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Abstract

A distributed simulation environment, which can be used to model multibody physics,
is developed. The software design is based on the object oriented paradigm and is
implemented in C++ to run on a single workstation or multiple processors in parallel.
It provides facilities to set up a multibody physics simulation, including arbitrary 3D
geometric representation, particle interactions such as contacts and constraints, and
visualization for postprocessing.

Contact detection, the process of automatic identifying the geometric overlap be-
tween objects, is generally the most time-consuming procedure in the overall discrete
element analysis pipeline. The computational cost of contact detection grows as a
function of both the number of particles and the complexity of the geometric repre-
sentation of each body. This thesis presents algorithms that significantly reduce the
computational cost of the contact detection problem. The hashtable-based spatial
reasoning algorithm demonstrates an O(M) performance, where M is the number of
particles in the simulation system for a restricted set of particles.

The discrete function representation (DFR) scheme is employed to model the
surface geometry of complex 3D objects. DFR-based contact detection between a
pair of objects exhibits an O(N) running time performance, where N is the number
of surface point used to represent each object. In practice this results in a significant
speedup over traditional techniques.

A distributed DEM simulation environment is built on top of a set of software
tools which exploit the parallelism embedded in the DEM analysis and which take
advantage of a high-speed communications network to achieve good parallel perfor-
mance. The goal is of reducing the entire computing time of of large-scale simulation
problems to order O(N) is shown to be achieveable using the algorithms described.

Thesis Supervisor: John R. Williams
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Recently, the discrete element method (DEM) has emerged as an attractive approach

for scientists and engineers to study materials and systems at the granular and par-

ticulate level where the traditional numerical methods have been unsuccessful. For

example, the fundamental aspects of the behavior of granular materials can not be

accurately simulated using these traditional methods because of the assumption of

material continuity inherent in their derivation.

To set up a physical experiment to study materials at the granular level is a

difficult task. Using the discrete element techniques, reseachers can investigate the

behavior of materials at the microscopic level. In order to analyze systems at the

particle level, the simulation has to be able to deal with thousands or even millions

of objects. Scientists have attempted to model how materials crack at the atomic

level by using millions of particles and parallel computation [1]. There are several

important research issues that must be addressed in developing a simulation capable of

analyzing large number of particles, especially if the particles have complex geometric

shape and internal state. This thesis identifies and address the computational issues

of building a DEM simulation that can operate on today's workstation.



1.1.1 Problem Description

The number of particles which can be analyzed is limited by the available computing

resources. As a result, most discrete element simulations have focused on small scale

problem with hundreds or thousands of particles, often idealized in two dimensions.

The goal of this thesis is to develop efficient approaches to reducing the computational

complexity of the discrete element algorithms. Our goal is to be able to handle

approximately one million bodies in a full three dimensional simulation.

It is generally acknowledged that the collision detection is the major computa-

tional bottleneck in DEM simulations. In order to facilitate the DEM simulation, we

seek highly efficient collision detection algorithms to reduce the required computing

time to an acceptable level. We will show a simple example to illustrate the need for

efficient methods of contact detection.

1.1.2 Example

Suppose that we have a system composed of M objects and each object is represented

with N surface points in 3D. If there is no efficient algorithm involved, then the

computational complexity of correctly detecting all the geometric overlaps between

particles is given by Equation [1.1].

Computational Complexity of all - to - all check = O(M 2N 2) (1.1)

For instance, if we simulate a system with 10,000 particles, and each particle

is described by 1,000 surface points in 3D and we have a fast computer which can

perform an operation in 10-6 seconds, then, it will take 3 years to perform the contact

detection of a single timestep as shown in Equation [1.2]. It is obvious that this kind

of approach is not acceptable and we must invent more efficient algorithms.

M 2 N 2/(time of operation) = 108 seconds 3 years. (1.2)



The spatial heapsort algorithm was developed to enhance the performance from

O(M 2) to O(MlogM) [37]. Also, the computational cost of checking the intersection

of a pair of particles is varied depending on the data structure chosen to represent the

object geometry. The typical geometric representation schemes, such as polygon or

surface patches, commonly used in computer graphics research, are not optimal for

DEM because of their inefficiency in contact detection. Instead, we use an alternative

called the discrete function representation (DFR) [37] which gives O(N) performance,

where N is the number of surface points. By combining the spatial heapsort algorithm

and DFR, we can reduce the computing time to about 2 minutes, as shown in Equation

[1.3].

(MlogM)(N)/(time of operation) = 132 seconds (1.3)

In this thesis, a hashtable-based spatial reasoning algorithm which demonstrates

O(M) performance is developed and implemented, which further reduce the com-

puting time for contact detection. Using the same example described above, the

computing time is reduced to only 10 seconds for a single step, as shown in Equation

[1.4].

MN/(time of operation) = 10 seconds (1.4)

From the above discussion, it is apparent that for large-scale problems comprising

thousands of three dimensional particles, efficient contact detection algorithms are

required.

1.2 Thesis Objectives

This thesis develops a distributed computing environment for multibody physics sim-

ulation based on the discrete element method. It includes a set of algorithms that



significantly reduce the computational time required in DEM simulation as well as

some auxiliary functionalities, such as visualization, to provide a complete simulation

environment.

The following issues are addressed in this thesis, which are central to the research

of discrete element methods, especially from a computational perspective.

* The implementation of an object representation scheme to model 3D objects

with arbitrary geometric shape. The discrete function representation (DFR) is

a high-performance scheme particularly desirable for contact resolution.

* The development of an efficient hashtable-based three-dimensional contact de-

tection algorithm, which demonstrates O(M) performance, where M is the num-

ber of particles in the system. This algorithm is restricted to bodies of similar

size. However, this restriction can be removed if large objects are divided into

sub-regions.

* The enhancement of the original sequential algorithm to perform contact detec-

tion in a distributed and parallel fashion. In order to surpass the computational

barrier associated with large-scale DEM problem, implementing a the parallel

processing strategy has proved to be an effective approach.

* The software framework for the simulation environment. Object-oriented tech-

nology has been applied in designing the software. It provides a highly organized

structure, particularly in terms of implementation and maintanence of the soft-

ware.

The principal objective of this thesis is to develop a high-performance simulation

environment and computational framework based on discrete element methods so

that the behavior of granular materials at the microscopic level can be investigated

with the minimum computing resources.



1.3 Discrete Element Method

Until recently, continuum models of materials have dominated the analysis of their

behavior. Nevertheless, a number of numerical methods which start at the microscopic

level have gained attention recently. These technologies include discrete element,

cellular automata, lattice gas, molecular dynamics, and percolation models. They

offer a complimentary view of the physics of material behavior to the traditional

techniques, such as the finite element method.

Conventionally, engineers attempt to formalize their model by deriving govern-

ing differential equations to describe or idealize the behavior of the material. The

assumption that the material is a continuum involves an averaging of parameters,

such as density, over space and is based on the concept of a representative elementary

volume (REV). This leads to a governing differential equation which includes a con-

stitutive relationship defining the response of the material to external physical loads.

To fully specify the model we also need to define the initial and boundary conditions

so that we can derive a solution in terms of space and time.

However, this kind of "top-down" approach of treating the material as a contin-

uum described by a set of governing differential equations is not necessarily sufficient

to explain the behavior of granular materials. Alternatively, the "bottom-up" ap-

proach that views the material as composed of distinct bodies, provides a solution

for this kind of problems. As long as we can ensure that the microscopic behavior

of the material is correctly described, it is rational to conclude that the emergent

macroscopic behavior exhibited in the DEM simulation is also correct.

A DEM analysis can be decomposed into four computational modules described

as follows:

* Geometry

Specify the object geometry, boundary conditions, and physical environment.

It provides support for the generation and representation of a general class of



3D objects.

* Contact Detection

Automatically identify the object pairs which overlap with each other. It pro-

vides a mechanism to automate contact detection between the objects.

* Physics

Calculate forces and integrate the motion to update the position of objects.

* Visualization and Data Analysis

Show the animation results of the analysis. Provides support for user interaction

with the simulation and incorporate channels for visualization and temporal

characterization of multibody simulations. Output the state of each object

with time.

These items encapsulate the components of an DEM analysis pipeline which is

represented in Figure [1-1]. According to Williams and Pentland [53], the major

characteristics of discrete element methods can be summarized as follows:

* Simulates large displacements and rotations of disjoint bodies.

* Automatically identifies the occurence of contact between pairs of objects during

the simulation process. This process is known as contact detection.

In Figure [1-2], we list the potential applications of DEM [23]. Generally, the

DEM provides a complimentary numerical analysis approach to traditional methods,

such as finite difference and finite element analysis.

1.4 Computational Requirements in DEM

The DEM simulation is a highly computational intensive procedure. Without efficient

numerical algorithms, the entire process can be too expensive to tackle on today's



Geometry Contact Collision Visualization
(sphere, Detection Response (Open

plane, (spatial based on Inventor +
DFR) reasoning Newtonian VRML)

and contact Physics
resolution)

Figure 1-1: DEM analysis pipeline

computers. To make the DEM a practical tool for engineers, from the computational

persepctive, the following important requirements need to be satisfied.

1.4.1 Object Representation Requirements

In the DEM simulation environment, since all physical entities are represented by

discrete objects, it is essential to provide a compact and versatile object represen-

tation scheme that allows the user to define arbitrary geometric shapes of bodies.

In computer graphics and computational geometry research, there are many geome-

try representation methods, such as, polygonal models, constructive solid geometry,

implicit surface, and parametric surfaces, that have been proposed for different appli-

cations [28, 29, 34, 31]. However, the polygon-based representation is not suitable for

DEM simulation because of its inefficiency in contact detection. In DEM, the object

representation scheme should not only be able to describe the geometry accurately,

but also needs to be helpful in collision detection.



* Offshore platforms and vessels in sea ice

- Iceberg-bottom founded structure interaction

- Icebreaker and tanker interaction with sea ice

- Seabed scouring by ice features and impact on pipeline stability

- Arching and flow studies of ice in seaways, platforms and bridge legs

- Explosive fracture of sea ice

* Behavior of soils, rocks, and granular materials

- Macroscopic constitutive behavior from microscopic granular structure

- Rock pit slope stability behavior

- Underground structure stability in jointed rocks

- Study of earthquake mechanisms and plate tectonics

- Liquification under dynamic loading

* Impact and explosive dynamics

- Automobile crash simulation

- Blast survivability studies

* Mechanical behavior

- Metal forming

- Interaction of machinery components

- Analysis of linkages and chains

- Vibration control and feedback studies

- Fracture mechanics

Figure 1-2: Areas of application for the discrete element method



1.4.2 Contact Detection Requirements

Profiling the computational time in each phase of DEM simulation indicates that

collision detection is the major computational bottleneck. As we saw in the previous

example in Section 1.1.2, it is important to efficiently perform contact detection.

In addtion to the DEM, other application programs, such as CAD and analysis, of-

ten require automated reasoning about the spatial geometry of objects. For example,

numerical analysis, computer animations of physically based simulation, CAD-CAM

systems, path planning and control applications in robotics all require the determi-

nation and examination of multi-body interactions, [52, 55, 45, 41, 46, 18, 35, 39].

1.4.3 Contact Resolution Requirements

In order to simulate collision between bodies it is necessary to apply forces between

the objects at the in contact surface. The collision response can be achieved in various

ways and several algorithms have been proposed for different applications [35, 54, 4].

In this case we choose to use a Penalty Function formulation [37]. The contact

resolution problem is concerned with computing the equal and opposite impulses

that should be applied to the colliding objects, based on Newtonian mechanics. For

particles with complex geometric shape, it is required to calculate the parameters,

such as the mass, the location of center of mass, moments and products of inertia

relative to the center of mass, etc. The volume integration scheme is introduced to

provide this information. Here, all physical objects in the simulation are assumed

perfectly rigid, although DEM simulations with deformable bodies are possible [40].

In Chapter 3, we will describe these requirements in details.

1.4.4 User Interface and Visualization Requirements

It is essential for the simulation program to provide a user-friendly interface for the

engineers to enter the data, interact with the program, interprete the output, and



visualize the results in an integrated fashion. In this thesis, a simulation description

language is developed to ease the burden of input. Also, a versatile 3D visualization

post-processor allows the engineers to not only graphically view the results in any

direction, but also to provide a variety of color-coding schemes to highlight different

physical properties or states of the object. For example, the velocity of the body can

be linked to the object color.

