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ABSTRACT
The intent of this research is to generate the knowledge required to design, fabricate and

operate a device capable of high speed nano-scale vertical positioning of microscopy samples.

The high speed focusing device (HSFD) created during this research utilizes a new combination

of technologies for the purpose of imaging: Lorentz coil actuation, flexural bearings and strain

gage sensing. The application of the technologies combined with precision design principles, as

used in the HSFD, result in a demonstrated combination of performance and cost gains over a

measured commercially available system. The HSFD is able to perform steps with 8 ms 95%

settling time, 2% dynamic accuracy, and 0.005% static accuracy while operating with a

resolution of 10.5 nm (l a) over a range of 500 Lm at a cost of about $1400. This performance is

3x faster stepping, 2x better dynamic accuracy, =100x better static accuracy, equivalent

resolution and range to the top of the line commercial devices at less than half of the cost. The

reduced cost is envisioned to enable greater distribution and use of nano-positioning imaging

stages, while the increased performance is envisioned to enable faster, more benign (in the case

of biological sciences) and more precise imaging. The increased use and data gathering ability

of the new device are envisioned to enable fields of research such as biology and materials

science to extend their bounds further into the micro/nano-scale as well as further along the time

scale for both high speed and low speed processes.

Thesis Supervisor: Martin L. Culpepper
Title: Associate Professor of Mechanical Engineering
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CHAPTER

1
INTRODUCTION

1.1 Motivation

The intent of this research is to generate the knowledge required to design, fabricate and

operate a precision machine capable of high speed nano-scale positioning of microscopy samples

for volumetric imaging. This machine, or high speed focusing device (HSFD), shown in Figure

1.1, utilizes a new combination of technologies that differ from the technology sets commonly

used in existing focusing devices [1][2][3][4] to enable a combination of performance and cost

gains. This new set of technologies includes electro-magnetic Lorentz coil actuation, flexural

bearings and strain gage sensing.

Figure 1.1: Completed HSFD Prototype.



The focusing device designed through this research will enable advances in the

performance of volumetric imaging systems such as Confocal and Two-Photon microscopy.

New Confocal systems can already image at 200 Hz [5] and above, roughly 4x faster than

present focusing devices are able to operate, leaving the focusing device as the system

bottleneck. The performance of the entire volumetric imaging system can be improved by

advancing the speed and reliability of the focusing device. The HSFD is shown to perform steps

with 8 ms 95% settling time, 2% dynamic accuracy, and 0.005% static accuracy while operating

with a resolution of 10.5 nm (lo) over a range of 500 jim at a cost of about $1400. This

performance is 3x faster stepping, 2x better dynamic accuracy, =100x better static accuracy, with

equivalent resolution and range to the top of the line commercial devices at less than half of the

cost. Microscopy as a research tool can be further distributed among the research community by

lowering the cost of these research devices. Volumetric imaging, such as Confocal microscopy,

is an important tool in biological and material sciences [6][7][8][9][10] and would directly

benefit from the ability to more rapidly and accurately adjust the focal depth in the sample. The

result of this improvement would be both the ability to rapidly step to image faster processes and

hold a samples location for imaging slower processes. Improvements in performance will result

in faster, more benign (in the case of biological sciences) and more precise imaging. The

increased data gathering ability of the new device, combined with increased use in laboratories,

will enable fields of research such as biology and materials science to extend their analytical and

imaging capabilities further into the micro/nano-scale as well as further along the time scale for

both high speed and low speed processes.

1.2 Background

1.2.1 Confocal Microscopy

Confocal microscopy was first outlined by Marvin Minsky in 1961 [11] as a method o

non-invasive volumetric imaging. The sample is viewed over a series of stacked focal planes

which are reconstructed to form a volumetric (3-D) image of the sample. Each plane is scanned

sequentially using the particular optical property of Confocal microscopy which enables light

from a single point in 3-D space to be measured. This method has several advantages over the

standard practice of optical microscopy, where only the surface of the sample can easily be



discerned. In order for traditional optical microscopy to construct volumetric, or even sub-

surface images, slices have to be physically removed from the sample. Non-destructive imaging

enables in-vivo studies of samples, potentially gathering much more information about the object

of interest as well as preserving the sample's structure, which is sometimes key to obtaining an

accurate diagnosis. Confocal microscopy also simplifies the imaging of structures with features

extending along the Z-axis, such as cells [7][9] and 3D micro-materials [6][12][13].

A Confocal microscope operates through the use of two apertures, as shown in Figure

1.2. The first (Illumination) aperture turns the illumination into a point source that has a set

distance from the focusing lens. This ensures the illumination is focused to a particular height

(Focal Plane) in the sample. The return image is diverted using a partially reflecting mirror

through a second aperture (Image Aperture). The image aperture is placed at an equivalent

optical distance from the focusing lens as the illumination aperture. In such a configuration the

two apertures are said to be 'confocal'. Additionally, this configuration ensures that the only

image that is not attenuated by the image aperture is the one which was emitted from the

illuminated point on the focal plane.
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Figure 1.2: Schematic of Confocal microscope.

The desired image from the illuminated point in the focal plane is, in theory, able to pass

unaltered through the image aperture and is captured by the imaging sensor. Focusing the

illumination to exactly the point which is imaged maximizes the image quality, however the

apertures must be aligned for best performance otherwise the image quality or intensity is



degraded. This system is only capable of examining one 3D spot at a time on the focal plane,

thus in order to collect images, the imaging point must be scanned over the focal plane. One

method for doing this is through the use of Nipkow disks for the aperture [14], which have holes

in spiral patterns cut through them. By rotating the disk, the imaging point is rapidly translated

over the focal plane, as shown in Figure 1.3.
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Figure 1.3: Schematic of Confocal microscope utilizing Nipkow disk [15]. © 1968 OSA.

Confocal microscopy has proven to be an extremely useful tool for science over the years

beginning with its commercial introduction in the 1980's, and has gained widespread use

throughout a range of fields from chemistry to biology to micro-electronics [19]. It first gained

widespread use in biology as a method to observe structures within living cells, which was not

feasible with earlier technologies due to the tendency to kill the cell during processing of the

sample for imaging. Sample preparation and special chemicals were not required for Confocal

imaging and systems could be observed in full 3-D. This revolutionized light microscopy in cell

biology and pathology [16]. Confocal imaging has expanded into materials science and is now

used to study a wide range of micro- and nano-scale structures such as those shown below.

The propagation of electric fields through liquid crystals used for displays [6] was studied

using Confocal microscopy with sub-micron resolution to better understand the response of the

material to applied fields, as shown in Figure 1.4.
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Figure 1.4: Confocal image of liquid crystals in an electric field [20]. © 2008 SPIE.

This direct observation and study of the micro-scale behavior of liquid crystals enables a better

understanding of the physics underlying the liquid crystals. An improvement in the theory of

liquid crystal enables improvements in liquid crystal display performance and device efficiency.

New biological structures, called bio-nanotubes, were recently experimentally observed

through Confocal imaging of cells [7], as shown in Figure 1.5.

Figure 1.5: Confocal image of bio-nanotubes [21]. © 2008 ACS.



These structures have not previously been observed due to their extreme geometry. The

extraordinarily small cross section of the tubes makes it difficult to observe them using 2-D

slices of the sample, both because of the likely damage to the structure during sample preparation

and the small cross-section. Only when observed in-situ and through 3-D imaging do they

become apparent.

Intracellular structures have been studied with Confocal imaging, resulting in both the

measurements of real-time 3D distribution of certain chemicals within the cell [8] and the

geometric layout of sub-cellular organelles [9][22], such as chloroplasts as shown in Figure 1.6.

Figure 1.6: Confocal image of intracellular structure [23]. © 2008 ACS.

Direct observation of intracellular chemistries and organelles enables cellular models to be

quantitatively fit to observed cellular properties, making it possible to better predict and

understand cellular mechanics.

Confocal imaging has been used to study the properties of micro and nano-scale materials

such as fibers [12] and silicon nanorods [13]. This imaging technology enables direct

observation and quantification of the nano-scale geometry of the materials, as shown in Figure

1.7.
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Figure 1.7: Confocal image of micro-fiber [24]. © 2008 JMS.

The 3D images of micro- and nano-scale structures allow for study of their material properties,

and evaluation of their fabrication. All of this is a result of Confocal microscopy technology.

1.2.2 Positioning Stage

In order to obtain volumetric images, the focal plane of the microscope must be moved

relative to the sample. The process of collecting these planar images is referred to as Z-stacking

[16]. There are two methods to do this: realign optics to change the focal plane while the sample

remains stationary, or realign the sample height while the focal plane remains unchanged.

Realigning the sample is generally the better choice for several reasons which are linked

to the complexity of the optics. By altering the optical system through motion of the

components, the possibility of damage (thermal warping, creep, fatigue, etc) is increased exactly

where it is most difficult to repair, inside the tightly controlled environment of the optical

column. Additionally, the optical components are calibrated to exact locations and angles;

motion of these components makes continued assurance of this calibration difficult. In

comparison, the sample is often of low mass and resistant to motion based damage, thus the

small amount introduced by physically displacing it does not affect the sample or the images

significantly.

In-plane motion can be carried out through several methods: shifting the imaging point

with a Nipkow disk-like aperture mechanism as described previously, by adjusting the angle of

mirrors or an Acousto-Optic Deflector (AOD) directing the light to the sample [5] or by moving
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the sample. The AOD adjusts the optical path of the microscope through slight variations in the

index of refraction of a piezoelectric crystal. These variations are generated by a standing sound

wave which is created in the crystal. Variation in the amplitude and frequency are generally

used to control the amount of deflection of the light passing through the AOD. The case of in-

plane translation of the sample differs in comparison to Z-stacking in that the scanning mirrors

are low mass and sturdy compared to other optical components. Motion of these mirrors or the

AOD does not cause the same issues as attempting Z-stacking using only the optics.

Additionally, the frequency of motion is much higher in plane than out-of-plane, as the focal

plane scanning for video-rate imaging must be carried out over each plane before stepping up or

down. This makes low mass mirrors or AOD the general solution for scanning.

1.3 Prior Art

1.3.1 Technologies

A wide range of technologies have been used in a variety of permutations to produce Z-

axis positioning stages. Technologies used for actuation include leadscrews [2][11], linear

actuators [3][25][26], and piezoelectrics [1][4][27][28]. Technologies used for bearings include

sliding [3][11][26], rolling [3][26], and flexural [1][2][4][25][27]. Technologies used for

position sensing (when it is used at all) include- strain gages [25], optical [1], and piezoelectric

[4]. A few selected designs encompassing the various important permutations of technologies

listed above have been examined in greater detail in the sections below.

1.3.2 Precision Microscope Stage

George described a design for a microscope stage utilizing flexural bearings and

leadscrew actuation, as laid out in his 1972 patent [2]. This design is shown in Figure 1.8.



Figure 1.8: Diagram of precision microscope stage [2].

The design utilized flexural bearings (element 26 in the figure) to set the kinematics of the outer

stage to only enable vertical deflections. This bearing was then driven through a worm-gear like

actuator (44) which acted as a displacement actuator. The inner nested stages (30, 32) enabled X

and Y motion through some un-specified actuation and bearing.

The design lacks the closed loop operation which is crucial to precision devices for

rejecting disturbances such as material property creep, thermal error, loading errors and a whole

host of other minor parameters which cannot be held precisely constant. This design is intended

to be manually actuated, and this actuation is coarse, due to the use of rubbing contact to drive

motion. Backlash and static friction will become major problems for this device if high accuracy

and resolution positioning is desired.

1.3.3 Mechanical Scan System for Microscopic Applications

Marsman et al. described a design for a microscope stage utilizing flexural bearings,

piezoelectric actuation, piezoelectric sensing and closed loop control as laid out in his 1983

paper [28]. This design is shown in Figure 1.9.
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Figure 1.9: Diagram of mechanical scan system [29]. © 1983 AIP.

The voice-coil type actuation is used for in-plane actuation, and small sapphire balls are used as

bearings for the in-plane motion. A combination of flexural bearing and piezoelectric actuation

are used for the vertical axis. The actuation is not done from directly below the sample, but

rather from a lever arm where the bearing is the rotary joint. Thus, the vertical motion contains

parasitic in-plane motion due to its inherently rotary nature. The device operates in a closed loop

form, and has three actuators for three degree-of-freedom (DOF) motion

The design has extremely limited vertical displacement (5 um), limited sample holding

capabilities and a large profile, requiring custom fitting to Confocal microscopes. It would be

difficult to turn this imaging stage into a commercial product due to its complexity and size.

1.3.4 Piezoelectric Z-axis Stage

Rondeau et al. described a design for a microscope stage utilizing flexural bearings,

optical sensing, piezoelectric actuation and closed loop control, as laid out in his 2007 patent [1].

The design is shown in Figure 1.10.

_



Figure 1.10: Diagram of piezoelectric Z-axis stage [1].

This design is radically simpler those previous described due to the repeated use of a combined

bearing/actuation set (40, 42, 44) for producing vertical motion. This set is composed of a

piezoelectric actuator nested within a flexure designed to magnify displacements through a

mechanical amplification structure. Three of these sets were used to ensure kinematic control of

the central moving stage (28). Optical measurements of the stage location are suggested for

position sensing. This would be carried out through the use of the microscope imaging the

sample- the relative motion of the stage could be observed and controlled out through the

actuators.

The design does not specifically address the problem of unwanted rotations in the stage

during vertical motion, especially through the slow drift of piezoelectric actuator properties.

These could easily lead to large undesired and uncontrolled rotations of the central stage that

would be difficult to capture with optical control. The displacement based actuation means three

points of contact are made with the center stage, making it likely that some non-repeatable

sliding occurs at these points unless the actuators are allowed freedom to move in-plane.

Piezoelectric actuators have a limited range for their size. They also have large problems with

accuracy over time, due to a slow relaxation even under voltage command. The drift would

require a high resolution control loop to remove, however the suggested optical system is

extremely complex, relatively low resolution and prone to grounding loop issues (such as motion

of the camera being interpreted as stage motion).



1.4 Deficiencies

A number of limitations on present Z-axis positioning stage technology limit the further

use of these devices for research. Most Z-axis positioning stages have difficulty achieving large

displacements (>100 [tm) due to their use of piezoelectric actuation [1]. This actuation

technology is also expensive, prone to drifts and requires high voltage control equipment to drive

correctly. Position sensing, and thus precise motion control, is not common on commercial

devices. This has the added problem of making the devices sensitive to time and thermal

variations in actuator/bearing performance.

The technologies presented and the sets used in the particular cases studied indicate the

possibility of a new combination of technologies which could produce performance superior to

any of the described cases. Recent advances in optics have made it possible to obtain single

nanometer level Z-axis resolution in Confocal imaging [30]. Improvements in electronics and

optics have enables imaging at rates of 200 Hz and above [5]. This means advances in the nano-

positioning stages in resolution, accuracy and speed can be fully utilized by the image capture

technology. With stable actuation, high resolution bearings and precise control, nanometer scale

position control should be possible, enabling a host of new insights in biology, chemistry and

materials science.

1.5 Requirements

The requirements for a new competitive Z-axis positioning stage, the HSFD, are laid out

in Table 1.1.



Functional
Requirement

Range
Repeatability

Resolution
Bandwidth
Accuracy

Maximum Load
Natural Frequency

In-plane Tilt
Temperature range
Target system cost

Material
Power Draw
Stage Temp

Aperture (x,y)
Envelope (x,y,z)

Table 1.1: HSFD

Required

100
40
100
100
0.5
500
>1
<10

5 to 50
<2500
Any
<30
<5

285x65
<260x165x26

requirements.

Desired

500
1
10

200
0.05
500
>1

<10
5 to 50
<2500

Al
<10
<2

165x112
<260x165x26

The range, repeatability, resolution, bandwidth, accuracy, in-plane tilt and cost are set to

either compete with or exceed that of existing top-of-the-line systems utilizing piezoelectric

actuation such as those produced by Physik Instrument [31]. The natural frequency constraint

ensures that the device settling time is rapid enough to enable sequential stepping for Z-stacking.

The temperature range is the typical range set for biological systems, which the system must

endure. While any material may be used, aluminum is preferred due to its machinability and low

creep. The power draw constraint ensures that normal power electronics can be used to drive the

device. The stage temperature constraints ensure the safety of the sample during operation.

Finally, the aperture and envelope geometry specify the operating space available for the device

such that it easily operates within commercial Confocal microscopes and can carry common

sample holders such as 96 well plates or slides.

1.6 Scope

This thesis describes the methods and reasons underlying the engineering decisions used

for design, presents the characteristics of the fabricated prototype, and describes further work

which may be done to finalize the design of the HSFD.

Units

Rm
nm
nm
Hz

% of travel
g
kHz
grad
oC
$

W
oC (AT)
mm
mm



Chapter 2 presents the qualitative design process through which the technology set for the

HSFD was determined, as well as the general structure of the device. Chapter 3 describes the

quantitative design process, including theory and results of the design process. Chapter 4

describes the fabrication and assembly process required to create the prototype without damaging

the components. Chapter 5 presents the device characteristics, including calibrations and

performance. Methods for calibration are also discussed. Chapter 6 summarizes the work done

in this thesis and provides a discussion of remaining work that may be done on the HSFD to

optimize its performance.



CHAPTER

2
CONCEPT COMPARISON

2.1 Introduction

The first step of the design process, qualitative analysis, is described in this chapter.

Qualitative design concepts are generated through evaluation of available technologies as part of

this analysis. These design concepts are compared over a range of relevant characteristics and

the qualitative design with the greatest potential is chosen for further quantitative analysis.

2.2 Bearing

2.2.1 Functional Requirements

The bearing functional requirements as extrapolated from the general device

requirements described in Table 1.1 previously are shown in Table 2.1.

Table 2.1: Bearing functional requirements.

Bearing Property Required Desired Units

DOF 1 3 ---
Cost <1000 <100 $

Geometry Must fit between aperture and envelope
Resolution <100 1 nm

Natural Frequency 1 >1 kHz

The bearing's number of DOF is determined by the basic requirement of the Z-axis

positioning stage to move along the optical axis (1 DOF). Very likely the motion will not be

perfect and parasitic rotations around the two in-plane axes will occur while the device is



undergoing this translation, thereby resulting in positioning error across the face of the stage. To

control this, the device should be able to actively move in these added DOF in order to

counteract the parasitic motions. This results in desired three DOF for the bearing. For the two

rotational DOF, only a small range of motion is required. The cost is largely an order of

magnitude estimate made by assuming that bearing, actuator and sensor will roughly distribute

the cost quoted in Table 1.1 evenly, and is set down simply as an extreme cutoff for possible

exotic and extremely expensive technologies that would otherwise meet the requirements. In

order to achieve the resolution desired for the HSFD device as a whole system, all components-

actuator, sensor and bearing must be capable of achieving this resolution. The geometric and

natural frequency requirements are translated directly from Table 1.1.

A range of bearing technologies were considered, however an in-depth evaluation was

restricted to a select range of technologies. A cursory examination with regards to

simultaneously meeting cost, geometry, and resolution requirements were generally sufficient to

exempt most technologies. Non-contact bearings such as: magnetic, hydrostatic and aerostatic

all required significant operational support equipment which adds significant cost, complexity

and size to the system. Contact bearings such as sliding, roller and flexural do not require

support equipment, and thus may be fit to a compact design. Roller bearings were discarded due

to an inability in the HSFD to capitalize on the main advantage this type of bearings: long range.

The remaining choices were sliding and flexural bearings [32].

2.2.2 Concept: Sliding Bearing

A sliding bearing is composed of two essentially rigid bodies that are constrained through

surface contact to only allow relative motion in a particular direction as shown in Figure 2.1.

The sliding contact of the surfaces restrains motion in the direction normal to the surface, while

allowing motion coplanar to the surfaces. The degree of constraint (DOC) is characterized by

the stiffness of the 'rigid' bodies, while the DOF is characterized by the combination of static

and kinetic friction. The fundamental differences between the physics characterizing these

degrees enables extremely large differences in the force range associated with motion along the

DOC versus the DOF.



Figure 2.1: Sliding bearing.

The bearing surfaces are usually coated with a lubricant to reduce both static and kinetic

friction. Friction both limits the minimum step and produces heat, which may thermally strain

the device, reducing accuracy. Specialty coatings have been deposited on the bearing surfaces to

further attenuate these effects in high end sliding bearings; however the coatings are expensive

and complex to produce in high quality [32].

2.2.3 Concept: Flexural Bearing

A flexural bearing is composed of a structure directly linking the moving body to ground

which is capable of deforming over the range of the bearing due to loading. The compliance of

the flexural bearing sets the relation between the actuation force and displacement of the bearing.

The flexural bearing is modeled as compliant in all directions, with the magnitude of the stiffness

determining the attenuation of input forces. Generally, DOCs are characterized by stiffnesses

which are two to four orders of magnitude higher than the stiffness of the DOFs.



Figure 2.2: Flexural bearing.

The resolution of a flexural bearing is not limited by the flexures, but rather by the

actuation equipment. Flexural bearings have a low displacement per size ratio, on the order of

0.01-0.1 due to the low strain limits of commonly used materials. The deterministic relation

between applied load and resulting displacement of the bearing is extremely useful for high

precision equipment [32].

2.2.4 Concept Comparison

The bearing concepts described above were qualitatively compared to determine the

design best suited for use in the HSFD. Bearing properties which differed significantly among

the concepts are shown in Table 2.2 and discussed in detail below.

Table 2.2: Bearing concepts

Bearing Sliding
Property Bearing

Design Freedom 0
Kinematics 0

DOF 0
Resolution 0

Friction 0
DOC stiffness 0

Complexity 0

Pugh chart.

Flexural
Bearing

+

+

+

+
--

+



The design freedom of the flexural bearing is somewhat more constrained than that of the

sliding bearing due to the need to ensure the DOCs are sufficiently rigid. The sliding bearing

will largely ensure this without specific design effort. The desired kinematics of the HSFD will

be difficult to achieve with the sliding bearing, particularly given the low profile. The

requirement of long contact area versus separation between bearing surfaces to avoid locking the

bearing will be difficult to achieve in the available space. The resolution of the sliding bearing

may be sufficient if the surface is properly fabricated and treated, however this will be expensive

and difficult as described earlier [32]. The friction generated by the sliding contact will generate

heat exactly at the location where thermal growth is least desired, likely causing accuracy issues.

The flexural bearing will have difficulty reaching the desired rejection of motion along the

constrained directions compared to the sliding bearing. The fundamentally different principles

setting the two systems' DOC/DOF ratios (stiffnesses) mean that the sliding bearing has a

significant advantage. Conversely, the lower DOC/DOF stiffness ratio of the flexures makes it

easier to control the undesired motions. The rigid sliding bearing is totally un-adjustable once

fabricated, while the flexural bearing's motion can be adjusted during operation. The sliding

bearing will have a simpler interface, however the required kinematics and difficulty of

fabrication suggest that it will be significantly more complex to implement than the flexural

bearing.

2.2.5 Concept Selection

In nearly every category, the flexural bearing was determined to be the better choice,

especially when it is noted that the categories in which it did not exceed the sliding bearing are

those which may be accounted for through proper design. The selection process determined that

flexural bearing technology should be used, however the type (geometry) of the bearing

remained undecided.

2.2.6 Flexural Concept: Single Level Flexural Bearing

The single level flexural bearing concept is composed of a number of coplanar discrete

flexures as shown in Figure 2.3.



Figure 2.3: Single level flexural bearing.

The out-of-plane bending mode of a flexure is assumed to be its DOF, while the in-plane

deflections are assumed to be its DOCs. The single level flexural setup will not have any

significant constraint rejecting the two rotations around the in-plane axes [33], which are shown

in Figure 2.3. Thus it will have low stiffness in three DOFs. It is desired that the bearing have a

low stiffness only in the vertical DOF, and have moderate to high stiffness in the other two DOFs

to minimize the magnitude of the rotations.

2.2.7 Flexural Concept: Multi-Level Sheet Flexural Bearing

The multi-level sheet flexural bearing concept is composed of two parallel planes of

flexures as shown in Figure 2.4.



Figure 2.4: Multi-level sheet flexural bearing.

The flexures are no longer on the same plane for this concept, therefore the center of rotation is

now somewhere between the planes. All of the rotations described in the single level flexural

bearing will now translate into in-plane motions for the sheet flexures, resulting in high

stiffnesses for these rotations [33]. The multi-level sheet flexural bearing will have only one

DOF that is adjustable within a reasonable force range.

2.2.8 Flexural Concept: Multi-Level Discrete Blade Flexural Bearing

The multi-level discrete blade flexural bearing concept is composed of two parallel

planes of flexure blades as shown in Figure 2.5.



Figure 2.5: Multi-level discrete blade flexural bearing.

The multi-level discrete blade flexural bearing concept is related to the multi-level sheet flexure

concept, but sections of the sheet flexure have been removed to regain some compliance in the

rotational DOF. The multi-level discrete flexure blades will still have a high stiffness in the

rotational DOF; however this effect will be dependent on the bearing geometry for the rotational

axis shown in Figure 2.5. The flexures do not attach to the center stage directly above the axis of

rotation; therefore the instantaneous direction of motion for the flexures is not necessarily largely

in-plane (the DOC for flexures). As the center stage is reduced in height and increased in length

(flattened), the direction of motion for the discrete blades comes closer to approximating purely

vertical motion, with its correspondingly low stiffness. Thus, the stiffness for the pictured

rotational motion is somewhere between the vertical DOF and the rotational DOC.

2.2.9 Flexural Concept Comparison

The flexural concepts described above were qualitatively compared to determine the

design best suited for use in the HSFD. Flexural bearing properties which differed significantly

among the concepts are shown in Table 2.3 and discussed in detail.



Table 2.3: Flexural concepts Pugh chart.

Bearing Property SLDF MLDF MLSF

DOF 0 + ++
Clamping 0 0

Space requirements 0 0
Complexity 0 0 +

Design freedom 0 0

All three designs technically have three DOF, however it is desired that the two rotational

DOF have much higher stiffnesses than the vertical DOF. The single level discrete flexure

(SLDF) bearing has the lowest ratio of stiffnesses for rotational vs. vertical motions. The multi-

level sheet flexure (MLSF) has the highest ratio. The MLSF will present fabrication difficulties

due to the large area that must be clamped for the flexure to be repeatable. The low profile

geometry of the HSFD requires all the components to be stacked together in as small a space as

possible. The MLSF will make this difficult because it occupies a large area. The complexity of

both the SLDF and the multi-level discrete flexure (MLDF) bearings are greater than the MLSF,

owing to the detailed geometry, versus the simple sheet. The MLSF has significantly less design

freedom, making it harder to adjust the bearing properties to desired values.

2.2.10 Flexural Concept Selection

The initial choice for the bearing was the MLSF, as little weight was given to the clamping or

space requirement property. A proof-of-concept prototype (A) was fabricated and is shown in

Figure 2.6. Several problems were immediately noted with the design. The clamping and space

requirements were re-weighted to be much more important and the required thickness of the

flexure sheet was low enough that the sheet was very susceptible to damage. The MLDF bearing

was re-evaluated to be the bearing choice because of the insights gained from prototype A.



Figure 2.6: Multi-level sheet flexural bearing prototype.

2.3 Actuator

2.3.1 Functional Requirements

The actuator functional requirements as extrapolated from the general device

requirements described in Table 1.1 are shown in Table 2.4.

Table 2.4: Actuator functional requirements.

Actuator Property Required Desired Units

DOF 1 3 ---
Cost <1000 <100 $

Geometry Must fit between aperture and envelope
Resolution 1 100 nm

Power <30 <10 W
Max force >1 >10 N

Response Time <10 <1 ms

The actuator functional requirements match those of the bearing for DOF, cost, geometry

and resolution because the actuator must function with the bearing to produce the full system

DOF, must fit in the device and must itself also have a high resolution to enable the whole

system to achieve high resolution. The power requirement is drawn from Table 1.1. This

requirement is intended to ensure that the HSFD can be driven by common power electronics,

r



rather than necessitating an expensive high-power custom setup. The maximum force

requirement provides a force estimate upon which the bearing and actuator models later

converge. The response time requirement ensures that the actuator is able to drive the system at

or above the required bandwidth in Table 1.1.

A range of actuation technologies were considered, and as with the bearing qualitative

analysis, the in-depth evaluation was restricted to a select range of technologies. The

simultaneous requirements for high resolution and low power exempted most technologies, such

as steppers, leadscrews, etc. The remaining technologies were piezoelectric and electromagnetic

such as reluctance and Lorentz actuators [32].

2.3.2 Concept: Piezoelectric Actuator

A piezoelectric actuator is composed of stacks of disks, each of which expands when

voltage is applied across it. In order to magnify the effect, many disks are stacked in series, as

shown in Figure 2.7.
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Figure 2.7: Piezoelectric actuator.

The piezoelectric effect requires high voltages but low current, thus it draws little power and

generates little heat. It is also high speed because the physics of the effect are based on an

atomic realignment rather than a diffusion effect. Piezoelectric actuators act as displacement

sources due to their relatively high stiffness. Hysteresis and drift are significant factors when

dealing with these actuators [32].



2.3.3 Concept: EM- Reluctance Actuator

A reluctance actuator is composed of a magnetic field generator (Coil) and a

magnetically permeable component (Plunger) which is drawn into the magnetic circuit to lower

the net circuit resistance and correspondingly lower the net circuit energy, when the coil is

activated. Often, the actuator efficiency will be increased through the use of the magnetic flux

guiding path (Core), as shown in Figure 2.8.

Core
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Flux
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Plunger

Coil
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Figure 2.8: Reluctance actuator.

Reluctance actuators can produce extremely high forces because of the large difference in energy

as the plunger is drawn into the magnetic circuit. In the case of reluctance actuators that utilize

cores, the dominant energy storage location for the circuit is the volume of the gap (Air Gap) into

which the plunger is pulled. The replacement of the air resistor with the magnetically permeable

plunger (generally a ferromagnetic material like steel) reduces the magnetic resistance of the gap,

lowering the energy stored in the system. Reluctance actuators have a relatively slow response

because of the need for the actuator to charge up the gap magnetic field before a force is felt by

the plunger [32].

2.3.4 Concept: EM- Lorentz Actuator

A Lorentz actuator is composed of a magnetic field generator (Permanent Magnet) and a

coil which pushes against the magnetic field through the Lorentz force. The magnetic field is



usually guided with a magnetically permeable core, similarly to the reluctance actuator, as shown

in Figure 2.9.

Coil

Permanent

Magnetic Flux

Figure 2.9: Lorentz actuator.

Once the static magnetic field is generated, which can be done using a separate coil, current is

driven through the main coil to create a force. Unlike the reluctance actuator, the main coil does

not have to create a magnetic field to produce a force. The Lorentz actuator coil simply pushes

against an existing magnetic field, making it possible to achieve a much higher operating

bandwidth than the reluctance actuator [32].

2.3.5 Concept Comparison

The actuator concepts described above were qualitatively compared to determine the

design best suited for use in the HSFD. Actuator properties which differed significantly among

the concepts are shown in Table 2.5 and discussed in detail below.



