
Development of a Run by Run Control Benchmarking

and Simulation System

by

Eric J. Stuckey

B.S. in Computer and Electrical Engineering, Purdue University (1996)

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1998

@ Massachusetts Institute of Technology, 1998. All Rights Reserved.

A uthor
Department of Electrical Engineering and Co ter Science

August 24, 1998

C ertified by ,
Duane S. Boning, Associate Pyfessor

Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY D

NOV 161998

LIBRARIES

.....-.. - ..." ' - . ."

Arthur C. Smith, Chairman
:partment Committee on Graduate Theses

Development of a Run by Run Control Benchmarking
and Simulation System

by

Eric J. Stuckey

Submitted to the Department of Electrical Engineering and Com-
puter Science on August 10, 1998, in partial fulfillment of the

requirements for the degree of Master of Science in Electrical Engi-
neering and Computer Science

Abstract

As the semiconductor industry begins to move toward the introduction of fault detection
and classification as well as run by run (RbR) process control methodologies, the identifi-
cation of application scenarios and the means to compare and benchmark available solu-
tions is an essential step. That step has been taken for FDC, and its importance for RbR
has been recognized. The work presented here examines the feasibility of such an activity
for run by run control including the determination of appropriate scenarios for run by run
control, and determining how meaningful comparisons or benchmarking between control-
lers can be accomplished.

There have been a number of benefits as a result of this project. First, we have shown that
the benchmarking of run by run controllers is indeed feasible, and through the develop-
ment of a run by run control simulation and benchmarking framework, and the determina-
tion of a set of process scenarios, SEMATECH is well-prepared for future efforts that
might undertake benchmarking and/or demonstration of available commercial and experi-
mental run by run controllers in specific realistic scenarios. Second, we now have a better
understanding of the demands on and capabilities of run by run control, as well as a better
understanding of the requirements of a successful benchmarking system. This information
has been obtained through a literature survey and a questionnaire distributed to SEMAT-
ECH member companies to solicit feedback on the requirements and opportunities for run
by run control and run by run control benchmarking. Third, we have defined and imple-
mented several control scenarios that can serve as benchmarking cases in a future bench-
marking effort. And finally, experience has been gained in using messaging protocols to
connect RbR controllers to process simulators (or actual process tools) that can be benefi-
cial in defining a standard set of communications for RbR controllers and other process
peripherals..

Thesis Supervisor: Duane S. Boning
Title: Associate Professor, EECS

Acknowledgments

As my masters work comes to a completion here at MIT, I would like to take a moment to

thanks a few of the many people who have helped me along the way. First I would like to

thank my professor, Duane Boning, for giving me the opportunity and the funding to per-

form my work amidst such an exciting group and within such an exciting field. I would

also like to thank Sematech who provided the actual project (and part of the funding).

I would also like to thank my labmates for all of their help and support. Thank you to

Aaron, Han, Sandeep, Taber, Dave, Angie, and Brian. I would finally like to thank all my

friends here at MIT for making it such a rewarding experience.

Table of Contents

1 Introduction .. 12
1.1 B ackground 12
1.2 Project T asks.. .. 12
1.3 Organization of this Document............................ 13
1.4 Guidance to Audience ... 13

2 B ackground .. 16
2.1 Process C ontrol 16
2.2 Literature Search and Web Page 18

3 RbR Control and Benchmarking Industry Survey 20
3.1 Compilation of Survey Responses 20
3.2 Summary of Information.. 23

4 RbR Benchmarking Control Scenarios 26
4.1 Description of Control Scenarios .. 26
4.2 Addressing the Feedback from Industry 32

5 RbR Benchmarking Framework .. 34
5.1 RbR Benchmarking System Topology 34
5.2 RbR Benchmarking Message Protocol 37
5.3 RbR Benchmarking Server ... 38
5.4 RbR Benchmarking Clients .. 39
5.5 RbR Benchmarking Simulators ... 40

6 Implementing Simulators in the RbR Benchmarking System 42
6.1 Process Simulator Development 42
6.2 Creating a New Simulator...46
6.3 Existing Process Simulators...47

7 Integrating Clients into the RbR Benchmarking System...50
7.1 Client Integration Utilities 50
7.2 Example of an Integrated Controller......................................55

8 Benchmarking Framework Verification 58
8.1 Connection to the Benchmarking Framework 58
8.2 Results of the Sample Benchmarking 60

9 Conclusions and Future Work .. 64
B ibliography 68

Appendix A Run by Run Process Control Benchmarking Surveys 70
Appendix B Run by Run Process Control Messaging System 80
Appendix C Example Simulator: Deposition.java.................................84
Appendix D Example Client Controller: Client.java 88