1.5 Characteristics of the DEM3D Simulation Sys-

tem

In this section, the basic functionality and general DEM simulation procedure of

running an application using the DEM3D simulation environment is introduced. In

Figure [1-3], we list the sequence of completing a single DEM simulation procedure.

1.5.1 Basic Functionality

Performing a DEM simulation requires the specification of the following items.

* Geometric Representation of Objects

For example, sphere, plane, and arbitrary shape of 3D geometry.

* Constraints

Bonding, cohesion, and collision.

* Material Properties

Stiffness, damping factor, friction, and so on.

* Simulation Parameters

Timestep, gravity, resolution, and so on.

* Visualization

Parameters for visualization, such as scale of x,y,z-direciton.



1.5.2 Object-Oriented Technology

The object-oriented technology has emerged as the mainstream paradigm in the pro-

gramming community nowadays. Instead of dealing with data and function sepa-

rately, the object-oriented modeling and design emphasizes object, which is a high-

level abstraction of data together with operations on the data. In general, the object-

oriented technology is characterized by the following three attributes:

* Encapsulation (abstract characterization of objects)

* Inheritance (code sharing)

* Polymorphism (run-time binding of operations to objects)

With the features mentioned above, the overall software design is more structured

and maintenance becomes less complicated. The object model of the DEM3D system

developed in this thesis is illustrated in Figure [1-4].

1.6 Distributed and Parallel Implementation

With the advent of powerful multiprocessor workstation and high-speed communi-

cation network, it has become advantageous to migrate from the traditional sequen-

tial programming model to the parallel counterpart. The hardware advancements

provided by the powerful multiprocessor server and well-developed parallel program-

ming software standards, such as, the message passing interface (MPI), offers a well-

structured framework for integrating distributed computing resources into a simu-

lation. These standards allow trasmitting and managing the data between a set of

processors via a communication network. The characteristics of parallel and dis-

tributed computing and details of the implementation are described in Chapter 5. In

Figure [5-7], we show the current configuration of the local area network, which has a

high-speed 100MBits/sec Fast Ethernet switch, an SGI server, workstation, and PC

server are capable of exchanging data rapidly.



1. Specify system parameters

2. Initialize graphics subsystem

3. Create particle objects

4. Define material properties

5. Assign system parameters

6. for each timestep

(a) Run spatial reasoning algorithm to determine all candiate pair-
ings

(b) for each candidate pairing

i. Perform the detailed check

ii. Apply the physics based on Newtonian mechanics

(c) Increment the timestep by 1

Figure 1-3: Generic DEM Simulation Procedure

1.7 Review of Other DEM Systems

In the past few years, a wide variety of DEM systems have been implemented for

various applications using different representations for the individual elements. In

applications areas, such as soil mechanics, rock and ice mechanics, process engineering

and granular flow, mining and blasting, and physically-based modeling and animation,

some DEM systems have been designed to fit their application-specific needs. An

excellent review of a variety of DEM simulation systems can be found in [37].

1.8 Thesis Outline

The major software components of a discrete element system are the object represen-

tation, contact detection, and physics and visualization. Chapter 1 gives an overview

to these four key modules and discuss the corresponding computational requirements



Figure 1-4: The Object Model of DEM3D system

of each component.

In Chapter 2, we deal with the spatial reasoning algorithms for contact detection.

One is the spatial heapsort method, which has O(M log M) computing complexity.

The other is the hashtable-based spatial reasoning algorithm, which exhibits O(M)

performance.

Chapter 3 describes object representation scheme with emphasis on the discrete

function representation (DFR). The superquadratic representation is introduced first

to describe the rationale behind the DFR method. The incremental collision reso-

lution scheme and contact table data structure are also introduced to deal with the

collision response problem.

Chapter 4 covers the implementation issues of the simulation environment, in-

cluding visualization graphics, such as Open Inventor graphics library and Virtual

Reality Modeling Language (VRML), a matrix transform library for geometric trans-

formation operations, and a simulation description language based on the Tcl/Tk

toolkit.

one-to-one

A
subclass

0
one or multiple



Chapter 5 presents the extension of the original system to a parallel version. A

brief introduction to the parallel computing paradigm and programming models is

given first. The Message Passing Interface (MPI) system, an emerging standard

language for parallel computation, is used as the vehicle to perform the data commu-

nication in the distributed simulation system. The overall parallel efficiency is shown

to be satisfactory.

Several sample applications, including dynamic impact simulation, contact damp-

ing, sandglass, collapse of embankment, stress wave propagation, particles rolling on

a slope, fracture of a fixed-end beam, and DFR packing are presented in Chapter 6

to demonstrate the performance and capabilities of the simulation system.

Finally in Chapter 7 conclusions about the research are summarized and prospec-

tive future research directions are discussed.



Chapter 2

Algorithms for Spatial Reasoning

2.1 Introduction

As discussed in Chapter 1, the most computationally demanding process of the dis-

crete element method-based simulation is the contact detection. It is estimated that

contact detection occupies 85-90% of the overall computing time. As a result, we focus

on this problem and propose algorithms which dramatically reduce the computational

cost. In order to efficiently sort out the spatial relationship among the particles, we

develop and implement two algorithms in this chapter aimed at significantly reducing

the computational time.

Basically, the entire contact detection process can be subdivided into a spatial

ordering phase and a contact resolution phase. During the spatial ordering phase,

the contact detection algorithm has to figure out what particle pairings are possibly

in contact with each other without having to exactly estimate where the contact point

is. In other words, in this phase, as long as two particles are close based on some

given criteria, we consider it is a candidate pair that requires further checking. Enter-

ing the contact resolution phase, the algorithm computes the details on the contact

geometry the and resolves the physical interaction between the contact pairings based

on Newtonian mechanics.



During the spatial ordering phase of contact detection process, spatial reasoning

algorithm determines which pairs of particles should be considered for the further

processing in the contact resolution phase. The goal at this stage is to avoid an

exhaustive brute-force check of all pairings and thereby reduce the computational

cost. Once the spatial ordering of the objects is complete the algorithm identifies all

the possible candidate pairs of objects which may penetrate into each other based

on a criterion, such as bounding box or bounding sphere overlap. The issues of the

spatial ordering phase contact detection are investigated further in this chapter. The

detailed checking phase is discussed in Chapter 3.

One is the spatial heapsort scheme, named after the computing method and data

structure used in this algorithm. By sorting the ordinates of the particles in each

dimension, the algorithm decides which pair of particles is close enough to each other

and requires further detailed check. As compared with the naive all-to-all check

algorithm described in Chapter 1, this method reduces computing complexity from

O(M 2 ) to O(MlogM) , where M is the total number of particles in the simulation

system.

The other algorithm is the hashtable-based spatial reasoning scheme, have called

spatial hasing, named after the data structure used in this algorithm. In the spatial

hashing algorithm, the space is subdivided into a grid of cells based on the radius of

the largest particle in the system and each body is assigned to a cell based on the

hashing of its centroid coordinate. Independent of the particle density, this algorithm

demonstrates O(M) computing complexity, where M is the number of particles in

the system.

The general requirements for designing high-performance contact detection algo-

rithms are as follows:

* Robustness

Robustness, in this context, means the stability of the algorithmic performance

over a wide range of problems. A robust algorithm will exhibit good perfor-



mance over all cases. No matter what the composition and distribution of the

particles in the system, a robust algorithm should exhibit a good performance.

* Correctness

A correct spatial reasoning algorithm should be able to identify all geometric

overlaps within a given timestep. For simulation, the collision detection algo-

rithm is only invoked at discrete sample times. No matter what the minimum

sampling period of the collision detection system, one can choose a particle

speed such that the particles entirely pass through with each other between

collision checks. In our DEM simulation environment, the time step is chosen

so that this cannot occur.

* Performance

In theory, the performance of a spatial reasoning algorithm is a function of the

number of partilces in the system. The naive all-to-all check procedure has

computational complexity O(M 2), where M is the number of particles. The

hashtable-based spatial reasoning algorithm shows a linear relationship between

computing time and the number of particles. This is a significant improvement,

particularly as M grows large.

* Parallelizability

A high-performance contact detection algorithm should be able to be paral-

lelized without substantial data transfer overhead between processors or exces-

sive extra memory requirements. In our studies, we found that there are some

algorithms, for example, the hashtable-based spatial reasoning algorithm, that

are highly parallelizable. This kind of algorithm always demonstrate high per-

formance if the proper hardware configuration and software tools support for

parallel computation are available.

The detailed theoretical analysis and empirical results of these two algorithms are

given at the end of this chapter.



2.2 Spatial Sorting Algorithm

2.2.1 Introduction

There are several spatial sorting techniques which have been practically employed in

different areas of application, such as the discrete element method (DEM) [52, 49,

47, 8], geometric modeling [32], computer graphics [42, 44, 25], molecular dynamics

[43, 50, 21, 20, 15, 7], as well as geographical information systems (GIS) [44]. An

excellent review of these sorting strategies is presented in [37].

Without examining the spatial coherence of the objects involved in a given environ-

ment, an all-to-all sequence of checks for potential collision needs to be performed.

For a handful of objects, this could be acceptable [22]. However, if we expect to

perform the simulation for thousands of objects, the order of the computational com-

plexity dominates all other considerations and methods must be sought to reduce the

work involved. Several commonly applied methods to reducing the computational

complexity are reviewed below:

Cellular Subdivision

The cellular subdivision method subdivides the 3D space into equal-sized cells. Each

cell is given a new coordinate number based on the size of the cell. Each particle in

the system is assigned to the cell which the center of its bounding box or bounding

sphere belongs to.

This method can be algorithmically described as follows:

* Construct a list in all cells.

* Add all objects contained (fully or particlally) in each cell to the list.

* Check for collision of all objects within the same cell.

However, the major limitations of this approach are as follows:



* Spatial distribution of the objects This static approach is suitable for prob-

lems with proportionately distributed particles.

* Range of particle size If the size of the particles varies greatly, then we can

only subdivide the space according to the size of the smallest particle.

* Cell resolution This is related to the particle size. The memory requirment

can be extremely high if the particle size is fairly small.

In order to surpass these limitations, dynamic data structure and adaptive cell

methods can be adopted to handle certain extreme cases.

Adaptive Cell Methods

Adpative cell methods aim at avoiding the space resource costs associated with the

static uniform cell approach when the particles are disproportionately distributed in

the simulation space.

In this approach the simulation space is discretized by cutting planes parallel to

the principal Cartesian planes, x- y, y- z and z-x respectively so as to keep approx-

imately the same number of particles on either side of the cutting plane. This scheme

is suitable for the simulation space where particles are unevenly distributed. For the

uniformly distributed case, this method will suffer from excessive data maintenance

overhead in comparison with the static cellular subdivision approach.

Octree Method

The Octree method is theoretically perhaps the most elegant technique to tackle

the problems of spatial coherence and resolution and the tradeoff between space and

time [37]. In theory, the time required to create the octree is O(MlogM) and the

time needed to search the tree is also O(MlogM). A comprehensive and complete

explanation of the quadtree and octree methods can be found in [44].



The basic idea behind the Octree method is similar to the cellular subdivision

method, which is to treat the simulation space as consisting of uniform-sized rectan-

gular cells. However, the hierarchical tree data structure, allows us to manage only

those cells which contain objects. By nature, the performance of the Octree method

is heavily influenced by the distribution of the particles. Irregular distribution can

generate a highly unbalanced tree which can result in the worst case of constructing

and searching the tree in O(MlogM).

The octree method may not be so attractive for us because of the dynamic be-

havior of the objects in DEM environment. At each timestep, the program must

reconstruct the tree and search through the tree without taking advantage of the

temporal coherence with the previous frame.

2.2.2 Spatial Heapsort

In this section, the spatial heapsort algorithm with running time O(MlogM) is intro-

duced. There are two arrays required for each dimension of the problem domain. One

is used to store the object identifiers, the other is used to rank the order of objects.

The combination of these two arrays are referred to as a sorting table. The size of the

array is equal to the number of particles. A typical sorting table is shown in Table

[2.1] and Table [2.2].

