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Abstract

The detection of subsurface damage is important in ensuring the safety and timely repair
of structures. Existing methods for non-destructive evaluation of structural elements tend
to be either expensive or unreliable for monitoring large scale systems. The novel fiber
optic based technique developed in this research overcomes many of the limitations of tra-
ditional non-destructive evaluation methods by providing an interferometric sensing tech-
nique coupled with a simple mechanical test. The method is based on monitoring the
phase change in an integral interferometric fiber optic sensor caused by moving a mechan-
ical load over the damaged structure. The method has been shown to unambiguously
detect both the position and size of damage. The theoretical and experimental validation of
the proposed method is presented for the case of open cracks in which the faces are not
allowed to come into contact. The effect of damage position and damage size on sensor
performance for two typical structural elements is also presented. A closed loop fiber-
optic interferometer with modulated load is shown to overcome the traditional problems of
environmental drift such as material creep, temperature and ambient noise. This interfero-
metric technique is also shown to be one of the few fiber-optic based techniques that have
adequate sensitivity for integral damage detection.

Many traditional non-destructive evaluation methods tend to be insensitive in detecting
closed cracks. Thus the closed crack problem represents a special challenge for structural
damage monitoring. A fast iterative based boundary element method has been developed
to solve this problem. This method is used to show the theoretical feasibility of detecting
closed cracks with the developed novel sensing method.

Thesis Supervisor: Christopher Leung
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Chapter 1

INTRODUCTION

1.1 Motivation

The accurate prediction of the size and location of damage in critical structural compo-
nents is important in insuring their repair. The timely inspection and renovation of dam-
aged structures has also long been known to prevent structural failure and the associated
loss of life and property.

Though many non-destructive evaluation (NDE) techniques have been shown to work
in a laboratory setting (Hung-1986, Kaczmarek - 1995, Lahiri et al.-1992, Zhang et al. -
1992) there are currently no effective NDE methods that are suitable for robust and rapid
field test damage assessment. The failure of most techniques in the field is due largely to
either (a) human error in applying or misinterpretation of the results, (b) the uncontrolled
environment, (c) parts of the tested structure being inaccessible, and (d) the insensitivity of
the NDE method to the type of damage being assessed. Moreover, many of the existing
techniques are labor intensive, expensive and time consuming.

The detection of damage is especially critical in lightweight composites such as those
used in military and aerospace applications due to a myriad of reasons including, (a) for
performance considerations, strength safety factors in aerospace composites tend to be
less conservative, making these structures more prone to damage that may lead to final
failure, (b) extensive use of advanced composite materials is relatively recent and an expe-
rience database on the initiation and growth of damage still needs to be established, (c)
final failure of composite systems is typically caused by the interactions of many different
modes of damage - the evolution of damage that causes final failure is not well under-
stood.

NDE of other structures in civil engineering works such as bridges and dams has also
recently become a topical issue due to the expense and the unreliable nature of existing
inspection methods. Currently it is estimated that (a) 182,000 out of 576,000 bridges in the
US are deficient (Livingston, 1998), (b) 130 000 km out of 6.3 million km or roadway is
badly in need of repair (Livingston, 1998), and (c) 2100 out of 75 000 dams are considered
unsafe (ASCE key alert - 1997). The need for inexpensive and reliable assessment of the
integrity of these structures has become a key priority for the improved service life of cur-
rent and future structures.

This thesis deals specifically with the detection of subsurface damage, that is damage
that is not visible from the surface of the structure and thus needs special NDE techniques.
The detection of subsurface damage is especially critical in many structural applications,
including but not limited to (a) impact induced delamination damage in advanced compos-



ite structures, (2) reinforcement corrosion induced spalling in concrete structures, and (3)
fretting fatigue and spalling under riding surfaces. The fatigue growth of subsurface dam-
age can finally lead to failure of the structural component and thus has been the focus of
many NDE techniques as is discussed in Chapter 2

1.2 Outline of Thesis

The detection of subsurface damage using a novel fiber-optic based sensing technique
will be presented in this thesis. Chapter 2 presents a general overview of existing NDE
techniques, including non-fiber optic based and fiber optic based techniques. Chapter 3
discusses the background to the proposed method, including a detailed over-view of inte-
grated strain measurement using a fiber-optic interferometric technique. Chapter 4 con-
centrates on proving the theoretical feasibility of using this novel method for detecting
open damage zones (i.e. damage zones in which the faces of the crack are not allowed to
come into contact with each other). Chapter 5 presents a newly developed boundary ele-
ment method for the rapid solution of closed crack problems. Chapter 5 also discusses the
theoretical feasibility of using the novel fiber optic sensing method for assessment of
closed damage. Chapter 6 presents the detailed experimental layout of the optical and
mechanical systems, and compares the experimental results with the theoretical results for
two structures (a) a simply supported beam, and (b) a beam on elastic foundation. Chapter
7 compares the novel technique with traditional point sensing techniques and highlights
some of the advantages of the new method. Chapter 8 discusses some of the practical
issues related to subsurface fiber-optic damage detection. Chapter 9 highlights the key
findings and contributions of the thesis and provides some recommendations for future
research.
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Chapter 2

EXISTING SUBSURFACE DAMAGE
DETECTION METHODS

2.1 Introduction

This chapter discusses some of the existing Non-Destructive Evaluation (NDE) tech-
niques for subsurface damage detection. Although a myriad of NDE methods exist, and a
detailed discussion of all the techniques is beyond the scope of this thesis, a brief discus-
sion of the most commonly used NDE techniques will be presented in this section. This
chapter is divided into 3 sections. Section 2.2 deals with non-fiber optic based techniques.
Section 2.3 deals with fiber-optic based techniques. Section 2.4 deals with damage detec-
tion techniques based on modal analysis. The relative advantages and disadvantages of the
various techniques will also be discussed.

2.2 Non-Fiber Optic Based NDE Techniques

This section discusses some of the more popular non-fiber optic based NDE tech-
niques for subsurface damage detection, including (a) ultrasonic techniques, (b) radio-
graphic methods, (c) thermography and (d) holographic techniques. Although many other
NDE techniques exist such as eddy current techniques and magnetic flux leakage tech-
niques, these NDE methods tend to be specific to particular materials (such as electrically
conductive materials or ferromagnetic materials) and since they do not provide a generally
applicable method, they will not be discussed in this thesis.

2.2.1 Ultrasonic Techniques

Ultrasonic NDE methods are the most commonly used NDE methods for evaluating
subsurface damage (Bray and Stanley, 1997). The two most common ultrasonic methods
are the “through-transmission method” and the “impact-echo” method. In the through
transmission method, a transducer generates a pulsed ultrasonic wave on one side of the
tested structure. The time of flight to reach a receiver on the opposite side of the structure
is then recorded. Knowing the distance between the transducer and the receiver, the wave
speed can be calculated. The integrity of the structure can then be inferred from the wave
speed. In the impact-echo method, the ultrasonic transducer and receiver are placed on the
same side of the structure. The time of flight for a pulse to travel from the transmitter to
the damage and back to the receiver is measured. Knowing the wave speed through the
material allows one to calculate the depth of the damage.

The advantages of the ultrasonic method include (a) the ability to detect various dam-
age modes, (b) good spatial resolution, and (c) the availability of an existing knowledge
base. Some of the disadvantages include (a) the depth of penetration of the acoustic signal
which limits the measurement depth (Cawley and Alleyne, 1996), (b) labor intensive
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manipulation of the transducer and receiver (Bray and Stanley, 1997), and (c) the need for
an effective ultrasonic coupling method between the probes and the host structure (Bray
and Stanley, 1997).

2.2.2 Radiographic Methods

In the radiographic NDE method, the inspected structure is placed between an energy
source (x-ray, y-ray, neutrons or protons) and a recording plane. Once the energy from the
source has passed through the structure, the image generated on the recording plane is
then used to evaluate the integrity of the structure.

The advantages of radiographic methods include (a) visual recording of the damage
provides easy interpretation of the damage state, (b) a vast amount of data exists for these
methods of inspecting materials, and (c) specialized techniques such as computer tomog-
raphy can provide more accurate assessment of the state of damage in the structure. The
major disadvantages of radiographic techniques include (a) expense of the technique and
(b) safety concerns in using high level radiation, and (c) difficulty in locating planar
defects (Labhiri et al., 1992).

2.2.3 Thermographic Techniques

In the thermographic technique, the thermal changes due to a temperature load on the
surface of the material are monitored with an infra-red (IR) detector. After the thermal
load is applied, the IR detector can infer regions of damage in the structure due to the pres-
ence of hot or cold spots on the surface of the material. The advantages of thermographic
NDE include (a) its ability to inspect large areas of the structure, and (b) relatively cheap
equipment costs. Disadvantages of this technique include (a) insensitivity to defects far
from the surface, and (b) difficulty in interpreting the results because of the complex inter-
action of the thermal loads and the host structure. (See for example Zhang and Sandor,
1992 for an overview of thermographic NDE techniques)

2.2.4 Holographic Techniques

Holography is a wave recording and reconstruction technique based on the recording
of interference fringe patterns which result from a coherent superposition of the waves
scattered off the object’s surface. The most commonly used holographic NDE method
consists of a double exposure method. The first exposure is of the tested material in the
undeformed state and the second exposure is of the material in the deformed state. The
resulting hologram is then a displacement field map of the tested material. The extent and
position of the damage can then be inferred from the displacement perturbation around the
damaged zone. Though the two-exposure holographic technique is not suitable for field
NDE of structures because of its sensitivity to structural changes (such as vibration)
between exposures, methods to overcome this problem are currently being investigated
(Vest, 1986). The advantages of holographic techniques include (a) it is a non-contact
method, and (b) it is highly sensitive. The disadvantages of the techniques include (a) its
sensitivity to environmental vibration and (b) its depth penetration (i.e. defects far from
the surface are not easily detectable). (See Hung, 1986 for a general overview of holo-
graphic NDE methods.)
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2.3 Fiber Optic Based NDE Techniques

Fiber optic based damage detection techniques provide some clear advantages over
traditional NDE techniques. These advantages include their immunity to electromagnetic
interference, high sensitivity, continuous monitoring ability and low-cost. Another advan-
tage of fiber optic sensors is the relative ease in which they can be embedded into curing
materials such as concrete and advanced composites which makes them ideal for integrity
monitoring of many civil and aerospace structures. Fiber optic damage detection sensors
can be broadly divided into two categories (1) point sensors, and (b) integrated or distrib-
uted sensors. For a general overview of fiber-optic sensors, the interested reader is referred
to Udd, 1992).

2.3.1 Point Sensors

Point sensing damage detection methods are currently the most commonly used fiber-
optic based damage detection method. They rely on the detection of the local strain pertur-
bations caused by the damage. The two most commonly used fiber-optic point sensing
methods are (a) Bragg grating sensors, and (b) Fabry-Perot sensors.

The Bragg grating is a segment of the optical fiber with a half wavelength (A/2) of
light periodic variation in the refractive index of the core. When a wide frequency band
light source passes through the Bragg grating, the light is reflected back off each succes-
sive refractive index change. Due to the half wavelength of light spacing of the grating, the
successive reflections off each index change can constructively interfere which causes a
very narrowband light source (with wavelength A ;) known as the Bragg wavelength to be
reflected. When strain is applied to the Bragg grating the period of the spacing changes
which can be inferred from the change in reflected light’s wavelength. The advantages of
the Bragg grating sensor include (a) closely controlled automated fabrication, (b) sensitiv-
ity, and (c) multiplexing ability i.e. more than one Bragg grating sensor can be placed
along the same optical fiber. Disadvantages of the Bragg grating sensor include (a) limited
multiplexing (currently a maximum of 64 Bragg gratings can be placed on one fiber), (b)
the need for relatively expensive measurement equipment. (A more detailed discussion of
Bragg-grating sensors is given by Frieble, 1998)

The Fabry-Perot interferometer consists of two fibers separated by an air gap inside a
hollow tube. The two ends of the fiber forming the air-gap are reflectively coated to create
an optical cavity which can support an integral number of half light-wavelengths. Under
applied strain the air-gap undergoes a length change which causes a shift in the resonance
of the cavity. The state of the strain can then be inferred from the change in the length of
the air-gap. The advantage of the Fabry-Perot sensor include (a) high sensitivity, (b) sensi-
tivity only to axial strain, and (c) ability for multiplexing. The disadvantages are similar to
the Bragg grating sensor.

In general the major problem with all point-sensing damage detection methods is that
the strain perturbation caused be damage is localized around the vicinity of the crack.
Thus in order for point-sensing to be effective the sensor has to be placed in the strain per-
turbation region. Since typically the position of the damage is not known a priori a vast
network of point sensors is needed to detect the damage zone. At present the number of
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sensors required to effectively monitor large structures makes the point sensing method
impractical.

2.3.2 Distributed Fiber Optic Sensors

Distributed fiber optic sensing has the potential to overcome the need of knowing the
position of the damage a priori by allowing for strain sensing anywhere along the optical
fiber. In general distributed sensing relies on sending a high intensity light pulse down the
fiber and continuously monitoring a backscattering phenomena (for example Rayleigh
scattering or Brillouin scattering, see LeCoeche et al., 1998 for an overview of distributed
structural sensing). An applied strain perturbation in the fiber caused by the damage leads
to a localized refractive index change in the fiber due to the photo-elastic effect. Due to the
strain induced change in refractive index, a portion of the light is reflected which changes
the magnitude of the backscattered light. Measuring the time of flight of the laser pulse
allows for the determination of the damage position. The problems with distributed fiber
optic sensing systems include (a) their spatial resolution depends on the width of the
applied pulse and speed of the measuring equipment, (2) the perturbations to the backscat-
tered light tends to be small and thus the method is insensitive to the small strain perturba-
tions caused by damage (Udd, 1992) and (3) the methods tend to be highly experimental
and require potentially expensive equipment.

2.4 Modal Analysis NDE

Modal NDE relies on inferring the state of damage in a structure from the change in
either (a) the structural natural frequencies, (b) the mode shapes, (c) the damping or (d) a
combination of all three. Damage in part of a structure will in general reduce the local
stiffness of the host material and thereby change the natural frequency and modal shape of
the structure. The advantage of this method is that potentially only a few sensing points
are needed to accurately assess the state of damage in the whole structure. The problems
with this method include (a) the method is unreliable, since small changes in the structure
can cause relatively large changes in dynamic behavior, and (b) the method relies on the
solution of a complex inverse dynamic problem which makes real time assessment of
structures difficult.

2.5 A Note on Closed Crack NDE

Cracks in which the faces are in contact provide a special problem for NDE. All the
above mentioned techniques require significant modifications and extra sophistication in
order to reliably locate this type of damage. In the ultrasonic method, there is no unique
protocol for evaluating closed cracks, some option could include (a) selecting an ultra-
sonic frequency sensitive to closed cracks (Kundu et al. 1997), (b) position the transducer
and receiver at various angles to the damage (Saka and Abe, 1994), and (c) generating var-
ious acoustic propagation modes such as Love waves (Kundu et al. 1997). Radiographic
methods are very insensitive to planar closed defects and exposures at various angles are
needed in order to get any indications of closed damage. At present there is no thermo-
graphic methods for closed crack detection since heat conduction through the faces of the
closed crack are almost unperturbed, and thus do not significantly effect the thermal map
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on the structures surface. The strain sensing techniques (holographic and existing fiber-
optic sensors) tend to be insensitive to closed cracks since the stress perturbations due to
closed cracks are significantly smaller than for open damage.
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Chapter 3

INTERFEROMETRIC INTEGRATED
STRAIN SENSING

3.1 The Description of the Technique

A schematic of the proposed fiber-optic damage detection scheme is shown in Figure
3.1. Light from a laser is coupled into a single mode optical fiber and is then divided into 2
single mode fibers by a 2x2, 50-50 fiber coupler. The first fiber which is not strained is
called the reference fiber. The second fiber, which is attached (either embedded or surface
mounted) to the structural member is called the sensing fiber. The light waves from the
reference and sensing arms are allowed to recombine at the output fiber coupler and the
interference between the two arms of the sensor is monitored with a light detector. In this
section, ideal interference is assumed, that is (i) the polarization of the emerging beams
are assumed to be the same, and (ii) the interferometer arms are assumed to be within the
coherence length of the laser. Polarization and coherence length issues will be discussed in
Section 3.7.

The intensity of the interference pattern between the two light waves is given by the
superposition of the individual waves. The presence of integrated strain in the sensing
fiber causes the sensing fiber to increase its optical length by AL. The optical length being
equal to nL, where n is the refractive index of the material through which the light is trav-
elling and L, is the geometric length of the fiber. The change in optical path length causes
a phase shift (A) given by

Ab = 27‘7:“ G3.1)

where A is the wavelength of the laser light.

The sensing scheme consists of moving a prescribed load along the length of the mem-
ber. The position and location of the damage can be determined by comparing the phase
shift (A¢) versus load position between the damaged and undamaged (virgin) states.
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Figure 3.1: Schematic Mach-Zender interferometer attached to a damaged structural component and sub-
Jjected to a moving point load
3.2 Interferometric Measurement

The intensity of the light at the photo-detector is given by the interference of the beams
in the reference and sensing arm of the interferometer. This intensity is given by

where I, is the intensity of the light in the reference arm and I is the intensity of the light
in the sensing arm of the interferometer. Figure 3.2 shows the change of intensity (/) mea-
sured at the detector versus the phase change A¢ (assuming I;=1,).