List of Figures

Figure 2.1: Drifts and Shifts in a Semiconductor Process .. 16
Figure 2.2: The EWMA Controller..18
Figure 2.3: Sample of the RbR Control Literature Survey Web Page........................ 19
Figure 5.1: RbR Benchmarking Framework Topology .. 36
Figure 6.1: ConnectProcess "if else" M odel..46
Figure 8.1: Printout of Results from a Sample Control Run 62
Figure 8.2: Control Run on CMP_exti by C-based Controller 62
Figure 8.3: Control Run on CMP_ext by No-update Java-based Controller............63
Figure 8.4: Control Run on Deposition by C-based Controller 63
Figure 8.5: Control Run on Deposition by Full-update Java-based Controller 63

List of Tables

Table 3.1: Question 3 Results 22
Table 4.1: Control Scenarios 27
Table 4.2: Time-Based Control Scenario Extensions 28
Table 4.3: CMP Scenario Extensions 30
Table 4.4: Etch Scenario Extensions 31
Table 6.1: BenchProcess Fields 44
Table 6.2: Existing Process Simulators 48
Table 7.1: Use of Client Integration Utilities 52
Table 7.2: AbstractClient and ProcessInfo Fields 54
Table 7.3: Bench_help.h Structures 55

Chapter 1

Introduction

1.1 Background

In previous work, the development and use of standardized data sets for the benchmarking

and comparison of semiconductor process diagnostic fault detection and classification

(FDC) methods and algorithms has been investigated [1]. Such effort was in response to

the large number of algorithms available and the relatively difficult task of 1) understand-

ing the various situations in which different methods and algorithms can be applied, and 2)

making reasonable comparisons between different FDC products.

The semiconductor industry perspective on run by run (RbR) (or run to run) control

algorithms holds a similar standing to that held by fault detection and classification algo-

rithms before the benchmarking effort. Currently, several algorithms exist for RbR con-

trol, but minimal efforts at characterizing their performance in a standardized or uniform

fashion has been attempted until now. Equally importantly, there is only limited under-

standing in the industry of the needs, opportunities, and conditions for value-added use of

RbR control.

1.2 Project Tasks

The objective of this thesis has been to study and demonstrate the feasibility of RbR con-

trol benchmarking. This encompasses two key goals: first, to survey the current state of

RbR control and available products, as well as to understand general and specific control

scenarios in semiconductor manufacturing; and second, to develop a simulation/bench-

mark framework for testing and comparing available commercial and experimental RbR

controllers in specific realistic scenarios. The results of these efforts and the resulting

benchmarking framework that was developed is presented in this document. The work

performed encompasses the following:

1. A literature survey and summary of capabilities and results from the use of RbR

control in the semiconductor and other industries

2. A survey for solicitation of feedback from the semiconductor industry of the

requirements and opportunities for RbR control

3. Definition of generic and actual RbR control scenarios

4. Development of an RbR control simulation and benchmarking framework for the

evaluation and comparison of controllers

5. Verification of the feasibility of benchmarking and simulation by performing a

benchmark comparison of two controllers using the benchmarking framework

1.3 Organization of this Document

This document first describes the literature survey performed, the industry questionnaire

that was distributed, and the development of the RbR control scenarios from this informa-

tion in Chapters 2 through 4. The benchmarking framework and the integration of simula-

tors and controllers into this framework is described in Chapters 5 through 7. Chapter 8

presents the results of benchmarking performed on two sample controllers that were inte-

grated into the benchmarking system. Finally, Chapter 9 presents conclusions and sugges-

tions for future work.

1.4 Guidance to Audience

Readers who are interested primarily in the control aspects of this document, including the

development of the RbR control scenarios and the performance of the benchmarking sys-

tem, may start with Chapter 1 and then focus on Chapters 2, 3, 4 and 8 and finish up with

Chapter 9. Those readers more interested in the software implementation issues and use of

the benchmarking system including development and integration of new process simula-

tors and connection of client RbR controllers may start with Chapter 1 and then focus on

Chapters 5 through 8 as well as Appendices B through D, and finish up with Chapter 9.

15

Chapter 2

Background

2.1 Process Control

The need for process control arises from systematic variation in the rate or quality of a

manufacturing process. Many processes are not stable and well behaved but rather suffer

from shifts or drifts. For example, a metal sputter deposition process can exhibit a steady

drift in the deposition rate as wafers are processed. This drift can be quite significant.

