calculated from the slenderness parameter of
a plate, seen in Reference (5).

While Equation 10 provides a fairly good approximation method for calculating residual
stresses in simple plates, this method becomes less accurate as more complex geometries are
introduced. If specific weld characteristics are known, the extent of residual stresses present in
stiffened panels with normal proportioned stiffeners can be estimated using weld geometry and
empirical data:

C1Qwy
bt + 4, 2
[11]
In this case, a,, is the cross-sectional area of the weld and the coefficients given by ¢; and ¢-
define shrinkage force and stress reduction due to shakedown in the weld, respectively.

Residual stress is easy to understand but incredibly difficult to measure and gauge
accordingly. During ship construction, whenever fabrication is necessary, residual stresses tend
to be produced. This is especially obvious when one looks at the hull and superstructures of
several classes of ships in the U.S. Fleet. This waviness along the shell plating is called the
hungry horse look. By themselves, residual stresses do not present a serious issue to the integrity
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of a structure. It does become an issue, however, when plates under residual stresses are
subjected to large-magnitude compression or tension loading in as in the case of a ship in heavy

seas.

2.3.2 Eccentricity: Initial Deflections

In the real world, pure axial loading hardly ever exists and in a mega-structure such as a
large ship, it occurs even more rarely. Similarly, initial deflections (which can be caused by
eccentricity) or imperfections in plates and columns (caused by welding or forming) can, in
essence, cause virtual bending stresses that can be stronger than residual stresses in rare cases.

Hughes (5) uses a variation of Euler column theory to describe the effects of eccentricity.
This theory is discussed in detail in Section 3.1.1. When eccentric loading is introduced into a
simply supported column, the governing equation adds a term for initial deflection and additional
deflection. These terms are given by § and w and are seen as part of the modified, simplified
governing equation, below:
d?y P
a';'z' = — '5',7 (6+w)

[12]

In this case, P describes the load while ET is the stiffness factor of the column. Solving (12)
provides a mathematical solution for the “magnified” deflection using a baseline load if any
deflection is present. If Pr describes the ideal Euler buckling load and P is the actual load on the
object, the magnification factor is given by:

P
¢ E

=PE'—1

[13]
With regards to this magnification factor, Hughes makes two very important points which
directly relate to ship integrity issues. The first is that as eccentricity increases, the initial
buckling load decreases, though later it will be shown that this does not have an appreciable
effect because the decrease usually is small. The second is that the initial magnitude of
deflection, whether large or nearly insignificant, has no real bearing on the overall strength of the
column as the load approaches the Euler buckling load (5). A graphical representation of this
can be seen in Appendix 2.1.

On a ship, hull plating deflections are typically out of plane and can be classified as
transverse deflections and longitudinal deflections. While transverse initial deflections are
mostly associated with large stiffener welding and have little or no effect on hull strength,
longitudinal initial deflections tend to pose a little more noteworthy problem. Still, studies in
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which ultimate strength characteristics were examined after accounting for longitudinal wave-
like initial deflections showed that for reasonable and typical initial deflections, strength is
decreased only just slightly and can be considered negligible. This is shown in a finite element
example of plate loading in Chapter 5.

It is clear that initial deflections associated with normal workmanship or construction do
not have an appreciable effect on reducing hull strength, but what about the abnormal
occurrences during the life of the ship? Some of these might include collision with the pier or
another vessel. improper dry-docking or running aground, or even battle damage. In these cases,
from the perspective of damage control, there are usually more immediate problems to worry
about than the overall buckling strength of the ship as long as collapse strength is not within
reach. Due to the relative difficulty of experimental testing on board ships which have
experienced any or all of these circumstances, no real unclassified data exists (The U.S. Navy
has done extensive live-but-classified testing on the susceptibility of its fleet) (9). To remedy
this, several software platforms are available which provide a method to assess bending moment
and associated stresses in the case that a structural member becomes compromised, due to a
variety of different causes.

2.3.3 Slamming and Vibration Effects

To this point, human-controlled factors contributing to hull strength reduction have been
considered. However, the effects of excessive vibration are at best, partially human-controlled.
During the design phase, the hull’s natural frequency can be estimated and certain forcing
frequencies can be avoided within operation. but no real control exists beyond this point. Briefly
introduced as a high-frequency dynamic load, the loading and resulting vibratory response

caused by slamming is a significant cause for the degradation of the strength of a hull over time.
Slamming

In order for slamming to occur, two requirements are needed. The first is the emergence
of the bow and second, the relative velocity (ft/s) of the hull and the wave surface must exceed a
threshold given by Equation 14. Here, L is the ship’s LBP and the multiplication factor is an
empirically derived constant (21).

V' =.53VL
[14]

What exactly happens during the slamming phenomena is important in understanding
how it can contribute over time to strength reduction for a hull. For simplification, the slamming
event can essentially be broken up into three main phases: Phase I occurs while the bow section
1s out of the water and the flat bottom is approaching the surface, Phase II encompasses the
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impact until full wetting occurs, and Phase III brings the ship back to equilibrium. During Phase
I, the predominant forces are air flow and wave-air interaction until the moment of impact.
Phase II dominant forces are a mix of friction forces as water flow across the body and a
cushioning effect. In Phase III, pressures become static and an increasing buoyancy effect is
introduced as the ship settles into the water (21).

Defining slamming in these terms simplifies an extremely complex problem. While it
does not nearly provide sufficient means to analytically describe slamming in variable seas, it
can be effective enough in relative terms of this work. The vibratory response of the slamming
phenomenon is felt almost entirely in the first mode of natural vibration. The severity of the
response is strongly correlated with the wave’s incident wavelength. The closer the wavelength
is to the length between perpendiculars (LBP), the larger the vibratory response (21).

Estimating 1% order Natural Vibration Characteristics

The coincidence of the first mode of natural frequency and forced (machinery driven)
vibrations, coupled with the magnification of the amplitude of vibration due to slamming effects,
warrants calculation of the first mode of natural frequency. This can be used to determine if any
resonance may have occurred in either real-world case of structural failure.

Approximating the natural frequency of a ship (two-node vertical frequency) can be
completed within fairly narrow limits using a process which requires a great amount of data
collection and manipulation. This method is discussed in Reference (24). To circumvent this
often long and drawn out process, structural engineers sought a new, empirically based method
using experimentation and a ship’s general characteristics. Schlick was the first to come up with
such a formula, at the end of the 19" century. One-hundred and fifty years later, Liddel
improved Schlick’s formula which had previously not considered added mass (24). Equation 15
below shows the final result:

Ncycles/min =¢ "_IB—
2+ 3—7=)AL3

[15]
Seen above, main components of Equation 15 include the empirically based constant ¢p which
changes based on platform type and the displacement, the mid ship moment of inertia, and length
of the ship. More information on different variations of empirical formulas to determine the first
mode natural frequency can be seen in References (24) and (25).

Using the correct empirical constant provides a fairly accurate approximation of the first
mode of natural frequency. From this result, the second and third modes of natural frequency
can be calculated using empirically derived multipliers. These multipliers are seen in Table 1:
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Frequency | 1% | 2™ | 3¢

Multiple | 1.00 | 2.22 | 3.45

TH YROUSHTIES &

While these vibration characteristics are merely estimations, it is up to the engineers aboard ship
to determine if issues with resonance are potentially speeding up the fatigue-induced failure
process. Actual vibration characteristics can easily be determined for any ship using an
accelerometer and a computer system that can analyze the results.

2.3.4 Corrosion

Corrosion 1s a hull strength reduction factor that, once it starts, is nearly impossible to
control through human factors. In ships that are nearing the end of their service lives, it is such a
big cause for concern that many ship salvage programs have a function to allow for corrosion-
caused strength degradation. Decreased manning on U.S. Navy and U.S. Coast Guard ships
dictates that considering corrosion as a major means of strength degradation is still very crucial.
Paint coatings and zinc sacrificial anodes are several ways that ships deal with this problem but
the corrosive power of the ocean will never cease to exist.

For corrosion to occur. an anode (which corrodes) and a cathode must be present. Along
with these two materials, an electronic path must be present, along with an electrolyte (26). The
tendency for corrosion to occur depends on the magnitude of the voltage developed between the
anode and the cathode. Salt water is a very strong and tenacious electrolyte but in many cases
(obviously not on the outer hull) it can be removed by a simple freshwater wash down (26).

From an engineering perspective, ships should be designed for a worst-case corrosion
scenario based on the strength of the measures in place (both active and passive) to combat its
progression. This includes the consideration for “stress corrosion cracking.” Stress corrosion
cracking 1s essentially cracking that occurs due to tensile stresses coupled with a specific
environment prone to corrosion. A ship at sea presents such a situation. In this case, tensile
stresses do not even have to exceed the ultimate stress of the particular effected material and
outwardly visible corrosion does not have to be present prior to fracture (27). More information
on the mechanics of stress corrosion cracking, identification of corrosion prone areas, and
corrosion control systems can be seen in References (27) and (26).
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Chapter 3: Fundamentals of Plates, Panels, and Hulls

After considering all of the global loadings and factors that reduce ship strength it is
important to recognize an imminent shift from the global realm into the local realm. In a worst
case scenario, a ship is built so poorly that it fails globally in a violent collapse (such as Euler
column failure) where no additional strength is retained as the relative displacement grows larger
and larger. Governing bodies in ship design specifications and good design practices in general
obviously prevent this global, catastrophic failure from happening, so local failure analysis of the
hull is critical. This is accomplished by first looking at buckling and ultimate strength analysis
of plates and panels and applying this theory in shipboard applications.

3.1 Buckling Theory of Plates and Panels

Buckling theory of plates and panels starts with an even more basic fundamental
approach: Euler column buckling. Globally, a ship can be loosely modeled as a beam or beam-
column with time-dependent load and boundary condition changes. Locally, variations of this
theory are applied with specific changes in rigidity formulation and boundary conditions to
arrive at closed form solutions. The following subsections use the explanation of Euler Column
theory to show viable methods for analytically calculating axial loads for simple plates and

longitudinally stiffened panels.
3.1.1 Buckling Theory of Euler Columns

Pure-elastic buckling of the Euler column considers both ends to be simply supported,
and the edges along the length of the column to be free. Unlike panels which will be discussed
later, after column buckling occurs they usually cannot be considered to hold any additional
strength (28). The complete derivation on which the abbreviated derivation (seen below) is
based can be seen in any mechanics text. The governing equation for this type of “perfect”
column buckling is given by the Euler differential equation with a line load (q) equal to 0O:

[16]
In this case, P equals the buckling load and EI is the rigidity constant given by Young’s Modulus
and the moment of inertia. Figure 11 on the following page shows a visual image of the column
with simply supported end conditions:
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A variation of this equation that includes consideration for eccentricity is seen as Equation 12 in
Chapter 2. The buckling load is considered to be positive and appropriate simply supported
boundary conditions are applied as follows:

w0)=wl)=0
[17]
d?w d*w
&2 O =z W =0
[18]

Applying boundary conditions to Equation 16 and dividing through by EI yields the modified
governing equation:
d’w  Pw
a7 T E Y
[19]
The general solution to Equation 19 can then be written as follows with consideration for the
simply supported boundary conditions:

. P
w = (ysinkx, k = 7

(20]
Using this solution, the family of solutions that will satisfy Equation 19 is found when kl = nr.
The Jowest form of this solution gives the Euler column buckling load:

m2E]

PE= [2

[21]
Higher order solutions and solutions with variable end boundary conditions are derived by
simply using different integer values for n and different values for /.

48



The preceding abbreviated derivation of the Euler buckling load assumes that purely
elastic, “collapse” buckling occurs. There is a point, however, when the geometric dimensions
of the column are such that yield occurs prior to global buckling. This can be determined by
equating the material-dependent yield stress to the buckling stress and determining the threshold
slenderness ratio (8) needed for elastic buckling to occur. This is seen mathematically below,
but note B of the Euler column is not the same as the slenderness ratio parameter for an ideal

2E E
Oy = Oy =E-—2,andﬁcr ==
cr y

[22]

Using appropriate material properties for mild steel (further discussed in Chapter 5) B equals
85.5. Using the radius of gyration, it can be determined that an ideal column will yield rather
than buckle for any rectangular shape whose overall length is less than 23.9 X h. This derivation
can be seen in Reference (29). This relationship becomes important when determining the
appropriate method for analytically approximating longitudinally stiffened panels under

plate:

longitudinal uniform axial load.

3.1.2 Buckling Theory of Plates

The mathematical gap between the elastic buckling of columns and the buckling of plates
can be bridged by considering a plate which behaves like a wide column. In this case, the
boundary conditions remain the same and the plate buckles in mode I, or overall mode. The only
difference is that the rigidity of the column is now removed and replaced by plate flexural
rigidity (5). The formula for wide column buckling is seen below:

%Db

cr
(23]
Where D is the flexural rigidity, a is the length of the unloaded edge and b is the length of the
loaded edge. D is given by Equation 24:
Eh3
b=fma—wm
(24]
In this case, flexural rigidity of a plate considers Young’s Modulus, plate thickness, Poisson’s
ratio and a multiplier. In the case of Equation 23 with regards to plate strength, it is quite
inefficient to use a simple plate in the same manner as a wide column with Euler boundary
conditions. A plate with stiffeners or supported edges however, is much more practical and is
able to carry much more axial load.
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Simply Supported Plate Buckling

There exists a closed form solution for the buckling of a rectangular plate (a x b) with
simply, simply supported boundary conditions and a uniformly distributed load, P,, along each
applicable edge at x = [0, a]. A diagram of a simply, simply supported plate can be seen in
Appendix 3.1 and is also reproduced in Chapter 5. The governing equation for plate buckling
given this prescribed load can therefore be written as follows (30).

P d*w

V4 ——=
D w+bdx2 0

[25]
Equation 25 accounts for all directions of the load tensor under the given boundary conditions.
More explanation of how this general governing solution was obtained can be seen in Reference
(30). The boundary conditions for the simply, simply supported plate can be written as:

w=20forT
[26]
My, =0forT
[27]
Given these simply, simply supported boundary conditions, a solution can be written for w as:

w = (; sin (Talx-) sin (%)ﬁ) formmn=1,2

[28)
Substituting Equation 28 into the governing equation and simplifying, assuming the critical load
will be determined when n=1 for all a (based on Eigen-Value buckling) gives:

2

P, m?D (mb a )

Db \a mb
[29]
Cancelling like-variables and substituting the squared term for a single variable presents the
widely accepted analytical equation for critical buckling load. Here, m is indicative of the
buckling wavelength.
mb  a\*
k= (T p)
[30]
2D
P = k¢ —b—

[31]
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In a simply, simply supported boundary condition, k. may be found analytically by first
determining the appropriate wavelength parameter and then applying the geometrical parameters
of the plate. A diagram of a simple plate buckling event with simply, simply supported boundary
conditions and a wavelength parameter of three can be seen in Appendix 3.1. Wavelength
parameter transitions occur when corresponding m and m+1 curves have equal ordinates, and m
can be determined simply from the relationship of a/b. This is shown in the k. versus a/b

diagram, seen in Appendix 3.2 (30).

It should be noted the relationship between a/b and m only really lasts through the fourth
wavelength parameter, that is a/b <4. If a continues to increase without an increase in b, the
plate is considered a very long plate and tends to buckle in half waves whose relative lengths are
approximately the width of the plate (30).

Other Boundary Condition Considerations

For a given simple plate with boundary conditions other than Euler or simply, simply
supported, a closed form finite analytical solution cannot be obtained. Plates that exhibit
clamped boundary conditions, or variations thereof, fall into this group. Numerical solutions
have been obtained for each respective set of boundary conditions by employing the Raleigh-
Ritz method and a method employing infinite series (5). In order to analytically determine
buckling loads with these boundary conditions, a widely used graphical method is used which
employs these numerical solutions. This is seen on the following page as Figure 12 and is
reproduced from Hughes’s (5) figure 12.5a.