2.2.3 Example

In this section, we present a simple example to clarify how this spatial sorting algo-

rithm works. For simplicity purpose, we start with a 2D example, and then we will

show how to extend to handle 3D problems.

A collection of 2D objects with similar geometry are shown in Figure [2-1]. Each

object maintains a bounding box expressed in the world coordinate system. The

lower bound extents are projected onto the X and Y axes as shown in Figure [2-1].

To perform the spatial heapsort in 2D, four arrays of integers are required, two for
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Table 2.1: Index Tables Before Heapsort

each dimension. The first array (sort array) initially stores the object identifiers. The

second array (auxiliary array) is used to store the location of each object in the first

array. Each of the first arrays is initially treated as an unsorted (implicit) binary

tree, which will be sorted using the heapsort scheme. The contents of the arrays

corresponding to the objects in Figure [2-1] are listed in Table [2.1]:

The next stage in the algorithm is to group objects that are candidates for colli-

sion with each other. A key expedient to quickly and methodically identify candi-

date pairings for collision detection is to process the sorted lists object by object in

ascending order along the primary axis parallel to the simulation volume. For an



Canonical index 1 2 3 4 5 6 7 8 9 10 11
X-dir object id 6 2 3 9 1 5 10 8 4 7 11
X-dir auxiliary 5 2 3 9 6 1 10 8 4 7 11
Y-dir object id 5 3 10 6 4 9 2 11 8 1 7
Y-dir auxiliary 10 7 2 5 1 4 11 9 6 3 8

Table 2.2: Index Tables Following Heapsort

equi-dimensioned simulation volume, the X axis is chosen in the absence of any other

dictating factor. Each object occurring along the axis of the chosen sorted list is se-

lected. The object selected for testing is referred to as the pivot object. By processing

the sorted list sequentially, candidate pairs need only be identified once as only those

objects lying ahead of the pivot object need to be considered. This approach is chosen

to avoid of double check between an pair of overlapped objects.

To identify the local group of objects that are candidates with the pivot object,

the following steps are performed:

1. Start at the index location of the pivot object and traverse the sorted list using

a binary search. Compare the largest ordinate (extent) of the pivot in the

direction of the search direction/axis with the smallest ordinate of those objects

lying beyond it.

2. Stop at the index location of that object which does not have a lower-bound

extent less than the upper-bound extent of the search pivot.

3. Start at the index location of the search pivot in the other coordinate directions

(i.e. the Y, Z axes) and traverse the sorted list using a binary search and identify

the upper and lower bounds on the indices that capture all collision candidate

objects in these directions.

The two steps above, obtain the lower and upper bound indices of those objects

that might be in contact with the pivot object, in each of the coordinate directions.



The final stage is the detailed contact detection between pairs of objects drawn from

the the intersection of the index sets. Again, the indices from the primary search

direction are used to control and identify the sequence of objects examined. For each

index in this list, the index of the object is found from the auxiliary index array.

This index is then used to determine if the same object exists in the candidate list

of objects found along each of the secondary axis directions. If the index exists (i.e.

it is an element of the intersection set of indices from all directions) a full contact

detection is performed on the pair of objects.

For the example set of objects shown in Figure [2-1], using the X axis as the

primary search axis, the object 4 has canonical index 9. The index bounds from the

object identifier list in the X direction for objects that object 4 may be in contact

with are 10 to 11 corresponding to objects {7,11}. In the secondary direction (Y axis)

the index bounds from the object identifier list are 6 to 9, corresponding to objects

{9,2,11,18}. The intersection of the sets of indices yields the set {11}, i.e. only a

detailed contact examination of objects 4 and 11 needs to be performed.

2.2.4 Implementation

The psuedo code of the heapsort algorithm is given below.

heapsort_init(); /* initialize the data structure */

/* invoke the sorting routine in each dimension */

heapsort (X); /* X-direction */

heapsort (Y); /* Y-direction */

heapsort (Z); /* Z-direction */

map_rank (); /* generate the auxiliary array */

for each body { /* the pivot particle */

neighbours (&lx, &rx, X); /* get lower and upper bound of X */

neighbours (&ly, &ry, Y); /* get lower and upper bound of Y */

neighbours (&lz, &rz, Z); /* get lower and upper bound of Z */



/* multiplex neighbourhood indices from smaller index subset */

if (((rx - lx) >= (ry - ly))) { /* if y-list is smaller */

for (j = ly; j <= ry; j++) {

y2x = rank EX] [index [Y] [j] ;

y2z = rank[Z] [index[Y] [j]] ;

/* map Y index into X & Z indices*/

if (((y2x >= lx) && (y2x <= rx))&&((y2z >= lz)&& (y2z <= rz))){

call detailed check procedure

}

}
} else { /* if x-list is smaller */

for (j = lx; j <= rx; j++) {

/* map X index to Y index */

x2y = rank Y] [index X] [j]] ;

x2z = rank[Z] [index[X] [j]];

/* IF mapped index in X & Z index ranges AND not self */

if (((x2y >= ly) && (x2y <= ry)) && ((x2z >= lz) && (x2z <= rz))) {

call detailed check procedure

}

}

}

2.2.5 Performance Analysis

In theory, there are some characteristics of the heapsort algorithm [37] listed below.

* Theoretically [48], the heapsort supposedly sort an unordered collection of M

objects in O(MlogM) computation time.
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* The storage requirements are O(M). No extra storage is required because the

algorithm sorts in place.

* The behavior of the algorithm is stable in terms of spatial distribution of the

objects to be sorted. Extreme cases will not downgrade the performance too

much.

* It is straightforward to implement because no complicated data structure is

required.

The empirical results of the spatial heapsort algorithm are illustrated in Figure

[2-2].

2.3 Hashtable-based Spatial Reasoning Algorithm

In the following sections, a high-performance contact detection algorithm with total

detection time linearly proportional to the number of particles is described in detail

[36]. Furthermore, we emphasize that its performance is independent of the packing

density of particles in the system.

2.3.1 Introduction

In the remainder of this section, the algorithmic description of this spatial reasoning

algorithm is presented. The hashtable-based spatial reasoning algorithm is based on

the assumption that each discrete element can be represented by a bounding sphere

in 3D or by a circular disk in 2D. The diameter of an equivalent sphere 2R is obtained

from the size of the largest discrete element in the system.

The space boundaries are defined by Xi,,Xm,ax,Ymn,Ymax, as shown in Figure

[2-3]. All particles are confined within the boundaries. The task here is to search

all pairs of objects that are close enough to each other that we can say they are in

contact in the spatial reasoning phase. After we pick up all the possible candidate



pairs, the detailed check for overlap will be performed by another procedure, which

is described in Chapter 3.

First, the space is subdivided into identical square cells of size 2R, where R is the

radius of the particle. Each particle is assigned with a unique integer identification

number from 0, 1, 2, ..., M - 1, where M is the total number of particles. Similarly,

we assign each cell an identification integer number pair (Coordx, Coordy) based

on the space decomposition. The (Coordx, Coordy) pair, in this context, is the new

coordinate for each cell in the system, as illustrated in Figure [2-3]. Equation 2.1 and

2.2 show how this new coordinate number is calculated.

(Coord-x) = Integer(X - X_min/2R) (2.1)

(Coord_y) = Integer(Y - Y-min/2R) (2.2)

From this criterion, we can map each object onto one and only one cell in the

new coordinate system. With this new integerized coordinate, we can build a set

of linked lists for each coordinate both in X and Y directions. Figure [2-4] shows

the Y-direction linked list for the example in Figure [2-3]. Considering the efficient

management of memory, we exclude the use of a 2D array to represent the 2D space in

our implementation. Obviously, if the range of the 2D space is large, we end up having

a sparse 2D matrix, which is not an economical utilization of memory resources. The

same conclusion applies to the 3D situation.

First, we traverse through the entire particle set, and give each object the Yi

number. For all the objects with the same Yi, we create a linked list for this Yi

number, and then insert the objects into the list sequentially, such as in Figure [2-

4]. We use two integer arrays to represent this linked list. The first array YLIST

contains the number of the last particle mapped to each Yi row. It is a 1D array

of size NY, where NY equals to Ymax - Ymin. The second array Y_LISTN is a 1D



array of size M, where M is the total number of particles. For each particle the array

Y_LISTN stores the next particle in the singly connected list. For both array, (-1) is

used as a termination of a singly connected list. Therefore, if there is no element in

a particular row, -1 is assigned to the corresponding element of the Y_LIST array.

Similarly, each element in the Y_LISTN points to the next particle in the list ending

with a (-1).

Example

In this section, we demonstrate a simple example to describe the rationale behind

this algorithm. Starting with an example in 2D, the extension to 3D can be derived

in a similar fashion.

For the example shown in Figure [2-4], there is not particle located in row 0 of the

cells. Therefore, the singly connected linked list for this row, where Y = 0, would be

empty. The emptiness is represented by setting the Y_LIST[O] = -1. For particle

5 mapped onto row 2, we set Y_LIST[1] = 5. Similarly, for row 4, the last particle

mapped onto it is particle 10, thus Y_LIST[3] = 10. The next particle on this row is

9, thus YLISTN[10] = 9; the next particle is 6, thus Y_LISTN[9] = 6; and the last

particle is 4, thus Y_LISTN[6] = 4, and Y_LISTN[4] = -1, as shown in Figure [2-4].

All Y lists are marked new at this point.

Secondly, by looping over all particles, a new Yi list is traversed and then marked

as old. Each particle from this list is placed onto a corresponding ((X 2, Y)) list based

on the integerized coordinate Xi. A ((Xi, Y,)) list actually contains all particles with

integerized coordinate ((Xi, Y)). In addition, all singly connected lists ((Xi, Yi))

contain all particles from the list (Y) and are represented by two array of integer

numbers. The first list is a 1D list (XLIST) of size NX, where NX is the number

of cells in X direction, that is, the total number of columns of cells. The second

list is a 1D list (X_LISTN) of size M, where M is the total number of particles

in the system. Figure [2-6] and [2-7] illustrate the structure of the linked-lists and



relationship between particles.

Take the list Y3 in Figure [2-4] for example, containing particles (4,6,9,and 10).

Thus the corresponding X-IST[4] = 6, X_LIST[6] = 9, X_LIST[9] = 10, and

XLIST[10] = -1. In list Y3 , there are no particle having an integerized co-

ordinate Coordx equal to (0,2,6, or 7), thus the singly connected lists (Xo, Y3),

(X 2, Y3), (X 6, Y3), and (X 7 , Y3) are empty. Therefore, the corresponding XLIST[O],

XLIST[2], XLIST[6], and XJIST[7] are all assigned with (-1), as shown in Figure

[2-7].

Contact Detection

After constructing the data structure described above, we can proceed to perform

the contact detection by checking all the particles in the neighbouring cells. Take the

cell (Xi, Y) for example, we should check all the particles in cells (X,, Y), (Xi-, Yi),

(X-1,Y_), (Xi, Y_), and (X+,Yjj). Starting from the (Yi=0) list, each time

we select two lists (Y) and (Y+1 ) to do the check. As we sweep through from the

beginning to the end, we should be able to pick up all the possible contacts between

particles. In other words, we do not necessarily to check all the surrounding eight cells,

which will result in some duplicate pairs because of the double check. For instance,

we should only check the neighbouring cells, (X 4, Y3), (X 3, Y3 ), (X 3 , Y2 ), (X 4, Y2), and

(X 5 , Y2 ), for the pivotal cell (X4, Y3 ), as shown in Figure 2-8]. Moreover, checking

with the neighbouring cells is only performed for the non-empty cells.

Apparently in this scenario, there's no loop running over all the cells, which implies

the performance of the algorithm is independent of the number of cells. Furthermore,

it indicates it is also independent of the packing density of the particles.

A variety of different 3D simulation problems have been tested against the theo-

retically predicted performance in Section [2.3.5].
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2.3.2 Hashtable Data Structure

In order to reduce the amount of memory requirements, we need to develop a com-

pact data structure to minimize the memory usage. Without an efficient memory

management subsystem, the overall performance of the algorithm could deteriorate

to an unacceptable level in practice.

