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Abstract

Many areas of technology rely on interfacial events that are controlled by

nanometer-level interactions present at solid/liquid interfaces. Properties of wetting,
corrosion inhibition, and molecular recognition provide convenient examples. To

investigate such interactions at the molecular level, self-assembled monolayers (SAMs)

have been employed as a model system as they offer the ability to produce well-defined

organic surfaces of controlled composition. This thesis addresses the development and

characterization of such films for controlling the adsorptive properties of surfaces toward

various surfactant-like molecules and for proteins. Adsorption is controlled to facilitate

the organized assembly of molecular precursors, retard the non-specific adsorption of

proteins, provide a specificity for the adsorption of select proteins, and the use of

molecular adsorption to generate local surface energy gradients useful for directing self-

propelled drop movement. A common theme in these studies is the importance of

controlling the energetics and compositions of surfaces at the molecular level to influence

microscopic events that translate into macroscopically observable changes in behavior.

The first part of this thesis details the formation of monolayer films by the

solution-phase adsorption of n-alkyl-chained adsorbates [CH 3(CH2)~ Y] onto the polar

surfaces of terminally substituted SAMs [Au/S(CH)mX]. The polar tail groups (X and Y)

of the adsorbate and SAM included amine, carboxylic acid, and amide groups, and the

formation of the adsorbed monomolecular films on the SAMs relied on non-covalent

interactions between X and Y. Highly organized monomolecular adlayers could be

produced that were as densely packed as the alkanethiolate SAMs on gold comprising the

first layer. This thesis also used this molecular adsorption process to cause liquid drops to

move spontaneously on surfaces by creating local changes in surface energy. The drops



could be directed to move along specified paths using patterned substrates that contained

inner tracks of polar functionality and exterior domains of oleophobic methyl groups. The

adsorption process allowed sequential transport of two drops on a common track and also

regeneration of the initial high energy surface for reuse. The developed system provides

an experimental platform for examining reactive flow and offers a novel "pumpless"

method for sequentially delivering multiple drops along surfaces and within microfluidic

devices.

The second part of this thesis discusses various oligo(ethylene glycol)-terminated

alkyltrichlorosilanes [C13Si(CH2)11(OCH2CHnX; X = -OCH 3 or -O 2CCH 3, n= 2- 4] that

can form robust films on glass and metal oxide surfaces and control the adsorption of

proteins. The adsorption of the methyl-capped trichlorosilanes produces densely packed,

oriented monolayer films that are 2-3 nm in thickness. The trichlorosilyl group anchors the

molecules to the surface, and the resulting film exposes the ethylene glycol units at its

surface, as noted by its moderate hydrophilicity. The films are robust with stabilities

similar to those of other alkylsiloxane coatings. These oligo(ethylene glycol)-terminated

silane reagents produce films that exhibit resistances against the non-specific adsorption of

proteins and that are better than for films prepared from octadecyltrichlorosilane. These

oligo(ethylene glycol)-siloxane coatings offer performance advantages and could easily

provide a direct and superior replacement for protocols that presently use silane reagents

to generate hydrophobic, "inert" surfaces. This thesis also discusses the development of

an acetate-capped oligo(ethylene glycol)-terminated silane to produce a HO-terminated

oligo(ethylene glycol)-based coating on glass and metal oxide surfaces. The HO-termini of

these films provide sites for covalently grafting biomolecules to the parent surface. As a

demonstration, biotin and mannose moieties were covalently attached to the HO-surfaces

to provide a means to induce the specific adsorption of proteins. For these surfaces, the

presence of oligo(ethylene glycol) groups reduces the nonspecific adsorption of other

competing proteins. The results indicate that the developed systems could offer a strategy

to arrange biomolecules selectively on glass and metal oxide surfaces.
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Title : Associate Professor
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Chapter 1

Introduction

1.1. Historical Perspective

Molecular films with dimensions of a few nanometers have shown considerable

technological promise across a wide range of areas and have provided useful platforms for

investigating a variety of interfacial phenomena. 1 One of the most flexible of these

systems is that of self-assembled monolayers (SAMs) due to their ease of use, wide

tailorability, and well-defined structure.2 ,3  These SAMs form by the spontaneous

adsorption of surface-active molecules onto a solid substrate and often produce highly

ordered molecular assemblies (Figure 1-1). Numerous studies have been conducted using

SAMs and have demonstrated their potential in technological areas such as corrosion

prevention,4, 5 lubrication, 6 adhesion promotion,7,8 passivation of prosthetic devices, 9 ,10

and molecular recognition. 1 1-14



Figure 1-1. Schematic illustration of the formation of a self-assembled monolayer

The earliest formation of a molecular film by a self-assembly process can be traced

to the seminal papers of Zisman and his coworkers over fifty years ago. 1 5- 2 1 By exposing

glass surfaces to dilute solutions of a long-chained alcohol in hexadecane, these researchers

formed oriented monomolecular films that were not wet by the solvent medium and

exhibited wetting properties similar to those of oriented Langmuir-Blodgett monolayers.

They extended this generic approach to include a range of metal and metal oxide surfaces

and various amphiphilic molecules including long-chained amines, carboxylic acids, and

primary amides. The driving force for the assembly was the large interfacial free energy

between the solid surface and the hydrocarbon solvent phase and its reduction upon

adsorption of the amphiphilic molecules. In these cases, the polar head groups adsorbed

to the solid substrates and the nonpolar alkyl tails oriented away from the substrate to

expose a low energy surface of CH 3 groups to the solvent. 15 Shafrin and Zisman also

demonstrated that specific chemical interactions between the head group of a molecule

and a metal surface could drive the formation of an oriented monolayer film by adsorbing

alkylamines onto platinum from water. 17 However, the films developed by Zisman and

coworkers had low energies of adsorption (5 - 15 kcal/mol),1 6 exhibited only modest

stabilities, and therefore were limited in that they could only generate low-energy surfaces.



Sagiv extended Zisman's work to prepare organized monolayers that were

covalently-attached to solid substrates. 22 He reported the formation of SAMs derived

from octadecyltrichlorosilane (CH 3(CH)l 7 SiC13, or OTS) onto glass slides and

demonstrated the superior stability of the silane-based monolayers to other systems (such

as that of fatty acid monolayers on glass). The reactivity of the trichlorosilane reagents

makes them useful for coating a broad class of substrates (glass and metal oxides)2 and

they have become widely used in a variety of practical applications. These films exhibit

dramatically superior levels of stability to those of another SAM films reported to date. 7

Nuzzo, Allara, and coworkers reported an alternative adsorption process in the

early '80s to form oriented organic films that relied on the specific interactions between

gold and sulfur. These films were notable in that they could produce both high- and low-

energy surfaces, simply by changing the tail group present in the adsorbing organic

disulfide, 2 3 sulfide,2 4 or thiol.2 5,2 6 The general inertness of gold toward many chemical

species allowed the adsorption of organosulfur compounds to occur exclusively through

the sulfur atom(s) and without concurrent adsorption by any non-sulfur-based moieties

included in the adsorbates. The specific interaction between sulfur and gold--the "soft-

soft" chemical ligation between the soft ligand (sulfur) and a soft late transition element

(gold)2 7-allowed adsorbates to contain the wide range of "hard" polar groups that are

typically encountered in organic and biological systems. This tolerance allowed formation

of two-dimensional assemblies expressing these types of functional groups at their active

surfaces for the first time by a single adsorption step. This difference for the thiol-based

films contrasts that for the ultrathin organic films made by other methods such as spin

coating and Langmuir-Blodgett transfer.2



1.2. Self-Assembled Monolayers

The first part of this thesis employed various thiol-based SAMs for studies of

molecular adsorption onto well-defined polar organic surfaces since the thiol-based SAMs

provided the best strategy for arranging polar groups at a surface. The second part of this

thesis focused on the development of new silane-based SAMs for controlling protein

adsorption on glass and metal oxide surfaces. Silanes were selected in order to generate

SAMs with long-term stability to biological conditions. The following sections of this

chapter provide background about these thiol- and silane-based systems.2 8

1.2.1. SAMs of Organosulfur Compounds

Sulfur has a strong affinity for many late transition metal surfaces. The reported

surface-active organosulfur compounds that can form SAMs include thiols,25,26

sulfides, 24 disulfides,2 3 xanthates, 2 9 and thiocarbamates 3 0 (Figure 1-2).31 SAMs derived

from organosulfur compounds (mostly alkanethiols) have been prepared on substrates

including gold,3 ,2 5 silver, 3 2-3 6 copper,5 ,3 4 mercury, 3 7 platinum,3 8 iron,3 9 GaAs,4 0 and

YBa 2CuOx.4 1

0 N

SH S-S S S S S S

thiol disulfide sulfide xanthate thiocarbamate

Figure 1-2. Organosulfur compounds used to form SAMs3 1



Among these sulfur-based systems, the most studied is that based on the

adsorption of alkanethiols onto gold surfaces. These thiol-based SAMs have been

characterized by a variety of techniques including ellipsometry, contact angle

measurements, various scanning probe microscopies, infrared and Raman spectroscopies,

X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. 25 ,4 2 -4 5

The collective experimental results from these studies confirm that the adsorption

produces monolayer films that are strongly anchored to the gold surface through the sulfur

atom and contain a densely packed array of trans-extended hydrocarbon chains that are

tilted approximately 300 from the surface normal. 4 5,4 6 This tilt is a result of a sulfur-to-

sulfur distance (-5.0 A) in the assembly that is larger than the distance ('4.6 A) between

perpendicularly oriented alkyl chains in a densely-packed arrangement. The alkyl chains

thereby tilt to maximize the van der Waals contact between the chains in the assembly. A

wide range of nonpolar and polar functional groups (including CH 3, CF, CO 2H, NH 2,

CONH2, and OH) has been incorporated within these alkanethiolate SAMs. 3 With these

tail groups, the monolayer films express a two-dimensional homogeneous sheet of organic

functionality at their exposed surface. The resulting SAMs have provided useful models

for fundamental studies in organic surface chemistry.

1.2.2. SAMs of Organosilane Compounds

Hydroxylated surfaces are required for generating organized SAMs from chloro-

and alkoxy-organosilane compounds as their assembly forms a polysiloxane network that

connects silanol groups (-SiOH) to the substrate via Si-O-Si bonds (Figure 1-3).



6-X " O ' ' i', i'OxSix + 0 1 0 0- 0oo o 0Qo

X = -CI, -OCH 3, -OC 2H5

Organosilane Hydroxylated Organosiloxane
Compounds Surface SAM

Figure 1-3. Formation of an organosiloxane SAM

By this procedure, organosiloxane SAMs have been prepared on silicon

oxide,2 2 ,4 7 - 50 aluminum oxide, 51 ,52 mica,5 3 ,5 4 zinc selenide, 50 ,5 1 germanium oxide, 5 0

and gold. 5 5 The parent silane agents have been extensively used to coat silica particles for

chromatography 5 6 and to promote adhesion at various organic/inorganic interfaces. 7 The

derivatization of surfaces with silane reagents has recently shown promise in the areas of

tribology, 57 chemical sensing,5 8 biocompatibility, 10 and microdevices. 5 9

Experimental results from characterization methods including ellipsometry, 47 - 4 9

wetting measurements, 4 7 -4 9 infrared spectroscopy,5 2 and sum frequency generation

(SFG) spectroscopy 60, 6 1 have demonstrated a high degree of structural order in SAMs

derived from OTS and determined a chain tilt of less than 180 for n-alkyltrichlorosilane-

based SAMs. These organosiloxane SAMs can be produced using co-substituted

alkyltrichloro- and trialkoxy-silanes that incorporate terminal functional groups such as Br,

CN, thioacetyl, and vinyl groups;2,31 however, silane-based SAMs are limited to include

these functionalities that are unreactive toward the trichlorosilyl or trialkoxysilyl group in

the adsorbate. This limitation can be contrasted with the thiol-based SAMs that can

incorporate a wide range of hydrophilic groups. The superior stability of the



organosiloxane SAMs, 1 0, 6 2 , 6 3 however, makes them more widely used in technology. 7

Subsequent surface reactions have been used for these SAMs to incorporate hydrophilic

groups into these films. 6 4 -6 6

1.3. Motivation

Numerous technological involve interfacial events that occur at solid/liquid

interfaces. Self-assembled monolayers (SAMs) have been employed as model systems to

manipulate and investigate these and other types of interfacial phenomena at a molecular

level. This thesis addresses the development and characterization of such systems and

their use to investigate the adsorption of various molecules at solid (SAM)/liquid

interfaces.

The first part of this thesis (Chapters 2 - 5) investigates the self-assembly of

amphiphilic molecules onto chemically well-defined polar organic surfaces by non-covalent

interactions and demonstrates their use for the controlled delivery of fluids. The

formation of self-assembled films on organic surfaces by non-covalent interactions has not

received much attention in contrast with the large body of work on inorganic surfaces.

This thesis discusses the formation of organized monolayer films by the solution-phase

adsorption of n-alkyl-chained adsorbates [CH 3(CH2 )n 1Y] onto the polar surfaces of

terminally substituted SAMs [Au/S(CH2)mX] using various polar tail groups (X and Y) that

include amine, carboxylic acid, and amide groups. Chapter 5 discusses the use of this

solution-phase adsorption process to cause the directed movement of liquid drops on

surfaces and demonstrates the unique properties that can be obtained from this system due

to its reliance on non-covalent interactions for adsorption.



The controlled adsorption of proteins onto glass and metal oxide surfaces remains an

important issue in the development of biomaterials, biodevices, and biosensors. The

second part of this thesis (Chapters 6 - 7) focuses on the development of new methods

for controlling protein adsorption using silane-based SAMs that incorporate oligo(ethylene

glycol) units. Chapter 6 details an approach for reducing and often eliminating the non-

specific adsorption of proteins on glass and metal oxide surfaces, and Chapter 7 discusses

a strategy for inducing the selective adsorption of proteins onto these substrates for

potential application in biosensor construction.
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Chapter 2

Molecular Adsorption of Amphiphilic Molecules onto Well-
Defined, Polar Organic Surfaces

2.1. Introduction

Monomolecular organic thin films have been the focus of numerous investigations for

their application in areas of wetting, 1- 3 adhesion, 4,5 lubrication, 6 and corrosion inhibition.7 ,8 In

such studies, self-assembled monolayers (SAMs) formed by the spontaneous chemisorption of

specific long-chained adsorbates onto reactive metal or metal oxide surfaces have provided useful

model systems due to their ability to generate chemically tailored organic surfaces. 9 Among the

reported systems of SAMs, the best characterized and synthetically most flexible is that based on

the adsorption of alkanethiols onto gold. 10 Notably, the assembly accommodates a wide variety

of tail groups and can generate both polar and nonpolar surfaces. For example, polar groups such

as -CO 2H, -NH 2, -CONH2, and -OH can be localized at the exposed surface of these SAMs, and

these moieties have been used as sites for further modification, often by metal ligation or covalent

attachment. On homogeneous surfaces of these organic functional groups, non-covalent

interactions can also direct the localization of molecular species on their surface. The interactions

that drive formation of these films at a solid/liquid interface are often weak and insufficient to



allow their isolation from the liquid phase. The formation of such an adlayer has been limited to

recent studies using the gas-phase adsorption of short-chained compounds of low molecular

weight on the SAMs. 1 1,12 The formation of highly organized structures within the plane of the

adlayer (as for alkanethiolate SAMs on gold) by this method is unlikely. In addition, the procedure

places restrictions on the adsorbates, as it cannot accommodate molecules of high molecular

weight or longer chain length due to their low vapor pressure.

n l: -CONH 2, -CO2H, -NH2

Figure 2-1. Formation of an adlayer on a terminally substituted SAM

This chapter discusses the ability of various surface-active molecules to form organized

adlayers on the surface of terminally substituted SAMs (Au/S(CH,)mX) by non-covalent (i.e., ionic

or hydrogen bonding) interactions from solution (Figure 2-1). These experiments were performed

in a nonpolar organic solvent (decahydronaphthalene, DHN) to lessen competing adsorption

processes by the solvent molecules. We used long-chained adsorbates (CH 3(CH2)Y; n = 15 - 17)

and examined various X Y interaction pairs for their ability to produce stable, organized adlayer

films that could be isolated from the adsorbate solution. Among the various combinations of 'Y

on X' that were examined, only 'NH 2 on CO 2H,' 'CONH 2 on CONH2,' and 'CONH 2 on CO 2H'

formed oriented monomolecular adlayers that could be isolated from the adsorption solution and



exhibited as densely-packed an organized layer as the underlying thiol-based SAM. Reflectance-

adsorption infrared spectroscopy (RAIRS) provided direct spectroscopic information regarding

the extent of interactions between the terminal X and Y groups and the level of organization

within the films.

2.2. Results

2.2.1. Monomolecular Films: Au/S(CH-)mX

SAMs terminating in CO 2H, CONH2, and NH2 groups were prepared by immersing

freshly evaporated gold-coated silicon slides (ca. 1 x 3 cm 2) in 0.1 - 1 mM ethanolic solutions of

the corresponding alkanethiol overnight at room temperature. The strong interaction between the

sulfur atom and the gold surface induces the spontaneous assembly of an oriented monolayer on

the gold surfaces. The films prepared from the CO 2H- and CONH 2-terminated thiols exposed

highly polar surfaces that were wet by liquids such as water and hexadecane (i.e. contact angles of

water were less then 15').10,13 In contrast, the NH2-terminated SAMs were less hydrophilic and

exhibited contact angles of water of -560.14 This difference in wetting is possibly due to the high

reactivity of amine groups and their ability to adsorb CO 2 and other atmospheric species on the

SAM surface. 10 ,15 In the RAIRS spectra of the SAMs, the asymmetric C-H stretching mode (d-)

appeared at -2928 cm -' for the NH2-terminated SAMs and at -2919 cm -' for the CO 2H and

CONH 2-terminated SAMs. These values indicate a more dense packing and superior level of

organization for the hydrocarbon chains within the CO 2H- and CONH 2-terminated SAMs. From

these results, we conclude that the exposed NH 2 groups were not as densely arranged at the

surface as for the CO 2H and CONH 2 SAMs.