Table 2.5: Actuator concepts Pugh chart.

Actuator Property Piezoelectric Reluctance Lorentz

Range 0 ++ ++
Geometry layout 0 - 0
Response time 0 -- 0

Force 0 -

Control Equipment 0 + +
Repeatability 0 0 +

The range of the piezoelectric actuator is limited to a small percentage of its length, while

the EM actuators have a range limit of approximately the length of the plunger or coil. This

requires the piezoelectric actuator to either be large or use mechanical amplification. The shape

of the actuators must work with the low profile of the HSFD. The reluctance actuator design is

least compatible with this, owing to its dispersed component layout. The response time of the

reluctance actuator is significantly worse then the other two actuation methods due to the

intrinsic requirement of charging the air gap magnetic field to create the actuation force. The

piezoelectric actuator has a significant advantage in force output because of its displacement-

based actuation and high stiffness. The physics of the piezoelectric actuator require high

voltages (>100 V) to extend over its full range, meaning that control electronics must be

specialized and are more expensive than the single digit voltage and current draw of the EM

designs. The repeatability of the Lorentz actuator is likely the best among the concepts because

of drift in the piezoelectric actuator and the latent magnetization of the reluctance actuator core.

2.3.6 Concept Selection

The initial thought was to use the reluctance actuator; however early modeling suggested

the response time and heat dissipation were significantly higher than the functional requirement

limits. The secondary choice of Lorentz actuation was therefore implemented. The geometric

layout of the actuator is determined next.

2.3.7 Lorentz Concept: Ring Actuator

The ring actuator concept is composed of a single large coil wrapped in-plane around the

center stage, which interacts with a magnetic field that is produced by a magnet distributed over

its entire length, as shown in Figure 2.10.



Core

Figure 2.10: Lorentz ring actuator.

Thin walls of magnetically permeable material focus the flux from the magnet over the coil,

resulting in a single net force that is pointed vertically and distributed over the entire coil.

2.3.8 Lorentz Concept: Voice Coil Actuator

The voice coil actuator concept is composed of discrete, tightly packed Lorentz coils

where the magnetic flux is driven radially across the cylindrical coil for maximal packing

efficiency of the actuator, as shown in Figure 2.11.
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Figure 2.11: Lorentz voice coil actuator.



Each coil is independently adjustable, making it possible to command motions over more than

simply the vertical DOF. The placement of the coils as shown above is done to locate their

center of force near the center of the stage as well as to maintain symmetry.

2.3.9 Lorentz Concept: Compact Ring Actuator

The compact ring actuator concept is composed of discrete Lorentz actuators as with the

previous design, however now the actuators are altered to conform to the low profile and

rectangular geometry working volume of the HSFD, as shown in Figure 2.12.

Permanent Magnet Y

Figure 2.12: Lorentz compact ring actuator.

The extended geometry of the actuators makes them less efficient at utilizing the coil, because

there is some coil out of the field at the edges. The lower efficiency is mitigated by the

conforming rectangular geometry, which enables larger magnets and coils to be used, compared

to the ring coils. The net result is a more powerful actuator.

2.3.10 Lorentz Concept Comparison

The Lorentz actuator concepts described above were qualitatively compared to determine

the design with best suited for use in the HSFD. Lorentz actuator properties which significantly

differed among the concepts are shown in Table 2.6 and discussed in detail below.



Table 2.6: Lorentz concepts Pugh chart.

Actuator Property Ring Voice Coil Compact
Ring

DOF 0 + +
Geometry layout 0 - +
Flux efficiency 0 + +

The ring actuator concept only has one DOF for its commands as it is composed of a

single coil. This does not allow the actuation force to be adjusted, only scaled. The other two

designs are able to achieve three DOF for actuation. The geometric layout of the actuators is

worst for the voice coil concept due to its need for large circular volumes for each actuator. The

ring concept would nest well with the center stage, but would require a large volume of magnets

and magnetically permeable material. The compact ring concept would fit in presently unused

space in the HSFD and make maximal use of the permanent magnets used in it. As a measure of

use of the available permanent magnet, the flux efficiency is lowest for the ring concept because

the coil would require much core and permanent magnet material.

2.3.11 Lorentz Concept Selection

The compact Lorentz actuator was judged to be the best design concept for the HSFD

actuation owing to its all around strengths compared to the other designs.

2.4 Sensor

2.4.1 Requirements

The sensor functional requirements as extrapolated from the general device requirements

described in Table 1.1 previously are shown in Table 2.7.



Table 2.7: Sensor functional requirements.

Sensor Property Required Desired Units

DOF 1 3 ---
Geometry layout Must fit between aperture and envelope

Resolution 100 1 nm
Cost <1000 <100 $

Response time 1 <0.1 ms

The sensor functional requirements match those of the bearing and actuator for DOF,

cost, geometry and resolution. The remaining, unique functional requirement is the sensor

response time, which should be greater than 10x faster than the mechanical bandwidth of the

device. Preferably, the sensing system has a bandwidth greater than 50x faster, such that the

digital sampling of the system (carried out at about 30x the operating bandwidth) is not affected

by sensor dynamics.

A range of sensor technologies were considered, and as with the bearing qualitative

analysis, the in-depth evaluation was restricted to a select range of technologies. The

simultaneous requirements for extremely low space requirement and low cost exempted most

technologies. Piezoelectric sensing was rejected due to the inherent dynamics of the sensor

which cause it to act similarly to a high-pass filter. The remaining technologies were Linear

Variable Differential Transformers (LVDT) and strain gage sensors [32].

2.4.2 Concept: LVDT

An LVDT sensor is composed of three coils, one (Reference Coil) which drives a

sinusoidally varying magnetic flux through a simple magnetic circuit (Magnetic Flux), exciting

the two sensing coils (Secondary Coil) proportionally to the location of the central moving

component (Core) as shown in Figure 2.13.
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Figure 2.13: LVDT sensor.

The location of the core determines the magnetic resistance of the circuits in which the

secondary coils lie. Motion of the core simultaneously increases the resistance in one secondary

coil's circuit while decreasing the resistance in the other secondary coil's circuit. This difference

alters the total flux passing through the secondary coils, thus affecting their responding voltage

to the time varying magnetic field passing through them. The secondary coils are wired to

measure the difference voltage between them. The net result is an output signal amplitude

proportional to the core distance from center equilibrium. The overlap of the outer magnetically

permeable shell beyond the core length ensures that the total flux driven by the reference coil is

not altered, thus the moving core sees no forces generated by the LVDT. The core does not have

to be in contact with the outer shell, as the magnetic field can jump the small air gap. LVDT

sensors generally have a resolution on the scale of about 1 [im or greater [32].

2.4.3 Concept: Strain Gage

A strain gage sensor is composed of a thin resistance wire adhered to the surface of the

material undergoing strain. Current is applied over this resistor, and the small variation in

resistance with strain is read as a voltage change. The general form of a strain gage is shown in

Figure 2.14.



Figure 2.14: Strain gage sensor.

Strain gage sensors rely on underlying structural design of the substrate material such that the

measured strain is somehow linked to the desired parameter to be measured. In the case of the

HSFD, this means the strain must be linked to the displacement of the device, a requirement

which is met on the flexures in the bearing. The strain dependent change in the sensor is

extremely small in magnitude compared to the steady output, additional signal processing is

usually done to isolate and boost the signal. Generally, this is done through hardware such as a

Wheatstone bridge, as described in section 3.5.3 later. A strain gage has a theoretically

unlimited inherent bandwidth, because the resistance change dynamics are nearly immeasurably

fast. Strain gages have no inherent drift exempting thermal variation, which is discussed further

in Section 3.5.2. Thermal compensation is generally carried out with proper hardware design.

The resolution of these sensors is limited only by the electronic noise of the sensing circuitry

[32].

2.4.4 Concept Comparison

The sensor concepts described above were qualitatively compared to determine the

design with best suited for use in the HSFD. Sensor properties which significantly differed

among the concepts are shown in Table 2.8 and discussed in detail.



Table 2.8: Sensor concepts Pugh chart.

Sensor Property LDVT Strain Gage

Geometry layout 0 +
Cost 0 +

Resolution 0 ++

The geometry of the strain gage sensor is more easily integrated into the composite HSFD

design, as it mounts directly to the surface of the flexural bearings, occupying negligible volume.

LVDT sensors would require a mounting point on both the rigid base and movable stage and

would have to be aligned vertically between these points. The LVDT sensor must be about on

the scale of 12 mm or less in length for use in the HSFD, which would likely require a custom

sensing solution using LVDT technology. The cost of such a sensor would be significantly more

than strain gages, which are commercially available for a few dollars. The resolution of strain

gage sensors far exceeds that of LVDT sensors due to the inherent limitations in the LVDT.

2.4.5 Concept Selection

The strain gage sensor was determined to be the best design concept for the HSFD

sensing for three reasons. The extra signal processing electronics required for the LVDT sensor

presented significantly more complexity then that required for a strain gage sensor. The easy

integration into the present bearing design of the strain gage sensor allowed for a simpler

geometric design. Finally, the lack of any inherent resolution limits to the strain gage sensor

made it possible to reach the desired resolution range for the HSFD.



CHAPTER

3
ANALYTICAL DESIGN

3.1 Introduction

In this chapter, the analytical design process for the HSFD is described with the

explanations and descriptions of the engineering models created. A single overall model is

created for the HSFD containing sub-models of the main components including bearing,

actuator, sensor and electronics. Using this full model, the exact properties (geometry,

components, materials, etc.) of the HSFD are determined.

This design process is characterized by a focus on closed-form mathematical modeling of

the device parameters of dominant importance. Simplicity is favored in the design process, as it

generally enables a closer match between the model predictions and device performance.

Accuracy in the modeling when carried out in closed form enables the characteristic equations to

be inverted to determine device geometry and other properties as functions of the desired

performance. Secondary methods such as finite element modeling are used to predict system

performance and iterate to improvements in this performance when it is not possible to make

closed form models.

3.2 Prototyping

Several prototypes were made during the design process to investigate various designs

and models. Prototype A was created to explore the multi-level sheet flexure design. Prototype

B was designed to explore the performance of reluctance actuation, Prototype C was created to

explore the control issues with the HSFD. Prototype D was designed and fabricated using the



insights from C for optimal mechanical performance for bearings and sensors. Prototype E was

designed but not fabricated as a possible modification for D with increased actuator performance.

3.3 Bearing Design

3.3.1 Method

The bearing design was carried out by generating closed-formed models to predict

bearing properties such as stiffnesses, and range limitations. These models were used to explore

the available design space as bounded by the various constraints set on the HSFD, such as

geometrical constraints and functional requirements. The desired properties were set and where

possible, the models were inverted to determine the geometry which would result in those

properties.

3.3.2 Choice of Materials

A number of factors must be considered when determining the bearing material

composition. Investigation of thin sheet flexures through the fabrication of Prototype A

suggested that the thinnest workable material would be around 127 jim (0.005 in.) to ensure the

flexural bearing was not damaged during fabrication. Order of magnitude estimates suggests that

flexures with thicknesses over 1 mm (0.040 in.) will not fit within the work volume. A range of

materials were studied to determine which could sustain the greatest yield strain, which would

result in the highest displacement per size. A low Young's Modulus is desired to reduce force

output for the actuators. Non-magnetic materials are required to avoid interactions with the

actuators. It is also desired that the material is easily machinable, commonly available and has

minimal creep. The materials that meet the criteria above are listed in Table 3.1 with their

associated properties [34]. The thickness of the materials are listed in the common units of the

material supplier, thousandths of an inch.



Table 3.1: Flexural materials comparison.

Material E (y v G EY Thickness
GPa MPa GPa pe Thousandths (inches)

7075-T6 Al 71.7 503 0.33 27 7000 32-40
2024-T4 Al 73.1 345 0.33 28 4700 16, 20, 25, 32, 40
6061-T651 Al 68.9 255 0.33 26 3700 16, 25, 32, 40
1100-H18 Al 68.9 150 0.33 26 2200 5, 7, 10, 20, 32, 40
3003-H12 Al 68.9 124 0.33 25 1800 15, 16, 20, 25, 30, 32, 40

316 Steel 193 230 0.29 80 1200 5, 7, 10, 12, 15, 20, 25, 30, 40

The materials are sorted by yield strain, that being the most important parameter for

performance. While 7075-T6 has the highest yield strain, it is fairly limited in its range of

thicknesses. Conversely, steel has the lowest yield strain but the greatest range of available

thicknesses. Aluminum occupies a middle ground between these two extremes. The materials

and their associated thicknesses are used as inputs, starting from the top of the chart, to the

finalized models during the bearing optimization process as described in the optimization section

below.

3.3.3 General Flexural Design Equations

The modeling of the flexural bearing is based on a differential analysis of the flexural

beam, as shown in Figure 3.1.
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Figure 3.1: Differential segment of beam under pure moment loading.



The flexure is assumed to be undergoing pure moment loading Mz(x), to be thin, isotropic, linear

elastic and to be undergoing small deflections. Finally, the initial beam geometry is assumed to

be flat and symmetric around the neutral plane. This enables the beam deformation, y(x) to be

described using the Bernoulli beam-bending expression [35]:

2 y(x) _ M Z(x)
(3.1)

SX2  EIz
where E is the material Young's Modulus and Iz is the second moment of area of the beam. For a

beam with rectangular cross-section of thickness (Y-axis in Figure 3.1) h, and width (Z-axis) b,

the second moment is

bh3

Iz = (3.2)
12

For the flexural bearing design discussed in Chapter 2, the flexures have clamped-guided

boundary conditions, as shown in Figure 3.2. The guided end condition simulates the purely

vertical displacement of the center stage set at the end of the beam a distance L from the base.

Clamped End Condition F

Neutral Plane
M

MR X .... 6(F)
-- . =----- .- - -- --- -- - - - - - -- - - - - - -

Guided End Condition
FR

Figure 3.2: Clamped guided boundary conditions.

The boundary conditions of the beam can be characterized by three equations which capture the

zero slope behavior of the beam at either end as well as the zero displacement at the base of the

flexure:

y(O) = 0 y(L) = 0

(0) = 0



Integrating Equation (3.1) along the beam and solving for the integration constants through

Equations (3.2) and (3.3) results in a displacement profile for the beam. The displacement 6(F)

at the beam end (x = L) is a linear function of the transverse load on the beam F, material

properties and the beam geometry:

FL3
4(F) = - (3.4)

12El
Z

From Equation (3.1) and the differential model in Figure 3.1, the stress a(x,yN) in the

beam, where YN is distance from the neutral axis, can be defined using the geometric effects of

the beam curvature:

(XYN)Mz (x)N (3.5)
iz(x, , = (3.5)

The max stress om, will occur at the ends of the flexure, on its surface. This value can be related

to the yield stress ay through the safety fraction SF, which is derived from Equation (3.5) and the

moment distribution within the clamped-guided beam as:

FL h

SF= 2 2. (3.6)
Oy IZ

For wide plates (w/L > 1), the beam observes clamped boundary conditions along the Z-axis in

Figure 3.1, which leaves the beam unable to reduce inner Poisson effect stress generated by the

tension/compression occurring along the X-axis. The net result is an effective stiffening of the

beam which can be characterized [35] by:

E el 2 , (3.7)

where Eeff is the material's effective Young's Modulus and v is the material's Poisson ratio. This

is only true when the beam width is on the same order as the beam length.

3.3.4 Linear Stiffness

The vertical linear stiffness of the flexural bearing is calculated through finding the

stiffness of the discrete flexures, then summing up the flexures in parallel. The flexures split into

two sets, 1 & 2, as shown in Figure 3.3.



Flexure Set 2

Figure 3.3: Flexural bearing geometric layout.

The center of geometry (COG) is located at the geometric center of the stage, and is used as the

origin of the coordinate frame in which the bearing is analyzed. Several assumptions are made

in order to calculate the vertical stiffness,: first that the center stage is rigid, second that the outer

base is rigid, and third that all of the Bernoulli beam-bending assumptions are met.

Using the expression for the transverse stiffness of a clamped guided beam as shown in

Equation (3.4), the vertical stiffness of the center stage kz can be written as

12El 12E2
kz =4 +4 2 (3.8)

L LJ2

where Iz, Iz2 are the second moment of area and Lfj, Lp are the lengths of flexures in sets 1 and 2

respectively. The center stage stiffness in the Y-axis, ky, ss calculated through assuming shear to

be the dominant mode of deflection, as suggested by the ratio of bending to shear stiffness,

resulting in the expression

(b,hi, )G (bj2hj2)G
k = 4 +4 , (3.9)

L L

where G is the material's shear modulus, btj, bf2 are the widths and hfl, hf2 are the thicknesses of

flexures in sets 1 and 2 respectively. The center stage stiffness in the X-axis, kx, is calculated

through assuming axial stress to be the dominant mode of deflection, as suggested by the ratio of

bending to axial stiffness, resulting in the expression

(b h, ) E (bj2h 2 ) E
kx =4 +4 (3.10)



3.3.5 Rotational Stiffness

The rotational stiffness of the center stage is calculated through determining the

differential in- and out-of-plane motions of the discrete flexures associated with the rotations,

then summing up the effective stiffnesses to find the total value.

The method for determining the rotational stiffness for the Ox-axis is described below,

and extrapolated to the Oraxis. The cross section of the center stage with the flexural bearing is

shown in Figure 3.4 to illustrate the geometry determining the bearing response to rotations.

These rotations are modeled as occurring around an axis passing through the center of stiffness

(COS), which sits a distance ycos from the COG.
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Z +hFigure 3.4: Cross section of flexural bearing.The equilibrium angle of the flexures to the COS, Ooxj & Oox2, can be calculated from Figure 3.4above, where Zsep is the thickness of the center stage, and Yfmin is the separation of the flexures:
y ta- (Yf in + by, )+ 2Ycos

= [ " (3.11)
2 = tan- (mi b) f)- 2 ycos

The distance of each of the flexures from the COS, Rxl & Rx2, are calculated in the same fashion:



Rx= Zsep+ h, 2 ,fmin +b+ YCOS 2

(3.12)

S hfl Ycos
RX2 s(Z +2 fin2 --

The differential motion of the flexures as a result of small rotations is depicted in Figure 3.5. For

small rotations 6~, the motion can be decomposed into linear displacements along the Z-axis, by,

and Y-axis, 6z.

Fz
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Y
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Figure 3.5: Differential model of stage rotation.

The flexural stiffness for each of the displaced directions defines the force, Fy & 5Fz, produced

by the flexures in set i in response to the displacement,

SF, = ky,, = ky, cos(O,, )oRx
F= (3.13)

oFz, = kzi z = kzi sin(o, )iRx(
The forces produced by each flexure can be translated into an effective torque, 6T, resulting from

the small rotation around the COS:

tT = SFyj sin(9 ,,)Rxi + 6Fz, cos(90 xi)Rx. (3.14)
Combining Equations (3.13) and (3.14) results in the effective rotational stiffness kox, for each

flexure:

koxi = kyj (sin(90xB )Rx, )2 + kz (cos(9Ox )Rxi )2. (3.15)



The net center stage rotational stiffness is found by summing up the effective rotational

stiffnesses of the four flexures in set 1 and four in set 2, and assuming both center stage and outer

base rigidity:

kox = 4kox, +4kOX2. (3.16)
The rotational stiffness of the Oy-axis is defined using the same modeling technique.

3.3.6 Range

The maximum vertical displacement of the center stage, 6zmax, is calculated from the

superposition of the required device range, 6zrange, and the displacement caused by the settling of

the stage under its maximum weight. The weight is defined as the inherent mass of the stage

mstage, which is iteratively calculated using CAD models throughout the design process,

combined with the maximum sample mass mload, defined in Table 1.1. The center stage

operating range is centered on equilibrium to minimize actuator force output, resulting in the

maximum displacement expression:

Zax  Zrange (mstage + mload) g-= + (3.17)2 kz

3.3.7 Center of Stiffness and Rotation

The flexural bearing has two centers which are important to the design process. The COS

and center of rotation (COR) are depicted in Figure 3.6, along with the layout of the actuatois.

Due to the device symmetry around the Y-axis, the centers are along the Y-axis.



Figure 3.6: Geometric layout of bearing centers.

The COS is the point at which a load applied purely in the Z-axis will produce a

displacement only in the Z-axis, with no rotations around the X- or Y-axis. This point is the

geometric average of the stiffnesses of the discrete flexures. All of the flexures are the same

thickness, thus the stiffnesses can be divided out of the weighted average, resulting in the

expression for the Y-axis coordinate of the COS, ycos, as:

ycos 1  b2 -bJ)+2 (Yfmin +b,). (3.18)
by +bj2 2 2

The COR is the point at which resonance rotations of the center stage in both rotational

axes cause the least motion along the Z-axis. This point lies at the intersections of the axes

around which the center stage rotationally resonates, as shown in Figure 3.7.
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Figure 3.8: COR-COS alignment process.

The goal of the alignment was to produce a flexural bearing whose centers fell within the 1 mm

tolerance of the 'Aligned' line. The iteration 1 point was measured on intermediate flexural

geometry (prototype C), and first indicated the alignment issue. Iterations 2-4 were measured on

the final center stage structure used in prototype D. The added points (2a, 2b, etc.) indicate

multiple measurements of the same iteration, differing through incorrect flexural clamping

methods (2a, 4a), which had a significant effect on both the COS and COR, and was fixed for

later measurements (2b, 4b).

It was observed that the COS and COR are coupled in their location, which explained the

inability to align after the first iteration. The fit line passing through all of the measurements of

prototype D shows a strong link between the designed COS and the measured COR. The fit line

corresponds to a balance where changes in COS are roughly halved and mimicked in reverse by

changes in COR around a center point at 11.36 mm. Estimates of the center of mass (COMa)

using the CAD model of the device place it at about 13 mm, near to the center point for the COS

and COR. The COS and COR vary around what is believed to be the COMa as shown in Figure

3.8. The location of the COS appears to dictate the energy transfer between potential energy

(stored in the springs effectively located at the COS) and kinetic energy (stored in the mass

effectively located at the COMa), thus setting the COR.
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Figure 3.9: Schematic of COR COS coupling.

The desired location of the COS is set to be the true COMa, 11.36 mm. The location of

the COS is predicted using Equation (3.18), however this predicted value is consistently less than

the location of the actual COS. Observations of the COS show a consistent scale factor of

predicted/measured location of 0.847. This was used to scale the scale the design value down to

9.45mm to cancel out the effect. It is believed that this effect is due to the assumption of perfect

boundary conditions on the flexures not being met with the present clamping method.

3.3.9 Natural Frequency

The bearing natural frequency in the Z-axis, conz, is calculated in Hertz through the

simple expression:

1 kz
n - m ge" (3.19)

Two constraints are set of the device stiffness. First, one of the HSFD requirements is that the

natural frequency be >1 kHz as described in Table 1.1, setting a minimum stiffness. Second, the

maximum stiffness is calculated as the ratio of the estimated maximum force output of the

actuators (30 N) over half the required stage range. CAD modeling of the design estimated the

mass of the center stage at 0.25 kg, which resulted in the first constraint requiring a minimum

bearing stiffness on the order of 107 while the second constraint sets the maximum bearing

stiffness on the order of 105. The orders of magnitude separation between these constraints

required one of the constraints to be discarded.



The first constraint was determined by the need of the device to operate at greater than

100 Hz, open loop. With closed-loop control, the same system response is possible with a far

lower plant natural frequency, allowing the first constraint to be relaxed. Throughout the design

process, the mass of the center stage was minimized whenever possible to keep the bearing

natural frequency high.

3.3.10 Flexure Anchoring

At large displacements, the kinematics of a clamped-free flexure display parasitic

motions corresponding to the flexure tracing out a circular path. The clamped-guided end

condition on the HSFD bearing flexures does not allow for any axial translation of the beam end,

with the result that the flexures are non-linearly placed under axial loading as the displacement is

increased. This effect is akin to the cosine effect length reduction for small angles. It is

extremely difficult to model this effect in closed-form, therefore a simple FEA model is used to

generate an order of magnitude estimate of the maximum axial loading on the bearing flexures.

The model was updated with the flexural geometry throughout the design process. The axial

force is about 1.1 N, suggesting that with an aluminum-on-aluminum friction coefficient of about

1 [36] a clamping force of just over 1 N should be sufficient to avoid slip. This value is

sufficiently low to suggest that the flexure anchoring may be assumed to be non-slip.

3.3.11 Design Optimization Method

The flexural bearing geometry is dependent on six variables: the length, width and height

for each of the flexure sets. These variables, in conjunction with material properties, determine

the bearing properties, as laid out in the design equations above. The closed form equations are

inverted and solved for the flexural geometry as functions of the desired bearing performance

according to the method laid out at the beginning of the chapter. Six equations are required to

fully define the six geometry variables. Generally the equations are initially chosen to define all

bearing performance parameters of interest. Initial guesses for cross domain variables are set,

then the system properties are predicted and constraints are checked to see if the design results

lie within the design space. Bearing-performance-setting equations are removed and replaced

with an expression forcing the bearing to meet the conflicting constraint as design space

restrictions are encountered. The bearing model is linked through the cross-domain variables to



the other models (actuators, sensors, electronics) once the results are determined to be within the

design space (or on its boundary).

The set of design equations for the bearing is: flexure thickness set to the stock thickness

hstock (2x equations), equal max strain in the flexures (Ix equation), COS/COR alignment using

Equation (3.18) (lx equation,), and bearing stiffness tuned to actuator force output Fmax (Ix

equation),

hf] = hstock
h f2 = h,

L L (3.20)
Ycos = YCOR

kz = F JZrange

2
The max strain equality reduces Equation (3.6) and the definition of Young's Modulus to an

equivalence of flexure length, owing to the equal thicknesses of the flexures.

The 6 th equation for the design may be any one of three depending on which constraint

met; the safety fraction set to maximum safe strain, the length of the flexure set to the length of

the attached strain gages, Lmin, or the width of the flexure set to the width of the attached strain

gages, bmin,

SF = 0.25

Lj, = 2Lmin . (3.21)

bfl = bin

The bearing strain performance is set at its optimal value if the safety fraction equation is used,

because high strain readings are desired for the best performance strain gage position sensing.

The other two equations define limits to the design space which keep the bearing design from

reaching the optimal performance. The flexure needs to be at least twice the length, and at least

as wide as the strain gages in order to attach a full bridge for sensing. Either of these conditions

become the 6th equation setting the flexural bearing design if they are not inherently met by the

design.



3.4 Actuator Design

3.4.1 Method

The actuator design is carried out by generating closed-formed models to predict actuator

properties such as max force output, current and power draw. These models are used to explore

the available design space as bounded by the various constraints set on the HSFD, such as

geometrical constraints and functional requirements. The desired properties are set and where

possible, the models are inverted to determine the geometry which results in these properties.

3.4.2 Lorentz Force

Lorentz actuators exploit the interaction between electrons moving through a magnetic

field to create a force. This phenomenon scales with the number of electrons exposed to the

field, resulting in a force, FLorentz, which is exerted perpendicular to both the current, I, flowing

along a path of length L through the magnetic field, with magnetic flux density B [37]:

FLrentz = L(B x I) . (3.22)

The magnetic flux and current should be made mutually perpendicular to maximize the effect,

and the flux density should be driven up as high as possible. This will increase the actuator

efficiency in transforming current into force. The magnetic flux should be generated from a

permanent magnet rather than another coil to minimize power draw.

3.4.3 Magnetic Circuit Model

A model of the magnetic circuit within the actuator is used to predict and optimize the

performance of the actuator. Both the magnets and coils produce magnetic flux, which is

analogous to current in electric systems. Gauss's Law of magnetism [38] ensures the

conservation of flux over an enclosed surface, S:

B*a = 0. (3.23)
The flux density is not zero over the whole surface, but rather the net value is zero, meaning

there are no net magnetic charges, no magnetic monopoles. Some areas a may have an outward

flux, however this is balanced by the inward flux over other parts of the surface. The magnetic

flux density is driven by a magnetic field, equivalent in concept to current density driven by an



electric field. The flux density is proportional and parallel to the magnetic field intensity H,

related by the magnetic permeability p of the material through which the field flows:

B =/ H. (3.24)

The magnetic field is governed by Ampere's law [38] which states that closed loop integral, L, of

the magnetic field intensity must be equal to the net enclosed current which passes through the

(not enclosed) surface S bounded by the loop,

LH*61= JJ3a = nI, (3.25)
where J is the current density, n is the number of conductors and I is the current through each of

the conductors. The integral of the magnetic field intensity over a loop produces a quantity

described as the magneto-motive force (mmf), the magnetic equivalent of the electro-motive

force, otherwise known as voltage. The discrete form of the current integral is the more

commonly used form in engineering, where the mmf for separate segments of the loop are

calculated as constant field intensity times the component length, then summed to find the net

mmf for the whole loop. This form of Ampere's Law is a simplification from the full form,

following the assumption that the electric field is essentially steady in time, therefore there is no

displacement current [37].

Equations (3.23), (3.24), and (3.25) can be used like Kirchoff's Current Law, Ohms Law

and Kirchoff's Voltage Law in electrical circuit analysis to analyze the system as a magnetic

circuit. This enables a relation to be defined between the actuator geometries and the actuator

performance.

The geometric layout for the Lorentz coil is designed to guide and constrain the flux as

much as possible within magnetically permeable material. This material is referred to as the

core, in reference to the common terminology of magnetic design. Unconstrained flux is

essentially inefficient, as it does not pass through the current bearing coil and does not contribute

to force generation. To predict the performance of the Lorentz coil actuator, a model was created

with geometries labeled as shown in Figure 3.10.
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Figure 3.10: Cross section of Lorentz actuator.

The design equation equivalent of Gauss's Law is created by applying Equation (3.23) to a

surface, S, encompassing one of the cores, assuming no leakage flux:

s B*a = B = Bgap gap-B ma g = 0 (3.26)

where Bgap, Bmag are the magnetic flux densities, and Agap, Amag are the cross sectional areas of

the gap and permanent magnet respectively. The design equation equivalent of Ampere's Law is

created by applying Equation (3.25) to a closed loop, L, and summing up the discrete segments:

M H l = Hil, = 2Hma h +2H gaphap +4Hcorehre = 0, (3.27)

where Hmag, Hgap & Hcore are the magnetic field intensities, hmag hgap & hcore are the lengths of the

segments as seen by the loop for the permanent magnet, gap and core respectively.

Magnetic flux passes more easily through ferromagnetic materials like the steel core ( z

900x10 -6) than air (p. = 47x10 -6) for a given magnetic field intensity [37]. The permeability of

each section can be observed directly in the design equation by replacing the magnetic field

intensity terms in Equation (3.27) using Equation (3.24). The rest of the terms besides the

permeabilities are roughly equal. The length of the loop path through the cores is roughly

equivalent in magnitude to the length of the loop path through the air gap, and the magnetic flux

densities are same order of magnitude. The different permeability of the two components

enables the core to be ignored as an insignificant term, reducing Equation (3.27) to the simpler

expression:

2Hmag hmag - 2H gaphgap = 0. (3.28)



The final equation needed to determine the magnetic performance of the actuator is the

expression describing the behavior of the permanent magnet.