In this algorithm, we use the linked-list (e.g., Y_LIST, Y_LISTN, X_LIST, X_LISTN)

to store and manage the required information. The layout of the linked-list is illus-

trated in Figure [2-5] and Figure [2-7].

2.3.3 Implementation

Based on the data structure described above, we now go through each step of the

algorithm to explain the implementation details.

The pseudo code for this algorithm is shown below.

/* Sort objects into bins in each dimension. */

function hashspace_sort ()

{

/* 1. build the Coord_Y lists */

for each particle {

Coord_y = hash(centroid,radius);

Y_LIST->insert(obj, coord_y);

}

for each particle {

if(Y_LIST[i] != -1) {

/* 2. set up X_LIST lists for Coord_Y and Coord_Y-1 */

while (Y_LIST->head [i]) {

/* 3. loop over Y_LIST */



Coord_x = hash(centroid,radius);

/* Current disk at IX in NEW list */

X_LIST(i)->insert(Y_LIST->head[i],Coord-x);

/* all objects in CoordY are in X_LIST(i) lists */

}

while(Y_LIST->head[i-11) {

/* 4. loop over Coord_Y-1 list */

Coord_x = hash(centroid,radius);

X_LIST(i-1)->insert(Y_LIST->head[i-1],Coordx);

/* all objects in Coord_Y-1 in X_LIST(i-1) list */

} /* we now have all Coord_ix lists set up */

/* loop over all objects in Coord_Y */

iyob = Y_LIST->head[i];

while(iyob != -1) {

ix = hash(centroid,radius);

check for contact between (coordy,coordx),

(coord_y,coord x-1),(coordy-1,coordx),

(coord_y-1,coord_x-1),(coord_y-1,coordx+1) cells.

if(iyob->neighborlist->number_of_members > 0) {

call detailed check function for each pair of objects

}

iyob= YLIST->next[i]; /* get next element in YLIST */

} /* end of while(iyob != -1) loop */

}

}

/* Sort objects into bins */



function hash (float position,float radius) {

return (int) (position/(2.0*radius));

}

2.3.4 Extensions

The major limitation of the original algorithm is that the particle size has to be similar

so as to capture any contact correctly. Nevertheless, we can extend this algorithm to

support simulation systems which contains different sizes of particles by doing some

preprocessing work. Before the simulation program calls the procedure, we can loop

over all the particles to obtain the largest radius among them. Then, we use this

largest radius to decompose the space into equal-sized cells. Since we use the largest

radius to subdivide the space, we will not lose any possible collision between particles.

However, if the range of the size of particles is unevenly wide, then the performance

of the algorithm could be possibly downgraded to the worst case, which is O(M 2),

where M is the number of particles in the system.

2.3.5 Performance Analysis

This algorithm works equally well for both dense and loose density distribution of

particles in the simulation system, particularly with CPU time being independent of

packing density and little increasing memory usage with decreasing packing density.

The performance of this algorithm is illustrated in Figure [2-9]. Empirical results

show that a 10 times decrease in packing density results in only 2 times increase in

memory usage in a 2D problem [36].
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2.4 Comparison

The empirical results shown in Figure [2-2] and [2-9] exhibit the performance differ-

ence between these two algorithms. In Figure [2-10], we compare the two methods

by testing the same problem with different number of particles. The hashtable-based

spatial reasoning algorithm performs much better than the spatial heapsort algorithm.

As the number of particles increases, the corresponding speedup grows, too, giving a

speedup of 40 times for 5,000 particles.

2.5 Summary

In this chapter, we demonstrate two spatial reasoning algorithms for contact detec-

tion. In summary, the derivation of these algorithms are based on exploring the

spatial relationship between particles.

Temporal coherence is the property that the application state does not change

significantly between time steps, or frames. The objects move only slightly from

frame to frame. The slight movement of the objects translates to geometric coherence,

because their geometry, defined by the vertex coordinates, changes minimally between

frames. The underlying assumption is that the time step is small enough that the

objects do not travel large distances between frames.

Note that some other sorting schemes, such as insertion sort or bubble sort, may

be suitable for discrete element simulation because the temporal coherence makes it

likely that each list is almost sorted. Both sorts operate in nearly linear time for such

a list, as the number of interchanges is small.



Chapter 3

Object Representation and

Contact Detection

In this chapter, we will discuss the geometric modeling concepts which lead to the

development of the contact detection algorithm described later in this thesis. How

to represent the geometric object has long been an important research topic in areas

like computer graphics and computational geometry. However, in physically-based

simulation, the geometric representation not only has to describe the arbitrary shape

of 3D geometry accurately, but also needs to facilitate the contact detection process.

Moreover, The DEM community has in general avoided the use of traditional repre-

sentation schemes, such as polygon and surface patches, because of the excessive cost

of performing contact detection. In the following sections, we introduce a versatile

object representation scheme called the discrete function representation (DFR) which

requires only O(N) computational cost to perform the contact resolution phase of con-

tact detection. The force generation at the contact due to the geometric intersection

between bodies is described in later sections.



3.1 Geometric Representation

The following types of geometric representation have been proposed as follows:

* Polygonal Representation

Polygons are the most commonly used geometric models in computer graphics

and simulation. They are simple and versatile in representing a wide variety of

complex objects. Also, it is widely supported by graphics hardware accelerators.

* Constructive Solid Geometry

Constructive Solid Geometry or CSG assemble complex objects from simple

primitives such as blocks, spheres, cylinders, cones, etc. Operations such as

intersection, union, and difference are provided. This method is particularly

suitable for mechanical design because user can intuitively manipulate the ob-

jects in correspondence to the design process.

* Implicit Function Representation

Implicit surface are defined using implicit functions. They are defined with

mapping from space to the real numbers and the implicit surface are the loci of

points where F(x, y, z) = 0. Such a function defines clearly what is inside the

model, where F(x, y, z) < 0, and what is outside the model, where F(x, y, z) >

0.

* Parametric Representation

Parametric surfaces are mapping from some subset of the plane to space. Unlike

implicit surface, parametric surfaces are not generally closed manifolds. There-

fore, unlike CSG and implicit surfaces, they do not represent a complete solid

model, but rather a description of surface boundary.

In DEM analysis, these traditional representation methods are not efficient for

performing contact detection.



3.1.1 Superquadratic Representation

Before we discuss the discrete function representation scheme, we introduce the su-

perquadratic representation, which led to the development of DFR.

The mathematical description of superquadric volumes is presented below. The

general equation of a three dimensional superquadric is given by:

+ [y] + 3 -1 =0 (3.1)

where a, b and c determine the principle axes lengths and i are exponents which

change the shape of the surface. When Ei = 2 the equation of an ellipsoid is obtained,

and for equal axis lengths, a sphere. Figure [3-1] shows an aggregate of sample

superquadrics with varying parameters. Superquadrics have been applied to computer

aided design, computer vision and computer animation [55, 54].

Inside-Outside Property

A particularly useful aspect of volumetric expressions is the so called 'inside-outside'

property. To determine if the point (x,y,z) is inside or outside the body we substitute

the point into the function below:

[ XI1 [y]E2 + [ ]63

F(x, y,z) = + +[ - 1 (3.2)

The inside-outside tests yield:

F < 0.0 point inside surface

F = 0.0 point on surface

F > 0.0 point outside surface (3.3)

Now if F, is greater than zero the point is outside the body, F is equal to zero

the point is on the surface, and if F is less than zero the point is inside the body, as



Figure 3-1: Superquadrics with varying exponents
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the example shown in Figure [3-2].

Furthermore, we note that for c = 2, IFI is the square of the distance of the point

from the surface. In general Equation [3.2] provides a measure of the distance of the

point (x, y, z) from the surface of the superquadric, F(x, y, z) = 0. It is estimated

that 80% of solids can be represented by superquadric functions. Solids which cannot

be represented directly can be derived either by combining several superquadrics or

by superquadrics expressed in higher dimensions, called hyperquadrics, [19]. In [40],

the superquadric particles have been extensively used for simulating the behavior of

granular materials.

Using the explicit form of the superquadric equation in Equation [3.2], a discrete

function representation for contact detection is derived, where volumetric objects are

sliced into an ordered set of uniform cubes (voxels). Cubes that intersect the object's

surface are then used to approximate this surface by computing the location of the

intersection points of the surface with the cube edges. These points are then used to

form the facets of a tessellated surface. The marching cube algorithm [30] is employed

to derive the approximate surface.

3.2 Discrete Function Representation

In this section, we describe an algorithm called Discrete Function Representation

which can efficiently identify the details of interference between two bodies. It was

originally developed by O'Connor [37].

The DFR scheme provides a generic solution for representing arbitrary geometric

object in 3D. We can impose a grid with a specific resolution on the finite-boundary

object as shown in Figure [3-2]. At each intersection point of the grid, we can compute

and assign a value to the point according to the object geometry. In other words,

we represent the geometry by a set of pre-computed quantities on the grid, rather

than using continuous curves. To obtain the boundary of the geometric object, we



F(X,Y) > 0

Figure 3-2: Inside-Outside Property of Implicit Function

F(X,Y) = 0



Figure 3-3: DFR Contact Test

can interpolate between the sample points to get a better approximation. In the next

section, we show a simple example to illustrate the idea.

3.2.1 Description of DFR Scheme

Figure [3-4] shows a simple example of two DFR objects. The DFR scheme treats

the boundary of an object as a pair of single valued functions, for example, y = f(x).

The function is then sampled at a particular resolution, say dx, to get the discretized

coordinates. Since the boundary points are uniformly sampled, we can find an efficient

mapping from the coordinate to the actual memory address space in each dimension.

This allows us to retrieve the data quickly.

To perform contact detection between the two objects A and B, the geometry of

[X,Y]

X



B is transformed to the reference frame of A. Bounding box checks are performed and

the minimum and maximum extent of the overlap region in X-direction is calculated,

as shown in Figure [3-4]. Using the X-coordinate to storage space map, the points

in the overlap region are retrieved and marked as possible interacting points. The

retrieved points in each object are checked to see if they lie inside or outside the

contacting object. To perform an inside-outside check for a point of object A in B,

the point from object A is transformed into the reference frame of object B. The

X-coordinate of the point indicates the panel of object B that the point lies in. A

check is then performed to see if the point indeed lies in this panel by comparing the

Y-coordinate, as illustrated in Figure [3-3].

3.2.2 DFR in 3D

In this section, we extend the DFR scheme described above to 3D space. The discrete

bounding hull data structure, which comprises of slice, prism, and cell, is used to

enclose the 3D space. Slice is a 2D array composed of prisms and prism is a 1D array

composed of cell, which is the basic building block in the discrete space. A ragged

3D array of cell indices called stencil and a set of offset/run-length (ORL) arrays

are used to described the object layout, such that each cell in the discrete bounding

hull corresponds to a unique location in the 3D stencil. The detailed procedure is

given in Figure [3-5] (detailed derivation can be found in [37]). Figure [3-6] shows the

hierarchical process of DFR contact detection.
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1. Transform a copy of bounding box of each object into frame of the other object.
Intersect each transformed bounding box with each local bounding box. If
intersection points occur, then calculate the zone vector pair description and go
to the next step, otherwise exit.

2. Transform the zone coordinates into the discrete coordinate system of the object
to obtain the zone index set.

3. Perform cell index filtering by iterating over the zone index set.

(a) Map discrete space coordinate of cells to offset/run-length indices.

(b) If the index triple maps to an offset/run-length index with a valid cell
descriptor table entry then continue to the next step, otherwise exit.

(c) For each edge in the referenced cell of the source object.

i. Transform the edge into the frame of the target object.

ii. Clip the edge to each target cell that it spans.

iii. For each intermediate edge

A. Map real space coordinate of edge to cell coordinates.

B. If the cell coordinate matches a valid offset/run-length index trip
then perform the geometric intersection operations, otherwise exit.

Figure 3-5: DFR 3D Algorithmic Description [From [37]]



Figure 3-6: DFR Contact Detection Process

3.3 Performance Analysis

The performance of the DFR algorithm is illustrated in Figure [3-7]. It shows that

for a pair of DFR objects intersects with each other, as we increase the resolution of

representing the object, we can observe an O(N) relationship between the number

of surface points and the required time to perform the contact resolution. O'Connor

[37] noted that in practical applications the performance was actually better than

O(N) and was closer to O(vN). Figure [6-12] shows an example of packing the DFR

particles into a rectangular box.