2.2.2. Bilayer Films: Au/S(CH 2)mX.--Y(CH 2)nCH 3

The terminally substituted SAMs (Au/S(CH)mX; X = CO 2H, CONH2, NH2 ) were each

immersed into DHN solutions of the various long-chained adsorbates (CH 3(CH2)nY; Y = CO 2H,

CONH2, NH2) to examine their ability to produce adlayers through non-covalent interactions

between X and Y. DHN was selected as solvent for these experiments based on its general

inertness, its high surface tension, and its nonpolar nature--this combination of attributes should

minimize any effects that could hinder the formation and isolation of a non-covalently linked

adlayer. In particular, the high surface tension of DHN allowed some of the SAMs to emerge dry

from the DHN solution. The dewetting of samples upon removal from solution provided a visual

indication of the formation of a CH 3-terminated adlayer on the oriented SAM and also allowed the

omission of any rinsing procedures that could disrupt the assembled adlayers. The dewetting of

the slides did not occur with every combination of X and Y, and this oleophobic behavior was

observed only for the adsorption of CsNH2 onto CO2H-terminated SAMs and of C, 7CONH2

onto CONH 2- and CO 2H-terminated SAMs. While the amine and amide adsorbed onto the

CO 2H-surface and produced oleophobic surfaces, the dewetting process did not occur for the

related cases where amine and amide-terminated SAMs were exposed to heptadecanoic acid

(CH 3(CH2),CO 2H).

Table 2-1 shows the ellipsometric thicknesses and wetting properties of adlayer-SAM

combinations that yielded oleophobic surfaces. The thicknesses of the resulting adlayers from

adsorbates of similar chain lengths (n = 15 - 17) were similar (about 21 A) and roughly the same as

the thickness of a SAM derived from an alkanethiol of similar chain length on gold. The wetting

behaviors of the adlayers were also similar to those for a densely-packed, CH 3-terminated SAM on

gold.



Table 2-1. Physical properties of various SAM/adlayer combinations

Adlayer
Underlying SAM Adlayer Thickness Oa(H 2 0) Oa(BNa) )a(DHN) 0a(HD)

Au/S(CH2)1sCO 2H CH 3(CH 2) 17NH 2  19 105 61 44 42
Au/S(CH2)15CO 2H CH 3(CH 2)16CONH 2  19 93 66 46 45
Au/S(CH2)11CONH 2  CH 3(CH 2) 16CONH 2  22 105 67 48 46
Au/S(CH2)17CH 3  22 115 67 51 46

aBN = a-bromonaphthalene
bHD = hexadecane

2.2.3. Examination of the Non-Covalent Interactions within Bilayers by Infrared

Spectroscopy

Figures 2-2 and 2-3 show infrared spectra for the various systems that yielded bilayer films

as well as spectra for the parent SAMs. In Figure 2-2, the d- and d' CH 2 C-H stretching modes

for the CONH 2 and CO 2H-terminated SAMs appear at -2919 and -2851 cm'- , respectively,

indicating an all-trans conformation for the alkyl chains and the presence of few gauche defects

within the SAMs. After formation of the adlayers, the positions of the d- and d' modes remain

unchanged and new peaks appear at -2965 and -2879 cm - for the r- and r' CH 3 C-H stretching

modes, respectively, indicating the adsorption of methyl-containing species on the SAM. This

spectral regior, also displays the bands for the N-H stretching modes. In the spectrum of the

native CONH 2-terminated SAMs, a peak appears at -3498 cm ' that is assigned as a free N-H

stretching mode for the amide. 16 After the formation of an adlayer from stearamide (CCONH2

onto both the CO 2H- and CONH 2-SAMs, two bands at -3400 and -3200 cm' (assigned as

asymmetric and symmetric hydrogen-bonded N-H stretching vibrations, respectively)16 appear

suggesting that the adsorption of the amides onto these surfaces leads to hydrogen bonding

between the amide of the adsorbate and tail group of the SAM-for these systems, the adsorption

of the long-chained amides onto the two SAM surfaces is not the result of simple physisorption.



Figure 2-3 shows the lower frequency region of the spectra and contains the absorptions

for the C=O stretching and N-H deformation modes. The positions of these modes provide

specific information about the chemical environment around the C=O and N-H bonds. For

example, the C=O stretching bands for the native CO 2H-terminated SAMs appeared at 1742 and

1719 cm'- and are due to non H-bonded and H-bonded C=O stretching modes, respectively.

Changes in these spectral modes that occurred after adlayer formation were influenced by

the head group of adsorbate and its interaction with the CO 2H-terminated surfaces. For example,

upon adsorption of C17CONH 2 onto the CO 2H-surface, the peak for the non-H-bonded C=O

stretching mode disappeared and a new peak at -1592 cm'- appeared corresponding to the N-H

deformation mode. Meanwhile, the formation of an adlayer of C18NH2 on the CO2H-surface

resulted in the complete disappearance of the two C=O stretching modes for the native CO 2H-

terminated SAMs and the appearance of a new band at -1583 cm' corresponding to a

combination of the C=O stretching mode for a carboxylate (-CO2-) and the N-H deformation

mode for an NH 3
+ species. The transformation of the C=O absorptions upon amine adsorption

suggests that most of the terminal carboxylic acids are deprotonated by the adsorbing amines.

The completeness of conversion suggests that a stoichiometric correspondence between the

carboxylic acids and amines and that the amine adlayer should have a similar coverage (and thus

surface density) to the alkanethiols comprising the underlying SAM.
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Figure 2-2. RAIRS spectra of bilayers and terminally-substituted SAMs on gold. The numbers in
the molecular structure represent the number of methylene units comprising each hydrocarbon

chain.
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The CONH 2-terminated SAM exhibited a broad C=O stretching peak (amide I band) at

-1663 cm'- and a sharp N-H deformation peak (amide II band) at -1613 cm'. For a primary

amide in a dilute solution, its amide I band typically appears between 1680 and 1700 cm-'.17 The

broadness of the C=O stretching peak in Figure 2-3d indicate that the native amide-terminated

SAMs does not appear to form a strong H-bonding network within the SAM. This assignment is

supported by the sharp band at 3500 cm -' for the free N-H stretching mode.2 Upon formation of

an adlayer of C17CONH 2 on the CONH2-surface, the free N-H stretching mode at 3500 cm -1

disappears and H-bonded asymmetric and symmetric N-H stretching modes appear at 3400 and

3200 cm -', respectively. The latter peaks are characteristic features in the solution-phase IR

spectra of head-to-head H-bonded amide dimers and also appeared upon formation of the

C17CONH 2 adlayer on a CO 2H-surface (Figure 2-2a). The N-H stretching peaks were less intense

than for the adlayer of C,7CONH 2 on the CONH 2-surface primarily due to the lower surface

density of amides.

2.3. Discussion

Among the various combinations of 'Y on X' (X and Y = NH2, CO 2H, and CONH),

only 'NH 2 on CO 2H,' 'CONH 2 on CONH 2,' and 'CONH 2 on CO 2H' formed oriented

monomolecular adlayers that could be isolated from the adsorption solution and exhibited as

densely-packed an organized layer as the underlying thiol-based SAM. One of the interesting

observations with these experiments is that 'CO 2H on NH2' and 'CO 2H on CONH2' did not form

oriented films, while related systems of 'NH 2 on CO 2H' and 'CONH 2 on CO 2H' did. These

differences could be ascribed to differences in the surface characteristics of the SAMs and the

level of intermolecular H-bonding.



On the NH 2-terminated SAMs, none of the investigated long-chained adsorbates

(CH,(CHD)Y; Y = CO 2H, CONH 2, NHD formed a stable adlayer. The poor packing within the

parent NH 2-terminated SAM and the possible contamination of its surface by adventitious species

may explain our inability to form an organized adlayer from these adsorbates on this surface.

NH2-terminated SAMs have been used to deposit particles covered with CO 2H-terminated SAMs

onto them.1 8 Because of their large size (on the order of 10 gtm) and their multiple points of

attachment, the particles are less likely to be sensitive to the poor organization of NH 2-terminated

SAMs. The adsorption of individual molecules on the NH 2-SAMs to form an assembled adlayer is

more sensitive to the organization of a poorly structured SAM since the stability of the adlayer

also relies on van der Waals contact that results from dense packing between hydrocarbon chains.

In contrast, the CO 2H and CONH 2-terminated SAMs exhibit a better-defined structure and their

hydrocarbon chains are more densely packed, thereby producing a two-dimensional sheet of polar

functionality at their surface that can better allow adlayer formation.

The strength of intermolecular H-bonds can be influenced by several factors including the

electronegativities of the proton acceptor and donor, charges on the donor and acceptor, steric

effects, and the number of H-bonds per molecule. 19 The order of decreasing H-bonding strength

is suggested to be O-H N > O-H O=C - N-H N > N-H O=C.19 According to this order

of H-bonding strength, a stable monolayer from heptadecanoic acid would be expected to readily

form on the CO 2H-terminated SAM since O-H O=C is rated stronger than N-H O=C (Figure

2-4); however, a stable film was not assembled with the combination of 'CO 2H on CO 2H.' This

observation can be unraveled with a couple of explanations. First, each adsorbed amide is capable

of forming a greater number of H-bonds to stabilize an adlayer than each adsorbed carboxylic

acid: the primary amide has two proton donors and one proton acceptor, which allow formation

of intermolecular H-bonds between adsorbed amides (Figure 2-4a). Meanwhile, each carboxylic



acid has only one proton acceptor and one donor; therefore, the intermolecular H-bonding

between adjacent adsorbed acids within a layer will be weak or absent for the formation of head-

to-head dimers (Figure 2-4b). The difference in physical properties clearly manifest the outcome

of multiple H-bonds; for example, the melting point of hexanoic acid is -3 'C, while that of

hexanoamide is -101 'C. Therefore, these results may generally explain the superior stability of

amide adlayers to acid adlayers. In addition, the terminal CO 2H groups of SAMs can participate in

H-bonding with their adjacent CO 2H groups (Figure 2-4b), possibly contributing to the poor

stability of adlayers of heptadecanoic acid on CO 2H-SAMs. The influence of the intralayer H-

bonding within CO 2H-SAMs may also be observed in the adlayers of stearamide onto CO 2H-

SAMs. As shown in Figure 2-2a, the relative intensity of the asymmetric N-H stretching band at

3400 cm' to that of the symmetric N-H stretching band at 3200 cm - is apparently weaker than for

the adlayers of stearamide onto CONH 2-SAMs (Figure 2-2b). This observation indicates that the

N-H bonds of adsorbing amides are at a different orientation possibly to maximize the stability of

adlayers in response to the chemical environments of CO 2H-surfaces that are different from those

of CONH2-surfaces. The spectrum suggests that most of the N-H bonds of adsorbing amides

may form H-bonds with the carbonyl group of their adjacent adsorbing amides rather than that of

CO 2H-SAMs, as the carbonyl group of the SAMs may have already been H-bonded with enough

number of adjacent CO 2H groups through the intralayer H-bonding. Therefore, the two N-H

bonds of each adsorbing amide may have to be oriented more toward its adjacent adsorbing

amides leading the C-N bond of each amide to rotate for the new configuration and causing the

weak intensity of the asymmetric N-H stretching mode due to the dipole moment of the mode

being less normal to the surface.
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Figure 2-4. Hydrogen bonding interactions between the polar end groups of adsorbates and SAMs
within the bilayer assemblies. "A-" and "B-" represent "CH 3(CH2)m-" and "Au/S(CH)n-,"

respectively.

2.4. Conclusions

We have demonstrated the formation and isolation of oriented adlayers derived from the

assembly of n-alkyl-chained adsorbates (CH 3(CH)n-_Y; Y = CO 2H, NH 2, CONHD onto SAMs

(Au/S(CH2)mX; X = CO 2H, NH2, CONH2 terminated with various polar groups. The identities

of X and Y are an important factor that affects the quality of the resulting adlayers. On the NH2-

terminated SAMs, none of the investigated long-chained adsorbates formed a stable adlayer due to

the poor packing within the parent NH 2-terminated SAM and the possible contamination of its

surface by adventitious species. Three systems (C18NH 2 on CO 2H-terminated SAMs and

C,1 CONH2 on CONH 2- and CO 2H-terminated SAMs) have shown the physical properties of

organized films similar to those of alkanethiolate SAMs on gold with our experimental conditions.

In the formation of an adlayer employing H-bonding between CONH 2 and CO 2H groups, only

the adsorption of amides onto acid-surfaces resulted in the formation of a stable adlayer



suggesting that not only the strength of bonding interactions but also the capability of the

adsorbing molecules to form multiple intermolecular bonds is an important factor in the assembly

process.

2.5. Experimental

2.5.1. Materials

Octadecanamide (CH 3(CH2)16CONH2, heptadecanoic acid (CH 3(CH2)5CO 2H), and

octadecylamine (CH 3(CH,17NH) were obtained from Fluka (Ronkonkoma, NY) or Aldrich

(Milwaukee, WI) and used without further purification. 16-Mercaptohexadecanoic acid

(HS(CH 2)sCO 2H),2,13 12-mercaptododecamide (HS(CH2),,CONHD, 2 ,1 3  and 11-

mercaptoundecyl amine (HS(CH)11NH2 18 were synthesized by literature procedures. n-

Octadecanethiol was obtained from Aldrich and recrystallized before use. Silicon wafers were test

grade and obtained from Silicon Sense (Nashua, NH). Gold shot (99.99 o/o) and chromium-coated

tungsten filaments were obtained from Americana Precious Metals (East Rutherford, NJ) and R.

D. Mathis Co. (Long Beach, CA), respectively.

2.5.2. Sample Preparation and Treatment

Gold substrates were prepared by the sequential thermal evaporation of 100 A of Cr (990/%)

and 1000-2000 A of Au onto Si(100) test wafers. The evaporation was conducted in a vacuum

chamber at less than 10-' torr. The SAMs were prepared by immersing the substrates into 0.1-1

mM thiol solutions in ethanol for at least 10 h. The terminally-substituted SAMs (Au/S(CHD.X;

X = CO 2H, CONH 2, NH) were rinsed with ethanol and deionized water (Milli-Q, Millipore) and

blown dry in a stream of N 2 prior to use, while the SAMs from octadecanethiol were rinsed only



with ethanol before being blown dry with N 2. Adlayers of the alkyl-chained adsorbates

(CH,(CH)nY; Y = CO 2H, CONH 2, NH2 were formed on the terminally-substituted SAMs by

soaking the SAMs in dilute solutions of the amine or acid (1 to 10 mM) or supersaturated

solutions of the amide (less than 1 mM) in anhydrous decahydronaphthalene (DHN) for at least 8

h. Substrates that formed stable adlayers emerged dry from the DHN solution and were blown

dry with nitrogen to remove any remaining drops from the edges of substrates.

2.5.3. Film Thickness Measurements

The thicknesses of the films were determined using a Gaertner L116A ellipsometer

(Gaertner Scientific Corporation, Chicago, IL) at a wavelength of 6328 A. For each substrate,

measurements were made before and after derivatization with the thiols and after exposure to the

other adsorbates. The thicknesses of the films were calculated using a real refractive index of

1.45.20

2.5.4. Wetting Measurements

Contact angles were measured using a Ram&-Hart goniometer (Mountain Lakes, NJ)

equipped with a videoimaging system. Measurements were made on both sides of the drop under

ambient condition. Drops were advanced and receded at -1 gL/s with an Electrapipette (Matrix

Technologies Corporation, Lowell, MA). Contact angles were reproducible from sample to

sample within +20, and reported data are the averages of at least three drops.

2.5.5. Reflection Absorption Infrared Spectroscopy (RAIRS)

IR data were obtained using a Digilab FTS 175 spectrometer (Bio-Rad, Cambridge, MA)

equipped with a Universal Reflectance Accessory and wire grid polarizer. The p-polarized light



was focused onto the Au surface at an 800 angle of incidence, and the reflected beam was detected

by a liquid N2-cooled MCT detector. After 256 to 1024 scans at 2 cm -1 resolution, triangular

apodization was applied and the final absorption spectra were baseline-corrected. Reference

spectra were obtained from an octadecanethiol-d37 SAM on gold. Spectra are reported as -log

R/Ro where R is the reflectivity of the substrate with the monolayer and Ro is the reflectivity of the

reference.
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Chapter 3

Adsorption of n-Alkylamine Monolayers onto Carboxylic Acid-
Terminated Self-Assembled Monolayers from Solution

3.1. Introduction

The Adsorption of long-chained amphiphilic molecules at surfaces to form localized

supramolecular assemblies has been a topic of ongoing interest. These studies have been directed

at understanding the factors that influence aggregation, identifying their assembled structures, and

developing means to generate well-defined supported films often by the Langmuir-Blodgett (LB)

or self-assembly methods. 1 The primary difference in these techniques is that they produce

physisorbed and chemisorbed monolayers, respectively. The interest in these films has resulted

from their potential in areas of corrosion prevention, lubrication, adhesion, and molecular

recognition.

The spontaneous adsorption of amphiphilic molecules was first reported by Zisman and

coworkers almost fifty years ago.2 By exposing glass surfaces to dilute solutions of various long-

chained alcohols in hexadecane as solvent, these researchers formed monomolecular films that

were not wet by the solvent medium and exhibited wetting properties similar to those of oriented

LB monolayers formed by a more tedious process. Zisman and coworkers extended this approach



to include a range of metal and metal oxide surfaces and a variety of surfactant-like molecules

including long-chained amines, carboxylic acids, and primary amides. The adsorption of these and

related amphiphilic molecules has been further studied more recently on other solid substrates.3,4

Alkanethiolate SAMs on gold have attracted much attention than any other organic thin

film systems in the last decade. The preparation of these SAMs is extremely straightforward, as

gold (unlike other metals) does not form a stable oxide and can be handled in air with few

precautions. A notable aspect of this system is that the assembly onto gold can accommodate a

wide variety of tail groups and can generate both polar and nonpolar surfaces. Polar groups such

as -CO 2H and -CONH 2 can be localized at the exposed surface of the SAM and have been used

as sites for molecular recognition and attachment to the surface. These SAMs can also serve as

chemically well-defined model surfaces for investigating fundamental aspects of adsorption by a

variety of species.