Along with the depiction of numerical solutions to variations of simply supported and
clamped boundary conditions, the simply, simply supported curve and Euler curve is also seen in
this figure for continuity. The same equation is employed for P, as for the closed form solution
obtainable with simply, simply supported boundary conditions. All of the simple plate (and
some stiffened panel, as will be discussed later) analytical calculations employing other-than
simply, simply supported boundary condition were completed using graphical data from this
figure.

In addition to the development of Figure 12, others have investigated the effect of
intermediate boundary conditions that are variably in between simply, simply supported and
clamped (5). While these intermediate-type boundary conditions were not explored analytically
in this study, a particular variation (noted later in Chapter 5) was used for Finite Element
Modeling which best mimicked the boundary conditions that might be seen on a ship’s side shell.
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h
Oer = 3.62E (—5)

[32]
Here, h is equal to plate thickness. Although Equation 32 can be useful in the design of simple
structures and is obviously a threshold that shouldn’t be crossed, exceptionally stiff plates and
panels tend to yield prior to buckling and therefore render the actual buckling point
inconsequential. Consequently, in limit state design, the ultimate load of a structure is often
more interesting because it defines the point (similar to the collapse point in a column) where the
structure simply cannot carry any more load (5).

3.1.3 Buckling Theory of Stiffened Panels

While closed form solutions for simple plate theory tend to exist for simple boundary
condition scenarios and all fail in generally the same manner, analytical modeling of the
buckling of stiffened panels greatly depends on the mode of failure. The mode of failure, in turn,
greatly depends on material conditions and geometry. As such, prior to discussing analytical
approaches to calculating approximations for failure, each possible failure mode is briefly
discussed.

Failure Modes

Failure modes can be generally broken up into two categories: overall panel failure and
local failure. While overall failure generally occurs when stiffeners are small or weak, local
failure develops when plate stiffeners are strong and subsequently the plating between the
stiffeners fail. Very rarely in the design of stiffened paneled structures (such as a ship) will one
see overall panel buckling, because it is indicative of large scale instability in the overall
structure. A more likely scenario is the development of local buckling of the intermediate plates
followed closely by stiffener tripping. A stiffened panel has five types of buckling modes (31).
They are as follows:

® Mode L. Overall collapse of the plate-stiffener combination as one.

* Mode II: Collapse due to mostly transverse compression (not considered in this study).
* Mode III: Beam-Column type collapse by yield at mid-span.

* Mode IV: Buckling of the stiffener web.

® Mode V: Collapse caused by tripping of the stiffener

These modes are not necessarily independent of one another or mutually exclusive events. In
some cases, progressive collapse indicates several local failure modes which can occur nearly
simultaneously. An additional mode, Mode VI, indicates a gross yield where neither overall nor
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[36]
Normalizing by the yield stress and multiplying the constants through assuming Poisson’s ratio
to be 0.3, Equation 36 becomes:
Oer _ (1.9\?
o= ()
[37]
oy, b
F=JTx
[38]
Here, B defines the slenderness ratio of the panel that is used in part to determine the mode of
buckling of the panels within this study.

Once B is calculated, an arbitrary begreciive Variable is substituted for the original b and a

besr is solved assuming the edge zones of the plate are at yield during bucking, allowing %C—T = ].
y

E
beff = 19h 'E;
[39]

Assuming that besrcarries the entire load until ultimate load is reached; the total average ultimate
stress can then be written as:

p
o, = oh = 0,4
[40]
[41]

Using Equation 40, the ultimate stress can be normalized by the yield stress, by dividing both
sides by o,. Simplifying and re-applying Equation 38, results in the following relationship:

o, 19

o, B
[42]
Using the function established by Equation 40, it is possible to modify Von Karman’s formula
for A (Equation 41) to include stiffener area by smearing it into 4. Alternatively, the Von
Karman modified ultimate load for a stiffened panel with two web-only stiffeners can be written

as:
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important part in the progressive structural failure of a ship. Therefore, some discussion of
fracture mechanics and its shipboard applications must be included.

3.3.1 Fracture Fundamentals of Ductile Steel

Fracture of ductile steel generally falls into one of two groups. Fracture is either caused
by a geometric non-linearity associated with buckling and large deflection, or a material non-
linearity due to yielding or plastic deformation. Fatigue fracture, buckling induced fracture, and
extreme loading fracture all fit into this category. Ductile materials in fracture generally show
slow, steady crack growth with a large amount of plastic deformation. In all, this type of fracture
spans four regimes once a crack tip forms:

¢ Blunting of the Initial Crack Tip
¢ Initial Crack Growth

e Stable Crack Growth

¢ Unstable Crack Propagation

If the last regime is left untouched, catastrophic failure has the potential to occur (28).

Fatigue induced fractures form cracks that are usually the result of imperfections in usual
stress concentration areas of a structure. These cracks develop over time due to repeated cyclic
loading. These cracks however, are not necessarily indicative that there was a failure in
preliminary design strength calculations of a particular structure. It merely means the structure
may be coming to the end of its service life. With careful observation, these cracks can be
repaired with no significant degradation of structural integrity. However if the cracks are left
untouched and the structure is then subjected to extreme loading, catastrophic failure could
potentially occur (28). Buckling induced fracture causes cracks to form after buckling occurs.
In steel plated structures, fracture usually occurs after ultimate load where no more strength is
retained. Fracture due to large scale loading is the extreme end of fracture due to buckling (and
usually yielding that either precedes or follows buckling). In extreme loading scenarios, large-
scale fracture can signify the onset of catastrophic failure if cracks propagate out of control (28).

3.3.2 Shipboard Applications

To determine the effects of fracture on steel structures such as in shipboard applications,
Paik et al. (28) suggests it is usually more appropriate to assess the residual strength of the
structure, taking into account cracks that have already formed over time. Discussion continues to
cover the different types of fracture associated with cracks and note that ductile fracture is
essentially an intermediary between brittle fracture (seen in the Liberty Ship debacle) and
rupture. As noted earlier, most often these cracks are a result of either a typical stress
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concentration developed over time due to cyclic fatigue loading or a weakness in structural
strength resulting in buckling induced cracks.

On a ship (and in general), three methods for cracking exist. These are opening, sliding,
and tearing. To analyze fracture mechanics, several basic methods have been introduced,
including the energy method and the stress intensity method. Both operate on the premise that
fracture will occur if the energy or intensity level of the given specimen surpasses a critical level
defined by mathematical formulation (28).

In terms of this study, the reduction in tensile strength of a stiffened panel due to an
existing, non-propagating crack of certain location and size is of particular interest. While
mathematical formulation of this concept can be seen later in Chapter 5, it is important to realize
that cracking in strength members causes static and dynamic loads to be re-distributed within
other strength members. This may in turn cause unsafe stress levels in the structure causing full
scale hull girder failure.

3.4 Hull Girder Failure Fundamentals

The overall, catastrophic failure of the hull girder is not a likely scenario given the design
standards and the quality of steel production and welding techniques available to the ship
building market today. Later in this study it will be well established that even after elastic-
plastic (local) buckling of stiffened hull plating, the structure is still able to carry additional load
before ultimate load and fracture. Still, this kind of overall, disastrous failure has been known to
occur in rare circumstances. Sometimes, human error is a significant factor in the cause if ships
(cargo) are improperly loaded in port. Other times, it is a result of progressive collapse behavior
after a single strength member experienced a load larger than that for which it was designed (28).

3.4.1 Progressive Collapse Behavior of Ships

The progressive collapse behavior of ships rests upon the theory that shipboard loading is
of a magnitude that surpasses the design load. In compression, this will lead to buckling and/or
yielding. If the ship is subjected to further loads, the most effected member will then collapse or
even offer negative strength characteristics as the load is then re-distributed throughout the hull
girder. Buckling of more strength members will continue until the ultimate strength of the hull
girder is reached (28).

After the initial buckling event of a hull, it is obvious that some quantity of its original
design strength is lost (of course, this depends on the severity of the buckling). Qualitatively,
strength loss can be modeled through the use of a partially effective section that is modified to
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describe the portions of the cross section that have been affected by the event. For buckling
scenarios caused by collision or grounding events, the effective section is more difficult to model
and usually computer aided calculators are employed. More information on partially effective
sections and the involvement of the classification societies in such events can be seen in
Reference (28).

3.4.2 Assessment of Structural Safety

The preceding sections of this Chapter have explored the engineering theory of local and
global failure of a ship’s hull at many different levels. In assessing the structural safety of a ship,
(or any structure for that matter), it is first important to decide the threshold of the acceptable
probability of failure. Whether this is determined by moral or economical methods, history and
statistical theory has provided a standard probability of 1% that a once-in-a-lifetime wave
encounter will create a scenario where a ship is loaded beyond its means. Assuming a ship
encounters a certain (extremely large) number of wave encounters throughout its designed
lifecycle, this 1% chance extrapolates to a one chance in about 10 million (17).

Governing bodies assess structural safety through a statistical comparative method, but it
is still very much an inexact science. As discussed in Chapter 2, there is no accurate way to
quantify all of the structural imperfections, deflections, corrosion, and residual stresses present at
any given time on any given ship. Therefore, governing bodies usually accomplish this task by
building probability density functions using Raleigh or Gaussian methods and applying a certain
platform- and mission-dependent safety factor (17). Whatever the method for accomplishing this
task, the goal is the same: Construct a ship which will keep both the structure and the crew safe
throughout its lifetime. Chapter 4 discusses and analyzes two cases where this goal was not

sufficiently met.
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Chapter 4: Application and Global Analysis

After a shipboard accident or series of accidents, determining “why” is usually the
greatest single question. This question often needs to be answered to place blame for further
litigation and in some scenarios, so that the event can be avoided in the future. There is another
reason, however, that is often overlooked. Academias, particularly research institutions, use
experimental methods to try and reproduce actual events to not try and find out why the event
occurred, but to understand how failure occurred. These institutions cherish the opportunity to
learn from discovering these answers, which are are then passed on to those who might design

ships in the future.

While the preceding chapters of this thesis focus on the theory behind ship structural
design, modes of failure, and what occurs when excessive loading is present, this chapter creates
a connection between real world examples of ship failure and academic research. It serves as the
basis for an understanding of the methods used to determine local strength and failure
characteristics of plates and panels as it applies to naval patrol craft. This is best completed by
presenting a broad spectrum, engineering analysis of failure, along with a history and basic
structural data from each platform.

4.1 Platform Backgrounds

The two ships that are examined in this study are the United States Coast Guard 123’
(110’) Island Class cutter and the U.S. Navy/ U.S. Coast Guard 179’ (170’) WPC Tornado Class
Patrol Craft. Each vessel is different in its own right but they share some unique characteristics
and ultimately provide a valuable and unique form of comparison when it comes to structural

integrity of naval vessels.

4.1.1 United States Coast Guard Cutter Patrol Boat (WPB) 110°/123°

The U.S. Coast Guard 123’ Island Class Cutter was originally born more than 20 years
ago as the Coast Guard’s new patrol boat workhorse to replace an aging 82’ and 95’ patrol fleet.
After various setbacks in the contract award due to “irregularities in the procurement process”,
the contracts for all 49 of the existing patrol boats were awarded to Bollinger Shipyards in
Lockport, Louisiana (33). Based on a trusted and extremely successful original British design,
the 110’s were valued at approximately $7 Million each and were commissioned between 1985
and 1992. Missions of the 110’ include:

e Maritime Interdiction Operations

e Search and Rescue
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The decision was made in June 2005 for the Coast Guard to stop the conversion process at 8
cutters. After noting increased plastic deformation on the majority of the hulls, regardless of the
limited operating profiles and numerous measures to increase structural strength, Commandant
Admiral Thad Allen suspended all 123’ operations effective November 30", 2006 (13).

After 2007, amidst continuous criticism from outside sources and both houses of
Congress who instituted various oversight legislatures, the Deepwater Program split its various
acquisition programs into independent entities with the Coast Guard as the chief integrator. This
split came on the heels of the decision to deactivate the fleet of eight 123’ for reasons discussed
later in this chapter. On April 18" 2007, a report was released that the Justice Department was
conducting an investigation into the Deepwater Program and specifically focusing on (among
other things) the 110’ to 123’ conversion project issues. As of this publication, the results of this
investigation have not yet been made public and the Department of Justice has asked both
Integrated Deepwater Systems (IDS) and the U.S. Coast Guard to retain documentation
pertaining to the program (13).

4.1.2 United States Navy Patrol Craft (PC) 170°/179

The 179’ was originally designed as a replacement for the 65ft MK III patrol boat in use
by U.S. Navy Special Forces Command. They were originally designed to be classified as a
“boat” in Navy terms but later classified as a ship. Bollinger Shipyard in Lockport, LA, was
awarded the contract to begin work on the ships in 1990. Originally built as a 170 Patrol,
Coastal (PC), the ship was based on the Vosper Thorneycroft patrol boat design, a ship that
complied with ABS rules at the time of original design. The original contract with the United
States Navy was built for and funded by the U.S. Special Forces Command. Initially, the
Bollinger contract called for eight ships to be built, but a contract was quickly completed in
1991, guaranteeing an additional five ships. A final ship was placed under contract in 1997 for a
total of 14 ships (19).

Commissioned between 1993 and 2000 as the Cyclone class, the PC’s fulfilled their
planned missions. These included but were not limited to:

¢ Maritime interdiction operations
e Escort operations

¢ Noncombatant evacuation

e Foreign internal defense

e Tactical swimmer operations

e Reconnaissance & intelligence collection
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Improvements seen in Figure 30 include a 5/8" plate outboard of the original casing, two doubler
plates, and “piping” to encase the original engine room casing. The proposal for improvements
was approved through the U.S. Naval chain of command and the work was completed. At the
time of the proposal, the structural improvements were also determined to be strong enough to
allow a 9’ extension and extra fuel tanks, briefly discussed in Section 4.1.1. Similar to several
failures seen on the 123’ (including Nunivak failure and shaft alignment problems), no in depth
analysis was completed on the local fracture or buckling failure seen on the 170°-179’
conversion as part of this study.

The lack of analysis in these sectors was largely due to the complexity of loading and
changes in stress concentrations upon fracture, and also the lack of in depth information on the
structure itself. Regardless, to have an overall understanding of the primary hull girder loading
experienced by each of these two patrol boats, stress calculations were completed detailing pre-
and post structural upgrade scenarios and subsequent error margins examined for continuity as
seen in the next several sections of this Chapter.

4.2 Stress Calculations

Since the 123’ case and the 179’ share similarities with mid ship strength, stress
calculations were completed in accordance with traditionally practiced naval architecture
methods on both platforms. These include primary, secondary, and tertiary stress calculations
where applicable. Initially, Equations 3-5 from Chapter 1 were used to determine the maximum
bending moment under still water, hogging and sagging conditions. Still-water structural
integrity calculations are relatively simple and are based on the shape of the buoyancy curve.
However, predictions involving the unique and unpredictable nature of ocean waves provided a
much more daunting task to naval architects. Due to the relative importance of wave induced
loading and the extreme difficulty in predicting ocean spectra to measure the effects of wave
induced loads, the naval architecture community typically employs a quasi-static representation
of the probabilistic spectra of waves (41). This was done purely for the analysis of ship
structural strength. The trochoidal wave’s shape is designed to have a wavelength equal to the
length of the ship and a wave height (two times amplitude) seen below as Equation 44:

h, = 1.1VL
[44]
In this case, L equals the length overall (LOA) of the ship. The trochoidal wave is
described by the pair of the parametric equations seen on the next page:
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In this case, 6 ranges from O to 2= and the origin is adjuste_d as to create both a worst case
hogging and sagging scenario as shown in Figure 6. It is usually one of these two scenarios
which set thc-limitai_;ions for the beginnings of shipboard structural design (14).

Although this quasi-static wave is created to quickly determine reasonable worst case
structural scenarios, it falls incredibly short of predicting the seakeeping characteristics of the
~ ship. Seakeeping can be defined as the ship’s ability to continue to be mission effective in
adverse sea conditions. To predict seakeepiilg characteristics requires a full seakeeping analysis
which involves application of extremely complex probability theory and spectra analysis,

something that will not be touched on in this study.