3.4 Collision Response

In discrete element analysis, the geometry of particles must be accurately represented

and their physical properties defined. Once the characteristics of individual bodies

are known, a mathematical model is constructed which represents an idealization of
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Figure 3-7: Performance Analysis of DFR Algorithms

the actual physical system. The discipline of multibody dynamics is concerned with

the study of the relation between the motion of physical systems and the forces caus-

ing its motion. Classical dynamics usually deals with macroscopic models invoking

the continuum hypothesis, according to which the physical properties are continu-

ously distributed in space occupied by a physical system. With the advent of digital

computers, a number of methods of dynamical analysis have been developed and

employed to overcome this difficulty. Efforts were undertaken to generate and solve

equations of motion for multiply contacting objects [3, 9].

In next section, we describe how we handle the parameters such as forces, mo-

ments, and constraints for the multibody system.

3.4.1 Equations of Motion

The linear and rotational rigid body motion of a discrete element are governed by the

following equations:



Mi+Cit + Ku = F (3.4)

I + CO+BO = T (3.5)

* M = mass matrix

* K = stiffness matrix

* I = moment of inertia

* B = torsional stiffness

* C = damping matrix

* F = external forces

* T = torques

The goal here is to calculate the updated position, velocity, and acceleration of

the particle based on the external forces and torques applied.

We note that the computation of geometry and contact detection is performed

with respect to the local coordinate system. The advantage of doing so is because the

global moments of inertia do not have to be recalculated at each time step. Modal

analysis techniques also benefit greatly from maintaining these quantities with respect

to a local frame, [55, 54].

The solution to these equations over time is obtained numerically using a fourth

order numerical method, the Runge-Kutta-Nystrom scheme. Adopting the explicit

scheme can avoid of assembling and inverting large stiffness matrices, which is the

major disadvantage of the implicit scheme. However, a drawback to adopting this

scheme is that the magnitude of the time step must be determined to ensure the

stability.
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Figure 3-8: Runge-Kutta-Nystrom Numerical Integration Steps

Equations [3.4] and [3.5] are rewritten to formulate the explicit scheme as:

ii = M - 1{F - Ci - Ku} (3.6)

C = I - 1B T - CO - BO} (3.7)

Details of the Runge-Kutta-Nystrom numerical integration scheme are shown in

Figure [3-8], (see [27, 11] for detailed derivation). The computation of the position

and velocity at time (t + dt) are estimated from evaluating Equations [3.6] and [3.7]

at four stations [3.8, 3.9, 3.10, 3.11]. Equations [3.12] and [3.13] specifies the updated

position and velocity of the body whose motion is being analyzed.

The value of dt in these equations is the time step for the integration determined

from:

dt _ dtcritical = n (3.14)



dtcritcal is the critical timestep and T the smallest period of the system being ana-

lyzed. Typically a value for dt = T1 is often taken as a satisfactory estimate, [6].

3.4.2 Incremental Collision Resolution Scheme

Collision response refers to calculation of the inter-body forces and torques required

to maintain dynamic equilibrium of the system of bodies being simulated. These

components are derived from the linear and rotational motions of each object. The

net effect one object has on another, i.e. reactive or frictional forces, are transmitted

at the object-object interface, here referred as the contact region (or contact volume

in the 3D case). The contact region is considered to be made up from the points of

contact, as shown in graphically in Figure [3-9]. The points describing this region are

those obtained in the contact detection stage described in section [3.2]. The frame

of reference for these points is arbitrarily chosen as being one of the local coordinate

systems of the objects involved in the collision. The required normal and shear forces

are determined using an incremental penalty force scheme as explained in the next

section.

The DEM3D simulation system generates a contact object whenever the contact

detection procedure captures an overlap between an pair of particles. Each contact

object contains the detailed information required to resolve the normal and shear

forces that occur due to a collision between two objects.

Specifically the C++ language data structure describing the contact object abstrac-

tion is listed below:

class DEMcontact

{

DEMVector vl[21; /* lists of contact points

int np[2]; /* number of points in each list

DEMshape * pair[2]; /* pointers to objects in contact pair

DEMMatrix • f2f[2]; /* frame to frame transformation matrices



Figure 3-9: Contact Resolution Details
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The deformation is modeled as the compression of spring between objects in contact.

It can be viewed as a penalty function approach with the spring stiffness representing

the penalty constant. Usually the spring stiffness is chosen based on material prop-

erties. As the object moves close to each other the spring compress generating the

contact force. The shear force is described by Coulomb's friction law. The contact

force is incrementally updated at every time step using Equations [3.15] and [3.16].

Suppose VAB is the relative velocity and n' is the normal vector and ' is the direction

of shear force at the contact point. Then the total normal force F can be written as:



Ft = Ft_1 + Kn(VAB )dt (3.15)

and the shear force S is

St = St-1 + Ks(VAB " s-dt (3.16)

such that

IStl < pFt (3.17)

where K is the normal stiffness, K8 is the shear stiffness, p is the coefficient of

friction and dt is the time step.

It was already noted that all points describing the geometry of an object are

expressed with respect to that object's local coordinate system. However, points

stored by the contact object are expressed with respect to the frame of that object

in which the points are in contact with, not the frame of the object whose geometry

they describe, just as what we discussed in Section [3.2].

3.4.3 Contact Table Data Structure

In order to implement the incremental collision resolution scheme described in the

previous section, we need a special data structure to keep track of the creation and

consequent existence or removal of a contact object between two objects because the

magnitude of the time step used to compute each increment may not be removed

immediately. In fact the two bodies may remain in a perpetual state of contact.

A data structure called contact table that contains a reference to all occurrences of

contact between objects in the simulation environment is utilized to support this

scheme. For convex objects, there will always be a unique contact pairing which

allows for certain efficiency in the implementation of the contact table. The structure
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Figure 3-10: Contact Table Description

of the table is described in the following steps:

1. Create a contact table of length M, where M is the number of objects in the

simulation system. Each table entry stores a pointer to doubly linked list of

contact objects and a counter of the number of contact objects in the list.

2. Each table entry is uniquely associated with each object by its index, i.e. objects

in the simulation are contiguously numbered, with the assumption that objects

removed during the simulation will either be replaced by new objects or will

be of such a small net number that the table will not need to be adjusted or

rearranged.

3. Contact objects are inserted into the table by the lowest index of the object

pair. For instance, if object 2 is in contact with object 6, and objects 7 is in

contact with object 6, then the contact objects describing these occurrences are

inserted into contact table in entry 2 and 6, as shown in Figure [3-10]. Contact

objects are inserted at the the tail of each list so that they can be processed in a

FIFO (first in first out) fashion at each iteration. The FIFO ordering reflects the

natural ordering and sequence the occurrence of object-object contact instances.



At each iteration of the simulation, when a pair of objects are determined to be

candidates for contact detection, the contact table is first consulted to see if there

is a previous reference to their contact. This is simply done by checking if there is

a contact list attached to the contact table entry corresponding to the lowest index

value of the two objects being processed. If the list exists, then check the list using

FIFO precedence for an existing contact object for the object pair. If there is none,

create a new instance of a contact object and insert it in the list attached at the table

position given by the lowest index of the object pair. Otherwise, retrieve a reference to

the existing contact object and accumulate the contact reactions by appending a new

increment of reaction forces and torques to the existing values, paying attention to the

orientation of the existing vector components. By sequencing through all objects at

every iteration contact reactions will incrementally build up and fall off in a smooth

transition allowing the objects to move apart consistently but avoiding some of the

control problems associated with less sophisticated penalty methods.

Additionally, at each iteration of the simulation a sweep is made through the

contact table to identify and eliminate any contact objects containing zero valued

accumulated forces and torques. This criteria is based on the assumption that the

objects with zero relative motion at an interface and reaction forces equal to zero are

no longer in contact.

3.4.4 Constraints

In the DEM3D system, constraints are not treated as independent objects. Instead,

we deal with the constraints when we solve the contact response. For instance, if we

specify a bonding force F between two objects, we can artificially create a contact

object for these two objects and specify the threshold value F for the incremental

collision resolution scheme. If the accumulated normal force is less than the threshold

value, then bond will bind these two objects together. On the other hand, if it

surpasses the threshold value, then the bond will be broken and then this artificial



contact object will be deleted, too. An example for the bonding constraint is presented

in Figure [6-11].

3.5 Volume Integration

In order to correctly compute the collision response of arbitrary shape of complicated

3D geometry represented by DFR, we need to calculate several required parameters

describing the mass distribution of the rigid bodies, such as the total mass, the

location of the center of mass, and the moments and products of inertia about the

center of mass, so that we can apply the equations of motions to correctly compute

the physical properties of the objects.

In our implementation, we adopt the approach of volume integration proposed by

Mirtich [33]. The principal quantities in rigid body dynamics are a particle's linear

momentum L and angular momentum H.

L= Mli (3.18)

H = JO (3.19)

In Equation [3.18], it is the linear velocity of the center of mass, and in Equation

[3.19], 0 is the angular velocity of the body, respectively. J is the 3 X 3 mass ma-

trix containing the moments and products of inertia of each dimension. In order to

correctly apply the equations of motion for the particle, the quantities M, J, and it

must be determined. Using the algorithm developed by Mirtich [33], we can compute

the volume integrals in O(N) computing time, where N is the number of vertices of

the body.



3.6 Summary

In this chapter, the critical issues in geometric object representation and contact

detection are reviewed. The DFR method is employed to represent the arbitraily

shaped 3D object and provide an efficient solution toward collision detection with

only O(N) computational complexity, where N is the number of surface points used

to represent the object geometry. In order to simulate the collision response between

objects, the incremental collision resolution scheme is adopted to resolve the response

between a pair of contacted objects. We also use the contact table data structure to

manage the creation and removal of contact objects between time steps.



Chapter 4

Implementation

In this chapter, we discuss the implementation issues of arising during the devel-

opment of the DEM3D system. From the software perspective, we can separate

the whole simulation system into two parts. The core module, which defines object

geometry, performs spatial reasoning, contact detection, and contact resolution, is

fundamentally application and machine independent. It provides the basic function-

ality required for all kinds of DEM simulation. The user interface module, which

takes input data defined specifically for a particular problem and graphically presents

the simulation results, is more application and machine dependent. In designing the

DEM3D system, we try to separate the core module from the application depen-

dent part as much as possible so that we can obtain high portability for running the

program on different platforms.

4.1 Architectural Framework

In Chapter 1 we note that the DEM simulation is basically comprised of four modules

- geometry representation, contact detection, physics, and visualization. In order to

integrate these components together, a graphical toolkit and a simulation description

language based on Tcl are employed. The Tcl language has proven to be an effective
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Figure 4-1: Software Framework of Modeling Environment

tool in integrating the functionally different software components together. The entire

architectural framework of the modeling environment and the relationship between

different components is shown in Figure [4-1].

4.2 Visualization Graphics

In 3D discrete element simulation, it is essential to provide a good visualization tool

for the user to investigate the interactions between particles at the microscopic level

of detail. Without a visualization tool to digest the large amount of data generated

by the number-crunching code, the results of the simulation would become dauntingly

difficult to interpret. In the DEM3D system, we employ two set of tools to perform

the visualization task, one is Open Inventor, the other is the Virtual Reality Modeling

Language (VRML). Details of both are given in the following sections.
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4.2.1 Open Inventor

Open Inventor [51] is a versatile C++ class library developed by Silicon Graphics Inc.

It offers a comprehensive solution to interactive graphics programming problems. It

presents a programming model based on a 3D scene database that dramatically sim-

plifies graphics programming. It includes a rich set of objects such as cubes, polygons,

text, materials, cameras, lights, trackballs, handle boxes, 3D viewers, and editors that

speed up the programming time and extend the 3D programming capabilities.