The previous chapter demonstrated the ability of specific surface-active molecules

(CH 3(CH)nY) to form organized adlayers on the surface of terminally substituted SAMs

(Au/S(CH 2)mX) as a result of non-covalent (i.e., ionic or hydrogen bonding) interaction Of the

examined bilayer systems in Chapter 2 that produced densely-packed organized adlayers that could

be isolated from the adsorption solution, the formation of oriented monolayers of n-alkylamines

on carboxylic acid-terminated SAMs provided a case that resulted from an acid-base interaction.

The previous chapter showed that a strong ionic interaction between the polar head groups of the

adsorbates and the SAMs were responsible for the formation of a stable, organized adlayer of the

long-chained amines on the CO2H-surface. In addition to the head group interactions, factors due

to the chain length of the adsorbate and the orientation of the tail group of the SAM may

influence the quality and formation of the adsorbed film. This chapter investigates the effects of



such structural factors on the physical properties and structure of adlayers formed by the self-

assembly of n-alkylamine adlayers onto carboxylic acid-terminated SAMs.

CH3

in (CH)n.1

in Y
Solution

= (CH2)m
AAu 

or Ag

Figure 3-1. Schematic illustration of a non-covalently-bonded bilayer formed by self-assembly;
specific chemical interactions between the functional groups X and Y are responsible for formation

of the second layer.

3.2. Results and Discussion

3.2.1. Formation of Bilayers

The bilayer assemblies were formed on gold and silver surfaces by a two-step process. The

mercaptoalkanoic acids (HS(CH2)mCO 2H; m = 10, 11, 15) were first adsorbed onto freshly

evaporated films of gold or silver from ethanol. This adsorption produces an oriented monolayer

that expresses carboxylic acid groups at the monolayer/air(liquid) interface. The resulting SAMs

are wet by water (0a(H 20) < 150), indicating formation of a high-energy organic surface. The

CO 2H-terminated SAMs were then immersed in a solution of an n-alkylamine (CH 3(CHD,NHD to

complete formation of a bilayer assembly (Figure 3-1). In preparing these films, various properties



of the solvent such as polarity and surface tension played a critical role in our ability to produce

high quality bilayer films. Solvent polarity is an important factor in producing SAMs with high-

energy surfaces that are readily wet by water. For the primary layer, we formed the CO 2H-

terminated SAMs from 1 mM solutions in ethanol and used adsorption times of 6 to 24 h with no

apparent change in the properties of the SAMs. Non-polar solvents (isooctane, for example)

yielded bilayers that were less wet by water and proved to be useful for the formation of bilayer

assemblies. On silver, the CO 2H-terminated SAMs were prepared by minimizing exposure of the

freshly evaporated silver films to the atmosphere before their derivatization, and only SAMs that

were wet by water (Oa(H 20) < 150) were used for the preparation of bilayers.

The adsorption of alkylamines onto the carboxylic acid surfaces from the liquid phase

proved to be more sensitive to experimental conditions than the assembly of thiols onto gold or

silver. For example, exposure of Au/S(CH) 10CO 2H to 1 mM CH 3(CH2)17NH 2 in ethanol for 24 h

followed by a solvent rinse yielded the initially formed CO 2H-terminated SAM. As polar solvents

such as ethanol would be expected to disrupt interactions between the carboxylic acid and amine

functional groups, we performed similar experiments in isooctane and could form adsorbed amine

layers; however, the properties of these assemblies (by ellipsometry, infrared spectroscopy, and

wetting) were highly variant and appeared to depend on the rinsing conditions performed after the

assembling process. For example, assemblies that exhibited ellipsometric thicknesses and infrared

spectra consistent with the formation of an adsorbed monolayer of the alkylamine were

transformed by subsequent rinsing with isooctane back to the original CO 2H-terminated

monolayer.

To avoid the variations in composition that resulted from the rinsing process, we took

advantage of the low-energy methyl surface that forms upon adsorption of the alkylamines onto

the CO 2H-terminated SAMs. By using non-polar solvents with increasingly higher surface



tensions, it was possible to produce bilayer assemblies that emerged dry from the alkylamine

solution and required no rinsing to remove residual material. For example, in contrast with the

poor reproducibility for assemblies formed from isooctane (yLv = 19 mN/m), high quality bilayer

films were regularly formed when the solvent was replaced with decahydronaphthalene (DHN; yLV

= 31 mN/m). Similar reproducible formation of such bilayers was accomplished from alkylamine

solutions in n-hexadecane (HD; yLv = 26.7 mN/m) and benzene (yLv = 28.9 mN/m) as the slides

also emerged dry from these solutions and required only the use of a stream of nitrogen to remove

any droplets of solution that collected near the edges of the slides. Although we did not conduct

an extensive study of solvent selection on the properties of the bilayer films, we were able to infer

that non-polar solvents with surface tensions greater than -25 mN/m provided the required non-

polar environment for formation of the bilayer and the requisite ability to dewet the assembled

film (i.e., 0receding(solution) > 00). The use of conditions where the contacting solution was

autophobic to the resulting assembly simplified our ability to reproducibly produce and isolate

films from solution that had a high level of structural organization.

Based on these results, we used DHN as solvent to form adlayers for most of our

experiments. We immersed the CO2H-terminated SAMs in 1-10 mM solutions of the alkylamines

in DHN at room temperature to form the bilayer assemblies. We observed that the assembly of

the amine layer under these conditions was rapid as samples immersed in the DHN solutions for

times ranging from -1 s to 24 h exhibited no significant difference in properties by our methods

of characterization. For consistency, we immersed samples in the amine solutions for 6-24 h.



3.2.2. Ellipsometric Thicknesses of the Bilayers on Gold as a Function of the Chain

Length of the n-Alkylamine Adsorbate

Ellipsometry was used to measure the thicknesses of bilayer assemblies on gold

(Au/S(CH2)mCO 2H/H 2N(CH),_CH 3) formed from various mercaptoalkanoic acids (m = 10, 11,

and 15 ) and a variety of n-alkylamines (Figure 3-2a). The data on each SAM for the different

alkylamine were fit by lines with slopes of 1.5 A per methylene unit and intercepts of 12 and 17 A

for m = 11 and 15, respectively; data for m = 10 (not shown) exhibited a similar slope and an

intercept of 11 A. The differences between the intercepts for the three SAMs and the measured

ellipsometric thicknesses for the parent CO 2H-terminated SAMs (Au/S(CH)mCO 2H; m = 10, 11,

15) were the same; however, the intercepts for the three SAMs were -4 A less than the measured

values for the CO 2H-terminated SAMs (thicknesses of 15, 16, and 21 A for m = 10, 11, and 15,

respectively). This disparity may reflect a difference in the amount of adsorbed adventitious

materials by these two systems at atmospheric conditions. For example, the higher energy CO 2H

surface is likely to adsorb a greater amount of material from the atmosphere than the lower energy

CH 3 surface that is produced after adsorption of the alkylamine. For direct interaction between

the amine and carboxylic acid groups, these contaminants would have to be displaced by the

adsorbing amines, and could thereby result in effective thicknesses for the primary SAMs from the

intercepts that are lower than their originally measured ellipsometric thicknesses.

The consistency and strong linearity of the data in Figure 3-2a strongly suggest that the

alkylamines adsorb and form organized monolayer films with a common structure as the chain

length of the amine is varied. The slopes for the data sets of three bilayers are similar to those

obtained by Porter et al. 5 and Bain et al. 6 by ellipsometry for the adsorption of n-alkanethiols on

gold to form SAMs. The similarity suggests that the amine layers may have a structure related to

those for the underlying n-alkanethiolate SAMs on gold.
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Figure 3-2. Properties of bilayers formed by assembly of n-alkylamines (CH 3(CH n NH2 onto
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3.2.3. Wetting Properties of the Bilayer Assemblies

The wetting properties of the bilayer assemblies were examined using sessile drops of

water and n-hexadecane (HD). Figure 3-2b displays the wetting properties of Au/S(CH2)DCO 2H

substrates after exposure to various n-alkylamine solutions in DHN. The data exhibit an increase

in contact angle with increasing chain length of the alkylamine for n < 12 and an asymptotic value

for n 2 12. The wetting properties of these samples are consistent with the formation of a methyl

surface.3 ,7 The plateau in wetting at n = 12 is similar to that observed by others for the

adsorption of alkylamines on platinum, 7 alkanoic acids on oxidized aluminum,3 and alkanethiols

on gold 5,6 . We also measured the contact angles of water and HD on the other CO 2H-teminated

SAMs (Au/S(CH2)mCO 2H; m = 10 and 11) after exposure to the various alkylamines and observed

no significant difference in wetting behavior from Figure 3-2b. This result indicates that the odd-

even variation of hydrocarbon chains of the CO 2H-terminated SAMs does not affect the wetting

properties of adlayers.

The contact angles of HD, a nonpolar liquid, on the bilayer assemblies were slightly lower

than those on alkanethiolate SAMs when the hydrocarbon chain of alkylamines is short (n < 12).

One possibility was that the shorter-chained alkylamines might desorb more readily into the liquid

phase than the more strongly chemisorbed alkanethiol-based SAMs. As a test, we applied drops

of DHN that contained various amounts of the alkylamines onto the bilayer to see whether any

change in contact angle occurs since the presence of alkylamines within liquid droplets would

prevent or retard the desorption of alkylamines from the bilayer assemblies depending on the

concentration of the amines within the drops. We used DHN for this experiment instead of HD

not only because DHN was used for the formation of bilayer assemblies but also because HD

molecules composed of a long-alkyl chain can replace the adsorbed alkylamine molecules and the



inclusion of the HD molecules in the assemblies can complicate analysis of the wetting results.

The experiment was performed over a concentration regime where the addition of alkylamines

does not alter the surface tension of DHN as evidenced in the observation that the wetting

properties of DHN drops with 1-40 mM hexylamine (CH(CH25NHD on an octadecanethiolate

SAM on gold showed no change (Figure 3-3). As shown in Figure 3-3, the contact angles of

DHN droplets on octadecanethiolate SAMs in the 1- 40 mM regime are the same as that of pure

DHN, which indicates that the concentration of n-hexylamine in that regime does not influence

the interfacial tension (yLv) at liquid/air interfaces. This result allows us to infer that any changes

in contact angle that may occur on bilayer assemblies result from the coverage of adlayers on solid

surfaces. In contrast, the contact angle on the bilayer assemblies

(Au/S(CH2)15 CO 2H/H 2N(CH),CH 3) increases as the concentration of n-hexylamine in DHN

droplets increases, and saturates at -5 mM (Figure 3-3) possibly by preventing desorption of

adsorbed alkylamines from the adlayer. The further study on this topic will be discussed in

Chapter 5.
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Figure 3-3. Wetting properties of DHN containing various concentrations of CH 3 (CH2 )5NH 2 on
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3.2.4. Characterization by Infrared Spectroscopy

Figure 3-4 shows spectra of carboxylic acid-terminated SAMs (HS(CH2)mCO 2H; m = 10,

11, and 15) before and after their exposure to 2-4 mM n-octadecylamine (CH 3(CH)17NHD

solutions. For all spectra reported here the units of intensity are -log(R/R 0) where R and R0 are

the reflectivities of the sample and reference, respectively and the assignments for the bands in the

spectra are shown in Table 4-1. 8- 10
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Figure 3-4. RAIRS spectra of Au/S(CH)mCO 2H (m = 10, 11, 15) before (upper spectra in each
panel) and after (lower spectra in each panel) exposure to a n-octadecylamine solution.

Before exposure (upper spectra in each panel), the asymmetric and symmetric C-H

stretching vibrations for the methylene groups of the SAMs are present at -2919 and '2851 cm-

for m = 15, respectively. These results suggest the methylene chains are mostly ordered and

closely packed in a solid-like environment, considering that disordered methylene chains usually

exhibit stretching vibrations 5-10 cm -' higher in frequency. 11 ,12 The bands at - 1740 and 1719



cm -1 are due to the C=O stretching vibrations of non-hydrogen bonded and laterally hydrogen-

bonded CO 2H terminal groups, respectively. 12

After immersion of the CO 2H-terminated SAMs into a CH 3(CH)17NH 2 solution, the

intensities of the methylene stretching bands at 2919 and 2851 cm -1 increased and new peaks at

2966 and 2879 cm'- appeared for the asymmetric and symmetric methyl stretching modes,

respectively (lower spectra in each panel of Figure 3-4). These changes in the C-H stretching

bands are consistent on any of the CO 2H-terminated SAMs suggesting that the quality of the

adsorbed monolayer was not influenced by the odd-even variation of underlying monolayer when

m 2 10. This similarity parallels their similar wetting properties.

Table 3-1. Spectral mode assignments for monolayers of HS(CH 2)mCO 2H (m
and after solution-phase adsorption of n-octadecylamine.

modea before after
CH 3 C-H asym str -2966
CH 2 C-H asym str -2919 -2919
CH3 C-H sym str -2879
CH2 C-Hsym str -2851 -2852
CO2H C=O str, non-H bonded -1740
CO 2H C=O str, H-bonded -1719
CO2- C=O asym str + NH 3

+ def -1575
CH 2 scissor def -1471 -1471

a-CH2 scissor def + sym CO2- C=O str -1412 -1412

aAbbreviations used: str = stretching, def = deformation, asym = asymmetric, s
groups located at either end of the alkyl chain.

= 10, 11, 15) on gold before

ym = symmetric, and a = CH 2

Another notable change shown in the spectra is the position shift for C=O stretching

bands. After exposure to the amine solution, the peaks for C=O stretching vibration modes of -

CO 2H disappear and a new band at -1575 cm-' appears. This band is assigned as a combination

of the asymmetric C=O stretching vibration mode of CO 2 and the N-H symmetric bending

mode, which results from the acid-base reaction between -CO 2H and -NH2 groups. 1 3  The

intensities of the bands in the 1410 - 1470 cm -' region, which contains information about the C-O



and C=O stretching modes as well as the CH 2 scissors modes, apparently increases after exposure

to the alkylamine solution, indicating that the collective orientation of the C=O or C-O bond

becomes more normal to the surface after the acid-base reaction with NH 2 groups. 14 If you

assume that most of the terminal carboxylic acid groups are laterally hydrogen-bonded prior to

their reaction with amines, the C-O and C=O bonds of carboxylic acids have to be directed

parallel to the surface to share the hydrogen atoms of terminal carboxylic acid groups via the

lateral hydrogen bonding; therefore, once their reaction with amines occurs, the conversion of

carboxylic acids to carboxylates will break the laterally hydrogen-bonded network causing C=O or

C-O bonds to possess a more normal orientation.

Figure 3-5 shows the IR spectra of bilayer assemblies (Figure 3-5a) in the CH stretching

region for n = 6, 8, 10, 12, 14 - 18, 20, and 22 and their corresponding difference spectra. The

difference spectra were obtained from subtracting the spectra of underlying CO 2H-terminated

SAMs from those of the bilayers (Figure 3-5b) to examine the chain conformation and orientation

of the alkylamine adlayers. While the peak frequencies of the asymmetric and symmetric CH 2

stretching modes of the bilayer spectra correspond to or near those for trans-extended crystalline

phase, the peak frequencies and their shape of those modes in the difference spectra are quite

different from those of bilayer spectra at n < 12. In other words, the peak for the asymmetric CH 2

stretching mode appears at a higher wavenumber and its shape is broader than that of bilayer

spectra, indicating liquid-like or disordered phase within the adlayers. In contrast, we observed no

significant change in the peak positions at n 2 14. Though the experimental errors and the

overlap of absorption bands can affect the peak positions, these results serve as a good probe for

the structure of alkylamine adlayers. The intensities of the asymmetric and symmetric methylene

modes increase as n increases and increase quite linearly with n 2 14, indicating that the films have

a defined structure. In contrast to the linearly increasing trend of the CH 2 mode intensities with



respect to hydrocarbon chain length, the CH, modes display odd-even fluctuations in their peak

intensities. These odd-even trends result from the orientation of the terminal C-CH 3 bond of

adlayers relative to the surface normal. 1 5

Figure 3-6 displays the intensity ratios between the asymmetric and symmetric methylene

modes, I (d , CH)/I (d+, CH2 . The ratio for the original CO 2H and CH 3-terminated SAMs was

-2.5. In contrast, the ratio decreased to -1 upon adsorption of alkylamines on CO 2H-terminated

SAMs at n 2 14. These observations suggest that the adlayers may possess a different structure

from the structure of the underlying SAMs. The structure of adlayers will be further discussed in

a later section.

Figure 3-7 displays the intensity ratios between the asymmetric and symmetric methyl

modes, I (r-, CH 3)/I (r , CH 3), for the bilayer and the alkanethiolate SAMs on gold as functions of

n. Both show odd-even variations, and the odd-even variation of the bilayer assemblies is offset

by one methylene unit from that of the alkanethiolate SAMs on gold. The ranges of fluctuations

of both systems are almost the same. These results allow us to infer that the orientation of the

terminal N-C bond in the alkylamine adlayers is approximately normal to the surface under

assumption that the canted polymethylene chains are trans-zig-zag extended. 15  The normal

orientation of N-C bond of the amine adlayers may result from the Coulombic interactions

between charged species (CO, vs. NH 3 ', CO 2 vs. CO 2-, and NH3+ vs NH 3
+) that requires

minimization of the total energy potential within the bilayer assembly causing the orientation of

N-C bonds to be normal to the surface.
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Figure 3-5. RAIRS spectra of bilayer assemblies formed on Au/S(CH, 15CO 2H. (a) Spectra of the
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Figure 3-6. Dichroic ratios between the asymmetric and symmetric methylene peak intensities for
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3.2.5. IR Spectra of the Bilayer Assemblies on Silver

Alkanethiolate SAMs formed on Ag differ in structure from those on Au, and their

hydrocarbon chains are less tilted from the surface normal.1 5,1 6 On Ag(111), the thiolates

achieve a packing density that is approximately equal to the cross sectional area of the

polymethylene chain (18.4 A2): for CH 3(CH 1),S/Ag, the nearest neighbor distance is 4.7 A (19.1
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A2/thiolate), shorter than that on Au (5.0 A, 21.4 A2/thiolate). As a result, the hydrocarbon

chains of n-alkanethiolate SAMs on silver can be less tilted from the surface normal than those of

SAMs on gold. Therefore, we investigated the bilayers on Ag to see the effect of a different

packing density onto the properties and structure of bilayers. The wetting behavior on the Ag-

based bilayer assemblies were similar to that on the Au-based counterparts, and this observation

parallels previous the study by Laibinis et al. 15 reporting macroscopic wetting properties by water

and HD on alkanethiolate SAMs that assembled on Au and Ag. The broad peaks for asymmetric

and symmetric CH 2 stretching modes in the spectra of CO 2H-terminated SAMs on Ag appear at

-2928 and 2854 cm', respectively. These high wavenumbers of Ag samples are possibly due to

the size of terminal CO 2H groups that are apparently bigger than methyl groups or due to the

formation of a laterally hydrogen-bonded network that can disrupt the dense packing of

hydrocarbon chains. However, the strong peak for C=O stretching mode appears at -1718 cm'

indicating that most of terminal carboxylic acids are laterally hydrogen-bonded at a high level.