3.4.4 Permanent Magnet Model

The intended use for the permanent magnet is to produce a high-value magnetic flux

density, without drawing power, for the actuator coil to push against. The ideal operation of the

magnet is to generate the highest magnetic flux density over the largest volume of space, to

enable the most coils to be exposed to the flux. This translates to an effective maximum

magnetic power output, the magnetic equivalent of maximizing current times voltage. The

magnetic flux density over the differential area determines the flux (magnetic current) while the

magnetic field intensity over the differential length of the volume determines the field (magnetic

voltage) for a differential volume of the air gap, as shown in Figure 3.11.

H
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Figure 3.11: Differential model of magnetic power density.

The product of these two terms is referred to as the magnetic energy product [37] and occurs in

the form of energy per volume, which should be maximized to make the most effective use of the

permanent magnet. The total energy, Emag, stored in the magnetic circuit can be found through

integrating the above differential volume over the entire circuit enclosed in volume V:

Emag = IB 2 v. (3.29)

The relation between the magnetic field and flux is not the linear one described by

Equation (3.24) but rather an 'S' shaped hysteresis curve due to significant remnant flux



generation of the permanent magnetic material. The permanent magnet is magnetized by driving

up the magnetic field intensity through the magnet to the far right tip of the hysteresis curve,

such that the magnet can not drive any higher flux density through itself- it is saturated. The

permanent magnet relaxes back to outputting its remnant flux density, B,, as shown in Figure

3.12 when the external field is removed (H = 0). The application of Ampere's Law as in

Equation (3.27) shows that the magnetic field intensity of the magnet is drawn negative in order

to drive flux through a magnetic circuit. This forces the magnet to operate in the 2 nd quadrant of

the hysteresis curve defining the B-H relationship in the magnetic material. The slope of the

curve, umag, describes the permeability of the magnetic material.

B

mag Br

BHH,

H, Hmar

Figure 3.12: B-H curve for rare earth permanent magnet.

The permanent magnet puts out no flux at a sufficiently high magnetic field intensity, which is

defined as the coercivity He,. The hysteresis curve extends asymptotically in the third quadrant

down to a minimum magnetic flux. This 3rd quadrant behavior mimics the 1st quadrant. Upon

return to zero magnetic field intensity, the remnant flux is negative. The energy product as

described by Equation (3.29) reaches a maximum on the B-H curve at the point BHmax, with flux

density B,,, and field intensity Hmax. The permanent magnet is operating at maximum magnetic

power at this point and produces the most magnetic energy per volume of magnetic material

used.

Each type of magnetic material has a characteristic B-H curve. For instance, steel

magnets have high remnant flux densities, yet low coercivity, resulting in low max energy



products. Other types of permanent magnets like Alnico have higher coercivities, and thus can

put out larger, stronger fields. Rare earth magnets have an energy product which significantly

surpasses other permanent magnet materials and have the added benefit of a linear B-H curve

which appears as shown in Figure 3.12 [37]. This linear curve can be described by a simple

expression relating the magnetic flux density of the permanent magnet, Bmag(Hmag), to the

magnetic field intensity, Hmag, in the magnet,

B
Bg (Hg ) = Hag + Br. (3.30)

C
This simple relation enables easy integration of the permanent magnet into closed-form models.

Magnets with the highest energy product were chosen to produce an actuator with the

best performance. The best magnets commonly available are rare earth Neodymium-Iron-Boron

magnets, type NE52. The type number is a measure of the energy produce in units of mega-

Gauss-Oersteds.

3.4.5 Magnetic Circuit Analysis

The magnetic circuit is fully described when the permanent magnet equation (3.30) is

combined with the two magnetic circuit design equations (3.26), (3.28). The ideal gap geometry,

Wgapideal and hgapideal, can be written as a function of the desired gap flux density if the permanent

magnet is set to run at maximum energy product,:

Wgapideal - B
mBgap 

(3.31)

hgapideal - o
Bgap

The gap flux density can also be described as a function of the circuit geometry:

B = Br gaP Br hga (3.32)

Wmag oHc hma

3.4.6 Multi-Flux Path Model

All possible paths were added to the magnetic circuit model, which is shown in Figure

3.13, to improve its accuracy. These new paths account for leakage flux, both across the gap and

back to the other side of the magnet without crossing the gap.
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Figure 3.13: Cross section of actuator model with multiple flux paths.

The single flux path model contains only the gap path, Rg. A parallel path, Rp, contains the

magnetic flux that does not interact with the coil yet crosses the gap to the core on the other side.

A short circuit path, Rse, contains the magnetic flux that jumps back on the main loop to cycle

back through the permanent magnet without ever crossing the gap. The physical model

described in Figure 3.13 can be rewritten in its electrical equivalent as shown in Figure 3.14.

The mmf of the magnet can be considered to be a voltage, which drives current (flux) through

the magnetic paths.

mmfma (P1 r (

mag

Rsc R S

Figure 3.14: Electrical circuit equivalent of multiple flux path model.

Figure 3.14: Electrical circuit equivalent of multiple flux path model.



The model enables the total flux, 0, driven by the magnet to be split among the multiple paths,

gap Iop , ,, corresponding to the gap, parallel and short circuit paths. Each path can be

characterized by a magnetic resistance [37] which is similar to electrical resistance in definition,

L
R = , (3.33)

pA
where L is the length of the path, p is the permeability of the material through which the path

travels, and A is the effective cross section of the path. The gap and parallel paths can be

combined through summing the resistors into a single equivalent resistor Rg through which Pg

flux flows.

The permanent magnet is modeled as a battery with a voltage source and internal

resistance. These properties can be observed by redefining the permanent magnet equation to be

in terms of the magnet mmf and total flux. This is done by multiplying both sides of Equation

(3.30) by Amag/Imag, and solving for the total mmf over the magnet. The resulting expression

contains a constant mmf term, mmfmag, defined by magnet parameters to be:

mmfmag = hmag H. (3.34)

The expression also contains a flux dependent term, Rmag, which acts as an internal resistor:

Hchmag
Rmag =- (3.35)

r Amag

Standard circuit analysis enables the electrical circuit diagram in Figure 3.14 to be

represented by a system of three equations:

mmfmag- g - (, Rsc =0. (3.36)

mmf,~g -(Rmag -(DgRg = 0

Once the three fluxes are found from the system of equations, the gap flux density is calculated

through a resistive current divider expression (for resistors in parallel) and dividing the gap flux

by area:

R mmfmagRsc
Bgap (3.37)

gap AgapR Rmag (Rsc + R )+ RscRg (3.37)

Likewise, the flux density through the magnet is calculated in order to determine the operating

point of the magnet,

1 mmfmag(Rsc+Rg)
B m (3.38)mag A R (Rs + Rg) + RcR



3.4.7 Effective Path Length

The effective path length of the flux is not directly the distance between the surfaces for

paths describing an arc between two parallel surfaces. Rather, the flux is able to travel a number

of paths ranging from the direct distance d, all the way to a semi-circular path normal to both

surfaces. The range of these paths is illustrated in Figure 3.15.

Longest Flux Path',.
Possible Flux Paths

Shortest Flux Path

Core Surfaces

Figure 3.15: Schematic of possible flux paths between parallel plates.

The continuum of paths can be broken up into a large number of discrete paths to find the

effective path length between such surfaces, each with a fraction of the cross sectional area, and

each reaching some characteristic height from zero to d/2. The total resistance of the path is

approximately 21% higher than the path resistance if calculated using full cross-sectional area

and length d. This length scaling factor, Lf, is used to scale all flux paths in which the start and

end surfaces are not facing one another in the resistance definitions below.

3.4.8 Gap Resistance

The gap resistance of the magnetic circuit is composed of a number of path resistances in

parallel, each defining a possible path across the gap between the cores composing the actuator.

Only symmetric paths were chosen, as the actuator and also the magnetic field generated around

it have three planes of symmetry (along each of the axes, X, Y, Z). Additionally, the vector

nature of the flux means that overlapping paths will alter the field at that point to be the vector



sum. The net result is that each surface only has one path leaving it. The paths and associated

resistances composing the gap resistance are shown in Figure 3.16.
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Figure 3.16: Flux paths corresponding to gap resistance.

Each gap resistance path can be defined in the form of Equation (3.35), using the actuator

dimensions as laid out in Figure 3.10, to give:

R = hgap R

g o (mag Wgap)

R h gap Wmag

S core - Ig Wgap

L (hgap + Wag)

PO C Wgap

The total resistance of the gap is the summation

for the multiple instances of certain paths:

Lsf (hgap + Wmag )

0 oL'core W core mag

Lsf (hgap + 2Wmag )
= o ore Wgap

ItPo ( loreWg*,p
(3.39)

Lf (hgap +1.5wmag )
R6 = L core -Inz ag ina r
of these path resistances in parallel, accounting

R-11R 2 4 1 1 1
R gap R2 R 3 R 4 R5 R6

(3.40)



3.4.9 Short Circuit Resistance

The short circuit resistance is calculated using the same methods as described for the gap

resistance above. All possible symmetric paths composing the short circuit are represented in

Figure 3.17.
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Figure 3.17: Flux paths corresponding to short circuit resistance.

Each short circuit resistance path can be defined in the form of Equation (3.35), using the

actuator dimensions as laid out in Figure 3.10, to give:

S(hma + 2gap ) Lsf (hmag Wgap)
7 = - core ag R 0 core gap

A( lcore Wmag 2 mag ) (cW

(3.41)
, ( h + w ap  R hma

RWgap p core - mag Wmag
2 2

The total resistance of the short circuit is the summation of these path resistances in parallel,

accounting for the multiple instances of certain paths:

Rc =f I +-+- + . (3.42)
R7 R8 R9 R,



3.4.10 Model Validation

The predicted gap flux density in the multi-flux path model (0.649 T) was compared to

the measured flux density of the actuators in prototype C (0.645 T), and found to be in excellent

agreement with 0.6% error. The single flux path model predicted a flux density of 1.5 T for the

gap, indicating significant accuracy increase from 130% error to 0.6% error in the model

predictions due to the addition of the extra flux paths.

3.4.11 Coil Model

The coil which carries current to create the Lorentz force must sit in the generated

magnetic field and should drive the current perpendicular to both the magnetic flux and the

desired force direction. The actuator coil is designed to sit in the gap between the cores in order

to satisfy these conditions, with geometry as shown in Figure 3.18.
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Figure 3.18: Cross section of Lorentz actuator coil.

A small spacing, dspacing, is required between the coil and the cores to allow for motion of the coil

in response to the generated force. The gap must be large enough to give the coil freedom to

undergo rotations with the center stage in addition to vertical translations. The remainder of the

area in the gap is assumed to be uniformly filled by the magnetic field, thus is ideal for the coil.

This is calculated as the only part of the coil which interacts with the magnetic flux to generate

force as a conservative estimate. The height of the coil, hcoii, parallel to the flux through this

active area is



hcoil = hgap - 2dspacing , (3.43)

and the area of this active region, Acoiact, is

Acoilact = hcoil Wgap (3.44)

The active area of the coil is assumed to be densely packed with magnet wire, a copper wire

covered with a thin layer of lacquer insulation having a total diameter dwire. The number of loops

which will fit in the available area, ncoilac, is

2 Acoilact
ncoilact 3 dw ' (3.45)

wire

where the packing density is estimated to be about 2/3 from early experiments and wires are

assumed to stack in the square grid pattern shown in Figure 3.18. The total length of the wire in

the active area, Icoilact, is calculated as

lwireact = 2 ncoilaclmag . (3.46)

To account for the actuator moving through the field, the actual coil width is increased

beyond the width of the active area by the total displacement range possible for the coil. This

added coil area is not considered part of the active area for force calculations, which ensures that

the actuator performance when tested is slightly better than model predictions. The actual

effective number of turns in the coil lies somewhere between ncoilact and ncoilful, indicating that

the performance increase will be roughly 0-5%. The full geometry of the coil determines the

amount of wire required for fabrication, as well as the power generation and other thermal

properties. The full coil width wcoi, is defined as

Wcoil = Wga + Zrange. (3.47)

The full area of the coil, Acoilfull, is:

A,oi,,r, = h,,,w ,il - (3.48)

The full number of turns in the coil, ncoilact, is:

2 Acoifulti
ncoilfuu - 3 d 2 (3.49)

wire

The full length of wire, iwirefull, required for the actuator is calculated as the sum of two linear

sections (active area), and two semi-circular end sections:

lwirefull = [ 21mag + hm(hg ap )] ncoil (3.50)

The resistance of the coil, Rcoil, is calculated directly from the length and diameter of the wire,

and is scaled by 25% due to early experiments with the wire:



R 1.25 iwire"'"lcoil d (3.51)

4
This 25% error may be due to inaccuracies in the wire diameter.

The maximum current required for driving the actuator, Imax, is calculated from Equation

(3.22) and the stiffness of the bearing determining the force at maximum displacement:

k 6
Zrange

max _ 3B 2 (3.52)

gap wireact

The maximum voltage draw of the coil, Vmax, is calculated using Ohm's Law as

Vmax = Imaxcoil. (3.53)

The maximum power generation of the coil, Pmax, is calculated from the maximum current and

resistance estimate as

Pma = Im 2Rcoi,. (3.54)

The inductance of the coil, Lcoil, is calculated using the definition of inductance as the ratio of the

flux linkage over the current through the coil [37]. The average path length for the flux is

assumed to be a circle of height, hmag, resulting in the self-inductance expression:

Lcoil = nconij i21ohmag (3.55)
2

3.4.12 Design Optimization Method

The actuator geometry is essentially dependent on 6 variables: the length, width, and

height of the magnet, the width and height of the gap and the diameter of the wire. Several

geometric variables such as the core length play a minor role in the actuator performance, but are

mainly determined by the geometric layout of the components as described in Section 3.8. These

variables, in conjunction with the magnetic material properties determine the coil properties, and

thus the full actuator properties. The closed form equations are inverted as described in the

bearing design optimization section, to solve for the actuator geometry as functions of the

desired bearing performance. Six equations are required to fully define the six geometric

variables.

The possible constraints on the actuator design are the maximum sustainable current

through the wires, the maximum current output of the power electronics, Ietec, the maximum

power generation in the coil and the maximum size of the entire actuator in terms of length, Imax,



width, wma, and height, hmax. It was initially assumed that the wire diameter would determine

the power generation, however the analysis described for the coil showed that only the total

cross-sectional area of conductor matters for the power generation. If the wire diameter is

reduced, more turns are used with the net result of the exact same total area of conductor. The

wire diameter does determine the number of turns required for fabrication, which suggests that a

larger diameter wire will simply the fabrication of the coil. Additionally, it was found to set the

maximum current draw of the actuator.

The set of design equations are the geometric constraints on the magnet height, width and

length (3x equations), the equations setting the gap geometry as functions of the magnet

dimensions (2x equations) as shown in Equations (3.31) and the equation setting the maximum

current draw of the actuators to the maximum safe current output of the electronics (lx

equation):

1 = Imaxmag max

wmag = wmax

hmag =hmax 
(3.56)

gap = Wgapideal

hgap hgapideal

max elec

3.5 Sensor Design

3.5.1 Method

The sensor design is carried out by generating closed-formed models to predict sensor

properties such as geometrical layout and strain to voltage transduction. These models are used

to explore the available design space as bounded by the various constraints set on the HSFD,

such as geometrical constraints and functional requirements. Little internal model analysis is

required to determine the location of the ideal design in design space because of the few

available design parameters and constraints. Most of the variables are independent and as much,

do not require calculating performance tradeoff type optimization to reach the best design. The

model is instead used for the multi-domain analysis described in Section (3.7), where it sets

geometrical constraints on the bearing design and determines the type of strain gage needed to

achieve optimal system resolution.



3.5.2 Strain Gages

Strain gages are used to transform surface strains into variations in an electrical property-

resistance- which is easily measured and integrated into mechatronic systems. They are

composed of resistors adhered to the surface of interest. The change in resistance is generated

mainly through geometric effects, with slight enhancement from material dependent effects

(piezoresistivity). A cross section of a strain gage resistor of length 1, width w, height h, and area

A, under strain loading along the X-axis of ex, and along the Y-axis of ey. is shown in Figure

3.19.
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Figure 3.19: Strain gage under loading.

The resistance change in a strain gage, 6R, is proportional to the gage factor, GF, the unstrained

resistance, Ro, and the strain e, on the gage [39]:

6R = GFRoE. (3.57)
The change in strain gage resistance may also be caused by temperature changes, which is

modeled in the form:

SR = aRRoAT, (3.58)
where aR is the strain gage resistance temperature coefficient, and AT is the change in

temperature.

The strain gage response to strain in the X-axis can be examined through a simple

analysis of strain based effects on the gage geometry and material properties. The general

expression for the strain ei along the ith axis in a material [40] can be written as:



6i - I E 1 -v (a + oj ]+aAT, (3.59)

Where l is the differential length gain, I is the unstrained length, aij,k is the stress along the i,j,kth

orthogonal axes, and a is the temperature coefficient of the material. Even though two axes (X

and Y) of the gage resistor are in mechanical contact with the substrate and thus able to transmit

strain, the system can be approximated as only being exposed to X-axis strain. The length of the

strain gage resistor is significantly longer than its height, meaning that the surface boundary

condition of X-axis strain acts on what is essentially a 1-D wire. The strain relaxation that

occurs up the height of the resistor is insignificant compared to the X-axis strain based

displacement because 1 >> h. The width of the strain gage resistor is on the same order as its

height, meaning that the surface boundary condition of Y-axis strain acts on a fully 2-D shape, as

shown in Figure 3.19 as the cross sectional area of the resistor. The strain relaxation

displacement up the height of the gage is able to counteract the applied Y-axis strain, resulting in

a slightly deformed cross section, labeled as Transverse Strain Effect in Figure 3.19. Thus, the

Y-axis strain is vastly attenuated, to the point of insignificance to the calculation. This results in

a strain field EXsub effectively only along the X-axis. Equation (3.60) can be used to find the

strain, assuming no temperature changes, occurring along each of the axes of the strain gage,

CXSG, EYSG, EZSG as a result of the applied strain field,

EXSG =Xsub = XSG

(3.60)Es =-VcxseYSG SGEXSG

ZSG = -VSGEXSG

where rXSG is the stress in the strain gage along the X-axis, vSG is the Poisson's Ratio and EsG is

the Young's Modulus of the strain gage material. The X-axis stress is found from the X-axis

strain, and used to calculate the strain in the other two axes. The definition of the strain gage

resistance, R, is

R = L, (3.61)
A

where p is the electrical resistivity of the strain gage material. The differential variation in

resistance can be written as

R -I + RA + 4p. (3.62)
l aA ap



The differential change in resistivity, 6p, is due to the piezoresistivity of the strain gage material,

which is marginal in foil resistance gages [32]. It can be approximated as:

Sp = flp, (3.63)
where fl is the piezoresistive coefficient. The geometrical changes in the resistor, 61 and 6A, can

be written as functions of the internal strains and geometry of the strain gage. The differential

change in resistance can be replaced with the strain gage equation (3.57), resulting in the

expression:

GFRo Xsub = - (EYSGA+ EzsGA) +- Xsubp. (3.64)
EXsA A A

Equation (3.64) can be reduced to by using Equations (3.60) to rewrite the internal strains of the

strain gage as functions of the applied strain field:

G, = 1+ 2v+ . (3.65)
This expression predicts a gage factor of nearly 2 for an incompressible material, because beta is

generally small in foil gages (the kind commercially available). The predicted value is near the

quoted value of 2.02 for the most commonly available metal foil gages.

The strain gage is predicted to be entirely insensitive to transverse (Y-axis) strains, as

described previously in the discussion of the transverse strain effect illustrated in Figure 3.19. In

reality, strain gage sensitivity to Y-axis strain is roughly 0-10% of the sensitivity to X-axis strain

[39]. The incomplete attenuation of the Y-axis strain signal is likely due to the end of the zig-

zag gage resistance pattern, where the resistor is briefly parallel to the Y-axis, as shown in Figure

2.14 above. This section is usually made significantly wider than the X-axis aligned sections to

reduce its resistance, and thus any Y-axis strain effects.

Strain gages also have temperature dependent effects, where both strain gage and

substrate heat up, resulting in a change in the strain gage resistance. This situation can be

modeled using Equation (3.60), assuming: an external thermal strain field and the strain gage

thermal strain. This results in the expressions for the strain gage internal strains:

EXSG =  subAT = +XSG aSGAT
ESG

YSG = [(l+S ) SG - VSGcsub ]AT (3.66)

ESG =[( SG ) SG vSGas -v AT



where asub and aSG are the thermal expansion coefficients of the substrate and the strain gage

respectively. Equations (3.58), (3.62), and (3.66) can be combined to generate an expression

linking the strain gage resistance temperature coefficient to physical properties:

R =(1+ 2v) asub -(2 + 2v) CSG. (3.67)

The net thermal effect is the difference between the two terms, by adjusting the value of the

strain gage thermal expansion coefficient, the coefficient can be 'tuned' to be effectively zero for

particular materials.

Both thermal and mechanical effects factors into the strain gage's response, thus the

characteristic equation for the strain gage resistance, RSG, must include the effects from both of

these sources:

RSG = R ((1+ GF+ RAT). (3.68)

The signal of interest is the strain dependent resistance change, however this is only one of two

small signals sitting on top of a large DC term. A Wheatstone bridge is commonly used to

amplify the signal of interest.

3.5.3 Wheatstone Bridge

Wheatstone bridges are simple electrical circuits designed to allow the accurate

measurement of small changes in resistance. The bridge is created from four resistors of roughly

equal value R1- 4 , arranged in two parallel paths of two resistors in series, as shown in Figure

3.20.



Figure 3.20: Wheatstone bridge circuit model.

The bridge is energized by a steady voltage Vi,, which creates a voltage drop across the two arms

of the bridge. The difference between the voltages at the midpoint of each arm, V,,,, is measured

and used to determine the change in resistance. The output voltage is zero when all of the

resistors are of equal value, as the bridge removes the DC term through the differential voltage

measurement. The Wheatstone bridge can be characterized by the expression [39]:

V R3 R2
S- R (3.69)

V, R3 + R4  R1 + R 2

Any change in the resistance of the resistors in the bridge acts to offset the voltage on the

corresponding bridge arm, unbalancing the two arm measurements and causing the output

voltage to shift, largely proportionally to the resistance change. This shift can be boosted and the

response made more linear with respect to the resistance change depending on the number of

resistors with actively varying resistance. The number of varying resistors determines the bridge

type, which ranges from % for only one active resistor, 2 for two and up to a full bridge for four

active resistors.

A /4bridge contains the fewest active resistors, making it the easiest to place as only one

sensor must be located on the strained surface. It also has the lowest strain sensitivity and the

largest non-linearity. The / bridge is unable to cancel out thermal effects on the reading

assuming the active resistor is the only resistor exposed to strain and also temp changes. The

Taylor expansion for the bridge is:



V F1 2 3 ]Vo (E,AT) = -(G,E) -(G,) -(G,e) +... +
V816 (3.70)
11 ( )2 +1 (xA 2 1 3

4 8Ja R)  16
A 1/2 bridge requires twice as many active resistors and has twice the strain sensitivity of

the bridge. The bridge can negate thermal effects on the reading depending on whether the

two active resistors are placed on the same arm. The first type of /2 bridge offers the best

performance, and involves making resistor 3 an active + response to strain and resistor 4 an

active - response to strain. This can be done by placing the sensors on opposite faces of a

flexure. The Taylor expansion for the bridge is:

vt (e, AT) I -(G,.) + [0]. (3.71)

The second type of 2 bridge is still thermally insensitive, but contains higher-order non-

linearities. This type is created by making resistor 3 an active + response to strain and resistor 2

an active - response to strain. The Taylor expansion for the bridge is:

Vo(E, T (Ge)+ (Ge)3 (GE) +... + [0 (3.72)
Vi 28 32 j

The third type of 2 bridge is thermally sensitive and contains higher-order non-linearities. It is

the worst 1/2 bridge, but often the only kind possible as only + responses can be obtained from the

strain gage sensors. This type is created by making resistor 3 an active + response to strain and

resistor 1 an active + response to strain. The Taylor expansion for the bridge is:

-o- (e,AT) = +(GE) (Gpe)-(G ... +
n 2c (3.73)

1 1 2 1 )3
(aAT) (aT) +R(a T )+...] .

2 4 8

A full bridge requires four times as many active resistors and has four times the strain

sensitivity of the 4 bridge. It has no higher-order non-linearities and can negate thermal effects

on the reading. This requires all the resistors to be active, with resistors 1 and 3 reading +

changes, as well as resistors 2 and 4 reading - changes in response to strain. The Taylor

expansion for the bridge is:

(e, AT) = [(GF)]+ [0 (3.74)
in 4



The bridge has two types, a strain type and a thermal type if there is any difference

between the set of strain active resistors and thermally active resistors. The first part of the

Taylor expansions above describes the sensitivities and non-linearities of that type of bridge in

the strain domain, while the second part of each expansion above describes the sensitivities and

non-linearities of that type of bridge in the thermal domain.

3.5.4 Sensor Layout

Each discrete flexure in the bearing can have gages on both sides, meaning that at

minimum a /2-a or -b bridge can be used for sensing. A full bridge is desired for its higher

sensitivity and complete thermal insensitivity. It was determined that the design should focus on

a full bridge, with the V2-a bridge as the fall-back design. The full bridge can be laid out on the

flexure as shown in Figure 3.21 to produce a positive output voltage when the flexure is

deflected upwards.

o
ff se t

Center Stage -- >

--- 4

Outer Base

Figure 3.21: Strain gage geometric layout.

There is likely to be a temperature differential over the flexure owing to conductive heat transfer

from the actuator into the center stage. Each arm of the Wheatstone bridge in the layout

specified above is exposed to a unique temperature that is equally experienced by both resistors

on the arm. This means the temperature effects are canceled out, even if the left arm of the

bridge (resistors 1, 2) sees a different temperature than the right arm (resistors 3, 4). The bridge



could alternately have each arm on one face of the flexure, but then the temperature differential

would cause a change in the common mode voltage of the output.

The strain gages are be placed at the location of highest strain in order to achieve the best

displacement sensing. The ideal location is the base of the flexure, as in a clamped-guided beam,

the strain increases linearly from center to reach its largest magnitude at either end. The finite

length of the strain gage prevents it from being placed exactly at the location of highest strain,

therefore the average strain of experienced by the gage must always be lower than the ideal max

strain output of the flexure. The strain field is shown graphically in Figure 3.22 with the strain

gage resistor grid overlaid to indicate the actual strain experienced by the sensor.

E/Cmax

Xoffset1

-1- -----------------------------

Figure 3.22: Diagram of strain distribution over strain gage.

The effect of the finite geometry of the strain gage can be described by a non-

dimensional strain scaling factor Ge, which is found by integrating over the resistor grid to find

the average strain experienced by the gage due to its non-ideal location:

xft +x grid 1 2
G off, Lf) 1- xgrid + 2Xcer (3.75)

C- Xo, + X Lf

The max strain can be related through the coefficient Fez to the deflection of the flexure using

Equations (3.5) and (3.6) as:

8E 3h,
FEz- dz L (3.76)

-t Lj



The effective strain, eou,, observed by the strain gage for a given strain gage geometric layout on

the flexure can be found as a function of displacement by combining Equations (3.75) and (3.76)

to give:

Sou, (z) = G, F z z. (3.77)
The three expected DOFs for the center stage require at least three sensors to measure

these motions. More than three sensors would act to average out the readings through repeated

measurement of the same system. This would increase resolution but would also increase the

complexity of the wiring, fabrication and electronics. A simple model of the measurement as an

average value with normal distribution suggests that repeat readings should reduce the standard

deviation of the distribution by 1/(n), resulting in relative resolutions as shown in Table 3.2.

Table 3.2: Number of sensors used in position measurement.

Number of Normalized
Sensors Resolution

3 1.0
4 0.87
5 0.77
6 0.71
7 0.65
8 0.61

The fabrication, wiring and electronics cost & complexity would increase proportionally to the

number of sensors, but the resolution would only show minor and decreasing gains. For the sake

of simplicity, it was decided to use only three sensors.

3.5.5 Zero Balance

The Wheatstone bridge will naturally output a slight voltage when under no temperature

or strain loading, due to the slight mismatch in the resistors composing the bridge. This offset

voltage is proportional to the energizing voltage, thus can be described by a dimensionless

resistance factor, y, as:

ut = G + . (3.78)Vin



The bridge can be balanced to remove the offset voltage by adding a tunable resistor, RzB, to one

arm as shown in Figure 3.23, which is then adjusted until it contributes the small resistance

required to balance the bridge.

RI R4

Vin

RV

R2 R3

Figure 3.23: Wheatstone bridge with zero balance circuit model.

This balancing is generally difficult or even impossible when using a full bridge, as all the

resistors and bridge wiring are located on the strained surface, making it infeasible to add a

tunable resistor to the circuit. There are several methods to take care of the zero balance that are

described in Section 6.3.10, including attaching a flexible resistance wire to the circuit, removing

the bias in the electronics, or jumping out from the bridge to a tunable resistor mounted nearby.

3.5.6 Zero Temperature Compensation

The Wheatstone bridge will generally have some temperature sensitivity when under no

strain load, exempting V2-a, -b and full bridges. Zero temperature compensation (ZTC) describes

the methods used to reduce or even remove this sensitivity. The bridge will ideally have no

temperature sensitivity such that the output voltage will remain only a function of the offset

voltage and the strain on the bridge, for highest sensor accuracy.

There are two ways to accomplish ZTC, the first is to use a thermally balanced bridge,

such as 2-a, -b or full type. The equal magnitude and sign of the effect is canceled through the

circuit design regardless of whether the strain gage sensors produce a thermal reading. Extra

resistors can be added in near the strained surface to be exposed to only temperature, but not



strain, which can raise the thermal type of the bridge until it makes the bridge insensitive to

thermal effects. The second method for accomplishing ZTC is to use sensors which are tuned to

have zero strain gage resistance temperature coefficient, as described in Section 3.5.2 above.

This removes any temperature based resistance change, and thus any bridge sensitivity to

temperature regardless of the bridge type. Commercial strain gages are only tuned to a select set

of materials- steel and aluminum- if the strained substrate is not one of these materials, then this

method of ZTC is not available.

3.5.7 Span Temperature Compensation

The gage factor varies slightly when exposed to temperature variation. This generates a

false change in the output signal based off a strain input to the sensor. The gage factor (and in

the case of force sensing, the material Young's Modulus) ideally can be treated as a constant

over all temperatures; however this is not acceptable for high precision analysis. Span

temperature compensation (STC) is used to cancel out this thermal-strain cross term effect.

Temperature changes will be canceled through circuit symmetry for a full bridge,

however the temperature variations in gage factor (and Young's Modulus for force sensing) will

not be addressed. The bridge can be made nearly completely insensitive to temperatures if ZTC

is used, depending on whether ZB is also used. This is explained below.