The major features of Open Inventor are summarized as follows: [51]

* built on top of OpenGL standard

* defines a hierarchical structure for representing 3D objects

* introduces a simple event model for 3D interaction

* provides animation, object picking, and high-quality rendering

* is a cross-platform 3D graphics development system

In the Open Inventor environment, programmers deal with 3D objects, rather than

drawing primitives. All information about these objects - their shapes, size, coloring,

surface texture, location in 3D space - is stored in a scene database. This information

can be used in a variety of ways. The most common use is to display, or render, an

image of 3D objects on the screen. Instead of manipulating the low-level graphics

primitives, for instance, like OpenGL, programmers create objects and encapsulate

the information of graphical properties and associated operation functions into these

objects. The whole programming model is well defined in an object-oriented fashion.

We do not have to access the frame buffer to perform the rendering. By traversing

the hierarchy of scene database, we can manipulate and interact with the 3D objects

in a scene. A different path of traversal will result in a different scene viewed on the

screen.



Key Components

A few major components of Open Inventor are listed below: [51]

* Nodes (shape,transformation, light, texture, etc.)

* Engine (boolean operation, animation, etc.)

* Node Kits (xwindow, device, viewer, etc.)

* Event Manipulator (event, sensor, error, etc.)

* Action (callback,pick,render, etc.)

The relationship between these components is illustrated in Figure [4-2].

Scene Database

The node is the basic building block used to create a three-dimensional scene database

in Open Inventor. Each node holds a piece of information, such as a surface material,

shape description, geometric transformation, or light source. An ordered collection of

nodes is referred to as a scene graph. This scene graph is stored in the Open Inventor

database. After the scene graph is built, the user can apply a number of operations,

such as rendering, picking, computing a bounding box, and writing to a external file.

A typical structure of a scene graph is shown in Figure [4-3].

Example

Figure[4-4] shows a typical 3D scene represented in Open Inventor. In this example,

note that we apply the texture mapping onto the objects in order to clearly see the

rotation of the particles.
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4.2.2 Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) [12] is a file format for describing

interactive 3D objects and worlds. VRML is designed to be used on the Internet, in-

tranets, and local client systems. VRML is also intended to be a universal interchange

format for integrated 3D graphics and multimedia. It may be used in a variety of

application areas such as engineering and scientific visualization, multimedia presen-

tations, entertainment and educational titles, web pages, and shared virtual worlds.

VRML is capable of representing static and animated dynamic 3D and multimedia

objects with hyperlinks to other media such as text, sounds, movies, and images.

VRML browsers, as well as authoring tools for the creation of VRML files, are widely

available for many different platforms. VRML supports an extensibility model that

permits new dynamic 3D objects to be defined, thereby allowing application commu-

nities to develop interoperable extensions to the base standard. There are mappings

between VRML objects and commonly used 3D application programmer interface

(API) features.

In the following example, we present a simple template of the VRML format we

use in the DEM3D system. Note that we use the PROTO command to create a

prototype module for general DEM object. Based on this template command, we can

instantiate an object by assigning the parameters of origin, radius, color, positions,

and so on.

#VRML V2.0 utf8

NavigationInfo {

type ["EXAMINE", "ANY"]

}

PROTO DEMObject [ field SFVec3f origin 0.0 0.0 0.0

field SFColor thecolor 1.0 1.0 1.0

field SFFloat theradius 1.0



Figure 4-4: A Sample Open Inventor Scene

field MFVec3f position [] ]

Transform {

children [

DEF TRSFRM Transform {

children DEF DEMSphere Shape {

appearance Appearance { material Material

{ diffuseColor IS thecolor } }

geometry Sphere {radius IS theradius }

}

translation IS origin



DEF Clock TimeSensor {

cycleInterval 20.0

loop TRUE

DEF DEMObjectPath PositionInterpolator {

key [

0.0 0.05 0.10 0.15 0.20

keyValue IS position

}

ROUTE Clock.fraction_changed TO DEMObjectPath.set_fraction

ROUTE DEMObjectPath.value_changed TO TRSFRM.set_translation

}

DEMObject {origin 13 2.05478 -60

thecolor 0.193298 0.563568 0.00125122

theradius 1

position [

13 2.055 -60

13 2.055 -58



By using the VRML representation, the simulation core module can be entirely

separated from the visualization part, that is, these two modules can be executed on

two different machines at the same time. For example, we can run the core computing

module on a high-power server and view the results on a low-end personal computer

by a web browser. The major advantage is to free the server from handling the

graphics rendering task and concentrate on the number-crunching part. In practice,

it will reduce the overall computing time by sixty percent. On the other hand, it

provides the flexibility for the user to see the simulation results remotely without

depending on a particular type of machine to perform the graphics rendering. From

our experience with the large-scale problem, the size of a generated VRML file could

be substantially huge. As a result, it requires further improvement by using a more

compact VRML format or data compression scheme to facilitate the usage.

4.3 Matrix Manipulation Functions [37]

The mathematics of multibody dynamics are effectively described in terms of ho-

mogeneous vector and matrix expressions. To provide consistent descriptions of the

various transformations a library of vector and matrix operations was implemented.

The naming convention for the function names is composed of three fields as shown

in the generic prototypes.

The first field of the prototype is a name field used to signify the type of object

being operated on. It is either tm for transformation matrix, or v for vector. The

optional suffix on the name field, v[a], indicates that the contents of the source object

in the parameter list is changed by the function's operation. The letter a is used to

denote when this occurs. The operation field describes the operation applied to the

parameters. For example, vscale_3d, scales a 3D vector argument to the function.

The suffix name field dimension denotes the dimensionality of the operation, 2D or



Figure 4-5: Example of a VRML Scene
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Function Name Purpose
v_copy_3d copy a vector
vafill_3d fill vector with values
v_add_3d add two vectors
vsub_3d substract two vectors
vscale_3d scale a vector
v_dot_v_3d dot product of two vectors

v x_v_3d cross product of two vectors
vlalloc_3d allocate memory for a vector list
vlen_3d calculate the length of a vector

v_norm_3d normalize a vector
tmcopy_3d copy a transformation matrix
tm_mult_3d multiply two transformation matrices

tmrotate_3d rotate a transformation matrix
tm_translate3d translate a transformation matrix

tmscale_3d scale a transformation matrix
tm_transpose 3d transpose a transformation matrix

tminverse_3d invert a transformation matrix
v_dot_tm_3d post-multiply a vector by a matrix

vorient_tm_3d orient a vector by post-multiplying by a matrix

Table 4.1: Matrix Manipulation Functions [From [37]]

3D. The major routines contained in the library are listed in Table [4.3].

4.4 Simulation Description Language

In this section, we describe the input interface of the DEM3D system - the simulation

description language. It is built on top of the Tcl toolkit. The detailed syntax of the

commands is listed in Appendix A.

4.4.1 Tcl - Tool Command Language

Tcl is a C/C++ library of routines containing a parser, interpreter, and a command

language which supports variables, flow control constructs, and user definable proce-



dures together with lexical scoping facilities. The top level behavior and syntax of the

Tcl command interpreter is similar to that of a UNIX shell. Commands are issued

through a sequences of strings separated by blanks and terminated by a newline or

a semi-colon. The first field or string in such a sequence is the command name, all

subsequent fields are considered to be arguments. Comments are denoted by the (%)

character and the backlash character denotes line continuation.

Tcl provides a powerful suite of string manipulation commands, along with the

ability to construct higher level abstraction such as lists (of strings), embedded lists,

and association lists. Lists are denoted with a begin - end syntax using curly braces,

e.g. a b c. Variables are instantiated dynamically, but with local scope, using the

keyword/command set. For example:

modify penalty 100.0

assigns the argument penalty to refer to the value 100.

As in most other interpretive languages, operations on the data (strings) are per-

formed by the application of primitive operators such as expr, which denotes an

expression to be evaluated and the dollar sign ($), which signals the evaluation of a

variable. For example:

set x_center 2

set x_radius 3

set x_max [expr $x_center+$x_radius]

sets the variable xmax to the result of the expression $x_center+$x_radius, i.e.

the string "5". Here the square bracket operator [] forces the interpreter to evaluate

the expression $x_center+$xradius before setting the value of the variable x_max.

4.4.2 Independence of Software Modules

Efforts have been made to maintain independence between the different software

modules. This characteristic is desirable from the point of view that the developers



can manage the concurrent development of the enrivonment in a platform indepedent

manner, and bind the interface component of the system when the platform can

support it. As with most graphical interface libraries or utilities, the developer is

forced to adhere to the application programming interface set up by the interface

developers. This often leads to application code that is intimately linked to the

interface modules. In other words the application ends up requiring a knowledge of

the interface syntax and structure. From the software development side, it leads to

the interface code being deeply embedded within the application code. We have tried

to integrate these software modules with minimum interdependence of each other.

4.5 Data Abstraction

The DEM3D environment is described in terms of a collection of objects and a

simulation description language to operate on these objects. The top level data

abstraction is the DEMsimulation object. This object is used to encapsulate the

entire interface to the DEM3D system, in which other objects can be dynamically

created, manipulated and removed over the course of a simulation. Reference to

the container is sufficient to gain access to any component of the active simulation

environment.

The major data abstraction objects in the DEM3D system are:

* DEMsimulation - A container to encapsulate the system as a hierarchical set

of reference to all the primary data abstractions in the system and the simulation

parameters describing the physics.

* DEMshape - A common container to store a description of the DEM3D

objects and the base class for the derived classes like DEMsphere, DEMplane,

and DEMdfr.

* DEMstable - A container for the sorting tables described in Chapter 2.



* DEMmatrix/DEMvector - Floating point primitives for numerical calcula-

tions.

* DEMbbox - Floating point primitive for clipping operations.

* DEMcontact - A container for the contact objects described in Chapter 3.

* DEMco_table - A container for the contact tables described in Chapter 3.

The global container contains references to the primary DEM3D types as shown

in Figure [1-4]. Instances of these types are created dynamically and they collectively

make up the simulation description. The creation and control of the system is coor-

dinated either interactively through the graphical user interface or in the form of a

command language interpreter and scripts.

4.6 A Sample DEM3D Application Script

When the DEM3D system is first invoked, a shell is created with a command level

interface to the application. We list a sample script in simulation description language

as follows:

# Input file for the DEM3D system.

# Jen-Diann Chiou

# Intelligent Engineering Systems Laboratory

# Massachusetts Institute of Technology

# set the origin

modify startx 10.0

modify starty 10.0



modify startz 0.0

# set x,y,z scale

modify xscale 1.5

modify yscale 1.5

modify zscale 1.8

# set x,y,z resolution

modify resolx 0

modify resoly 0

modify resolz 0

# simulation parameters

modify timestep 0.001

modify penalty 600.0

modify damping 0.0

modify bsphr 1.0

modify rho 1.0

modify fields 0.0 0.0 -1.0

modify timesteps 500

modify physics 1

modify contact 1

modify sort 1

modify cohesion 0

modify DAMP 0



modify FRICTION 0.1

# create plane, sphere, and dfr objects

add plane 10.0 10.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 12.0 FIXED

add sphere 13.0 10.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 UNCONSTRAINED

add dfr 13.0 10.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 \

7.25 7.25 7.25 -0.99 UNCONSTRAINED

# start the simulation

start

DEM3D, source input.tcl;

DEM3D, start;

The script can be refined with additional graphical user interface commands and

more complex Tcl syntax, but the basic structure is applicable to most DEM3D

simulation scripts. The code show here forms the core of the scripts used to run

many of the applications that are the subject of Chapter 6.

4.7 Summary

In this chapter, we discuss the implementation issues of the DEM3D simulation

system. The C++ programming language is employed to implement the software

based on the object model shown in Figure [1-4]. Powerful visualization tools, such

as Open Inventor and the latest VRML standards, are used to render the output

from the simulation program. A simple simulation description language based on the



Tcl toolkit is built to simplify the tedious input task and properly integrate different

software modules together.



Chapter 5

Distributed Discrete Element

Simulation

In this chapter, we present a distributed computing system for discrete element sim-

ulation. The major motivation of developing a distributed DEM simulation envi-

ronement is to increase the scalibility of the computer systems. A highly scalable

system provides a high-performance advantage because we can seamlessly integrate

distributed computing resources via the high-speed communication network. The

scalably distributed system offers an economical solution, in particular, for the large-

scale simulation problems, which requires tremendous amount of CPU time, memory

and storage.

5.1 Motivation

One of the major bottlenecks of DEM simulation has been the requirements of tremen-

dous amount of computing resources to achieve satisfactory performance. In order to

remove this bottleneck, we resort to parallel computing, which provides good scali-

bilities for large-scale computing projects.