/

3n Ad

Figure 3.2: Plot of detector output versus Ad

3.3 Measurement of Large Phase Changes

For large changes in A9, the optical path change between the two arms of the interfer-
ometer can be calculated by counting the number of fringes (K in Figure 3.2) seen by the
detector. Fringe counting is typically done by counting the number of zero crossings seen
by the detector. It must be noted that the fringe counting method can only be effectively
used to find displacements within a half fringe resolution and thus this method is typically
only used for measuring the phase change for a relatively large number of fringes. The
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number of fringes counted is dependent on the dynamic range of the fringe counting cir-
cuit. Figure 3.2 also shows that in this interferometric technique the same measured inter-
ferometric output (Z,,) is given for both a positive and negative applied phase change
(Ad4). Special modifications to this interferometric technique are needed in order the
determine the direction of the phase change.

3.4 Measurement of Small Phase Changes

As will be shown in this thesis, the integrated strain sensing of damage requires the
measurement of phase changes within a fraction of a fringe. This section describes some
interferometric techniques which are able to measure small phase changes. Other sensitive
interferometric techniques which are not discussed here can also be used to make mea-
surements within a fraction of a fringe (see for example Jackson, 1985). Figure 3.2 shows
that the sensitivity of phase change measurements is dependent on the slope of the phase-
change versus intensity plot. In order to obtain the maximum sensitivity, a 7t/2 bias, corre-
sponding to the maximum slope needs to be applied to the interferometer as shown in Fig-
ure 3.3 (a) (assuming that A¢=0 corresponds to a constructive interference peak). Another
advantage of the biasing technique is that for measurements less than a quarter fringe, the
direction of the phase change can also be measured. The disadvantage of this method is
that measurement errors can occur depending on the stability of the bias and on the inten-
sity fluctuations of the laser (unless an independent measurement of the laser intensity is
made). A way of overcoming the intensity fluctuations problem is to symmetrically strad-
dle the fringe (at +n/2) using two detectors as shown in Figure 3.3 (b). The signals of the
two detectors are subtracted from each other and is equal to the phase change in the inter-
ferometer. Another advantage of the fringe straddling scheme shown in Figure 3.3 (b) is
that the sensitivity of the sensing scheme is double that of the single sided biasing scheme
shown in Figure 3.3 (a). It must be noted that, in the straddling scheme, intensity fluctua-
tions do not affect the sensor output only if the two detectors are kept at symmetrical posi-
tions about a fringe, and thus the physical positions of the two detectors relative to the
fringe must be carefully controlled.

I (a) I (b)
Biasing Point Biasing Point
Biasing Point A

— A — A

: Aq)A ) 1 ¢A

] ) 1
\ 5 < \ ! : /
- 2 T Ad T -T/2 2 T Ad

Figure 3.3: Methods of interferometer biasing

A way of overcoming the laser fluctuation disadvantage for biased interferometric
schemes is by applying an A.C. phase modulation with amplitude A¢,, = +n/2 and fre-
quency ®,, around A¢=0 to either the sensing or reference arm as shown in Figure 3.4.
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Figure 3.4: A C. interferometric modulation and no applied phase change (A$=0)

Figure 3.4 shows that for a modulation frequency of ®,, and with no applied phase
change, (A9=0), the frequency of the light intensity measured by the detector is doubled
i.e. 2w, Figure 3.5 shows the modulated interferometer output with an applied phase

\WMMU
v oou v
| /

4 Ad

—

I

N

Figure 3.5: A.C. interferometric modulation with constant applied phase change

I

Ad —

Ad,,

AP

The intensity incident on the detector then becomes amplitude modulated. The intensity at
the photodetector is given by:
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where C is the amplitude of the applied modulation, A¢ is the applied phase change due to
integrated strain. Expanding Equation 3.3 in terms of Bessel functions produces
(Arfken, 1985),

I =, +1,)+2,J[1,|| Jo(C)cosAp+2 Y J, (C)cosAd cos2nmwt [— ... (3.4)
11y 12| {40 2n

n=1

[2 Y J20-1(C)sinAg sin(2n - 1)th

n=1
The component of the detected intensity at the modulation frequency is
1, = 22 JT,1,)J,(C)sinA¢ sinot (3.5)

Demodulating (which consists of multiplying Equation 3.5 by sinw,, (after phase correc-
tion of the reference modulation) and considering only the DC component) gives

1, = 22, /TI,1,)J,(C)sinA® (3.6)

Equation 3.6 shows that the demodulated intensity is zero for A¢=0, positive for Ap <
0 and negative for A¢ > 0. The sensor output is shown in Figure 3.6.

Output Example of
points on sensor
with equal outputs

L\

/2

\/-mz

Figure 3.6: Output for A.C. modulated interferometer

Figure 3.6 shows that the sensor output is non-linear and that for measurements greater
than A¢p=m/2, the direction of phase change measured by the sensor cannot be determined
since positive and negative phase changes produce the same detector output. The main
advantages of the modulation method are that since the A¢=0 point is used, there is no
need for external offset (provided that pure A.C. modulation is used) and that if a suffi-
ciently high modulation frequency is used, the sensitivity of the interferometer can be
reduced to the fundamental shot-noise limit (provided that A¢ is kept at zero)

. Figure 3.7 shows a schematic plot of a typical noise spectrum of a laser. The noise
spectrum plot shows the so called ‘1/f’ noise component at low frequencies and the shot
noise limited region at high frequencies which is associated with the random fluctuations
of photons. The range of frequencies at which the laser-noise is dominated by shot-noise
depends on the source but is typically greater than a few kilohertz. The applied modulation
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frequency is thus chosen so that the measurement is dominated by photon shot-noise. See
for example Ezekiel, 1992 for a more detailed explanation of the shot noise phenomena.

Intensity
Noise

I Photon Shot Noise

f

Figure 3.7: Typical laser intensity noise spectrum

3.5 Open Loop and Closed Loop Operation

An open loop modulated interferometric sensor is shown in Figure 3.8. An A.C. bias
driven at m,, is applied to the reference arm of the interferometer. The detector output is
then demodulated at ®,,. After demodulation and low pass filtering, the sensor output ver-
sus displacement is sinusoidal as shown in Figure 3.6.

Laser |7_J

gl? Fiber Coupler

Moving Load

It

Sensing
2x2Coupler |77 TTTTTTTo et - Fiber
Exit Coupler
Reference Fiber E_]
Phase Transducer l{‘
@ Modulator
Output
- - X N
Multiplier

Low Pass Filter

Light Detector

Figure 3.8: Schematic of open loop operation
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The main disadvantages of the open loop system are that (a) the sensor demodulator
output is dependent on the gains of the various amplifiers and thus needs to be calibrated,
and (2) the demodulator output is non-linear with A¢. In the closed loop system, the output
of the demodulator is fed into the servo amplifier which drives a phase transducer as
shown in Figure 3.9. The servo keeps the demodulator output at zero for any applied phase
change in the interferometer by applying exactly the negative phase change to the phase
transducer. The advantages of the closed loop sensor are that (a) provided a very high open
loop gain is maintained, the output of the sensor is independent of the gains of the individ-
ual components, and (b) the output linearity and stability is only dependent on the linearity
and stability of the phase transducer.

Laser |:|

L)
L Fiber Coupler Moving Load
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[ T K Sensing
2x2 Coupler Damaged Zone Fiber

Reference Fiber Exit Coupler
Output - - Phase Transducer L|—

T @ Modulator
AN : "

Multiplier Light Detector

Low Pass Filter

Figure 3.9: Schematic of closed loop operation

3.6 Photon-Shot Noise Resolution Limit

In order to explain the shot noise resolution limit, consider an interferometer with a
D.C. bias as shown in Figure 3.3 (a). For maximum sensitivity, the bias point is chosen to
be at the point of maximum fringe slope i.e at /2. Any intensity fluctuations of the laser
can appear to be changes in phase and cannot be distinguished from the phase change due
to integral strain. Although there are ways to overcome this noise by the A.C. modulation
method discussed in the previous section, it is not possible to overcome the effect of pho-
ton shot noise because it is a random process (Yariv, 1976). Thus, the fundamental uncer-
tainty of interferometric sensing is limited by photon shot noise 3(A¢). This uncertaintity
is given by:

photon shot noise
maximum fringe slope

5(A9) = 3.7
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which is a minimum when the fringe slope is a maximum. The average light power at the
detector can be related to the number of photons by Planck’s law

P = nhf (3.8)

where n,, is the number of photons falling on the detector per second, h = 6.6266x10734 1.5
is Planck’s constant and f is the frequency of light. The average number of photoelectrons
coming from the detector (N) is then given by

N =nngs (39

where 1, is the quantum efficiency of the detector and 7 is the averaging time (which is the

time over which averaging occurs and is related to the bandwidth as 1/2t). Assuming a
Poisson arrival of photons at the detector, the standard deviation of the number of
photoelectrons incident at the detector is

o = JN (3.10)

The root mean square of the phase noise which is assumed to be equal to the phase change
uncertainty, is then given by (Ezekiel and Arditty, 1982)

=lla

8(A9) = = L

1 _
Fringe Slope 1 Jﬁ /"pﬂ I
I

(3.11)

Equation 3.11 shows that the critical factor in determining the shot-noise limit of the
sensor are (1) the averaging time (T) and (2) the laser power. Since the shot noise is
assumed to be random with zero mean intensity, the longer one is able to average this
intensity noise, the smaller will be the uncertaintity in the measurement. For demonstra-
tion, the maximum sensitivity can be computed for an interferometer with A = 632 nm, ny,
= 3x101° photons/sec corresponding to 1mW of power on the detector, g = 0.3, T = 1/20
second (corresponding to 40 Hz bandwidth). These values give 8(A¢)=5x10"" rad which
is the shot noise resolution limit of the interferometer. This number is approximately the
same as calculated by Jackson (1985) who gives 5(A¢)=1x10"° rad for a 600 nm light
source.

3.7 Opto-Mechanical Considerations

The phase shift caused by the optical path length change along the sensing fiber is
related to the axial strain in the sensing fiber. Consider a differential length of an interfero-
metric sensor ds undergoing a state of triaxial strain (€, €,, and &,,) as shown in Figure
3.2
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Figure 3.10: A differential fiber segment subjected to a state of triaxial strain

The optical path length change (AL) in the fiber is then given by

AL = n(1+¢,) (3.12)

where 7 is the refractive index change of the deformed fiber and €, is the axial strain in
the fiber.The state of stress in the fiber introduces birefringence in the glass which changes
the refractive index (n) in the fiber. The refractive index change (An) due to the optical-
mechanical coupling is given by the average refractive index change in the y and z plane
(Sirkis and Haslach, 1990)

1\ 1, (1), 1, (1) _ (Pyy + Pyy)
A(n—z)_ EA(’E) ¥ EA(n_i) = Pt — 2, re,,) (3.13)
where A(1/n?)=(1/n?)«( 1/no2 ), P, and P, are Pockels’ optical strain constants of the
fiber , and €y » €, are the transverse normal strains in the fiber. Hence equation 3.3
yields,

n
n = 2 (3.14)

P,,+P
J; + ”zz»l:Plzexx + %“ﬂy t&, )]

For small strains, equation 3.4 can be written in its first order Taylor series approximation
as:

1 A}
n= no(l - ZnZ[ZP,Z&:,ch + (P + Ppp)(e,, +€,)] (3.15)

Substituting equation 3.5 into 3.1 and 3.2 and neglecting all second order strain terms
gives:

21‘”0 12
do = ds[l + By = gL 2Py + (P + Pry) (8, + ezz)]] (3.16)

A
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The phase change (dA¢) between the reference and the unstrained sensing arm is:

27n, 1

dag = = ds[exx— an[ZPnsxx +(Py +P)(E,, + su)]] (3.17)

Integration of equation 3.17 with respect to ds then yields

21tn0L 12
ap = 52 (exx = 3Mol2P e + (P + Pry)(e,, + ezz)])ds (3.18)
0

which is the relationship derived by Sirkis and Haslach (1991). Sirkis and Haslach (1990)
also showed that for a surface mounted fiber that does not significantly stiffen the host
structure, the shear and transverse stresses are negligible and the fiber undergoes only
axial stress. It can be shown from simple elasticity theory that since the fiber is only
undergoing axial stress, the transverse strains (€, and €,,) are equal to -Ve,, (v being the
Poisson’s ratio of the fiber). Under these assumptions, and assuming that the sensing and
reference arms of the Mach-Zender interferometer are of equal length, equation 3.18 can
then be reduced to:

27n

a0 =2 0[1 _’-l;—z{Pn—l)f(P“ +P12)}]U:£nds) (3.19)

which is the same as given by Sirkis and Haslach (1990). Equation 3.19 can be rewritten
as

AG = 21;"”[1-c0](j: sxxds) (3.20)

Since the terms in front of the integral sign are constants for any optical fiber and
wavelength, the phase change, A¢ is proportional to the integral of the axial strain ( j €4r )-

3.8 Some Practical Issues Concerning Ideal Sensor Performance

This section details some of the issues that are of practical importance when dealing
with integral strain sensing interferometric performance. These issues include the charac-
teristics of the (a) laser light source, (b) the optical fiber, (c) the servo, and (d) the phase
transducer.

3.8.1 The Laser Light Source

The major issues of the light source are (a) the coherence length and (b) the intensity
of the light.

The coherence length of the light depends on the frequency spread of the light source
and affects the maximum allowable optical path length difference between the sensing and
reference arm of the sensor. In general the maximum coherence length (L) is given by (see
for example Fowles, 1975 for further explanation of this coherence length equation)
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4
3
where c is the speed of light and Af is the spectral width of the light source. For example in
a typical He-Ne laser, regardless of the number of laser longitudinal modes, the largest
spectral width of the source cannot be greater than the spectral width of the laser amplifier.
For a He-Ne laser the spectral width of the amplifier is about 1.5 GHz which gives a
coherence length of L~20 cm. Under certain circumstances it might not be possible to
achieve the required precision to keep the reference and sensing arms within the coherence
length of the laser. Readily available single frequency lasers may then be used to decrease
the spectral width of the laser. Coherence lengths of 300 km have been achieved for single
frequency He-Ne laser (Cook, 1971).

L~ (3.21)

Adequate laser power is needed in order to achieve small photon shot noise as shown
in Section 3.6.

3.8.2 Fiber Type

The most important considerations in selecting an optical fiber for interferometric
measurements are (a) single mode operation, (b) birefringence, and (c) loss.

Single mode fibers are nearly always used for interferometric sensing due to the ease
in which the modes can be aligned for interference. Interferometric fiber sensors are usu-
ally made from conventional low-birefringence optical fibers. A problem with these fibers
is that owing to the random fluctuations of the state of stress in the two arms of the inter-
ferometer, the polarization of the interfering beams change. For example, if the two inter-
fering beams have orthogonal polarization states, the fringe intensity goes to zero. This
effect is known as polarization-induced signal fading. The use of strongly birefringent
fiber (also known as polarization-preserving fiber) is one way of overcoming this problem.
The disadvantage of using strongly birefringent fiber is that it is more expensive than con-
ventional fiber. (Udd, 1992)

For long fiber lengths, light intensity attenuation down the fiber becomes critical. In
order to preserve adequate light intensity, the laser wavelength has to be chosen for low
fiber attenuation.

3.8.3 The Servo

The role of the servo in the closed-loop detection scheme is to control the phase
change in the reference arm to be exactly equal to the phase change in the sensing arm,
and thus keeping the interferometer output at null. In order to keep the output close to null
the open loop gain must be kept high enough (see for example Kuo, 1991). The phase
error (€) between the reference and sensing arms is given by

dP
£ ==

G (3.22)

where dP is the phase difference between the reference and sensing arms and G is the
open loop gain. Equation 3.22 shows that the higher the open loop gain is, the closed the
output is to null. In order to reduce the phase error (g), the phase difference (dP) needs to
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be kept small and can be periodically set to zero.

3.8.4 The Phase Transducer

The role of the phase transducer is both in applying the A.C. modulation to the refer-
ence arm of the interferometer and to compensate for the relative change between the
sensing and reference arm, thus keeping the interferometer output at null. For example a
phase transducer can be constructed by wrapping the optical fiber from the reference arm
around a piezoelectric tube. The voltage applied across the tube causes a change in the
tube’s circumference and thus the fiber length. One requirement for selecting the phase
transducer is that it can apply sufficient modulation to the interferometer at the modulation
frequency. Another requirement for the phase transducer is the ability to apply enough
phase change to the reference fiber in order to compensate for the phase change in the
sensing arm. One of the problems encountered in practice with the phase transducer is that
for large changes in phase, the circuit components in the servo can become saturated limit-
ing the ability of the phase transducer to compensate for the changes in the sensing arm of
the interferometer. In order to overcome this problem, the servo output has to be zeroed on
reaching saturation with a reset circuit.