4.2.1110° to 123’ Convers10n Case

The 123’ WPB primary stress analysis is based on mldshlp section modulus calculations
performed by the Coast Guard technical authority (35). The 123 WPB mid ship section is
shown in U.S. Coast Guard Drawing 085-031, seen in Appendix 4.3. Using Equation 6, the
maximum primary bending stress associated with the hull can be determined for a calculated
bending moment (in a hogging or sagging or still water scenario) and section modulus at any
position along the hull. In the case of the 123’, the “worst” case scenario for bending moment
was determined to be just aft of amidships, where the engine room soft patches are installed in
the sagging profile. The section modulus (SM) and moment of inertia (MOI) values for several
key locations (summarized from ELC Excel spreadsheet calculations) can be seen below in |
Table 4. The Coast Guard’s Engineering Logistics Center (ELC) 024 Branch took the lead on
the section modulus calculations |

123' Section Modulus (SM) and Moment of Inertia (MOI) Summary
123" with Stern Ramp - Post 123" Post Structural Upgrade -
Frame Retrofit in accordance with Doubler's & Sponsons added for
Number Deepwater extra structural support Comparison
Spacing is Deck | X Section Deck Keel X Section MOI %
46" | SM Keel SM MOI _SM SM MOI Difference
23 3,152 4,302 266,662 5,747 5,330 405,280 52.0%
25 3,798 5,133 317,507 6,237 6,287 455,404 43.4%
27 2,570 3,394 216,760 4,886 4,450 345,127 59.2%

Table 4: This table shows a summary of Section Modulus and Moment of Inertia caiculations in accordance with Coast Guard
Technical Authority. All units are multiples of inches (S.M is inches® and Moment of Inertia is inches®)
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The distance to the neutral axis is calculated by simple division in accordance with Equation 7.
Unit conversions were completed as necessary. It is important to note that the midship section
(typically where the bending moment is the largest) is at frame 23.5 and the damage on the
Matagorda occurred at frame 24-25 in accordance with section 4.1.2. Table 4 represents both the
ship as it was before the doubler plates were added to strengthen the section modulus and also
after the modification took place. Copies of the Excel spreadsheet calculations completed by
ELC can be seen in Appendix 4.4 (42).

Examining the trend of the values of the section modulus found in Table 4 and applying it
to Equations 6 and 7, it is easy to see that maximum stress areas will likely occur where section
modulus values are at their least-value point. This is illustrated by the relationship between
stress, bending moment, and section modulus, seen below:

_ Msagging

aPrimary a Zmin deck

[47]
Applying Equation 47, the absolute worst case primary stress is equal to 16,473 psi, if Magging=
1,575 LT-ft and Zpyip, geck=2570 in’. One long ton (LT) is equal to 2,240 pounds. The maximum
bending moment (for a trochoidal quasi-wave 13ft versus 12.1ft) was determined to be in
sagging with head on waves in a minimum operating condition. Although the wave is 0.9 feet
higher than commonly considered, this particular class of Coast Guard ship was known to
operate in seas with significant wave heights at least this high (35). The min-op loading
condition for the 123’ is noted in the ship’s Damage Control book and will not be discussed (18).

This result for primary bending stress is, as mentioned before, a worst case scenario;
where the damage occurred the section modulus was a little bit larger. This is reflected in charts
showing how the section modulus changes across a variable x-distance from the forward
perpendicular. In this vicinity, primary stress was determined to be 13,431 psi based on a section
modulus of 3152 in’. Table 5, seen on the following page, shows the overall distribution of
stresses based on the relevant section modulus values previously seen.

123' Primary Stress Based on S.M Calculations (Min - Op Condition)
Frame | Worst Case 123' with Stern | Worst Case 123’ Post Upgrade | New Safety Factor:
# Ramp, Post Retro (psi) Upgrade (psi) Comparison SDS 100-1
Spacing % Diff. at Max P. Stress =
is 46" 11.9' Wave 13'Wave | 11.9' Wave | 13' Wave 13' 16.8 ksi
23 12732.2 134315 | 6983.1 7366.6 45.2 2.3
25 10566.6 11146.9 6434.5 6787.9 39.1 2.5
27 15615.5 16473.2 8213.6 8664.8 474 1.9

Table 5: Primary Stress calculations in a minimum operating condition for the 123’. These calculations are based on a Worst-
Case Bending Moment Calculated by U.S. Coast Guard technical consultants D&P and are verified against SDS 100-1 (43].
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The 123’s section modulus calculations (prior to the modification to increase it) were nearly
identical to those of the original 110’ prior to the conversion project. Worst case primary
stresses calculated for the original 110’ were found to be 9955 psi. This is 6,518.2 psi lower
(39.5%) for worst case scenario or 1,191.5 psi lower (10.7 %) for the damage location at frame
25.

In this case, it is obvious that the maximum primary bending stress alone does not reach
the yield point of the steel plating that was found to be buckled (type BS 4360 grade steel as
reported by USCG technical authority and confirmed in ship’s drawings) (35). However, this
data does not examine how secondary and tertiary stresses were affected by the conversion. The
original ELC 123° WPB graphical depictions of weight, buoyancy, and other curves can be seen
in Appendix 4.5 (44).

Secondary stress calculations were deemed to be nearly nonexistent on the area of the
hull in question because they assume a lateral force or pressure against the face of the stiffened
panel (like hydrostatic pressure seen on the hull due to the force of buoyancy). Secondary
stresses can be likened to any initial deflections that existed due to wear and tear or hull
maintenance over the course of the cutter’s life. FEA analysis will later show that small initial
deflections, unless exceedingly large, are not of particularly large concern on a macro scale.
Tertiary stresses in this case are much more prevalent.

In 1988, a comprehensive structural review was completed for the then 110’ patrol boat,
which focused on the inadequacies of the thickness and strength of bottom hull plating. This
paper was published in the 96™ Volume of SNAME Transactions (8). Although this paper
focused on forward hull plating, a brief longitudinal strength analysis was completed, including a
tertiary stress analysis. In order to perform the tertiary stress analysis, the Heller-Jasper method
was used, as discussed briefly in Chapter 1. Keeping in mind that prior to the post-retrofit hull
strength upgrade the shell plating on the 110 and 123’ were identical, it has to be assumed that
the tertiary stresses experienced by the stiffened panel are at least those of what the 110’
experienced. Tertiary stresses in the 110’ case were determined to be 27,687 psi. Inputs
included breadth and thickness values, a “k” factor based on boundary conditions (k = 0.75 for a
simply, simply supported assumption), a multiplier, and panel design pressure (8). Once these
inputs were determined it was safe to say that this calculation pre-retrofit is nearly identical for
the 123°.

To determine overall combined stresses seen in the plating structure, it is suitable to use
the method of superposition which allows for the simple addition of stresses to take place.
Adding the two stresses (if secondary stresses are assumed to be neglected) it is found that total
123’ stresses were 44,160.2 psi for worst case scenario and 38,833.9 psi at the point of failure.
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With appropriate unit conversions primary stress based on Figure 38 and Equation 48 is
calculated to be 12,800 psi. It should be noted that this value for primary stress is less than what
the traditional trochoidal wave calculation (given by Equations 44-46) presents. Regardless of
these solutions, the 170’ structural enhancement feasibility study conducted by NAVSEA
engineers developed a more accurate absolute worst case scenario bending moment considering
dynamic forces to be present, rather than just a quasi-static wave. It was determined that the
worst case bending moment occurred at a displacement of 360 LT with a maximum primary
bending moment of 9,346 LT-ft. This is significantly higher bending moment than was
calculated by the 12’ foot or traditional quasi-static wave scenario.

Calculations were completed by NAVSEA Carderock Division. Similar to the 123’ case,
section modulus and resulting primary bending stress calculations were completed at various
strategic locations along the hull for pre and post strength upgrade hulls: Section moduli for the
critical frames along midships (fr. 27-32) are depicted below in Table 6. The complete section
moduli throughout the hull can be seen as part of Reference (46), NAVSEA Drawing 5106697.

170'-179' Section Modulus (SM) and Moment of Inertia (MOI) Summary

.| Frame | 170" or 179 Post Structural
Number 170" As Built by Bollinger Upgrade: Doublers and Pipe Fittings Compare
Spacing | Deck SM | Keel SM | X Section | Deck SM | Keel SM | X Section MOI %
is 43.1" (in"3) (in*3) | MOI (in*4) | (in"3) (in"3) MOI (in?4) | Difference
27 9,576 10,500 926,352 13,056 | 12,276 1,237,968 33.64%
29.5 8,892 10,380 969,984 14,064 12,276 1,328,400 36.95%
30 7,956 10,224 906,768 14,016 12,612 1,345,248 48.36%
32 7,932 10,824 927,792 12,672 13,008 1,300,896 40.21%

Table 6: This table shows a summary of Section Modulus and Moment of Inertia caiculations in accordance with NAVSEA.
Note the increase in Moment of inertia vaiues with the addition of the structural upgrade.

The table above shows data from before and after scenarios of the failed 170’ hull and the retrofit
179’. It is important to keep in mind that the hull extension project took place after the structural
enhancements were completed and no more major structural issues have been noted post
enhancement on this class of ship. Corresponding to the data seen above in Table 6, the primary
stress distribution pre-and post upgrade can then be calculated using known and assumed
maximum bending stresses for sagging conditions.

The data below, seen in Table 7, shows the differences in primary stresses due to the
structural enhancements that were completed prior to (or in some later cases) along the same
time frame as the extension. In addition to this tabular data, a graphical analysis of the data
showing trends due to change in x-location can be seen in Appendix 4.6.
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170' Primary Stress Based on S.M Calculations (360 LT Condition)

Framé As Built 170" by 170" Post Structural Upgrade New Safety Factor
# Bollinger Yard (psi) _Up e (psi) Comparison | Based on Rules (DnV)
| Spacing | % Diff. at | Max Permissible Stress
is 43.1" | 12' Wave | Worst Case | 12' Wave | Worst Case | Worst Case = 25.39ksi
27 10,633.0 | 24,238.6 7,798.8 17,777.9 - 26.7% - 1.43
29.5 11,450.9 27,321.3 7,239.9 17,274.0 36.8% 1.47
30 13,404.6 | 33,0727 7,264.7 17,923.8 45.8% 1.42
32 12,836.8 | 30,804.2 8,035.2 19,281.8 37.4% 1.32

Table 7: Primary Stress calculations for the 170’ with a displacement of 360LT. These calculations are based on the 12’ quasi- .
static wave ioading condition which is smalier than the typical derived size for a vessel this large. The worst case scenario is
based upon calculations done by NAVSEA which include dynamic loading that can be seen as part of Reference (46).

Because the calculation of maximum 'bendi'ng moments for ships are extremely sensitive to the

- displacement and loading condition of the hull, only the 12’ wave and worst case loading |
conditions for the pre-retrofit baseline PC hull are shown. The bending moment partially
involves dynamic loading as calculated by NAVSEA. Therefore, the safety factor examined is a
rules based factor for maximum permissible bending stress which is the ratio of the maximum
allowable bending stress and minimum section modulus for a given design and loading
condition. The formulas used in the rules are based on empirical data (discussed in Chapter 1).
Further discussion of rules based margins can be seen in Section 4.5.3.

Secondary and tertiary stress calculations were not completed for the 179’ (170’) due to
the nature and the severity of the failure seen, and limited ihformation on the local structure of
the hull. A plausible way to verify secondary and tertiary stresses do not cause the overall stress
of the hull to surpass the yield strength of the steel, a rules based approach can be taken.
Therefore, primary stress calculations were verified to be within limits using two classification
. societies (ABS, DnV). This was done as part of the feasibility study conducted by NAVSEA

(46).

4.3 Engineering Analysis of Failure Types

The engineering analysis of failure provides an excellent bridge between real life failures
and an academic understanding of the factors that affect hull failure at both the global and local
levels. This is accomplished by understanding how failure occurred and discussing this
reasoning in conjunction with known causes for strength degradation, rather than speculating on
the uncertainties of why it occurred.

Referring back to section 4.1.1 which discusses the timeline of each vessel, as well as -
section 4.1.2, which discusses where each failure occurred in detail, it is easy to walk through the
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“progressive failure” model. The stages of this progressive collapse as it relates to this particular

patrol craft are noted below:

Stage I failure of main deck hull girder at frame 30: This was most likely caused by an
initial yield of the girder in the sagging mode, which caused a material non-linearity that
then created a crack tip in ductile fracture. Aided by the environment (sea spray) and
cyclic loading and unloading of the hull while in the seaway, initial crack growth (in
accordance with fracture mechanics discussion in Chapter 3) occurred relative to the
properties of BS 4360 steel. This then progressed into stable crack growth where ship’s
force was able to halt it using artificial means (39). Once the crack formed, the ship’s
ability to withstand both large, dynamic hogging and sagging loads was diminished as
more load was placed on other parts of the cross section near the deck. This is what led
to Stage II failure.

Stage 1I failure of the outer portions of the engine casing at frame 30: In accordance with
Stage I failure, when the main deck hull girder could no longer hold sufficient load, it
was redistributed to the outer portions of the engine casing. The casing itself is not
sturdy enough to hold the additional load and the same chain of events took place.
Subsequent yield caused material non-linearity, causing a crack tip that eventually,
through environmental impacts and cyclic loading, led to stable crack growth. Once
these sections were no longer able to be loaded to full capacity, major structural issues
began to form in the form of stage III failure (39).

Stage III failure consisting of deck and side shell buckling and subsequent cracking: The
failure seen in Stage III was caused by excessive axial loading and a reduced effective
section modulus, which caused mode III buckling and mode VI gross yielding of
stiffened panels in several locations in the vicinity of frame 30 (39).

4.4 Global Strength Reduction Factors

The calculation of primary bending stresses based on the equations discussed in Chapter

1 and the detailed explanation of failure locations do not tell the whole story of failure by
themselves. Section 3 of Chapter 2 discusses various causes for strength reduction due to
construction, loading, and time-based problems. Globally, there are two main areas of interest

that can cause a reduction in strength sufficient enough to cause pre-mature buckling. These are

vibrations effects (including slamming) and global corrosion considerations. The others

described in Section 2.3, will be discussed in a local bucking analysis that is conducted in

Chapter 5. Due to the availability of information about present hull degradation and conditions
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The overall intensity of the event is in direct correlation with the relative velocity of the hull and
the water at the moment of impact. This assessment of the overall strength does not even
necessarily take into account the local lateral stresses seen on the hull bottom plating where
actual impact occurred. '

In their work, Mansour and d’Oliveira (21) provide a numerical assessment of the
magnitude of the time varying bending moment (occurring over the natural frequency of a ship)
due to slamming. This can be scaled to give an order-of-magnitude assessment of the forces that
may have affected the 123’ fleet during operation. Further verification comes from essentially
comparing the solution to that of the known jump in bending moment due to dynamic forces
assessed on the 179’ fleet by NAVSEA in Reference (46).

Using Reference (21) as a guide, the increase in bending moment due to reasonable
dynamic slamming forces at the given sea state were calculated to be 1002 LT-ft (based on a
previously determined worst case baseline moment of 1575 LT-ft), while the relative increase of
the bending moment for the 179’ was determined to be 5,558 LT-ft. This correlates to a 63%
increase from the 123’ and a 146% increase for the 179’ (Though other, unknown factors may be
present in the case of the 179°). These calculations were completed for similar state loading
conditions, are considered worst case, and may actually be much larger values than operationally
encountered. While this correlation might not be quantitatively absolutely correct and does not
necessarily prove anything, qualitatively it shows that there absolutely must be a consideration
for slamming events, particularly in a smaller ship with fine lines. The calculation methodology
for the 123’ result is discussed further in Appendix 4.7.