Figure 3-8 shows the IR spectra of the bilayer assemblies (Figure 3-8a) in the CH stretching region

for n = 12, 14-18 and their corresponding difference spectra. The positions and shapes of the

bands show close similarity to those for Au systems; however, the peak intensities of the CH 2

stretching modes for the adsorbed layers at -2919 cm'- and -2851 cm 1 (Figure 3-8b) are weaker

than those for Au systems (Figure 3-5b), which indicates that polymethylene chains on silver are

oriented more normal to the surface. 15 Figure 3-9 shows the methylene dichroic ratios of bilayer

assemblies and alkanethiolate SAMs on Ag as functions of n and the ratios for the adlayers (-1.5)

are lower than those for alkanethiolates on Ag (-2.0).

The odd-even variation of methyl dichroic ratios for the adlayers on Ag is similar to that

for the adsorbed layers on Au, while no significant variation is evident for alkanethiolate SAMs on

Ag (Figure 3-10). The range of the variation is slightly smaller than that for the adsorbed layers on



Au. For a4anethiolate SAMs, Laibinis et al. observed no significant modulation in the methyl

stretching modes (r+ and r-) for Ag samples, while they observed a strong modulation for Au

samples. 15 They explained the difference between the spectra obtained on Ag and on Au with a

difference in structures of monolayers on these substrates. In other words, small or little

modulation of the methyl stretching modes or CH 3 dichroic ratios for Ag samples indicate that the

projection of the terminal C-CH 3 bond on the normal to the surface is invariant with chain length.

Therefore, it is somewhat surprising that the modulation of the CH 3 dichroic ratios for the

adlayers on Ag was significantly different from that for alkanethiolates on Ag and similar to that

for the adsorbed layers on Au. Therefore, this observation leads us to infer that the hydrocarbon

chains in the adsorbed layers are tilted more from the surface normal than those in alkanethiolates

on Ag. The similar modulations in CH 3 dichroic ratio do not necessarily mean that they both have

similar orientations of hydrocarbon chains, since the CH 2 dichroic ratios (closely related to the

twist of hydrocarbon chains) of the adlayers on Ag and Au are different. In addition, since the

terminal CH 3 groups of the adlayers can adopt both trans and gauche conformations at room

temperature, 17 the intensities of methyl stretching modes should serve as a complementary probe

to examine the film structure.
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Figure 3-8. RAIRS spectra of bilayer assemblies formed on Ag/S(CH 2)15CO 2H. (a) Spectra of the
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3.2.6. Orientation of Hydrocarbon Chains

Infrared spectroscopy has been an invaluable technique for characterizing the structure of

SAMs.5, 12 , 15 ,16 For this investigation, the technique provides a probe of the average orientation

of the hydrocarbon chains in these assemblies, their level of conformational disorder, and the

changes in the chemical states of the tail groups for both the SAMs and adlayers.
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intensity (1) of each mode in a RAIRS spectrum is related to its orientation. Specifically, the

intensity of a mode is proportional to the square of the average projection of its corresponding

transition dipole moment (p) along the surface normal. 18 This specific relationship allows a

quantitative analysis of the average orientation of alkyl chains within SAMs. 12 ,1 4 ,15 ,19 -2 1

The difference spectra were used to probe the structure of the alkylamine adlayers (Figures

3-5b and 3-8b). The use of the difference spectra assumes that the formation of the adlayers does

not alter the structure of their underlying CO 2H-terminated SAMs. To check the validity of our

approach, we formed a bilayer assembly using n-tetradecylamine-d 29 (CD 3 (CD2)13NH 2; Cambridge

Isotope Laboratories, Andover, MA) as an adsorbate onto a CO 2H-terminated SAM. Since the

band from C-D stretching vibrations (2260-2040 cm'- ) does not overlap with the C-H stretching

bands (3000-2840 cm-1), we could directly monitor any change that occurred in the structure of

underlying SAMs from IR spectra. We observed no change in the C-H stretching band after

adsorption of n-tetradecylamine-d 29 and this result supports our approach to analyzing the

structure of adlayers with the difference spectra.

Their structure can be simply described in terms of a tilt angle (0) and a twist angle (0) for

the alkyl chains within the SAM. 15 ,2 1 For these systems, a and P can be obtained using the peak

intensities of the C-H stretching modes. Notably, the intensity ratio between the asymmetric and

symmetric methylene modes, I (d-, CH 2)/I (d', CH), changes upon the formation of the adlayer

on a SAM on gold (Figure 3-6). This observation suggests that the adlayers may possess different

structures from those of their underlying SAMs. These ratios can be related to twist angles (P) by

the expression:2 0 ,2 1



tan - 1= ntanp = tan o I(d , dCH 2 ) (d -, CH 2 )

-(Id, CH)YIo(d+,CH2)

(3-1)

where the subscript 0 denotes a "reference SAM" (formed from an alkanethiol that contains the

same number of methylene units as the adsorbate that forms an adlayer). To calculate 0 for the

adlayers (CNH2; n 2 14), we used the spectra of SAMs derived from CnSH on gold and silver as

references and values for P0 of -52' (gold) and -49' (silver) as reported in preceding studies. 12 ,15

We obtained spectra for the adlayers by subtracting the spectra of the underlying SAMs from

those of the bilayers (Figures 3-5b and 3-8b) and calculated twist angles by eq 3-1 of -44o (gold)

and -46' (silver) for the C18NH2 adlayers. The origin of the difference is not clear; however, it is

likely due to the preferred geometries for the interactions between X and Y that then modulate the

chain structure.

-a +

Figure 3-11. Schematic illustration of an all-trans chain of an adsorbed layer on a SAM. The cant

angle a and the chain twist P are shown along with their relationship to the surface coordinate.



We also estimated the cant angles (a) for the hydrocarbon chains in these adlayers by

comparing the methylene mode intensities of the adlayers with those of reference alkanethiolate

SAMs using our calculated values of P and reported values of (= -26' and -13' for gold and

silver, respectively) and ,.12,15 The calculated value of a for the adlayers on gold was -300 ,

which is similar to those for their underlying SAMs. This result suggests that the adlayers and the

underlying SAMs have similar packing densities. By ellipsometry, the thicknesses of the adlayers

were similar to those of alkanethiolate SAMs on gold with common chain lengths, thus supporting

common values of a and similar packing densities for both layers. For the adlayers on Ag

substrates, we obtained an average tilt of -20' . The cant of the adlayers is higher than that for

alkanethiolate SAMs on Ag (-13o). We infer that the higher contact angles by -7o possibly come

from the different packing density of hydrocarbon chains of CO 2H-terminated SAMs from that of

methyl-terminated SAMs, as discussed in the previous section.

3.3. Conclusions

The results from ellipsometry, contact angle measurements, and IR spectroscopy

demonstrated that n-alkylamines adsorb onto carboxylic acid-terminated SAMs and produce

oriented monomolecular films. Their IR spectra suggest that the amines can form densely-packed

monolayers on the SAMs and the acid-base interactions between CO 2H and NH2 occur during the

adsorption process. The RAIRS results on the effects of chain length showed that the films

possess a defined structure. The infrared data also allowed us to infer that the hydrocarbon chains

of the adlayers are tilted approximately the same as those of their underlying SAMs possibly due to

the complete reaction of terminal carboxylic acids with amines leading to a similar packing density

to that of underlying SAMs. We didn't observe any significant influence of Ag substrates, which



usually induced a more dense packing of hydrocarbon chains, on the physical properties of

adlayers.

3.4. Experimental

Mercaptoalkanoic acids (HS(CH,)CO2H; n = 10, 11, 15), pentadecylamine,

hexadecylamine, heptadecylamine and docodecylamine were synthesized according to literature

procedures.6,22 The other alkylamines were obtained from Aldrich (Milwaukee, WI) and n-

tetradecylamine-d 29 (CD 3(CD 2)NHD was obtained Cambridge Isotope Laboratories (Andover,

MA) and used without further purification. n-Alkanethiols were available from other studies. 2 3

SAMs and adlayers were prepared and characterized as noted in Chapter 2.
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Chapter 4

Spontaneous Formation of Monolayers on Chemically-Defined
Surfaces Using Hydrogen Bonding

4.1. Introduction

The previous chapter discussed the formation of densely packed monolayers of primary,

aliphatic amines onto CO 2H-terminated SAMs using acid-base ionic interactions. The present

chapter uses different adsorption chemistry, hydrogen bonding, to assemble bilayers. Hydrogen

bonding is reported to be relatively weaker than ionic interactions in interaction strength. Thomas

et al. reported studies on the adhesive forces between thiol-derivatized Au probes and Au

substrates using interfacial force microscope (IFM). 1 Their experimental results demonstrated

that the work of adhesion for -CO 2H and -CO 2H interactions was approximately three times less

than that for the ionic interactions between -NH2 and -CO 2H. Interestingly, they found that the

calculated work of adhesion for -CO 2H and -CO 2H interactions work of adhesion was smaller

than that obtained from gas-phase experiments and attributed this difference to the environment

for terminal CO 2H groups, where head-to-head hydrogen bonding with adsorbing CO 2H groups is

in competition with intramonolayer lateral hydrogen bonding within SAMs.2 -4



Formation of adlayers based on hydrogen bonding-based adsorption has been reported in

the literature mostly based on CO 2H-CO 2H interactions.3, 5 Sun et al. formed a monomolecular-

level layer of n-tetradecanoic acid (CH 3(CH)12COOH) by exposing a CO 2H-terminated SAM on

gold (Au/S(CH2)2CO 2H) to a vapor of CH 3(CH)12CO 2H. They monitored formation of an

adlayer with infrared spectroscopy, which showed the shift of a peak assigned for C=O stretching

vibration mode; however, their experimental results indicate that the adlayers possess a disordered

structure on the SAM. Green et al. also reported formation of adlayers using the acid-acid

hydrogen bonding (SAM from 16-mercaptohexadecanoic acid and stearic acid).5  They also

confirmed formation of assemblies using infrared spectroscopy; however, their frictional force

microscopy (FFM) images showed topological irregularities suggesting incomplete coverage.

The adsorption of long-chained amides onto surfaces has not received much attention

since Zisman's seminal work in 1946.6 It is possibly due to the poor ability of amide groups to

coordinate with inorganic substrates. Their ability to form a strong hydrogen bond,7 however,

can be utilized if the inorganic substrates are derivatized with organic films exposing functional

groups that can form hydrogen bonds. For example, in chapter 2, we demonstrated that the

adsorption of alkyl amides was preferred over alkylamines and alkanoic acids when the surface was

covered with amide groups and the resulting adlayers of alkyl amides were as organized as other

adlayer systems that we examined. This chapter, therefore, reports detailed studies on the bilayer

assemblies that uses amide-amide interactions.



4.2. Results and Discussion

4.2.1. Preparation of Monolayers and Bilayers

SAMs were prepared by exposing freshly evaporated gold-coated silicon wafers to -1 mM

ethanolic solutions of amide-terminated thiols (HS(CH)mCONH 2; n = 10 and 11) for 6-24 h at

room temperature. The resulting films were wetted by water and hexadecane (HD) indicating

formation of high energy surfaces. 8 Bilayers were prepared by exposing the CONH 2-terminated

SAMs to supersaturated decahydronaphthalene (DHN) solutions of the alkyl amides

(CH 3(CH 2)nCONH) for more than 6 h to insure complete formation of the assemblies. The

primary, aliphatic amides were much less soluble in DHN than the n-alkylamines discussed in the

previous chapter, and we observed increase in solubility by substituting toluene for DHN. For

example, hexanoamide, CH 3(CH)4CONH 2, is soluble in toluene at more than 10 mM, while it is

soluble at less than 1 mM in DHN; however, the wetting properties and film thicknesses of

assembled films from toluene solutions were similar to those from DHN solutions.

4.2.2. Wetting Properties and Film Thickness

The ellipsometric thicknesses of bilayers are shown in Figure 4-1a. The measured values

were typically scattered in ± 2.0 A about the averaged in the figure. The measured thicknesses of

the CONH 2-terminated SAMs (Au/S(CH2)mCONHD are scattered about 14 and 15 A for m = 10

and 11, respectively, and these measured values were close to the intercepts of the fitted lines.

The slopes of the lines were approximately 1.5 A/-CH 2-, also similar to those of amine adlayers of

Chapter 3 and the previous studies on alkanethiolate SAMs on gold.9 ,1 0 The values for advancing

contact angles of water and hexadecane on CONH 2-terminated SAMs on gold



(Au/S(CH,)mCONH2; m = 10 and 11) were < 150 as reported in literature. 8 The CONH 2-surfaces

displayed oleophobicity after exposure to the DHN solutions of the alkyl amides and this

observation visually indicated the formation of methyl-terminated bilayer assemblies. The

dependence of wetting properties on the chain length of adsorbates (CH 3(CH)nCONH) exhibited

a trend similar to the results of the previous chapter on amine adlayers (Figure 4-1b). No

significant difference in contact angle was observed when n 2 10 and this observation agrees with

the previous studies on the organized films of a monomolecular level. 9- 1 2 These results from

wetting measurements and ellipsometry suggest formation of organized monolayers onto CONH2-

surfaces.

40

30

20

10

0

60

50

40

30
20

10

0

(a) -fA

: (b)

A
o-

0 5 10 15 2(

n

Figure 4-1. Ellipsometric thicknesses and wetting properties of bilayers formed by self-assembly of
long-chained amides (CH 3(CHa)nCONH2 onto amide-terminated SAMs on gold

(Au/S(CH2mCONH2 when m = 10 (A) and m = 11 (0). (a) Ellipsometric thicknesses of the
bilayers. The lines are least-squares fits to the data. (b) Contact angles of decahydronaphthalene on

the bilayers. Each point represents the average value obtained on a slide.



4.2.3. IR Spectra of the Amide-terminated SAMs and Bilayers

Figures 4-2 and 4-3 show the spectra of amide-terminated SAMs (Au/S(CH2mCONH 2; m

=10, 11) before and after exposure to a stearamide (CH 3(CH2)16CONH2 solution in DHN. The

spectra of CONH 2-terminated monolayers were in agreement with the literature (lower spectra in

each panel of Fig 4-2 and Fig 4-3)4 and the assignments of the peaks on the spectra are shown in

Table 4-1. The asymmetric and symmetric CH 2 C-H stretching vibrations (d- and d') of the

SAMs are averaged at -2919 and -2851 cm', respectively, indicating that the hydrocarbon chains

in the films are highly organized and mostly trans-zig-zag extended. 13 The intensities of both

CH 2 C-H stretching bands at m = 11 are approximately 10 percent stronger than those at m = 10,

which parallels one methylene difference between two systems. The dichroic ratios (d-/d + in

intensities), related to the twist of hydrocarbon chains within a monolayer, 14 of both systems are

the same. These observations, therefore, suggest that hydrocarbon chains within both CONH 2-

terminated SAMs have the same orientations. A noticeable feature in the IR spectra of the SAMs

is the N-H stretching mode that displays a different pattern in the spectra of the KBr matrices.4

Two broad bands at -3400 and -3200 cm -' appear in the spectra obtained from the KBr matrix

samples, while the CONH 2-terminated SAMs show only a sharp band at -3500 cm -'. The two

broad bands at -3400 and 3200 cm -1 are ascribed to the asymmetric and symmetric N-H

stretching modes resulting from the formation of amide-to-amide hydrogen bonding. The sharp

peak at -3500 cm - in the spectra of CONH2-terminated SAMs is assigned as probably the

antisymmetric stretching mode of the N-H stretching of the free NH2. 4 ,1 5 The spectral intensity

of the free N-H stretching band is 1.4 times stronger when m = 11 than that when m = 10

suggesting that the collective orientation of free N-H bonds of terminal amides is more normal to

the surface when m = 11.16 In contrast, the band assigned for the C=O stretching mode that



centered at -1667 cm' was approximately 10 percent stronger when m = 10 than when m = 11.

These differences in spectral intensities of N-H stretching and C=O stretching modes may result

from the different orientations of terminal CONH 2 groups since the fixed Au-S-CH 2 valence angle

forces the chains into the same absolute orientation under assumption that the hydrocarbon

chains within the films are crystalline leading the orientation of terminal CONH2 groups to

modulate with m;1 7 however, no significant influence of this modulation on their macroscopic

wetting properties was observed as discussed. After formation of bilayers, the intensities of two

CH 2 C-H stretching bands (d' and d-) at -2919 and -2851 cm' increased with the appearances of

two peaks at 2965 and 2879 cm -1 attributed to the asymmetric and symmetric CH 3 C-H stretching

modes (Figure 4-2). The intensity of CH 2 C-H scissors deformation band at -1470 cm -1 also

increased after the immersion (Figure 4-3). The intensity of two CH 2 C-H stretching modes

increased as the chain length of adsorbing amides increased. The IR spectra of bilayers exhibit

other notable features that provide information for the adsorption chemistry. For example, after

the formation of an adsorbed monolayer from stearamide, the band at -3498 cm -1 assigned as a

free N-H stretching disappeared and two bands at -3400 and -3200 cm -', assigned as asymmetric

and symmetric hydrogen-boned N-H stretching vibrations, appeared. 1 5 This result strongly

suggests that the formation of bilayers involves head-to-head hydrogen bonding between the

terminal amides of adsorbates and SAMs, not physisorption of long-chained amides onto the SAM

surface. The C=O stretching band at -1667 cm -1 and N-H deformation band at 1610 cm -' shifted

to -1659 and 1626 cm -', respectively, after the formation of an adlayer. These shifted positions

are close to the values for the solid-state hydrogen-bonded n-alkylamide. 1 5
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Figure 4-2. RAIRS spectra in the high frequency region for amide-terminated SAMs
(Au/S(CH2)mCONH2 before (bottom spectra in each panel) and after (top spectra in each panel)

exposure to a dilute DHN solution of stearamide (CH 3(CH) 16CONH).
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Figure 4-3. RAIRS spectra in the low frequency region for amide-terminated SAMs
(Au/S(CH2)mCONHD before (bottom spectra in each panel) and after (top spectra in each panel)

exposure to a dilute DHN solution of stearamide (CH3(CH2)16CONH).