3.9 Possible Areas of Application

The previous chapter has introduced and discussed the relative advantages and disad-
vantages of several existing NDE techniques for subsurface damage detection. In general
the position and extent of the damage can occur at any location in the structure and is not
known a priori. Hence large number of point sensing positions such as Bragg-grating sen-
sors are needed to effectively monitor the whole structure. This chapter introduces a novel
integrated strain sensing technique for subsurface damage detection. The method relies on
measuring changes in integrated strain caused by moving a mechanical load over the dam-
aged structural element. This technique is applicable for damage detection in any structure
in which the mechanical load can be applied to at least one surface of the structure. The
fiber-optic based technique described here has the advantage over traditional point sensing
method since the damage state at any point along the fiber can be determined. The tech-
nique is particularly useful for the detection of cracks in large structures (such as civil
engineering bridges, pavements and runways) for which a distributed point-sensing array
is not practical due to the large number of point sensors needed to spatially cover the
whole structure.
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Chapter 4

THE THEORETICAL FEASIBILITY
OF OPEN CRACK DETECTION

4.1 Introduction

Open cracks often occur in structural members which are either subjected to predomi-
nantly tensile loads or with manufacturing defects such as voids. In this chapter open
cracks refer to crack in which the faces are sufficiently far apart so as to prevent mechani-
cal contact between them. This chapter studies the theoretical feasibility of using the novel
fiber optic integrated sensing technique for detecting the position and extent of open sub-
surface damage in some typical structural members.

4.2 Theoretical Mechanical Considerations for Open Crack Detection

The method proposed in this chapter relies on analyzing the differential signal change
between damaged and undamaged structures when a load is moved across one of the sur-
faces of the structure. Two structures (1) a beam on an elastic foundation, and (2) a simply
supported beam, are analyzed in this chapter in order to assess the applicability of this
method. For open damage detection, the fiber-optic sensor is assumed to be surface
mounted. The surface strains for an undamaged member can be derived analytically using
simple elasticity theory. In general, no closed-form solution is available for the damaged
structures analyzed in this thesis. Hence, numerical methods need to be used to solve for
the strains at the sensor location. In order to compare the numerical results presented in
this chapter with existing theoretical solutions and in order to simplify the analysis, the
model is assumed to obey plane strain conditions and can thus be analyzed in two dimen-
sions.

4.3 Sensor Performance for Undamaged Members

This section derives the theoretical phase change for the elastically supported and sim-
ply supported beams. The analyzed structures are assumed to be 1-dimensional, isotropic
and elastic Bernoulli-Euler beams. The position of the sensor is assumed to be at the
beam’s top surface. Section 3.7 has shown that for surface mounted interferometric sen-
sors, the phase change in the interferometer is directly proportional to the integral axial
strain |e,ds. The constant of proportionality before the strain integral sign in equation
3.20 dépends not only on the optical and mechanical properties of the fiber as is discussed
in Section 3.7 but also on (a) the various gains in the closed loop interferometer which in
the closed loop case is dependent on the phase-transducer to servo voltage relationship,
and (b) the effectiveness of the strain transfer from the host structure to the fiber which is
itself dependent on the attachment material and the relative stiffness of the host fiber and
structural member. The constant of proportionality in equation 3.20 is therefore a calibra-
tion factor and is thus assumed to be a normalization factor in this theoretical section.
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4.3.1 Beam on an Elastic Foundation

An undamaged elastically supported beam is depicted in Figure 4.1. The sensing arm
of the interferometer is assumed to be bonded to the top surface of the beam (y = h). The
beam is assumed to be long such that BL>5 (Timoshenko, 1976) where

B (%EI)IM @

and k is the foundation modulus, which can be estimated by (Vlasov and Leontev, 1960)

-
[
A

E is the elastic modulus of the beam, Ef is the elastic modulus of the foundation, H is the
assumed depth of the foundation, and 7 is the second moment of inertia of the beam.

Figure 4.1: Schematic representation of a beam on an elastic foundation. The sensor is assumed to be
attached to the beam’s top surface.

The vertical deflection of the beam (v) at any point can be found in standard texts (Ugural
and Fenster, 1987) to be:

e ;—E{f 1(Bx) +2£4(Be,) falB(x + c,)] + f3(Be,) f3[B(x + )1} 42)
where P is the applied load, and
f1 = €P(cosPx + sinPx)
f2 = €(sinpx) 3

fi= e_w’( cosPx — sinfx)

fa = €(cospx)

The axial strain on the top surface is given by

30



2 3
o = %ﬁ = y{fs(ﬁx) +2f4(Be ) f2lB(x +¢,)1+ f3(Be,) f1[B(x +c,)1} 4.4)

X

€

For negative x, the above equation is modified by replacing x with Ixl in the f,(Bx) term.
The strain integral (Ien) is then calculated to be:

L-¢

PR’k
J-Exx dx =ﬁT{f2[ﬁ(L = )1 +fa(Be )L f1(BL)- 11+£3(Be,) [ f4(BL)- 11+f5(Bc,) } (4.5)
4.3.2 Simply Supported Beam

An undamaged simply supported beam is shown in Figure 4.2. The fiber-optic sensor
is once again assumed to be bonded on the top surface. The beam is assumed slender
enough to allow use of the Bernoulli-Euler beam assumptions (typically L > 10h).

Figure 4.2: A simply supported beam subjected to a moving load

Elementary structural analysis gives the axial strain at the beam’s top surface as:

P(L- h
€, = (L—lg.fﬁ“ forx<c,
_ P(L-c,)xh P(x-cp)
€, = 7 AT for x > p (4.6)
The strain integral is given by
b Phe(L-c,)
c -C
- P P
j £, dx e @7

-C

4.4 Open Crack Modeling Using the Finite Element Method

Since in general there are no closed-formed solutions for strains in arbitrarily damaged
structures, a numerical solution method is needed. Though a myriad of solution techniques
exist for solving these classical elasticity problems, the finite element method (FEM) is

31



chosen in this chapter. Some of the advantages of the FEM for solving open damage prob-
lems include the speed and robustness of the method. FEM commercial software is also
readily available, which greatly simplifies pre- and post-processing tasks such as model
input and data extraction.

4.4.1 Model Assumptions

The model geometry of the beam on elastic foundation is shown in Figure 4.3, where e
is the axial position of the damage and f is the transverse position of the damage from the
neutral axis. The elastic foundation is modeled by including a soft layer under the beam.
The depth of the foundation layer (H) shown in Figure 4.3 1s assumed to be 10 times the
beam height. In order to maintain open-damage conditions, the damage zone is assumed to
be rectangular.

/////7///////// =

Figure 4.3: Physical model of the beam on elastic foundation
4.4.2 Model Inputs

The model parameters are assumed to be: beam length (L) 0.5 m and beam height (2h)
0.05 m. The damage is located at mid-height and mid-depth (e=0.5L, f=0). The damage
length in the model varies from 2a=h to 2a=3h, the height of the damaged zone is 1/5 of
the total beam height. The material parameters are chosen so that the beam stiffness EI =
30000Nm? and the foundation stiffness B=20/m in equation 4.1. Substituting these values
into equation 4.2 gives the foundation modulus (Ey) as 1.9 GPa.

4.4.3 Boundary Conditions

In the FEM, only the essential (geometric) boundary conditions need to be prescribed.
The simply supported beam boundary conditions are modeled by assuming zero vertical
and horizontal deflections at the left-bottom node and zero vertical and unconstrained hor-
izontal deflections at the right-bottom node. For the beam on elastic foundation model, the
bottom of the elastic layer is assumed to have no vertical and no horizontal deflections.

4.4.4 Mesh Characteristics

A sample mesh used for the damaged simply supported beam model is shown in Fig-
ure 4.4. The mesh consists of 206 quadratic, isoparametric plane strain elements. The
damage zone is introduced by removing elements at the center of beam. The mesh is rect-
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angular and is not intended to accurately capture the stress intensity factors near the dam-
age edges. The ratio of the length to height of each element is kept at 3:2 which is well less
than the recommended maximum 8:1 ratio (Desai, 1979). The mesh convergence is
assumed adequate since doubling the number of model elements does not change the inte-
gral strain at any load position by more than 2%.

- =

,.__._..._

A [

Figure 4.4: A sample FEM mesh used to analyze a damage simply supported beam.

A sample mesh for the damaged elastically supported beam is shown in Figure 4.5.
The mesh consists of 665 quadratic isoporametric elements. The element mesh size in the
elastic foundation layer increases with distance from the beam. The element mesh within
the beam is kept exactly the same as for the simply supported case. The maximum element
length to height ratio is kept at 8:1.

'

Fixed Ba
W —_

Figure 4.5: A sample FEM mesh used to analyze a damaged beam on elastic foundation

4.4.5 Verification of the Finite Element Model

In order to verify the FEM model, the numerical solution for the surface axial strain
integral of the FEM model are compared with the theoretical solution for the virgin beams
given in Section 4.3. Figure 4.6 shows a comparison of the numerical results with the the-
oretical strain integral for an elastically supported beam as given by equation 4.5. Figure
4.7 shows the numerical results with the theoretical strain integral for a simply supported
beam as given by equation 4.7. Both Figures 4.6 and 4.7 show the excellent agreement
between the FEM solution and the theoretical results.
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Figure 4.6: Comparison of the normalized strain integral for an undamaged beam on elas-
tic foundation obtained from the analytical and FE solution

34



Normalized Strain Integral
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Figure 4.7: Comparison of the normalized strain integral for an undamaged simply sup-
ported beam obtained from the analytical and FE solution

4.5 Results for Open Damage

The feasibility of the damage sensing scheme is analyzed by comparing the effect for var-
ious damage lengths and locations for the two structural members. For each load position,
the effect of the damaged zone, (AX) is calculated from the difference between the dam-
aged (gp) and undamaged (g;) states.

AY = j (ep—€y) dx (4.8)

The position of the damaged zone can be varied by changing its axial position along the
beam (e) or its height (f) as shown in Figure 4.5.

A typical signal derived from the analysis of a damaged beam is shown in Figure 4.8a.
This result is for a centrally located damage state (e = L/2, f = 0) with a crack length (2a)
equal to 2a/L = 1/10. The phase change is proportional to AX which is itself a function of
applied load. To obtain the actual phase change requires knowledge of both the propor-
tionality constant and the applied load during testing. This, however, is not our major con-
cern because the objective of the study is to see how AX (and hence the phase change) is
affected by delamination size and location. In all the following figures, AX is given in arbi-
trary units.
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The differential of A, is defined as the differential of the strain integral, and is given by:
Az = L(as) 4.9)
dc '

Figure 4.8b shows AX’ for the same case as shown in Figure 4.8a.

0.35 0.4 0.45 0.5 0.55 0.6
Load Position cp/L

Figure 4.8: (a) A typical strain integral difference and (b) strain differential (AX’) signal showing the
amplitude (A) of the peak strain integral difference and the side band width (W).

It should be noted that extent of damage can be represented by two parameters (see Figure
4.8); (1) the side band length (W) which is defined as the width between the maximum
and minimum values of AY’ and (2) the peak amplitude of the signal (A) which is
defined by:

A =AY

‘maximum

Az:minimum (4 10)

where AX o vimum and AX oo m are the maximum and minimum values of the strain
integral difference (AX), when the load position (c) is within the sideband W.
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4.5.1 Results for an elastically supported beam

The effect of various centrally located (e = L/2, f = 0) damage zones are shown in Figure
49.

1.2} ' ]
- e 24/l =3/20
1t 2a/L =110 i
- - 23/L=1/20
0.8t ./'/ '\'
0.61
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04r¢f
0.2
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-0.2¢ . . . . .
0.35 04 0.45 0.5 0.55 0.6

Load Position cp/L

Figure 4.9: Effect of various centrally located cracks on the strain integral difference. The three crack
lengths correspond to values of 2a/L= 1/20, 2a/L= 1/10 and 2a/L= 3/20.

Two important features define the signal produced by the strain integral difference
shown in Figure 4.9. These features are, (1) the axial location (e) of the damaged zone
corresponds to the peak strain integral difference, and (2) the effect of increasing damage
length (2a) is to increase both the peak value of the strain integral difference and the
width of the side bands.

The effect of various crack heights (f) for an axially centered damage zone of fixed
length is shown in Figure 4.10. The height of the damaged zone is changed by remeshing
of the beam. The convergence of the mesh are rechecked by the same 2% strain integral
criterion as previously explained.
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Figure 4.10: Effect of various crack depths (f) for damage located at ¢/L = 0.5. Crack length is 2a/L=1/10.
The crack heights correspond to values of f7h = 1/8 (with 0.16 added to AZ), f/h = 0 and f/h = -1/8 (with 0.25
subtracted from AX).

The effect of various crack depths can be clearly seen in Figure 4.10. For clarity, Fig-
ure 4.10 is plotted so as to keep the minimum strain integral difference (AX inimum )
within each side band the same (the constant values added to each strain integral is shown
in Figure 4.10). Figure 4.10 shows that as the damage approaches the top surface (to
which the fiber is attached), the peak amplitude (A) increases while side band width (W)
remains the same.

4.5.2 Results for a simply supported beam

Figure 4.11 shows the effect of various centrally located (e = L/2, f = 0) crack lengths
for a simply supported beam. As in the elastically supported case, the position of the peak
amplitude (A) corresponds to the center of the damage zone. The side band width (W)
and peak amplitude value (A) correspond to the length of the damage zone.
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Figure 4.11: The effect of crack length for various simply supported beams with centrally located cracks
(e=L2,f=0).

The effect of various crack depths for a simply supported beam is shown in Figure
4.12. For clarity, Figure 4.12 is plotted so as to keep AX inimum Within each side band the
same. It should be noted that if we extend the plot to the supports, all strain integrals in
Figure 4.12 will go to zero at ¢,/L=0 and c¢,/L=1.
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Figure 4.12: The effect of crack depth (f) for a simply supported beam with damage located at ¢/L = 0.5.
Crack length is 2a/L=1/10. The crack heights correspond to values of f/h = 1/8 (with 16.3 added to AX), f/h
= 0 and f/h = -1/8 (with 2.1 subtracted from AZX).

In order to explain the signal trends in Figure 4.12, the axial strain fields are plotted for
various load and damage cases in Figures 4.13 and 4.14. For both Figures 4.13 and 4.14
the crack length is 2a/L=1/10 and the axial range of the plot is between 0.4L and 0.6L.
Figures 4.13a to 4.13d, show the axial strain band plots for the case of a quarter-span
loaded (¢ = L/4) beam with no delamination and with the delamination at f/h=0, f/h=1/8
and f/h=-1/8. Figure 4.13a show the axial strain band plot for the undamaged beam. As
expected from simple beam theory, the axial strain linearly decreases from left to right
across the beam as the bending moment decreases. Comparing the undamaged case (Fig-
ure 4.13a) and the centrally damaged case (Figure 4.13b) shows that the largest perturba-
tion to the strain field occurs close to the delamination. The axial strain perturbation due
to the delamination decreases as one moves away from the damage zone. Figure 4.13b
shows that the axial strain remains symmetric about the center (y=0) of the beam. Com-
paring the undamaged case (Figure 4.13a) and the damaged case in Figure 4.13c (f/h=1/
8), shows that the axial strains are no longer symmetric through the depth of the beam. In
Figure 4.13c, relatively large axial strain perturbations occur at the top surface of the beam
as compared with Figures 4.13b and 4.13d. This corresponds to the relatively large values
of AX outside the bandwidth (W) as shown in Figure 4.12.
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Figures 4.14a to 4.14d show the axial strain band plots for the case of a center span
loaded (c,=L/2) beam with no delamination and with the delamination at f/h=0, f/h=1/8
and f/h=-1/8. Comparing Figures 4.14a to 4.14d, shows that the axial strain perturbation
between damaged and undamaged beams on the beam’s surface increases as the delamina-
tion height increases. After delamination occurs, the beam can be considered to consist of
two parts (i) a small sub-beam made up of the material right above the delamination, and
(ii) the rest of the member which acts as support to the small sub-beam on its two sides.
Figure 4.15 shows the typical strain differential signal (ep—ew) for a simply supported
beam with a centrally located crack and load at beam mid-span (c, = L/2).

Careful inspection of Figure 4.15 shows tensile strains on both ends of the small sub-
beam. These tensile strains indicate the existence of a hogging moment due to the partial
constraint against rotation provided by the material at the ends of the small sub-beam.
These tensile strains cause the strain integral shown in Figure 4.12 to become more posi-
tive when the load is over the delamination. It should be noticed that the tensile strains at
the small sub-beam ends result from the assumption of an open crack. The trend of strain
integral for a closed crack can be quite different. This topic is discussed in the following
chapter
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Figure 4.13: Axial strain band plots for delamination location corresponding to (a) undamaged beam, (b)
damage at f/h=0, (c) damage at f/h=1/8, (d) damage at f/h=-1/8. Delamination length is 2a/L=1/10. Load
position is at ¢,/L=1/4
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Figure 4.14: Axial strain band plots for delamination location corresponding to (a) undamaged beam, (b)
damage at ffh=0, (c) damage at f/h=1/8, (d) damage at f/h=-1/8. Delamination length is 2a/L=1/10. Load
position is at ¢,/L=1/2
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Figure 4.15: Strain differential for a simply supported beam with a central crack. The load position is at
mid-span (cp = L/2).