Coast Guard Authorities have stipulated that at the time of the midships failure on the
Matagorda, the cutter was underway at approximately 22 knots in 4-6 foot seas (35). This
correlates to an approximate engine RPM rate of 1200 (20rps) and a correlated shaft RPM (based
on a reduction ratio of 1:1.625) of 740 (12.3rps) (47). The first mode natural frequency
calculated by the Shlick-Liddel method does not coincide with any pronounced forced
frequencies that may have been seen on the ship at the point of failure causing resonance.
However, the third order vertical natural frequency of the cutter (calculated to be 11.74 hz) does
closely coincide with the shaft RPM’s encounter frequency and could have created some undue
resonance but it cannot be asserted that this was a direct cause of the failure. It is plausible,
however, that this was one of many events that may have played a role, especially if existing
cracks were affected. Experts say that to significantly degrade steel (more than is seen in regular
fatigue loading), the resonance characteristics of a vibrating structure have to exceed 20mmps for
a prolonged period of time (25). This did not necessarily occur by any means on the 123°.
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The formulation of the effect of slamming on a cutter such as the 123’ makes one
important distinction — in this analysis the hull is made of ideal steel and considerations for both
normal and unique fatigue loads are not fully developed. It is easy to speculate, given the
original life expectancy of the cutter and the associated fatigue of the hull after 20 years of
service, that the material properties were in effect “modified” to the point where excess dynamic
forces, including slamming characteristics with some resonance could have amplified the degree
of magnitude of the failure.

4 4.2 Corrosion Considerations

Over the course of the investigation of structural integrity issues of the 123°, it was
determined that some of the cutters had corrosion far greater than had been previously assumed
(35). This may have been caused by three flaws in the 110’ original design, noted below:

e There was no corrosion allowance built into the design of the 110’ (35).
¢ The aluminum used for the 110° deck was not marine grade (35).
e Some hull plating was not to ABS standards (8).

When several of the 110’s, after approximately 20 years of service, came into dry dock to begin
the retrofit process, a significant amount of hull and deck plating was replaced at additional cost
to ensure the continued structural integrity of the cutter (35).

Unfortunately, there is no real way to quantify how much corrosion affects the strength of
the ship because it depends on a multitude of different factors. In fact, in the case of the 123°,
corrosion is discussed as being as closely related to crack formation as some of the stresses.
Upon investigation by Coast Guard members of the Deepwater staff, it was determined that deck
cracking, appearing on all eight cutters, was caused by chloride-induced stress corrosion
cracking Independent testing later confirmed that many of the aluminum deck samples taken
from various 110’s and 123’s showed susceptibility to intergranular corrosion above normal
levels, although it was noted that susceptibility could vary based on sample location on board the
ship (48).

4.5 Discussion

Examination of the structural failure of an extremely complex structure with time
dependent loads and boundary conditions that are defined based on individual assumptions can
certainly be a daunting task. Interestingly enough, there was no “overall” grillage buckling in
either the 123’ case or the 170’ case that was discernable. It is plausible that some form of
overall loading condition caused local buckling but in the sense of stiffened panel failure this
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cannot be classified as the overall buckling mode. Ultimately, this is a good thing because
stiffened panels are not designed to fail in the overall mode before local panel buckling and or
stiffener tripping occurs. With a good understanding of the material properties of the steel and
the strength characteristics of the geometry of the stiffened panel, it is still difficult to determine
at the global level if yield or buckling occurred first in the case of panel failure on the 123°. In
reality, this is the epitome of the uncertainty in ship structural design and analysis. It is
reasonable however, based on the nature of the failure and the forces present, to assume that both
yielding and buckling were factors in failure as gross yield combined with several modes of
buckling.

4.5.1 Platform Comparison

An overall comparison of the two platforms and over global failure yields fairly
interesting results. One ship failed post production using original plans while the other failed
post upgrade and extension. Once the structural upgrades were complete, the PC was not only
strong enough to support its load but an extension and extra fuel tanks were added and no
problems have been reported. Conversely, the 123’ suffered continual and worsening
debilitating issues which eventually led to the disbandment of the entire class of cutter. This
brief yet important comparison shows that some structures are inherently flawed no matter what
upgrades are completed, while some are genuinely fixable. The problem isn’t identifying flaws
once failure occurs. The difficulty rests on the sometimes completely intuitive, human-driven
design process that, through enough careful time and effort, can potentially eliminate them all.

4.5.2 Validation

Validating the calculation and the consideration for the discussed strength reduction
factors is relatively simple at a global level. Could it be reasonable to assume that failure was
caused by a combination of corrosion of the hull, stress corrosion and strength degradation of the
deck, resonance of natural and forced vibrations due to slamming and machinery, residual
stresses. shearing, initial imperfections, and initial deflection? Maybe. But it is impossible to
prove or disprove any direct theory of this magnitude which could have serious consequences.
In reality, there are so many potential variables and combinations of internal factors, loading,
conditions, and operator intuitiveness that it is often impossible to be able to say “this event
occurred like this because of X, Y, and Z.” It is still important, however, to note all of the
potential causes for strength degradation (away from what is determined in design) on all levels,
as was either done or introduced in this Chapter, and then verify a specific version of that design
by examining safety margins put in place by governing bodies such as ABS.
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This task, imposed on ship designers of the future, once again proves the need to understand the
connection and transformation methods between the calculation methods of large, Naval
Architecture associated problems and local, structural mechanics driven analysis.

The successful transformation of real-world primary bending stress data to continue
analysis at a local level depends on certain assumptions that will be discussed in detail in the
next Chapter. The process for this is relatively simple: Assume a uniform worst case axial stress
exists over a particular shell edge effective area for a given stiffened panel and with simple
calculations the load supported by that panel can be determined. Chapter 5 uses this premise to
examine different proven methods of analysis of a replica stiffened side shell panel from the 123’
and then validate associated experimental and operational results.
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Chapter 5: Local Analysis of 123’ Side Shell Paneling

The previous chapter of this thesis focused on the analysis of the design for the 123’ and
the 179’ conversion as a whole, and the failures seen on board each vessel. Furthermore, it
compared each of the failure modes based on visual clues provided in photographs and good
engineering practice. This chapter will take that analysis one step further just for the 123’

conversion, bridging the gap between real life failure and mechanics theory by examining
localized response at the panel level due to the excessive loading seen throughout the ship.

5.1 The Local Response —Axially Loaded Panel

The 123’ is a primarily longitudinally stiffened vessel with three inch longitudinal
stiffeners spaced 18 inches apart supported by transverse frames 46 inches apart. Upon
construction, the ship met all requirements for bulkhead placement and compartment standards
based upon requirements set forth by the United States Coast Guard construction contract. After
the ship experienced significant structural failure, as described in the narrative at the beginning
of Chapter 4, the ship’s structural integrity was reexamined and additional tests were done to try
to understand what had gone wrong. These included a full ship FEA analysis which tried to
recreate failure under the same set of parameters, laboratory crush testing of a “test panel” nearly
identical to a panel found on frame 23-24 of the Matagorda where failure occurred, and re-
(hand)-calculation of strength information amidships. The test panel isometric drawing
submitted by the Coast Guard to the U.S. Naval Academy for testing can be seen in as Figure 7.

In order to validate the way the local response actually occurs in a particular mode of
testing, it is important to examine how large scale shipboard loading due to static conditions and
those found in a sea way can be related to a single panel. As discussed before, the cross section
of a ship can be likened to a beam, and therefore as the beam is subjected to a bending moment,
compression and tension develops. In heavy seas, there are torsional and horizontal moment
forces acting on a hull, but these moments are usually orders of magnitude less than the
calculated vertical bending moments (5). If the beam is in effect “smiling” as in the shipboard
sagging scenario, a positive moment is applied. This creates increasing compression above the
neutral axis and tension below the neutral axis. In the actual events, each ship failed at the deck
level also at the top of the side shell along the freeboard amidships. This is the farthest location
from the neutral axis and keeps with the results of the stress Equation 6, which uses the distance
from the neutral axis in the numerator while maintaining a constant, geometry driven
denominator. This correlation allows a piece of shell plating of a sagging hull to be modeled as a
stiffened panel subjected to a constant, uniform axial load. In reality, as the distance to the
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neutral axis shrinks, the stress (and therefore the axial load) also decreases, leading to linear
distributed axial shell loads.

In addition to axial load seen on the panel, shearing is also present. This type of shear is
only the result of planar bending. The shear stress formula is noted as Equation 8 in Chapter 1
and has requirements under the “rules” (11). Inverse to axial or normal stress, shear stress is
negligible or zero at the farthest distance from the neutral axis along the centerline of the vessel
and increases as the distance decreases to a maximum at the neutral axis. In order to conduct
worst-case axial stress scenarios under a variety of conditions and parameters, a constant edge
axial load in FEA and theoretical work was applied to simplify the process. In experimental
testing of panels with b/t ratios similar to those examined in this study, shearing of this nature
had very little effect on the overall strength and can therefore be essentially neglected (5).

5.2 Panel Analysis

Using the information and testing already completed by the United States Coast Guard
and its subcontractors on panel sections in question in the 123’, it is of particular interest to look
at similarities between actual testing completed, computer-generated FEA analysis (in buckling
and ultimate load) and theoretical calculations based on proven plate and stiffened panel theory.

Material Properties

The plate in question is made of BS 4360 Steel. BS 4360 is classified as mild steel and is
of British origin. It is a well known structural steel that is used extensively due to its superior
weldability. Construction applications include:

e Ships

¢ Rolling stock

e Petroleum storage tanks
¢ Containers

A brief description of the material properties and chemical composition are below in Table 8:

BS 4360 Grade Structural Steel Properties & Chemical Composition
Material Properties Chemical Composition (Max %)
Thickness Considered #5 Plate (.112 in) C 22
Young's Modulus 2.96E+07 Si 50
Poisson's Ratio 0.3 Mn 1.6
Yield Stress 40,000 psi P 0.05
Ultimate Strength 58,000 psi S 0.05

Table 8: BS 4360 grade steel material properties, and basic chemical composition.
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This type of steel is a common in construction and has performed well in a variety of different
marine and land based applications. A more detailed review of BS 4360’s material properties
can be seen as part of Reference (49).

5.2.1 Boundary Conditions

When examining boundary conditions on any kind of analysis it is important to not only
keep in perspective what is trying to be accomplished but also if the boundary conditions make
sense under given circumstances. Boundary conditions can dictate enormous differences in both
theoretical calculations and finite element approaches and usually cannot be absolutely
accurately re-created in experimental scenarios. All of this aside, what boundary condition
scenarios are correct in the instance of the 123’ side shell panel? The boundaries are obviously
not free but are they clamped, simply, simply supported, or a combination of the two? To
rationalize how the answer can differ based boundary conditions alone, it is easy to use the
theoretical load calculation for a plate under compressive load. In this case, the critical load
equation (seen in Chapter 3 as Equation 31) is identical except for changes in the k. factor based
on boundary conditions. This factor, when used in conjunction with Figure 12, denotes extreme
differences in buckling load simply based on what boundary conditions are introduced. The
introduction of stiffeners and other complexities under different boundary conditions only adds
to the different load carrying capacities and provides the need for accurate assessment that much

more.
Boundary Conditions on the 123’ side shell

The “test” panel piece submitted by the Coast Guard is a 32” x 94” orthogonally stiffened
panel. In some instances (with regards to this study) it was modified to slightly smaller
(reasoning to be subsequently discussed) dimensions of a 32” x 46 longitudinally stiffened
panel with appropriate boundary conditions to account for removed transverse stiffeners. In
either case, there are two distinct sides. These sides are comprised of the loaded edges, which
are the vertical edges along the vertical frame edges and the horizontal edges, which run along
the length of the ship between the transverse frames. The top horizontal edge comes relatively
close to the aluminum-steel explosion weld which attaches the side shell and deck edge to the
aluminum deck. In this case, the boundary condition would fall somewhere in the simply
supported realm. The edge is clearly not clamped down but it also is clearly not rotationally
restricted in every direction or simply pinned to limit its range of motion. Similarly, the bottom
horizontal edge’s nearest longitudinal stiffener is 11 inches away and there are no other stiffener
systems in the vicinity. Therefore, it is plausible to say that this edge falls in a variation of
simply supported. Tables 9 and 10, seen on the following page, give the best possible boundary
condition scenario using engineering knowledge of the ship system, named condition “Alpha.”

93



Condition Alpha Loaded Condition Alpha Unloaded
Ux Free (to be loaded) Ux ‘ Pinned ‘
Uy Pinned Uy Pinned
Uz Pinned Uz Pinned
Rx Pinned Rx Pinned
Ry Free Ry Free
Rz Free Rz Free

Tabile 9: Loaded Edge Profile Table 10: Unlcaded Edge Profile

In this case, U is displacement and R is rotation. The x-direction is the direction along length of
the hull, the y direction defines the breadth, and the z-direction quantifies the depth of the hull.
It must be noted that this is a slight deviation from what is commonly used in stiffened panel
theory, but it is intended to apply in this situation only where a portion of plating with stiffeners
is examined. When dealing with a simple plate that is bounded on all four sides with
longitudinal and transverse stiffeners and loaded axially it is commonly accepted to assume a
simply, simply supported specimen. When applicable, the “Alpha” boundary condition will be
used but in certain cases, (especially in the analytical analysis) a simply, simply supported or
simply supported, free boundary condition is used for simplification purposes.

5.2.2 Methods of Analysis

The three methods of analysis to be examined are all very different but provide some clue
as to not only how strong each panel or plate is but the mode of failure and how failure strength
and mode can change based on analysis methods and boundary conditions.

Experimental Analysis

Due to limitations of money and material, no large scale experimental testing could take
place for this study. Instead, the actual experimental part of this study will focus on the
experiment already done and how the test panel relates to theoretical work and Finite Element
Analysis of similar variations of the test panel. The test panel is made up of the same type of
steel and has nearly identical geometric shape of a panel seen on the 123’ built in the Bollinger
shipyard. Of course the residual stresses due to forming and construction or other strength
reductions due to eccentricity are different and dynamic loading is not considered.

The experimentation was completed (as previously mentioned) in the mechanics lab at
the United States Naval Academy in Annapolis, MD. The testing was supervised by Dr. Jeffrey
W. Stettler, USN and Mr. Paul H. Miller, Associate Professors in the Department of Engineering.
The test took place in July 2006 (7).

94









In the end, the experimental testing was successful, although it did not buckle in the
center bay where the Coast Guard desired. Instead, it failed in one of the end bays due to stress
concentrations and weld failure as compression took place. Furthermore, inconsistencies were
noted in the strain gauges and displacement potentiometers, even while the panel was in pure
axial compression with simply supported loaded edges. The report furnished to the Coast Guard -
discusses this may have been the result of the design-based decision to place the doubler plate
away from the panel centerline and initial imperfections and deflections in the material during
the construction phase, all unquantifiable uncertainties at the time of the experiment (7). Due to
the imperfections and the relative ‘resistanc‘e to compression loading at the doubler region as
compared to the rest of the panel, the panel niay have experienced load eccentricity resulting in a
bending moment induced by the simply éupportcd loaded edge. ‘

Regardless of these results and the attempts of the Coast Guard to induce failure in the
center bay, the experimental testing of the mock side shell plate was successful for the means of
this comparison study. Its results give the approximate magnitude of the ultimate load, where
failure occurred, a glimpse into the failure modes, and an idea of how boundary conditions can
significantly change experiment outcomes with very little variation. The additionally relevant
strain gauge and potentiometer curves with commentary can be seen as part of Appendix 5.1.

Finite Element Analysis

The purpose of the detailed finite element analysis (FEA) of the stiffened panel in axial
compression was to provide a contribution to the analysis of the 123’ structural issues by an |
independent source. Furthermore, it was to create an academic examination of the trends of steel
stiffened panels used in ship construction in an elastic-plastic environment subjected to axial
compression with initial imperfections.