Table 4-1. Spectral mode assignments and peak positions (cm-') for amide-substituted SAMs
(Au/S(CH2)mCONH 2) before and after exposure to a dilute DHN solution of stearamide.

Mode Assignment Before After

N-H str (free) a -3499
N-H str (H-bonded, asym) b -3401
N-H str (H-bonded, sym) b -3205
C-H str (CH3, asym), r -c -2965
C-H str (CH2, asym), d -c -2919 -2919
C-H str (CH3, asym), r + -2879
C-H str (CH2, asym), d + -2851 -2851
C=O strd -1667 -1659

NH2 defd -1610 -1626

aThis peak may come from the N-H stretch of the free NH 2 group (refs 4,15,18).
bThese frequencies fit the general pattern for alkylamides in the solid state (ref 15).
c Ref. 13.
SThese bands correspond to the amide I band (C=O str) and the amide II band (NH2 bend) (see ref 15).

4.2.4. Structure of Adlayers

The structure of the adlayers was investigated using the RAIRS spectra and the

methodology to calculate cant (a) and twist (P) for the adlayers is described in detail in the

previous chapter. To examine their structure, the difference spectra that only contain the spectral

information of the adlayers were obtained by subtracting the spectra of the underlying amide-

terminated SAMs from those of bilayers (Figure 4-4). When n > 10, the d- and d' CH 2 C-H

stretching modes appear at -2919 and -2851 cm - , respectively, indicating all-trans conformation

for the alkyl chains and presence of few gauche defects within the SAMs, 1 6 while the r- and r'

CH 3 C-H stretching modes appear at -2965 and -2879 cm -1, respectively. As noted in the

previous chapter, the intensity ratio between the asymmetric and symmetric methylene stretching

modes, I (d-, CH)/I (d', CH), upon the formation of the adlayer on a SAM. The ratio for the

CONH 2-terminated SAMs was -2.5. In contrast, the ratio increased to -7.5 upon adsorption of

amides onto CONH 2-terminated SAMs. We calculated twist angles (-) = -66' for the adlayers by

relating these ratios to twist angles (P) with eq 3-1 and obtained cant angles (a) = -300 using the

procedure described in section 3.3.6. Notably, the cant angles for the adlayers is similar to those



for their underlying SAMs4 and this result suggests that the adlayers and their underlying SAMs

have similar packing densities possibly due to the complete one-to-one hydrogen bonding between

amide groups of adlayers and underlying SAMs.

(a) m = 10 (b) m = 11

I10.002

n = 16

n=14

3000 2900 2800 3000 2900 2800

Wavenumber (cm-1)
Figure 4-4. Difference infrared spectra for adlayers of n-alkyl amides (CH(CHD)CONHD formed
on amide-terminated SAMs (Au/S(CH,)mCONH). Spectra were obtained by referencing spectra

for the bilayers to those for Au/S(CH)mCONH 2.



Figure 4-4 shows the two sets of difference spectra for m = 10 and 11 and they exhibited

similar patterns. The peak intensities of CH 2 C-H stretching modes (d' and d-), which reflect the

orientation of hydrocarbon chains within the adlayers, 16 did not show any significant effects from

odd-even variations (10 and 11) of m and this observation parallels the similar wetting properties

of both systems. The spectra of CH 3 C-H stretching modes (r- and r+) for both odd and even

values of n do not differ significantly in comparison to those of amine adlayers in Chapter 3. This

observation is especially notable considering that the hydrocarbon chains within the films possess

the same orientations. 1 7 It can be inferred that the result originates from a significant degree of

reorganization of the methyl surface. Chapman and Tabor investigated the self-assembled films of

long-chain amines and acids using electron diffraction methods.1 9 They discovered that the

chain-to-chain distance within films is larger in acid adlayers than in amine adlayers and they

ascribed the difference to the different sizes of adsorbing moieties (acid vs. amine). Since the

adsorption chemistry in these amide adlayers relies on head-to-head hydrogen bonding, the size of

amide groups is even larger than the adsorbed acids onto glass surfaces in Chapman and Tabor's

work. Therefore, the resulting larger distance between alkyl chains seems to provide an

opportunity for the reorganization of the methyl surface, which induced the similar patterns of

methyl stretching bands.

4.3. Conclusions

This chapter demonstrated formation of the monolayers of n-alkyl amides on amide-

terminated SAMs. The experimental results indicate that the formation of assemblies is driven by

head-to-head hydrogen bonding interactions and the assemblies have highly organized structures

as densely packed as alkanethiolate SAMs on gold. No significant effects of the odd-even



variation of chain length of the amide-terminated SAMs on the macroscopic properties and

structure of the amide adlayers was observed possibly due to the formation of laterally hydrogen-

bonded networks of terminal amides.

4.4. Experimental

Hexanoamide and octadecanamide were obtained from Aldrich (Milwaukee, WI) and

Fluka (Ronkonkoma, NY), respectively, and used without further purification unless otherwise

specified. Mercaptoalkanamides (HS(CH 2)mCONH 2; m = 10 and 11), dodecanamide,

hexadecanamide, and heptadecanamide were synthesized according to literature procedures.5, 1 2

The preparation of SAMs and adlayers on the SAMs and their characterization by infrared

spectroscopy, ellipsometry, and wetting were detailed in Chapter 2 and will not be repeated here.
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Chapter 5

Directed Movement of Liquids on Patterned Surfaces Using Non-

Covalent Molecular Adsorption

5.1. Introduction

Pressure gradients provided by pumps or external forces govern the flow characteristics of

fluids within many pipes and other conduits. 1 For microfluidic systems, the description of liquid

flows becomes complicated due to the presence of capillary forces that can affect the controlled

delivery of small volumes of liquids within microelectromechanical systems (MEMS) or to

different unit operations within a microreactor network. 2 As an alternative to the use of

macroscale methods for delivering liquids within microscale systems, the transport of liquids can

be driven on surfaces by a gradient in wettability, even against the force of gravity.3 - 5 These

gradients can be generated passively using surfaces with spatial variations in free energy or actively

using surfactant-like agents that adsorb on one side of a drop and produce a less-wettable or lower

energy surface that induces a localized dewetting by the liquid (Figure 5-1). This latter topic has

been the subject of recent theoretical studies;6 - 9 however, complementary experimental studies

are lacking due to difficulties in controlling the direction of drop movement and modulating the

responsible surface interactions. Previous examples of adsorption-driven drop movement include



those based on the irreversible attachment of adsorbates to a substrate. 10 Such systems are

single-use and unable to transport more than one drop on their surface as the reacted surface does

not allow further adsorption by a subsequent adsorbate. Surfaces with fixed spatial gradients in

wettability offer an alternative for directing liquid movement. These systems are reusable but are

limited by hysteresis effects to the delivery of liquids over short distances. The procedure detailed

here overcomes the limitations of the present systems and provides a new direction for both

fundamental and practical studies of surface-mediated drop movement.

Movement

High Ysv , Low Ysv

Figure 5-1. Schematic cross-sectional view of a moving drop. The drop moves due to the
asymmetric adsorption of a surfactant-like adsorbate at one side of the droplet to produce a less

wettable surface.

5.2. Results and Discussion

5.2.1. Preparation of Samples

The adsorption of alkylamine onto a high energy CO2H-surface produced the energetic

driving force for drop movement. To direct the liquid movement using the change in surface

energy, we employed microcontact printing ( tCP) to pattern solid substrates with two different

self-assembled monolayers (SAMs): 11 CO 2H-terminated SAM to define the path of movement

and a CH 3-terminated SAM to define the boundaries of the path. Figure 5-2 illustrates the

procedure used to generate the patterned surfaces. The stamp was fabricated by casting



poly(dimethylsiloxane) (PDMS) on a photolithographically-prepared master with the desired

features (2 x 60 mm2 rectangular tracks). The PDMS stamp was "inked" with a 5 mM ethanolic

solution of octadecanethiol (CH3(CH2 ) 7SH), and the thiol was transferred to specified areas of the

gold surface by contacting the stamp with the gold surface. The remaining areas of the surface

were derivatized by immersing the slide in a 5 mM ethanolic solution of 16-mercaptohexadecanoic

acid (HS(CH215CO 2H) to complete formation of 2 x 60 mm2 CO 2H-terminated tracks

surrounded by a low energy CH 3-terminated surface.

PDMS Photoresist Pattern

Si
~PDMS is peeled away

from the master

PDMS is exposed to a
solution containing HS(CH2)17CH3

"  Alkanethiol

Stamping onto a gold substrate
transfers thiol

SAMs (1-2 nm)

Si Au (100 nm) on Cr (10 nm)

i Surface is exposed to a solution
containing HS(CH 2)15CO2H

Figure 5-2. Procedure for preparing the patterned elastomeric stamp and patterned surface.

5.2.2. Surface Energy Effect

When a 1 gL drop of decahydronaphthalene (DHN) containing 1 mM of n-alkylamine

(CH 3(CH)n-9NH 2 or CnNH) was applied to a track terminus at the boundary of the CO 2H and



CH 3 regions, the DHN drop spontaneously moved along the length of the track as a discrete

object (Figure 5-3) and left behind an oriented monolayer of the alkylamine. Complementary

experiments using reflectance infrared spectroscopy indicated that the adsorption of the amine

layer onto the CO 2H-surface results from acid-base interactions and forms a densely-packed

molecular film that exposes methyl groups at its surface.* The adsorption process responsible for

drop movement worked best with nonpolar liquids, and the dewetting process that drives the drop

movement required that the surface tension of the liquid be greater than - 30 mN/m.

DHN drops containing longer-chained alkylamines moved at faster velocities on the

CO 2H-surfaces than those containing shorter-chained alkylamines (Figure 5-3). The resulting

non-covalently adsorbed amine layers produced by self-assembly could be removed simply by

rinsing the substrate with a polar solvent such as ethanol or water. This process could regenerate

the original patterned CO 2H/CH3 surfaces and allowed the delivery of additional drops. The non-

covalent nature of the interaction between the adsorbed alkylamines and the CO2H surface also

allowed a deposited amine adlayer to be replaced by simply exposing it to a solution of a second

longer-chained alkylamine. For example, when an adlayer on a CO 2H surface derived from

C6NH 2 was immersed into a 1 mM DHN solution of C,1NH2, the ellipsometric thickness, wetting

properties, and infrared spectra of the resulting film were the same as for the direct assembly of a

layer of C18NH 2 on a CO 2H surface. The replacement of the adsorbed amines occurred within

seconds of contact with the C18NH 2 solution and produced a lower energy, more oleophobic

surface. The concurrent changes in surface energy provided the basis for achieving a previously

unrealized ability to sequentially deliver two and more drops across a surface. For example, on the

patterned substrate, the placement of a drop of 1 mM C6NH 2 in DHN at one end of a track

* We note that non-covalent interactions between other functional group pairs such as CONH 2-CONH2 and CO 2H-CONH 2 also

produce drop movement.



resulted in its movement over the track and the deposition of a C6NH 2 layer as in Figure 5-3.

Placement of a C18NH 2 drop at one end of this C6NH2-derivatized track resulted in the movement

of this second drop along the same path as the C6NH 2 drop and the deposition of an oriented film

of C18NH2 in place of the C6NH2 adlayer (Figure 5-4). The ability to replace the C6NH 2 layer and

further reduce the surface energy of the track by the adsorption of C,,NH 2 provided the energetic

requirements for this sequential delivery of drops to proceed on the surface. We note that the

C1NH2 drop in this two-drop experiment moved with roughly half the velocity of a C18NH 2 drop

deposited on a bare CO 2H surface.

In these various experiments, the dominant force responsible for the drop movement is

the unbalanced Young force, Fy,3 ,12 that results from the difference in wettability or surface

energy between the front and back sides of the drop (Figure 5-1):

Fy = Lv (cos 0a- cos ) (6-1)

where yL is the surface tension of the liquid,** and 0, and 0, are the advancing and receding

contact angles for the drop, respectively. As DHN wets CO 2H surfaces, 0a = 0o; therefore, the

exerted Fy directly depends on 0, when a monomolecular film of the alkylamine is deposited on a

bare CO 2H surface. With increasing chain lengths of the alkylamine, 0, increases in value and

effects a greater Fy on the drop as manifested by an increase in drop velocity with increasing chain

length (Figures 5-3 and 5-5). When an amine adlayer replaces another, both 0a and 0, must be

considered. For example, for the DHN drop containing C18NH 2 on the C6NH2-derivatized track,

" Dilute concentrations of the alkylamines at -1 mM do not alter the surface tension of DHN.



Oa _ 32'. As a result, Fy is reduced and the C18NH 2-containing drop moves with a lower velocity

than when deposited on a bare CO 2H surface (Figure 5-5). Figure 5-5 plots the steady-state

velocities for various alkylamine-containing drops of DHN on the CO 2H surface with respect to

their values of the quantity, cos 0a - cos 8, (i.e. Fy/YLV).

As indicated by the line in Figure 5-5, the velocity appears to be proportional to the

difference between cos 0
a and cos Or. This observation can be explained by equating the

unbalanced Young force of the surface with the drag force on the moving drop:

W7LV(cOS Oa -cosr, AgV (52)
h

where g is the viscosity of the liquid, W is the length of contact lines at the front and rear of the

drop and is roughly the width of track, A is the contact area between the drop and substrate, and h

is a characteristic length that approximates the mean height of the drop as averaged over the

drop/substrate contact area with respect to the local drag force. The proportionality constant,

(WhyLV )/(Ag), obtained from Figure 5-5 is -3 cm/sec, with the value of h being roughly a

micrometer suggesting that the drag force is localized primarily near the contact lines. 13 ,14



Figure 5-3. Movement of amine-containing DHN drops on a patterned gold surface produced by
microcontact printing. The drops containing 1 mM C6NH2 (right) and 1 mM C18NH2 (left) were
applied on different tracks (2 mm wide and 60 mm long) each expressing CO 2H groups. CH 3-

terminated domains surround the tracks and restrict the movement of each drop to a specified path.
The C18NH 2-containing drop was deposited on the end of the left track -1.5 s after the C6NH2-

containing drop began to move. The C18NH 2 drop caught up to the slower C6NH2-containing drop
within -1.5 s and later passed it.
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Intermediate Energy Surface
(-CO 2H/H2N(CH 2)5CH3)

Low Energy Surface
(-CO 2 H/H2N(CH 2)17CH3)

1 mM C 8 NH 2
in DHN

.- - -~

Figure 5-4. Schematic cross-sectional view of the adsorption process that allows sequential
movement of Schematic cross-sectional view of the adsorption process that allows sequential

movement of decahydronaphthalene (DHN) drops containing 1 mM C6NH 2 and 1 mM C,,NH,,
and their corresponding images obtained by a CCD camera. The C,,NH 2-containing drop moves

due to replacement of C 6NH2 by C, 8NH2 to produce a lower energy surface. The images contain a
reflection due to the gold substrate, and the arrows indicate the direction of motion. The

differences in the wetting properties of the two drops are clearly visible in the CCD images.
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Figure 5-5. The velocity of DHN drops containing various alkylamines (CnNH2 on bare CO 2H
surfaces (open symbols) and an adsorbed film derived from C6NH 2 on a CO 2H surface (filled

symbol) with respect to (cos a - cos Or). The dashed line is a linear fit to the data.

5.2.3. Concentration Effect

In Figure 5-6, the velocities of -1 microliter moving drops of DHN are plotted against the

concentration of octadecylamine within the drops. The velocities exhibit roughly linear increase

rapidly with concentration to 0.5 mM and have roughly a constant value at concentration greater

than -2 mM. This dependence of the moving drop velocity against concentration can be the

results of different equilibrium adsorptions with assumption that the system reaches equilibrium

I



very rapidly. This velocity and concentration can be bridged by incorporating an adsorption

isotherm into the eq 5-2. First, we rearrange the eq 5-1:

W= LVh (cosa -COSOr)= K,(cos0 a -COSOr)= K,(1 cosOr) (5-3)

Ag

where K, = (WhyLV )/(Ag) and , 00. The simplified form of the eq 5-3 suggests that the

concentration of amines within the moving drop relies mostly on or that can vary with respect to

the surface coverage of adsorbed amines in the rear side of the drop. The O, is assumed to follow

a Cassie-type behavior that describes the contact angle of DHN on the solid substrates consisting

of multiple-domains:

COSOr = jx COSO i = XCOSO 100 + (1- X)COS 0 = 1- (1 - COS O100)X (5-4)

where x is the fractional composition of adsorbed amines, and 0100 and 00 is the corresponding

receding contact angles for full adlayers and bare COzH surfaces, respectively. Since DHN wets

the CO 2H-surface, 00 can be approximated to equal -0'.
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Figure 5-6. Velocity of DHN drops containing various concentrations of octadecylamine (C,,NH2
on a CO 2H surface.