Over the past few years, high-performance computing has been transformed from



the vector processing and massively parallel processing to distributed shared-memory

architectures. The distributed shared-memory cluster architectures can combine the

performance benefits of massive parallel computing with the flexibility of shared-

memory multitasking for a wide variety of problems. Figure [5-7] shows the overall

MIT IESL cluster's existing computer and network configuration .

Based on the available parallel machines and distributed network, we implement

and test the parallel algorithms specifically designed for spatial reasonsing, as de-

scribed in later sections.

5.2 Characteristics of Parallel Computing

With the increasing availability of powerful parallel computers, parallel computing

is no longer synonymous with arcane programming techniques and expensive cost.

The generic parallel computer architecture is shown in Figure [5-1]. In this section,

we focus on the shared-memory multiprocessors machines, which is the most popular

parallel computer architecture nowadays.

5.2.1 Shared-Memory Multiprocessors Machines

The parallel machine that we have in the MIT IESL is a four-processor SGI Power

Challenge L-series server. The basic hardware configuration of this powerful server is

shown below:

* Processor 0-3: 196 MHZ IP25

* CPU: MIPS R10000 Processor Chip Revision: 2.6

* FPU: MIPS R10010 Floating Point Chip Revision: 0.0

* Secondary unified instruction/data cache size: 1 Mbyte

* Data cache size: 32 Kbytes
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Figure 5-1: Parallel Computer Architecture

* Instruction cache size: 32 Kbytes

* Main memory size: 256 Mbytes, 2-way interleaved

We learned that an efficient program for a shared memory multiprocessor machine,

like the current SGI Power Challenge, should follow certain rules:

* Task Identification. The programmer identifies a series of tasks, to be performed

in a particular order, along with synchronization conditions. Each task, in

effect, consists of bringing a data context into the cache memory, performing

the extensive sequence of arithmetical operations on it using the cache as a

scratch workspace, and moving final results back to the main memory.

* Memory Referencing. The tasks are most efficient if they reference very lit-

tle data in main memory, keep the entire task computation within the cache

workspace, and restrict all main memory references to a series of reads or writes

of many contiguous memory locations at a time.

SHARED MEMORY ARCHITECTURE



* Processor Synchronization. The multiprocessing is most efficient if there are

very few synchronization restrictions that can cause processors to wait idly.

Storing both an old and a new copy of the primary data in main memory often

helps eliminate synchronization restrictions of small jobs.

5.2.2 Communication Networks

The fast progress of VLSI technology has brought a strong impact on the digital

communication revolution. High-speed local area network with bandwidth up to

100M bits/sec is becoming affordable and popular in the research laboratories. In

MIT IESL, we installed a Fast Ethernet-based (10OMbit/sec) switch as the back-

bone of the local area network. All the SGI servers, PC servers, and workstations

are directly connected with each other via the switch. In setting up the distributed

simulation environment, the efficiency of the high-speed communication network is

a key component because the processors require high bandwidth channel to talk to

and synchronize with each other. Figure [5-2] illustrates three typical network topol-

ogy: full-interconnected crossbar switch, bus network connection, and mesh network

connection.

5.3 Parallel Programming Models

From the software design perspective, three major parallel programming methods

have been proposed: the data parallel model, the multithreaded model, and the mes-

sage passing model. Depends on both the hardware configuration and application-

specific requirements, programmers should choose the most appropriate programming

model to follow [13, 2, 24]. Firstly, the data parallel model exploits the parallelism by

executing the same instruction on a large amount of significantly independent data,

which is distributed stored across a few computers. This model is easy to under-

stand and implement, and also suitable for many practical engineering applications.
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The multithreaded model [17] provides the easiest way of programming among these

three methods. Most of the detailed data transfers among processors are handled by

complex system procedures, which are hidden from the programmer's perspectives.

Message passing is a paradigm used widely on certain classes of parallel machines,

especially those with distributed memory. Although there are many variations, the

basic concept of processes communicating through messages is well understood. Over

the last ten years, substantial progress has been made in casting significant applica-

tions in this paradigm. Each vendor has implemented its own variant. More recently,

several systems have demonstrated that a message passing system can be efficiently

and portably implemented. It is thus an appropriate time to try to define both the

syntax and semantics of a core of library routines that will be useful to a wide range

of users and efficiently implementable on a wide range of computers.
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Figure 5-3: Message Passing Programming Model

5.3.1 The Data Parallel Programming Model

One of the most successful parallel programming models is the data parallel pro-

gramming paradigm. This model is useful for taking advantage of the large amount

of data parallelism which is available in many scientific/numerical applications. The

embedded data parallelism is exploited by performing the same operation on a large

amount of data and distributed across the processors over a communications network.

The main characteristic of the data parallel language is the extension of data types

to a standard programming language like Fortran or C. Parallel data values consist

of a collection of scalar data values. The parallel language contains predefined oper-

ations on parallel variables that either operate on the parallel variable element-wise

or operate on the parallel value as a whole.

There are two main virtues of the data parallel programming model. One is that

data-parallel codes are fairly easy to write and debug. Just as in a serial program,

the programmer sees a sequential flow of control statements. The values making up



a parallel value are automatically spread across the machine, although typically the

programmer does have the option of influencing how data is stored. Any synchro-

nization or communication that is needed to perform an operation on a parallel value

is automatically added by the compiler or runtime system. Secondly, it is easy for a

programmer to understand the performance of the program. Given the size of a par-

allel value to be operated on, the execution time for an operation is fairly predictable.

Since the execution of each operation is independent of the others, the execution time

for the program as a whole is predictable as well.

Although the data parallel paradigm is popular, it has two significant drawbacks.

One is the limited range of applications for which data parallel is well suited. Ap-

plications with data parallelism tend to be static in nature, the control flow of a

data-parallel program is mostly data independent, and the program's data layout

and load balancing can be done at the compile time. Many applications are more

dynamic in nature and do not have these characteristics. To run programs in par-

allel, these dynamic applications need to exploit control parallelism by performing

independent operations at the same time.

The other drawback is that the data parallel programs tend to be inefficient. Even

when a data parallel program gets a good speedup, if one scales the program down

to one processor, and compares it to a sequential program, the performance may be

disappointing. This phenomenon occurs because the data parallel paradigm is not

always a good model for taking full advantage of the sequential processors that make

up most of today's parallel machines.

5.3.2 The Multithreaded Programming Model

In order to execute unstructured programs, we need a system which can take advan-

tage of control parallelism. Data-parallel models present the user with a single thread

of control. Models based on message passing increase this to one thread of control

per processor. To take full advantage of control parallelism, we must virtualize the



number of threads of control so that whenever the program discovers several inde-

pendent tasks, those tasks can be executed in parallel, each with its own thread of

control. When using such a multithreaded programming model, the runtime system

must schedule these tasks and dynamically spread them across the machine in order

to balance the computation load.

The most ambitious of the multithreaded languages are the implicitly parallel

languages. In these language the programmer expresses his algorithm at a high level

without any mention of parallelism. As a result, a sophisticated compiler automat-

ically breaks the program up into a fine-grained multithreaded program. In this

model every memory reference and every interprocedural communication is a poten-

tial nonlocal, long latency operation, which leads to small thread lengths and frequent

communication. Executing efficiency under these conditions requires a platform with

cheap thread creation and scheduling, as well as high-bandwidth, low-overhead com-

munication infrastructure.

More common are the explicit multithreaded languages, in which the user must

explicitly specify what can be done in parallel. These systems provide the program-

mer with a means to create, synchronize, and schedule threads. In order to reduce

the overhead of the program, thread creation, synchronization, and scheduling are

typically done by user-level runtime system code, without the involvement of the na-

tive operating system. Since the user can cheaply and dynamically spawn off tasks as

the arise, these system make it easy for the user to take full advantage of the control

parallelism inherent in many programs.

5.3.3 The Message Passing Programming Model

Another common paradigm for writing parallel programs is message passing. Message-

passing models present the programmer with one thread of control in each processor,

and these processors communicate by sending and receiving messages. This model

is a good representation of the actual implementation of current parallel machines.



Figure 5-4: Multithreaded Programming Model

Since this model is close to the hardware, a good programmer is able to write efficient

codes, just as a good assembly language programmer is able to write assembly code

that is more efficient than code written in a high-level language. The major draw-

back of this model is the same as the drawback of programming in assembly language:

writing a large program at such a low level can be overwhelming. The user must an-

swer all the low-level questions himself, namely questions such as how to partition

the program's data, when to perform communication, and how to load balance the

computation. Not only must the user make all these decisions, but he must then write

all the protocols necessary to carry them out. For most nontrivial programs the user

spends more time writing protocols than writing the actual application. Basically,

there are three strategies for message-passing programming.

The simplest message-passing model is blocking. The sender issues a send request

and the receiver issues a receive request. Whichever processor issues its request first

blocks and sits idle until the other processor issues its command. At that point, com-

munication begins. Only after communication completes can the processors continue



executing. It can be difficult to program well in this model, because inefficiencies

occur unless both of the processors involved in a communication issue their requests

at the same time. Moreover, this style of programming is prone to deadlock.

To make programming simpler, many systems implement a second type of message

passing: "asynchronous" message passing. In this model, when a processor performs

a send, the send executes immediately, regardless of whether or not a corresponding

receive has been issued, and the sending processor can continue executing. The system

uses buffers (often on both the sending and receiving side) to hold the message until it

is requested by the receiver. Asynchronous message passing eases the programmer's

job, but adds significant overhead to each communication due to the copying and

buffering that system invisibly performs.

The third strategy for message passing is called "active messages", which reduces

this overhead by providing asynchronous message passing without the automatic

buffering. An active message contains a header which points to a handler, which

is a piece of user code that specifies what to do with the data in the message. The

user can specify many handlers, typically one for each message type. When a mes-

sage arrives, rather than having a generic system-defined routine handle the message

which will typically copy the message into a buffer, the system instead executes this

user-defined handler to process the arrived messsage. Active messages eases the task

of writing message-passing codes because it allows a programmer to write programs

using low-overhead, asynchronous message passing and because the paradigm of hav-

ing the message itself know how it should be handled turns out to be quite useful in

practice.

5.4 The Message Passing Interface Standard

The goal of the Message Passing Interface [14], simply stated, is to develop a widely

used standard for writing message-passing programs. As such, the interface should



establish a practical, portable, efficient, and flexible standard for message passing.

* Design an application programming interface (not necessarily for compilers or

a system implementation library).

* Allow efficient communication: Avoid memory-to-memory copying and allow

overlap of computation and communication and offload to communication co-

processor, where available.

* Allow for implementations that can be used in a heterogeneous environment.

* Allow convenient C and Fortran bindings for the interface.

* Assume a reliable communication interface: the user need not cope with commu-

nication failures. Such failures are dealt with by the underlying communication

subsystem.

* Define an interface that can be implemented on many vendor's platforms, with

no significant changes in the underlying communication and system software.

* Semantics of the interface should be language independent.

* The interface should be designed to allow for thread-safety.

In our implementation, we adopt the tools provided by Argonne National Laboratories

[10] for the Unix-based machines and Mississipi State University [16] for Windows

NT-based machines.

5.5 Development of Parallel Contact Detection Al-

gorithm

The hashtable-based spatial reasoning algorithm, as we described in Chapter 2, is very

suitable for parallel implementation. In other words, the data dependence between



different objects is insignificant. Not only can we implement the parallel algorithm in

a straightforward way, but we also achieve a satisfactory performance based on the

current hardware configuration.

First of all, as illustrated in Figure [5-5], we can subdivide the entire 3D space into

a few separate regions and then apply the contact detection algorithm independently

in each region with little boundary overlap. This implies that there is little data

dependence in each processor. For instance, if we have 8 quadrants in 3D space, we

can create eight processes in a multiprocessor machine, run a process in each processor

and exchange the data via shared memory. Since there is little data dependence in

each subprocess, the parallel efficiency becomes satisfactory if we can minimize the

network communication overhead.

5.6 Implementation Details

In the following section, we explain the implementation details of the parallel version

of the hashtable-based spatial reasoning algorithm.