4.6 Discussion of Results for Open Damage

Due to the nature of the positive and negative components of the differential strain as
shown in Figure 4.15, the resulting integral can be very small. To give a sense of the mag-
nitude of the path-length change associated with this novel strain sensing technique, a sim-
ply supported aluminum beam with the following assumed properties and geometry was
analyzed: (1) elastic modulus=70 GPa, (2) plate depth = 10mm, (3) plate length = 500mm,
(4) plate width=100mm, (5) damage length=50mm, (6) damage at mid-depth and mid-
length. With a 200N load applied at the center of the beam, a maximum strain of 200pe is
introduced which corresponds to approximately a 700 radian global bending phase change
from Equation 3.20 and Equation 4.7. For this case the amplitude (A) of the path-length
change is calculated to be 350 nm. Using the strain transfer value of ¢,=0.11 (in Equation
3.20) reported by Sirkis and Haslach (1990) gives a phase change amplitude of 4.5 rads for
a light wavelength of 632 nm and refractive index of 1.456. Sensitive sensing methods are
thus needed to be utilized for this type of technique to be successful.

The axial location of the damage can be easily determined by locating the peak in the
strain integral difference. The length of the damage zone can be determined from the
width of the side band. Once the side band width is determined, the amplitude of the peak
strain integral provides the information needed to locate the depth of the damage. Since

44



no two crack positions can produce the exact same signal, the proposed method unambig-
uously determines the position and extent of damage.

The results for various crack depths (as shown in Figures 4.10 and 4.12) show that as
the fiber sensor location approaches the damage zone, the peak amplitude (A) increases.
This implies that the sensitivity of this scheme can be improved with embedded fibers.
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Chapter S

THE THEORETICAL FEASIBILITY
OF DETECTING CLOSED CRACKS

5.1 Introduction

The previous chapter dealt with the detection of open subsurface cracks using a novel
fiber optic sensing method. However, in many practical situations, the consideration of
crack closure is important in predicting the static and fatigue strength of structures sub-
jected to global of local compressive stresses. For example, the growth of closed cracks
under Mode II loading is the dominant failure modes for cracks in compressive fields.
Closed cracks typically occur as a precursor to the final spalling damage by fretting
fatigue in subsurface cracks (Hearle and Johnson, 1985) under moving rolling load. Fur-
thermore, the growth of closed (kissing) cracks in laminated materials, which are formed
due to impact damage or manufacturing defects, is one of the primary failure modes in
composite structures.

This chapter deals with the theoretical feasibility of detecting closed cracks using the
novel fiber optic damage detection method. Due to the non-linear nature of the contact
problems associated with crack closure, the solution of these problems require extensive
computational effort. Since the proposed damage detection technique requires the compu-
tationally time consuming solution of the contact crack problem for multiple load posi-
tions and crack geometries, this chapter first focuses on the development of a fast and
efficient method for solving crack closure problems. The second part of this chapter con-
centrates on the feasibility of the novel detection method for closed cracks.

5.2 Background to existing methods of solving crack closure problems

The mechanics of crack closure has been extensively studied by many authors using
various numerical, experimental and analytical techniques (Lee, 1997). The two most
frequently used numerical techniques for studying fracture mechanics problems are the
finite element method (FEM) and boundary element method (BEM). The main advan-
tage of the BEM over FEM is that only the domain boundaries (which include the bound-
aries) need to be discretized. Contact can be easily included in the BEM since all the
unknowns of the problem such as the contact tractions and displacements are boundary
quantities. =~ The BEM has another advantage of being particularly adept in calculating
important fracture mechanics parameters such as stress intensity factors (SIF) and crack
growth directions. The greatest disadvantage of the BEM is that the associated matrices
are non-symmetric and are fully populated. Therefore these matrices cannot be as effi-
ciently solved as the banded and symmetric FEM matrices.

Various BEM’s have been proposed for solving crack problems. The most frequently
used BEM is the subregion method (Blanford, ef al. 1981). In the subregion method the
cracked body is subdivided into two subregions and the traction and displacements along
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all common nodes not on the crack faces are constrained to have equal displacements.
The problem with the subregion method is that the resulting matrices tend to be large due
to the extra nodes along the subregion interfaces which do not lie along the boundary of
the body. Crouch (1976) has developed the displacement discontinuity boundary element
method (DDBEM) which overcomes the problem associated with the constrained nodes
in the subregion method. In the DDBEM, only the crack itself and external boundaries of
the body are modeled assuming the displacements to be discontinuous across these bound-
aries. An integral equations written in terms of the applied tractions and displacement dis-
continuities are formulated and solved numerically.

Other methods have also been used to solve the open crack problem but have not yet
been extended to the closed crack problem. An iterative method was proposed by Ameen
and Raghuprasad (1994). In this method the body is subdivided into two sub-problems as
shown in Figure 5.1. Sub-problem 1 models the body subjected to the prescribed force
and displacement boundary conditions without the crack. Sub-problem 2 models a crack
in an infinite domain subjected to internal shear and normal tractions. Iteration between
the two sub-problems is then performed until all the boundary conditions in both bodies
are satisfied. The final solution for the unknowns is a super-position of the unknowns of
the two bodies. Ameen and Raghuprasad (1994) did not consider closed cracks and com-
mented that the only advantage of their iterative method over other methods such as the
DDBEM is that the matrix associated with each region requires less storage space than the
combined problem and thus can be handled by computers with smaller memory storage.
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(b) Sub-problem 1: (c) Sub-problem 2:
Uncracked body Crack in an infinite domain

Figure 5.1: Schematic Representation of the iterative method of solving crack problems after Ameen and
Raghuprasad
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Another method discussed by Sturt et al. (1993) uses a hybrid method in which the
DDBEM is used to model the outer boundaries of the structure while a distributed disloca-
tion technique (DDT) is used to model the crack. The greatest advantage of the DDT is
that the stress tip singularities can be accurately calculated. Sturt et al. (1993) did not con-
sider crack closure though the DDT can be extended to include this case.

This chapter discusses a coupled iterative-hybrid boundary element method (IHBEM).
In this method the two bodies are modeled separately as described by Ameen and Raghu-
prasad (1994). Sub-problem 2 is modeled either by using the DDT or DDBEM. The
advantage of the IHBEM is that since contact problems are non-linear, iteration is typi-
cally required for all solution methods, and since the IHBEM iterates on smaller matrices,
the method can potentially prove to be significantly faster than traditional techniques.
The method has the added advantage that any standard BEM code can be easily modified
to obtain results for the crack-free region.

Closed crack simulation is particularly important in the study of subsurface crack
growth under moving point loads and thus this problem has been extensively studied by
various authors (see Komvopoulos, 1996 for a list of existing methods). A subsurface
crack under a moving point load has been chosen as one of the example problems to illus-
trate the IHBEM since the crack face mechanisms illustrated by this example problem is
directly applicable to the study of closed crack sensing by the novel detection method.

5.3 Theoretical Formulation

A two dimensional cracked body shown in Figure 5.1(a) is subjected to prescribed
tractions (p) and displacements (#) on the outer boundary and tractions (¢) on the crack
surface. The body is assumed to be linear elastic, homogenous and isotropic. The prob-
lem is first partitioned into two subregions. Sub-problem 1, shown in Figure 5.1(b) repre-
sents the original body without the crack subjected to all the external boundary conditions
(py and u;). Sub-problem 2, shown in Figure 5.1(c), represents a crack in an infinite body
subjected to prescribed tractions (). Any BEM can be used to solve the boundary value
problem for both sub-problems. In this chapter however, sub-problem 1 is solved using
the Quadratic Displacement Discontinuity (QDD) method (Bhattacharyya and Willment,
1988). Sub-problem 2 is solved using either the distributed dislocation technique (DDT)
or QDD method. After sub-problem 1 is solved, the normal and shear tractions are calcu-
lated at the position of crack (¢;). These tractions are then applied as negative forces on
the crack-faces of sub-problem 2. Sub-problem 2 is then solved and the boundary condi-
tions on the boundaries of sub-problem 1 are calculated. These boundary conditions are
then subtracted from the existing boundary conditions (p) of sub-problem 1 and the trac-
tions at the crack are recalculated. The iterations between sub-problems 1 and 2 are per-
formed until convergence is achieved.
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5.3.1 Background to the QDD method

In the displacement discontinuity method, the analyzed body is subdivided into a
series of N elements with unknown displacement discontinuities over each one. The
unknown displacement discontinuities are then solved by summing the effects of all N ele-
ments so as to satisfy the prescribed boundary conditions. If stresses are prescribed on the
ith element then the ith equations of the system are

N N N N
o, = Y "a/D+ Y "A,'D, and s, = Y A, /D, + Y YA, /D, (5.1)
j=1 j=1 j=1 i=1

Similarly for the prescribed displacements

N N N N
w= Y "B,/D;+ "B,’D, and ', = Y "B, /D, + Y "B,.'D, (5.2)
j=1 j=1 j=1 j=1
where 0, and ©,, are the tangential and normal stresses respectively. YA and B are the
stress and displacement influence coefficients respectively which relate the stresses (or
displacements) of node i to a unit displacement discontinuity at node j. D and D,, are the
shear and normal displacement discontinuities respectively which represent the relative
displacements between the faces of a crack as shown in Figure 5.2.
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(b) Shear Displacement Discontinuity

Figure 5.2: Schematic representation of normal and shear displacement discontinuities.

In the case of an assumed quadratic variation in displacement discontinuity, Bhatta-
charyya and Willment (1988) have shown that

1 x2 1
D= D(—b)l:z——-bzx(x—-b)]+D(O) 1 +D(b)[2—b2x(x+b)} (5.3)

where D has components D and D,, and needs to be evaluated at three points (nodes)

along the element. In general the nodes can be placed at any position within the element
except the element end-points where the stresses are infinite. In Equation 5.3 the nodes

are placed at x=-b, x=0 and x=b. The influence coefficients YA and YB for the quadratic
displacement discontinuity have analytical representations and are given by Bhatta-
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charyya and Willment (1988) and in the included in Appendix A. Equations 5.1 and 5.2
can be formulated in matrix form as

{p} = [C]{D} (5.4

where vector {b} are the prescribed boundary conditions, [C] is the influence function
matrix and {D} is the displacement discontinuity vector. Once {D} is calculated, the
stresses and displacements {f;} for any set of interior points can be calculated using

{f1} = [E\l{D} (5.5)

where [E;] is the influence matrix relating the stresses and displacements of the interior
point to the boundary displacement discontinuities.

5.3.2 Background to the DDT method

Consider a single dislocation of Burger’s vector b (with components b, and b,)
located at (xzy,) in an infinite elastic domain shown in Figure 4.3. The resulting stresses
and displacements at a second point (x,y) are (Hills et. al., 1996)

Ol Y) = 2 b5 10,6 + 5,6} (5.6)
0,,(x,y) = Zﬁ{bxnyy+byG”,y} 67
0(67) = 25 (8,6 5,6y} (5.8)
1(%3) = g U+ byU) (59
uy(x,y) = m{bxun+b),uyy} (5.10)

where [ is the shear modulus, k=3-4v in plane strain (v being the Poisson’s ratio). Gy,
and Uj; are the stress and displacement dislocation influence coefficients respectively
given in Appendix B.
Ay
X,
x;y)
/
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y (b, 3by)

/6) X

Figure 5.3: A dislocation with Burger’s vector (b, and by) in an infinite elastic space.
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Consider a crack of length 2a with local co-ordinates x and y shown in Figure 5.4. By
placing a dislocation density B (with components B, and B)) over the crack, the stresses

and displacements at any point (x,y) can be calculated using

04(5y) = 2 s [ (B0 3,6, 0) + B,Gyy(x, . &, 0)) e 5.11)
u(x, y) = m [BUs(x,3.8,0)+ B,Us(x, 7,6 0 (5.12)

-
i

where B, = (db,)/(d%), G and U, are the local coordinate stress and displacement influ-

ence functions for a Burger’s vector density in the k direction respectively. A standard
tensor coordinate transformation is needed to map the global influence functions to the
local coordinates (see Hills et al., 1996) .

N
9

-a

Figure 5.4: A crack modeled by a distribution of dislocation densities (B, and By)

It must be noted that in general the integrals in equations 5.11 and 5.12 contain singu-
larities of the order 1/./d which cannot be solved analytically and require special numer-
ical integration techniques such as Gauss-Chebyshev quadrature. (For a full explanation
of Gauss-Chebyshev quadrature see Hills et al., 1996). Since there is a -1/2 singularity at
the crack tip, B can be expressed as B, = ¢,/+a’ - x* where ¢y is a non-singular function.
After numerical integration, equation 5.11 and 5.12 can be rewritten as

{T} = [G{®} (5.13)
where vector {T} corresponds to the prescribed boundary conditions, [G] is the disloca-
tion influence matrix and vector {®} represents the unknowns ¢;. Once {®} is com-

puted, the unknown dislocation density {B} can be obtained. Equations 5.11 and 5.12
can also be used to calculate the stresses and displacements {f,} at any point in the domain

using
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{f2} = [E;}{B} (5.14)

where [E,] is the influence matrix relating the stresses and displacements of the interior
point to the dislocation densities.

5.3.3 Background to the analysis of closed crack

Consider a partially closed crack of length 2a shown in Figure 5.5. For each pair of
corresponding particles located on either face of the closed portion of the crack, the rela-
tive normal displacement are constrained to be equal and the shear tractions are related to
the normal tractions through a friction law. In the case of Coulomb friction, the crack
faces will stick and the relative shear displacement will be zero if

IS} < c+uN (5.15)

where S and N are the shear and normal tractions along the closed portion of the crack,
and c and p are the cohesion and the coefficient of friction respectively. In the case when
the shear traction (S) is sufficiently large to overcome stick, the shearing traction is lim-
ited by friction, i.e.

IS| = c+puN (5.16)

AY

Figure 5.5: A schematic depiction of a partially closed crack

For the crack shown in Figure 5.5, the location of the crack closure points b and ¢ as
well as the stick/slip conditions are unknown and need to be found as part of the solution.
Although the DDT can be used to solve crack-closure problems, the resulting integral
equations tend to require complicated formulation which are beyond the scope of this the-
sis and the interested reader is referred to Hills e al. (1996).

A more practical method for solving closed crack problems is given by Crouch (1979)
in which the crack surfaces are connected by springs with constant normal stiffness K,, and
shear stiffness K so that

‘s =k/D,and'N = k,'D, (5.17)

Now combining equations 5.1 and 5.17 gives
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N N N N
0=-KD,+ Y "A/D,+Y "A,/D, and 0 = -k,'D,+ ¥ "4, /D, + ¥ A, D, (518
i=1 i=1 j=1 j=1

By choosing relatively large values of K, and K|, the faces of the crack can be pre-

vented from relative deformations. In general crack-closure problems are path dependent

which means that load incrementing is needed to find the final displacement and stress

state of the body. At any load step (k), the shear and normal tractions calculated in equa-

tion 5.16 have to be compared with the Coulomb friction criterion given by equation 5.15.

If the shear traction S is sufficiently large to overcome stick, equation 5.16 and 5.1 need to
be used giving

N N N N
c+uN = ¥ A/D + Y "A,'D, and 0 = K,'D,+ Y A, /D, + Y A, D, (5.19)
j=1 j=1 j=1 i=1
At any load increment, the normal tractions on the faces can be negative indicating separa-

tion of the crack faces. In this case the crack-faces are stress free and Equation 5.1
becomes

N N N N
0=y "A/D,+ "a,/D, and0 = ¥ 7, D+ "a, D, (5.20)
j=1 i=1 j=1 j=1
At load step (k) an element that has slipped in a previous step can stick in which case the
old shear stress S,,;; is “locked” into the model which is given by

N N
Sold - Ks(’Ds)old = _Kles + 2 UAss]Ds + z '}Asnan (5.21)
j=1 j=1

Equations 5.18 to 5.21 need to be solved iteratively until all boundary conditions are satis-
fied.

5.3.4 Iterative Solution Technique

The iterative solution technique presented in this chapter extends the work of Ameen
and Raghuprasad (1994) to include closed crack problems. The following algorithm can
then be used to solve the problem.

(1) Compute the matrices C, G, Ej and E, in Equations 5.4, 5.5, 5.13 and 5.14

(2) Factorize matrix C using [C]=[L][U], where L and U are the lower and upper matri-
ces.

(3) Calculate D for sub-problem 1 from {b}=[L}[U]{D}.

(4) Find the stresses f7 at the internal points corresponding to the crack position of sub-
problem 2.

(5) The calculated stresses f; are assumed to act as tractions on the crack faces of subprob-

lem 2. The crack is assumed closed at all points and the crack face reactions are calcu-
lated.
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(6) Use equations 5.18 to 5.21 to calculate the crack discontinuities and tractions on each
element. The various conditions that need to be checked for each element are as follows:

(6.1) If the frictional sliding forces are smaller than the normal contact resisting
force - corresponding to a condition of stick - use Equation 5.18

(6.2) If the frictional sliding force is greater than the normal contact resisting
force - corresponding to a condition of slip - use Equations 5.19

(6.3) If the normal contact resisting force is negative - corresponding to separa-
tion of the crack faces - use Equation 5.20

(6.4) If a previously slipped element sticks, the previous shear stress is
“locked” into the element and Equation 5.21 needs to be used

(7) Repeat steps (8) to (12) below till sufficient accuracy is obtained

(8) Calculate the unknown stresses/displacements f, from sub-problem 2 at the boundary
points of sub-problem 1.