The bridge energizing voltage can be modulated to exactly counteract the material

property temperature dependent changes which scale the strain reading,. This is done through

the addition of resistors, RSTC, in series with the Wheatstone bridge, which have their own

thermal sensitivities, as shown in Figure 3.24.



R2 R3 

Figure 3.24: Wheatstone bridge with span temperature compensation circuit model.

The voltage divider effect created by the STC resistors results in the modification of the

characteristic Wheatstone bridge expression, Equation (3.78), to be

V"ut - (Ge + ) RwB (3.79)
V,,1  RsTc +R

where RWB, is the resistance of the Wheatstone bridge. STC is achieved by determining the value

of Rsrc which precisely cancels the thermal-strain effects. The components of Equation (3.79)

that do not directly affect the strain-to-voltage term, such as y, will be ignored in this analysis, as

STC is only intended to balance the strain-to-voltage term. The differential variation in the

output voltage can be written as:
V avx V' ' V '

V = ou + 5G, + o RRsTc + oSR,,. (3.80)Out V g ' G F aRST WB

The differential variation is defined in terms of temperature variations and set to zero, which

forces the bridge to be insensitive to temperature. Each partial differential can be rewritten in

terms of temperature variation. The bridge energizing voltage is assumed to be insensitive, as is

the actual device strain, because the strain is a result of the flexural geometry alone. Strain is

written in terms of the beam stress and Young's Modulus of the flexure only if force, rather than

displacement, is the value of interest. The Young's Modulus would bring an associated

temperature variation coefficient into the analysis [39]. The gage factor and the span

temperature resistor are linked to temperature variations through thermal coefficients aGF and

asTc, respectively[39]. The strain gage resistance temperature coefficient is assumed to be



balanced to the aluminum flexure, resulting in effectively zero temperature sensitivity for al

practical purposes in the Wheatstone bridge net resistance:

N. = O AT

9G, = aGFGFAT

e = 0 AT . (3.81)

SRsTC = asTcRsTcAT

SRw = aRRB AT = 0 AT
The combination of Equations (3.80) and (3.81) can be used to find an expression for 6V,,oAJT,

which is then set to zero, and STC resistance is found to be:

Rsrc = 1scrsrc =- R(3.82)
aSTC - aGF

where lsrc and rsrc are the length and resistance/length of the STC resistor, respectively. A full

resistor of the desired material can be obtained commercially, or resistance wire of the STC

material can be purchased, and the wire cut to the required length. The second option enables

more accurate STC.

The thermal variation of the STC voltage bridge also affects the offset voltage, which

exists only if ZB is not carried out (or carried out with a material of different resistance thermal

coefficient than the strain gages), as in the case for the HSFD. The output variation through this

mode can be calculated through rewriting Equation (3.80) to include y, and combining the result

with Equation (3.81) as done previously. The result is

VU, = - aGF (ST C -GF) yAT, (3.83)
asrc

which shows the thermal sensitivity remaining in the Wheatstone bridge to be of a high order.

The temperature coefficient is attenuated by the product of three 'small' terms (z 0.001) in the

numerator: y, aGF, and the difference in thermal coefficients asTc & aGF. The numerator only has

one small term, giving a net of two small terms in the temperature sensitivity. These terms are

described as 'small' because they each act to reduce the input (temperature, voltage) by a factor

of about 1000. The difference in thermal coefficients further increases this attenuation, as does

the fact that the STC thermal coefficient is much larger than the gage factor thermal coefficient.

The result is an extremely small temperature sensitivity for the bridge. The calibration accuracy

(strain to voltage coefficient) will hold constant across a range of temperature, but the offset

voltage from the sensors will vary by small amounts if the ambient temperature is altered. For



the best sensor accuracy, the sensors should be digitally zeroed whenever the device is brought

into a new thermal equilibrium, and ideally the environment should be held constant during

operation.

3.6 Electronics Design

3.6.1 Method

The electronics design is carried out by generating closed-formed models to predict

electronics properties such as current output for the actuators and resolution for the sensors.

These models are used to explore the available design space as bounded by the various

constraints set on the HSFD, such as power draw and functional requirements. The models are

used to adjust the design parameters in order to maximize the device performance while

remaining in the design space bounded by the previously mentioned constraints.

3.6.2 Actuator Current Control

Two options are possible for driving the actuator, either a voltage or a current source.

The actuator performance is solely dependent on the current, therefore a voltage source is of less

utility. The voltage source will suffer from inaccuracies due to several reasons: the coil

resistance changes with temperature, self-inductance of the coil will generate voltage drops

reducing current and the back electro-magnetic force (EMF) created by moving the coil through

the static magnetic field also generate voltage drops. The current controller (CC) will simply

boost the applied voltage to cancel these effects and ensure the current flow through the actuator

is maintained at the desired level if a current source is used. The current controller used for the

HSFD was designed, built and kindly loaned to the author by Dariusz Golda [41]. The controller

functions through an input voltage Vi,, which produces a command that drives a power op-amp,

PA75CX, to run the desired current through the Lorentz actuator. The power op-amp is held to

the desired current through closed loop control using the LM741 to lock onto the command

voltage, as shown in Figure 3.25.



Figure 3.25: Lorentz actuator current controller circuit model.

The current controller can be described by the characteristic equation:

if R2 + R Cf Rf s +1

V Y R CiLo,,, +R , )S? +Cf [RC(R+ R) + R(R2 +R)]+R (3.84)

where if is the current through the actuator, Cf is the power supply low pass capacitor, and Ri, R2,

Rs, are the resistors used in the circuit. The steady state gain of the current controller is

if R2 + RS= - -(3.85)
ViThe natural frequency, n Roller (in Hz) isR

The natural frequency, co, of the current controller (in Hz) is

1 Rs
SclCf -  (3.86)

2,T LojC, (R2+ R)
The damping ratio, C, of the current controller is

1 C
= -(R2Roil + RRS + R~CoRS + R RS (3.87)

2 L40,,R, (R2 Rs )
The system dynamics are analyzed through the pole and zero locations, which are calculated as

poles =- o)n + 1-
1 (3.88)

zero -

The system may be modeled as purely 2nd order depending on the relative distance of the zero

from the origin in a pole-zero plot. The approximate 98% settling time, tsettling, of such a 2 nd

order system is
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4
tseling - (3.89)

3.6.3 Sensor Signal Amplification

The signal leaving the Wheatstone bridge is small, on the scale of 10 mV maximum, yet

the analog to digital converters (ADC) read this signal scale over ±10 V. The output voltage

from the Wheatstone bridge sensor is boosted before being fed to the ADC to achieve the best

resolution. The amplification system used to do this should have gains up to about 1000, as the

estimates above show. The system must also have a fast response time of less than 1 ms to meet

the function requirements laid out for both the HSFD overall in Table 1.1 and for the sensor in

Table 2.7. It must have low non-linearity, cost, noise and a high common mode rejection ratio

(CMRR). Typically an instrumentation amplifier (IA) is used for this operation, as it is

specifically designed for low noise, high non-linearity and high CMRR. CMRR describes how

the system handles the common mode component of the differential voltage input. The signal

can be broken into two components- a common mode, Vc, and a differential voltage, Vd. The

system ideally rejects the common mode and boosts only the differential voltage by gain G, to

generate the Instrumentation Amplifier output, VIAout, as

VAout = G Vd .  (3.90)

The circuitry cannot be made perfectly insensitive to the common mode of the signal in reality,

therefore the output is described as

VIAou , = G Vd + CMRR -V. (3.91)

The sensor circuit is composed of only a few components- a power supply to drive the

Wheatstone bridge strain gage sensor (SG WB) & IA, the WB sensor which produces the signal,

the IA which boosts the signal, and the ADC which digitizes the signal. This is shown

schematically for all three sensors in Figure 3.26.
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Figure 3.26: Schematic of sensor signal amplification circuitry.

The energizing voltage of the bridge is also measured to account for any variations- which would

otherwise appear as strain readings to the system. The gain for the instrumentation amplifier

must satisfy the expression:

Im -Fez -Ge G, -Vin GI= 1Ov. (3.92)

3.6.4 Layout

The component setup and wiring for a single sensor channel is laid out as shown in

Figure 3.27. Each component of the sensor channel is described in detail below.

-----.-------------------
' IA -+ 15 v

------- 1w F IA Power
S, .l Supply

STC .-15v
S8

2 51 4 4 : ----------

AD624 15 0+14 9

6STC 7 T

BSupply + - - 0_- .1-F j DAQ Computer

V, L 47j-F
i

Figure 3.27: Wiring schematic for a single sensor channel.

102



3.6.5 DAQ board

All signals and commands are transferred between digital and analog by a DS1104a

digital acquisition board (DAQ) from Dspace Inc. [42] with 8 input and 8 output channels. The

board is linked to a computer through a PCI card. The ADC reads in voltages with 16-bit

resolution and the digital to analog converter (DAC) outputs voltage commands with 16-bit

resolution.

3.6.6 Wheatstone Bridge

The Wheatstone bridge is driven by a standalone power supply (WB PS) with a low pass

filter placed to ground to reduce system noise. The filter is composed of a single 47 gF

capacitor. The bridge is energized to a positive voltage and the negative terminal is linked to

ground. The energizing voltage is fed to an ADC on the DAQ after the filter to capture the low

frequency variation in the energizing voltage and mathematically remove it from the signal. All

WB sensors are powered by a single Instek GW GPR-High series DC Power supply.

3.6.7 Instrumentation Amplifier

The output voltage from the SG WB sensor is fed to the IA, which modifies the signal as

described by (3.91) to be both boosted and include an attenuated common mode component.

The IA runs off a shared power supply (IA PS) which provides ±15 V. Input power supply

filters are placed between the energized rails and the PS ground to reduce noise to the IA. The

capacitors are placed before the IA such that the current flows (which the capacitor draws to hold

the voltage steady) loop back to the PS without affecting the voltage down the line. The current

sense input (9) on the IA is used to control the output voltage should the ADC impedance

change. The output voltage offset (14, 15) is shorted to reduce added noise. The input voltage

offset (4, 5) is tuned with a 10 k potentiometer to zero out voltage offsets added by the

electronics. All IA's are powered by a single Instek GW GPC-M series DC Power Supply.

3.6.8 Current Controller

The CC is given signals from the DAC on the DAQ, and the output from each channel is

fed to the corresponding coil on the HSFD. The CCs are driven from a separate power supply, as

they have hugely varying power draws, which may pull down the rail voltage momentarily,
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disrupting any sensitive electronics also drawing power from the rail. All CCs are powered by a

single Instek GW GPC-M series DC Power Supply.

3.6.9 Noise Sources

The electronic noise in the system is calculated following the assumption that Johnson

noise is the dominant noise type, as confirmed by noise spectrum analysis on prototype C.

Johnson noise is thermally generated and constant over all frequencies. Flicker noise is due to

quantum variation in material band gaps, and is generally only dominant in microelectronics.

Shot noise is related to the statistical nature of current and is also only dominant in

microelectronics that utilize small currents on the order of nano-amps or below [43].

Johnson noise is generated by any dissipation mechanism which transforms mechanical

or electrical energy into heat. These components generate noise due to small statistical

fluctuations in their energy. The noise occurs equally across all frequencies with spectal density

Sn(f) [43],

Sn (f) = 4kBTR, (3.93)

where kB is Boltzmann's Constant, T is the absolute temperature of the resistor and R is the

resistance of the noise generating component. The voltage noise standard deviation, Un,

generated from thermoelectric sources (Johnson) is found by integrating the noise spectral

density over the full frequency range:

n2 = IH(2)rf )12S, (f ) Sf (3.94)
0

The system in which the resistor is contained has a transfer function, H(s), with an inherent

bandwidth that limits the range of frequencies over which the noise is generated.

3.6.10 Electronic Filter

A software single pole low pass filter is used in the sensor channel to reduce noise in the

system. The mechanical bandwidth of the system is at most 200 Hz, while the electronic noise

has a much larger, theoretically unlimited bandwidth. The filter attenuates the higher frequency

signals, which are disproportionately electronic noise. The filter is placed on the feedback loop

for each axis' control loop, as will be shown in Figure 3.37. The effect of the addition of the

filter is to provide a transfer function with finite bandwidth to the noise calculation in Equation
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(3.94). The new expression for noise is calculated following the assumption of a bandwidth fo,

below the Nyquist sampling frequency of the controller:

C 2 = I S n(f)gf = Snf
o0 ff 2 (3.95)

3.6.11 Electronic Noise Model

A noise model is used to track the flow of the displacement signal and noise through a

single sensor channel from device motion to sensor measurement result. This model outputs a

prediction for the device resolution. The noise contribution of the separate components of the

sensor may be analyzed to determine the dominant sources and the effect that design parameters

have on these sources.

The standard deviation of the output, uz, of a system characterized by output function Z =

f(x1,x2,...), can be calculated through standard propagation of errors as:

\7z = oa l2 x az +x2 .... (3.96)

The standard deviation of the input variables be predicted using the Johnson noise model

described by Equation (3.95) and experimentally validated for better model predictive accuracy.

The model assembled to study the noise contributions of the components in the sensor circuit is

shown in Figure 3.28.

I - - - -- - -- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- --

AVADC2

ac Power Supply a .bi
Figure 3.28: Electronic noise model for full system.

Figure 3.28: Electronic noise model for full system.
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Five components are shown in the noise model, the ADC, PS, IA, WB, and software. Each

contributes some noise (exempting software) and modulates the signal. The ADCs generate

noise a, and ab, as well as adding voltage offsets A VADCl and A VADC2 at their input. The PS

generates the bridge excitation voltage which also contains noise ac, and is fed to the WB as well

as the DAQ board. The PS voltage is attenuated by a voltage divider (VD) which scales the

voltage down to a value within the range of the ADC before reaching the DAQ board. This adds

noise ag to the signal. The IA adds in an inherent bias A VIA and noise Ud at its input. This offset

can be adjusted by the tunable input voltage offset A Vbias which adds noise ae to the signal. The

signal from the WB is boosted by the gain, and the common mode is added as described in

Equation (3.91). The WB reads in an equilibrium offset, zo, and a displacement 6z, which are

summed to give the deflection observed by the flexures. The deflection is scaled to strain as

described in Equation (3.77). The strain is multiplied by the energizing voltage (which was

attenuated by the STC voltage divider), and a voltage offset is added to the system as described

in Equation (3.78). The WB also adds noise of to generate the output voltage signal. The

software inputs the digital signals from the DAQ board, divides out the measured bridge

energizing voltage, and scales the voltage ratio by the calibration C to determine the

displacement of the single sensor. The readings from the three sensors are then summed together

through M to find the total stage displacement, z.

The model can be simplified if it is assumed that the inputs of the IA can be shorted,

allowing a measurement of the inherent electronics offset, which is then negated through tuning

the input voltage bias on the IA. Additionally, the effect of A VADC2 is only important at

resolution levels better than 1 part in 250,000. The resolution limit of the ADC is 16-bits, or 1

part in 16,000, meaning that A VADC2 can be ignored without loss of model predictive accuracy.

The model is then characterized by the resulting expression:

CMRR
[(z+zo)FZGGF + ] STC(V , +o )+o' +- +r,] G +- 07-c +o

z 2 .C-M. (3.97)
41 (Vi, + r )VD + a + C

3.6.12 Model Constants

The constants used in the model are all defined as functions of the electronics design

variable: the bridge energizing voltage. The voltage divider is adjusted to output a reading at the

full range of the ADC:
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10
VD = 1. (3.98)

The CMRR is found through the properties of the IA, which was chosen as described in Section

3.7.4 to be the AD624, to be at worst -80dB, more likely -120dB [44]. The adjustment factor to

account for the effect of multiple sensors is calculated through Equation (3.96) and (5.8), to give

a value of 0.682 (roughly 1/13). The same method can used to determine the noise in the

rotational measurements simply by using a different row in Equation (5.8). The noise in Ox can

be found to be about 17.4x the noise in z and the noise in Oy can be found to be about 12.1x

higher. The STC voltage divider is about 1000/1020, accounting for the small resistance of the

STC scaling the voltage down over the 1 kM bridge. The calibration coefficient is calculated by

setting the input displacement equal to the output displacement and assuming no noise or offsets.

This requires the calibration to be:

VD
C VD (3.99)

Fez -G, -GF -G -STC

The dimensionless resistance factor is estimated to be about 0.0005 based on measurements of

prototype C. The IA gain is defined to ensure that the maximum displacement yields an output

voltage which is within the voltage range of the ADC, in the form of Equation (3.92):

Vx
G = .G V (3.100)

lgzrma F, -G, -G,- V -STCI
The system constants are added into the model, resulting in an expression for the device

resolution which is a function of the device parameters: (including noise), z, and Vi,.

3.6.13 Model Calibration

The component noise quantities are measured through comparison of the noise in the

system with and without the component of interest. The noise is recorded as components were

sequentially added, enabling accurate measurements of each of the component noises. No

filtering is used in order to read the largest noise possible. The model above is adjusted to reflect

the system for each measurement, and the observed position noise is propagated back to the

component. The assumption of constant spectral noise density makes it possible to estimate the

Johnson noise from each component. These measured values were found to be within about 25%
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of the estimated values indicating an adequate fit between theory and underlying physics of the

noise.

3.7 Multi-Domain Optimization

The models of each of the components, bearing, actuator, sensor and electronics are

integrated into a single overall model of the HSFD system. This multi-domain model contains

the system constraints for all of the domains as well as the design equations used to optimize

each of the components.

Previous to integration, each of the component models is examined using estimates of

cross-domain variables to determine where in the design space the component was operating.

The model geometry is set by inverting the closed form models to solve for component geometry

as functions of the desired component performance. If any of constraints are encountered, they

are substituted into the design equations (at the expense of equations setting geometry as

functions of desired performance) to ensure the component is operating at the boundary of its

design space for maximal performance. Once all relevant constraints are integrated into the

design equations, the model operates along the boundary of maximum performance within its

design space. The only remaining unknowns for determining the final parameters of each of the

components are the cross-domain variables. The cross-domain variables can be linked to hard

equations, rather than estimates by combining all of the component models. The full system

performance is studied as a multi-dimensional function of the cross-domain variables. The

volume of interest for this function is limited given the earlier estimates as the starting point.

Only simple tests are needed to determine the general form of the performance function around

this point. The component models, optimization process, and cross domain variables are shown

schematically in Figure 3.29. The 'limiting factor' describes the variable of dominant

importance, generally the variable which was studied while the converse variable was defined

from the dominant variable.
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Figure 3.29: Schematic of multi-domain optimization process.

The cross-dimension variables fall into several categories. First, the variables linking the

bearing and actuator model are the max force output of the actuator, and conversely the stiffness

of the bearing. Setting either of these determines the other. If the max force is raised, the

bearing is stiffer, has a higher natural frequency and improved ability to reject rotations, however

the power generation grows rapidly (4th power of the boost in natural frequency) setting a limited

operating range for adjustment of this variable. Second, the variables linking the bearing and

sensor model are the SG grid geometry and conversely the flexure geometry as well as the max

strain on the flexure. Commercially available strain gages come in distinct geometries, which

influence the size of the flexure and thus the max strain output of the bearing. These different

types of gages also have different resistances and max energizing voltage. Third, the variables

linking the sensor and electronics model are the effective strain out of the strain gage and the

energizing voltage of the bridge. These variables determine the IA gain and system resolution,

while strain gages have a limited energizing voltage which must not be exceeded. Fourth, the

variable linking the actuator and electronics model is the max current output of the power

electronics. This determines the wire gage of the actuator coil.

3.7.1 Bearing Optimization

The bearing optimization is conducted as a cross-domain study to find the optimal system

performance over the range of strain gages available. Two strain gages were found with high

resistance (low power generation) which were also thermally tuned to aluminum. Their grid
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geometry was indicated previously in Figure 3.21, and the associated geometric limits placed on

the flexures are shown in Table 3.3.

Table 3.3:

Strain Gage
Omega, Inc.

SGD-7/1000-LY43
SGT-1A/1000-TY43

Strain

Xgrid

mm
7.00
1.5

gage comparison.

Ygrid bmin
mm mm
3.6 4.62
2.9 3.92

The transducer quality strain gages (SGT) are designed to be more compact, which generally

makes them more difficult to place, but proves to be a large advantage for this application. The

minimum width and length of the flexure is calculated assuming the gage excess plastic coating

is trimmed and a gap of only 25 mils (0.635 mm) is used on the end and 20 mils (0.508 mm) on

the sides.

The performance of the system is shown over a range of stock thicknesses and over the

two different strain gages, as shown in Table 3.4. The stock thicknesses are determined from the

materials presented in Table 3.1, working down from the top of the chart. Aluminum of type

2024-T4 has highest yield strain over the largest range of geometries and therefore is used in the

optimization below. The length of the flexures, the width of the thinner flexure and the max

output strain as calculated from Equation (3.77) are displayed as the system output. The 6h

constraint used to complete the bearing design equations is listed in each case.

Strain Gage
Omega, Inc.

SGD-7/
1000-LY43

hstock

mm (mil-
0.406 (
0.508 (
0.635 (
0.762 (
0.813 (

Table 3.4: Strain

out

inch) [Le
16) 390.5
20) 488.2
25) 561.9
30) 510.8
32) 491.4

gage comparison.

Lf
mm
22.1
22.1
23.4
28.1
30.0

bf.
mm
15.0
7.64
4.62
4.62
4.62

6m Constraint

Lfl = 2Lmin
Lfl = 2Lmin
bfl = bmin
bfl = bmin
bfl = bmin

SGT-1A/
1000-TY43

SF = 0.25
SF = 0.25
bfl = bmin

bfl = bmin
bfl = bmin

Lmin

mm

11.0
5.24

VRMS

V
37
15

0.406
0.508
0.635
0.762
0.813

(16)
(20)
(25)
(30)
(32)

976.1
998.2
847.2
722.7
682.6

16.1
18.0
22.2
26.6
28.4

5.71
4.07
3.92
3.92
3.92
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The flexural design is always constrained by the size of the SGD strain gage, therefore it is never

able to achieve ideal performance. For thin stock, the length limitation is dominant, while at

about 0.635 mm (0.025 in.), the constraint becomes the width of the flexures. The system is able

to put out at best 562 pLs. The much smaller size of the SGT strain gage enables the system to

operate freely in design space for stock thicknesses under 0.635 mm (0.025 in.). The maximum

strain output of 998 Rei occurs at 0.508 mm (0.020 in.). A stock thickness of 0.508 mm (0.020

in.) and the SGT-1A/1000-TY43 were chosen based on this analysis. The resulting bearing

geometry and performance parameters are shown in Table 3.5.

Table 3.5:

Property

Material
hfl, hf2
Lf, L2

bfj,

SF
SF (max loa

COS (x,y)
COR (x,y)

kx
ky
kz

kox
kov

cOnZ

Flexural bearing design results.

Value Units

2024-T4 Al ---
0.508 (20) mm (mil-ir

17.97 mm
4.068 mm
4.803 mm
0.25 ---

.d) 0.36 ---
(0, 11.36) mm
(0, 11.36) mm

80.4 MN/m
30.8 MN/m
64.3 kN/m
3.71 kN/m
1.82 kN/m
81.0 Hz

ich)

3.7.2 Actuator Optimization

The actuator optimization is carried out through an analysis of the power generation of

the actuator as a function of the permanent magnet geometry. The CAD model of the system

sets a length limit on the magnet of 7.62 cm (3 in.); however, the width and height of the magnet

can be varied within a small range. A number of discrete geometries were tested to determine

which generated the least power, resulting in Table 3.6. The dotted line shows the geometric

constraints placed on the permanent magnet, the shading represents the power generation with
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higher power darker. The test was carried out slightly beyond the geometric constraints in case

the constraints were later altered.

Table 3.6: Lorentz actuator coil power output.

3.18 6.35 9.53 12.7 15.9 19.1 Wmag
(0.125) (0.250) (0.375) (0.500) (0.625) (0.750) mm (in.)

3.18 1300 230 84 42 25 16
(0.125)

6.35 260 46 17 8.2 i4.7 3.0
(0.250)

9.53 120 22 7.9 3.9 2.2 1.4
(0.375)

12.7 69 13 4.8 2.4 1.4 0.86
(0.500)

15.9 46 8.8 3.3 1.6 0.93 0.60
(0.625)

19.1 33 6.5 2.4 1.2 0.70 0.45
(0.750)

hmag Power
mm (in.) W

The power generation follows a clear pattern of decreasing towards the bottom right, suggesting

a large square cross section is desired for the magnet. Based on this analysis, the size of the

actuator is maximized to its geometrical constraints. The maximum height is determined by the

thickness of the outer base of 12.5 mm (0.5 in.), while the maximum width is determined by the

available space between aperture and envelope. The geometry of the permanent magnets

(12.5x76.2x76.2 mm or 0.5x0.5x3 in. with transverse magnetization) requires custom magnets,

which were ordered through Indigo Instruments [45].

The max current draw of the actuator is set by the power op-amp used in the current

controller, which is limited to about 1.25 A output. For safety, a maximum value of 0.5 A was

used. This sets the wire to be 26 AWG magnet wire, with a diameter of 0.406 mm (0.016 in.).

The resulting bearing geometry and performance parameters are shown in Table 3.7.
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Table 3.7: Lorentz actuator design results.

Property Value Units

Imag

hmag

Wmag

hgap

Wgap

Bgap

hcoil

Wcoil
1core

dspacing

dwire (26 AWG)

Magnetic Material
lwirefull

lwireact
nlcoilfull

Rcoil

gcoil

Imax

Vmax

Pmax

Channel 1 Channel 2&3
76.2 (3.00)
12.7 (0.500)
12.7 (0.500)
5.08 (0.200)

5.28
0.729

4.57 (0.180)
5.79

108 (4.25)
0.254 (0.010)

0.406
N52
20.3
14.9
107
3.25
90.9

0.173
0.561
0.096

0.490
1.59

0.782

The multi-flux path model was later used to further refine the actuator optimization

process as described in Appendix A. The refined actuator model was not fabricated due to time

constraints on the project and the difficulty of fabricating coils. A CAD model was generated for

an updated HSFD prototype (E) utilizing the optimized actuators.

3.7.3 Sensor Optimization

The sensor optimization is carried out in conjunction with the bearing design as described

earlier. To maximize the sensor readout, a full bridge is used on the bearing flexures. The gages

are placed 0.508 mm (0.025 in.) from the ends of the flexures to produce the highest strain

reading. The geometry of the SGT-1A/1000-TY43 gage combined with the offset enables the

strain factor to be calculated at 0.846. The STC resistance was calculated to be 20.4 Q of SGB-

36 Balco resistance wire (19.7 £O/ft [39]), purchased from Omega, Inc. The Balco wire is

separated into two sections of 6.25 inches for each of the two STC resistors. The thermal

coefficients of the gage factor (9.0x10 5) and the Balco wire (4.5x10 -3) were obtained from the
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manufacturer [39], Omega Inc. The resulting sensor geometry and performance parameters are

shown in Table 3.8.

Table 3.8: Strain gage Wheatstone bridge

Property Value

Sensor SGT-1A/1000-TY43
Xgrid 1.5
Ygrid 2.9

Xoffset 0.635 (0.025)
GF 2.02
Ro 1.0
Ge 0.846
cout 998.2

Span. Temp. Comp. SGB-36
asTrc 0.45
aGF 0.0090
rSTC 64.6
IsTC 2x159 (6.25)
RsTc 20.4

sensor design results.

Units

Omega Inc.
mm
mm

mm (in.)

kQ

[--
Omega Inc.

%/C
%/oC
O/m

in. (mm)
Q

3.7.4 Electronics Optimization

The electronics optimization is carried out in two relatively independent steps. The

current controller design is adjusted to produce the desired actuator performance, and the sensor

circuitry is adjusted to produce maximum resolution.

The current controller output is scaled to drive the stage to maximum displacement at

75% of the maximum current output. The extra space in the command range is left to enable

dynamic commands to not hit saturation even at max displacement. The required currents are

determined from prototype C, which contained the same actuators as prototype D. Only Ri is

varied between the channels to produce the different gains. The components used in the current

controller are described in Table 3.9.
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Table 3.9: Current controller component values.

Component Value Units
Channel 1 Channel 2&3

R2 100 100 kO
Rs 10 10 92

Rcoit 3.25 3.25 92
Ri 432 150 ko
Rf 100 100 L2
Cf 100 100 pF

Leon 91 91 gH

The resulting properties of the current controller are shown in Table 3.10.

Table 3.10: Current controller properties.

Property Value Units
Channel 1 Channel 2&3

Gain -0.023 -0.067 ---
Wn 16.7 16.7 kHz

0.695 0.695 ---
poles -72.9±75.4 -72.9±75.4 krad/s
zero -100 -100 Mrad/s

tsettlin 54.9 54.9 ts

The system dynamics can accurately be characterized as a second order system because the zero

is much greater than 5x further out than the poles. The settling time for the system is

significantly (4100x) faster than the 5 ms ideal settling time of the stage, suggesting that the

current controller dynamics will play an insignificant role in determining the system response.

The bandwidth of the low pass filter is set to be 1 kHz, 10x higher than the stepping

speed of the mechanical system (100 Hz) to minimize the attenuation of mechanical signals. The

frequency is as low as possible to reduce noise, as described earlier.

Two main choices were found for the instrumentation amplifier in the sensor circuits,

AD624 [44] and AD8221 [46]. The properties of the two instrumentation amplifiers are shown

in Table 3.11.
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Table 3.11: Instrumentation amplifier comparison.

Property AD624 AD8221 Units

Noise 4 8 nV/rt(Hz)
Bandwidth 20 10 kHz

Cost 50 10 $

The cost of the AD8221 is significantly less due to sacrifices in the noise floor of the device and

a slight decrease in the operating bandwidth. Cost estimates for the HSFD carried out after

fabrication are shown in Appendix B, and indicate that the added cost for the AD624 does not

significantly alter the device cost. This negated the main benefit of the AD8221, resulting in the

choice of the AD624.

The system noise model was used to study the effect of varying the bridge energizing

voltage between 10 and 20 V. The results of the study are shown in Figure 3.30.

5
- Total
-'- ADC4 I-- ------

I I I. IA

3 ...... ------- ----------

I I

10 - .... - - -- ------ -- -----

10 12 14 16 18 20
v. (V)
in

Figure 3.30: Effect of energizing voltage on predicted electronic noise.

The total noise is estimated to be about 3-4 nm, mainly generated by the noise at the

ADC. The two other main noise sources, WB and IA, are reduced by boosting the energizing

voltage, however they play a secondary role to the ADC and little benefit is gained from

boosting the energizing voltage. If the ADC noise is reduced through purchasing a higher

resolution (18 or 20 bit) converter, large gains may be accrued in the system resolution, and the

energizing voltage would significantly attenuate noise. The thermal effects of boosting the

energizing voltage were considered to not be significant, therefore despite the low return, the
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energizing voltage is set to be about 20 V. The resulting electronic components and performance

parameters are shown in Table 3.12.

Table 3.12: Electronics design results.

Property Value Units

Vin 20 V
Ins. Amp AD624 Analog Devices Inc.