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

timestart = MPI_Wtime();

for(k=O;k<timesteps;k++) {

int * subiylist;

hashspace_reinit (demsim);

hashspace_sortl(demsim, 1);

while(iylist [pointer] != -1) {
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pointer++;

}

send_count = pointer/size;

recv_count = pointer/size;

subiylist = (int *) malloc((send_count+l) * sizeof(int));

MPI_Scatter(&iylist[0],send_count,MPIINT,&subiylist[0],recv_count,

MPI_INT,O,MPI_COMM_WORLD);

subiylist[send_count] = -1;

hashspace_sort2(demsim,subiylist, );

sizel = demsim->nps/size;

start = rank*sizel;

end = (rank+l)*sizel-1;

hashphysics(demsim,start,end);

free(subiylist);

MPI_Gather(&subiylist[O],send_count,MPI_CHAR,&iylist[0],recvcount,

MPI_CHAR,O, MPI_COMM_WORLD);

}

timeend = MPI_Wtime() - tstart;

MPI_Barrier(MPI_COMM_WORLD);

5.7 Performance Analysis

In parallel computation terminology, we define the parallel efficiency Ep in Equation

[5.1].

E, = Sp/p, whereS = Tseria,/Tp) (5.1)

In Equation [5.1], p is the number of processors, Tserial is the total time of running

the program on a serial machine, and Tp is the total time of running the program on
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Figure 5-5: Parallel Hashtable-based Parallel Algorithm

p processors. In other words, the parallel efficiency can be defined as the speedup per

processor.

The empirical parallel efficiency of the hashtable-based spatial reasoning algo-

rithm is illustrated in Figure [5-6]. Using Equation [5.1], the parallel efficiency of our

implementation ranges from 65% to 70%.

5.8 Distributed Discrete Element Simulation

Figure [5-7] shows the system architecture of the distributed simulation environment

in MIT IESL. With the availability of a high-speed network switch, we can extend

the parallel algorithm to be executed on different machines and platforms through

message passing mechanism. From the parallel computation perspectives, this kind

of distributed server cluster provides a highly scalable architectural framework for

integrating computing resources on the network.
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5.9 Summary

This chapter explores the parallel computation possibility in discrete element simula-

tion. We present the development and implementation issues of the parallel hashtable-

based spatial reasoning algorithm. Also, we show the system framework of incorpo-

rating the concept of distributed computing into the DEM simulation environment.

The overall parallel efficiency in our implementation is about 65-70 percent, which is

generally considered as a satisfactory result for in parallel computation.
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Chapter 6

Examples and Applications

This chapter describes the following sample applications of the simulation system.

* Dynamic Impact Simulation

* Contact Damping

* Sandglass

* Collapse of Embankment

* Stress Wave Propagation

* Particles Roll on the Slope

* Fracture of a Fixed-end Beam

* DFR Packing
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Figure 6-1: Dynamic Impact Simulation Snapshot 1

6.1 Dynamic Impact Simulation

The first example in this chapter simulates the dynamic impact problem as shown

in Figure [6-1],[6-2], and [6-3]. We let 2,000 particles fall under gravity onto a fixed

larger sphere. This simulation can be run on an SGI MIPS/R10000 workstation in

2 minutes for 3,000 time steps and then rendered using the VRML within a World

Wide Web browser. We have been testing the number of particles up to 250,000 on

the SGI Power Challenge with 4 MIPS/R10000 processors. It takes approximately 30

seconds for each time step. This implies that we can simulate relatively large-scale

simulation problems in less than a few hours of CPU time.
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Figure 6-2: Dynamic Impact Simulation Snapshot 2
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Figure 6-3: Dynamic Impact Simulation Snapshot 3
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6.2 Contact Damping Simulation

The second example simulates the phenomenon of contact damping. We assume that

damping only occurs when two objects make contact with each other. Interestingly,

we see the results reflect the theoretical derivation of damping theory correctly. Figure

[6-4] shows that all the particles will be pushed to the left-hand side and reach the

equilibrium if we put two fixed objects at both ends and initiate the simulation by

giving the rightmost unconstrained particle an initial speed to the left direction.

Similarly, in Figure [6-5], we see all these particles are squeezed to the right-hand

size. Figure [6-61 shows that if we give two objects initial speeds in the left-hand

and right-hand directions respectively, half the particles stay at each side. This is an

interesting phenomenon that we observed during the course of simulation.

6.3 Sandglass Simulation

The sandglass simulation is a classical DEM application. We configured 3,000 parti-

cles as shown in Figure [6-7]. As the program runs, the particles flow freely through

the valve, and then densely consolidate at the lower region of the container. The

simulation was run for 8,000 iterations taking approximately 4 CPU hours on an SGI

R10000-based workstation.

6.4 Collapse of Embankment Simulation

In this example, we simulate the collapse of an embankment. 5,000 particles are used

to construct a wall with a fixed boundary at the left side and the bottom. As we see

in the Figure [6-8], the failure of the free boundary of the embankment occurs on the

right hand side. The simulation was run for 5,000 time steps taking approximately

2.5 CPU hours on an SGI R10000-based workstation.
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Figure 6-4: Contact Damping Simulation Example 1
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Figure 6-5: Contact Damping Simulation Example 2
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Figure 6-6: Contact Damping Simulation Example 3

113



Figure 6-7: Sandglass Simulation
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6.5 Wave Propagation Simulation

In this example, 10,000 particles are surrounded by fixed boundaries on the left, right,

and bottom sides. We start the simulation by dropping a particle from the top with

a particular velocity. The particle moves downward and hits the particle bed. The

collision generated the stress wave that propagate through the entire particle bed.

The wave reaches the fixed boundary and then reflected back. We can clearly see the

reflected waves interact with each other and then generate more complicated wave

phenomenon, as shown in Figure [6-9]. The simulation was run for 5,000 iterations

taking approximately 6 CPU hours on an SGI R10000-based workstation.

6.6 Particles on the Slope

In this example, 10,000 particles are dropped from the top to hit the sloped channel

box at the bottom. Particles then flow through the slope and accumulate at the

bottom of the box due to the application of gravity, as we see in Figure [6-10]. The

simulation was run for 8,000 iterations taking approximately 10 CPU hours on an

SGI R10000-based workstation.

6.7 Fracture of a Fixed-end Beam

In this example, we demonstrate the capability of binding particles with a particular

cohesive force. 5,000 particles are bonded together and both ends of the beam are

fixed. Three particles in the middle of the beam move downward at a fixed velocity

to break the bonds. We observe the fracture behavior of the beam from the ani-

mation shown in Figure [6-11]. The simulation was run for 3,000 iterations taking

approximately 6 CPU hours on an SGI R10000-based workstation.
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Figure 6-9: Wave Propagation Simulation
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Figure 6-10: Particles Rolling on the Slope
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Figure 6-11: Fracture of a Fixed-end Beam
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6.8 DFR Packing

In this example, we show the packing of 3,000 arbitrarily shaped of 3D DFR parti-

cles with different sizes. Particles are dropped from the top with the application of

gravity and then densely packed in the cubic box, as illustrated in Figure [6-12]. The

simulation was run for 5,000 iterations taking approximately 8 CPU hours on an SGI

R10000-based workstation.

6.9 Summary

In this chapter, we present eight examples to show the performance and capabilities of

the simulation system. As a matter of fact, there are many other applications we can

possibly simulate using the system, as long as we can specify the boundary condition

of the system and define the geometry of the particles correctly. Compared with the

performance results listed in [37], it is apparent that the algorithms we described

in Chapter 2 have significantly improved the overall performance of the simulation

system, with better visualization capability in 3D.

120



Figure 6-12: DFR Packing Simulation
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Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis, we present a distributed DEM simulation system for multibody physics.

The major research task here is to reduce the computational cost of the DEM simu-

lation process. We implement two new algorithms aimed at accelerating the contact

detection procedure, which is generally considered the most time-consuming process

in the overall DEM simulation pipeline. Two 3D visualization tools, a language de-

signed for simplifying the input, and distributed and parallel computation are also

described in detail.

7.2 Contributions

In this thesis the following contributions have been presented:

1. A high-performance hashtable-based contact detection algorithm for 3D objects,

as described in Chapter 2.

2. The implementation and test of the DFR object representation scheme, as de-

scribed in Chapter 3.
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3. An object-oriented software system with a versatile 3D visualization module

and a simulation description language, as described in Chapter 4.

4. Distributed and parallel implementation, as described in Chapter 5.

The contact detection problem has long been an active research topic in physically-

based modeling, such as robotics [28] and physically-based simulation [5]. However,

the use of polygonal reprensentations is generally considered inappropriate for the

DEM analysis if we take the performance requirement into consideration. The DFR

scheme addresses this problem and provides a significant improvement in the treat-

ment of polygonal surface representations, as described in Chapter 3. More impor-

tantly, the DFR introduces the concept of multiresolution representation. Users can

always find a good tradeoff between the computing efficiency and accuracy depending

on the application requirements.

Furthermore, through the use of parallel and distributed computer architectures,

and development of parallel algorithms, the scale of DEM simulation has been dra-

matically increased, as we described in Chapter 5.

The ability to perform numerical experiments more rapidly has a twofold sig-

nificance in terms of understanding the dynamics of granular materials. Firstly, it

enables us to hypothesize and model the large-scale problem. Secondly, it facilitates

the simulation of systems containing a large number of objects that were previously

not feasible because of the CPU time it would require. This means the scaling effects

of the number of objects in the system can be evaluated at higher resolutions.

7.3 Related Applications

Contact detection has been applied in a variety of different forms across a broad

spectrum of computer modeling applications. Some of the existing and potential

applications are listed as follows:
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* Geometric Modeling - CAD interference tests.

* Manufacturing - Packaging optimization.

* Physically-based Simulation - Real-time simulated environments.

* Virtual Reality/Environment.

* Behavior of Granular Materials.

* Engineering Design - Rapid Prototyping.

7.4 Future Work

For future development of the DEM3D system, we propose the following subjects:

Deformability of Particles In the DEM3D system, we assume all particles are

rigid-body. Nevertheless, in many practical engineering problems, this assumption

may not reflect the real situation because particles actually deform under stress [40].

As a result, it would be beneficial to take the deformation into consideration for the

DEM simulation in future research.

Visualization In 3D DEM simulation, it is important to provide a good visualiza-

tion tool so that the user can visually investigate the detailed interaction between

particles in a microscopic level. However, the data generated by the simulation sys-

tem could be overwhelming when we deal with millions of particles. We need to build

an efficient pipeline to concurrently digest the data when the simulation is running or

develop a highly compact data representation scheme to reduce the amount of data

for postprocessing.
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Fluid Interaction In many practical engineering applications, particles are always

surrounded by fluid. We realize that the interaction between the particle and fluid can

not be ignored in many cases. More research work should be conducted to investigate

this problem [26].
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Appendix A

DEM3D Input Command

Reference

A.1 Introduction

In this appendix, we list the commands of the simulation description language de-

scribed in Chapter 4. The language is designed based on the Tcl script language

[38].

A.2 Commands

* ADD

- SPHERE x,y,z,x_vol,yvol,z_vol,xrot,y_rot,zrot, CONSTRAINT

- PLANE x,y,z,x_volvol,ol,zvol,xrotrot,rot,zrot,xsize,ysize, CONSTRAINT

- DFR x,y,z,xvol,y_vol,z_vol,xrot,yrot,z rot,CONSTRAINT

- BONDING particlel particle2

where

* x,y,z is the center of the particle
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* xvol,y vol,z_vol is the velocity in x,y,z-direction.

* x_rot,yrot,zrot is the angular velocity in x,y,z-direction.

* CONSTRAINT can be UNCONSTRAINED, FIXED, or

* MODIFY

- STARTX // starting point in X direction

- STARTY // starting point in Y direction

- STARTZ // starting point in Z direction

- RESOLX // resolution in X direction

- RESOLY // resolution in Y direction

- RESOLZ // resolution in Z direction

- DELTAT // dt

- TIMESTEP // number of timesteps

- PENALTY // stiffness of the spring

- COHESION // cohesive force

- FRICTION // friction coefficient

- DAMPING // damping coefficient

- RHO // material property

- FIELDS // fields in x,y,z-direction, respectively

* START - start to run the simulation
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