(9) Modify the prescribed boundary conditions in subproblem 1 by subtracting f, and
the new displacement discontinuities are calculated from {b}-{f,} = [L][U]{D}

(10) Recalculate the stresses f7 at the internal points corresponding to the crack position
of sub-problem 2.

(11) The calculated stresses f7 are assumed to act as negative tractions on the crack faces
of subproblem 2.

(12) Solve subproblem 2 using equations 5.18 to 5.21 as described in 6 above.

(13) The final displacement and stresses solutions at any point in the body is derived by
superposition of the solutions for sub-problems 1 and 2.

It must be noted that LU decomposition is used to factorize matrix C since in general step
(8) has to be calculated at least 4 times for open cracks and 10 times for closed cracks
before convergence is achieved. Since LU decomposition only requires back-substitution
at each step, this is considerably faster than the full reduction of C at each step.

5.4 Some Practical Aspects of Using the Iterative Boundary Element
Method

The performance of any contact algorithm is dependent on (1) the initial assumptions
of the conditions at the crack i.e. is the crack initially open or closed, and (2) the method
in which the constraints are enforced.

Since crack closure is both a non-linear and an history dependent phenomena, the final
solution of the problem is strongly influenced by the initial assumptions of the crack
behavior. Whether the crack is initially assumed open or closed could significantly effect
the final solution. The first step of the iteration begins by calculating the tractions at the
crack position from sub-problem 1. In the present boundary element approach, the crack is
assumed to be initially fully closed (i.e. both shear and normal springs are applied to the
crack faces and the faces are assumed to be stuck- this follows the Crouch and Starfield,
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1983 approach). The crack-face tractions calculated from sub-problem 1 are applied to
sub-problem 2 and the displacement discontinuities for sub-problem 2 are calculated. The
dominant crack-face mechanism for sub-problem 2 is checked and modified as described
in Step 6 of Section 5.3.4. The solution method then follows Steps 7 to 13 in Section 5.3.4
until sufficient accuracy has been achieved

A second problem arises in modeling closed cracks using spring constraints - namely
the spring constraint stiffnesses (K, and K,,) cannot be assumed arbitrarily large since this
can lead to ill-conditioned matrices (see Bathe, 1996). One method to overcome this is to
use quadruple (or higher) precision arithmetic throughout the calculation. However qua-
druple precision calculations vastly decrease computer speed in solving the problem. The
increase in storage space for quadruple precision also means that only smaller matrices
can be handled within the active (RAM) memory of the computer. One method to over-
come this problem is to solve the same problem with successive increases in spring stiff-
nesses. The results will tend to converge with increasing spring stiffnesses until the matrix
becomes ill-conditioned and the solution becomes significantly (orders of magnitude) dif-
ferent to the previous step. This process of selecting the spring stiffnesses has to be
repeated for different discretizations since the relative stiffnesses of the structural elements
and axial springs change. It is probable that this problem can be overcome using methods
such as Lagrange constraints, but this requires significant reformulation of the solution
method and is left for future development of the method.

5.5 Example Problems

The newly developed method described in this chapter is used to solve two classical
fracture mechanics problems. The first problem deals with a central crack in a finite width
strip. This open crack problem uses the QDD method to model the exterior plate and the
DDT to model the internal crack. The second example problem analysis a subsurface
crack in a half plane subjected to a moving point load. The second problem has been
extensively studied [Hearle and Johnson, 1985, Chang et al., 1984 and Komvopolous,
1996) because of the interest in rolling contact fatigue failure.

5.5.1 Example Problem 1 - Open Crack Problem

Consider a finite width strip with a centrally located crack subjected to a remote tensile
stress as shown in Figure 5.6.

- A —
- —
- —
G \' 2a > o
- .
- —
- —
- ' —

Figure 5.6: A cracked tension strip with crack length (2a) and width (W)
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Since the analyzed crack is straight and horizontal, Equations 5.11 and 5.12 can be further
simplified by setting y=0 for G; ijk in Appendix B. The normal (N(x)) and shear (S(x)) trac-

tions are then given by:

(&) B.(§)

1t(1c+l)Jx Y;d&"

N(x) =

n(K + 1) (5.22)

When Equations 5.22 are normalized over the interval [-1,+1] and s=&/a, it can be shown
(Hills et al., 1996) that the function B(E) can be rewritten as

Ox(s)
By(s) = N (5:23)
Gauss-Chebyshev quadrature gives:
N
NGy = 2057 1)1%/2]?,:(-2) 5-24)
N
S(t) = 2n(Ku+ ; 1% 2;?:(_S;) (5.25)

where N is the number of integration points, s, = cos( 2i- 1) are the integration points

2N

(i=1..N), 1, = cos( ;) are the collocation points (k=1..N-1). In order to solve the system

of equations 5.22 and 5.23 for the unknowns ¢,(s;) and ¢,(s;), two further equations are
needed.

a N
I B.(8)dg = I%Z%(s,-) =0 (5.26)
—a i=1

a N
[By©)dE = 5 0,(s) = 0 (5:27)
- i=1

Equations 5.26 and 5.27 are known as the side conditions and are obtained from the
requirement that the crack faces meet at both ends. After Equations 5.24 to 5.27 are
solved, the stress intensity factor (SIF) at the crack ends can be calculated using (see Hills
et al. 1996)

K;(xa) = +2J71 5 0,(%a) and K,(+a) = +2ﬁ

+10x(%a) (5:28)
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Since ¢(+a) are not explicitly calculated in the solution of Equations 5.22 to 5.25, an
extrapolation method must be used. Krenk’s extrapolation formulae (Hills et al. 1996) is a
particularly powerful method for finding ¢(+a). Krenk’s formula for open cracks is

N sin 2i—11t(2N—l)
> [::EMR] |
4N

Example problem 1 is solved for various crack lengths (a in Figure 5.6). The results
for the SIF are compared with K, = [sec(na/W)]™""*c./na given by Feddersen (Edwalds

0,(s)) (5.29)

and Wanhill, 1986) and X, = [1 —(2a/W)2]—1/20J1_;1 given by Dixon (Edwalds and Wan-
hill, 1986) in Table 5.1. The boundary of the strip are discritized using 40 quadratic dis-
placement discontinuity elements and 30 dislocation density integration points are placed
on the crack.

Table 5.1: Comparison of SIF calculations for various methods

K,/(oJra) K,/(oJra) K,/(c\ma)

a/W Dixon Feddersen Iterative
0.1 1.0206 1.0254 1.0139
0.2 1.0911 1.1118 1.0942

0.25 1.1547 1.1892 1.1689
0.3 1.2500 1.3043 1.2859
0.4 1.6667 1.7989 1.8190

Table 5.1 shows that the iterative technique is within 3% of the analytical solutions.
The solution time for the problem on an INDY silicon graphics workstation was 2.23 sec-
onds for the iterative method. In order to assess the speed of this technique, the same
problem was solved using a direct quadratic displacement discontinuity (QDD) method to
model both the boundaries and crack. In order to obtain the same 3% accuracy as the
hybrid technique, the QDD method took 1.89 seconds. When the problem was resolved
using double the elements for both methods, the iterative technique required 11.2 seconds
while the QDD method required 14.2 seconds. The accuracy of the both hybrid and QDD
techniques improve only slightly to 2.5% of the analytical solution when the number of
elements are doubled indicating that the solution has converged.

Thus for larger problems, the iterative method is more efficient than the traditional
QDD method for solving open crack problems. The iterative technique is faster than the
direct approach since it requires the reduction of a smaller matrix (associated with the
uncracked body only) than the direct approach (associated with the full cracked body
problem).
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5.5.2 Example Problem 2 - partially closed crack problem

The growth of a crack parallel to a surface undergoing periodic compressive loading is
one of the major causes of fatigue damage of riding surfaces. This damage mode has been
extensively studied by several authors including the analytical solution of Hearle and
Johnson (1985), the DDT technique of Chang et al. (1984), and the FEM approach of
Komvopolous (1996). In order to verify the iterative boundary element method presented
in this chapter, the developed iterative technique is compared with the example problem
studied by Komvopolous (1996).

Consider a horizontal subsurface crack of length 2a and depth 4 subjected to a moving
point load (P) as shown in Figure 5.7. Depending on the load position (x,) and crack
geometry, various parts of the crack can either undergo forward slip, backward slip, sepa-
ration or stick as shown in Figure 5.8.

For this example, the crack-to-depth ratio 2a/h is equal to 3, the Young’s modulus E is
1x10''Nm™ and Poisson’s ratio v is 0.3. The top surface of the elastic-half plane is mod-
eled using 100 QDD elements and the crack is modeled using 25 QDD elements. The first
and last elements of the elastic half space are placed 4 crack lengths from left and right
crack tips. The shear and normal spring stiffnesses (K and K, in equation 5.17) are
assumed to be 2x10!"Nm!. The coefficient of friction () is set equal to 0 and 0.5.

*p
—=| LOAD (P)

2a CRACK

Figure 5.7: A subsurface crack in an elastic half-space subjected to a moving point load

—— Forward Slip
e Z—

e S— Backward Slip
——+

/\ Separation

Figure 5.8: The stick, slip and separation modes for a closed crack
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The results of the Mode II SIF at the left crack tip and the various modes of crack-
opening, closure and stick are compared with the results of Komvopolous (1996). The
Mode II SIF is calculated from Zhang and Leech (1986)

_ _u 2T rip
K = 0 -wn+ 2 (5.30)
where D" is the near crack-tip shear discontinuity and r is the distance from the crack
tip. Kj; is calculated by taking the average value calculated in Equation 5.30 for the 3
nodes (i.e. the nodes in the first element) closest to the crack tip.

The normalized Mode II SIF k,,/(2P/n./l) for the left crack tip of a frictionless hori-
zontal crack is compared with the analytical solution of Hearle and Johnson (1985) in Fig-
ure 5.9.
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Figure 5.9: Comparison of the analytical and boundary element methods for the left crack-tip mode II SIF
for a frictionless subsurface crack under various concentrated point load positions.

The developed iterative boundary element method shows good agreement with the
analytical solution. The crack opening and sliding mechanisms for various normalized
load positions (x,/a) are shown in Figure 5.10. The sliding and opening behavior of the
crack compares well with the FEM solution of Komvopolous (1996).
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Figure 5.10: Regions of slip and separation for the frictionless subsurface crack under various positions of a
concentrated point load.

The mode II SIF for frictionless and frictional contact (u=0.5) for the left crack tip is
shown in Figure 5.11. Figure 5.11 shows that the consequence of frictional contact is to
reduce the SIF for all load positions. Figure 5.12 show the various stick, slip and separa-
tion zones for various load positions. The results for the frictional contact case compare
well with the FEM solution of Komvopolous (1996).

Komvopolous’ FEM results at x/a=-1 and x/a=1, however, show stick zones near xp/
a=-2 and x,/a=2 which do not appear in Figure 5.12. The present analysis is considered
correct since the extent of stick zone at these points can be attributed to the assumed con-
tact convergence parameters used by Komvopoulos (1996). Using a similar FEM model,
Komvopoulos and Cho (1997) also shows stick at the same locations for deep cracks (2a/
h=1). These stick-zones are not consistent with Hearle and Johnson’s analysis (1985)
which show a slip zone since the driving shear force is greater than the frictional resisting
force at a deep crack.
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Figure 5.11: Comparison of the mode II SIF for the left crack-tip of a frictionless and frictional subsurface
crack under various concentrated point load positions.

In order to illustrate the solution speed of the new iterative approach, the full problem
was solved for all loading positions using the same number of quadratic displacement dis-
continuity elements (100 on the elastic half plane and 25 on the crack) and the solution
time was compared with the iterative procedure. The solution time for the full problem
on an INDY Silicon Graphics workstation was 2 hours while for the iterative solution was
13 minutes. The vastly improved speed can be attributed to the fact that the exterior prob-
lem’s geometry remains the same throughout the solution and can be LU decomposed
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after the first iteration. Subsequent solutions only requires back-substitution for the exte-
rior problem and the full solution of the much smaller interior crack-problem.
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Figure 5.12: Regions of slip, stick and separation for the frictional subsurface crack under various positions
of a concentrated point load.

5.6 Discussion of the Iterative Boundary Element Method

The iterative boundary element method has been presented in the previous sections of
this chapter and has been applied to the modeling of closed and open cracks. The method
of partitioning the problem into two sub-problems consisting of the exterior body without
crack and a crack in an infinite domain has been shown to have some significant advan-
tages over other solution methods. These advantages include :

(1) Increased solution speed for large linear elastic (open crack) problems.

(2) Vastly increased speed for closed crack problems which involve load-stepping and
iteration.

(3) The two sub-problems are independently formulated and can be solved with differ-
ent methods leading to a hybrid approach.

(4) The computer matrix-storage space is reduced.

In comparison with the traditional FEM method, Komvopoulos (1996) reports solution
times on the order of 2 to 4 hours for the contact example problem discussed in this chap-
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ter. This solution time is significantly slower than the 13 minute solution time of the
IHBEM.

5.7 Some Aspects of Sensing Closed Cracks

In this chapter, the fiber is assumed to be embedded at depth (s) above the neutral axis
of the beam. A schematic representation of beam-layout is shown in Figure 5.13.

LOAD

Sensing Fiber

Figure 5.13: The geometry of a damaged, simply supported beam subjected to a moving load.

For an embedded optical fiber interferometer, the opto-mechanical phase change rela-
tionship is given by equation 3.18. For an uncracked beam, simple structural mechanics
shows that the axial and normal strains (€, and €, respectively) are given by:

_ P(L-cp)xs

= TRl forx<¢,
_ P(L—cp)xs P(x-cp,)s
€, = 7 B 7 forx>c, (5.31)
g, = -ve,, forallx
The strain integrals are given by
Psc (L-c))
_[e,x dr = —L P (5.32)
0
L L
je)._‘. dx = —v j £, dx (5.33)
0 0
Substituting equations 5.31 and 5.32 into 3.18 gives
A¢ = KsPc,(L-c,) (5.34)

where K is the calibration coefficient for the sensor and is dependent on the material prop-
erties of the beam, the optical properties of the fiber, the geometry of the beam and the
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strain transferal from the host material of the beam to the optical fiber. The assumption in
Equations 5.30 to 5.33 is that the strain perturbation at any location through the depth of
the beam is dominated on the global Bernoulli-Euler bending behavior and ignores effects
such as the change in the strains in the fiber due to stress distribution under the point load
itself. Timoshenko (article 35. 1934) discusses how the stress distribution directly under a
point loaded beam is at first approximation the same as the Flamant solution for a point-
load in a semi-infinite domain at any location of the point load along the beam (except
very closed to the beam supports). Thus the strains due to the point load do not change
with load position and can be assumed to be constant with load position. Thus if the con-
tribution of the point load stresses were to be taken into account, Equation 5.34 would
only need to be modified with the addition of a constant.

As seen from the sample calculation in Section 4.6, the phase change due to the bending of
the virgin beam are substantially larger (two orders of magnitude) than phase perturba-
tions caused by the damage. Thus the phase perturbation due to damage cannot be easily
distinguished from the global bending phase change of the beam. The small perturbations
due to damage can only be successfully detected when the fiber is placed in such a way as
to cancel the global beam bending effect. For example from Equation 5.34 it can be seen
that placing the fiber on the neutral axis (s=0) leads to zero global bending phase changes.
Further methods of fiber placement to overcome global bending effects are discussed in
Section 6.7.2.

This chapter introduces a new method of damage detection which does not rely on
accurate fiber placement. Closer inspection of Equation 5.34 shows that the phase change
is parabolic. If Equation 5.34 is differentiated twice with respect to load position, the
resulting quantity (A¢”’) is constant. Thus any non-constant perturbation in A¢” is
directly related to the presence of damage in the beam.

The analyzed simply supported beam shown in Figure 5.13 is assumed to have linear
elastic behavior. The beam is assumed to have elastic modulus E = 2x10!! N/m? and Pois-
son’s ratio v=0.3. The optical properties of silica glass are assumed to be the same as in
the work of Sirkis and Haslach (1990) which correspond to a red light propagating in a
single mode fiber. The Pockel’s constants are taken to be P;;=0.121 and P;,=0.27. The
refractive index is n,=1.456 and the wavelength of light is A,=632.8nm.

The THBEM is used to model the beam and crack. 100 quadratic displacement discon-
tinuity (QDD) elements are used to model the beam boundaries (10 elements through the
beam depth and 40 elements on both the beam’s top and bottom surface), and 15 QDD ele-
ments are used to model the crack.
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5.8 Results for Closed Crack Sensing

The effects of crack length (2a), crack height (f) and crack-face friction (u) are studied
in this section. Two typical, normalized A¢” perturbations for various load positions
with beam geometry e=L/2, f=0.5h, s=0.6h, L/2h=10 and 2a=2L/20 are shown in Figure
5.14. In this analysis, the load is assumed to be applied at discrete points along the struc-
ture and thus no residual locking is allowed due to the load movement. This loading condi-
tion corresponds to applying a load which starts at zero and finished at zero before it is
moved to a new position and can be achieved in practise by applying a vibrating force.