When process kits are changed during maintenance periods, the deposition rate shifts. The

drifts and shifts in the process is illustrated in Figure 2.1 [2]. Other semiconductor pro-

cesses exhibit similar drifts and shifts. In chemical mechanical planarization, as the pol-

ishing pad wears away, the removal rate is degraded [3]. In plasma etch, as polymer builds

up on the chamber walls the boundary conditions are altered; the plasma changes and so

does the etch rate and quality [4].

75
-- Rate Actual

L * Rate Predictedl

€ a

•b Collimator
C Change

~r rargetlCollinutorChag
045 Change CollimatorChange Change

3 .5 I I I I I I I I I I I I I I

563 651 690 779 855 89 163 245 317 482 537 596 725 794 860

Sputter Target Life (KWH)

Figure 2.1: Drifts and Shifts in a Semiconductor Process

In order to monitor and correct for these changes to a process (with the goal of main-

taining the output quality) open-loop statistical process control (SPC) methods, such as

the Shewart control chart, the CUSUM chart, and the moving average, were developed and

applied to semiconductor processes [5]. These methods provide a means of monitoring the

quality of a process to determine when the process characteristics have changed (i.e. when

the process output is no longer acceptable.) When it is determined that the process has

changed, or gone out of bounds (i.e. when the metal sputter deposition rate has drifted so

much that the resulting output is no longer within an acceptable range) the system is shut

down and a corrective action can be taken (i.e. changing the metal sputter deposition's

input recipe).

While SPC methods were effective for keeping a process within in a set of bounds, the

strict tolerances required in the semiconductor industry called for the development of a

methodology that would keep an output more closely centered around a desired value,

thus leading to active feedback control. These methodologies are referred to as run by run

(RbR) control.

RbR control uses post-process measurements (and possibly in situ data) to modify

models of the process, and recommend new equipment settings for the next run based on

these adaptive models. RbR control differs from real-time control in that it only adjusts

process models between runs. RbR control has been shown to be effective in a number of

scenarios in which processes characteristics are subject to shifts and drifts [2-4].

One example of a closed-loop feedback RbR control method is the exponentially

weighted moving average (EWMA) controller [6]. The EWMA controller uses an affine

model of the process and modifies the offset term to adapt the model to changes in the pro-

cess. Figure 2.2 presents a flow diagram of the operation of an EWMA controller.

Disturbance

Set Linear
Point Controller Plant + Output

I Affine
I Model

1

EWMA
Algorithm

Figure 2.2: The EWMA Controller

A number of other RbR control methods exist, including variations on the EWMA

controller [8-10], and other methods [11-15].

2.2 Literature Search and Web Page

The first task performed as part of this thesis was a survey of the literature and a summary

of capabilities of RbR control demonstrations and applications. The goal was to identify

specific "success stories" of results and benefits gained in the semiconductor and other

industries through the use of such control. Performing this task gave us a better under-

standing of the types of processes that RbR control has been applied to and helped us

develop the process scenarios that were determined to best test the ability of RbR control-

lers. More information about these scenarios, why they were selected, and how they test

the full range of RbR controller functionality, is presented in Chapter 4.

In order to organize the results of the literature survey and to make these results (and

other information about the RbR benchmarking project) available, an RbR benchmarking

web page was created. This web page, located at http://www-mtl.mit.edu/rbrBench, con-

tains much information about the RbR benchmarking effort. See Figure 2.3 for a sample

of the entries in the literature survey section of the RbR benchmarking web page. This

web page is split into algorithms, applications, and implementation/integration sections in

order to organize the articles. While this page is by no means complete, it contains a num-

ber of important and relevant publications.

Figure 2.3: Sample of the RbRRun Control Literature Survey Web Page

Besides the literature survey results, this web gopassoge also c"Sontains documenstationty on the

ofbenhmarking framework, the industry survey, and various documents pAvertaining to thisRun
byprojet and RbR control. Additionally, the RbR benchmarking web page opresentains a orlist of

ferentthe result files from control runs on the benchmarkinmodelsg system. Each of theseof componentstroller
will bmeterse desndtrucribed pocess models. In addoninto this theassisor
mean -square deviation from target for drifting or wandering
processes are presented and analyzed Expermental results
based on controlling an epitaxial growth proess are also
presented. (8-7-97Aigorthm - EWMAAnatjsis)