It should be noted that a full finite element model of the 123’ was created by BMT
Design and Planners for the Coast Guard Technical Authority in order to try and recreate failures
seen on a global level and to propose global-level solutions to the issues outlined in section 4.4.
The study was headed by Dr. Pradeep Sensharma and supervised by the D&P Director of
Engineering, Dr. Malcolm Willis. Although the report submitted did discuss the buckling
characteristics due to static and wave loads of the ship and larger panel sections, they did not
explicitly look at the test element or complete any comparison analysis. The report is noted as
Reference (18). o ' '

To provide a better platform for a parametric study of design, only a portion of the FEA
analysis actually used a geometrical replica of the test panel the U.S. Coast Guard built for
~ testing. Other facets of the FEA analysis essentially used cropped versions of the plate section
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e Create a test “instance” in order to prepare the program to create a mathematical mesh
and a testing scenario.

e Mesh the model using 1” square structured meshes.

¢ Create a test “step” which defined the type of module to use in testing.

® Assign boundary conditions as per testing criteria.

¢ Assign shell edge load as per testing criteria.

e Create a job and submit it for analysis.

Initially, the different combinations of panels and plates based on the experimentally
tested model and actual 123’ side shell were tested using the ABAQUS Buckle module in a
purely elastic mode. Different combinations of boundary conditions were used, including the
most probable for a side shell piece that is part of a hull, as noted in section 5.2.1. Due to the
large amount of raw data collected using this module within ABAQUS, the complete set can be
seen in Appendix 5.4.

Once the elastic buckling loads, buckling modes and comparison data was accumulated,
it was important to examine load-displacement characteristics of the different plate and boundary
conditions based on the elastic-plastic characteristics of the BS 4360 steel. The data collection
procedure for the FEA analysis was very similar to that of the buckling analysis, however a
~ different “step” module was used (Static, General and Static, Riks instead of Buckle) and
specific node “sets” were defined in order to follow specific dispiacement and force pathways.
The fundamental difference between the Static, General module and the Static, Riks module is in
the way that the mesh calculations are completed. While Static, General uses time as the step
increment, Static, Riks uses an arc measurement as the step increment and as a result has more
potential variance which allows for extremely complex meshes to be computed. ABAQUS/CAE
Documentation provides a thorough explanation of how FEA analysis is completed, and will not
be repeated here (50). Further information on this topic can be seen in Appendix 5.2. Asa
general check and to prove the effectiveness of both load-displacement methods, a comparison
between Static, General and Static, Riks was completed and any differences noted.

The load to displacement data was collected by requesting History Outputs from
ABAQUS/CAE. A single node was selected to represent the history of displacement in the U1
(x) direction while the sum of the force exerted on the edge nodes represented the load in the
RF1 (x) direction. All of the Static, General outputs were created with Time (seconds) as the
dependent variable and load (lbs) and displacement (inches) as the independent variables. To
mimic the experimental setup, an edge load was applied to only one of the two longitudinal
edges while the opposing edge was pinned in the U1, U2, and U3 directions but left free to
rotate. These ABAQUS/CAE outputs were transferred to internally created report files as data
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~ arrays and time was eliminated to create the load-displacement curves. As before, all the
transformations occurred within Excel due to ease of comparison and further discussion.

After “perfect” (i.e. modeled with no blemishes in FEA) stiffened panel’s load-
displacement curves were compared and strengths assessed, a simulation of potential initial
deflections was completed by providing a sinusoidal lateral pressure load creating a out of plane
displacement which would be equivalent to 1% of the thickness on an 18” x 46” inch simple
plate. This was repeated for a displacement equaling 10% of the thickness and then an estimated
load was extrapolated out based on ultimate load for the actual stiffened panel used in the
experimentation process for a simply supported case.

Analytical Analysis

The calculations performed by hand are in accordance with the plate and stiffened panel
theory discussed in the appropriate sections of Chapter 3. The analytical calculations were
completed to not only try and prove consistency with the FEA analysis, but also to relate
classroom governing-equation theory to real life situations. Simple plate theory calculations
cover not only the critical buckling load but it also it defines the appropriate number of wave
responses based on the length to width relationship, which can have a profound effect on the load
it can take. Below is a representation of the wave response for each plate size and the
corresponding k. factor for several boundary conditions in the analytical realm, including
variations of clamped conditions for comparison purposes. '

Wavelength Number & Kc Response: Analytical Theory

Boundary Condition 18" x 46" Wave _ 32" x 46" Wave

Loaded | Unloaded | Response | Kc Factor | Response | Kc Factor
S.S. Free 1 0.2 11 0.4
S.S. S.S. 3 4.1 2 4.45
C.C. C.C. 3 7.7 2 8.75

Table 11: Wavelength Number and Critical Value Response generated using analytical methodology. It is imporfant to note
that a change in the number of waves under given boundary conditions can significantly affect the buckling strength of the
plate. Using an inexact (though highly accurate) method such as FEA might present such an issue as seen later on.
Using these correlations as a guide, simple plate buckling calculations were completed for
18”x46” and a 32”x46” simple mild steel (BS 4360) plate using the non-smear drawing thickness
of 0.112 inches.. These plates were analyzed under a variety of applicable boundary conditions
in accordance with analytical equations discussed in Section 3.1.2. For plates with any number
of clamped boundary conditions, it is impossible to achieve a closed analytical solution and
-therefore Figure 12 in Chapter 3 is used as widely accepted analytical solution tool.
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Boundary | Apajytical Calculations based on Plate Buckling Theory
Conditions '
18"x46" 18"%46" 32"%46" 32"x46"
Loaded | Unloaded | (h=0.112) (h=0.212) (h=0.112) (h=0.168)
S.S. | Free 296.5 2,010.9 528.5 1,783.9
s.s. | S.s. 8,569.0 58,114.2 5,229.5 17,649.0
s.s. | c.c 14,512.3 98,421.2 8,221.9 27,748.8
c.c. | s.s. 9,292.0 63,0179 6,342.6 21,406.2
c.c.| cc 16,078.3 10,9042.2 10,277.4 34,686.0

Table 12: Analytical Resuits from Plate Buckling Theory. All values are expressed in Pounds

In addition to the baseline thickness of the plate prescribed by the drawing, the buckling strength
of the plates was compared to plates with the doubler plate smeared. These new thicknesses
amounted to 0.211 and 0.168 inches for the 18”x46’ plate and 327x46” plate, respectively. The
calculations are detailed in Appendix 5.6.

Although simple plate theory provides a good stepping stone into stiffened panel theory it
is still important to move to the more complicated stiffened panel analytical approach. The
stiffened panel used in the analytical analysis is a representation of the 32”x46” panel with two
longitudinal stiffeners, representing the experimental panel between the transverse stiffeners.

Per discussion of stiffened panel theory in Chapter 3, only one applicable boundary condition
was examined as Hughes (5) and Paik et al. (28) report Euler column buckling theory to be an
acceptablé approximation method to determine (and rule out) buckling in the overall mode.
Using Euler ideal column buckling theory of a plate-stiffener combination, the buckling values
were calculated to be as follows for a baseline 32°x46”, longitudinally stiffened panel and
variations:

Euler Buckling Load: Basic Column Theory
# Stiffeners | Plate thickness = 0.112 | Plate Thickness = 0.168
2 Stiffeners 584,479 584,479
3 Stiffeners 876,719 1,014,824

Table 13: Resuits Based on ldeal Column Theory. All units are in Pounds.

Right away it is clear that the buckling loads are extremely high (in fact, it will be shown that
these loads are higher than the ultimate load of the stiffened plate). The simply supported edge,
where the transverse stiffeners would exist, is a widely accepted approximation in the structures
- community. Analytically, the plate-stiffener combination method is modeled assuming elastic
buckling occurs in the overall mode.

Using this analytical approach to calculate stiffened paﬁel buckling load clearly does not
yield results within acceptable parameters. This is verified by FEA representation of the panel,
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5.3.3 Initial Deflection Study in FEA

The discussion of the effect of initial deflections in Chapter 2 presents the basics of
strength reduction and outlines several formulas. These formulas use a given magnification
factor to determine whether significant initial deflection will prematurely cause failure. In most
shipboard cases, initial defections will not be a significant issue if no construction anomalies are
present. Outlined in Reference (5), this is fairly easily proved within F.E.A. when examining
ultimate strength. To create initial deflection in an FEA model, it is suitable to assume that the
largest simple plate area (the 18”x46” center bay within the two longitudinal stiffeners) deflects
in the overall mode by some amount wq based on an applied sinusoidal pressure load qo. The
deflected plate can be assumed to have a simply, simply supported boundary condition. In this
condition, the deflected shape can be suitably modeled by a sin-based function. The boundary
conditions are acceptable based on the behavior of stiffeners in a large panel such as shell
plating, which has both transverse and longitudinal stiffeners (51). The lateral pressure load is
governed by Equation 49.

DV*w = q(x,y)
[49]
A simple solution can only be attained for a sinusoidal loading condition, given below as
Equation 50:
. X Ty
q(x,y) = gosin - Sin=-
[50]

The governing Equation 49 is satisfied with simply, simply supported boundary conditions and a
sinusoidal loading condition defined in Equation 50, by Equation 51, seen below:

: X Ty
w(x,y) = wosm—;sm—l-’—
(511
This closed form solution for wy can be analyzed for some multiple of the thickness of the plate
for comparison analysis. The final form of the deflection equation is written as 1% of the
thickness of the plate (10% thickness equivalent pressure was examined as well) and can be seen

below (51):

Wo = 01h = ——1°—
7'[4D(a7+ b7)2

(52)]

Using Equation 52 at 1% for a smeared plate, the applied pressure magnitude was calculated to
be 6.603 psi assuming the “a” and “b” variables to be 46 and 18”, respectively. The results of
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the FEA analyéis with appropriate initial deflection including comparison data are seen below in

Table 17:
FEA Initial Deflection Comparison with Experimentally Similar B.C.
Associated % Defl. :

Thickness h- Wo | Qo Disp. | Associated | Change @ | % Less

% (inches) | (inches) | (psi) (inches) Load (Ibs) Pult Pult

1% 0.112 | 0.00112 { 1.304 0.1061 145633 ~ 0.86 -0.39

10% 0.112 | 0.0112 | 13.04 0.1034 143429 -1.71 1.13

1% 0.161 | 0.00161 | 6.603 0.1053 200090 -4.96 2.39

10% 0.161 | 0.0161 | 55.69 0.1015 191443 -8.39 6.60

Table 17: initial Deflection data completed within Finite Element Analysis. Additional Graphical outlining the overall effect of
: inital Defiection can be seen in the next Section.
_ The associated load was determined from the results of the FEA analysis and, in this
case, there is no single equation that relates the change in buckling load to the initial deflection.
* In order to provide a condition that creates a situation most clearly like that of the experimental
plate for later comparison, half of the data sets were collected considering the doubler to be
present. The sets of data points pertaining to the non-smear case provide a bit of an insight into
the buckling load and ultimate load of a pre-doubler plate and the relative effects of initial
deflection. It is clear right away that the impact of initial deflection is extremely small, so small
in fact, some of the data appears to be inconsistent, though extremely close (pre-doubler, 1%
pressure load). This inconsistency could be a result of inconsistencies or other problems within
the FEA model. Selected local-displacement finite element models with a consideration for
initial deflection can be seen in Appendix 5.11.

5.4 Local Plate Strength Reduction Considerations

~ Up until the previous section, any and all simple plétes, longitudinally stiffened panel

variations and the replicas of the experimentally tested panel have been analyzed assuming an
“ideal” structure. While these ideal plate calculations (both in FEA and analytical) are a good

estimate (and are certainly trusted in shipboard structural analysis and design programs to
- provide good design output for a given compression load) of the load and/or stress seen on a
certain plate element, they are by no means perfect. As noted in the previous section, global and
local hull strength reduction factors were discussed at length in Chapter 2 and applied to the
- overall ship structure in chapter four. This section, however, focuses on the effect of some of the
remaining quantifiable strength reduction factors at the panel level.

Using the baseline, post-doubler stiffened panel (assuming a free-modified boundary
condition to mimic the experimental condition), the different strength reduction factors are
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examined from an analytical standpoint. All of the calculations pertaining to the results
presented in the following sub-sections can be seen in Appendices 5.12 and 5.13.

5.4.1 Basic Imtlal Deflection Considerations

Notwithstanding the FEA initial deflection work seen in the previous section,
analytically, it is relatively simple to determine if any initial deflection of a stiffened panel will
have a significant effect on its strength. Simple empirical equations for maximum permissible
initial deflection amplitude were developed by Faulker in 1975 (discuésed in Reference (5)) that
will easily determine if initial deflections with have a significant detrimental effect to overall
strength. These empirical equations are a function of a slenderness ratio, 8 and the thickness, 4.
The applicable empirical equation to this study can be seen below as Equation 53:

&, < 0.128%h

. A (53]
The slenderness ratio seen above is the same ratio used as a part of Von Karman effective width
theory, discussed in Chapter 3 and app].ied in Section 5.2.2. Including the doubler smear and the
- stiffeners, the experimental panel’s slenderness ratio is calculated to be 1.56 from Equation 38. -
Using this value for 8 and applying it to Equation 53, the corresponding maximum allowable
deflection in the longitudinal direction for the plating between each stiffener is then calculated to
be 0.05 inches. This maximum allowable value for deflection is well within the 10% of the
thickness deflection considered in the FEA analysis and would most likely not be an issue for
trained steelworkers. It should be noted, hoWever, that maximum acceptable deflection
decreases for longitudinal stiffeners which are intermittently welded (as in the case of the
experimental plate). The reduced magnitude however, will still be within the limits of what
would traditiohally be seen in the longitudinal direction of the experimental plate (5).

5.4.2 Shear Stress Considerations

At first glance, shear stress considerations seem to be quite crucial when determining the
overall strength of a stiffened panel as part of the side shell of a ship. Hughes notes that the only
thing that a large amount of shearing causes is a reduction in the ideal yield stress (cy) by some
factor r;. From the Henky-Von Mises yield criteria, this factor can be calculated using the
following equation, where 7 is the shear stress that is present and oy is the yield stress of the
panel.

[54]



During the initial discussion of shear stress considerations at the beginning of this chapter, it was
noted that shearing effects in this particular instance are nearly negligible. This is proven using
empirical data provided by Dwight et al, detailed in Reference (5). He states that any present
shearing stress that is determined to be less than 17.5% of the yield stress should be generally
neglected (5). With the given oy, this value amounts to 7000 psi. Applying Equation 8 and
assum'ingv a worst case shearing force (due to bending) of apprdximately 55 LT, the maximum

~ shear stress associated with the panel can be calculated to be on the order of 1500 psi. The
relevant shear flow calculation was completed using the approximate mid ship section from the
123’, based on Equation 9. When the calculated shear stress is substituted into Equation 54 seen
above, . is found to be .998, resulting in a decrease of 70.7 psi in dy (based on a 40 ksi yield
stress). Extrapolating this strength loss to the stiffened panel yields an overall reduction in Py of
a mere 164 Ibs, proving 7 is not a significant factor.

543 Imperfection Considerations

Imperfections occur naturally in the forming and construction of steel structures. There
are two kinds of imperfections, or on a broader scale, discontinuities. These are the unintentional
kind and the intentional kind. Because the intentional type of discontinuities (hatches, etc) are
accounted for in the structural design of a ship, this local analysis focuses on the unintentional
type. Unintentional imperfections in steel structures cause stress concentrations and are
generally unavoidable, even with excellent craftsmanship. The effect of imperfections decreases
' the structural strength of a plate or a structure in much the same way as residual stresses do. To
account for imperfections, ANSI has come up with a modification to the Von Karman effective
width ratio (30). The original ratio, given in Chapter 3’s explanation of Von Karman theory as
- Equation 39, now becomes Equation 55, seen below:

’O’ ’0’
beffective =b O'_C; 1-.218 O'_c;

Using the above equation and the known values of b, g, and oy, for the specific piece of

[55]

paneling and type of steel, besrective becomes 7.88 inches and the corresponding difference
" (decrease) in Py is calculated to be 12,393 Ibs.