G 186.5 ---
Filter Bandwidth 1.0 kHz

3.8 Geometric Design

The HSFD components are laid out according to Figure 3.31, using the designed

parameters for the bearing and actuators.

Outer Flexure Clamp IAct,

-- ------------- --*, i : :' Li

:: Ach 1' . c .-- Xit

device. The three actuators are fit in around the stage, nested between the discrete flexures of the

actuator coils are anchored to the center stage. The cores contain flanges, as shown in Figure
------,-- - --- - -- 

..

I Flex,

3.10 previously, through which mounting screws are run to anchor the cores to the outer base.

The compressive force generated by anchoring the cores on both sides holds the permanent
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magnet at the desired location. A 0.254 mm (0.010 in.) steel shim is placed between one of the

cores and the magnet to ensure that the cores are clamped down properly on the permanent

magnet. The clamping method is illustrated in Figure 3.32.

Permanent Magnet

Clamping Force Displaced Coil

Shim
Coil Mounting

/ Arm

Outer Base .Center Stage

>Szmax

Core CiHard Stop

Figure 3.32: Actuator mounting and hard stop.

Clearance holes for the clamping screws enable the actuator to be adjusted in-plane to align to

the actuator during fabrication. The core flanges serve a second purpose as hard stops for the

center stage. The coil mounting arms are machined down by 0.254 mm (0.010 in.) on the same

side as the shim, and 0.508 mm (0.020 in.) on the opposite side. When the center stage is

displaced by about 500 Lm in either direction, the coil mounting arms come into contact with the

cores, limiting any further displacement which might damage the flexures. The range of 500 PLm

is chosen as the sum of the maximum travel (250 lm), maximum weight settling (130 jm) and a

roughly 25% dynamic overshoot for the largest possible step (125 jim).

The flexure sheets are clamped over most of their area to immobilize the sheet except for

the small regions where a discrete flexure is desired. The center stage end of the flexure is

anchored with a much thicker 'inner flexure clamp' which is intended to spread the pressure

cone of the flexure clamping screw such that the entire end of the flexure is tightly clamped. The

outer ends of the flexures are anchored with the 'outer flexure clamp'. The four possible outer

flexure clamp locations are integrated into two pieces to simplify assembly and alignment.
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3.9 Thermal Design

3.9.1 Method

A thermal model of the HSFD is used to determine the thermal profile of the device

based on the geometric design and component parameters as described above. A closed form

model is used identify the dominant thermal flows within the device, and a FEA simulation is

used to confirm the model. The FEA model was tuned to match the measured thermal profile of

prototype C based on the dominant parameters identified in the closed form model.

3.9.2 Closed Form Model

The layout of the thermal flow is assumed to mainly be from the coil to the center stage

and from the center stage to the outer base. Losses occur at each step to the environment. The

strain gage sensors also generate heat, which flows out of the flexures into both the center stage

and the outer base. The full closed form model can be visualized schematically as in Figure

3.33.

Tact -

Tstage -

Tbase -

± I Ambient Environment

Figure 3.33: Schematic of thermal model.

The temperature of the coils must be known to determine the heat flux from the coils.

This temperature is dependent on several parameters, including the convective heat flow from

the coil. The convective heat transfer coefficient of the coil surface can be predicted from the

Nusselt number of the coil, which is determined by several parameters [47]. The characteristic
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dimension of the coil surface, d,rf, is its length in the direction of the convective heat transfer

(upwards), and is calculated as:

ds,,, = hmag + 2wcoil. (3.101)

The surface area of the coil, As,,, can be approximated as:

Asu, = l,g 2(dsurf + hgap - 2dspacing ). (3.102)

The Prandl, Pr, Grashoff, Gr, and Rayleigh, Ra, number of the fluid flow are calculated for a

surface temperature difference of AT, as [47]:

Pr = lairCpair

kair

ATgds u,3 (3.103)
Gr = air

Vair

Ra = Pr. Gr

where the properties of air at standard temperature and pressure are used for calculation [48]-

specific heat capacity Cpair, of 1010 J/K, dynamic viscosity air, of 1.83xl0 5 Pas, kinematic

viscosity Vai,, of 1.54x10 -5 m2/s, thermal conductivity ka,ir, of 0.0257 W/(mK), ambient

temperature viscosity ltair, of 25 'C, and gravity g, of 9.81 m/s2. A rough estimate of the

convection coefficient can be calculated from these dimensionless numbers using the Nusselt

number, Nu, definition for natural convection on a vertical surface [47]:

1

Nu = 0.68 + 0.670(Ra- )4
-16

T= 1+ 0.492 16
0r.492~ 1 - (3.104)
Pr

The convective heat transfer coefficient, heff, of the coil surface can be found from the definition

of the Nusselt number [47]:

kair

hff = Nu rf (3.105)

Radiative heat transfer, qrad, must also be included. This occurs in the non-linear form below,

where e is the surface emissivity (about 1 for lacquered coils), a is the Stephan-Boltzmann

constant (5.67*10 -8 W/(m2K4 ), T is the emitting surface temperature, and Ta,, is the ambient air

temperature. The expression can be linearized and treated as an effective convection coefficient,

hrad, for small variations around a steady surface temperature:
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hrad  
8 qrad - e 4T3 .  (3.106)
8T

The total convective heat transfer coefficient for the coil surface, ho,,,,, is the sum of these two

heat transfer modes:

hcon = hrad + heff (3.107)

The natural convection and radiation coefficients for the range of operation of the device are of

roughly equal magnitude: 4.6 and 6.8 W/m2K, respectively.

The desired heat transfer occurring from the coil to the central stage may be visualized as

a small leakage of the generated heat through the plastic mandril and aluminum coil mounting

arms. The majority of the heat should be convectively dissipated. The coil mounting arms are

made thin, long to ensure this is the case in the real device, and the mandril is made of material

with low thermal conductivity. The two modes of heat transfer for the coil are compared using

the values in Table 3.13, where k,andril is the thermal conductivity of the plastic mandril [48], Acs

is the cross sectional area of the mandril, and l,andri is the length of the thermal path through the

mandril.

Table 3.13: Estimated thermal parameters for coil.

Property Value Units

kmandril 0.15 W/mK
Acs 40 mm2

Imandril 3 mm
hcony 11.2 W/m2K

The thermal properties are inserted into the expression below, which is a ratio of convection,

Qconv, to conduction, Qo,,d, out of the coil:

Qcond )coil 2kandrilA (3.108)

mandril

The ratio of the heat transfer modes suggests convection should be about 13x larger than

conduction, meaning it effectively sets the temperature of the coil. This simplifies the model, as

it suggests the coil temperature is largely independent of the component temperatures down the

thermal flow path.

121



The heat flow from the coil to center stage can be visualized as three discrete small flows

from the coils and from the strain gages as described below, to a large lumped body mass owing

to the low thermal resistance of the aluminum center stage. The center stage has no heat

generation sources, and thus simply acts as a thermal mass elastically held between the heated

coils and ground. The samples on the center stage will likely be thermally insulated, owing to

the fact that sample holders are commonly made of plastic.

The heat flow from the center stage can be visualized as 8 flows through the bearing

flexures in parallel with convection to the ambient environment. As with the coil analysis, the

relevant geometry and thermal parameters are shown in Table 3.14, where As,,fs is the surface

area of the center stage, kal is the thermal conductivity of aluminum [48], Afl,,,exure is the sum cross

sectional area of a flexure from set 1 & from set 2, and lflexure is the length of the flexures.

Table 3.14: Estimated thermal parameters for center stage.

Property Value Units

Asufcs 17500 mm 2

kal 240 W/mK
Aflexure 11.6 mm2

Iflexure 28.6 mm

The thermal properties are inserted into the expression below:

SQo, (hconvA~ u )

ond cs 4kAfl e x ure  (3.109)

The ratio of the heat transfer modes suggests conduction should be roughly 2x convection,

assuming the temperature drop to air and outer base are equivalent. This means both must be

considered in setting the center stage temperature. The center stage temperature is set largely by

the actuator and ambient environment temperature in the case that the outer base is in thermal

equilibrium with the center stage. The heat flow across the flexures is significantly less than the

heat generated by the strain gages on the flexure. This heat is expected to flow in both

directions, to the center stage and outer base.

The outer base is assumed to be thermally grounded in the best case scenario. This

scenario involves the device being clamped down to the much larger thermal mass of the
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Confocal microscopy stage, which is always effectively at the ambient temperature. In this case,

conduction is the dominant mode of heat transfer controlling the center stage temperature. In the

worst case scenario, the outer base is not in thermal contact with any other surface and must

convectively transfer out the heat. This second case is similar to the test setup used for the

thermal experiments, where the device was supported on three thin metal stands. In both cases,

the outer base is thermally linked directly to the ambient environment; the only difference is the

strength of the link depending on which heat transfer mode dominates.

3.9.3 Finite Element Model

A finite element analysis model (FEA) was generated from the CAD design of the HSFD using

CosmosWorks Solver to determine the thermal profile and ensure the system thermal constraints

are met over the whole device. The mesh is finely discretized on the flexures and mandril to

obtain better special resolution at these points of interest. The device is split along its plane of

symmetry (normal to the X-axis) for computational speed, and the conduction set to zero at these

exposed surfaces. Material properties are imported for the aluminum and permanent magnets.

Three convection parameters are used to adjust the thermal profile: the coil surface, hcoil, center

stage, hstage, and outer base, hbase, convection coefficient. The conductivity of the plastic mandril,

kmandril, is the fourth parameter which is adjusted to fit the model to observed data.

3.9.4 Model Calibration

The four adjustable parameters in the FEA model were altered until the results of the

simulation largely matched the observed temperature profile in prototype C. The adjustment

process is carried out sequentially, working down the thermal flow path shown in Figure 3.33

above. The coil temperature is fit through adjustment of hcoil until the simulation profile matches

the measured coil surface temperature. The center stage temperature is fit through adjustment of

kmandril and hstage until the simulation profile matches the measured stage surface temperature.

Finally, the outer base temperature is fit through adjustment of hbase until the profile matches the

measured stage surface temperature. The estimated heat transfer coefficient in Equation (3.107)

is used as the starting location for the adjustment. The resulting values for the parameters are

shown in Table 3.15.
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Table 3.15: Thermal model calibration parameters.

Property Value Units

hcoil 25 W/m2 K
hstage 6 W/m 2 K
hbase 5 W/m2K

kmandril 1.8 W/mK

The center stage and outer base convection coefficients are slightly lower than expected

from predictions, which may be due to low emissivity for aluminum which is roughly 0.1. This

low emissivity heavily attenuates the radiation term, resulting in a convection coefficient of

around 5.5 W/m2K, exactly as observed.

The heat transfer coefficient for the coil is significantly higher than expected, about twice

the predicted value. This may be due to a semi-forced convection occurring around the coil as

shown in Figure 3.34.

Heat -
Core

Coil

Mandril

Heat Permanent
Magnets

Forced Air Flow

Figure 3.34: Mechanism for forced air flow increasing convection.

The mechanism for this effect is believed to be the heating of the air in the thin column on either

side of the coil generating a buoyancy force, driving the air out of the gap. The unique situation

around the coil is the extreme dimensions of the gap. The rising, heated air draws a flow of cold

air in from below to fill its spot, driving a flow over the surface and boosting the heat transfer

coefficient.
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3.9.5 Results

The FEA model thermal profile of prototype D at steady state maximum power output is

shown in Figure 3.35. The power generation terms correspond to the measured currents required

to displace the center stage 250 jtm, and are 0.02 W for actuator 1, 0.83 W for actuators 2 &3,

and 0.08 W for each of the strain gages.

Temp (K)
305.4

303.2

301.0

Figure 3.35: FEA Thermal Simulation of Prototype D.

The temperatures of the components, measured at the same locations as in the thermal

experiment described later in Section 5.11.1, are shown in Table 3.16.

Table 3.16: Thermal model results for Prototype D.

Component Temperature
(oC)

Coil 5.4
Center Stage 3.4
Outer Base 3.3

The high voltage strain gage sensors add noticeably to the thermal profile, but not significantly.

The effect of the gages is to bring both the center stage and the outer base to nearly the same

temperature, indicating that the center stage must be transferring heat out mainly through

convection. Actuator 1 is cooler than 2 and 3, because the COS is near the COG. Plastic screws

are used to anchor the mandril to the coil mounting arm due to the need for thermal insulation
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and the low precision/force required for the connection. The thermal model indicates that the

system will operate safely within its thermal constraints.

3.10 System Operation

3.10.1 Method

A transfer function model of the system is used to explore the dynamic properties of the

device and determine what sort of control would be required to meet the performance constraints

on the system operation. Only the Z axis is considered as it has the most difficult operation

parameters. The rotational axes are only required to be within a certain range around zero, while

the Z-axis must have an operating bandwidth of 100-200 Hz.

3.10.2 Plant

The system plant is modeled as three cascaded transfer functions: the current controller,

actuator and bearing. The bearing of the system is modeled as a 2 nd order system for initial

analysis. The bearing design results give the estimated mass, mes, as 0.25 kg, and the stiffness as

58.6 kN/m, with an estimated natural frequency of about 77 Hz. The damping is assumed to be

negligible due to the lack of friction or direct contact with any damping mechanism besides air.

The estimated damping ratio, Cst, is set as 0.1, as a safely high estimate. The estimated damping

coefficient, best, can be calculated from the damping ratio as:

bes,,t 2 "kz (3.110)

The actuators are modeled as transfer functions whose dynamics are contained in the current

controller. The current controller is modeled simply as a unity gain transfer function because the

gain is only important to calibration, and the dynamics were previously described in Table 3.10

to be much greater than 5x the bearing dynamics. The current controller dynamics are not

included for simplicity in the estimated system model, shown in Figure 3.36.
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Figure 3.36: Estimated open loop Z-axis transfer function model.

Quick analysis using Equation (3.89) shows that the settling time of the system is about 83 ms,

far slower than the 10 ms required to reach 100 Hz bandwidth. Open-loop operation also has

difficulty rejecting thermal errors, accounting for loading variations and minimizing parasitic

rotations. The bandwidth of the device can be adjusted through the addition of a compensator

but the error rejection cannot be accomplished with open-loop control.

3.10.3 Closed Loop Control

The problems identified in the open loop system analysis may be solved through the use

of closed loop control. The axial dynamic decoupling through COS/COR alignment indicates

that the three axes can be controlled through three independent loops in parallel. Standard

negative feedback loop is used for the axes, owing to its simplicity. The control loop for the Z-

axis is shown in Figure 3.37, with compensator Cz(s) and sensor H(s) transfer functions added to

the loop.

Plant

+0 Cz V) I F
ZomZ 3Bgap wireact est estz_ m,,ets +b ,s+k z ,-Z

Compensator Current Actuator Bearing
Controller-- --- - --- - -- -- -- - -- -- -- - -- -- -- ------------ :,,,,,,,,,,

H(s)

Sensor

Figure 3.37: Estimated closed loop Z-axis transfer function model.
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The compensator design relies heavily on the actual plant dynamics, particularly in the case of

the HSFD where the desired operation bandwidth lies well into the dynamic range of the plant

(above natural frequency). Thermal expansion and other slow changes such as loading variations

occur at lower frequency and should be adequately rejected by any closed-loop control.
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CHAPTER

4
FABRICATION AND ASSEMBLY

4.1 Introduction

In this chapter, the fabrication and assembly process for the HSFD is described with a

focus on issues of particular importance to be observed during fabrication and assembly.

Fabrication methods and operations of importance to device performance are discussed. The

optimal assembly process is described for ensuring component alignment and minimizing the

difficulty of assembling magnetic components. Specific dimensions of the components for

prototype D are shown in Appendix C.

4.2 Fabrication

The HSFD is designed to utilize a small range of repeated fabrication operations for as

much of the process as possible to simplify fabrication and reduce costs. All parts of the HSFD,

excluding the coils, are fabricated through a combination of water jet cutting and milling. All

other operations used in the HSFD fabrication, such as tapping and deburring, do not require

large machine shop equipment. The water jet cutting is carried out on sheet aluminum of

thickness from 0.508 mm (0.020 in.) up to 12.5 mm (0.500 in.), and on steel of thickness 6.35

mm (0.250 in.). Laser cutting may also be used in place of the water jet. The use of the laser

cutter may slightly decrease the yield strength and fatigue life of the flexures due to the localized

thermal stresses generated on the edges of the flexure during fabrication.

All parts in the HSFD are made from aluminum with the exception of the coil mandrils

which are made from plastic, and the cores, which are made from 1020 steel. The flexures are
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composed of 2024-T4 aluminum, while the rest of the structure is composed of 6061-T651

aluminum.

The assemblies are held together with 4-40 screws due to the need for small diameters

when anchoring the center stage side of the flexures. If the center stage is made thicker through

the relaxation of the system geometric constraints such as aperature size, then 6-32 screws would

be recommended because of their larger pressure cones and higher clamping forces.

The flexure blades require the highest fabrication accuracy, about 25 pm (0.001 in.), in

order to ensure the COS/COR remain aligned within 1 mm. For all of the other components,

dimensional accuracies of about 125 pm (0.005 in.) are sufficient. The design is intended utilize

alignment during assembly to account for fabrication errors. The center stage and outer base

should be cut from the same sheet of material to ensure equivalent thicknesses within a few mils.

The matching thicknesses will minimize the strain in the flexures once assembled.

The coil fabrication process consists of anchoring the mandrils between two parallel

plates separated by a gap of hcoil as described by Equation (3.43). The magnet wire is wrapped

around the mandril in successive layers and anchored with epoxy. This replicates the geometry

desired for the coil. For the prototype coils, 'Krazy Glue' standard formula epoxy is used on the

coils because it dries rapidly and Teflon plates are used to hold the coil geometry during

fabrication.

4.3 Assembly

4.3.1 Wheatstone Bridge Assembly

The Wheatstone bridge is assembled by gluing strain gages to the top and bottom surface

of the flexures using thermal set glue TT300 from Omega Inc. The strain gages are located on

the flexure as shown in Figure 3.21 previously, with the wiring carried out according to Figure

4.1. The wires used to link the strain gages are 36 AWG stranded flexible wire, chosen to be as

compliant as possible during device operation. The STC resistance wire is adhered to the outer

base near the anchored end of the flexure using type 384 Loctite brand thermally conductive

adhesive to minimize the temperature differences between the span temperature compensation

and the strain gages on the Wheatstone bridge.
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Figure 4.1: Strain gage wiring schematic.

The interface between the circuitry and the sensors is a parallel connector, which enables the WB

wires to be disconnected if the flexure sheet needs to be removed. Insulated, foil wrapped,

grounded, and twisted wires are used to electrically link the parallel connector to the electronics.

The insulation protects the signals from making electrical contact elsewhere, the foil protects the

wires from varying electric fields, the grounding prevents static buildup on the foil and the

twisting cancels out the voltages generated by varying magnetic fields.

4.3.2 Coil and Magnet Assembly

The first step in the HSFD mechanical assembly is to place the permanent magnets flush

against the sides of the coils, with a plastic shim between the magnet and coil, as shown in

Figure 4.2. Plastic is used for the shim to avoid scratching the coils, particularly during the final

shim removal step. This shim determines the gap between the magnet and coil, therefore is

ideally 0.254 mm (0.010 in.), to set the spacing to the design parameter. Any warpage in the coil

decrease the gap when the shim is removed. For safety, the shim size set at 0.380 mm (0.015

in.). If the coil warpage is reduced, as discussed in Section 6.3.2, then the 0.254 mm shims

should be used. The magnets are placed with anti-parallel magnetization directions. The

attractive force between the magnets, even with no cores, is on the scale of 100 N, therefore

caution is necessary during assembly.
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Permanent Magnet

Figure 4.2: Coil and magnet assembly.

4.3.3 Addition of Top Cores

The second step in the assembly is to insert the top cores on each of the actuators, with

the metal spacing shim placed between the magnet and cores, all as shown in Figure 4.3. The

surface of the magnet and steel is cleaned of any debris prior to assembly, such that the

components mesh correctly with no air gap. The steel shims are placed to ensure that the cores

clamp the permanent magnets rather than the outer base, as described in Section 3.8 earlier. The

first cores are added at this step as it becomes progressively more difficult to add them later

without damaging nearby parts, including the flexures. The addition of each core boosts the

magnetic field, increasing the attractive pull of the magnets. As many cores as possible are

placed at this step, the remainder are inserted once the actuators are seated in the outer base.
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Figure 4.4: Attachment to center stage.

4.3.5 Addition of Top Flexure Sheet

The fourth step in the assembly is to settle the center stage into the outer base and clamp

it in place using the top flexure sheet, as shown in Figure 4.5. The center stage is placed in the

outer base and both are seated on a flat surface, to ensure their surfaces are flush. After cleaning

all of the clamping surfaces, the top flexure sheet is laid over the center stage and tightly

clamped in place with both inner and outer flexure clamps. Type 316 stainless steel washers are

used with each 4-40 screw to evenly distribute the clamping pressure and reduce damage on the

parts. This step ensures that the flexures are placed and anchored with minimal stress. The

actuators are aligned with their mounting holes only once the flexure alignment is complete.
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Top Flexure Sheet,

Figure 4.5: Addition of top flexure sheet.

4.3.6 Alignment of Actuators

The fifth step in the assembly is to adjust the magnets and actuator cores into correct

alignment with the outer base, and screw the actuators in place without tightening the screws, as

shown in Figure 4.6. Washers are used with all of the clamping screws. The cores are intended

to not make contact with the outer base on the top, to ensure that the permanent magnets are

tightly clamped. The bottom cores make contact, but the top cores do not. The alignment of the

actuators at this point ensures that the flexures are located with minimal internal stresses and that

the actuators are located relative to the coil locations.
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Screws

Figure 4.6: Alignment of actuators.

4.3.7 Addition of Bottom Components- Cores and Flexures

The sixth step in the assembly is to flip the device and add in all of the cores and flexure

sheet on the bottom, as shown in Figure 4.7. The cores are added first, and are slid in from the

side to minimize the pulling force of the magnet. The bottom flexure sheet is placed and firmly

clamped down once all of the cores are seated and the magnets centered in their gaps. The

bottom cores are then firmly clamped down to the outer base, setting the actuator location.

, *Bottom Inner Flexure Clamp
Bottom Flexure Sheet

Figure 4.7: Addition of bottom components- cores and flexures.
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4.3.8 Anchoring of Actuators

The seventh step in the assembly is to flip the device right side up, tighten the actuator

screws and remove the plastic shims, resulting in the completed device as shown in Figure 4.8.

The magnets will snap in to contact the coil when the shims are removed and the assembly

process must be restarted if the actuators are not tightly clamped. Pressurized air and thinner

plastic shims are used to ensure that no debris is located in the gap between coil and

magnet/core.

Figure 4.8: Anchoring of actuators.

The circular extrusions on the inner flexure clamp are for characterization purposes only,

and are not needed for the final device. The capacitance probe position measurement system

described in Section 5.2.3 requires 9.53 mm (0.375 in.) diameter conducting targets on the

bottom of the moving stage. The top extrusions are used as plates for the placement of weights

when applying static moments to the device to characterize the bearing.

The completed HSFD is shown in Figure 1.1, with all components added, shims removed

and anchored down to the testing stage. The labels are used to identify the wires which connect

the actuators and sensors to their associated electronics.
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4.4 Electronics

4.4.1 Layout

The system electronics are laid out according to Figure 4.9, with the actuation channels

running across the top, and the sensing channels running across the bottom of the schematic.

Shielding is important for a precision machine such as the HSFD, particularly on the components

carrying the un-amplified position signal.

Figure 4.9: Wiring schematic for HSFD electronics.

The signal is boosted by approximately 200x after the IAs, reducing the effect of further noise.

The wires are shielded wherever possible to reduce EM noise and cross coupling in the device.

The actual electronics layout is shown in Figure 4.10, with the main electronics sections boxed

for clarity. The setup is carried out on an optical table and all wires are strain relieved to the

table when possible.
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DAQ

Figure 4.10: Layout of HSFD electronics.

Terminal blocks are used between each section of electronics to (i) act as strain relief and (ii) to

allow for the wire type to be changed, such as the transfer from shielded, grounded and twisted

wires to BNC cables leading to the DAQ board. The terminal blocks are shielded to reduce EM

noise. The IA circuitry is laid out on a breadboard to ease adjustment and debugging of the

circuitry. This exposed section of the electronics is likely picking up significant noise. The

HSFD is placed in an environmental enclosure (orange) to prevent stray air currents and radiative

heating from the external sources disturbing the system during characterization. The top of the

enclosure has been removed for image clarity.
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CHAPTER

5
CHARACTERIZATION AND TUNING

5.1 Introduction

In this chapter, the components of the HSFD are characterized and compared to the

design performance predictions. The methods and model used for the characterization are

described along with the results obtained. The full system dynamics are measured and a

compensator design is implemented to enable the required device bandwidth. The full system

performance is characterized and found to meet the performance requirements.

5.2 Position Measurement

5.2.1 Method

The position sensing on the HSFD is done at three discrete locations, however it is not

these three displacements which are desired for device operation, but rather the height, tip and

tilt of the center stage. The information must be mathematically transformed into a position

reading of the stage starting from three sensor measurements, which are read into the controlling

software.

5.2.2 Coordinate Transform

The coordinate transform inputs three displacements along the Z axis, corresponding to

the transverse displacement of the sensed flexures. These measurements are taken at a known in-

plane location defined relative to the COG. The exact in-plane locations are found from the

CAD model of the HSFD. The result of the three sensor measurements is the definition of three
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sensor location points in 3-D space as shown in Figure 5.1. The flexures are anchored to the

stage on their guided end, enforcing the requirement that the central stage plane must pass

through each of the three sensor locations.

Center Stage Plane Sensor (2) Location

"'" X2,Y2)
Outer Base C

(0,0)i X \ co ,c.

Reference Plane (XCOM.YC.. "
(Initial Location) (xyyj)

Sx3,y3)

Figure 5.1: Coordinate transform geometric layout.

The position measurement is only relative to the initial location (Reference Plane) of the center

stage plane, as it is not known in absolute terms how the stage sits relative to external devices

such as the Confocal microscope. The sensor locations are transformed into a set of coordinates

locating the center stage in three degrees of freedom. While three points perfectly define a plain,

more than three points may be used for this sort of measurement. The effect is to average out the

measurement error as described in Section 3.5.4 previously, making the position sensing more

accurate. The coordinate transform of the sensor locations must be done in real-time to enable

the control loop to control the center stage position. Only three bits need to be fed to the

coordinate transform operation because six of the nine bits of information determining the sensor

locations are constant.

The coordinate transform needs to be written as a transfer function utilizing only linear

algebra operations on the sensor locations as shown in Figure 5.2, such that it can be easily

integrated into the controlling software. The sensor vertical displacements are fed into the

transform as a vector, s, which is operated on by the transform matrix to result in another vector,

p, describing the height, tip and tilt of the center stage.
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Figure 5.2: Schematic of coordinate transform.

The coordinate transform process can be decomposed into two main steps: finding the plane

defined by the sensor locations (center stage plane) and using the plane parameters to find the

height, tip & tilt of the plane.

The center stage plane can be described by an equation defining the height of the plane,

Z(x, y), at any given in-plane location (x, y),

Z(x, y)= C + Cx+ C2y, (5.1)
where CO-2 are constants. Equation (5.1) must be satisfied at every point along the center stage

plane, including the points measured by the sensors. The particular instantiations of Equation

(5.1) at each sensor in-plane location can be stacked into a matrix, A, relating the vector of plane

constants, c, to the sensor measurements:

s=A'c

Z IXl Y(52 C )
z2 X 2 Y2 (5.2)

Z3 1 x3 Y3
C2

The plane defining matrix A will have n rows corresponding to the n sensor measurements read

into the control loop and three columns corresponding to the three plane constants. The sensor

position measurements are input to the transform, while the plane constants are the output. To

find the plane constants, the least squares method of fitting [49] is used, giving:

c =[(ATAIA T ].S. (5.3)

The plane constants vector defines the least squares plane fit to the sensor locations.

The plane constants are transformed into a height, tip, and tilt of the plane to complete the

coordinate transform. The height of the plane, z, is defined by Equation (5.1) at the center of
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measurement (COM), a particular point on the center stage plane with in-plane coordinates

(XCOM, YcoM):

z = Z(xcoM YCOM) = Co + C,xcoM + C2YCOM. (5.4)

The rotation around the X-axis, Ox, is defined for small deflections as the slope of the plane

equation:

aZ(x, y)
Ox= Z )- = (5.5)Dy

The rotation around the Y-axis, Oy, is likewise defined for small deflections as:

aZ(x, y)y -- Z(X, = - Cl  (5.6)
ax

The definitions for the plane coordinates, Equations (5.4), (5.5), and (5.6) are stacked into a

matrix, B, which transforms the plane constants into the plane position in terms of height, tip and

tilt:

p=B.c

ZCM YCOM (5.7)
OX =0 0 1 Cl

, -1 0 C2

The full coordinate transform matrix, T, defining the center stage plane position directly

from the sensor readings, is found through combining Equations (5.3) and (5.7) to give:

p=T.s

p = [B (ATA)-IAT].S (5.8)

Equation (5.8) must be used for calculating the coordinate transform matrix when n > 3, but the

plane is exactly defined when n = 3, thus least squares fitting is un-necessary and Equation (5.8)

reduces to:

p = BA -' -s

1 ( X2 X3 Z]

Y3 - y2 Y Y 3 Y 2 - 3 . (5.9)

SXCM (Y2- Y3)+ YCOM (X3 -X2)+ X23 -X3Y2

Z2 XCOM (Y3 YI )+ COM (xJ -x3 )+x 3 1 -x Y 3

X3 = XcoM (Y1 - Y2) + YCOM (X2 -XI )+ XY2 - X2Y1

143



5.2.3 Capacitance Probes

Capacitance displacement measurement probes (CAP) are used to facilitate the

characterization of the HSFD before strain gage sensors are attached. Additionally, the CAP

probes are used to calibrate the strain gage sensors. Three Lion Precision DMT12 CAP probes

were placed below the stage and adjusted to read the location of the targets built into the center

stage, at the locations shown in Figure 5.3.

Act,

Figure 5.3: General sensor geometric layout.

5.2.4 Coordinate Transform Constants

The location of the CAP and WB strain gage sensors as shown in Figure 5.3 above are

calculated from the CAD model of the HSFD and listed in Table 5.1.

Table 5.1:

Sensor

CAP1
CAP2

CAP3

WB1
WB 2
WB3

Sensor coordinates.

X Y
(mm) (mm)
0.00 52.14

-70.78 -52.14
71.20 -52.14
85.68 57.79
-85.68 57.79
85.68 -57.80
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5.3 Mass Characterization

The masses of each of the components in the moving center stage are listed in Table 5.2.

Table 5.2: Masses of center stage components.