Figure 5.14 shows the importance of considering crack closure by comparing the pre-
dicted A¢” for a beam with (a) no damage, (b) no crack-face closure constraints (i.e. the
faces of the crack are allowed to interpenetrate) and (c) contact constraint and zero fric-
tion. Since in general, the sensor calibration factor K in Equation 5.34 must be determined
experimentally, A¢”’ is left in arbitrary units (A.U.). A¢” is calculated by applying the
load at discrete points along the beam and calculating the A¢ integral given by Equation
3.18. Once the phase change (A¢) at the discrete points have been calculated, a spline is
fitted to the data and A’ is calculated using the central difference method.

Figure 5.14 shows that for the undamaged beam, A¢” is essentially constant as can be
predicted from simple beam theory. For both assumed crack contact conditions, the axial
position of the crack leading and trailing edges (x; and x,) occur at the minimum of A¢”.
The crack’s axial position (e) and length 2a can then be easily predicted from:

e = (x,+x)/2 (5.35)
2a = x;—x,
Figure 5.14 also shows that neglecting the contact conditions at the crack face can severely
over-predict the magnitude of the measured A¢”’. Furthermore, the actual shape of the

load position versus A$”’ curve for a crack with contact can be significantly different from
a crack in which contact is ignored.
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Figure 5.14: Comparison of A¢” for a (a) undamaged beam, (b) beam with damage and no contact con-
straint and (c) beam with damage and frictionless contact constraint. The crack position is at f=0.5h, the
sensor position is at s=0.6h and the crack length is 2a=2L/20.

The extent of crack stick, slip and separation are strongly dependent on crack depth
and length (Komvopoulos, 1997). Since crack opening mechanisms can change abruptly
due to crack geometry , the effect of representative crack depths and lengths are studied in
this chapter. Figure 5.15 shows the effect on A¢p” for crack lengths of (a) 2a=3L/20, (b)
2a=2L/20 and (c) 2a=L/20. As in Figure 5.14, Figure 5.15 shows that the position of
A¢” minimum corresponds to axial position of trailing and leading edges of the crack (x,,
to x,, and x;, to x;.). Equations 5.34 can thus be used to determine the axial position and
extent of the crack.

67



1.2
() — 2a=3L/20

(b) - - -- 2a=2U20

© == =m2q=L20
1 1

0.81

2

[A.U.] 0.6

0.4r

0.2}

0.3 04 0.5 0.6 0.7
Load Position (cp/L)

Figure 5.15: Comparison of A¢”’ for a simply supported frictionless crack with cracks of length (a) 2a=3L/
20, (b) 2a=2L/20 and (c) 2a=L/20. Crack position at f=0.5h and sensor position at s=0.6h.

The variation of A¢” with cracks at depth f=0.5h, f=0.4h and f=0.3h and constant
crack length of 2a=2L/20 and sensor position s=0.6k are shown in Figure 5.16. Figure
5.16 shows that though the positions of A¢’’ minimum remains the same, the perturbation
to the A¢” signal from the virgin (constant) state decreases with increasing crack distance
from the sensor. The decrease in the A¢” perturbation is non-linear with depth and
decreases rapidly with crack distance from the sensor. Due to the small perturbation sig-
nal, multiple embedded sensors through-out the depth of the beam are needed to accu-
rately locate the crack.
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Figure 5.16: Comparison of A¢™ for a simply supported cracked frictionless beam with crack depths at
f=0.5h, f=0.4h and f=0.3h. Crack length is 2a=2L/20 and sensor position s=0.6h.

Figure 5.17 shows the variation of A¢” for f=0.4h and f=0.3h for 2 sensors, embed-
ded at s=0.6h and s=0.5h. The magnitude of the perturbation of A¢” is greater for the
sensor embedded at s=0.5h, which is the sensor closest to the crack. Figure 5.17 also
shows that the position of the A¢”’ minimums do not change with sensor position which is
consistent with Equation 5.35.
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Figure 5.17: Comparison of A¢” for frictionless cracks at depths f=0.4h and f=0.3h and sensor position
of s=0.6h and s=0.5h. Crack length is 2a=2L/20.

The effect of crack face friction (u=0, u=0.25 and u=0.5) is shown in Figure 5.18.
The crack position is at f=0.5h, sensor position at s=0.6h and crack length 2a=2L/20. Fig-
ure 5.18 shows that the effect of increasing coefficient of friction is to decrease the magni-
tude of the A¢” perturbation.
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Figure 5.18: Effect of friction (u=0, p=0.25 and p=0.5) on A" for a closed crack of length 2a=2L/20.
Sensor position at s=0.6k and crack depth f=0.5h.

5.9 Effect of Crack Opening Mechanisms

In general prediction of closed crack behavior is difficult because of the various mech-
anisms of stick, slip and separation that can occur. These crack-face mechanisms are
dependent on material properties of the beam, the load-position, crack-position and crack
length. As an illustrative example of the effect of various mechanisms on crack behavior,
only the effect of crack length is studied in this section. Generally it is easier to under-
stand the physical meaning of the phase change (A¢) than the second derivative of the
phase change (A¢”). Since the phase change due to the crack is much smaller than the
phase change due to the beam bending, in this discussion we will only consider the phase
perturbation due to damage alone (A¢,) by subtracting the phase change due to the global
beam bending (A¢,) from the overall phase change (A¢) i.e. AQ=AP-A,.

The effect of four different frictionless crack lengths (2a=4L/20, 2a=3L/20, 2a=2L/
20 and 2a=L/20) on the phase perturbation (A¢,) are plotted in Figure 5.19. Figure 5.19 is
in direct contrast to the results of Chapter 4, which showed that for open cracks, the
shape of the phase perturbations are similar with both peak value and position of local
minimum increasing with increasing crack length.
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Figure 5.19: The effect of crack length (2a=4L/20, 2a=3L/20, 2a=2L/20 and 2a=L/20) on the phase pertur-
bation A, for a frictionless crack. Crack depth is at f=0.5h. Sensor position is at s=0.6h.

Figure 5.19 shows that the shape of each phase perturbation (A¢,) curve is unique for
the particular crack length. This behavior can be attributed to the fact that the mechanisms
on the crack face change with increasing crack length.

Figure 5.20 shows the crack face mechanisms acting on the various lengths of closed
cracks for the load over the crack center. For crack lengths shorter than 2a=3L/20, the
crack is closed along it entire length with symmetrical regions of backward and forward
slip occurring about the crack center-line. For cracks longer than 2a=3L/20, separation
occurs at the crack tips. The change in crack-face mechanisms can also be seen in the
phase perturbation curves (A¢,) in Figure 5.19. The A¢, curves for crack lengths shorter
than 2a=3L/20, decrease over the crack center (¢/L=0.5) while for cracks longer than
2a=3L/20, the curves increase over the crack center.
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Figure 5.20: Crack face mechanisms for a frictionless crack of lengths (2a=4L/20, 2a=3L/20, 2a=2L/20
and 2a=L/20). Crack depth f=0.5h and sensor position is at s=0.6h. Load position is over the center of the
crack (¢c=L/2). O indicates crack separation, BS indicates backwards slip, FS indicates forward slip.

The effect of introducing friction along the crack face can be seen in Figures 5.21 and
5.22. The phase perturbation curves for a crack length of 2a=3L/20 and friction coeffi-
cients of u=0, u=0.25 and n=0.5 for a centrally loaded beam are shown in Figure 5.21.
The change in the phase perturbation (A¢,) with friction coefficient (L) can be attributed to
an increase of the stick zone at the center of the crack as shown in Figure 5.10.
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Figure 5.21: The effect of coefficient of friction (u=0, u=0.25 and p=0.5) on phase perturbation Ad,..
Crack Length 2a=21/20 and sensor position at s=0.6h.
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Figure 5.22: Crack face mechanisms for a crack of length 2a=2L/20 with friction (u=0, u=0.25 and u=0.5).
Crack depth f=0.5h, sensor depth s=0.6k and load position c=L/2. § indicates stick.
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Figures 5.19 to 5.21 show that the phase perturbation is significantly influenced by the
crack opening mechanisms.

5.10 Implication to Closed Damage Detection in Practice

The theoretical work presented in the previous chapter has shown that for accurate
location of open cracks, sensitivity of 4.5 radians in phase perturbation is needed. Though
chapter 4 dealt with a surface mounted fiber, for comparison’s sake the same strain trans-
fer parameters are assumed for the embedded fiber. Figure 5.23 shows the relative
expected phase perturbation magnitude for an open and closed crack for the same case as

shown in Figure 5.14. The phase change magnitude for the open crack is approximately
an order of magnitude greater than for the closed crack.
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Figure 5.23: Phase perturbation (A¢,) for the case of a crack with no contact constraint and with contact
constraint. The same parameters as in Figure 5.2 apply.
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5.11 Conclusions

This chapter has introduced a highly efficient iterative boundary element method for
solving closed crack problems. The newly developed method has been used to show the
theoretical feasibility of using a novel fiber-optic based technique for detecting both the
location and size of subsurface closed cracks with friction. The phase perturbation for
closed cracks, can be expected to be an order of magnitude smaller than for open cracks.
The work in this chapter has also shown that the second derivative of the phase change
with respect to load position can successfully eliminate the large phase change due to glo-
bal beam bending with the resulting signal only being sensitive to damage. Detection sen-
sitivity drops rapidly with distance between the fiber and damage and thus multiple fibers
through the depth of the structure are needed to accurately determine the depth position of
the damage.
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Chapter 6

EXPERIMENTAL VERIFICATION

6.1 Introduction

A detailed description of the experimental performance of the novel fiber optic dam-
age detection method are given in this chapter. The goal of the experimental work is to, (a)
study the feasibility of the proposed detection method, (b) highlight the practical aspects
of fiber-optic damage detection, and (c) provide sensor calibration. The two open damage
cases (simply supported and elastically supported beam) studied in the theoretical feasibil-
ity section (Chapter 4) of this thesis are considered in this chapter.

6.2 Detailed Experimental Layout Description

A more detailed description of the closed loop interferometer as shown in Figure 3.9 is
presented in this section. The experiment can be broadly divided into three parts, namely
(i) the optical, (ii) the electrical, and (iii) the mechanical.

A single mode He-Ne laser is chosen because of its good coherence length as dis-
cussed in Section 3.8.1. A spherical lens which is mounted onto a translational stage cou-
ples the light into a single mode Dow-Corning PS901 Flex 633 step-index optical fiber.
The fiber used was not polarization preserving. The correct polarization was maintained
by twisting the reference fiber. A Gould 2x2 50-50 coupler is used to split the light into the
reference and sensing arms. A Gould 2x2 coupler is used to recombine the light from the
reference and sensing fibers. The output of one of the coupler’s legs is monitored using a
PIN photodetector.

The electrical components include the modulator, demodulator, servo and data-acqui-
sition system. The phase transducer consisted of a 3 inch PZT E-63 Cylinder (EDO Cor-
poration, New York) and 10 fiber windings of the reference arm fiber attached to it with
epoxy as shown in Figure 6.1

Optical Fiber

Epoxy
Bead

Figure 6.1: PZT cylinder phase transducer
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Modulation and de-modulation is done by a standard lock-in amplifier. The modula-
tion frequency is chosen at 45 kHz where the noise in the light is close to the shot noise
limit. The shot noise limit for the laser is checked by detecting the laser output with the
photodiode. The output from the photodiode was passed into a spectrum analyzer. The
point on the light-intensity frequency spectrum at which the noise intensity began to flat-
ten out was at 10 kHz. This intensity noise was close to the photon shot noise limit calcu-
lated in Section 3.6.

The servo consists of an electronic integration circuit to achieve high gain at low fre-
quencies with supporting reset circuitry. The saturation level of the integrator is +15 volts.
The dynamic range of the phase transducer is measured to be +5.5 fringes. In order to
avoid saturation of the servo integrator, a reset circuit is provided. Since the servo needs to
track the fringe maximum, the servo needs to be reset at an integral number of fringes. The
reset circuit is calibrated so that the servo-output is zeroed at +5 fringes (the largest inte-
gral value smaller than the dynamic range of the servo) which corresponds to 13.6 volts.
The servo output is stored on a personal computer and the phase change is simply post-
processed and added to the previously stored value after reset occurs. (All electronic com-
ponents were custom built by Stephen P. Smith and V.K. Sudarshanam of the Quantum
Optics and Photonics Group at MIT).

6.3 Sensor Output with Zero Applied Load

A typical calibrated sensor output for zero applied load and averaging time t=1/100
seconds, for about 1 minute is shown in Figure 6.2. The variation in sensor output around
0.01 rads is due to environmental drift effects caused by differential temperature, creep
and structural vibration strain between the sensing arm and reference arm of the fiber.
Environmental drift affects all strain sensors and can lead to unreliable sensor perfor-
mance since the sensor cannot discriminate between phase change due to applied load and
the phase change caused by the drift.

0.05

A
(rads)

i 1 L 1 1 1

0 10 20 30 40 50 60
Time (s)

Figure 6.2: Typical sensor output with no applied load and averaging time t=1/100 sec, showing environ-
mental drift
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Closer investigation of Figure 6.2 shows that the environmental drift is dominated by
low frequency components mostly caused by slow temperature fluctuations between the
sensor and reference arms. Taking the numerical fourier transform of the sensor output in
Figure 6.2, gives the frequency spectrum of the environmental drift as shown in Figure
6.3. Figure 6.3 shows that for frequencies greater than approximately 5 Hz the environ-
mental drift effects are three orders of magnitude smaller than the low frequency compo-
nents. Investigation of the sensor output over several days in the laboratory showed that
the environmental drift does not vary by more than +0.1 rads per hour of observation
because of the controlled laboratory environment. The environmental drift drops off with
frequency, and is +1x10*rads at SHz.

In Section 4.6 it has been shown that the theoretical phase change caused by open sub-
surface damage is on the order of 4 rads at the peak. For adequate resolution of the fea-
tures of the phase change signal, one may assume that a 0.2 rad measurement accuracy is
needed. If one compares the 0.1 rad environmental drift magnitude to the required 0.2 rad
measurement resolution, one obtains a phase perturbation to the environmental drift ratio
of 2 for slow (near static) load applications, and 2x10? for frequencies greater than SHz.
Note that the 4 rads phase change is for the particular loading configuration and damage
size that was studied in Section 4.6. It should also be noted that relative ratio of the phase
perturbation to the environmental drift is dependent on the actual load magnitude that can
be applied at the load modulation frequency which could be significantly smaller than the
200 N load applied in the example discussed in Section 4.6.
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For other structural configurations and load magnitudes, the phase change (and hence
the required resolution) is likely to be different.
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Figure 6.3: Environmental phase intensity spectrum for an unloaded beam.

6.4 Load Application and Sensor Performance

The previous section has shown that for nearly statically applied loads, the signal (due
to the phase perturbations caused by the crack) to noise (caused by the environmental
drift) ratio is 2. For this signal to noise ratio, the sensor output cannot be unambiguously
resolved from the environmental drift. Several methods (or combinations thereof) are pre-
sented here in order to overcome this problem. The first method is to apply a load with a
dominant frequency of 5 Hz to discrete points along the damaged member. Monitoring
the sensor output at 5 Hz limits the environmental noise components to less than 1x10™
rads. A sample output of the sensor and load cell with a peak-to-peak amplitude of 20 N
and a frequency of 5 Hz applied to the elastically supported beam is shown in Figure 6.4,
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Figure 6.4: (a) Load cell and (b) sensor output for a harmonically applied load at frequency 5 Hz and peak-
to-peak magnitude of 20N (1 volt on the Load Cell = 8N) (averaging time T=1/100 sec)

In order to obtain the sensor output due to the applied load only, the sensor and load
data is passed through a 4th order elliptical bandpass filter (4.9 to 5.1 Hz bandpass) (See
MATLAB Signal Processing Toolbox) . Figure 6.5 shows the data presented in Figure 6.4
after numerical low pass filtering. It is evident that the drift and D.C. off-set of the sensor
has been eliminated and that the time history of the filtered sensor output accurately
matches the applied load.
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Figure 6.5: (a) Load cell and (b) sensor output after a SHz numerical bandpass filtering
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The second method of overcoming drift, consists of applying a moving load to the
member at a high velocity. Figure 6.3 shows that the environmental drift is dominated by
frequencies with periods greater than 30 second (corresponding to 0.033 Hz). Since
under laboratory conditions, the drift is of the order of 0.1 rads, a 2 second test could have
a maximum drift induced error of 0.04 rads assuming the drift variation to be sinusoidal.
Since the test has to be completed over a brief period of time, these testing speeds might
not be practical for all structures

The third method consists of time averaging the sensor output over many loading
cycles. The performance of this method is strongly dependent on the length of the load
cycle and the number of tests performed. This method can also prove to be time consum-
ing and tedious for practical structural inspection.

The load application method used in this experiment is discussed in the following sec-
tion.