Substitution of eq 5-4 into eq 5-3 yields:

v = K 1 (1- cos 0o)x (5-5)

The fractional composition in eq 5-5 can be related to the concentration of amine in the

drop by an appropriate adsorption isotherm. We employed a Langmuir adsorption isotherm not

only because of its simplicity but also because of its applicability to this system considering its

assumptions. The model assumes that adsorption is restricted to monolayer coverage (alkylamines

form a monomolecular film on a SAM surface, as shown in Chapter 3), that specific adsorption



sites exist and interactions are between the site and a specific adsorbate (as noted in Chapter 3, the

adsorption process relies on the specific acid-base interactions between CO 2H and NH), and that

the heat of adsorption is independent of the amount of material adsorbed. The last assumption

strictly may not apply to this system; however, it can be tolerated with a hypothesis that the head

group interaction is a dominant factor in the adsorption process, as shown in Chapter 2 that

demonstrated the influence of head group combinations on the formation of adlayers. The

Langmuir approach is based on a molecular kinetic model where the rates of adsorption and

desorption will be equal at equilibrium:

Kc (5-6)
X =

1+ Kc

where K is the adsorption coefficient or equilibrium constant (the ratio of the adsorption and

desorption rate constants) and c is the concentration of alkylamines in the contacting DHN drop.

Combining eqs 5-5 and 5-6 yields:

Kc (5-7)
v= K,(1-cos ) Kc (5-7)

1+ Kc

Eq 5-7 gives the limiting velocity at high concentrations of the amine as K, ( - cos 000). If we

insert the numbers for K, (= -3 cm/sec) and 0 100 (= -410) in K, (1- cos 010), the calculated

limiting velocity becomes roughly 1 cm/sec, which is close to the velocity we observed as shown

in Figure 5-6. The curve fit with the data yields -6 mM-' for K.



5.2.4. Drop Length Effect

Figure 5-7 shows the velocity of various moving drops containing octadecylamine

(C18NH) against their length. The drop length was proportional to the volume of the deposited

drops in the range of our study. We observed that the velocity of the drop exhibits a decrease as

its length increases. This observation can be also explained with the idea behind eq 5-2. As drop

length increases, the contact area at a drop/substrate interface increases and causes an increased

drag force on the drop. In contrast, the driving force (unbalanced Young force) remains constant

due to the unchanged length of the contact lines at the front and back sides of the drop.
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Figure 5-7. Velocity of DHN drops containing 1 mM octadecylamine as a function of drop length.
The solid curve is a fit to the data using eq 5-8.



If the length of the contact lines at the front and rear sides of the drop is approximated to

roughly equal the track width, eq 5-1 can be simplified:

WYLhY LV ( h 1 (5-8)
v WYLv h (cos a -CosO r ) h (cos a -Cos Or ) 1 (5-8)

Ag It L

where L is the length of drops. Eq 5-8 suggests an inverse relationship of velocity and length of

drops. Using the value of h that was determined using eq 5-2, the constant (= L x v) was

calculated to be -35 mm2/sec that roughly equals the curve-fit value (-39 mm2/sec), though the

model (eq 5-8) does not match the data well. However, it is worth noting that this model provides

a prediction of the trend in velocity with respect to the geometry of drops.

5.3. Conclusions

The present work demonstrates that liquid drops can be delivered laterally along specified

paths using solid substrates with patterned surfaces and a driving force for motion based on

molecular adsorption. The velocity of the drops on these surfaces can be manipulated by

selection of the molecular structure of the incorporated adsorbate. A particular feature of the

detailed adsorption chemistry is its reliance on a non-covalent adlayer that can allow the sequential

transport of two drops along a common specified path and the ability to regenerate the active

surface for further use. Using the system, the effects of adsorbate chain length, adsorbate

concentration, and drop length were examined and the appropriate models were presented to

explain our observations. The strategies used here should be amenable to the design of three-

dimensional systems, where adsorption processes onto the functionalized walls of a channel would



cause spontaneous liquid movement. Such systems would offer a new strategy for the design of

microdevices that must deliver small volumes of chemical reagents or analytes within their

channeled networks.

5.4. Experimental

5.4.1. Materials

Silicon wafers were test grade and obtained from Silicon Sense (Nashua, NH). Gold shot

(99.99 %) and chromium-coated tungsten filaments were obtained from Americana Precious

Metals (East Rutherford, NJ) and R. D. Mathis Co. (Long Beach, CA), respectively. Stamps were

made of poly(dimethylsiloxane) (PDMS) sold by Dow-Corning (Midland, MI) as SYLGARD

Silicon Elastomer-184. Decahydronaphthalene (anhydrous, mixture of cis and trans) and

alkylamines were obtained from Aldrich Chemical Co. (Milwaukee, WI). Ethanol (190 proof) was

obtained from Pharmco (Weston, MO). Octadecanethiol (CH 3(CH)I 7SH) was available from

other studies. 15 16-Mercaptohexadecanoic acid (HS(CH2,,CO2H) was synthesized according to

literature procedures. 16

5.4.2. Preparation of Substrates

Gold films (-1000 A) were deposited by thermal evaporation on silicon wafers that had

been primed with chromium (-100 A) to promote adhesion between silicon oxide and gold.

5.4.3. Preparation of Stamps and Formation of Monolayers

Masters for fabrication of the stamps were prepared using conventional photolithography

as described elsewhere. 1 1 The masters with the desired features (negative 2 x 60 mm2 rectangular
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tracks) were placed in a plastic or glass petri dish, and a 10:1 ratio (w:w) mixture of SYLGARD

silicone elastomer 184 and SYLGARD silicone elastomer 184 curing agent was poured over them

to a thickness of the mixture is 5-10 mm. The mixture was allowed to cure overnight at room

temperature or was placed in an oven (-65 OC, 1-3 h) after setting at room temperature for

approximately 1 h. After removal from the oven, the cured polymer was allowed to cool to room

temperature. Sections of the polymer were cut with a razor blade and then peeled from the

master. The peeled sections were washed several times with ethanol and dried with a stream of

nitrogen before use as stamps. The PDMS stamp was inked with a 5 mM ethanolic solution of

octadecanethiol by directly pouring the solution onto the stamp. After inking, the stamp was

placed gently on the gold substrate and removed after approximately 3-5 min. The remaining

surface (2 x 60 mm2 tracks) was derivatized by immersion of the slide in a 5 mM ethanolic

solution of 16-mercaptohexadecanoic acid (HS(CHD2)CO 2H) leading to the formation of 2 X 60

mm 2 CO 2H-terminated tracks surrounded by a low energy CH 3-terminated surface. Samples were

rinsed with ethanol and deionized water, and blown dry with N2 before use.

5.4.4. Moving Drop Experiments

Moving drop experiments were performed at atmospheric conditions. Drops were

deposited at one end of a track using a microliter syringe. Images of the moving drops were taken

using a CCD camera (60 video fields per second) with a microscopic lens, synchronized strobe

illumination, and SVHS recorder.
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Chapter 6

Protein Resistant Coatings for Glass and Metal Oxide
Surfaces Derived from Oligo(ethylene glycol)-terminated
Alkyltrichlorosilanes

6.1. Introduction

The non-specific adsorption of proteins and other biomolecules onto surfaces is a

problem common to biomedical devices, biochemical processing, and biodiagnostics.1,2

This problem is particularly acute for objects made of metal or glass as proteins and other

species will often adsorb in multilayer quantities onto their corresponding metal oxide

surfaces by electrostatic attraction. 3 Common methods to retard the adsorption include

the use of alkyltrichlorosilanes (typically n-C,H,,SiC13) to passivate the glass or metal oxide

surface with a covalent hydrocarbon film 4 or the attachment or grafting of poly(ethylene

glycol) to the surface. 5-7 In the former approach, molecular films from the silane are

prepared on the high-energy oxide surface to produce a low energy, hydrophobic

surface.8 -1 0 The attached hydrocarbon chains reduce the non-specific adsorption of

proteins by screening the electrostatic attraction between the underlying material and

charged biomolecules such as proteins; however, the hydrophobic surface-by nature of

103



having a relatively high interfacial free energy (YSL = 50 mN/m) when contacted with

water-will routinely adsorb roughly a monolayer of protein.

Surface-bound poly(ethylene glycol) (PEG) is a common strategy for retarding the

non-specific adsorption of proteins and other biological species. 1 1 Methods for covalently

attaching PEG to surfaces include the incorporation of PEG monomers into polymer

networks by graft polymerization 12 - 1 8 and the direct attachment of PEG chains to

surfaces by various coupling reactions. 1 1 In graft polymerization, the PEG chains are

incorporated as segments of a polymer backbone, and the incorporated PEGs can have

limited effect on non-specific adsorption depending on the surface density of the PEG

chains. 19 ,20 The direct attachment of PEG chains to the surface provides a superior

method for manipulating surface properties; however, multiple processing steps are often

required for coupling the PEG molecules to the substrate. 2 1,2 2 For inorganic substrates,

silane reagents are often used to present reactive organic moieties (amines, epoxides,

isocyanates, etc.) that provide sites for the covalent attachment of PEG chains. In these

procedures, the molecules used for attaching PEG chains to these sites frequently include

a variety of specialty PEG derivatives 2 3-PEG-monoacrylates, PEG-NH2, PEG-CHO,

CH30-PEG, PEG epoxides, star-PEGs, etc.-whose availability and cost can limit the

utility of this approach. For these procedures, the effectiveness of the resulting coated

surface is related to the surface density of PEG chains as uncoated regions that expose the

underlying material often provide sites that undergo non-specific protein adsorption.2 4

Objects with complex morphologies offer particular challenges for this method of surface

modification due to difficulties in producing uniform, defect-free coatings of PEG.

Molecular precursors, such as analogs of CH 3(CH2)7SiC1 3 that produce densely packed

104



films spontaneously onto surfaces from solution with high uniformity of coverage, 1 0 could

offer distinct advantages over present methods if they exposed a PEG-type surface that

retarded the non-specific adsorption of proteins.

To address this problem of surface modification, two new reagents were developed

that combine the protocol of use of the trichlorosilane-based adsorbates with the

generation of oligo(ethylene glycol)-based surfaces to generate robust coatings for glass

and metal oxide substrates that are resistant against the non-specific adsorption of various

proteins. These reagents are based on the results of Prime and Whitesides who

demonstrated the effectiveness of films formed by the adsorption of

HS(CH 2),(OCH2CH2)OR (R = H and n = 0, 1, 2, 4, and 6; R = CH 3 and n = 6) onto

gold to retard the non-specific adsorption of proteins.2 5  Alkanethiols, HS(CH2)mX,

spontaneously assemble onto gold surfaces via sulfur-gold interactions and form oriented,

densely packed molecular coatings ("self-assembled monolayers" = SAMs), where the

surface properties of the resulting films are controlled by selection of tail group (X).2 6

Their observation that only a few ethylene glycol units were required in these densely

packed, oriented assemblies to retard protein adsorption and that methyl-terminated

ethylene glycol units were also effective provided the basis for our exploration of thiol

compounds that combine these two factors and our development of the oligo(ethylene

glycol)-terminated silane reagents. The methyl cap is needed on the ethylene glycol group

for generation of a silane-based reagent that could be used on glass and metal oxide

substrates as the hydroxyl group of an ethylene glycol cannot be accommodated within a

molecule bearing a trichlorosilyl group due to their cross reactivity. In general,

trichlorosilane reagents are useful for functionalizing a broader class of substrates (metal

oxides)2 6 than the thiols (coinage metals such as gold, silver, and copper),2 7 and they are
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widely used in practical applications as they exhibit dramatically superior levels of

stability.4 ,2 6

This chapter demonstrates the effectiveness of methyl-capped di- and triethylene

glycol-terminated silane reagents, CH30O(CH 2CH20)2,3(CH2)SiC13, for producing robust

molecular films that inhibit the non-specific adsorption of proteins. In particular, proteins

with molecular weights from 10,000 to 400,000 Da (insulin, lysozyme, albumin,

hexokinase, and fibrinogen) were examined. The reagents contained a methyl cap and

either two or three ethylene glycol units as their tail group, where these functionalities

become localized after assembly of the coating at the outer surface. Our investigation with

these two compounds allowed examination of the effects of oligo-ethylene glycol length

and their thickness on the properties of the coating; in this study, the thickness of the

ethylene glycol portion of the coating was -10 to 15 A. The ethylene glycol-terminated

alkyltrichlorosilane reagents adsorb onto the surface of an oxide spontaneously from

solution and form a coating by methods (Figure 6-1) that are directly analogous to those

commonly used to hydrophobize glass with unsubstituted alkyltrichlorosilanes

(CH 3(CHD2mSiC13). This chapter compares the adsorptive properties of the hydrocarbon

and ethylene glycol-terminated silane-based coatings with various proteins and examines

the abilities of films prepared from the ethylene glycol-terminated silane reagents to

maintain their non-adsorptive properties toward proteins after exposure to conditions of

elevated temperatures and humidity.
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CH30O(CH 2CH20)n(CH2) 11 SiC13
Solution

iSiO

OCH 3.I
(CH 2CH 20)n

- I
(CH2 )11

Figure 6-1. Schematic illustration of the formation of the oligo (ethylene oxide)-terminated
SAMs

6.2. Results and Discussion

6.2.1. Synthesis of Silane Reagents

The oligo(ethylene glycol)-terminated alkyltrichlorosilanes were synthesized via a

two-step synthesis from commercially available compounds (Figure 6-2). The

monomethyl ether of an oligo(ethylene glycol) was reacted under basic conditions with 11-

bromo-undec-l-ene in dimethylformamide (DMF) to yield an 11-oligo(ethylene glycol)-

undec-l-ene methyl ether in high yield. Separation of the product from excess reagents

was easily performed by extraction. The transformation of the resulting olefin to a

trichlorosilane by photochemical addition of trichlorosilane (HSiC 3) proceeded

quantitatively. In this reaction, excess HSiCl 3 served as the solvent and was removed

under reduced pressure to yield the product silane in sufficient purity to produce protein
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resistant coatings although distillation under reduced pressure was used to produce the

target silanes as purified compounds. The process for synthesizing the silane reagents

(Figure 6-2) is amenable to scale-up as each reaction could be performed quantitatively and

excess reagents were easily separated from the products by extraction and distillation

procedures.

a
H(OCH 2CH2)nOCH 3  o H2C=CH(CH 2)9(OCH2CH 2)nOCH 3

C13Si(CH2) 11 (OCH2CH 2)nOCH 3

Key: (a) CH 2=CH(CH2) 9Br, NaH, THF, reflux, 24 h (80%) ; (b) HSiC13, AIBN, hv, 6 h

(90%)

Figure 6-2. Synthesis of co-trichlorosilyl-oligo(ethylene glycol) derivatives,
CH 3O(CH 2CHO)n(CH2),SiC13 (n = 2 or 3)

6.2.2. Preparation of Films

Siloxane films were prepared by a straightforward solution-phase adsorption

process onto silicon wafers that exposed a hydrated oxide surface (Figure 6-1).26 Silicon

was used as a substrate in these studies as its oxide surface is similar to glass in reactivity

and its reflective properties allowed measurement of adsorbed protein films by

ellipsometry. The semiconducting properties of silicon additionally allowed direct analysis

of the surface by x-ray photoelectron spectroscopy to verify formation of the coating and

examine the levels of protein adsorption.

To prepare the siloxane coatings, the silicon substrates were immersed into

unstirred solutions of the silanes in anhydrous toluene for 6-24 h at room temperature.
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The silane solutions were handled and stored under a dry N 2 atmosphere and yielded

reproducible formation of films over several weeks of use. Similar results may be obtained

with trichlorosilane-based reagents when the adsorbate solutions are used under ambient

laboratory conditions when the relative humidity is less than 40%;10 however, the

compounds exhibit a cumulative sensitivity toward moisture and produce insoluble

polymerized aggregates that degrade the properties of the coatings. This problem is

common to all trichlorosilane-based reagents (including alkyltrichlorosilanes,

CH 3(CH2)mSiC13, used for hydrophobizing glass) due to the hydrolytic instability of the

SiC1 group that is required for film formation. To avoid the possibility of solution-phase

hydrolysis and aggregate formation from the silane reagents, we formed the siloxane

coatings under a dry atmosphere of nitrogen.

As a comparison to the trichlorosilane-based films, oligo(ethylene glycol)-

terminated monolayers on gold were prepared by contacting gold-coated silicon wafers

with 2 mM solutions of HS(CHD2)(OCHCH2)nOCH 3 (n = 0, 2-4) in ethanol for 6-24 h at

room temperature. As the assembly of thiols onto gold is not sensitive to humidity, we

performed the assembly of these films in the laboratory ambient.

6.2.3. Characterization of Monolayer Films

Table 7-1 displays the wetting properties for films formed upon adsorption of

various n-alkanethiols and n-alkyltrichlorosilanes onto Au and Si/SiO 2 surfaces,

respectively. The wetting properties are compatible with the formation of oriented

monolayer films that expose the tail group at the surface, with the thiol and silane-derived

films exhibiting similar wetting properties for a common tail group. The formation of

monolayer films was confirmed using ellipsometry where thicknesses for the various
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ethylene glycol-terminated thiols (n = 2-4) ranged from 18 to 22 A and those derived from

the methyl-capped di- and triethylene glycol-terminated silanes were 18 and 20 A,

respectively. On gold, we observed that the difference in wettability between the hydroxyl-

and methyl-capped ethylene glycol surfaces was -300 and was much less than the

difference for similar substitutions on a purely hydrocarbon chain (-1000). This

difference in behavior probably reflects interaction by water with the ethylene glycol

framework that moderates the effect of the terminal group. For both systems, water wets

the methyl-capped ethylene glycol-terminated films (0a(H 20) = 62-72') better than for the

methyl-capped alkyl films (0a(H 20) = 110-115'). This greater wettability by the former

surfaces implies a lower interfacial energy (Yso between the film and water.

Table 6-1. Contact angles measured on films of HS(CH 2)nR on gold and of Cl3Si(CH 2)niR on
silicon a

Substrate Rh Oa(H 20) 8,(H 20)

Gold CH 3  110 99
(CH2)6CH 3  115 99

OH 10 <10
(EG)30Hc 34 23
(EG)40Hc 38 24

OCH 3  81 68

(EG)20CH3  68 59

(EG)30CH3  62 52
(EG)40CH3  62 52

Silicon (CH 2)6CH 3  115 98
(EG)20CH3  72 55

(EG)30CH3  67 49

aAdvancing (Oa) and receding (0r) static contact angles of water.
bEG = -OCH 2CH 2-
cReference 28.