Component Quantity Mass
±+1 (g)

Center stage 1 77.0
Coil 3 35.5

Flexure sheet 2 5.5
Flexure clamp 2 18.5

Screws 14 0.46
Total --- 240.0

The center stage should be as light as possible to raise the natural frequency and simplify the

control scheme. The component masses show that while it may be possible to remove material

from the center stage, it is not the dominant mass and would show minor gains for large structure

stiffness losses. The coils are the dominant mass in the system because of the large volume of

copper wiring used.

5.4 Stiffness and COS Characterization

5.4.1 Method

The stiffness and COS of the bearing is determined through the application of loads to the

bearing while measuring displacement. CAP probes were used to measure displacements at the

locations shown in Figure 5.3, with 1000-point moving averages of the readings, sampled at 1

kHz. The stage is loaded with non-magnetic masses on the three plates built into the top inner

flexure clamp. These masses generate known forces at known locations, allowing for the loading

forces and moments to be accurately calculated.

For the measurement of the stiffness and COS, it is desired that the COM lie on top of the

COS such that rotations do not also appear as vertical motion. The COM is iteratively adjusted

along one axis at a time after the data is collected, altering the coordinate transform matrix. The

adjusted position data is graphed against applied torques (assuming at each point that the COM is

actually on the COS) until the apparent rotational stiffness around the perpendicular axis is the
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same over the range of rotations. As the COM (and thus the assumed COS location) is shifted,

the lever arm calculated for the masses is altered, changing the calculated moments. The

measured rotations are not affected by changing the COM, only the applied moments. At the

true COS, the rotational stiffness for rotations in either direction (+ or -) is the same. The value

of Ycos is determined by aligning the rotational stiffness around the X-axis and vice versa. The

vertical stiffness is measured through applying roughly equal weights at all three plates and

measuring the displacement at the now known COS once the stiffnesses are matched for both

rotational axes.

5.4.2 Results

The error in the linear stiffness fit curve shows no trends for either rotational stiffness

measurement, but does show a noticeable trend for the vertical stiffness, as shown in Figure 5.4.
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I

**

20------------ ---------------

0 0--------

o ,
-20 I - - - -

-100 -80 -60 -40 -20 0
z (w m)

Figure 5.4: Linear stiffness error in Z-axis.

The clear trend in the Z-stiffness error appears sinusoidal, with a proportional error out to about

40 rtm, at which point the fit begins to successively under-predict the required force. This

appears to be due to a slight strain stiffening effect in the flexures, which is expected as the

flexures are designed to operate at high strains.
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Table 5.3: Measured stiffness and COS properties.

Parameter Value Predicted Units

kz 49.86 ± 0.31 64.25 kN/m
kox 0.293 ± 0.0011 3.714 kN/rad
koy 1.051 ± 0.005 1.815 kN/rad

XCOS 4.85 + 0.05 0 mm
ycos 11.93 ± 0.05 11.36 mm

The measured axial stiffnesses and COS location is shown in Table 5.3, along with the

measurement errors and predicted values. The linear stiffness of the bearing is significantly

below the predicted value. This is consistent with the previous prototypes, measured during the

COR alignment described in Section 3.3.8, which also showed proportionally low stiffness as

shown in Table 5.4.

Table 5.4: Error in stiffness predictions.

Prototype Iteration Predicted Measured kz Error koz Error
# kN/m kN/m (%) (%)

C 1 58.6 56.3 -3.9 -91.1
D 2 48.6 41.2 -29.7 -92.7
D 3 62.6 44.9 -28.3 -92.5
D 4 64.3 49.9 -22.4 -92.1

The error is low for prototype C and but increases significantly for prototype D. This may be

due to a consistent clamping issue with the new prototype as described in the section below, or

may be due to material property variations between the aluminum used for the flexure sheets.

The latter is unlikely. The high strains of the prototype D flexures may require more significant

clamping force to ensure proper rigid anchoring.

The rotational stiffnesses are also extremely far off from predictions which suggests that

the assumption of center stage rigidity may not be valid. The error in one of the rotational

stiffnesses over the various prototypes is shown in Table 5.4 above. The stiffness error is steady,

which is consistent with the existence of another equivalent spring in series with the flexural

bearing. Adding rigidity to the center stage should significantly reduce this issue. The Y-axis

rotational stiffness is much closer to the predicted value, suggesting that the axial mode of

147



flexural loading, which set the rotational stiffness around the Y-axis is a more accurate model of

the bearings behavior than the shear loading which set the rotational stiffness around the X-axis.

The large error in xcos is significantly beyond the scale of the fabrication error observed

in ycos (about 0.5 mm). This is likely due to a clamping issue as described in Section 5.4.3.

5.4.3 Clamping

Several issues occur in relation to the clamping of the flexures. The COS of prototype D

shows significant position error despite symmetric flexure dimensions. Additionally, the

clamping force affects the COS, as shown in Section 3.3.8, where brass screws were

experimentally found to provide insufficient force to rigidly anchor the flexures. The contact

surfaces are cleaned and deburred before each time the flexure is clamped, ruling out grit as an

issue. The end surfaces of the flexure clamps may not be flush, thus when the flexure is engaged

in one direction its effective length is less than in the other direction, as shown in Figure 5.5.

Clamping Faces Y Inner
Off-Flush FlexureFlexure

Clamp

.... .... .. ..........Outer Flexure X ...........

... . -. . . Higher Stiffness,Clam Direction of

Lower Stiffness
Outer --------- Stage
Base

Figure 5.5: Stiffness variation due to clamping error.

The result of such a mis-alignment would be a slightly different stiffness in one direction as

compared to the other direction. This will throw off the COS measurement, possibly producing

the error observed in prototype D. If both the flexures on one side of the device are clamped off-

flush in the same direction, then the there would be no effect on Ycos, but a noticeable effect on

xcos. Several solutions to this issue are presented in Section 6.3.3 later.
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5.5 COR Characterization

5.5.1 Method

The COR is determined through driving the device at the first resonance for each of the

rotational axes sequentially while scanning the COM over the in-plane axis perpendicular to the

one undergoing resonance. For instance, YcoR is found by driving the system at the primary Ox

resonance, and scanning the along the Y-axis. The actuators must be calibrated sufficiently to

generate a stage rotation. The coordinate transform matrix is changed when the COM is altered.

To do this in real time, the coordinate transform matrix is split to have a constant component and

a component dependent on the COM coordinates, which is scaled during device operation. The

sum of these components produces an adjustable coordinate transform matrix. The amplitude of

the measured vertical displacement is divided by the amplitude of the command signal fed into

the rotational axis. This ratio is referred to as the gain of the system.

5.5.2 Results

The gain of the system is graphed versus the commanded COM (translated along the Y-

axis) in Figure 5.6.

5 --- ------- 2CO 2 --- -- -
S----------. ----- ---------

5 1011.48 15 20
YCOM (mm)

Figure 5.6: Measurement of COR.
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The system gain shows a slight hyperbolic form around the COR, which rapidly settles into

symmetric linearly increasing asymptotes at large distances from the COR. The system output,

gain(y) follows the hyperbolic equation:

gain(y) = a2 +b2 _ YCOR)2 gin -a, (5.10)

where a controls the scale of curvature in the transition regime, b sets the asymptotic slope, gmin

sets the minimum gain and yCOR sets the Y-axis coordinate of the minimum gain. The results of

the curve fits for measurements along both axes are shown in Table 5.5.

Table 5.5: Measured COR properties.

Parameter Value Predicted Units

XCOR -0.47 ± 0.1 0 mm
YCOR 11.48 ± 0.1 11.36 mm

It is believed that the non-zero value for xcoR is due to the anomalously large location error in

xcos. The empirical relation determined between the COS and COR suggests that the large

positive value of the COS should draw the COR negative by a fraction of the distance, as is

observed in this case.

5.6 Actuator Characterization

5.6.1 Method

The actuator performance is measured by commanding each actuator individually over a

range of voltages and recording the center stage position in all three axes as a function of these

command voltages. CAP probes were used to measure displacement at 1 kHz sampling with

1000-point averages on the data, as done with the earlier characterizations. The voltage

command given to the actuator passes through several systems before producing the measured

stage position. The open loop transfer function model of this signal propagation is shown in

Figure 5.7.
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Figure 5.7: Coil voltage command to position transfer function model.

The actuator channel characterization captures the gains of all of the components along the

command signals path, including the current controller, actuator and bearing. The complete

black box form of the measurement enables extremely accurate calibration, as the outputs of the

system (position) are directly fit to the digital inputs to the system (Vi, sent from the DAC).

The position response to the voltage command is expected to be linear and is only

measured as a difference in displacement, thus has no offset term. This enables the system

response to be written as a product of a calibration coefficient times the command voltage. The

nine coefficients linking the coil command voltages, v, to the center stage position are gathered

into a calibration matrix, C, to give the expression:

p=C'v

S a a2 a3 1 
(5.11)Ox = ax a2x a3X V2

1Yj a, a2 a3Y V 3

The position vector of the stage can be used as a command, which is then translated into

command voltages to each of the coils by inverting the calibration matrix.

5.6.2 Results

The actuator calibration resulted in the actuation matrix, C, written in units of V/tm for

the first row and V/grad for the second and third rows:
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-2.637-10 -2 -1.584-10 -2  1.847.10 - 3

C- =-2.564 10-2 2.860 -10-3  -1.477 -10-2 . (5.12)

-3.013 10-2  2.636. 10-3  1.374-10 -2

The first column of the actuation matrix describes the relative voltage commands given to the

actuators for commands of purely vertical motion. All of the actuators are commanded at

roughly the same voltage. This is due to the adjustment of the current controller channel gains

such that all of the actuators would operate over the full scale of command voltages for the full

device displacement. The second column of the actuation matrix describes the relative voltage

commands for rotation around the X-axis. Actuator 1 is the dominant generator of this motion,

while actuators 2 and 3 are roughly 1/10 as utilized. The third column of the actuation matrix

describes the relative voltage commands for rotation around the Y-axis. Actuator 1 plays a

minor role in this case and actuators 2 and 3 play the dominant role with their commands

opposite one another, precisely as expected.

The actuation matrix was used to drive the center stage open loop, and the position

response is compared to the position command in Figure 5.8.

2 2... 2

0S-2 ---- - .- - "t o-...

XI I

0 50 100 150 200 250
Z (tm)

Figure 5.8: Actuator calibration error in all 3 axes.

The error in the actuator calibration is within 1% for vertical displacements up to about 150 tm,

beyond which the actuators non-linearity increases significantly in all axes. This is likely due to

the actuators moving out of the magnetic field, lowering the average value of the magnetic flux

density observed by the coil. The coil force output drops as the flux density decreases, resulting
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in growing error between position command and measurement. This is particularly noticeable in

the Z axis, where the error remains nearly constant around zero until a 150 [tm, at which point

the error begins growing exponentially relative to further displacement. The field non-linearity

is addressed in the fully optimized actuator design presented in Appendix A.

5.6.3 Range Restriction

The current controller interaction with the sensor electronics is illustrated through the SG

WB sensor based actuator calibration data. The interaction is likely due to a linked ground

between the current controller circuitry and the sensor circuitry. Only the negative current

commands on the actuator show problems, as shown in Figure 5.9. The entire negative range of

the device is essentially un-usable as the coupling between the electronics causes significant

variations in the sensor output which do not correspond to actual stage displacements.

10 200

I IX

5- 0 100

It appears that when the current controller is commanded in the negative direction, theactual device motion. The CAP probes additionally 
show a tripling of noise when the current

I I -2001O -100 0 100 20

z (jim)

Figure 5.9: Actuator calibration error over full range.

It appears that when the current controller is commanded in the negative direction, the

switch in the direction of current flow somehow raises or lowers the ground voltage to which the

sensor is linked. All direct ground links have been removed and the current controller is run on

an independent power supply, but the issue has not been resolved. The conductive optical table

on which the device is anchored may be acting as the ground link. Simultaneous measurements

of the device position with CAP probes confirm that the WB sensor readings are not capturing

actual device motion. The CAP probes additionally show a tripling of noise when the current
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controller is operating in the non-linear region. The HSFD is only operated over positive

displacements in lieu of rebuilding all of the electronics.

5.6.4 Coil Characterization

The coils properties are shown in Table 5.6.

Table 5.6: Measured coil properties.

Coil Turns R
-0.01 (p)

1 102 3.24
2 105 3.25
3 105 3.36

The number of turns in coil 1 is less than the other two coils because damage to the coil during

the device assembly required that several turns be removed to regain a usable electrical

connection. The resistance of coil 3 is significantly higher than the other two coils, possibly

because of an error in the counted number of turns.

5.6.5 Flux Density Measurement

The average gap flux in the actuators can be measured by comparing the full actuator

channel characterizations described in Section 5.6.1 to models of the channel containing the

bearing, current controller and actuator properties, as shown in Figure 5.7 previously.

The current controller is operating in steady state, therefore only the channel gain is of

importance. The current controller is modeled as in Equation (3.85) for each channel. The

equations can be stacked to form a diagonal matrix, D, defining the current output vector, i, in

relation to the voltage command vector input to the current controller channels:

i=D-v

RiRs chl -
12 0 [R 2  V (5.13)

0 0 R2[-;

SRRs ch3
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The current controller gain matrix can be used to relate current to position through the matrix E,

which is generated from Equations (5.11) and (5.13):

p=E.i

p =(C D-') i (5.14)

The first row of the current to position matrix gives a measured value for the ratio of zlI

for each coil. These ratios combined with the known bearing stiffness and average coil wire

length, Lactive enable Equation (3.52) to be used to calculate the actual gap flux density as

3

/=1 
(5.15)

gap 3Lactive

The average wire length is calculated from Equation (3.46) using the measured number of turns

in each coil as shown in Table 5.6 previously, assuming every turn is exposed to magnetic flux.

The measured value of the gap flux density is 0.785 T, about 7% higher than the predicted value

of 0.729 T made by the multi-flux path model. The error is likely caused by differences in the

actual gap width from the design dimension and variation in the permanent magnet properties, as

the quoted remnant flux and coercivity of NE52 magnets varies by about 5% between

manufacturers.

5.7 Sensor Characterization

5.7.1 Method

The sensor properties are determined by commanding the stage over a range of

displacements while simultaneously measuring all of the strain gage WB sensor voltage outputs,

the WB PS voltage and the actual stage position. Initial offsets of the WB sensors limit the

energizing voltage of the bridges to be 15.43 V, rather than the planned 20 V. CAP probes were

used to measure displacement at 1 kHz sampling with 1000-point averages on the data, as done

with the earlier characterizations.

The calibrated actuators are given open loop commands during operation over a set of

displacements covering the device operating range. Immediately before each actuator command

is given, the position measurement from the CAP probes and sensor voltages are zeroed to only

record the change in both position and voltage when the stage moves. This is intended to remove

slow drifts in the readings, such as thermal growth. The initial offset value of the SG voltage for
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each sensor (measured at the beginning of the calibration) is added back to the differential

voltage measurements to regenerate the full voltage signals associated with a given differential

displacement. The HSFD can operate in the 3-D space defined by its three DOFs, but the desired

operation is largely I-D, only along the Z-axis over the range of +250 gm, with minimal

rotations of less than 10 Rrad. The calibration is carried out along the center (rotations less than

1 prad) of this line of common operation as shown in Figure 5.10.

z (m)
250

Calibrating Path Operating Volume

O, (grad)--..10

Ox (grad)

-25

Figure 5.10: Strain gage Wheatstone bridge calibration path.

The calibration essentially captures only the level translation of the entire stage, and ensures that

this form of motion is held to the highest accuracy. The non-linear region of the device

operation, as described in Section 5.6.3 above, is not included in the calibration.

Sensor calibration is carried out by calculating the vertical displacement of each of the

SG WB and comparing this to the measured voltage at the given displacement. A calibration

curve can be drawn from multiple measurements of these two variables, which is then used to

translate the sensor voltage into vertical displacements at the sensor location. The vertical

displacement of the ith SG WB sensor, zwBi, in vector form, sws, can be determined from the

measured stage position vector through application of the small angle approximation. The

equations calculating the vertical displacement of each sensor can be rewritten into the transfer

matrix F as:
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SWB = Fp

-x x •(5.16)
ZWBI 1 Y1 YCOM XCOM -X] Z(
ZWB2 Y2 YCOM XCOM 2 X

ZWB3  Y3 YCOM XOM -X 3] [OY
The voltage from the SG WB sensor, Vwei, is normalized by the WB PS voltage, Vps, to

cancel out voltage fluctuations in the energizing voltage. This creates a non-dimensional voltage

term which is nearly perfectly insensitive to power supply variation and noise. A third order

least squares fit is applied to the displacement versus non-dimensional voltage curve for each

sensor. The best fit is found to be third order, likely because of the slight 2nd order non-linearity

of the flexural bearing under high strain as well as the repeatable non-linearity of the

instrumentation amplifier:

Zwi = a3 VWBi+ a2  + a1 Vw + ao, (5.17)
VPs VS VS

where ao-3 are the calibration constants for the sensor.

5.7.2 Results

The calibration coefficients for the SG WB sensors are listed in Table 5.7.

Table 5.7: Calibration coefficients for strain gage Wheatstone bridge sensors.

Sensor a3 a2 al ao

(ptm) (pm) (tm) (gim)
WB 1  -14.2684 -25.5181 374.470 435.396
WB 2  -14.4897 7.11184 388.230 111.5951
WB 3  -7.80499 16.4165 345.987 2.86226

The calibration coefficients show that the second and third order non-linearities of the gages are

roughly two orders of magnitude smaller than their first order, linear, term. The system is

largely linear, as expected from the sensor and bearing models. The 0 th order term corresponds

largely to the amplified bridge imbalance (if zero-balance is not carried out on the bridges).

Sensor output voltages at the stage displacement extremes can be determined using

Equation (5.17) for each channel. These values are shown in Table 5.8.
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Table 5.8: Voltage range of strain gage Wheatstone bridge sensors.

Sensor Voltage (V) at Az (pm)
-250 0 250

WB 1  -14.5 -9.0 -4.0
WB 2  -7.6 -2.3 2.7
WB 3  -6.0 -0.1 5.4

The offset of each bridge is a significant component of the entire sensor signal and varies over a

large range between the channels. The full voltage range of one of the channels exceeds the ±10

V range of the ADC, meaning that the signal would not get picked up over some of the range.

The offset in the sensor signals can be removed by biasing the output of the IAs, as described in

Section 6.3.10 later.

The error in the SG WB calibration is shown in Figure 5.11. No general form is

discernable in the error shown below as the 3nd order calibration has accounted for all of the

trends which have an effect significantly greater than the measurement noise.

50 I

,I I"
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Figure 5.11: Sensor calibration error in all axes.

The error in the Z-axis is on the scale of 50.005% of the total device operating range, about 25

nm over 500 pm, significantly exceeding the device requirements for accuracy. The error for

rotations is about 50.5 prad. A rapid first order decay (T = 5 s) of magnitude roughly 2% of the

step is observed in the in the CAP probe derived vertical displacement reading as well as the SG

WB reading upon making a step. This effect is largely gone after 3 time constants (15 s) at

which point the data point is taken for the calibration. The error in the SG WB sensors once this
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effect is removed is extremely small, indicating that beyond the issue of the first order decay,

discussed below, the SG WB sensors are extraordinarily accurate and repeatable, down to the

electronic resolution of the system (20 nm). The accuracy of the system can be separated into

two components, the high speed, dynamic accuracy in which the first order decay error

dominates and the steady state, static accuracy in which the first order decay has dissipated and

the inherent strain gage error dominates. The bandwidth of the first order decay error is roughly

0.2 Hz, corresponding to a 5 s time constant. Stepping operations for this prototype at speeds

significantly above 0.2 Hz will observe the dynamic accuracy while operations at speeds

significantly below 0.2 Hz will observe the static accuracy.

The calibration method described above, is intended to be done in such a short time that

thermal growth is removed from the differential measurement. The zeroing of the position and

voltage immediately before each measurement result in the case that only the change caused by

the stage motion (high speed) and not the thermal expansion (low speed) are measured,

especially if the measurement is made rapidly. A rapid first order decay (T Z 5 s) is observed in

the in the CAP probe derived vertical displacement reading as well as the SG WB sensors,

however the two sensor types read the decay in opposite directions- the CAP probe reading

shows a drop, while the SG WB reading shows a rise. The decay time is about three orders of

magnitude faster than the thermal time constants of the device components, as measured in

Section 5.11. For both the reason of the opposite direction of decay and the speed of the decay,

this error does not appear to be thermally induced. Simple thermal tests of locally heating the

outer base around the coil location did not replicate this effect, further suggesting that thermal

growth is not the cause.

Mechanical cause is ruled out by the opposite magnitudes of the decay in the two sensors,

leaving the main culprit as CAP probe electronic coupling with the current controllers, perhaps

through ground. Possible solutions to this issue are discussed in Section 6.3.11 later.

The actual strain scaling factor of the flexures can be calculated using the

voltage/position slope 6VwB/wz, from the curve fits, in the expression:

_ Vw 1 1
Ge 9z G.Vrn.STC.Gc F (5.18)

The measured strain scaling factor of 0.744 is about 14% lower than the predicted value of

0.846, likely because the assembly process for the Wheatstone bridge is not accurate enough
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when done by hand, to place the strain gages within the desired 0.254 mm (0.010 in.) of the base

of the flexure.

5.8 Open Loop Characterization

5.8.1 Method

Characterizations of prototype C showed that the higher resonances in the device played

a significant role in determining the compensator design. These higher resonances are not

described by the simple system model laid out in Section 3.10 earlier. FEA simulation of the

device dynamics should indicate the frequency and form of the modes, however the unknown

damping ratio of the resonances and the inaccuracies in the simulations leave direct frequency

response measurement (Bode plots) as the only effective means for full system identification.

Bode plots contain sufficient information in the magnitude and phase diagram to generally

identify all of the axis's poles and zeros over the measured frequency range. Plots are taken for

each axis when self-excited and for each permutation of driving and measured axis. This results

in nine plots, of which the three charts describing the axes self-excitation are most important.

The transfer function models for each axis's dynamics are derived from the self-excitation Bode

plots. These transfer function models are used to determine a compensation scheme whose

closed loop performance meets the required system specifications, as described in Section 5.9

later.

The frequency response of the axes of prototype D are shown overlaid on the

measurements of prototype C to demonstrate the effect of the COS/COR alignment which

composed the main difference between the two prototypes.

5.8.2 Bode Plots

Bode plots are generated by driving the system of interest with a pure sinusoidal signal

and measuring system response to this command. The ratio of the amplitudes of the response

over command is calculated for each frequency input, and graphed as the system gain. The

phase of the response relative to the signal is graphed as the phase lag. Gain and phase lag of the

device are charted over the measured frequency range to create a Bode plot.
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The system frequency response is captured through a Matlab Simulink Dynamic Signal

Analyzer (DSA) developed by Katherine Lilienkamp for the Trumper Lab [50]. This program

outputs a command sinusoid of adjustable amplitude and reads in the system response. Gain and

phase lag are automatically calculated and the process restarted for the next frequency in the

input vector of frequencies to measure. The system is run at the maximum stable speed possible

for the control loop, which is 33 kHz for the prototype D control loop. A frequency cutoff point

of roughly 2 kHz is used for the measurements of the prototype D axes, as it gives an extra

decade of information beyond the operating range of the device. The gains of the axes are

generally found to be on the level of the measurement noise at 2 kHz. The generalized system

measured by the Bode plot characterization is shown in Figure 5.12.

Pcomm Pobs-----------------------------------------------------------

z Actuation V Current I F
Ox -- -Actuator Bearing oxr Matrix Controller Bearing

Characterized Transfer Function

Figure 5.12: Transfer function model of system measured by Bode plots.

The DSA command, pcomm, only contains a sinusoidal command on one axis at a time and is fed

through the actuation matrix to generate voltage commands for the actuators. This operation is

carried out in software and thus does not add any dynamics to the signal. The voltage commands

are sent through a DAC to the current controller, which drives a current proportional to the

voltage. The current controller adds high frequency dynamics (16 kHz) to the signal, as

described in Section 3.7.4 previously, which will not appear in the 2 kHz frequency

measurement range. The current controller will mainly contribute a gain to the signal, like the

actuation matrix. The actuator describes the transfer from current to force occurring in the

actuators. Coil dynamics are not included as they are part of the current controller dynamics.

The bearing is the main dynamic system of interest and transforms the force to a position, pobs, of

which only one axis at a time is measured by the DSA. All possible permutations of command

and measurement are carried out, resulting in nine bode plots. Cross-axis bode plots indicate the

degree of axial coupling in the system.
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Z-axis motions are measured in [tm and rotations around the X- & Y-axis are measured in

wrad. The cross-axis gains are not unitless as is normally found in Bode plots, but are rather

ratios of the units described above.

5.8.3 Transfer Function Modeling

Transfer function models are fit to each of the self-excitation Bode plots up to 1 kHz.

The model for each axis includes the predicted current controller transfer function, CC(s),

calculated from the component values described in Table 3.9 previously. The gain of the device

forward path transfer function, shown in Figure 5.12, has been normalized by the actuation

matrix, thus only the dynamics of the current controller are of interest for model fitting:

1.10-8 s +1
CC(s) = (5.19)

9.1.10-" s+1.33 .10 - 5 s + 1
A time delay expression, D(s), is also added to the transfer function model to account for

the delay added by the discrete nature of the digital controller [51]. This delay is an exponential

function of the controller time step, T, and the frequency of the signal:

D(s) =e e- sT.  (5.20)

The rest of the transfer function model is empirically fit to the measured Bode plot data

through a simple process: the phase chart is used to determine the location and number of

singularities (poles or zeroes), while the gain chart confirms their location and is used to

determine the damping ratio if the poles/zeroes occur in pairs. A 90' phase drop is associated

with a pole (1800 for pole pair) while a 900 phase increase is associated with a zero (1800 for

zero pair). The frequency at the midpoint of this drop, 450, provides an excellent estimate of the

singularity characteristic. First order singularities, either single poles or zeroes, Tj(s), are written

with unity gain in the form [52]:

1
T,(s) =--s + , (5.21)

where cw is the frequency of the first order singularity. Second order singularities, either pairs of

poles or zeroes, T2(s), are written with unity gain in the form [52]:

1 2; 
(T2(S) = S+ S+1 (5.22)n Cn

162



where con is the resonant frequency of the pair, and 'is the damping ratio. These singularities are

stacked into a transfer function model with zeroes in the numerator, poles in the denominator,

starting from the low frequencies and working up.

5.8.4 Z-Axis Driving Z-Axis

The Z-axis self-excitation Bode plot is compared to the earlier prototype C dynamics, as

shown in Figure 5.13. The transfer function model is also overlaid on the measurements to

illustrate the degree of alignment between the model and real axis dynamics. The data shows an

excellent match to the simple 2nd order system described in Section 3.10.2 earlier, however this

match is only up to about 250 Hz, at which point higher order dynamics begin to occur.
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Figure 5.13: Bode plot for Z-axis driving Z-axis.

The singularities in the transfer function model empirically fit to the Z-axis are listed in Table

5.9. The high frequency poles occur as collocated singularities, with both a pole pair and a zero

pair. The pairs are highlighted in the chart below.
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Table 5.9: Poles and zeros for model of Z-axis driving Z-axis.

Type Number co or con
(Hz)

P 2 74 0.040
Z 2 267 0.007
P 2 270 0.007
Z 2 318 0.010
P 2 326 0.010
P 2 346.8 0.0041
Z 2 347 0.001
Z 2 376 0.010
P 2 386 0.010
Z 2 574.7 0.010
P 2 603.3 0.010
Z 2 637.7 0.009
P 2 644.3 0.009
P 2 874 0.010
Z 2 912 0.010
P 2 920 0.010
Z 2 967 0.017

The most common reason for collocated poles is when the main structure in the system is

flexible, and can undergo harmonic modes. These modes generate both a pole and zero pair,

which causes only local distortion in the frequency response [51]. The structural proximity of

the sensor relative to the actuator plays a large role in determining the location of the zeroes

relative to the poles- with closer location resulting in a greater degree of pole-zero overlap [53].

The flexible structure in the case of the HSFD is the center stage, which has relatively low

rigidity owing to the geometric constraints on the structure. The assumption of center stage

rigidity appears to hold until about 300 Hz, at which point collocated pole/zero pair sets begin to

occur with great frequency. These resonances occur across the three main axes in some cases,

indicating modes which the coordinate transform mathematics translates into motion in multiple

axes. Multi-axis resonances driving both the Z-axis and Ox-axis occur at roughly 270, 320, 500,

600 and 750 Hz. A multi-axis resonance driving both the Z-axis and Oy-axis occurs at roughly

350 Hz. All three axes are driven to resonance at 400 and 900 Hz. These multi-axis resonances

are the largest impediment for Z-axis control, as explained in Section 5.9 below. These

dynamics can be attenuated by adding greater reinforcement to the center stage structure as is
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described in Section 6.3.4 later. Comparison of the Bode plots between the two prototypes (C &

D) indicates that the COS/COR alignment did not have any significant effect on the Z-axis or the

multi-axis resonances occurring at >300 Hz. This is likely because the COS/COR alignment

plays no role in the rigidity of the stage, and only alters the lower frequency dynamics where the

center stage rigidity assumption still holds.

5.8.5 Ox-Axis driving Ox-Axis

The Ox-axis self-excitation Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.14. The transfer function model is also overlaid on the measurements to

illustrate the degree of alignment between the model and real axis dynamics.
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Figure 5.14: Bode plot for Ox-axis driving Ox-axis.

The singularities in the transfer function model empirically fit to the Ox-axis are listed in Table

5.10. The collocated pole and zero pairs are highlighted in the chart below.
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Table 5.10: Poles and zeros for

Type Number

P
Z
P
Z
P

2
2
2
2
2

Z 2
P 7.

model of Ox-axis driving Ox-axis.

w) or CwOn

(Hz)
94 0.045
98 0.045
121 0.015

265.6 0.009
270.4 0.009

497.1 0.010
500.9 0.010

646
710
726
903
919

0.010
0.006
0.014
0.010
0.021

The main resonance frequency of the Ox-axis decreased between prototypes C and D.

This is likely caused by the reduction in flexure width between prototypes, which lowered the

effective shear stiffness of the flexures (as well as the torsional stiffness of the flexure anchors),

the dominant stiffness for the Ox-axis. The Z-0x resonances described previously are apparent in

this bode plot at 270, 320, 500, 600, 750 Hz and create a significant peak in the gain plot which

even slightly exceeds unity around 600-750 Hz. Almost every high frequency pole in the Ox-axis

is a multi-axis resonance. The full Z-Ox-Oy resonances at 400 and 900 Hz do not significantly

affect the frequency response in the Ox-axis.

5.8.6 Oy-Axis Driving Oy-Axis

The Oy-axis self-excitation Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.15. The transfer function model is also overlaid on the measurements to

illustrate the degree of alignment between the model and real axis dynamics.
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Figure 5.15: Bode plot for Oy-axis driving Oy-axis.

The singularities in the transfer function model empirically fit to the Ox-axis are listed in Table

5.11. The collocated pole and zero pairs are highlighted in the chart below.

Table 5.11: Poles and zeros for model of Oy-axis driving Oy-axis.