Figure 2.3: Sample of the RbR Control Literature Survey Web Page

Besides the literature survey results, this web page also contains documentation on the

benchmarking framework, the industry survey, and various documents pertaining to this

project and RbR control. Additionally, the RbR benchmarking web page contains a list of

the result files from control runs on the benchmarking system. Each of these components

will be described in more detail further into this thesis

Chapter 3

RbR Control and Benchmarking Industry Survey
When developing a benchmarking system it is important to consider the needs of the prod-

uct's customer. A system that benchmarks the wrong aspects of a product or tests against

inappropriate simulations may be of little use to the customer. Therefore it is necessary to

institute a means to gather feedback from potential customers during the development of

the benchmarking system. For the RbR process control benchmarking project, this was

done by developing and distributing to semiconductor industry companies a survey to

gather information about processes and RbR issues of interest. Two versions of this survey

were developed: a short version that gathered information on the aspects of an RbR con-

troller that industry is interested in, and a more detailed, long version that went much more

into depth about processes and implementation and integration issues. Both versions of the

survey are presented in Appendix A. In addition, a Java version of the short survey was

created and was made available on the RbR benchmarking web page for on-line feedback.

The rest of this chapter serves to gather and summarize the information received in the

returned surveys. This information was then used to help develop the process scenarios

that are described in Chapter 4, and used for input when designing the behavior and per-

formance of the benchmarking framework described in Chapter 6.

3.1 Compilation of Survey Responses

In the following sections, responses to questions from the short version of the survey are

presented.

Question 1: What processes and equipment could most benefit from RbR
process control and why?

* Track/Stepper links. These systems will affect the wafer more times during its pro-

cess life than any other system or set of systems. These systems could benefit
because of the nature of the process with it susceptibility to both sudden and gradual
changes.

* Plasma, high temperature processes and photo steps. These processes have the most
variation and drive most of the line problems.

* Photolithography: being the bottleneck of the factory throughput, it can benefit from
the elimination of pilot runs. Critical dimension (CD) being the major factor in cir-
cuit performance, RbR control on CD will have dramatic effects on speed binning,
time to yield, and yield. RbR control schemes could also extend the useful life-span
of older lithographic technologies.

* All processes could eventually benefit; our current areas of focus are photolithogra-
phy, CMP and etch.

* Etch, PVD, CVD, etc. Provide disturbance control/compensation for drifts, distur-
bance, etc. Fault detection/classification.

* Photolithography, CMP, sputter deposition, CVD and epitaxy are viable now. Etch
and ion implant will be viable in the future.

Question 2: Are there issues which RbR controllers should address that
have not been considered?

* An adequate way of feeding back the information to effect a proper correction on the
process.

* How to process the data. Where to store the results, both summary and raw data.

* Yes: in semiconductor manufacturing variability is contributed and accumulated by
multiple, sequential steps. This means that in addition to feedback, feed-forward
techniques will be effective in reducing variability. Another issue is that of manufac-
turing flexibility. When a high mixture of products is present, an RbR controller
should be able to do well over a wide operating range, allowing manufacturing lines
to incorporate new processes quickly.

* Who should own RbR? Equipment vendor or the chip manufacturer?

* Evaluation of costs vs. benefits. Don't confuse process skills with computer inte-
grated manufacturing (CIM) skills, few have both. Consideration of fault detection in
addition to/instead of RbR control.

Question 3: Please rate the importance of each of the following criteria
for RbR process controllers (1-very important through 5-not important.)

Question Responses Mean Std. Dev.

Simplicity of algorithm 4 1 2 5 4 3 3.17 1.47

Ability to handle different processing conditions 2 2 5 11 5 2.67 1.86

Integration with CIM systems 3 1 5 1 1 5 2.67 1.97

Ability to handle complex sensor information 1 4 5 3 5 3.60 1.67

Ability to incorporate complex process models 2 3 5 2 2 3 2.83 1.17

Customer support for RbR packages 11 5 11 5 2.33 2.07

Table 3.1: Question 3 Results

Question 4: Please provide contact information for any specific control-
lers you believe should be included in RbR benchmarking.

* In situ particle monitoring (ISPM) (High yield technology (HYT) and particle mea-
suring system [PMS]), residual gas analysis (RGA) (Infocon, Leybold, Ferran,)
Radio Frequency (RF) (AE, ENI, FST)

* If this study will extend into non-commercially available packages, and depending
on the resources needed and supplied, we will be willing to help benchmark the Ber-
keley Computer Aided Manufacturing (BCAM) controller (capable of feedback/
feed-forward and supervisory RbR control). Please contact spanos @eecs.bereke-
ley.edu.

Additional Comments
* RbR controllers should be as complex as necessary and as reliable as possible.