5.4.4 Residual Stress Considerations

Determining the magnitude and distribution of residual stresses in any certain plate is one
of the most difficult tasks structural designers must master. Through extensive destructive
testing outlined by Masubuchi in Reference (23), and empirical formulae discussed in Hughes
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text (5), the magnitude of residual stresses in axially loaded plates are best modeled by a so-
called typical distribution. Panels however, as discussed previously, are better defined by
Equation 11, noted in section 2.3.1. Unfortunately, it is difficult to use this equation since
welding information is not available but residual stresses can be approximated using residual
stress plate theory. In either case, the residual stresses in a plate similar to the piece of side shell

- will rarely be more than 10% of oy, or in this case, 4000 psi. Applying either of these methods to
the panel would certainly show the residual stress approximations to be far less than this
benchmark.

Once it was established that the residual stresses present in the stiffened panel in question
did not exceed the benchmark of 10% of yield, calculations were completed in order to
determine the approximate strength reduction factor. Using Equation 10, the approximate
reduction in Py due to residual stress is calculated to be 296 1bs. Application of the residual
stress equations and discussion of the calculation method can be seen as part of Appéndix 5.12.

5.4.5 Crack Considerations

Although cracking of the side shell strength members was not a considerable concern on
the 123’, it is pertinent to include it in strength reduction factors in the context of a part of stress
corrosion cracking and also with regards to the 179°. The 179’ experienced extreme cracking
which some Navy experts at NSWCCD Combatant Craft Department Code 23, note this could
have potentially degraded primary bending stress limits by nearly 70%. Fracture is discussed in
detail in Section 3.3, but an efficient mathematical check of the ultimate tensile strength of a
stiffened panel with an existing crack based on geometry alone is simplified by (28) using
Equation 56, seen below:

_ (b — cp)toyp + (hy — C5)twOys

Ou

bt + h,t,,
[56]

The quantities used in the equation above are based on measurements shown in Figure 52, seen
below
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A stiffened steel panel component with existing crack

Figure 52: Model! of a plate with existing crack. This figure is reproduced from figure 10.19 in Reference (28).
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In this case, b is assumed t0 be befrective as calculated by Von Karman’s theory (on the
experimental 123’ panel) for continuity. Using Figure 52 as a guide and assuming c, and c, to be
1.5” and 2.2” respectively, (this amounts to approximately 50% of b/2 and hy,) (56) predicts o, to
be 25,574 psi and the corresponding Py to be 130,008 Ibs. While this is value is not nearly the
70% strength reduction the Navy worried over, (in fact it is 37%) this is only one specific
scenario, and specific cracking seen on the 179’ (not analyzed here) could have yielded these
results. Regardless, it certainly explains how progressive failure occurred due to strength loss in
cracked critical structural members.

5.4.6 Corrosion Considerations

The piece of side shell plating provided to the U.S. Naval Academy testing facility was
fabricated for the exclusive purpose of providing experimental results of a plate similar to that
seen on the side shell of the 123°. Corrosion, discussed in detail as part of section 2.3.4 and
examined from a global-ship standpoint in Chapter 4, is obviously not a factor with the plate
sample. Regardless, there is a noted difference between the thickness of the experimentally
tested panel base plate and that of the side shell plating seen on the 123’s. Coast Guard Drawing
WPB-123-085-31 (37), detailing the mid-ship section calls for #6 BS 4360 plating (h = 0.136
inches) while Coast Guard Drawing # 123-WPB-TEST-PANEL detailing the test section calls
for #5 BS 4360 plating (h = 0.112 inches), which is 17.6% thinner. In addition, the longitudinal
stiffeners present a slightly different geometry and weld pattern, which therefore suggests that
some kind of service life degradation through corrosion or other means (no quantifiable amount
can suitably be determined) was subtly considered.

5.5 Discussion

In design, where there are limitless combinations and variations of stiffener placement,
arrangements, and thicknesses in a quest for optimal strength at minimum cost, there seems to be
much more room for error because in most cases, nothing has been built. In post-construction
analysis of failure, one usually has to consider what is already in place, try to validate it, and then
figure out how to fix it or make it better with manpower, time and cost in mind.

5.5.1 Comparison

Comparing the different methods of analysis is certainly a viable way to not only ensure
the theories used are correct for the study’s given parameters but also to provide a context for the
different variability between those theories. In the analytical world, there is so little room for
maneuverability between variations of geometrical design and boundary conditions because of
the relative complexity of the structures to be analyzed. This constraint becomes apparent when
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‘ immediately apparent when looking at Table 18 below that shows the analytical error margins
depicted in Figure 53 from baseline FEA results. ’

Error Comparison (% difference)
Geometry (Measurements in Inches) | Simply Supported, Free Slmply, Simply Supported
Plate 18 X 46 Thickness =.112 ' -0.4% 28.6%
Plate 18 X 46 Thickness =.212 -0.4% 28.3%
Plate 32 X 46 Thickness =.112 1.3% 46.3%
Plate 32 X 46 Thickness =.168 1.3% 52.6%
Panel 32 X 46 Thickness =.112 57.1% -40.8%
Panel 32 X 46 Thickness = .168 53.4% A -47.6%
Panel 32 X 46 Extra stiffenerh =.112 65.4% 53.4%
| Panel 32 X 46 Extra Stiffener h =.168 -16.6% -69.5%

Table 18: This table shows the Error comparison between Finite Element Analysis results and Analytical solutions. Note FEA
is nearly perfect for simpie plate geometry with Euler Ideal Wide Column Theory type boundary conditions.

These differences in results could have come from a variety of different realms. While it appears
that the simple plate data is nearly seamless for the simply supported, free boundary condition,
the simply, simply supported data is consistently 30-40% different. This could be a product of
boundary condition mathematical constraints within FEA. In order to successfully execute a
buckling module, the pin constraint in the direction of the load cannot be activated, losing the

e” simply, simply supported boundary condition because the analysis tool cannot process the
difference between loaded direction and a pinned direction.

As mentioned before, the number of wavelengths in buckling mode plays a large part in
its buckling strength. In several cases, the appropriate buckling mode calculated using Figure 61
for a simply, simply supported plate of some specific aspect ratio is different than the one seen
from the results of the FEA. Another cause for differentiation is the complexity of analytically
analyzing a stiffened panel as a series of separate plates. While the boundary conditions for each
set of separate plates are appropriately assumed, error exists because all of the separate plate
parts will buckle in the mode of the center plate, but the analytical formula is only completely
accurate when it describes the bucking mode prescribed by the aspect ratio. In this case, FEA
appropriately predicts a buckling load closer to what might actually be seen.

Other than the magnitude of the error, there does not appear to be any noticeable pattern
of error in the different results graphically or otherwise. While the results and visual depictions
are helpful to understand how a panel might or will fail, with sturdy, strong structures, there is a
very good chance yield will occur before buckling. This was notably the case when using the
Euler column global buckling to‘analytical'ly analyze stiffened panels. These results (Table 13)
are outrageously high because one of the principle driving factors (L.s) was only 46 inches. This
also proves that the stiffened panels will not fail in mode one (overall mode). Furthennore, this
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The reasoning behind the differences in the FEA and analytical data sets seen in Figure
54 tends to run along much of the same line as the reasoning for differences in buckling.
Partiéularly,' in the case of the experiment, variations in loading condition, machine slippage, and
all the reasons discussed in section 5.4 contribute to differences in the ultimate load. Another big
reason the data points are generally not perfect is that the effective width was derived using
theory that applies more generally to simple plates and was modified to be used for stiffened
panels as well. Because there was some variation in the interpretation of the way the stiffened
panels behaved under load, effective width was calculated using several different variations of
plate theory. For the comparison, the most plausible variation was chosen. These are all
“discussed in the Von Karman related portion of section 5.2.2.

5.5.2 Validation of Theoretical Results

Using Figure 54 in section 5.5.1 as a guide for the validation of the FEA and analytical
calculations as it compares with the experiment is by no means a small task. It is clear from the
figure that the experimental results lay where they should be: Less than the ideal plate smear but
more than the pre-doubler ultimate load (which unfortunately was never experimentally tested).
It is also plainly noticeable that displacement was not a factor of comparison because in terms of
ultimate load calculations, it really cannot be justly compared. In fact, the analytical method
used to calculate ultimate load does not have an attached displacement. Validation of the
displacement seen in the experiment is therefore completed by hypothésizing‘ about the
construction of the testing apparatus, the data collection equipment, and the overall “slippage”
present in the experimental setup. Although at the point of ultimate load the displacement was
almost 0.4 inches, it is still deemed acceptable based on the discussed reasoning.

Validation of the ultimate load carried by the experimental plate can be completed by
examining the applicable factors discussed in section 5.4 and their associated results. These
include initial deflection, imperfections, residual stresses, and shear considerations. For
purposes of pure comparison, corrosion (already accounted for) and cracking (non-existent) are
left out. The relative values of each of those applicable strength reduction factors and their
summation are listed below in Table 19:

Reduction Cause | Decrease in Py | -
Imperfections 12,393 lbs
Residual Stresses 296 lbs
Shear 164 lbs
Initial Deflection @ 10% 13,537 Ibs
Sum 26,390 lbs

Table 19: Reduction considerations.
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The relative decrease in Py is calculated in this case from the smeared version of the FEA
experimental plate with appropriate simply supported, free modified boundary conditions. ‘This
was deemed to be the closest calculation to the actual performance of an ideal plate. In addition,
the analytical Py is within 3,500 pounds of the FEA result and acceptable as an alternative form
of the panel solution. Subtracting the sum of the strength reduction factors from the FEA
determined value of 204,980 1bs yields a new ultimate strengih of 178,590 Ibs. This is within
1.5% of the experimental solution. This percent difference could vary due to the unknown

- coating on the panel itself, partially uneven loading, the smear approximation, or a different
percentage of initial deflection, but is extremely close by experimental standards.

5;5.3 Determination of Failure Mode |

Overall, the comparison of experimental results through proven analytical and FEA
analysis was a success as the ideal panel data, coupled with known sources for strength
degradation yielded exceptional results. Ttis fairly clear from the nearly-realistic comparison to
finite element analysis, an understanding of mechanics, and a comprehension of failure modes
shown in Figures 13 through 17, that the stocky stiffened panel with relatively strong stiffeners
first yielded in Mode VI and then progressively buckled in Modes III, IV, and V in a
combination of plate buckling and membrane yield. In the case of this panel, the progression of
buckling modes probably occurred nearly simultaneously. Comparison to experimental data
beyond this is difficult because the displacement during the test was limited to an overall
displacement of 1.1 inches and no intermediate pictures of the test are available. The validation
of the failure mode can be further asserted by determining where the stiffened panel lies on a
normalized ultimate and buckling stress versus slenderness ratio graph, developed by Von
Karman and noted in Chapter 3. '

These curves are based on boundary conditions and the geometrical relationships of the
plate-stiffener combination. While Von Karman’s theory rests on worst-case simply supported
basic plates, it can also be applied to a doubler smeared stiffened panel by accounting for
changes in several key variables. Figure 55 shows the failure characteristics of the plate-stiffener
combination, and can be seen on the following page.

_Three points of interest are markéd along the curves in addition to the intersection point
on this figure. Point “A” shows failure without any consideration of a stiffener for comparison
purposes and represents a 8 value of 3.94. This point is clearly in the “buckle first” realm (first
line intersected moving up from the x-axis). Point “B” essentially takes the stiffeners into
consideration by the previously established smear method and represents a 8 value of 1.56. This
point is in the portion of the chart where yield happens first, correlating with the higher-than-the-
yield results from the purely elastic buckling analysis. Point “C” represents a slenderness ratio
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Figure 20), there is no real hard knuckle where transition from K slope to K/2 slope occurs in the
load—dlsplacement curve on the way to ultimate load.

Errors in the comparison analysis (between analytical methods and FEA) within both
buckling and ultimate load were the result of approximations based on bhckling mode. More
error might have existed in these realms for multiple reasons. In terms of analytical calculations,
it may have been more prudent to model the stiffened panel as two separate beam-columns, (note
 this is different than a Euler column) rather than as individual plates with simply supported 3
boundary conditions, or under a modification of the Perry-Robertson design formula (31). While
FEA analysis clearly shows that local intermediate plate buckling occurs first, Hughes (5)
suggests this may be a better method if it is later proven that the lowest buckling mode is Mode
II. In terms of ultimate load variation, Von Karman’s method is employed by effectively
smearing the stiffeners into the effective width of the panel. While this is a good approximation,
it will not be exact because a thin plate with a thick stiffener will react differently than a thick
plate under axial load. '

. From these tests and comparison, it is obvious under what conditions and at what load (or
stress, if desired) failure occurs due to axial compression of a particular piece of side shell '
plating of the 123’. While it is impossible to accurately re-create scenarios relating to the actual
even given uncertainties and possible unique loading scenarios experienced by the cutter, the
magnitude and modes of failure of the paneling described and discussed in this chapter gives a
good glimpse into the local mechanics of failure. While Chapter 5 focused on local analysis of a
structure, the next chapter discusses applicable conclusions of structural stability and integrity in
the context of avoidance during design and construction, and mitigation during operation, and
* the economics of repair. '
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Chapter 6: Looking to the Future

As ship design and construction companies and their major clients move into the future, it
is highly desireable that they learn from the incidents that have transpired and make necessary
adjustments so that problems outlined in the previous several chapters of this thesis can forever
be avoided. In the naval warship community, there are two very distinct ways to greatly limit the
chances of wide scale structural failure. These are through avoidance techniques during the ship
design, construction, and analysis process and mitigation techniques implemented during the
subsequent operation of the vessel. These criteria are by no means all inclusive and these
techniques (particularly in the design realm) must not stop at the global level. Regardless, there
absolutely may be more ways to limit incidents outside of the obvious.

Lastly, if an incident does occur, and it does appear that the problem is fixable, the
economics of whether or not to proceed with that repair consists of major decisions, which may
include possible budget cuts in other programs and postponement of construction of new assets.
In the future, both clients and ship designers must not only develop ways to easily and efficiently
assess damage to determine if the cost of repairs will exceed the worth of the ship, but also they
must develop safer, more efficient, reliable methods for repair.

6.1 Avoidance Techniques

The task of avoiding structural failure due to excessive loading in a seaway is chiefly the
responsibility of the designer. While the “designer” is rarely one person or even a single team of
individuals, it is imperative that the global requirements for seakeeping characteristics are clearly
outlined based on requirements documentation before the ship’s general characteristics are
finalized. Subsequently, the dynamic loading limitations can be analyzed during a full structural
analysis to ensure the ship can withstand the missions it was created for. This may seem
relatively difficult and time consuming at first, but ship design programs of today allow for
comparative studies of multiple hulls with little more than general characteristics as inputs.

6.1.1 Global: Ship Design and Construction

Globally, much of the avoidance techniques that can be employed have already been
touched upon. Even today, Congress is still criticizing the Navy and Coast Guard on their ship
design and construction process. Based on several failures (structural or otherwise) the U.S.
Navy has developed a comprehensive guide in the Naval Vessel Rules that governs their ship
design standards. This incorporates both mission specific, goal oriented criteria and basic
criteria for hull strength and stability. It is easily assumable the U.S. Navy engineers who
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developed the rules had in mind the structural failures of the past and implemented additional
safety factors and clearly outlined capabilities for given ship types and designs to avoid major
incidents in the future.

" With regards to avoiding the structural failures that are discussed in this study, it is

~ obvious that the designers did a less than adequate job ensuring that the ships would be
structurally sound enough to endure the environment where they were required to operate. The
blame for why this happened cannot be placed on any one source (client, designer, construction
firm, liaisons, etc) nor should it be, because often times it is impossible to essentially “point the
finger”. In this particular case, one ship is fixed and operaﬁbnal and the other is scrap.
Obviously no more of either ship type will ever be built in the future but if they were, obvious
avoidance techniques would include the following:

¢ Ensure the ship meets all requirements of the Naval Vessel Rules or other governing
body -
o Ensure construction techniques are strictly adhered to including the use of marine grade
structural steel and aluminum (if applicable).
e Ensure allowances are included for ship displacement growth and also for corrosion
o Ensure the client and actual operator is well aware of the limitations of the ship based on
design criteria and loading conditions. ’
¢ Ensure the client provides the operator with specific limitations should a structural failure
‘ event occur.