Type Number co or co,
(Hz)
183.7 0.010

P 2
Z 2

Z 2
Z 2

346.3 0.0041
348.5 0.0027

752.1
P 2 755.9

0.010
0.010
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The same reduction in resonances as shown in the Ox-axis previously can be seen in the

Oy-axis. The reduction is not as large, likely due to the reason of the Oy-axis stiffness being

dependent on the tensional mode of the flexures, which was not greatly altered between

prototypes. Several large resonances occur below 300 Hz in the Oy-axis, in particular at 220 and

250 Hz. Few high frequency resonances are apparent in this axis, however the ones that do

appear are multi-axis resonances. The Z-Ox resonance at 350 Hz is clearly apparent, as are the

full Z-Ox-Oy resonances at 400 and 900 Hz yet it is significantly lower than the peak observed in

prototype C.

5.8.7 Z-Axis Driving Ox-Axis

The Z-axis driving Ox-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.16.
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Figure 5.16: Bode plot for Z-axis driving Ox-axis.

The gain is significantly less than one, due to the actuator calibration. At low

frequencies, the gain sits around 0.05. Beyond the Z-axis primary resonance, the dynamics of

the two axes alter the plot. The gain at the Ox-axis primary resonance is greatly attenuated for

prototype D over prototype C, this is the result of the COS/COR alignment. There is no
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significant attenuation of the dynamics at frequencies above 400 Hz, suggesting that the rigid

body assumption of the center stage holds below 400 Hz, but not above. The Z-Ox resonance

shows in this plot as a significant and wide peak, as both axes contribute. The Z-Ox-Oy resonance

is barely visible in the peak of the early resonances.

5.8.8 Z-Axis Driving O-Axis

The Z-axis driving Oy-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.17.
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Figure 5.17: Bode plot for Z-axis driving Oy-axis.

The gain sits around 0.01 at low frequencies, like the cross-axis plot shown previously.

Beyond the Z-axis primary resonance, the dynamics of the two axes alter the plot. The gain in

the region from 75 to 200 Hz is significantly larger than in prototype C. It is believed that this is

due to the large value of XCOR, which causes the COR to interchange energy with the 0x-axis,

more than in prototype C. Beyond 400 Hz, the error is likely due to measurement resolution

limits in the prototype C data. The Z-Ox-Ey resonance appears in this cross-talk plot as a sharp

peak with roughly unity gain.
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5.8.9 Ox-Axis Driving Z-Axis

The Ox-axis driving Z-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.18.
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frequency range, the cross-axis gain is extremely small.

5.8.10 Ox-Axis Driving 1-Axis

The ox-axis driving gy-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.19.
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Figure 5.19: Bode plot for Ox-axis driving Oy-axis.

The large numbers of resonances from the Ox- and Oy-axes generate the complex

frequency response between roughly 100 and 1000 Hz. The gain between 100-400 Hz is lower

for prototype D, but no variation is observed above that range. The exact gain between these

axes is difficult to measure as the thousand-fold reduction in input generates an output on the

same range as the measurement resolution. Over the entire frequency range, the cross-axis gain

is extremely small.

5.8.11 Oy-Axis Driving Z-Axis
---- I] -- +1- ] FF] I-- -- - -- --I -- -- T -- -- ----I- ' -i - l"F 

-  

I-FI-

The Oy-axis driving Z-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.20.
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Figure 5.20: Bode plot for Oy-axis driving Z-axis.

The low frequency gain for this cross-axis response is significantly reduced in prototype

D, it is believed this is a result of better calibration. The attenuation in the system dynamics

from the Z-axis main resonance out to 400 Hz suggests that the effect is also due to the

COS/COR alignment. Low gain is found over the entire frequency range.

5.8.12 Oy-Axis Driving Ox-Axis

The Oy-axis driving Ox-axis Bode plot is compared to the earlier prototype dynamics, as

shown in Figure 5.21.
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Figure 5.21: Bode plot for Oy-axis driving Ox-axis.

The gain of the cross-axis plot is again low for low frequency signals, but rises almost to

unity at one of the resonances of the Oy-axis. The dynamic range from the Z-axis primary

resonance out to 400 Hz is nearly completely attenuated, beyond which little variation is

observed between the two prototypes. The COS/COR alignment appears to have removed the Z-

axis resonance from the frequency response, likely because the misalignment was allowing

energy to sneak between the rotations through the Z-axis.

5.9 Control Loop Tuning

5.9.1 Method

The system control scheme can be determined once the open loop response is accurately

known. The empirically fit transfer function models provide an excellent starting point for this

design process. The design of the compensation is carried out by examining the location of the

singularities in the transfer function model and adding in poles and zeroes to the open loop

response to modify the device dynamics. The performance of the control scheme is confirmed

using simulation of the axis closed loop response to a unit step command.
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Three axis control is required to ensure proper (flat) stepping at the desired speed. The

ideal case is three independent control loops, each of which is designed specifically from the

self-excitation Bode plot of the corresponding axis. This method would enable the most rapid

implementation and simplest tuning process.

5.9.2 Cross Talk

The feasibility of the parallel control loop scheme is dependent on the degree of cross-

talk which occurs between the three axes of motion. The cross talk can be quantified using the

information gained in the Bode plots shown above. The axial gain coefficients for each of the

permutations of driving and reading are listed in Table 5.12. These coefficients describe how

well signals are able to propagate through the system axes. Prototype C results are shown below

the Prototype D results to show the effect of the COS/COR alignment.

Table 5.12: Axial cross talk coefficients.

Z Ox Oy Z Ox Oy Measured
axis

Z 1 0.06 0.03 20 8 2
(1) (0.2) (0.03) (20) (100) (1)

Ox 0.001 1 0.001 0.01 50 0.1
(0.002) (1) (0.001) (0.9) (50) (0.3)

Oy 0.0007 0.001 1 0.02 0.4 30
(0.02) (0.03) (1) (0.4) (1) (30)

Driving Static Prototype D Dynamic
axis Coupling (Prototype C) Coupling

The static coupling matrix describes the zero frequency response of each of the system

axes to each possible command. Steady state gains are mainly a function of the degree of

orthogonalization of the actuator calibration. The better this calibration is carried out, the less

that motion occurs in non-commanded axes. Each column describes the particular axis response

to the commands from all the axes. The ideal case for independent operation is an identity

matrix for the static coupling. The measured static coupling is nearly (<5% error) ideal, with

most of the cross-axis coefficients being roughly three orders of magnitude less than the self-

actuation command coefficient. This means that the command signal for low frequencies can be

approximated as being read only by its own axis. The Z-axis driving the Ox-axis is the largest
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off-axis coefficient, and corresponds to a Ox-axis response that is 94.2% controlled by commands

set to the Ox-axis (desired), 5.6% controlled by commands sent to the Z-axis (undesired) and

0.1% controlled by commands sent to the Oy-axis, (undesired). The prototype C static coupling

is worse, particularly in the Ox-axis.

The dynamic coupling describes the axes' response to commands given at the measured

axes' primary resonance frequency: 75 Hz for the Z-axis, 119 Hz for the Ox-axis, and 182 Hz for

the Oy-axis. The dynamic coupling gains give a measure of the energy leaking between

dynamically active axis through geometric effects like the COS/COR coupling. Each column

describes the particular axis response to the commands (at its primary resonance) from all the

axes. The ideal case is an identity matrix, as with the static coupling. The measured dynamic

coupling approaches this ideal case for the Z-axis, is slightly worse for the Oy-axis, and shows

the most significant deviation in the Ox-axis. The coupling between the Z- and Ox-axis is again

the dominant problem. For axial commands of equal amplitude, the Ox-axis response is 85.6%

controlled by the Ox-axis commands, 13.7% controlled by the Z-axis commands, and 0.7%

controlled by the Oy-axis commands. The self-actuation command still dominates the signal, if

not quite as completely as in the static coupling. The prototype C dynamic coupling is worse in

nearly every cross-axis case, especially for the Z-axis driving Ox-axis coefficient, which is the

most important to reduce.

In both static and dynamic cases, the self-actuation commands are the dominant

controlling signals on the axes, indicating that independent control should be possible. The Z-

axis driving Ox-axis case is the main concern when operating under the assumption of

independent control. COS/COR has reduced this cross-axis coefficient by over 10-fold, as well

as nearly every other dynamic cross-axis coefficient. Based on this improved decoupling, a

control scheme of three independent control loops for the three axes is used for closed loop

control of the HSFD.

5.9.3 Z-Axis Control Loop

The initial Z-axis control loop design of a proportional-integral-derivative (PID)

controller, explained in Section 5.9.4 below, was found to be unsuitable for the high bandwidth

required on the axis. The cause of this unsuitability is the large high-frequency multi-axis

resonances in the Z-axis. Several design requirements were placed on the compensation scheme-
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90% settling time of 10 ms, closed loop bandwidth >100 Hz, zero steady state error to a step

command, fine positioning error decay constant <10 ms. Practical limitations on the controller

DAQ hardware set the sampling rate to be 25 kHz and required that the compensation scheme

have minimal complexity to ensure real-time performance. Finally, the steady state behavior of

the system should be as stable as possible, without the controller introducing added oscillations

(mechanical noise) to degrade the resolution. A compensation design incorporating lead, and

ideal integral compensation is investigated based on the helpful suggestions of Aaron Mazzeo

and Kevin Miu, graduate students working in the Precision Motion Control Laboratory under

Prof. David Trumper. Notch filters are included in the compensation scheme to reduce the gain

of the high frequency poles.

Ideal integral (II) compensation is alternately referred to as Proportional-Integral

compensation, and acts like a lag compensator with an integrator- a pole at the origin. The

integrator raises the system by a type and ensures zero steady state error to a step command. The

combination of an integrator and a low frequency zero acts to nearly cancel out high frequency

dynamics from the II compensation while allowing the compensator to drag the system steady

state error down to zero. The net result is a compensation which adjusts the steady state behavior

of the system response, such as steady state error and fine settling time. The fine settling time of

the system is caused by the single closed loop pole which moves along the root locus from the

integrator to the zero as gain is increased. The higher this pole is, the faster the system settles to

the command value. When designing the Ideal Integral compensator, the free variable is the

location of the zero, raising it drags the closed loop pole further from the origin, speeding up the

fine settling. An ideal integral compensation shifts down the phase at low frequencies by 90'

due to the integrator. The higher frequency zero returns the phase to 00, however this takes up to

roughly 10x the frequency of the zero to achieve within 5' . Generally the zero is placed at least a

decade lower frequency than the crossover frequency to ensure no phase delay. The final zero

location is determined by a compromise between these two design goals [51]. The HSFD

compensation scheme places the zero within a decade of the crossover frequency and the

reduction in phase margin is offset with increased phase from the lead compensation, allowing

for faster fine settling. The ideal integral compensator Il(s), with unity gain, is given as:

1- s+l
450 (5.23)

II(s) =
s
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Lead compensation acts as a PD compensator (a zero) with the addition of a pole placed

at a higher frequency (generally about 5x-10x) than the zero. The lead and PD enable

adjustment of the system transient behavior such as setting time and overshoot. The zero

compensation adds phase to the system at the zero frequency and above, increasing the system

stability and therefore improving the dynamic response. The zero also causes an upward slope in

the gain with respect to frequency, which would result in infinite gain at infinite frequency. This

will cause instability due to white noise. The high frequency response is mitigated by placing a

pole higher than the zero, such that the gain increase is not infinite. Lead compensation is

generally designed around phase addition to the frequency response, with the location and

amount of phase setting the various parameters in the compensator. Lead compensators, L(s),

can be written as:

a's +1
L(s) = a > 1, (5.24)

Zs +1
where a is a dimensionless ratio corresponding to the separation between the pole and the zero

frequencies and z is the frequency of the higher singularity- the pole. The maximum phase gain

generated by the lead compensation, pmax, is calculated by [51]:

(o. = sin-'j .- (5.25)
(a+1/

This phase gain occurs at wmax, the geometric middle of the pole and zero in the frequency plot,

which is calculated by [51]:

1
max = - (5.26)

Generally, the maximum phase gain is placed at the crossover frequency to boost the system

dynamic response and stability. The lead compensation for the HSFD is designed to add about

65 degrees of phase at z200 Hz, (1300 rad/s), resulting in a value of a of about 20 and T of about

1.71x10 -4. This is about the maximum accepted compromise between phase margin and high

frequency gain increase. The higher order complexity of the axis requires that the phase margin

be shifted up to stabilize the higher frequency resonances, resulting in a lead compensator,

Lead(s), with unity gain, of:

11-s+l

Lead(s) = 288.2 (5.27)
1s+l

5864
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A notch filter is used in the compensation to remove the high-frequency multi-axis

resonances from the open loop Z-axis response. The filter creates a drop in gain over a tight

frequency range as well as an 'S' curve in the phase lag through the use of the resonance peak of

a zero pair which is then canceled with a critically damped pole pair. The notch compensation,

N(s), can be written as:

1 s 2 2 s + 1

N(s)= 2 (5.28)

where o,, and are the frequency of the notch and the damping ratio of the zero pair. The under-

damped zero pair creates a notch at the natural frequency, about which the gain rises at a slope of

2. The critically damped poles do not affect the notch, but cancel out the slope, leaving only the

dip in gain at the notch filter frequency. The phase drops due to the critically damped poles, then

shifts up by 90 at the filter frequency from the under-damped zeroes and continues dropping

back down to 0 at significantly higher frequencies. The phase loss at lower frequencies reduces

the phase margin for a system like the HSFD where the crossover frequency is below the notch

filter frequency. This is solved through the addition of a second lead compensator to add phase

to the system. Two notch filters are used, and are aligned with the main sets of collocated poles

in the Z-axis, at 318 Hz (2000 rad/s) and 875 Hz (5500 rad/s), each having a damping ratio of 0.1

for the zeroes. This damping ratio is chosen to attenuate the gain as much as possible (lower

damping ratio) while reducing the negative phase added by the notch (raising damping ratio).

The equation describing the full notch filter compensator Notch(s), with unity gain, is:

1 2 20.1 1 2 2.0.1
s2+ S+1 S2+ s+1

Notch(s) = 20002 2000 55002 5500
10 2 S+ 1)2 (5.29)

S s+1 - s+1
2000 5500

The system open loop gain, K, is adjusted to 125 to set the loop transmission bode plot to

have a crossover frequency of about 125 Hz (780 rad/s), which sets the closed loop bandwidth to

be approximately the same frequency. The system gain is set low enough to ensure that the high

frequency resonances are gain stabilized (<0 dB). These modes are observed to cause steady

state oscillation in the controller when their gain exceeds unity, likely due to cross axis

excitation. The full Z-axis compensation Cz(s), is composed of the compensators described

above and shown in cascaded form as:
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Cz (s) = K -Lead2 (s) . I(s) -Notch(s)

(s 2[3.470 10-3 S +1 2.222 -10-3 S +1
1.705-10-4s + 1 s (5.30)

2.5 10-7s 2 +1-10 -4 s+l 3.306.10 -7 s2 +3.636.10 -5 s+1

2.510 -7 S2 +1.10 -3 s+1 3.306 10-7 s2 +3.636-10-4s+1

5.9.4 Ox-Axis Control Loop

PID compensation is used for the rotational axes. PID compensation can be easily tuned

to alter both the system transients and steady state error. A large range of rotations are allowed

(10 [pm) for the rotational axes, therefore they do not need to be as precisely controlled as the

vertical axis during the prototyping phase. The controller hardware also places significant

limitations on the complexity of the controlling scheme. The system multi-axis resonances are

observed to cause instabilities in the controlled system at high gains. The Z-axis is implemented

first in order to meet the system requirements for stability, then the rotational compensation

schemes are added in while the Z-axis control is running. This enables direct observation of

cross-axis instabilities, should the control loops begin to fight one another. This effect can not be

modeled using single-input single-output methods and is observed to be a significant factor when

attempting to drive the axial controllers to their design gain values, if multiple loops are running.

This problem is surmounted by experimental adjustment of the Ox- and Oy-axis control loops, for

which PID compensation is ideally suited.

The PID compensator, CpID(s), can be broken into an integrator and two zeroes. The

integrator sets the steady state error to 0 and one of the zeroes is used to negate the transient

behavior of the integrator following the design rules described previously for the ideal integral

compensation. The other zero is used to raise the frequency of the system poles, driving down

the settling time and setting the overshoot. The standard form in which the compensator is

written has coefficients for the proportional gain, Kp, integral gain, K, and derivative gain, KD:

CPID (s) =  
2 + s+K (5.31)

s
The PID compensator for the Ox-axis is experimentally tuned by adjusting the three

coefficients during device operation. The resulting compensator, Cox(s), is

2. 10-4s2 + 0.3s + 20
Cox(S)= 10 +0.3s+20 (5.32)

s
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5.9.5 Ov-Axis Control Loop

The PID compensator for Oy-axis, Cot(s), is found through the same process as described

for the Ox-axis compensator:

Co(s) = 5 10-5 s2 +0.1 ls+ 20
(5.33)

5.9.6 Input Modulation

A real time filter, IM(s), is used to modulate the input to the control loop,

Figure 5.22, to remove the high frequency components of the command signal.

tuned to modulate a step command to output a smooth ramp-up command, which

reduces overshoot and device ringing.

Zcom IM(s) Cs) P(s)

Input Modulation Compensator Plant

as shown in

The filter is

significantly

. Z

Sensor

Figure 5.22: Transfer function model of closed loop control with input modulation.

The first component of the filter is a pole pair which modulates the step into the carrier

command, a smooth critically damped 2 nd order track. The control loop will generate the least

excitation of higher modes by tracking this path, however if the response is too slow, then the

bandwidth and response time of the system is slowed. The carrier command, Carrier(s), is be

generated from a pole pair with natural frequency 350 rad/s (55 Hz) and damping ratio 1,

Carrier(s)= 2

-- s+1
350

(5.34)
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The second component of the filter, FSE(s), is added to cancel out the observed closed

loop fine settling error. This error is generated by a single pole on the real axis at roughly -100,

the same pole discussed previously in the lag design. This pole settles much slower than the

dominant pole pair, thus even once the main dynamics are completed, the system continues to

settle in at a first order exponential decay. This is canceled by a placing a pole-zero pair in the

input modulation. The zero of the pair is set on top of the closed loop pole responsible for the

fine settling error. The pole is placed at a higher frequency, essentially shifting the fine

positioning error pole out to the new pole location. The closed loop fine settling error pole is

generated by the compensation dynamics, meaning that its location is relatively well known.

The fine settling error for the HSFD is cancelled through a zero at 13 Hz (81 rad/s) and a pole at

38 Hz (238 rad/s),

1-- s+1

FSE(s)= 81 (5.35)
1 s+l

238
The addition of these transfer functions was modeled to ensure that the closed loop

bandwidth remains sufficiently high to meet the design goals- above 100 Hz. The total input

modulation, IM(s) for the HSFD is:

IM (s) = Carrier(s) FSE(s)

IM (s) 1 ]1.235-10-2 S+1. (5.36)
IM(s)8.163106 S2 +5.714.10-3 s+l 4.200 10-3 S +

Further cancellation of other system dynamics is possible, for instance the dominant 2nd

order pole oscillations could be largely removed by placing a pair of complex zeroes near these

poles. A new set of poles would have to be added in to retain the same general system response,

if these are given the same frequency as the zero pair, but with critical damping, then a notch

filter is effectively used at the input. This will remove the exitation of the main dynamics,

replacing it with a critically damped response. This method is slightly more dangerous as it

alters the main system response, which may result in the higher frequency poles becoming more

noticeable.
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5.10 Closed Loop Response

5.10.1 Step Response

The step response of the closed loop system is measured using all three parallel control

loops running at 33 kHz sampling and reading from the SG WB sensors. The resulting response

of all axes is shown along with the predicted system response in Figure 5.23.

10 --- --- ------ ---1 ------- 10

-z Model

Y
0 5 10 15 20

Time (mns)
Figure 5.23: Step response for all 3 axes.

The 95% settling line is shown on the figure as the lines bounding the 10 [Lm mark to indicate the

approximate cutoff used for judging the settling time of the device, roughly 8 ms. After this

point the stage remains within the 5% bounds indicated on the chart. A step size of 10 Pm is

used to minimize the effect of measurement error, enabling the dynamic response to be clearly

observed. The Ox-axis receives the largest cross-axis driving signal, but not by a significant

amount. Both rotations continue past the 95% settling time of the Z-axis. The amplitude of the

oscillations are small, but the lack of settling indicates the need for a better compensation design

in these two axes. The frequencies of the axes' rotations are almost exactly double that of the Z-

axis oscillations, which may be due to the Z-axis driving the rotations through cross-axis energy

transfer.
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5.10.2 Continuous Stepping Response

A second type of input command was tested on the HSFD to simulate the desired

stepping motion expected during Confocal imaging. This input command is composed of a

string of step commands spaced out by 10 ms intervals. The steps are carried out with 500 nm

amplitudes to mimic the HSFD making small, quick steps during imaging. The result of the

stepping command on all axes for the first three steps is shown in Figure 5.24.
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Figure 5.24: Continuous stepping response for all 3 axes.

The transient associated with each step command have nearly completely settled out before the

next step begins. The system response would continue to oscillate around the command value

for roughly another 2 ms, however the next step command now obscures this slower behavior.

The stage rotations are maintained at a constant small state of oscillation that is driven by the

stepping command. Better design for the compensation of the rotational axes could significantly

reduce this undesired motion, as with the Z-axis. The system is well controlled even though

rapid motion is occurring.

5.10.3 Resolution

The system resolution is calculated by observing the system under several different

conditions. The electrical noise of the sensors is measured through recording stage position

while the device is mechanically restrained via a high damping material. The standard deviation

of the position measurement is defined as the root-mean-square of the noise. The open-loop

183

~ I



mechanical noise of the stage is measured through recording the stage position while the device

is free to move. The geometric sum of the open-loop mechanical noise and the electronic noise

compose the measured noise. The closed-loop noise is measured in the same was as the open

loop noise except the system is run closed loop. The system is run at 33 kHz sampling, but the

data is stored at 1 kHz. Down-sampling reduces the processing load on the controller and does

not alter the standard deviation of the noise. A Fast Fourier transform (FFT) of the closed-loop

full system noise is shown in Figure 5.25.
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Figure 5.25: Frequency distribution of system noise.

The FFT runs from the frequency associated with the length of the test (9 sec, = 0.1 Hz) up to the

Nyquist frequency for the 1 kHz sampling of 500 Hz. A roughly even background noise level

can be seen over the whole spectrum, indicating that the Johnson noise is not only present, but is

also the dominant form of noise in the system. Low frequency variations are attenuated slightly

because the control loop is able to reject the motion. The FFT shows no noticeable mechanical

resonance at 200 Hz, but instead what appears to be a resonance at around 450 Hz. This may be

a secondary loop resonance. There are a large number of additional frequency spikes in the data,

with the largest appearing at roughly 160, 180, 240, 280, and 360 Hz. Three of these frequencies

are associated with the harmonics of three-phase power. The sharpness of the peaks suggests an

electrical noise source as compared to a mechanical frequency source. All of these peaks are

believed to be external noise, as they did not appear in the FFTs of the components noise. The
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likely cause of this external noise is insufficient shielding over the instrumentation amplifies and

unwanted electronic coupling of the sensor circuitry to the actuator circuitry.

The noise shows a normal distribution, suggesting that while several peaks are observable

in the FFT, in majority the noise is occurring as random variations that are characteristic of

Johnson noise. The standard deviations of the noise from the electronics, open-loop and closed-

loop operation are shown in Table 5.13.

Table 5.13: Noise source characterization.

Type St. Dev. of Noise
(nm)

Electronic 10.5
OL mech. 6.5
CL mech. 8.7
Total CL 13.7

The electronic noise can be considered 'false' information fed into the system, the lower

this value is, the better the device can resolve position changes. Actual location changes which

occur on the scale of this level or below cannot be accurately measured, setting an effective

spatial resolution limit. The system would ideally read in no electronic noise.

The mechanical noise corresponds to actual device motion, and should be measured as

well as possible. Only this 'noise' would ideally be captured, and the control loop would fight

these random disturbances to hold the device at the command location. The small difference

between open- and closed-loop operation shows that the control system is not adding significant

additional jitters to the device position. The scale of the open-loop mechanical noise suggests

that the open loop noise is caused by the resolution limit of the DAC generating the voltage that

drives the current controllers. The DAC is 16-bit, which translates to 7.7 nm steps over the 500

pm range, roughly the noise level observed. This value might increase significantly if worse

resolution DACs are used.

The closed-loop noise is less a function of the actuator noise, but rather the sensors.

Stage motion occurring on the same scale as the noise in the sensors is indistinguishable from the

noise-based random apparent motion, therefore the controller cannot reject the actual motions.

The result of this limit is that the closed-loop mechanical noise is at, or slightly less than, the

electronic noise. High resolution sensors allow the system to observe that the stage is moving
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off of position, and modulate the actuator command over the range of command values to return

the stage to the desired location. As long as the condition of a higher electrical bandwidth than

mechanical bandwidth is met, then the actuator's effect is smeared out, averaged, by the

mechanical low frequency response. This averaging makes it possible to achieve better

resolution than the discrete minimum step of the DAC, simply by actively stepping the actuator

between the two values at a ratio corresponding to the desired signal. The situation described

above is not generally the case, because high resolution, low noise DACs are less expensive and

more common than high resolution ADCs. The ADC is usually the lower resolution component,

meaning the closed loop noise is slightly higher. Table 5.13 shows this is occurring in the

HSFD, as the sensor noise is greater than the actuator noise.

System measurement resolution is found from the electronic noise. The actual location of

the HSFD is within ±20.6 nm of any sensor reading, with 95% confidence. The 95% boundary

corresponds to ±1.96 standard deviations. Holding resolution is the actual device position (not

measured position) compared to the commanded value and is found from the closed-loop noise.

The location of the device is within ±17 nm of the commanded locations 95% of the time. The

total resolution is the geometric sum of the electronic and closed-loop mechanical noise. This

total resolution relates commanded position to the measured (not actual) position, with 95%

confidence this separation is within ±26.9 nm. These different resolutions serve different

purposes. The electronic resolution is useful for determining how well the device can resolve

position changes. The holding resolution defines how stable the stage is, how well it can hold a

particular location. The total resolution defines what will be seen as the measurement noise

during device operation. Stable control should, in general, hold the closed-loop mechanical

noise below the electronic noise. This means that the electronic resolution can be considered a

conservative estimate of the holding resolution. A rough estimate of the electronic noise can be

obtained from the total resolution of a closed loop system by dividing the total resolution by '2,

(and vice-versa) following the worst case assumption of electrical and mechanical noise being

equal in magnitude.

The predicted electronic noise of about 4 nm is significantly below the observed value of

10.7 nm. The same error in predictions occurred for prototype C measurements, where both

errors correspond to a roughly 12 nm unaccounted source. It is believed that this may be due to

the insufficient shielding in the sensor electronics.
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5.11 Thermal Characterization

5.11.1 Method

The thermal response of the system is measured by driving the system to maximum

displacement and measuring the temperatures of the coil, center stage and outer base over time.

The maximum displacement command drives the largest current through the actuators and thus

produces the greatest heat generation in the system. The thermal profile collected by this

measurement corresponds to the worst case thermal scenario for the HSFD.

The HSFD is anchored to a floated metal optical table using three long metal stands and

is left exposed to free air currents. This setup mimics the worst case scenario for the device

where only convection is available for cooling. The device is driven up to a position of (250 jpm,

0 prad, 0 prad) in open loop, and held at those coil currents for the length of the test of about 5

hours. The current running through each actuator is calculated using Equation (5.14), and this

information can be scaled into power inputs for thermal models, as described previously in

Section 3.9.3. Every few minutes during the test, the temperatures of the HSFD components are

measured with an OS65 series non-contact IR sensor from Omega Inc. The emissivity of the

measured surface is set to roughly 1 by covering the surface with masking tape, which acts as a

black-body emitter. The measurements are carried out at the top of the coil, the inner face of the

center stage and near the base of one of the flexures on the outer base. An additional ambient

temperature reading is made on the surface of the optical table nearby with each measurement.

The voltage output from the IR sensor is run through the DAQ board and read in at 1 kHz

sampling, with a moving 1000-point average to boost resolution to 0.1 'C.

Experimental results shows that the temperature of the coil, center stage and outer base

are dependent on the ambient temperature, as expected from the closed form model described

previously in Section 3.9.2. This effect is accounted for by subtracting off the ambient

temperature at the time from each from each set of measurements. This reduces noise in the

measurements, as the room temperature variations scale both temperatures, leaving the

difference unaffected. A first order decay fit function is used to characterize the thermal

response of each of the components. The fit function, AT(t), is written in the form:
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AT(t) = ATss 1-e (5.37)

where ATss is the steady state temperature of the component above ambient, and Tr is the thermal

time constant of the component.

5.11.2 Results

The thermal response of the HSFD, measured as described above and driven by actuators

that held the stage at maximum displacement is shown in Figure 5.26. The figure contains the

measurements made of the component temperatures over the 6 hr run of the experiment along

with the fit curves for each component.
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Figure 5.26: Temperature dynamics at maximum power draw.

The data shows a clear first order trend with both decreasing amplitude from coil to

center stage to outer base. The time constant is also increasing from coil to outer base in the

same order. The agreement between the data and first order curves supports the prediction of the

closed form model that each component is strongly linked to the ambient temperature through

convection, particularly in the case of the center stage, where the temperature difference to the

outer base is minimal. Conduction is thus also minimal. The plastic mandril appears to be

largely successful in thermally shielding the device. The values used for the fit curves for each

component are shown in Table 5.14.

188



Table 5.14:

Component

Actuator
Center Stage
Outer Base

Temperature model fit coefficients.

TT ATss Predicted ATss
±3 (min) ±0.1 (oC) (0C)

14.3 5.3 5.4
26.9 3.5 3.4
33.8 3.2 3.3

The fit coefficients are close to the predicted values as described in Table 3.16

previously. The predicted values are derived from a thermal FEA model which is calibrated

based on thermal data from prototype C. The strong agreement in the values suggests that the

FEA model is capturing the dominant thermal physics with its four adjustable parameters. For

this prototype, both FEA model and experiment agree that the system is operating within the

thermal constraints and has no significant thermal issues.
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CHAPTER

6
CONCLUSION

6.1 Introduction

The intent of this research was to generate the knowledge required to design, fabricate

and operate a device capable of high speed nano-scale vertical positioning of microscopy

samples. A high speed focusing device (HSFD) was created which used a new combination of

technologies for the purpose of imaging: Lorentz coil actuation, flexural bearings and strain gage

sensing. The application of these technologies with precision design principles, yielded a device

that was capable of achieving a combination of performance and cost gains over competing

nano-positioning imaging stages. The HSFD is shown to perform steps with 8 ms 95% settling

time, 2% dynamic accuracy, and 0.005% static accuracy while operating with a resolution of

10.5 nm (la) over a range of 500 gm at a cost of about $1400. This performance is 3x faster

stepping, 2x better dynamic accuracy, =100x better static accuracy, with equivalent resolution

and range to the top of the line commercial devices at less than half of the cost. The reduced cost

is envisioned to enable greater distribution and use of nano-positioning imaging stages, while the

increased performance is envisioned to enable faster, more benign (in the case of biological

sciences) and more precise imaging. The increased use and data gathering ability of the new

device is envisioned to enable fields of research such as biology and materials science to extend

their bounds further into the micro and nano-scale as well as further along the time scale for both

high speed and low speed processes.
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6.2 Summary

The work presented in this thesis is a first step towards the development of a fully

functional, ready-for-production HSFD. The main results of this work are presented below.