6.5 Mechanical System Description

A schematic of the mechanical layout of the experiment is shown in Figure 6.6. A
model-train rail is mounted on rigid supports above the tested specimen. The testing cart is
attached to a motor with a winding drum which moves the testing cart across the rail. The
load applied to the tested specimen is measured through a load cell which is attached to a
computer based data-acquisition system.

i Motor and Winding Drum
Testing Cart

Mounted Rail

| Rail Support n Load Cell Rail Support |
€} Tested Specimen
b [ ]
/\./\Roller Support Roller Suppon/Q/\
Optical Bench

Figure 6.6: Layout of mechanical system used for moving load test

A detailed schematic of the testing cart is shown in Figure 6.7. The position of the load
application point is monitored by measuring the voltage change across a rheostat made
from high resistance Nickel-Titanium wire which is in sliding contact with the testing cart.
In the case of the 5 Hz sinusoidal load application, a PZT actuator driven at 5Hz is
attached to the test-cart as shown in Figure 6.7. The actual load applied to the test structure
is monitored by the load cell which is attached to a computer data-acquisition system. In
the 5Hz load application, the test cart is moved to a fixed position along the beam before
the load is applied. After the discrete point is tested, the testing cart is moved to a new dis-
crete position along the beam length.
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Figure 6.7: Detailed Schematic of Mechanical Testing Cart

In order to prevent direct contact between the sensor and load, the sensor is attached to
the center of the beam (along the width), the point load contact with the structure is made
with two wheels which pass over the sensor. The load applied to the structure is due to the
variation in prescribed deflection given to the beam as the fixed mounted rail is positioned
in such a way as to provide initial deformation to the beam. Since the amount of deflection
changes with load position due to the flexibility of the structure, the load-cell is needed to
monitor the applied load to the structure.

6.5.1 Beam Preparation

Four, 0.6 meter long, 12.5 mm deep and 15 cm wide Plexiglass beams were cut from
the same plexiglass sheet. A nearly rectangular damage zone of 2.5 mm height and lengths
of (i) 25 mm, (ii) 50 mm and (iii) 75 mm were introduced at mid-length and mid-depth of
three beams by water jet cutting. For the simply supported beams, mechanical rollers
which allowed for free rotation and axial sliding were used as supports. The beam on the
elastic foundation was simulated by foam-taping the Plexiglass beams to an optical table.
For the simply supported beam, the beam was positioned so that it was supported over 0.4
meters of its length and the damage position was at quarter span.

6.5.2 Fiber Attachment to Structure

The method of attachment of the fiber to the structure must be chosen as a conse-
quence of the expected overall behavior of the structure. For the elastically supported
beam shown in Figure 4.5, the global integrated bending strain is of the same order of
magnitude as the integrated perturbation strain due damage. For such a case, a single fiber
attached to the top surface will work. However, the theoretical results that for a simply
supported beam show that the surface strains are dominated by the global bending of the
beam. The local differential strains associated with the damage zone are 2 orders of mag-
nitude smaller than the global bending strains. For example, in order to measure a 4
radian path length change due to the damage, a 700 radian global strain would need to be
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measured (as is discussed in Section 4.6.) The problem with this measurement is that the
phase perturbation due to the damage cannot be easily discerned from the global bending
behavior of the beam i.e. in order to detect the small changes to the total phase change
caused by bending, accuracy of at least 0.5% (4 rads out of 700 rads) is needed to measure
the undamaged and damaged states. It is likely that such precise and consistent measure-
ment will fall within the error band of the measurement as the structure undergoes peri-
odic inspection over prolonged periods of time.

In order to overcome this problem, the sensing fiber arm was attached to both the top
and bottom surfaces of the beam as shown in Figure 6.8. The optical path length shorten-
ing due to the global compressive strains on the top surface are cancelled by the optical
path length increase on the tension side. The difference between the two path lengths is
the local effect of the damage. In order to prevent compression of the bottom fiber at the
support, the supports were manufactured from two separate pieces and the fiber was
passed between them.

Load
Sensing Fiber Compression

— p—

Tension
Zone

Figure 6.8: Geometric layout of sensing fiber for the simply supported beam

In all cases, the fiber is attached with 3-M Scotch tape to the plexiglass beams. Scotch
tape provides some advantages over the traditional epoxy attachment including (i) the
same sensor can be re-used for surface measurements of multiple specimens without hav-
ing to rebuild the sensor, (ii) alignment mistakes during attachment of the sensor can be
easily and quickly corrected, and (iii) the tested specimen is not modified with epoxy and
can be used for multiple boundary condition testing. The reference arm is attached to an
unloaded beam and is not changed for various tested beams.

6.6 Experimental Results

The theoretical and experimental results for various damage lengths are presented for
simply supported and elastically supported beams. The finite element method is used to
calculate the strain integrals as discussed in Chapter 4. The mechanical input parameters
into the theoretical calculation are: the beam moduli, the foundation stiffness, the applied
load and the strain transfer to the fiber. The strain transfer between the fiber and the sur-
face of the beam depends on the thickness and shear modulus of the attachment material.

To calculate the phase change, the fiber material parameters, the optical and elasto-
optical parameters, the servo and interferometer gains are needed. The sensor output
depends on the relationship between the applied voltage to the phase transducer (PZT cyl-
inder) and the corresponding fiber path length change.

Sirkis and Haslach (1990) have shown that for surface mounted optical fibers, the
strain transfer, the elasto-optical parameters and the electronic parameters are not known
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and need to be calibrated. Calibration of both the elastic, optical and electronic parame-
ters are done for one experiment by fitting the undamaged elastically supported beam
experimental results to the theoretical curve. It must be noted that for the elastically sup-
ported beam, the only two parameters needed are the ratio of beam to foundation stiffness
and a linear scaling factor which takes into account all other parameters. The relative foun-
dation stiffness is fitted using the shape of the curve for an undamaged elastically sup-
ported beam. The calibration of the elastic, optical and servo parameters is done by curve
fitting the magnitude of the servo output. Calibration for the simply supported beam needs
only one linear scaling factor.

6.6.1 Elastically supported beam

The elastically supported beam is tested by using a modulated load with peak-to-peak
magnitude of 20N and frequency 5 Hz for 30 cycles at discrete locations. After the data is
acquired, the servo-output is bandpass filtered at 5 Hz using a standard 4th order elliptic
filter with a band-pass between 4.9 and 5.1 Hz (see MATLAB Signal Processing Toolbox
for a description of the filtering technique).

Figure 6.9 shows the calibration fit between the theoretical and experimental results.
The theoretical and experimental results are compared in Figure 6.10(a) to (c). Figure
6.10(a) shows some typical features of the phase-change plots. The definitions of the
amplitude (A) and sidewidth (W) are the same as in Chapter 4. In Figure 6.9, a 0.1 change
in scaled A¢ corresponds to a total phase change of 0.4 rads. The error bands correspond
to the same test repeated 10 times

85



Theoretical
O  Experimental |

0.6f
0.5¢
0.4
Scaled 0.3

Ad
0.2

o
-

0.3 0.4 0.5 0.6

Load Position (cp/L)

Figure 6.9: Calibration of experimental and theoretical results for an undamaged elastically supported
beam. ¢, is the load position, L is the length of the beam.

Once the scaling factor is obtained from the undamaged beam, experimental data for
the damaged beam can be compared with theoretical results. For all cases, experimental
and theoretical results show good agreement. The experiments show the typical features
predicted by the theory, namely: (1) the axial position of the amplitude (A) correspond to
the centre of the damaged zone, (2) as the crack length decreases the phase change ampli-
tude decreases, and (3) the side-band width (W) corresponds to the damage length. In
order to discern the salient features (such as amplitude and side-band width) of the various
phase change signals, phase changes of the order of 0.05 rads need to be measured.
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Figure 6.10: Comparison of theoretical and experimental results for three damage lengths. (a) 2a/L = 3/20,
(b) 2a/L=1/10 (c) 2a/L=1/20, where 2a is the length of the damage zone.

6.6.2 Simply supported beam

The simply supported beam is tested by driving the test cart at 0.2 m/s corresponding
to a 2 second test, The experimental results for the simply supported beams are shown in
Figure 6.11. This figure shows fluctuations when the load is over the support for all dam-
age lengths (including the undamaged case). The error bands correspond to the maximum
and minimum scatter for the same test performed 10 times. This fluctuation can be attrib-
uted to the start-up dynamics of the moving load. In order to remove the start-up dynam-
ics from the signals in Figure 6.11, the undamaged signal is subtracted from the damage
signals as shown in Figure 6.12. The experimental results of Figure 6.12 show good
agreement with the theoretical results shown in Figure 6.13. As in the simply supported
case, the axial position and damage lengths can be predicted from a simple moving load
test. In Figures 6.9 and 6.10, a 0.1 change in A¢ corresponds to a phase change of 0.04
rads. For accurate assessment of the amplitude and bandwidth of the signals shown in
Figure 6.12, differential phase change measurements of 0.005 rads need to be measured.
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Figure 6.11: Experimental results for simply supported damaged beams subjected to a moving load. The
damage position is at beam mid-depth and quarter span.
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Figure 6.12: Experimental results for simply supported damaged beams subjected to a moving load. The
undamaged phase change (Ad,) is subtracted from the damaged phase change (Ady).
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Figure 6.13: Theoretical results for damaged simply supported beams subjected to a moving load.

6.7 Discussion on the Results for Open Damage in a Model Beam

The experimental results on model beams presented in this chapter show that a closed-
loop load-modulated interferometer can be used to measure the effect of subsurface dam-
age on simply supported and elastically supported beams. This chapter has also shown that
the required phase change sensitivity of 0.005 rads is needed for accurate location of dam-
age. In both the simply supported and elastically supported beams, the size of the delami-
nation zone can be garnered by comparing the amplitude and bandwidth of the phase-
change signal difference of a damaged and undamaged beam. The location of the dam-
age can be obtained by locating the position of the peak in the phase change signal.

The experimental results show that in order to obtain signals which do not have large
drift components, the loading can be achieved either by (1) point-wise excitation at fre-
quencies larger than 5 Hz (see Figure 6.3), or (2) by a moving load test. In order for the
signal not to be corrupted by large drift components in the moving load test, the test
should be completed faster than the drift rate. In the case when this is not possible, sev-
eral tests need to be run so that the drift components can be averaged out. The disadvan-
tage of the point-wise excitation scheme is that the test can become time consuming
depending on the desired number of load positions. The practical aspects of using load
modulation will be further discussed in Chapter 8.
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Chapter 7

COMPARISON OF POINT SENSING VERSUS PRO-
POSED METHOD FOR DAMAGE DETECTION

A brief discussion of point sensing damage detection techniques (including Bragg
Grating and Fabry-Perot sensors) was given in Chapter 2. Point sensing methods rely on
measuring the strain perturbation caused by damage at a single point and then inferring the
position and extent of damage from this measurement. This section discusses some impli-
cations of point-sensing to real-world damage detection, and compares current point sens-
ing techniques with the novel damage sensing method.

Assume a 2-dimensional plane strain structure (such as a cantilever beam shown in
Figure 6.1) loaded by a point load at its free end. The presence of any damage (shown as
an open rectangular defect at beam mid-span and mid-height) will cause a perturbation to
the undamaged strain field. The principle behind point-wise strain measurement is to
determine the position and extent of damage in the structure with a grid of point sensors.
This section attempts to ascertain the number of point-sensors that are needed in order to
insure that the damage position is accurately determined.

As mentioned in Chapters 5, the measurement of strain is greatly influenced by the
global behavior of the structure. For demonstration purposes, the following assumptions
are made in this section: (i) the point sensor only measures axial strain, (i1) a 1% strain
perturbation is needed in order to accurately resolve the strain from the global behavior of
the structure, and (iii) the damage is open. The cantilever case is used as a demonstration
example.

Fixed End
Pomt Sensing Postion Load

LR

Figure 7.1: Schematic representation of a damage cantilever beam with a grid of point sensing positions

In this analysis, we assume that at least 4 point sensors have to show a perturbation of
1% (or greater) in order to accurately ascertain both the position and extent of damage.
The iterative boundary element method described in Chapter S is used with 100 quadratic
boundary elements on the beam and 20 quadratic boundary elements on the rectangular
damage. The damage size is assumed to be 2a=L/10, the length to height ratio of the rect-
angular damage is 1/10. Since the beam is elastic and we are considering only relative
strain perturbations between damaged and undamaged structures, the results can be scaled
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by applied load and elastic modulus. Figure 7.2 shows a simplified axial strain perturba-
tion plot (in percentage deviation from the undamaged state) for the cantilever case.

oz W 1% [ 2% B 3%

Figure 7.2: Relative strain perturbation between damaged and undamaged beam.

Figure 7.2 shows that the strain perturbation area is relatively localized around the
damaged area. Performing the same analysis for different damage lengths and damage
locations shows that on average, a 1% strain perturbation occurs in an area of 1.5x(2a)*

Assuming the position of the damage is not known a-priori, and that it can occur in
any position within the beam, the number of sensors that are needed to accurately deter-
mine the location and position of the damage is given by

(Area of Structure x Number of Sensors to Locate Damage )/(1% Strain Perturbation
Area) or

n2hL KL
- 5 = 5 X =
1.5(2a) (2a)”

(7.1)

where n; is the number of sensors within the damage zone that is needed to accurately
locate the damage size and position, which is assumed to be 4 in this analysis.

For example in a civil engineering bridge beam, of span L=100ft and depth 2h=5ft,
1300 point sensors per bridge span are needed to accurately locate a damage length of 1 ft,
having assumed a 2-dimensional structure.

As an example of point sensing in an advanced composite, the 15.2 cm long glass
fiber/epoxy composite four ply unidirectional laminated plate presented by Jian et al. 1997
is studied. Since advanced composite plates tend to be thin relative to their length, and the
size of the damage is typically an order of magnitude greater than the laminate thickness,
we assume that only 1 fiber is placed in the thickness direction of the laminate. In this case
in order to detect a delamination of the order of 1 cm, approximately 40 point sensors in 2
dimensions are needed to locate a 1 cm long delamination. (It must be noted that the
anisotropic behavior of the plate is ignored in this study and should be included in a more
rigorous calculation).

This simplified analysis shows that a relatively large number of point sensors are
needed to accurately detect the position and location of damage. The problem with moni-
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toring and meaningful interpretation of the data from so many point sensors is an ongoing
focus of many research efforts (Culshaw et al., 1998).

In contrast to the point sensing method, the novel integrated sensing method described
in this thesis would require no more than 4 sensors in two dimensions (for redundancy) to
monitor the entire structure (see Chapter 4 for open crack examples). Furthermore equa-
tion 7.1 shows that the number of sensors is scaled by structure length i.e. more sensors
are needed for longer structures while the novel sensing technique is length invariant i.e.
the number of sensors does not change with length scale.
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Chapter 8

PRACTICAL ASPECTS OF OPTICAL
FIBER SUBSURFACE DAMAGE
DETECTION

8.1 Parametric Study of Method Sensitivity

This section studies some of the parameters that can influence sensor performance.
Unlike point sensing methods such as the Bragg grating method, the closed loop load-
modulated interferometer’s resolution is dictated by the photon shot noise limit of the sen-
sor discussed in Section 3.6 which is approximately 8(A¢)=5x10" rad . Chapters 4, 5 and
6 have also shown that without special data interpretation (such as differentiating the
phase change output discussed in Section 5.7) the sensor output is dominated by the global
bending effects of the structure. The global bending effects can produce outputs 1000
times greater than perturbations caused by damage. Two methods (the bridged fiber shown
in Figure 6.8 and the A¢’’ method discussed in Section 5.7) have been proposed to resolve
the phase perturbation caused by the damage from the global bending effect. For demon-
stration purposes, only the influence of sensor position uncertainties on the A¢p’> measure-
ment technique for open damage is studied in this section.

8.1.1 Sources of Measurement Uncertainty

Various sources of uncertainty can influence the performance of the sensor. These can
include (i) the uncertainty of the applied load magnitude and position, (ii) the structural
configuration including structural dimensions and variations in elastic properties, (iii) the
position of the sensor, (iv) the consistency of the attachment of the sensor to the structure,
and (v) noise in the measurement system. It must be noted that some of the typical noise
sources (assuming them to be random) such as the noise in the measurement system can
be averaged out over multiple tests. Other uncertainties such as sensor position and beam
properties are constant and can lead to erroneous interpretation of damage position and
extent.

It can be noted that without any sources of uncertaintity, the resolution of the modu-
lated interferometer which is theoretically governed by shot noise (8(A¢) = 5x107 rads), is
practically governed by environmental drift effects (8(A¢) = 1x10™ rads at 5 Hz). For dem-
onstration purposes, consider a 200 mm long, 20 mm deep, cantilever beam with elastic
modulus = 70 GPa, Poisson’s ratio = 0.3, subjected to a moving point load. The optical
properties are the same as described in Section 4.6 and the sensor is assumed to be surface
mounted, The beam is assumed to have open damage at its mid-depth and mid-length. A
moving load equal to 4.5 kN (corresponding to a maximum strain of 200 u€) is applied to
the structure. For adequate resolution of the damage, let it be assumed that the environ-
mental drift effect at 5Hz load modulation is 8(A¢)=1x10"* rads and that in order to
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resolve the damage a maximum phase perturbation due to the damage is 1x1072 rads is
required. Calculations for this case shows that the smallest damage length that has a phase
change greater than 1x10°2 rads is approximately 2 mm (i.e. 1/10 of the beam height). It
must be noted that increasing the modulating frequency would further decrease the envi-
ronmental effects up to the shot noise limit of the interferometer, and would allow for
increased resolution.