Of course it is impossible to list everything that needs to be compléted on the global level but the
idea of these criteria is cemented in place. Avoidance techniques do not stop at the global level
however, and stiffened hull, side shell and deck panels that will be subjected. to large loads
should be analyzed as well. '

6.1.2 Local: Stiffened Panel Design and Analysis

Locally, there is also much that can be done to avoid structural failure events. Once an
initial design has been completed, the next avoidance technique starts by using good methods to
model stiffened panels, ensuring correct strength data can be collected and analyzed. These
techniques include the methods used in this study: FEA, experimental, and analytical
methodology. It is important that within each of these techniques, the stiffened panels are loaded
as closely as possible to realistic loading conditions and considerations are made for strength
reduction factors that are seen in real life versus an ideal panel which is typically modeled in
FEA. When conducting experiments, choosing boundary is critical in order to mimic conditions
seen onboard ship. Condition “Alpha”, created as part of this study, created what would
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probably be a realistic setting but its unique boundary conditions are hard analyze in an ‘
analytical realm. In an ideal situation, creating an uneven, time varying load (given appropriate
equipment) might yield much more realistic results for a side shell panel than would otherwise
be seen in a basic in-plane compression test, but it would be even more difficult in a comparison
scenario, even using FEA methods. When conducting basic analysis analytically, it is equally as
critical to model the structure correctly as it is to make the correct assumptions of the failure
 mode, so that the appropriate method can be used. Often this might entail completing
calculations based on each failure mode and then choosing the lowest critical value to complete |
further analysis. '

6.2 Mitigation at Sea

The mitigation of structural failure at sea starts with the ship remaining within its
designated operating proﬁle, whether that happens to be speed limitations, sea state limitations,
or both. Regardless of the operating profile, it is imperative that the ship is able to perform its
designed and desired missions within that designated profile or a failure event may occur.

6.2.1 Operating Profiles

Often a graph of sorts is built showing the specific limitations of a ship using sea state (or
significant wave height) and speed as parameters. This is commonly referred to as safe operating
envelope (SOE). Mitigation of failure events at sea can depend heavily on staying within the
required parameters given by these SOE because of the damage that dynamic forces can cause.
This type of graphical SOE is seen in Appendix 6.1 for the PC 179°. A similar SOE in tabular
form can be seen in Appendix 6.2 for the WPB 123’. Although they are shown differently, both
SOE’s convey the same information. It is well established within this study that dynamic forces
such as slamming and other effects can cause serious hull strength reduction over time and can
cause the onset of catastrophic failure if yield or buckling limits are reached in particularly
susceptible areas of the hull. More information on the SOE’s of both ships can be seen in
* References (39) and (2). '

6.2.2 Efféct on Mission Performance

The effect of the SOE on mission performance is heavily dependent on the design criteria
and in an ideal scenario, the design of the hull and its associated sea-keeping characteristics
should be consistent with the types of missions required. However, when a complex scenario
arises such as a retrofit of an existing, proven cutter to upgrade its capabilities, calculations of the
“new” SOE based on “new” seakeeping characteristics are more difficult to accomplish.
Furthermore, when a hull experiences a failure event that is, so-to-speak, within its designated
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operating profile and within its normal mission capabilities, one has to question if departure from
the normal operating profile in completion of its missions (based on the new hull form), previous
to the failure, was partially at fault.

Once it is established that failure has in fact occurred, the next mitigation technique to
Iimit progressive failure (discussed in Chapter 3) of the ship is to change the operating profile.
For both the Navy and the Coast Guard, this has an enormous effect on mission performance.
Both services and both crafts examined in this study need to be able to operate in sustained -
heavy sea conditions in order to complete some of their primary missions. Limiting these
capabilities without a reliable plan to fix the problem essentially removes them from service and
the ships will remain at the pier. '

6.3 Repair Economics

At the back of every client’s mind whose ship(s) endure a structural failure scenario is the

-overarching cost of the event (both in determining the cause and preventing it from happening
again) and the difficult decisions to fix or scrap the ship. The cost of these evolutions runs into
the millions of dollars and in this case, the client is the United States government. Stopping
short of a full economic analysis of the relative cost fixing a ship in dry-dock, it is easy to put
things into perspective by outlining the estimated cost of repair for each of the ships examined in
this study. Keep in mind that both of these ships are at the low end of the spectrum in terms of

overall cost because of their relatively small size. The cost to fix a ship such as a high endurance
© cutter, destroyer or even an aircraft carrier is tens to hundreds times more.

The following tables outline actual cost summaries for fixing the 123’s and 170’s. Based
on available information and the different timetables of failure discussed in this study, the tables .
are not identical but their premise is the same. '

123' Upgrade and Repair Economics
Consideration Cost ($M)
| Original Hull Cost 343.0
Original Upgrade 67.1
Final Upgrade 80.3
| Upgrade Difference (Repairs) 13.2
Overall Cost/Hull of 8 123's 17.0
Cost/Hull Repairs | 17

Table 20: Table of USCG 123’ Economics.

From the table above it is easy to see that the overall cost of the new, upgraded cutters is more -
than twice the original cost of a single cutter (17.0M vice 7.0M). Furthermore, the cost of repair
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of each hull is nearly $2M. Of course inflation has to be considered so this number is somewhat
skewed, but this shows how relative cost of ship construction has risen over the past 20 years,
making the case for soundly built ships that don’t have to be repaired based on faulty
engineering.

170’ Upgrade and Repair Economics
Consideration Cost ($M)
Original Hull Cost SOCOM $
Repair of First Failure 0.2
Development & Upgrade of First 0.3
Repair & Upgrade-Rest of Class 2.8
Total Cost of Upgrade 34
Cost of Upgrade/Ship 0.3

Table 21: Table of 179' Economics

In this case (as seen above) even though the initial price of the ship is unknown, the total cost to
repair the ships is much less per ship than the cost to repair the Coast Guard Cutter. Keep in
mind that this number does not include the extension project, and should be compared with the
$1.7M figure given in Table 20. This may be based on several interacting factors including
severity of the damage, the location of the damage, and the time frame of repair.

Whatever the cause of damage, whatever the repair scheme and new limitation put in
place due to the initial failure, incidents such as the ones discussed in this thesis constantly
remind the naval ship builder, designer, and operator of one important piece of information:
Through careful workmanship and safe operation within limits prescribed by its design, a ship
can safely and effectively perform its mission both at minimal costs and at minimal risk to the
crew for its entire prescribed service life.
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Conclusions

It is relatively clear from this study that there is no simple answer as to why seemingly
well designed ships have enough structural failure to cause massive overhauls and in one case,
complete removal from service. Naval ship construction companies and their subsidies have
been in the design and construction of naval ships for long enough that no events like this should
ever occur. Obviously, without these failures and the inability to completely understand them
there would have been no motivation for this work.

Over the course of this project, there were two distinct levels of work completed, though
fundamentally the goal was to bridge the gap between actual events and panel theory. This was
completed through invesﬁgation of global and local behavior of ship structures and structural
design, considering failure modes, loading scenarios, and the uncertainties surrounding strength
reduction factors at both levels. ‘

1. Global Considerations

Globally, this analysis was less than precise. ‘Obviously, no hard conclusions were drawn
from the results (nor could have there been) but it seems like this might always be the case when
faced with a type of situation where finger pointing becomes routine. One has to assume that
competent shipbuilders used proven techniques with built in checks and balances (even if they
weren’t related to a governing body) to create the ship, keeping in mind of course the project was
not completed by a single person or a single team. In the case of the WPB, the 110’, designed 20
years prior to the retrofit, served admirably prior to the elongation and continues to serve to this
day. This leads to the conclusion that sometimes, through a variety of both explainable and
unexplainable circumstances and causes, a structure simply cannot withstand the environment for
which it was designed. Furthermore, once that structure has been initially compromised, it is not
only very difficult, time consuming and expensive to try and fix, but if kept in the same
environment it may continue to weaken and subsequently be a complete structural loss.

ii. Local Considerations

Locally, the results of this study focused more on comparison of énalysis techniques and
how changes in geometry effect changes in overall strength, rather than analyzing strength in the
context of global ship design. Experimentally, the magnitude of the strength of the panel had
already been determined to be much different than what engineers had previously thought and
~ therefore, it was best to use these results as an asset for further work. As a comparison and
- geometrical effects study, there was certainly resounding success. Not only were analytical
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calculations shown to be closely related to finite element analysis using assumptions based the
author’s analysis of failure mode, geometry and loading conditions of the experiment. A review
of the all three methods, coupled with considerations for the real world versus the ideal world,
proved them to be extremely accurate. As an engineer, one can hardly ask for much more.

iii. Goals and Future Work

At the highest level, a major driving factor in ship structural design and its construction is
cost. The ultimate goal is, therefore, to learn from past missteps and prevent future failure
incidents while improving ship design practices and keeping costs down. This said, the margins
that are built into the rules and optimization design approaches in order to keep ships safe also
are a viable cause of cost increases and overruns. These margins exist however, due to present
capabilities of modeling software and the extreme difficulty in predicting external and internal
uncertainties in an ever changing field of factors. At present, the most viable way to increase the
accuracy of the prediction of uncertainties (as noted in many of the discussions in this text on

- strength reduction factors) is to continue to examine ship structures from both global and local
levels and make acceptable and viable connections between real life incidents and their
associated mechanics. To truly optimize the ship structural design and construction process over
time, margins must decrease through better modeling with built-in, reliable methods for
calculating the strength of the hull over a variety of changing load and environmental criteria
through the expected life of the ship.
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Appendix: Chapter 1

Al lRepresentatlons of Primary, Secondary, and Tertiary Stresses
Primary, secondary and Tertiary stresses experienced by ship hulls are sometimes referred to as

component stresses. Each respective stress is described in deta11 in Section 1.1.2 and visual representation -
- of each stress can be seen below:
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Figure 57: Primary, secbndary, and tertiary stress diagram. This figure is reproduced from Reference {20}.

It is quite obvious that each subsequent stress component is a more local portion of its predecessor.
Therefore one can say that any single load can cause effects in each of the different component stresses in
. the local and global realms. Typical loads effecting more than one component are items such as pressure
loads, hqmd loads, or incredibly heavy machmery

A:1.2 Overall Measure of Effectiveness

The premise of the Overall Measure of Effectiveness design philosophy method is that it provides
a way to quickly assess the overall relative importance of certain design criteria and seamlessly compare
different variations of the same ship with each other. These variations can then be compared with the cost
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Major Classification Societies of the World

Name Abbr Date | Head office
Lloyd's Register of Shipping LR 1760 | London
Bureau Veritas BV 1828 | Paris

- -| Registro Italiano Navale RINA 1861 | Genova
American Bureau of Shipping ABS 1862 | Houston
Det Norske Veritas DNV 1864 | Oslo
Germanischer Lloyd GL 1867 | Hamburg
Nippon Kaiji Kyokai ‘ NKK 1899 | Tokyo
Russian Maritime Register of Shipping RS 1913 | Sankt Petersburg
Asia Classification Society ACS 1980 | Tehran
Hellenic Register of Shipping HR 1919 | Piraeus
Polish Register of Shipping PRS 1936 | Gdansk
Croatian Register of Shipping CRS 1949 | Split
China Classification Society CCS 1956 | Beijing
China Corporation Register of Shipping CR 1951 | Taipei
Korean Register of Shipping KR 1960 | Daejeon
Biro Klasifikasi Indonesia BKI 1964 | Jakarta
Registo Internacional Naval ‘ RINAVE | 1973 [ Lisbon
Indian Register of Shipping IRS 1975 | Mumbai
Brazilian Register of Shipping RBNA 1982 | Rio de Janeiro
International Register of Shipping IROS 1993 | Miami
Iranian Classification Society ICS 2007 | Tehran
Ships Classification Malaysia SCM 1994 | Shah Alam

Tabie 22: Tabie of Major World Classification Societies, along with their abbreviations and head offices {52).
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 Appendix: Chapter 2

A.2.1 Initial Deflection Variation

, The effect of initial deflection for an Euler Column is shown below in a figure reproduced from

Reference (28). Consistent with Hughes, it is clear that as the load approaches the Euler buckling load,
the overall effect of the magnitude of initial deflection as it relates to the load carrying capacity is fairly
insignificant. What is significant, however, is the larger the load, the more deflection will be seen,
especially between 60% and 90% of the ideal Euler buckling load. :

oo Ay
000 002 004 006 008 010 0.2
oL

71T
" Figure 59: Euler Column behavior as subjected to initial deflection. The graph is normalized by ideal Euler Buckling Load.

As mentioned in the text, an Ideal Euler Column will collapse once its critical buckling load is reached.
This is shown in the figure above by the dotted line at P/Pg=1.
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Appendix: Chapter 3

-~ A.3.1 Simple Plate Buckling Figure

The figure below, reproduced from Reference (5) is a visual depiction of the way a simple plate
will buckle given simply, simply supported boundary conditions on all four sides. The simply, simply
supported condition is a widely accepted condition when analyzing sub-plates of stiffened panels found
on ships, where the condition closely mimics constraints created by transverse and longitudinal stiffeners. -
Using this concept, it is acceptable to analytically calculate stiffened panel buckling solutions (assuming
local plate buckling is the limiting factor) by simply dividing the plate into sections between the stiffeners

and then adding the result.
Drawn for : — - 4/ 5 |
e / .% {oa)
- / ' er

4
Figure 60: Simple piate buckling with four sides simply supported and a wavelength parameter of 3.

In accordance with Equations 28-31, the n variable for a simple plate is assumed to be unity notes above.
Transversely, the plate buckles in a single half wave. The m variable denotes the wavelength parameter,
whose calculation is detailed in the next section of this Appendix (30).

A.3.2 Buckling Wavelength Number Figure

Seen in Equation 30, the wavelength parameter, m, is a function of the length-to-width ratio of the
simple plate. This variable is predominant in the figure seen on the following page. This figure shows
the ratio of a/b where m shifts and the corresponding k. values. The shift in the wavelength parameter is
determined by calculating the point on the graph where each curve has equal ordinates. This is given by
Klm= Kelpy;. Further information and a derivation of this equilibrium equation can be seen in Reference
(30).
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A 4.7 Method of Qualitative Vibration Calculations for the 123’

, Scaling for the qualitative vibration characteristics was based on Mansour and d’Oliveria’s work,
authors of Reference (21). The scaling was completed to provide a qualitative, order of magnitude value
to validate that dynamic forces (due to slamming) need to be considered.

These calculations are based upon worst case scenario correlation with the large cargo container
ship that was used to quantify the bending moment due to slamming at a given wave encounter frequency,
which correlates to-wavelength over ship length nearing unity. Mansour and d’Oliveria show that this
encounter frequency yields the largest addition in magnitude to the Bending Moment. The ship
characteristics can be seen in this reference as well. Unfortunately, a time-varying computer model was

“used to predict the values, and although this model is valid for the 123’ this is not the focus of this study
and merely an order-of-magnitude correlation suffices.

The wave encounter frequency used for worst case scenario is 0.6 radians per second. This
frequency correlates a bending moment of 275,000 LT-ft. This can then be scaled using both the
Displacement and the Length as linear operators. The results are then compared with the 179’ relative
increase in bending moment to obtain the proper order of magnitude.

Moment 2.75E+05 | LT-ft
Mariner | Displacement 18674 | LT
LOA 563 | ft

Moment (displacement oper.) 2577.1 | LT-ft

Island | Moment (length oper.) 6.01E+04 | LT-ft
Class | Displacement 175 | LT
LOA 123 | ft

Table 23: This Table notes the applicable characteristics and the results for the linear scaling of the added bending moment
due to slamming.

Fromi the results in Table 23 above, it is clear that the best correlation is the moment scaled using the
displacement. The percentage correlations and results imbedded in the text can be seen in section 4.4.1.
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‘A.5.2 Summary of Finite Element Methods

The FEA data collected is the compilation of numerical inputs and outputs relating to a mesh-like
calculation completed by the ABAQUS/CAE software platform.