110



6.2.4. Protein Repellency of Films

The adsorption properties of the methyl-capped oligo(ethylene glycol)-terminated

films on Au and Si/SiO 2 were examined by immersing them into various protein-

containing solutions at a concentration of 0.25 mg/mL for 24 h at room temperature.

Concurrent experiments in these solutions using surfaces coated with octadecyl chains

were performed to allow direct comparisons of the performance of these films with

available systems. The amount of adsorbed protein was determined optically ex situ using

ellipsometry. Techniques such as x-ray photoelectron spectroscopy (for siloxane and

thiolate SAMs) and polarized infrared external reflectance spectroscopy (for thiolate

SAMs) were also used to determine the amount of adsorbed proteins. These techniques

are superior to ellipsometry because of their detection of specific chemical signals-

nitrogen composition or amide content-resulting from the protein; however, they require

much longer times for characterizing each sample. In general, the thickness data from

ellipsometry agreed with results from these other methods, and this technique was used as

our primary characterization method.

Figure 6-3 summarizes the protein adsorption results for both substrates. On gold,

the five proteins adsorbed onto the hydrophobic surfaces prepared from octadecanethiol,

with the higher molecular weight proteins forming thicker adsorbed films. These

thicknesses correspond to roughly a monolayer of adsorbed protein suggesting that the

proteins adsorb to lower the interfacial energy between the hydrocarbon coating and water

and that the resulting protein surface does not promote further adsorption. A surface

expressing a methoxy group (-OCH 3) exhibits a lower interfacial energy with water than

the purely alkyl surface (as evidenced by its lower contact angle by water, Table 7-1);

however, this difference did not have a large effect on protein adsorption. This
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observation suggests that the interfacial free energy for this surface when contacted with

water is sufficient to drive adsorption of a layer of protein. Again, roughly a monolayer of

protein appears to adsorb suggesting that the protein surface does not promote further

protein adsorption.

The incorporation of two and four oligo(ethylene glycol) units as linkers between

the methoxy terminus and the alkyl chain resulted in a reduction in the amount of protein

adsorption on the gold surface (Figure 6-3). For insulin, lysozyme, albumin, and

hexokinase, the SAMs resisted protein adsorption within the experimental errors of

ellipsometry. Complete resistance against the adsorption of fibrinogen was not possible

with the EG2,4-CH 3 surface; however, the SAM reduced the adsorbed amount to roughly

10% of a monolayer. The difference in the adsorption characteristics of the purely alkyl

CH30O-capped monolayer and the CH 3-capped EG-containing film can be explained

partially by the lower interfacial energy of the latter system with water. Entropic effects

may also be operative for the oligo(ethylene glycol) system. 1 ,24
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With the silane reagents, the results mirrored those on the gold substrates where

the CH 3-capped oligo(ethylene glycol) monolayers adsorbed less protein than did the

purely alkyl film. Films derived from octadecyltrichlorosilane adsorbed roughly a

monolayer of protein. The CH 3-capped di- and tri-(ethylene glycol) films exhibited a

resistance against adsorption by insulin, lysozyme, albumin, and hexokinase, with the tri-

(ethylene glycol) films offering superior properties and being resistant against adsorption

for these proteins within the error of ellipsometry. As for gold, the CH 3-capped oligo-

(ethylene glycol) films adsorbed fibrinogen, with the adsorbed amounts being greater for

the silane-based films than for the thiols on gold. The superior properties on gold may

reflect the greater ease for forming oriented, well-defined, self-assembled, thiol-based

monolayer films as silane reagents can form polymeric aggregates that can diminish the

surface properties of the film.2 6 The presence of such aggregates could provide local

hydrophobic sites for the adsorption of proteins and make the surface less homogeneous,

which could lead to the larger contact angle hysteresis (AO = 0a-0) presented in Table 7-1.

As we assembled the silane films under an inert atmosphere and used physical methods to

displace any physisorbed materials from the surface, the amount of physisorbed material

on our surfaces should be low. Structural differences in the molecular conformation of

the CH 3-capped tri(ethylene glycol) layer-crystalline vs. amorphous-have been reported

to affect the protein resistance of such surfaces toward fibrinogen and such differences

may be operative here.2 9

In addition to the ellipsometric results, the wetting properties of the surfaces

provided a macroscopic (albeit qualitative) indicator of protein adsorption. The initially

prepared surfaces were hydrophobic and emerged dry when rinsed with water. After

exposure to the protein solutions, the purely alkyl systems became less hydrophobic, while
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the methyl-capped oligo(ethylene glycol) surfaces maintained their hydrophobicity. In

particular, the receding contact angle of water on surfaces with an adsorbed layer of

protein was -250 and was sufficiently low to provide a visual indication of protein

adsorption.

6.2.5. Stability of Films

The practical utility of a coating is based on both its performance and its ability to

maintain its useful properties. The stability of the siloxane films was examined by

exposing them to various conditions including boiling water, hot hydrocarbon solutions,

oven drying, and autoclaving. The films retained their protein resistant properties after

immersion in boiling water at 100 'C or decahydronaphthalene (DHN) at 90 'C for 1 h

and drying in an oven at 120 oC for 1 h; however, they exhibited significant deterioration

after drying in an oven at 200 oC for 1 h. These observations are compatible with the

literature regarding the thermal stabilities of siloxane monolayer films as such films are

reported to exhibit no detectable changes in structure and wetting properties when heated

to -140 oC and subsequently characterized at room temperature.9, 3 0  For our reagents

and coatings, the presence of the CH 3-capped oligo(ethylene glycol) tail does not appear to

negatively impact the thermal stability of an alkylsiloxane monolayer. For use in

applications that require sterilized glassware, we note the silane-based coatings maintained

their integrity and properties after an extended sterilization cycle (1 h) in an autoclave at

-120 oC (pressure = 20 psi). This ability may make these films suitable for numerous

applications where sterile conditions are required and there is a need to limit the non-

specific adsorption of proteins.
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The thermal stabilities of the siloxane monolayers contrasts with the rapid

desorption under these conditions for their thiol counterparts on gold. For comparison,

-30% of a thiol-based oligo(ethylene glycol)-terminated monolayer desorbed within 5 min

in boiling water and within 1 min in DHN at 90 oC and lost their abilities to resist the non-

specific adsorption of proteins, while the siloxane films were stable for at least an hour

under these conditions. The robust behavior of the siloxane monolayers offers the needed

stabilities required for practical application, with the developed CH 3-capped oligo-

(ethylene glycol)-terminated silane reagents providing easy access to robust, protein

resistant molecular coatings for glass and metal oxide surfaces.

6.3. Conclusions

Molecular coatings that exhibit a resistance against the non-specific adsorption of

proteins such as insulin, lysozyme, albumin, and hexokinase can be readily prepared on

metal oxide surfaces using a CH 3-capped oligo-(ethylene glycol)-terminated silane reagent,

CH 3[OCH 2CH22,30(CH2)lSiC13. These compounds are synthesized by a straightforward

two-step reaction sequence using commercially available precursors. Solution-phase

contact between a metal oxide surface and the silane reagent results in the spontaneous

formation of a densely packed, oriented siloxane coating that expresses the oligo(ethylene

glycol) groups at its surface. These moderately hydrophilic surfaces exhibit superior

protein resistant properties than the more hydrophobic surfaces prepared from the

adsorption of octadecyltrichlorosilane onto glass. The oligo-(ethylene glycol)-terminated

films maintain their integrity and protein resistant properties after exposure to

temperatures of -100 'C (including sterilization procedures in an autoclave), suggesting

that the parent reagents could be suitable for producing coatings on various glassware and
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another implements that contact protein-containing media and may be exposed to the

conditions used in sterilization procedures.

6.4. Experimental

6.4.1. Materials

Reagents were obtained from Aldrich and used as received unless specified

otherwise. Octadecyltrichlorosilane was distilled under reduced pressure before use. 10-

Undecylenic-1-bromide was obtained from Pfaltz and Bauer (Waterbury, CT). Lysozyme

(chicken egg white, grade III), albumin (human, fraction V), fibrinogen (bovine, type I-S),

hexokinase (bakers yeast) and insulin (bovine pancreas, type III) were obtained from Sigma

(St. Louis, MO) and used as received. Silicon wafers were test grade and obtained from

Silicon Sense (Nashua, NH). Gold shot (99.99 %) and chromium-coated tungsten

filaments were obtained from Americana Precious Metals (East Rutherford, NJ) and R. D.

Mathis Co. (Long Beach, CA), respectively. Oligo(ethylene glycol)-undecenes and

undecanethiols were synthesized by reported procedures; 2 5,2 8 methyl-capped derivatives

were synthesized by direct modifications to these procedures. 'H NMR spectra were

obtained on a Bruker 250 MHz spectrometer in CDC13 and referenced to residual CHC13 at

7.24 ppm.

Syntheses of Methyl [(1-trichlorosilyl)undec-11-yl] oligo(ethylene glycol)s. Methyl

(undec-10-en-1-yl) oligo(ethylene glycol) [1, CH2=CH(CHz) 9(OCH 2CH)nOCH 3; n = 2 and

3]25 (9.5 mmol), HSiC13 (28.5 mmol), and t-butyl peroxide (0.14 mmol) were combined

under a dry N2 atmosphere in a glove box. The reaction mixture was stirred for 7 h under

UV irradiation by a medium pressure Hg lamp 3 1 and concentrated under reduced pressure
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to remove excess HSiC13. The NMR spectrum of the reaction mixture showed quantitative

conversion of the olefin to the trichlorosilane. Further purification was performed by

vacuum distillation. Methyl [(1-trichlorosilyl)undec-11-yl] di(ethylene glycol): 'H NMR

(250 MHz, CDC13) 8 1.2-1.5 (m, 16 H), 1.56 (m, 4 H), 3.38 (s, 3 H), 3.45 (t, 2 H), 3.5-3.75

(m, 8 H). Methyl [(1-trichlorosilyl)undec-11-yl] tri(ethylene glycol) was prepared by a

similar procedure. 'H NMR (250 MHz, CDC13) 6 1.2-1.5 (m, 16 H), 1.56 (m, 4 H), 3.38 (s,

3 H), 3.45 (t, 2 H), 3.5-3.75 (m, 12 H).

6.4.2. Preparation of Silicon Substrates

Si(100) test wafers were cut into strips of -1 x 3 cm2 that were subsequently

cleaned by immersion in freshly prepared "piranha" solution of 70 % conc. H2SO 4(aq)/30

% H20 2(aq) (v/v) for 0.5 to 1 h at 70 OC (CAUTION: "piranha" solution reacts violently

with many organic materials and should be handled with care). The substrates were

immediately rinsed with distilled water, dried in a stream of N2, and used within 1 h of

cleaning. This process produces a highly wettable, hydrated oxide surface on silicon with

similar properties to that for glass. 3 2 Optical constants were measured on the bare

substrates by ellipsometry for use in determining thicknesses subsequently of the adsorbed

silane films and protein layers. The piranha-cleaned substrates were typically exposed to

the air for no more than 15 min before immersion in the silane solution.

6.4.3. Formation of Assemblies on SiO , and Au

The piranha-cleaned silicon substrates were functionalized by immersion in a 2

mM solution of the trichlorosilane in anhydrous toluene. The solutions were prepared and

kept in a dry nitrogen atmosphere (glove box). After 6 to 24 h, the substrates were
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removed from solution and rinsed in 20 mL of CH 2CI2. The substrates were removed

from the glove box, rinsed sequentially with CHC13 and ethanol to remove any residual

organic contaminants, and dried in a stream of N 2.

Gold substrates were prepared by the sequential evaporation of Cr (100 A) and Au

(1000 A) onto Si(100) wafers at pressures of -10-6 torr. The wafers were cut into -1 x 3

cm2 strips and immersed into -2 mM solutions of the thiols in absolute ethanol for 24 h at

room temperature. These samples were rinsed with ethanol and blown dry with N2 before

use.

6.4.4. Protein Adsorption Experiments

The proteins were dissolved at a concentration of 0.25 mg/mL in phosphate buffer

saline (PBS) solution (10 mM phosphate buffer, 2.7 mM KC1, and 137 mM NaC1) that was

adjusted to pH 7.4 and contained sodium azide (0.2 mg/mL) as a bacteriostat. The coated

substrates were immersed in the PBS solutions for 24 h at 20-25 'C, rinsed with deionized

water (Milli-Q), and dried in a stream of N2. The amount of protein that remained on each

substrate after this procedure was determined by ellipsometry. Experiments were also

conducted using adsorption times of 3 to 6 h and yielded similar thicknesses as those

performed using adsorption times of 24 h. Adsorption times were standardized to 24 h

for consistency.

6.4.5. Contact Angle Measurements

Contact angles were measured on a Ram&-Hart goniometer (Ram6-Hart Inc.,

Mountain Lakes, NJ) equipped with a video-imaging system. Drops were placed on at

least three locations on the surface in the ambient environment and measured on both
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sides of the drops. Contacting liquid drops were advanced and retreated with an

Electrapipette (Matrix Technologies, Lowell, MA) at approximately 1 gL/s. Angles were

measured to -+1o and were reproducible from sample to sample within +2'.

6.4.6. Ellipsometric Film-Thickness Measurements

The thicknesses of the films were determined with a Gaertner L116A ellipsometer

(Gaertner Scientific Corporation, Chicago, IL). For each substrate, measurements were

made before and after derivatization with the trichlorosilanes, and after protein adsorption.

The thicknesses of the films were determined using a three-phase model and a refractive

index of 1.4533 and have an error of ±2A. The use of this value allows direct comparison

with data obtained by other groups25,28,29 and provides an accurate relative measure of

the amounts of materials adsorbed on the various coatings.

6.5. References

(1) Norde, W. Adv. Colloid Interface Sci. 1986, 25, 267-340.

(2) Andrade, J. D.; Hlady, V. Adv. Polym. Sci. 1986, 79, 1-63.

(3) Vroman, L. ; Natural History Press, 1966.

(4) Plueddemann, E. P. Silane Coupling Agents; Plenum Press: New York, 1982.

(5) Nashabeh, W.; Elrassi, Z. J. Chromatog. 1991, 559, 367-383.

(6) Herren, B. J.; Shafer, S. G.; Van Alstine, J.; Harris, J. M.; Snyder, R. S. J. Colloid

Interface Sci. 1987, 115, 46-55.

(7) Yang, Z.; Yu, H. Adv. Mater. 1997, 9, 426-429.

(8) Maoz, R.; Sagiv, J. Journal of Colloid and Interface Science 1984, 100, 465-496.

(9) Cohen, S. R.; Naaman, R.; Sagiv, J. J. Phys. Chem. 1986, 90, 3054-3056.

120



(10) Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989, 5, 1074-1087.

(11) Poly(Ethylene Glycol) Chemistry; Harris, J. M., Ed.; Plenum Press: New York, 1992.

(12) Mori, Y.; Nagaoka, S.; Takuichi, T.; Kikuichi, T.; Noguchi, N.; Tanzawa, H.;

Noishiki, Y. Trans. Am. Soc. Artif Intern. Org. 1982, 28, 459-463.

(13) Merrill, E. W.; Salzman, E. W. Am. Soc. Artif. Intern. Org. J. 1983, 6, 60-64.

(14) Sun, Y. H.; Gomboltz, W. R.; Hoffman, A. S. Compat. Polym. 1986, 1, 316-334.

(15) Grasel, T. G.; Cooper, S. L. Biomaterials 1986, 7, 315-328.

(16) Su, Y. H.; S., H. A.; Gomboltz, W. R. Polym. Prep. 1987, 28, 292-294.

(17) Grainger, D. W.; Nojiri, C.; Okano, T.; Kim, S. W. J. Biomed. Mater. Res. 1988, 22,

231-249.

(18) Grainger, D. W.; Knutsen, K.; Okano, T.; Feijin, J. J. Biomed. Mater. Res. 1990, 24,

403-431.

(19) Jeon, S. I.; Lee, J. H.; Andrade, J. D.; De Gennes, P. G. J. Colloid Interface Sci. 1991,

142, 149-158.

(20) Jeon, S. I.; Andrade, J. D. J. Colloid Interface Sci. 1991, 142, 159-166.

(21) Lassen, B.; Gl1ander, C.-G.; Johansson, A.; Elwing, H. Clinical Materials 1992, 11,

99-103.

(22) Kiss, E.; G61ander, C.-G. Colloids and Sucfaces 1990, 49, 335-342.

(23) Harris, J. M. Rev. Macromol. Chem. Phys. 1985, C25, 325-373.

(24) Andrade, J. D.; Hlady, V.; Jeon, S.-I. In Hydrophilic Polymers; American Chemical

Society:, 1996.

(25) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 10714-10721.

(26) Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-

Assembly; Academic Press: Boston, 1991.

121



(27) Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 1990-1995.

(28) Pale-Grosdemange, C.; Simon, E. S.; Prime, K. L.; Whitesides, G. M. J. Am. Chem.

Soc. 1991, 113, 12-20.

(29) Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G. M.; Laibinis, P. E. J. Phys. Chem.

B 1998, 102, 426-436.

(30) Calistri-Yeh, M.; Kramer, E. J.; Sharma, R.; Zhao, W.; Rafailovich, M. H.; Sokolov,

J.; Brock, J. D. Langmuir 1996, 12, 2747-2755.

(31) Eaborn, C.; Harrison, M. R.; Walton, M. R. J. Organomet. Chem. 1971, 31, 43-46.

(32) Pintchovski, F.; Price, J. B.; Tobin, P. J.; Peavey, J.; Kobold, K. J. Electrochem. Soc.

1979, 126, 1428-1430.

(33) Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 52-66.

122



Chapter 7

Development of a Hydroxyl-Terminated Oligo(ethylene glycol)
Alkylsiloxane Coating for Targeted Binding of Proteins on Solid
Substrates

7.1. Introduction

The development of hybrid molecular devices that incorporate biological species such as

proteins and DNA within inorganic platforms has led to new paradigms for performing assays and

other operations in biotechnology. 1,2 In general, the construction of such devices has employed a

variety of functional biomolecules and coupling methods. For this purpose, it is necessary to

develop a suitable method for immobilizing the biomolecules. Ideally, the method has to be

capable of both orienting adsorbed biomolecules for the retention of their bioactivity at surface

and inducing selective adsorption of desired biomolecules that is essential for the construction of

biosensors. Most of the preceding studies focused on the adsorption of one individual

biomolecule onto a desired surface using physical adsorption 3 ,4 or surface modification; 5- 10

however, the development of an optimal system and its testing of the selective adsorption of a

biomolecule against other biomolecules have not been approached much.