8.1.2 Uncertainty Analysis

Assume the mean sensor position to be placed at position (s,,) above the neutral axis,
with a Sp uniform harmonic spacial fluctuation as shown in Figure 8.1(a) for maximum
sp=1%. The A¢” sensor output for a virgin simply supported beam as studied in section
5.8 is then given by Equation 5.34 with s=s,,+s, and s,,=0.6h as shown in Figure 8.1(b).

0.61 —a 0.7 o
0.605 0.65
Y %06
0.595| 0.55
0.59

— 0.5
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load Position (x/L) Load Postion (cp/L)

Figure 8.1: (a) A 1% random fluctuation in sensor position, and (b) the corresponding sensor output A¢”* for
a virgin beam

Differentiation of equation 5.34 with respect to load position includes differentiation
of the sensor position variables (s) and beam properties (EI) and can lead to erroneous sen-
sor output. The output of the sensor is strongly dependent on the actual axial variation of
the sensor position. Figures 7.4 (a2, b2 and c2), show the output of the sensor to open
damage for the simply supported beam that was studied in Section 5.8 for various sensor
position distributions as shown in Figures 7.4 (al, bl and c1).
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Figure 8.2: (al, bl, and c1) Various sensor shape variations, and (a2, b2, and c2) A¢”’ sensor output for cor-
responding sensor input.

Figure 8.3 shows the A¢”’ sensor output for the case shown in Figure 8.2(a) but with a
10% amplitude variation in sensor position. Figure 7.5 shows that the position of the dam-
age can still be determined but even with a 10% misalignment of the fiber. Figure 8.2 and
8.3 show that the sensor output is depended on both the transverse shape variation of the
sensor position and the actual amplitude of the variation. For practical purposes this means
that in order to avoid misinterpretation of the sensor output, the optical fiber should be

kept as straight as possible during attachment (either when surface mounted or embedded)
to the structure.
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Figure 8.3: A¢”’ Sensor output for a 10% variation in sensor position (s)

8.2 Mechanical Load Application

For the testing of practical structures, the method of load application is dependent on
(1) the type of structure being tested, (2) the length of the tested member, (3) the environ-
mental conditions during testing, (3) the available equipment for load modulation.

In general, the loading frequency and magnitude has to be significantly high to allow
for only small errors to be introduced into the measurement from environmental effects.
This can be achieved either through load modulation of by moving the load at sufficiently
high speeds thus allowing for only small environmental drifts during the testing period.
For long structures such as bridges, the testing speed might not be great enough to over-
come the environmental drift effects and load modulation might be applicable. For shorter
structures such as composite wings, the moving load method might be suitable. In both the
moving load and load modulation cases, care must be taken so as to not dynamically
excite the structure which may produce erroneous signals in the sensor output. The fre-
quency and magnitude of the load modulation is dependent on the mechanical actuator
which provides the load modulation. For example unbalanced rotating machinery might
be able to provide relatively high frequencies with relatively low magnitudes while pneu-
matic actuators can provide large loads at lower frequencies. The designer of the novel
fiber-optic technique has to select the correct actuator frequency and load magnitude for
the particular structure and environmental conditions under which the structure will be
tested.

8.3 Conclusion

This section has shown that the damage resolution ability of the sensor depends on the
environmental drift at the modulating load frequency, and on the production control during
beam manufacturing (including beam dimensions, material consistency and sensor posi-
tion). This section has also discussed some practical implications of load application.
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Chapter 9

SUMMARY AND FUTURE WORK

9.1 Summary

The work presented in this thesis has concentrated on the development of a novel dis-
tributed fiber optic based sensing technique which can unambiguously identify both the
location and extent of subsurface structural damage. Theoretical and experimental valida-
tion of the proposed method has been presented for the case of open cracks. The focus of
this thesis has been on the characterization of the effect of damage position and damage
size on sensor performance. The traditional problems of environmentally induced drift
associated with all sensors has been overcome through modulated mechanical actuation.
Due to the high resolution of phase change detection required by this technique, a closed
loop interferometer has been shown to be one of the few viable sensors for distributed
damage detection.

The theoretical feasibility of detecting closed cracks by the novel damage detection
method is also presented. A computationally efficient iterative boundary element method
has been developed for the solution of closed crack problems. This numerical method has
been used to characterize the sensitivity of the detection method in locating closed cracks.

Some practical aspects of damage detection such as resolution issues and sources of
uncertainties have also been addressed.

9.2 Original Contributions

Several original contributions have been made both in the study of damage and the detec-
tion thereof. These contributions include:

(1) The development of a novel integrated interferometric technique for subsurface
damage detection. The method relies on monitoring the output of a closed loop interfer-
ometer, which measures integrated strains along the whole length of the structure, as a
load is moved across the tested component. The method has been shown to accurately and
unambiguously predict the extent and location of damage.

(2) The theoretical characterization of the sensor performance to the detection of open
and closed subsurface damage of various locations and extent. Theoretical sensor outputs
have been calculated for various damage positions, lengths and crack face contact condi-
tions.

(3) The practical incorporation of a sensitive load modulated closed-loop integrated
fiber-optic technique for sub-surface damage detection. Experiments performed on open
damage beams (both simply and elastically supported) have shown that this novel sensing
method can predict the extent and location of damage. A load modulation scheme has
been shown to overcome the environmental drift (such as those caused by temperature) in
the sensor.
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(4) The development of a new efficient iterative boundary element method for the
solution of closed crack problems. The method relies on separating the cracked-body
problem into two sub-problems. The first sub-problem consisting of the body without the
crack, the second sub-problem consisting of the crack in an infinite domain. The two sub-
problems are linked through iteration until all boundary conditions of both sub-problems
have been satisfied. The new iterative boundary element method has been shown to be on
the order of 10 times faster in solving contact problems than the traditional displacement
discontinuity boundary element method.

(5) A comparison of the novel technique with traditional point sensing techniques.
This comparison shows that the for traditional point sensing techniques to be successful in
locating the position and extent of damage, the whole length and height of the tested struc-
ture would need to be instrumented. The novel integrated fiber-optic technique allows for
damage detections at any position along the fiber and thus significantly reduces the num-
ber of sensors needed for damage monitoring.

9.3 Future Work

Realistic subsurface damage in structures tends to occur in relative geometrically compli-
cated three dimensional patches. Subsurface delamination damage is also typical for
multi-layer composite structures.

Future theoretical feasibility studies should concentrate on (1) developing models to
accurately assess delamination patches in three dimensions, and (2) the study of damaged
layered anisotropic materials. The new iterative boundary element method described in
Chapter 5 can be readily extended to include the analysis of three dimensional structures.
Dislocation density functions have been found for 3-D structures and near 3-D interfaces
for different materials (Hills et al. 1996) . Dislocation density function have also been
recently found for general layered two dimensional anisotropic materials (Blanco et al.
1995). The problem with the dislocation density and displacement discontinuity methods
for layered 3-dimensional anisotropic material is that the influence functions become very
complicated. The general method of solving layered 3-dimensional anisotropic material
problems is in the FEM framework (see for example the work of Choi and Chang, 1992
that deals with delamination damage in 3-dimensional graphite epoxy plates). As previ-
ously stated the problem with the FEM is that the whole domain needs to be discritized
and this solutions tend to be slow. It is possible to extend the iterative method discussed in
Chapter 5 to solve the global structural problem independently of the crack problem which
could lead to considerable improvements in solution speeds since the global problem
could be coarsely discritized.

The experimental validation of the proposed sensing method should concentrate on (1)
the study of composite materials with typical delamination damage, and (2) the experi-
mental validation of the theoretical results for closed cracks. Experimentally delamina-
tions have been introduced into composites in a variety of ways including (1) low velocity
impact (Choi and Chang, 1992), (2) static induced damage (Beard and Chang, 1997), and
(3) the inclusion of teflon tape or silicon grease between layers to simulate delaminations
(see for example Jian et al. 1997). The problems with the impact and static damage meth-
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ods is that the induced damage typically occurs in complicated 3-dimensional geometries
which is difficult to categorize and to include into a theoretical model. The problem with
the inclusion (teflon for example) is that the formed voids tend to be open which is not
characteristic of real delaminations. One experimental method to introduce simplified
delaminations into composite structures is to use the silicon grease inclusion method and
to apply a static pressure to the structure in order to cause the crack to close.
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Appendix A

Quadratic Displacement Discontinuity Influence Func-
tions

The displacement and stresses at a point (x;,y;) due to a quadratic displacement discon-
tinuity centered at (xj,yj) with length (-a,a) and nodes at [-B;0;B] where B=b*a; are
derived from Battacharyya and Wilment (1988) and are given by:

U(;,¥)) = IB 13y Dy(-B)+UB 3 D (0)+)B1334(B)+7B 5 Dy (-B)+ By, D (0)+ /B3, (B)
Uy(x;,¥}) = IB 1 yxDy(-B}+IB 5,y D, (0)+B134(B)+IB 1 Dy (-B)}+1B,, D, (0)+1B3,(B)

UB ) 5 =1/2/B%(-(3-2v)(2x-B)yfr+H(2(1-V)X(x-B)-2(2-V)yD)f3-(2x-B)y*fy-(x(x-B)-y)yfs-(3-2v)ay/2/m/(1-v))

UB 1oy =1/2/BA(-(1-2V)x(x-B)+(3-2v)y2)fp-2(1-v)(2x-B)yf3-(x2-Bx-y)yf,H2x-B)y*fs-(1-2v)a(x-B)2k))

UB ) =1/2/B2((1-2v)(2x-B)yfo+H2(1-V)x(x-B}+2vy ) 5+(2x-B)y* £, H(x (x-B)-y?)yfs-(1-2v)ay/2/n/(1-v))

fJ_B lyy= l/?jBZ((( 1-2v)x(x-B)+(1 +2v)y2)f2-2v(2x-B)yf3-(x(x-B)—y22)yf4+(2x-B)y2f5+( 1-2v)a(x-B)/2/n/(1-v))
0B, o =1/BA2(3-2V)xyfy H2(1-V)(B2-x2)+2(2-V)yD)f3+2xy 26, Hx2-B2-y?)yfs+(3-2V)ay/2/m/(1-v))

5B ny=1/B2((1-2v)(x2-B?)-(3-2v)y ), +4(1-V)xyf3+(x2-B2-y?)yf,-2xy*f5-+(1-2v)ax/2/m/(1-V))

B, yx=1/B2((1-2V)(B2-x?)-(142v)y )y Hvxyf3Hx2-B2-y?)yfy-2xy*fs-(1-2v)ax/2/m/(1-v))

By =1/B2(2(1-2v)xyfH2(1-V)(By-Xp)-2vy ) f3-2xy*f4-(x>-B2-y2)yfs+(1-2v)ay/2/m/(1-v))

1B =1/2/B2(-(3-2v)(2x+B)yf,+(2(1-V)X(x+B)-2(2-n)y ) f3-2x+B)y’f,- (x(x+B)- y2)yfs-(3-2v)ay/2/n/(1-V))
B3,y =1/2/B2(-(1-2V)x(x+B)+(3-2v)y2)f,-2(1-V)(2x+B)yf3-x>+Bxy?)yfs+(2x+B)y f5-(1-2v)a(x+B)/2/m/(1-v))
5B 3y x=1/2/B2(((1-2V)X(x+B)H1+2v)y2)f,-2v(2x+B)yf3-(x(x+B)-y)yf,+(2x+B)y*fs+(1-2v)a( x+B)/2/m/(1-))
B3, =1/2/BX(-(1-2v)(2x+B)yf+H2(1-V)X(x+ B}+2vy )3 +(2x+ B)y 4 HX (x+B)- y2)yf5-(1-2v)ay/2/m/(1-V))

Ox(%;¥)) = YA | Dy (-BI+IA 4D, (0)+3A s, (B)+UA 1, D (-B)+IA,, D (0)+1A, (B)
oy(x;yj) = ‘Ji,«_\lnyx(-B)+‘J;}2YXDX(0)+‘JAim(s)wAllyyoy(-s )+'JA2Y¥DY(0)+‘JA3yyi(B)
Oy (Xpp¥) = IA 4y Du(BYHIA 3, D, (01+7A s, (B)+IA 1y Dy(-B)+IA0, D (0)+A 3, (B)

UAA | =G/BX(-6yfy+2(2x-B)f3+2(x(x-B)-3yHf4-4(2x-B)yfs+Hx(x-B)-y)yfe+(2x-B)y*f;)
fJ_A1xy=G/Bz(-(2x-B)f2-4yf3-3(2x-B)yf4-(x(x-B)-5y2)f5-(2x-B)y2f6+(x(x—B)-y2)yf7-a/1t/(l-v)/2)

A yx= G/B22yfy+4y*i4+2(2x-B)yfs-(x(x-B)-y)yfe-(2x-B)y*fy)

A 1yy=G/BX(-(2x-B)f2+(2x-B)yf4-(x(x-B)+3y)fs+(2x-B)y fe-(x(x-B)-y2)yfy-a/m/(1-v)/2)

?A lxyx=G/B2(-(2x-B)f2-4yf3-3(2x-B)yf4-(x(x-B)-5y2)f5-(2x-B)y2f6+((x(x-B)—y2))yf7-al1tl(]-v)/2)

B A 1xyy=G/B22yfy+Hy*f4+2(2x-B)yfs-(x(x-B)-y2)yfe-(2x-B)y’f;)

TAA,x = 2G/BX(6yfy-4xf3-2(x2-B2-3y?)f +8xyfs-(x*-BL-y?)yf6-2xy?f7)

YA A,y = 2G/BA(2xEx+4yfi+6xyfy+(x2-B- 5y )fs+2xy fs-(x*-B2y?)yfrra/mu/(1-vo)/2);

UAA = 2G/B2(-2yf2-4y2f4-4xyf§+(x2-Bz-yz)yf6+2xy2f-,)

YA A,y =2G/B2(2xfy-2xyfs+(x>-B243y7)f5-2xy*fe+(x2-B>-y*)yfrra/mi/(1-vu)/2)

UAA 2y x=2G/B2(2xfx+4yf3+6xyf Hx2-B-Sy ) s+2xy fs-(x>- B2y )yfrrami(1-vo)/2);

UA A4y =2G/BA(-2yfy-d4y>f4-4xyfs+(x*-B2-y?)yfs+2xy’f7)

5 A A3 =G/B(-6yf,+2(2x+B)f3+2(x(x+B)-3y2)f4-4(2x+B)yf5+H(x(x+B)-yD)yfe+(2x+B)y>f7)

A A3, =G/B2(-2x+B)f,-4yf3-3(2x+B)yf4-(x(x+B)-Sy))fs-(2x+B)y’fH(x(x+B)-y?)yf7-a/m/(1-v)/2)
YAA3yx= GIBX2yfy+4y*fy+2(2x+B)yfs-(x(x+B)-y))yfs-(2x+B)y*fy)

A A3y =GB2(-2x+B)fy+H(2x+B)yfy-(x(x+B)+3y ) s+2x+B)y*fs-(x(x +B)-y?)yf7-a/m/(1-v)/2)

A A3y x=G/B(-(2x+B)fy-4yf3-3(2x+B)yfy-(x(x+B)-5y*)fs-(2x+B)y fcH(X (x+B)-y))yf;-a/m/(1-v)/2)
UAA 3y, = G/B?2yfy+4y 4 +2(2x+B)yfs-(x(x+B)-y))yfs-(2x+B)y’f;)

where

X=X;-X; and y=y;-y;

Kk =1/m/(1-v)/4;

fy=k (log(r;)-log(r,))

fy=-k, (-arctan((x-a)/y)+arctan((x+a)/y))
3=k, (y/r; " 2-y/r27%)

fs=k ((x-a)/r) 2-(x+a)/r,2)

fo=k, ((x-a)>-y2)/ry *-((x+2)>-y?)iry?)
£=2yk (x-a)lr  *-(x+a)ie, )

rl=((x-a)2+y2)0’5 and r2=((x+a)2+y2)°'5
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Appendix B

Dislocation Influence Coefficients
The stress and displacement influence coefficients in Equations 4.6 to 4.9 are given by

-y, =2 -2
Grx = 23X +y) (B.1)
r
x.-2 -2
Gy = 5(x =3) (B.2)
r
Yy -2 -2
nyy = l‘;(x -y) (B.3)
r
x -2 -2
Gy = (X +3Y) (B.4)
r
X -2 -2
Gy = 2(x =3 (B.5)
r
y.-2 -2
ny)' = 14()( -y ) (B6)
r
Uy = (x+1)0+ 22 ®B.7)
r
2—2
U,y = —(x-1)logr- = (B.8)
r
2%
U).x = —(1 —K)logr—7 (B9)
U = (x+1)0—2% (B.10)
Y 2

r

where x = x-x,,y = y-y,, 1’ = (x—=x)* +(y-y,)’ and O is the angle shown in Figure
5.3.
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