The ABAQUS/CAE solver uses both implicit and explicit methods to solve Finite Element

Models (FEM) with complex geometries that would otherwise be difficult to accurately model. The
differences in the Static, General and the Static, Riks modules within ABAQUS essentially solve the
experimental plate load displacement problem in the implicit and explicit realms, respectively. Usually,
complex models that have fast developing loads such as blast or impact (high frequency) loads are better

- modeled with an explicit scheme but in the long run they may be slightly less accurate. Low frequency,
relatively long duration loads (such as the displacement load experienced by the test) are modeled
accurately and decisively in the implicit scheme. A complete explanation of FEM methods can be found
in References (29) and (53). . '

A.5.3 Explanation of Geometrical Parameter Calculations

Calculations pertaining to how different parameters were chosen for the study are actually quite
straight-forward. They are derived from the drawings of the original Plate drawing (seen as Figure 36)
and create variations that are fundamentally very similar to the plate itself.

7 The doubler smear variation in both the cropped plate and the actual test panel was accomplished
by simple algebra. The doubler plate was said to be #10.2 Ib steel which correlates to 0.239 inches as per
the tabular data seen in Reference (18). The total volume of the doubler plate was then determined using
the appropriate measurements from Figure 5-1 and that volume was added to the total volume of the base
plate with the original thickness of .112 inches, or #5 Ib steel. Then the area of the base plate was divided
out per the desired dimensions, and the new thickness was determined. The calculation is below:

P Voouvier + Vpiate
New ~—

APlateSurface
& Vpoubter = | X w X h = 82"X7.5" x 0.239"=147.0"
Vpiate = I X W X h = 94x32 x 0.112" = 336.9"

147.0" + 336.9"
* hnew - 94n X 32n

hNew = 0.161"

Depending on the overall geometry of the plate-stiffener combination, the procedure above was slightly
modified in several instances to provide a more accurate assessment of the elastic-plastic characteristics
of some of the specimens. This was true for the stiffened panel that only considers the center bay.
Experts have stated (also repeated in Reference (18)) that appropriate analysis of this nature can be
completed using only a single frame or several frames because the results should ideally be the same.
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It should be noted that on the actual hull, the doubler plates and sponsons (seen in pictures of the
hull and in Coast Guard Official Drawings) extend nearly 40% of the way down the hull. This is to
ensure they are legitimately counted in the mid-ship section moment of inertia and subsequent section
modulus calculations. The Official Coast Guard reasoning is for “robustness” (2).

A.5.4 Finite Element Analysis Buckling Data

The data seen below is from the FEA Buckle module as completed through a series of “runs” at a
variety of different geometries and boundary conditions. It is well established that boundary conditions
‘that are more restrictive than the “Alpha” condition are not necessarily plausible for the side shell of a
ship but they are included for comparison purposes. The data values that are missing were removed due
to being extreme outliers. In this data set, ABAQUS was only solving for a buckling instability and some
of the geometrically sound structures noted towards the bottom of the table will certainly fail in yield
prior to buckling.

Load SS

Unload FR Load SS Load CC | 4 Sides
All data point units are in pounds 4 Sides SS -(Frmod) Unload CC | Alpha Unload SS CC
18X46 Simple Plate 11993.4 295.38 20792 11998.98 | 30004.2 34088
32X46 Simple Plate 9731.2 ~ 535.68 10143 10137.6 13435.2 14627
32X46 Stiffened Panel 36597.8 30764.8 35503 35514.04 49153 | 46444
32X46 Doubler Smear Stiff. Panel | 117803.8 | - 95418 113240 113285.6 | 154876.6 | 145510
32X46 Stiff Panel w/ s Xtra stiff 152040.3 | - 110076.8 148613 161806.5 | 190994.4 | 190994
Exp. Plate FEA w/o doubler 35999.68 31252.34 36071 36092.78 | 52489.4 52592
Exp. Plate w/ Smear Doubler 101543.6 83603.8 102144 102265.6 | 147234.8 | 148132
Exp. Plate w/ Extra Stiffener 128530.9 147965 148128.9 | 200526.9 | 200974
Exp. Plate w/ Smear & xtra Stiff. 119126.2

Table 24: Finite Element Data Table for tests run in the ABAQUS/CAE FEM modeler. The graphical representation of this chart
can be seen in the text as Figure 42.

In each case, only the length x width geometry is given. In this case, it shall be assumed that the original
#5 Plate thickness (0.112in) was used except in the case where a smear doubler was noted. For the
Experimental plate, the new smear thickness is 0.161 inches and for the 32°x46” plate the equivalent
smear thickness is 0.168 inches.

A.5.5 Selected Finite Element Analysis Buckling Images

The following are a selected group of FEA buckling images. They were generated in
ABAQUS/CAE. The numerical results of each image are seen in the table in the preceding section. Each
figure seen below is labeled as appropriate for each test. The rest can be seen at the request of the author.

The images are generally grouped in pairs unless otherwise noted, showing the loaded edge simply
supported, unloaded edge free (or free modified) condition, followed by the simply, simply supported
condition. In some cases the alpha condition is added (if any obvious change is seen) for each geometry.
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The two tables seen below are meant to be a supplement to the buckling theory calculations and to Table
11, seen in the text. Each show applicable k. factors based on geometry and the differences in buckling
mode determined in analytical and finite element methods. Each covers basic plate theory.

18°x46” k. and Wave Response Data .
SS-Free | SSSS | SS-CC | CC-SS | cCcCC

kc factor : 0.14 4.1 6.95 445 7.7
wave # in FEA 1 2 3 -2 3
wave # in analytic 1 3 4 21 - 3

32°x46” k. and Wﬁve Response Data
. | SS-Free | SSSS | Ss-CC | CC-SS | ccce

ke factor 045 | 445 7 54 8.75
wave # in FEA 1 2 2 2 2
wave # in analytic 1 2 2 1 2

Table 26: {(a&b) The tables above show buckling mode (wave response numbers) for each applicable boundary condition
across two methods of analysis and two separate geometries.

AS5.7 Analyticai Stiffened Panel Theory Calculations

The following Spreadsheet calculations stem from the different acceptable methods used to
calculate the overall axial loading capabilities of longitudinally stiffened panels. These calculations are
completed on the premise that the transverse and longitudinal stiffeners act as simply supported boundary
conditions where applicable. Every effort is made to account for the free or free-modified unloaded edge
condition seen in the experimental testing. '

As discussed in the text in section 5.2.2, two independent sources allow basic Euler column
theory to be used when determining the axial strength of a plate-stiffener combination. Just like Euler
theory, however, this approximation only holds true when buckling occurs in the overall mode. Since the
‘Euler method (Section 3.1.1) is based upon material properties, an effective length and the moment of
inertia with constant multipliers, the spreadsheet below accounts for the plate-stiffener M.O.L using a
Degsective fOT the width of the plating consistent with Von Karman. Just as in previous portions of this-
appendix, the spreadsheet only shows one iteration of the M.O.L although more than one was conducted
based upon geometrical changes.
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Calculation of Moment of Inertia (Used in Euler Buckling Theory)
Piece t w__|A(@n*2) | dn(in) | A-dn(in*3) | A-dn*2 (in*4) | h(in) io (in"4)
Plate 0.168 | 8.8 14784 | 0.084 | 0.1241856 |  0.01043159 0.168 | 0.0034772
Stiffener 0.375 3 1.125 | 1.668 1.8765 |- 3.130002 3 0.84375
, PL 3.141593

A 2.6034 | in"2 : : ' E 2.96E+07
Dg 0.7684895 | in I 2.450155
In 3.9876608 | in"4 Leff _ 46
Io 2.4501549 | in"4 | Moment of Inertia Load Calc: 338274.6

R. of Gyn 2, plate thick 0.112 | 1.001

R.-of Gyn 2, plate thick 0.168 | 0.97 Radius Of gy. 0.970122

Tabie 27: Moment of inertia calculation spreadsheet for ideal Euler column buckling. This method is only valid for plate- »
stiffener combinations that fail in mode 1. The method of calculation for the MOI is replicated from (4).

The effective width calculation is used in Euler column theory and is therefore inserted at this
point in the Appendix. While effective width was originally developed for simple plates, it is applicable
to stiffened panels. The table seen on the following page incorporates two geometries; the reasoning
behind this is discussed in the text. The begecive coefficient is determined using the relationship between
the k. value and the constants seen in Equation 31. Using this coefficient, begecive is then calculated using
Equation 39, incorporating the relationship between several material properties, and the thickness of the
plating. The begective value can then be used to approximate ultimate load of a plate.

betrective Calculation (Von Karman)
k. =4.45 begs Coefficient 2.005
Geometry 32"x46” | ber 9.17
k. = 4.103 beg Coefficient ' 1.926
Geometry 18”x46” | beg 8.80

Table 28: The spreadsheet used for the effective width calculation based on Von Karman's approach. The theory behind this
can be seen in the text in Chapter 3 and more extensive information can be found in Reference (30).

In addition to the effective width calculation used to approximate ultimate load which is essentially based
on buckling theory, Von Karman also used a similar approach to approximate longitudinally stiffened
panel strength under axial load by treating each piece of plating between stiffeners as an individual
slender plate. Although his work was completed assuming all sides of the panel to be simply supported,
the method was modified to consider each of the outer plates to have one unloaded edge simply supported
and the other edge free. This theory is noted in Section 3.1.3. The table below shows the calculation of
each piece and the subsequent summation.
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‘Von Karman Analytical Calculation of Stiffened Panel Buckling Load
Sides Middle
0.43 4.10 Summation 28tiff 3 Stiff
Pi Squared 9.87 — 9.87 BC 4SS 2891517 | 57,83033
D 12,852.78 | 12,852.78 BC 4SS 779233 | 1558465
S (width) 7.00 18.00 BC 4SS 7,792.33
B 779233 | 28915.17 Totals 44,499.82 | 7341498

Table 29: This tabie shows the spreadsheet calculation for stiffened panel axial buckling load using a Von Karman approach.
This method essentially adds the different plate segments between each longitudinal stiffener based on applicable B.C's.

As before, this Table was used as a calculation spreadsheet so not all runs are shown above.. The different
summation columns to the right are indicative of different geometrical considerations and are summarized
by Equation 35, to aid in the calculation of the variation of strength due to the addition of extra support.

A.5.8 Analytical Ultimate Load Calculations

Ultimate load calculations are based upon Von Karman’s effective width theory discussed in
Chapter 3 and in previous sections of this Appendix. Von Karman’s method is modified slightly to
-account for stiffeners, as presented in Equation 43. The calculation of ultimate load is based on the
relationship of the yield stress and the overall effective area designated by by and a thickness (in this
case, the cross sectional area of the stiffeners was included to allow for a better approximation). The
spreadsheet where the ultimate load calculations were completed can be seen below. A complete table of
the results is seen in the text as Table 15.

Calculation | No Doubler Smear: h =0.112in | Doubler Smear: h = 0.168 in
| Befrective 5.87 inches 8.80 inches

| Py Load 142,595 lbs 208,272 lbs
Table 30: Excel Spreadsheet used to calculate Ultimate-Load based on Equations in Chapter 3 of the text.

The calculation above is based upon the 18”x46” sub-plate geometry. Using this geometrical
representation (basically formulating all of the calculations off of the center region of the panel) provides
the best approximation because of the lowest critical buckling mode. If overall mode one failure occurred
first, the plate-stiffener combination would be most likely be better modeled by the 32”x46 geometry.

A.5.9 Finite Element Load Displacement Curves

The following load displacement curves represent all of the data collected from ABAQUS/CAE
based the experimental plate seen in its drawing as Figure 36 with transverse and longitudinal stiffeners.
Variations in plate thickness are shown, as well as the addition of an extra longitudinal stiffener, bisecting
the original two. In each figure, the effect of different boundary conditions is noted while geometry
remains the same. The geometry is noted in each figure title. The Static, General FEA method was used
in this instance.
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ratio (B) and empirically derived formulas discussed in Reference (5). Verification calculations of F.EM.
are seen below.

Slenderness Ratio Allowable Initial Deflection

1.56 0.05
Table 31: Allowable Initial Deflection Calculation

The slenderness ratio was calculated considering smear for the doubler and the stiffeners. The allowable
initial displacement is approximately 30% of the thickness of the base plate and therefore will within
limits. Methodology for the calculation of the slenderness ration is seen in Appendix 5.13.

Unlike initial deflection considerations which are a very real issue with the test panel, the shear

. stress considerations used on the test panel were actually considered using the maximum shear stress seen
on the entire ship.to prove, that in this scenario, they are of little consequence. The shear stress factor is

. calculated using Equation 54 assuming shear stress is calculated from Equations 8 and 9 in the text. The
resultant loss in load capability is extrapolated based on the stress-equals-load-over-area relationship. The
spreadsheet is below.

Shear Calculation: Value Units

Q 124,444.4 | lbs

Q1 0.4667 | lbs/in™4
m 870.43 | in”3

T 1,372.3 | lbs/in*2
I, 0.9982 | psi/psi
P, Difference ' 164.4 | Ibs

Table 32: Shear stress spreadsheet calculation

The maximum shear force on the 123’ assumes normal beam theory applies. Shear appears insignificant.

Imperfection calculations were completed based on the ANSI modification to Von Karman’s
effective width method. A doubler smear is considered, but worst case imperfections are considered by
not smearing the stiffeners. The calculation is below:

Imperfection Calculations: | Value | Units

Buckling Cr 9,604 (from V.K)

Stress Yield 40,000 psi

b 18 inches

Detinew 7.87 (h=0.168)
| Py, New 195,878.3 | Lbs

P Difference 12,393.7 Lbs

Table 33: imperfection spreadsheet caiculation

The critical buckling load was determined using Von Karman'’s relationship between o, and o, based on a
given slenderness ratio.

The considerations for residual stress were completed using theory normally reserved for simple
plates. Due to the lack of information regarding the welding characteristics of the stiffened panel, this
approximation is certainly the most accurate. The spreadsheet calculation below is based on Equation 10
-and its applicable sub-equations, including the eccentricity factor, discussed in Reference (5).
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Residual Stresses Calculation: Value Units
Eccentricity Factor : 0.14 | eta
-1 Residual Stress present - 5734 | psi
| Py Difference (using b.g) 296.79 | Ibs

Tabie 34: Residual Stress spreadsheet calculation

In this case, the beg that is used is based upon a smeared doubler to increase similarity with the
experiment.

 Although important in the case of the 179’, considerations for cracking does not affect the
validation of theoretical methods with regards to the experiment using the Coast Guard furnished
stiffened panel. A calculation was completed, however, based on fictitious crack geometry, to
qualitatively determine the extent of degradation due to cracking. Equation 56 in the text is used. The
calculation is below: ' ‘

Crack Calculation: Value Units
b 8.8 in
C, ' 2.2 in
t 0.161 in
' Oy 40,000 psi
h,, 3 _in
Cs 1.5 in
|ty 0375 | in
-| Numerator (Eqn 5-6) 65,004 Ibs
Denominator (Eqn. 5-6) 2.5418 in"2
| Cui ‘ 25,574 psi
Pux - 130,008 lbs
% Difference 37.57 | Ibs/lbs

Table 35: Crack Consideration Spreadsheet Calculations.

In this case, the reduction in Py, was calculated to be 37%. The crack size is arbitrary and with changes in
the geometry of the plate and the crack size the strength reduction will change.

A.5.13 Calculation of Slenderness Ratio and Normalized Stresses

The premise of (algebraically) the calculation for the slendemess ratio (8) that best accounts for
the complex geometry of the plate-stiffener calculation is seen in section 5.3 of this Appendix. The
slenderness ratio is given by Equation 38 in the text.

In order to determine a valid thickness to account for the stiffeners, first the entire cross sectional area of
the entire 32”x46” plate (with stiffeners) was determined and then to calculate the equivalent thickness
over an 18” piece the area was divided by that length. This was completed for a baseline and doubler
smear scenario. These results are plotted in Figure 55 in the text.
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