A novel combination of compatible technologies was chosen for the HSFD. Flexural

bearings were chosen for guiding the stage position. These bearings have a compact design, fine

spatial resolution, high repeatability, and require only a simple fabrication & assembly process.

Lorentz actuators were chosen to drive the stage to the desired location over three axes of

control. These actuators have high speed, fine resolution, high repeatability, and are low cost.

Strain gage sensors were chosen for position sensing of the stage in all three axes. These sensors

combine compact design, high bandwidth, minimal drift, fine resolution and low cost. The

decision process leading to these choices is described in Chapter 2. The high repeatability and

linearity of each of these technologies made it possible to generate reliable predictive models for

all aspects of the device.

Models for all of the device components, bearing, actuator, sensor, and electronics were

generated and combined into a single general model. The full HSFD model encompasses

multiple domains, including mechanical, electrical, thermal, electro-magnetic and electronic.

Cross-domain variations were identified and linked between component models. The

performance was measured across all domains and optimized through adjustment of the cross-

domain variables. Results from intermediate prototypes were used to adjust the models for

greater accuracy. The theory underlying these models as well as the chosen device parameters

are described in Chapter 3.

The device fabrication and assembly details were described in Chapter 4, with all

processes of critical performance laid out in detail. The magnetic assembly of the device was

found to require a particular assembly process to ensure the best performance and least

likelihood of damage to the components.

The components of the HSFD were characterized and compared to their predicted

performance to validate the design models. Calibration was carried out on the actuation and

sensing such that the device could be operated as intended. The open-loop dynamics of the

device axes were measured and related back to the physical structure of the HSFD. A

compensation scheme to enable closed-loop control was developed, and the compensators for
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each axis designed to produce the best dynamic performance. The full system operating under

closed-loop control was characterized and compared against predictions to ascertain the accuracy

of the control models. The methods and results of the characterization for both components and

the full system are described in Chapter 5.

This work resulted in the creation of a prototype HSFD whose properties are compared to

the initial requirements in Table 6.1. The required and desired values are drawn from Table 1.1

earlier.

Functional
Requirement

Range
Repeatability (1c)

Resolution (1a)
Bandwidth
Accuracy

Maximum Load
Natural Frequency

In-plane Tilt
Temperature range
Target system cost

Material
Power Draw
Stage Temp

Aperture (x,y)
Envelope (x,y,z)

Table 6.1: HSFD properties.

Measured Required

500
10.5
10.5
125

0.005
500

0.0742
<1

5 to 50
1430 (est.)

Al
<2

<3.5
165x110

260x165x23

100
40
100
100
0.5
500
>1

<10
5 to 50
<2500
Any
<30
<5

>85x65
<260x165x26

Desired

500
1
10
200
0.05
500
>1
<10

5 to 50
<2500
Al
<10
<2

165x112
<260x165x26

The HSFD prototype meets or exceeds nearly every requirement described above. The largest

underperformance is the center stage natural frequency. The decision to ignore this functional

requirement was based on an extreme mismatch in stiffness requirements between actuation

power limitations and the natural frequency requirement laid out above, as explained in Section

3.3.9 above. A high natural frequency is required for rapid open-loop response, but if the system

is operated in closed loop, the response can be adjusted to be faster than the inherent open loop

performance. The range of the device is designed to be ±250 gim, as listed in the HSFD

properties above; but at present, prototype D is limited to only +250 inm due to un-diagnosed

error in the current controller electronics, as described in Section 5.6.3 above. The cost of the

device was estimated from the component costs of the prototype in Appendix B.
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6.3 Future Work

6.3.1 Purpose

Several technical issues remain for the HSFD before the design can be finalized into a

production ready device. These issues are a combination of problems observed in prototype D,

general device limitations which the author lacked the experience to fix, such as controls and

electronics, and final packaging design required to ensure the device is not damaged during

regular operation.

6.3.2 Mandril

A small amount of warp was observed in the coils used in the prototypes. This warp acts

to reduce the gap width on either side of the coil. If the warp is too large, then the coil may make

contact with the magnets and cores composing the anchored part of the actuator. This will

seriously degrade device performance through stiction at the contact point and the possible wear

and shorting of the coil wires. The mandril plastic should be as rigid as possible to avoid this

and should not have residual stresses which will cause bending when the mandril is machined.

The coil should also be held in a mold of significantly higher rigidity than the mandril itself. For

the HSFD prototype, the mold was made of Teflon, which were found to not meet this criterion.

Metal mandrils could be substituted in for the plastic presently used if coil warpage

cannot be solved by the methods described above. Plastic inserts placed between the mandril

and the coil mounting arms could provide thermal insulation for the rest of the system.

6.3.3 Flexure Clamps

Several issues were observed with the prototype flexures, including the anomalously low

bearing stiffness and variation in the COS location. It is believed that these issues are due to the

clamping problems at the base of the flexures. A small amount of epoxy binder could be placed

between the flexure sheet and the clamping surfaces to increase the effectiveness of the flexure

anchoring method. If the binder is placed over all of the surfaces in contact with the flexure

sheet, then the result should be the enforcement of the no-slip contact condition between the

separate pieces. The epoxy will ensure excellent surface contact between the clamping surfaces

and the flexure sheet. The thinner the layer of epoxy, the stiffer it is and the closer the interface
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is to perfectly rigid. The adhered surfaces will distribute the clamping pressure more evenly over

the flexure ends and better resist flexing under the high loads at the ends of the flexure. The

device will be more difficult to disassemble for repair, therefore a thermal based epoxy may be

used. This should enable the components to be separated once the center stage is adequately

heated.

The issue of clamping error as described in Section 5.4.3 earlier can be minimized

through several methods. The surfaces defining the edge of the clamp on the center stage should

be milled to ensure that they are at the same location on the top and bottom of the piece. This

would be easily accomplished if the center stage were precut to slightly larger dimensions

through water jet or laser cutting, then all of the surfaces finished through a final single milling

operation. Reducing the screw hole size to have less clearance should ensure the location of

clamps with better accuracy. Finally, the center stage clamp (the likely cause of the error in

xcos) can be located by pushing its edge flush against a reference plane which is also in contact

with the side of the center stage. This should ensure both surfaces are flush within roughly 25

lpm. If it is difficult to get high accuracy when cutting the inner flexure clamp, it may be

beneficial to separate it into two pieces, such that flexures on either side of the Y-axis each have

a separate clamp that can be aligned to their particular clamping edges using the reference plane

method. Large clearance in the screw holes would be possible if the reference plane method is

used.

Larger screws should be used for clamping the flexures, somewhere in the range of 6-32.

The present prototype does not use these due to the thin center stage. It is recommended in

Section 6.3.4 that the stage be thickened slightly or sample holding flanges extending yet further

inwards be included onto the center stage to increase rigidity. This will require an analysis of the

aperture size to determine how to best add structural support to the center stage without

compromising the ability to hold samples, such as 96 well plates. The screw hole sizes at the

corners can safely be increased for the larger screws if this is done. The higher clamping force

generated by these larger screws should also aid the flexure clamps.

6.3.4 Center Stage Rigidity

It is believed that at frequencies above 400 Hz the center stage cannot be treated as a

rigid structure and its associated dynamics are causing the range of multi-axis resonances
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described in Section 5.8. The stage compliance appears to also be reducing the rotational

stiffness of the bearing.

The rigidity of the stage can be increased through several means, any of which should

both raise the bearing stiffnesses and push the multi-axis resonances to higher frequencies. The

center stage cannot be easily extended outwards to increase thickness, instead the gain must

come from a reduction in the aperture. A detailed analysis must be carried out on the sample

holders that are to be placed in the aperture. This will determine what space is available to add

in reinforcement. It is expected that filleting the interior corners of the center stage should

significantly help the rotational stiffnesses, and should not interfere with sample holders.

Another possible method is to include a flange in the center stage that extends inwards. This

extra geometry will serve two functions, to seat samples and even if extending only about 2.54

mm (0.1 in.) would have a large impact on the rigidity of the stage. The extension of the flange

inwards would significantly increase the second moment of area of the center stage sides

undergoing in-plane bending. It is recommended that the flange be added by increasing the

width of the bottom inner flexure clamp, such that it extends inwards to cover some of the

aperture, as shown in Figure 6.1.

Top Inner
Flexure Clamp

Center Stage

Bottom Inner
Flexure Clamp

Proposed Flange

Permanent Magnet Core

Mandril
Coil

Figure 6.1: Proposed improvements in center stage rigidity.

The four screw mounting points of the center stage to the flexure clamp, as well as the

proposed epoxy bonding over the top surface of the center stage will ensure that the two pieces-

center stage and flexure clamp- may be modeled as a single rigid component. The benefit of the
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flange would scale roughly with the cube of its width. The geometric changes would be simple

to include into the present design, as neither requires adding additional fabrication steps to the

device- the planar geometry of both components are maintained.

6.3.5 Mechanical Shielding

Shielding plates should be placed over the surface of the device to protect the strain gage

wiring from EM noise and mechanical damage. The flexures should also be covered over to

prevent damage. The steel cores do not need to be covered, but doing this would ensure they

could not be hit and moved. The shielding plate does not need to be very thick, as it can be

supported over nearly the entire surface of the outer base. The vertical gaps on either side of the

coil should not be covered, as the high convection coefficient over the coil surface depends on

the driven air flow as shown in Figure 3.34 previously. Small gaps could be cut in the

mechanical shield to allow the air through these gaps.

6.3.6 HSFD Wiring

The hand soldered wiring for the strain gage bridges is infeasible for general production

of the HSFD. It also has a large geometric profile, which would be difficult to safely cover for a

final product. A flex-circuit could be used to replace these wires. The circuit would have a

section which would bend around under the flexure to make electrical contact with the bottom

flexures. It would need to be cut to be flexible, thereby avoiding interference with the bearing

performance. Bending the flex circuit slightly to stand off from the flexure surface would

significantly aid in increasing its compliance The strain gages could either be incorporated into

the flex circuit, or bond pads on the flex circuit could be used to make connection with strain

gages on the flexure. Additionally, the flex circuit could either have the STC resistance wire

integrated into it, or have bond pads which would attach to the STC resistor. The circuit could

then be routed over the surface of the outer base to the electrical output port for the device. This

would vastly simplify the wiring design, as well as the fabrication and assembly for the

electronics on the device.
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6.3.7 Noise Reduction

Any noise reduction in the system will result in better electronic resolution as a general

rule. This will improve the system performance without requiring any significant sacrifices in

other aspects of the device. The system electronics should be thoroughly shielded in a faraday

cage container. The actuator power circuitry generates significant power draw dynamics and

large time varying signals. Every effort should be made to keep the power channels as far from

the sensor channels as possible. A third separate power channel should be used for driving the

bridges, as the sensor Wheatstone bridges do not vary in power draw and therefore will not

introduce unwanted signals to one another. The power supply channels for each of these

electronics: IAs, WBs, and CCs should be kept separate if possible. This would likely mean that

each have their own voltage regulator. The three voltage regulators can be powered by a single

transformer or voltage regulator that transforms the general socket voltage down to the voltage

required to drive the regulators. Precision voltage regulator chips, such as the tA723 made by

Analog Devices, are inexpensive ($5) and will attenuate variations in the power supply voltage

on the order of 10-100x, better insulating the sensor electronics from both actuator and wall

power noise.

The wires linking the HSFD internal wiring to the electronics box should be shielded,

twisted, and grounded if at all possible. The sensor return wiring should be shielded separately

from the actuator power wiring to reduce cross capacitance. It is strongly recommended that the

command signals sent to the electronics box be transmitted in digital form rather than analog.

The resolution of the system is presently obtained by straining the system to the limit of the

electronics; in particular, the resolution of the system is presently dominated by the noise

generated by the ADC reading in the sensor signals. Adding another DAC to output the

computer's command and an ADC to read the command into the electronics box will impair both

the total system resolution and the holding resolution. If digital command inputs and digital

position outputs are used between the electronics box and controlling computer then no extra

noise will be added to the system, and single nanometer resolution is possible. It is believed that

a USB connection could handle the task of transferring the 3-vector command to the device and

reading the 3-vector position back out in real-time.

The 16-bit ADCs reading the sensor outputs are presently the dominant noise source. If

the electronics is properly shielded and the present 16-bit ADCs are replaced with 18- or 20-bit
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ADCs, the resolution model predicts the resolution should be reduced by 2-4x. This is

recommended as the cost difference between 16-bit ($10) and 18-bit ($20) or even 20-bit ($30) is

not significant when compared to the costs of the other components in the system, as shown in

Appendix B.

6.3.8 Bridge Energizing Voltage

The high bridge energizing voltage presently used in prototype D is not effectively

boosting the resolution due to the fact the ADCs are the dominant noise source. The bridge

energizing voltage should be reduced to 10 V to reduce the thermal load on the system if 16-bit

ADCs are used. A bridge energizing voltage of about 15 volts would be a good compromise

between power generation and noise if proper shielding and 18- or 20- bit ADCs are used. The

higher resolution electronics should drop the ADC noise to roughly 1 nm, 25% of its present

value of about 4 nm, while the bridge energizing voltage would have reduced the bridge and IA

noise to roughly the same 1 nm, based on Figure 3.30 above. This will balance all the noise

sources, resulting in the best resolution for the system. The resolution model should be used to

study the benefit of increasing the energizing voltage once the ADC choice is made and the noise

in the properly shielded electronics is measured. If the voltage is reduced to 10-15 V, this should

lower the center stage temperature by roughly 30-50%. A precision voltage regulator such as the

tA723 should be sufficiently accurate to remove the need for direct measurement of the bridge

energizing voltage. The removal of the power supply measurement would result in an immediate

halving of the system resolution.

6.3.9 Current Controller

The actuator power electronics should be fixed to avoid generating the observed non-

linear region shown in Figure 5.9 above. This could be done through replacing the op-amps in

the circuit with higher quality components, or redesigning the bridge. It is expected that the

problem is not inherent to the current controller design, as it is a common circuit, but rather to

the type of components used or to damage in the circuits through laboratory miss-use.
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6.3.10 Sensor Voltage Offset

The SG WB sensors show a significant voltage offset due to mismatched strain gage

resistors in the bridge. This offset is large enough to push the sensor voltage range out of the

measurable range of the ADC. The sensor offset also enables thermal variations to affect the

sensor reading, as described in Section 3.5.7. The present voltage offset in the sensors restricts

the operating range of the HSFD prototype to only a fraction of the designed operating range, as

described in Section 5.7.2. A full 10 V offset only requires about a 12 f difference in resistance

on one of the arms.

The voltage offset can be minimized or removed through three different methods. First, a

zero balance resistance wire can be used to link the strain gages to form the bridge. The

resistance wire would have to be cut and placed uniquely for each bridge, and it would have to

have high flexibility, high resistivity, and a low resistance temperature coefficient. Second, a

potentiometer could be placed on the outer base near each flexure, and used to manually zero-

balance the bridge during fabrication. The potentiometer can be placed between resistors 1 and 2

as shown in Figure 6.2.

R R4

Potentiometer

R2 R3

Figure 6.2: Proposed improvements to sensor bridge.

The wiring linking the potentiometer into the bridge would be relatively simple to add if flex

circuitry is used for the HSFD. The closer the resistance temperature coefficient of the

potentiometer is matched to the strain gage, the greater the attenuation in the thermal sensitivity

of the bridge. Third, the voltage output of the sensor IA can be biased to remove the offset
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before it is fed to the ADC. This can be implemented by sending a bias voltage using a unity

gain op-amp (for the low impedance) to the reference terminal of the AD624, as explained in the

IA product description [44]. The voltage for each channel would need to be tuned after each

sensor is fabricated. This will remove the offset, but not the thermal sensitivity of the offset.

6.3.11 Strain Gage Sensor Error

The error in the SG WB sensors has two sources. The first is the error in ability of the

sensors to read the correct displacement and the second is the motion of the sample that is not

captured by the sensors. The sensor errors are captured through the calibration process, while

the un-sensed motions are generally much more difficult to quantify.

The calibration error for the HSFD is dominated by the first order decay that is observed

in the CAP sensors during calibration, as described in Section 5.7.2. The SG WB sensors did not

share this signal, thus it is difficult to determine if the first order decay corresponds to actual

motion. The time constant of the system is too slow to be caused by the CAP bandwidth and too

fast to be caused by a thermal response. It is believed that the decay is instead a function of the

ground plane (which includes the optical table top) used as part of an electrical circuit by the

current controller. The steady state value output by the CAP probes is likely the true

displacement value. This means that the SG calibration should be carried out once the first order

decay is settled, which can be done by waiting about 15 seconds after the position command is

given. The accuracy of the calibration should be improved by this change.

Thermal errors between the measured position and the actual sample position can be

minimized by reducing the thermally active section of the ground path linking the sample to the

microscope stage. An accurate measurement of the sample location must link the sample to the

sensors and the sensors to the absolute ground. The path defined by this linking is called the

'ground path' and can be traced through Figure 6.3 by following the mechanical linkage from the

ground plane through the outer base to the present sensor plane, then back down the center stage

to the sample plane. Ideally, the only motion that occurs over the ground path is on the flexures,

which is captured by the sensors. The present sensor plane is distant from both the ground plane

and the sample plane with the result that thermally induced expansion occurring over either the

height of the outer base or the height of the center stage will cause an error in the measurement
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of the sample location. The effect would cancel out if these errors were of the same magnitude;

however neither the lengths nor the expected temperatures match.

Present Sensor Present Ground Path Top Inner Flexure Clamp

Plane

Outer I i Center Stage
Base

Flexures
Standoff dSample

Sample &

-i ...... - -. P r o p o s e d
Ground Plane .............. .......... --- -- Sensor Plane

Proposed Ground Path Bottom Inner Flexure Clamp
with Proposed Flange

Figure 6.3: Proposed improvements to sensing accuracy.

The simple solution to this ground path thermal sensitivity it to reduce the length of the

thermally sensitive parts of the path. This can be accomplished by shifting the sensor plane to

the bottom of the device, that is by measuring the bottom flexure sheet. The distance from the

sample to the sensor plane is thus reduced from the thickness of the center stage to zero because

the sensors are now on the exact same plane as the sample. The distance from the sensor plane

to the ground is also reduced to no more than the thickness of the standoffs holding the outer

base off from the ground. Thermally insensitive materials such as Invar or Zerodur can be used

to make the standoff, with the result that the ground path passing through these stands has

virtually no thermal growth. The standoff in this case would have to be anchored to the outer

base at the sensor plane and would have to pass through the mechanical shielding to make direct

contact with the ground. An aluminum shim of the same thickness as the flexure sheet should be

placed between the stand and the outer base to bring the end of the stand onto the same plane as

the strain gages.

This proposed ground path will generate at worst 20 nm of thermal error for Invar or 3

nm for Zerodur, again assuming 6.35 mm (0.25 in.) stands and 3 'C stage temperature rise. The

pseudo-kinematic contact of the stands will also ensure that the device does not rock on the

microscope stage, which would cause position errors. It is recommended that stands be used and
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made of Invar, owing to its easier machinability. Further reduction in the thermal error can be

found through adjusting the thickness of the aluminum shim under each stand. If the aluminum

shim is made thinner, the ground path through the aluminum outer base and flexure sheet is not

completely negated, therefore the path is made sensitive to thermal errors again. This can be

seen in Figure 6.3 above. The slight upwards growth of the stands can be counteracted by the

downwards expansion of the flexure sheet thickness by properly designing the shim thickness. A

rough estimate of the system using an Invar stand height of roughly 6.35 mm (0.25 in.) suggests

that a shim thickness of 0.127 mm (0.005 in.) should remove the thermal sensitivity of the

proposed ground path if both shim and stand are heated equally. Calibration should be done on

the bottom surface of the center stage to measure as close to the sensor plane as possible. This

will further reduce any thermal error in the calibration.

Further error reduction, if desired, can be gained through thermal control of the

electronics box. This can be directly implemented with a thermoelectric cooler driven by an

ADN8831 chip from Analog Devices ($10). The Peltier thermoelectric cooling device ($15)

must be thermally grounded to the board on which the electronics are attached and also to a heat

sink, which is preferably exposed to free air outside of the electronics box. Full thermal control

of the electronics will prevent errors in the measurement which can grow up to 0.03% (assuming

10 'C possible rise during operation), mainly through the thermal sensitivity of the IA and the

voltage regulator driving the Wheatstone bridge.

6.3.12 Control Hardware

The control loop should be run on a dedicated microcontroller or FPGA. The sampling

rate at which the control loop is run precludes any ability to have the computer running the

control loop. It is estimated that a single processor should be capable of running the three loops

in parallel, and should cost somewhere in the range of $100. An alternate scheme is to

implement the control loop in hardware [52], which is feasible given that the compensation

design remains simple. The noise added by the hardware implementation would likely be large

compared to the present device noise level.
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6.3.13 Control Loop

The proper design of the control loop should be able to roughly halve the system settling

time, especially if it is carried out for all three axes. A state-space observer-based controller

should be capable of handling the multiple input, multiple output nature of the device. The

present control loop design of parallel independent controllers has some difficulty with

controlling the higher frequency center stage modes, which are presently the limiting factor in

driving the device to settling times of 5 ms or less. Improving the compensation schemes for

these axes should reduce the cross axis disturbances, enabling a significant decrease in the stage

settling time. An increase in the center stage rigidity will shift the center stage modes further up

in frequency, which would simplify the compensation scheme. The parallel independent

controller scheme may then be capable of 5 ms settling times or better, without requiring the use

of state space control.
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APPENDIX

ACTUATOR OPTIMIZATION

A.1 Motivation

The actuator used in prototype D is based on the single flux path model and was initially

designed for prototype C. Data generated from analysis of prototype C led to the generation of

the multi-flux path model, from which a better actuator could be designed. The actuator was not

rebuilt when prototype D was made due to time constraints. This appendix describes the

analytical design of a optimized actuator which should outperform the present actuator in both

heat generation (about 20% reduction) and linearity (out to 250 pm, twice as far).

A.2 Force Non-Linearity

The actuator in prototypes C and D was observed to output a non-linear force over is

range in steady state. Simple models of the system suggest that the linear stiffness and the

constant magnetic flux should enforce a perfect linearity between current through the actuator

coil and steady state displacement, as described by Equation (3.52) previously. Static

measurements of the bearing confirm that the stiffness variation described in Figure 5.4

previously is insufficient to explain the non-linear actuation of the stage as shown in Figure 5.8

previously.

It is believed that this non-linearity is caused dominantly by a reduction in the average

gap flux density observed by the coil as it moves away from the center of the gap. The reduction

in the effective flux density value for the coil drags the force output of the coil down, resulting in

un-intended center stage motions. The force output of each actuator is not reduced by the exact

same value, resulting in the stage slowly rotating at large displacements. This is exactly what is

observed in the calibration error shown in Figure 5.8 previously. The gap flux density variation
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also explains the asymptotic increase in the un-intended motions beyond a certain range of coil

displacement, as the field begins to fall off to zero. The linear model relies on the assumption

that the coil is always completely occupying the region of full flux density, shown as states 'a'

and 'b' in Figure A. 1. Extra turns of the coil extend it above and below this region of constant

flux such that the coil motions have no effect on the number of turns in contact with the magnetic

flux. The end of the coil passes into the region of significant force producing flux at high

displacements, shown in the figure as state 'c', thus reducing the full integral of flux density and

current described in Equation (3.22) previously.

Effective Fringe
Field Width --------

Core Core

B B

..... Permanent

IBI Magnet
Coil

Figure A.1: Schematic of actuator non-linearity.

State 'a' illustrates the system when the assumption of constant flux density may be

made. State 'b' illustrates the threshold where the assumption of constant flux density fails.

State 'c' illustrates the system when the effective flux density observed by the coil is a function

of position. The threshold state 'b' corresponds to a center stage displacement of roughly 150

jim, as the actuator calibration error shown in Figure 5.8 previously is nearly steady up to this

displacement (state 'a'), then begins to grow significantly afterwards (state 'c'). The effective

edge of the field can thus be defined as being at the height of the bottom surface of the coil at

150 jtm upwards displacement. This surface begins 250 jim below the actuator, sinks down 40

jim due to center stage weight, and is driven up 150 jlm by the actuators to reach the edge of the

magnetic flux at roughly 140 jtm below the surface of the core. At a maximum loading of 0.5

kg, the stage sinks 90 jn, bringing the top of the coil closer to the flux edge. The coil must start
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at about 500 [pm above the surface of the core in order to remain in state 'a' throughout the entire

±250 pm operating range. The increase in the coil height is an extra 250 pm on either side of the

coil gap for both top and bottom gap resulting in a coil that is an extra 0.5mm taller, but should

show a significantly more linear response over its full range.

A.3 Actuator Optimization

The actuator design is altered in two ways: increased width to boost linearity and

geometry adjustment to boost efficiency using the multi-flux path model. Linearity is designed

in though the coil model Equation (3.47), which is modified to have an extra term of 250 ptm on

the right hand side. The geometry adjustment occurs in several steps. The various dimensions of

the actuator are each examined for their effect on the actuator performance according to the

multi-flux path model, and these dimensions are adjusted to maximize the performance within

the constraint range. The anchoring arms emit wasted flux both across the gap and short

circuiting the coil. Their length is reduced by setting the length of the core to 104 mm (4.100

in.). The shims, placed between the core and magnet to ensure the magnet is clamped as

described in Section 3.8 above, are removed in favor of simply increasing the height of the

magnet to 1.37 mm (0.540 in.). This ensures 500 gm (0.020 in.) of travel on either side of the

center stage, reduces the number of required pieces (no shim), simplifies fabrication by removing

the surfacing operation on the coil mounting arms, and boosts the actuator efficiency. The width

of the gap is increased to 5.59 mm (0.220 in.), which is the maximum width for the coil at

furthest extension to travel no more than 6.35 mm (0.250 in.) beyond the surface of the outer

base. This cutoff value is based on the operating envelope of the device as laid out in Table 1.1

previously.

The gap height, hgap, is the only variable which does not have a performance maximum at

a constraint boundary. The maximum is instead found through searching over the range of

heights from 1 to 5 mm, as shown in Figure A.2. The tradeoff represented by this curve is

between the space for extra turns and the gap flux density. The net heat generation of all of the

coils is graphed as the variable to minimize. The minimum heat generation is found at 2.67 mm

(0.105 in.). For design purposes, any value from 2 to 4 mm should achieve a significant power

reduction over the present version.
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Figure A.2: Lorentz actuator efficiency optimization through gap adjustment.

The resulting optimized actuator geometry and properties are listed in Table A.1.

Table A.1: Lorentz actuator optimization design results.

Property Value Units
Channel 1 Channel 2&3

Imag 76.2 (3.00) 76.2 (3.00) mm (in.)
hmag 13.7 (0.540) 13.7 (0.540) mm (in.)
Wmag 12.7 (0.500) 12.7 (0.500) mm (in.)
hgap 2.67 (0.105) 2.67 (0.105) mm (in.)
Wgap 5.59 (0.220) 5.59 (0.220) mm (in.)
Bgap 1.16 1.16 T
hcoil 2.16 (0.085) 2.16 (0.085) mm (in.)
Wcoil 6.58 6.58 mm
core 104 (4.10) 104 (4.10) mm (in.)

dspacing 0.254 (0.010) 0.254 (0.010) mm (in.)
dwire (26 AWG) 0.406 0.406 mm

Magnetic Material N52 N52 ---

lwirefuN 11.05 11.05 m
wireact 7.42 7.42 m

ncoilfull 57 57 turns
Rcoti 1.79 1.79 92
Lcoil 28.4 28.4 tH
Max 0.217 0.615 A
Vmax 0.387 1.1 V
Pax 0.084 0.676 W
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APPENDIX

B
COST ESTIMATE

This appendix presents the components resulting in the cost estimate quoted in the

conclusion chapter. The cost is broken into three main sections: Electronics, Hardware, and

Assembly.

The electronics cost is further decomposed into the expected cost of the current

controller, the instrumentation amplifiers, the Analog-to-Digital converters to read in the sensor

outputs, the Digital-to-Analog converters to output commands to the actuators, the voltage

regulator circuit which drive the Wheatstone bridge, the strain gages on the flexure and the

microcontroller/FPGA used to command the device. The current controller circuitry is described

in Section 3.6.8, and the necessary components are listed in Section 3.7.4. It is assumed that the

AD8221 instrumentation amplifier is used due its lower cost and the dominant noise source lies

elsewhere in the system. It is also assumed that the ADC and DAC are 16 bits, and these are

common, off-the-shelf components, as is the voltage regulator. The strain gages can be obtained

from Omega Engineering, and the microcontroller is also an off-the-shelf component.

The hardware cost is further decomposed into the expected cost of the coils, magnets,

steel and aluminum. The coil cost is likely dominated by the cost of having them fabricated.

The magnet cost is predicted from estimates provided by Indigo Instruments, the supplier of the

magnets used in the prototype. The steel and aluminum costs are largely dominated by the 12.7

mm (0.500 in) aluminum block used as the outer base.

The assembly cost is conservatively estimated to be about 10 hours based on prototype

assembly experience, at $50/hr. This depends on whether the strain gages are pre-attached to the

flexures, on a flex circuit or must be glued on during assembly. Additionally, the level of

electronics integration affects this value. The total cost is conservatively estimated at $1430.
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Table B.1: Cost estimates for HSFD.

Property Number Cost
($)

Electronics --- 580
Current Controller 3 90

Ins. Amp 3 40
ADC 3 100
DAC 3 100

Voltage Reg. 1 10
Strain Gages 12 150

Microcontroller 1 100

Hardware --- 350
Coils 3 150

Magnets 6 100
Steel & Al. --- 100

Assembly --- 500

Total 1430
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APPENDIX

C
PROTOTYPE D PART DRAWINGS

All dimensions are in inches. The hole diameters are given entirely for 4-40 screws, except for

holes J and L on the Outer Base.

Holes defined from5.118

Figure C.1: Prototype D Outer Base.
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Figure C.2: Prototype D Core.
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Figure C.3: Prototype D Center Stage.
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Figure C.4: Prototype D Mandril.
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Figure C.5: Prototype D Permanent Magnet.
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Figure C.6: Prototype D Outer Flexure Clamp.
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N Coil is wrapped around
a mandril, so derives its inner

0 geometry from the mandril
coFigure C.7: Prototype D Coil.

Figure C.7: Prototype D Coil.

Figure C.8: Prototype D Inner Flexure Clamp.
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Figure C.9: Prototype D Flexure Sheet.
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