The fabrication of biosensing and bioelectronic devices requires methods for organizing

biomolecules on the surface of a device in controlled ways. A recurring problem is the non-
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specific adsorption of biomolecules (such as proteins) can cause defects on the patterned

surfaces. 1 1 In addition, the non-specifically adsorbed proteins usually undergo conformational

changes that lead to their denature and loss of their desired functions. 12 The attachment of poly

or oligo(ethylene glycol) to surfaces has been a common strategy to lessen non-specific adsorption

of proteins and other biomolecules to surfaces. 13,14 Chapter 6 showed that the incorporation of

a short oligo(ethylene glycol) moiety into alkylsiloxane SAMs on glass or metal oxide surfaces can

retard or prevent the non-specific adsorption of proteins. 15

This chapter addresses a potential strategy for inducing the selective adsorption of proteins

on solid substrates using a functionalized organic thin film. Si wafer surfaces were derivatized

with an acetyl-terminated oligo(ethylene glycol) silane and converted the terminal acetate to a

hydroxyl group by a surface reaction. The HO-termination of the resulting film provides sites for

covalently grafting biomolecules to the surface, which is a reoccurring need in many areas of

biotechnology. Among many specific interaction pairs, biotin-streptavidinl6-18 and mannose-

Concanavalin-A (Con-A)19-22 were selected for this work. Biotin or ca-mannose moieties were

attached by a series of surface reactions for the specific adsorption of streptavidin and Con-A,

respectively. The protein-bound surface may be utilized for further attachment of biotin- or

mannose-containing molecules to the surface.

7.2. Results and Discussion

7.2.1. Preparation of Films

The hydroxyl group was protected as an acetate to prevent reaction of free hydroxyl

groups with chlorosilyl groups. The molecular precursor--acetyl [(1-trichlorosilyl)undec-11-yl]
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oligo(ethylene glycol), C13Si(CH2)1(OCH 2CHg)OCOCH 3, 1-was prepared by the three-step

synthesis outlined in Figure 7-1. Monolayers were prepared by adsorption of 1 onto silicon wafers

from a -2 mM solution of 1 in anhydrous toluene (-5 mM). After 6 to 24 h, the substrates were

removed from solution and rinsed in 20 mL of CH 2C12. The substrates were removed from the

glove box, rinsed sequentially with acetone and ethanol to remove any residual organic

contaminants, and dried in a stream of N2. The ellipsometric thickness of the film (n = 4) was 13

± 2 A. In Chapter 6, the thickness of films derived from various ethylene glycol-terminated thiols

(n = 2-4) ranged from 18 to 22 A; therefore, the thickness of the film was less than that (-22 A)

for a full siloxane monolayer, based on the results in Chapter 6. The films were formed by

immersion in silane solutions of high concentrations at 10-20 mM but no increase in film

thickness was observed. This coverage is possibly due to the bulky acetate-terminal group that can

prevent close-packing structure.

a
HO(CH2 CH20)nH a HO(CH2 CH2 0)n(CH2)9 CH=CH2

0 O
H3 CCO(CH 2CH20)(C CH2)lSiCi3  4- H 3 CCO(CH2 CH2 0)n()CH2)CHCH 2

Key: (a) CH 2=CH(CH2)9Br, 50 % aqueous NaOH, 100 'C, 24 h (79 %); (b) CH 3COC1,
(CH 3CH 2)3N in CH 2C1 2, overnight, (75 %); (c) HSiC13, H2PtC16 in THF (90 %)

Figure 7-1. Synthesis of acetyl [(1-trichlorosilyl)undec-11-yl] oligo(ethylene glycol), 1.
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7.2.2. Surface Reactions

Figure 7-2 outlines the surface reactions employed in this work. The hydrolysis reaction

procedure was the same as that published by Wenzler and coworkers for a single acetate-

terminated organosiloxane SAM. 23 ,2 4 The substrates derivatized with 1 were sonicated in 0.1

mM LiA1H 4 in anhydrous diethyl ether for 10 min to convert the terminal acetate groups to

hydroxyl groups. The substrates were then washed sequentially with -4% HC1, chloroform,

acetone, and deionized water, and dried under a stream of N2. The advancing and receding angles

of water on the acetate-terminated monolayers derived from 1 were 0, (H20) = -64' and 0, (H20)

= -520, respectively. After deprotection of the acetate, 0a (H2 0) and ,Or (H20) changed slightly to

~610 and -470, respectively. The reaction caused a -1 A decrease in the ellipsometric thickness

of the monolayer. Based on bond lengths, the hydrolysis of the terminal acetate group should

produce a decrease of 2.57 A in the expected length of the molecule. For the density of

adsorbates in the monolayers, the expected change is -1.5 A (60% of 2.57 A) and agrees with the

observed decrease.

000
O OH NH

ei. tresyl chlonde in CHCI,
LiAIH4 in ether II. biotin-NH2in PBS (pH. 8 0)

SlO, S10
3  

S1O
3

Figure 7-2. Reaction sequence to transform a SAM from 1 and to covalently attach biotin moieties
to the substrate
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The substrates were then tresylated by immersion in a 1.25 mg/mL tresyl chloride solution

in anhydrous CH2C12 for 1 h at room temperature, rinsed with anhydrous methanol, and dried

under a stream of N2.2 5 The tresylated samples were immersed immediately overnight into a

phosphate buffer saline (PBS) solution (10 mM phosphate buffer, 2.7 mM KC1, and 137 mM

NaC1) at pH 8.0 that contained 1 mg/mL biotin-terminated amine, 2 or a mannose-terminated

amine, 3.

H
H 0 HO 0 (

H2N HN NH H IO H
O H - H H2N S H 0O

S H

2 3

7.2.3. Characterization of Surfaces

XPS (X-ray photoelectron spectroscopy), also known as ESCA (Electron Spectroscopy for

Chemical Analysis), was used as the primary characterization method in this study. XPS permits a

non-destructive surface analysis of most solids including insulators, conductors, organic materials,

and powders. 2 6 The photoelectrons generated from the surface of the sample contain a signature

of both the elemental and chemical nature of the first few atomic layers of the sample and

measurements of the relative areas of the photoelectron peaks allow determination of the chemical

composition of the surface. The thickness of the surface layer analyzed by XPS is typically less

than 5-10 nm.

The presence of the terminal acetate group in a monolayer from 1 and its reduction to a

hydroxyl group on the surface were confirmed from the C ls peak of XPS spectra. Figure 7-3

shows the spectra of the acetate-terminated monolayer before and after the hydrolysis of the
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acetate group. Peak fitting for the acetate-terminated siloxane monolayer gives three carbon states

corresponding to the methylene carbons (284.6 eV), the carbons attached by single bonds to

oxygen (286.2 eV), and the carbonyl carbon (C=O) in the acetate group (288.9 eV). In the

spectrum of acetate-terminated siloxane monolayers after reduction (Figure 7-3b), the peak

corresponding to the carbonyl carbon (C=O) was not observed and the other two peaks at 284.6

and 286.2 eV remained, indicating a complete conversion of the terminal acetates to hydroxyl

groups.

Covalent attachment of biotin or mannose to the surface was easily confirmed from the

nitrogen is peak intensity in the XPS spectra (Figure 7-4) since the linkers contained nitrogen

atoms. The samples were rinsed thoroughly with acetone, ethanol, and deionized water prior to

characterization to remove any non-covalently-adsorbed materials. The N is peak area was

compared to that for an amide-terminated thiolate SAMs on gold (Au/S(CH) 1,CONH), where

the latter system provided a reference signal for estimating coverage. In this manner, the surface

densities of attached biotin and mannose units could be estimated and were determined to be

roughly 10 to 20 % that for molecules in an alkanethiolate SAM (- 5 thiolates per 100 A2 ). The

advancing contact of water on the biotin and mannose-containing films were -56o and -58o,

respectively, while their receding angles were -35o and -36' , respectively.
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Figure 7-3. XPS spectra of acetate-terminated siloxane monolayers (a) before and (b) after
reduction. Dashed peaks represent fits to the data using 80% Gaussian/20% Lorentzian profiles.

7.2.4. Protein Adsorption Experiments

The adsorption properties of the films were examined by immersing them into various

protein solutions (pH = 7.4) at a concentration of 0.02 mg/mL at room temperature for 30

min,2 7 followed by rinsing with deionized water. The amount of adsorbed proteins was measured

by XPS using the intensity of the nitrogen ls photoelectron signal. Hydrophobic, methyl-

terminated monolayers formed from octadecyltrichlorosilane (OTS) were used as controls. Figure
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7-4 shows a collection of nitrogen is spectra for methyl-, biotin-, and mannose surfaces before

(top row) and after their exposure to a solution of insulin (second row), con-A (third row), or

streptavidin (bottom row). As noted previously in this chapter, streptavidin and con-A selectively

interact with biotin and mannose moieties, respectively. Insulin does not selectively interact with

either of these recognition groups. For the parent SAMs, the methyl-terminated monolayer

derived from OTS showed no N is signal, while the biotin- and mannose-terminated films

exhibited weak N is signals from the nitrogen atoms within these films. Upon exposure of the

OTS films to one of the protein solutions, the film exhibited an intense N is peak indicating their

non-specific adsorption onto the surface. For the biotin- and mannose-terminated films, the

adsorption of both con-A and streptavidin on these surfaces produced an increase in N is signal.

In contrast, almost no adsorption of insulin was observed on these surfaces probably due to the

presence of the protein-repellant oligo(ethylene glycol) moiety. The amount of adsorbed

streptavidin and con-A varied with respect to the chemistry of surfaces as shown in Figure 7-4.

On the biotin-containing films, the amount of adsorbed streptavidins was 40 % greater than on

mannose-surfaces. In contrast, the amount of adsorbed con-A protein on the mannose-surfaces

was 150% greater than on the biotin-surfaces. These observations show the influence of attached

groups on the adsorption behavior of streptavidin and con-A, while reducing the non-specific

adsorption of other proteins such as insulin by inclusion of oligo(ethylene glycol) groups. These

results also indicate that this developed system can be applied to other specific interaction pairs of

biological entities as far as we can anchor one of the pairs to the surface. However, in comparison

to the adsorption of insulin (MW = -20 kDa), the amount of adsorbed streptavidin (MW = -60

kDa) and con-A (MW = -26 kDa) onto the biotin and mannose-surfaces was significant. This

result may be attributed to the loosely packed monolayer films leading the surface density of

ethylene glycol to decrease, thereby diminishing their protein-repellent ability against these
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proteins. For example, the amount of adsorbed streptavidin on the reduced-acetate (hydroxyl)-

terminated EG monolayers was 47% of that on the films from OTS, supporting the preceding

argument. However, the use of longer oligo (ethylene glycol) tails can provide a method to

maintain the surface density of ethylene glycol as Jeon et al. suggested.2 8

Methyl-surface

Bare surface

After
Insulin

Exposure

After
Con-A

Exposure

After
Streptavidin
Exposure

Binding Energy (eV)

inding Energy (eV)

Biotin-surface

Binding Energy (eV)
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Figure 7-4. N is peaks of the XPS spectra of monolayers of octadecyltrichlorosilane (left column),
biotin-attached monolayers (center column), and mannose-attached monolayers (right column) after
exposure to various protein solutions. The first row shows spectra of biotin- and mannose-surfaces

prior to exposure to the proteins.
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7.3. Conclusions

This chapter demonstrated the development of alkylsiloxane films that could induce the

adsorption of specific proteins onto a surface by incorporating a recognition group on their chain

ends and also reduce the nonspecific nature of protein adsorption by including oligo(ethylene

glycol) groups within the SAMs. Biotin and mannose were covalently attached to the surface by a

series of surface reactions and the resulting films were exposed to various protein solutions. The

resulting two surfaces were resistant against the adsorption of a protein, insulin, that does not bind

to either of these recognition groups through specific interactions. In contrast, these surfaces

attracted streptavidin and con-A differently with respect to their surface chemistry. These

observations suggest that the developed protocol can be applied to modulate the adsorptive

properties of other biological entities by tailoring available specific interactions at surfaces.

However, additional efforts are required to reduce the non-specific adsorption of unwanted

proteins on modified surfaces.

7.4. Experimental

7.4.1. Materials

Reagents were obtained from Aldrich and used as received unless specified otherwise.

Octadecyltrichlorosilane was distilled under reduced pressure before use. 10-Undecylenic-1-

bromide and EZ-LinkTM Biotin-PEO-LC-Amine (2) were obtained from Pfaltz and Bauer

(Waterbury, CT) and PIERCE (Rockford, IL), respectively. Oc-C-mannose-amine (3) was a gift

from Insung Choi and Prof. George Whitesides at Harvard University. Silicon wafers were test

grade and obtained from Silicon Sense (Nashua, NH). The synthesis of the methyl-capped
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tri(ethylene glycol)-terminated undecyltrichlorosilane (CH30(CH2CH20)3(CH 2)11SiC1 3) was detailed

in Chapter 6. The acetate-capped tri(ethylene glycol)-terminated undecyltrichlorosilane was

synthesized by the procedure outlined in Figure 7-1. 1H NMR spectra were obtained on a Bruker

250 MHz spectrometer in CDC13 and referenced to residual CHC13 at 7.24 ppm.

Synthesis of Acetyl [(1-trichlorosilyl)undec-11-yl] tetra(ethylene glycol). The acetyl (undec-

10-en-1-yl) tetra(ethylene glycol) precursor [4, CH2=CH(CH29(OCH 2CH240COCH 3] was

prepared by reported procedures 2 4 ,2 9 and hydrosilated to add a trichlorosilyl group.3 0 The NMR

spectrum of the reaction mixture showed the quantitative conversion of the olefin to the

trichlorosilane. The excess HSiC13 was removed by vacuum distillation. Acetyl [(1-

trichlorosilyl)undec-11-yl] tetra(ethylene glycol): 'H NMR (250 MHz, CDC13, 8): 1.2 - 1.5 (m, 16

H), 1.55 (m, 4 H), 2.06 (s, 3 H), 3.43 (t, 2 H), 3.5-3.75 (m, 14 H), 4.20 (t, 2H)

7.4.2. Preparation of SiO 2 Substrates

Si(100) test wafers and glass slides were cut into strips of -1 x 3 cm 2 that were

subsequently cleaned by immersion in freshly prepared "piranha" solution of 70 % conc.

H2SO 4(aq)/30 % H20 2(aq) (v/v) for 0.5 to 1 h at 70 OC (CAUTION: "piranha" solution reacts

violently with many organic materials and should be handled with care). The substrates were

immediately rinsed with distilled water, dried in a stream of N2, and used within 1 h of cleaning.

This process produces a highly wettable, hydrated oxide surface on silicon with similar properties

to that for glass.3 1 The piranha-cleaned substrates were typically exposed to the air for no more

than 15 min before immersion in the silane solution.
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7.4.3. Formation of Siloxane Films on SiO 2

The piranha-cleaned silicon substrates were functionalized by immersion in a -5 mM

solution of the trichlorosilane in anhydrous toluene. The solutions were prepared and kept in a

dry nitrogen atmosphere (glove box). After 6 to 24 h, the substrates were removed from solution

and rinsed in 20 mL of CH 2Cl 2 . The substrates were removed from the glove box, rinsed

sequentially with acetone and ethanol to remove any residual organic contaminants, and dried in a

flowing stream of N 2.

7.4.4. Covalent Attachment of Recognition Groups to SAMs

The silanated substrates were sonicated in 0.1 mM LiAlH 4 in anhydrous diethyl ether for

10 min to convert the terminal acetate groups to hydroxyl groups. The substrates were then

washed sequentially in -4% HC1, chloroform, acetone, and deionized water and dried under a

stream of N 2. The substrates were then tresylated by immersion in a 1.25 mg/mL tresyl chloride

solution in anhydrous CH 2Cl 2 for 1 hr at room temperature, rinsed with anhydrous methanol, and

dried under a stream of N 2. The tresylated samples were then immediately transferred to a 1

mg/mL solution of EZ-LinkTM Biotin-PEO-LC-Amine or c-C-mannose-amine in phosphate

buffer saline (PBS) solution (10 mM phosphate buffer, 2.7 mM KC1, and 137 mM NaC1) that was

adjusted to pH 8.0 and immersed overnight.

7.4.5. Contact Angle Measurements

Contact angles were measured on a Rame-Hart goniometer (Rame-Hart Inc., Mountain

Lakes, NJ) equipped with a video-imaging system. Drops were placed on at least three locations

on the surface in the ambient environment and measured on both sides of the drops. Contacting

liquid drops were advanced and retreated with an Electrapipette (Matrix Technologies, Lowell,
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MA) at approximately 1 pL/s. Angles were measured to -±1 and were reproducible from sample

to sample within ±20.

7.4.6. Ellipsometric Film-Thickness Measurements

The thicknesses of the films were determined with a Gaertner L116A ellipsometer

(Gaertner Scientific Corporation, Chicago, IL). For each substrate, measurements were made

before and after derivatization with the trichlorosilanes, and after protein adsorption. The

thicknesses of the films were determined using a three-phase model and a refractive index of 1.45

and have an error of ±2A. The use of this value allows direct comparison with data obtained by

other groups and provides an accurate relative measure of the amounts of materials adsorbed on

the various coatings.

7.4.7. X-ray Photoelectron Spectroscopy (XPS)

The XPS spectra were obtained with a Surface Science Instrument Model X-100

spectrometer using a monochromatized Al Ka x-ray source (elliptical spot of 1.0 mm x 1. 7 mm)

and a concentric hemispherical analyzer. The detector angle with respect to the surface parallel

was 350. Peak positions were referenced to C(ls) = 284.6 eV, and peaks were fit with 80%

Gaussian/20% Lorentzian profiles and a Shirley background.
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