Nobody demands that photolithography tools be simple.
* Handling complex sensor data is not the RbR controllers job. Relevant information

should be extracted before being presented to the controller.
* There are trade-offs for using complex process models. They are more powerful, but

they are more expensive to develop and have shorter lifetimes.
* RbR controller companies would be unwilling to figure out the benchmarking frame-

work. It would be better to directly assist them in the integration and then do the test-
ing on-site.

* Benchmarking system should have Java and/or Windows NT support. The RbR con-
troller should be required to run on Windows NT systems.

* What are the costs of the controllers and beyond (i.e. installation, model develop-
ment, training, downtime.)

3.2 Summary of Information

The information in the returned surveys was collected and used in establishing the frame-

work to be used for the RbR process control benchmarking system. This information was

used in several ways. First the scenarios to be used as simulators to test the controllers

were determined. By looking at the responses to Question 1, it can be seen that there is

significant interest in using RbR control on depositions (both CVD and PVD), CMP, etch

and photolithography. Therefore these four processes were chosen as the scenarios to be

used in the benchmarking system. Not only are these four process of significant interest to

industry, but they also test a wide range of features of RbR controllers, allowing a full

evaluation. In addition, extensions to each of these scenarios were created in order to sat-

isfy issues raised in the surveys. For example, using complex models, and providing target

dependent plant models to provide wide and varying ranges of process conditions. More

information on the scenarios and their extensions are presented in Chapter 4.

Additionally, the surveys were used to help determine the means of employing the

benchmarking. There was interest in providing Java support for the benchmarking project.

It was decided to implement the benchmarking framework in Java in order to make it dis-

tributable. However C support is also provided to make the benchmarking as convenient as

possible. Some interest in providing hands-on support to researchers interested in bench-

marking their controllers was expressed. This has been considered but a full decision on

this must be postponed for a future project.

Finally, the surveys provided much information on how to evaluate the RbR control-

lers. Obviously process improvement (i.e. attaining target and noise reduction) is critical,

but there are many other issues to be considered. Many of these other issues are qualitative

and are best evaluated by customers for their specific processes, while others can be tested

in the benchmarking system. Some issues brought up include the ability to control over a

wide operating range and the ability to handle different processing conditions. There were

mixed responses in the surveys as to whether or not simplicity in the control algorithm is

important. But it is an issue worth considering. Other more qualitative issues are customer

support for the controller, the CIM/tool integration issues involved with the controller, and

the cost of the controller, both in itself and additional costs such as installation and mainte-

nance.

25

Chapter 4

RbR Benchmarking Control Scenarios
As mentioned earlier, RbR process control is a methodology which utilizes process mea-

surements to modify process settings on a run by run or lot-by-lot basis to improve or

maintain performance in the face of a process disturbance state. The process disturbance

state includes sources of uncertainty such as process drifts, process shifts due to mainte-

nance or other factors, various noise effects, and model mismatch [6, 8]. A successful RbR

controller should be able to compensate for, or minimize the effects of, the various distur-

bances. In addition, an RbR controller should be capable of dealing with limitations and

situations often encountered in a real manufacturing process, such as input bounds, input

discretization, non-periodic measurements, variable time delays, process outliers, and the

processing of multiple product types or the use of multiple recipes on the same tool [16,

17]. A successful benchmarking system would challenge the controllers with both the fun-

damental problem and variants that embody these realistic scenarios. The purpose of this

chapter is to outline the candidate control scenarios for the RbR benchmarking system,

how they challenge controllers, and how they were selected. The four scenarios identified

are rate tracking (e.g. deposition), linear multivariate (e.g. CMP), nonlinear multivariate

(e.g. plasma etch), and multistep (e.g. photolithography).

4.1 Description of Control Scenarios

The control scenarios presented here are taken from our experience with RbR control, the

suggestions and experience of the semiconductor industry gleaned through an RbR pro-

cess control benchmarking survey described in Chapter 3, and from a review of the litera-

ture on RbR control. We determined that we could test the range of issues in RbR control

with four scenarios described by basic underlying control issues: rate tracking with target

time adjustment, linear (or nearly linear) multivariate, nonlinear multivariate, and multiple

process step. These scenarios are well represented by corresponding canonical fabrication

process steps. Respectively, these are deposition, chemical mechanical polishing (CMP),

plasma etch, and photolithography. The deposition and CMP problems we define here are

somewhat less difficult in terms of the fundamental control action, but provide the oppor-

tunity for testing several practical barriers that controllers must face. The etch and photoli-

thography scenarios provide more difficult control problems because the nonlinear and

multi-step features of these problems, respectively, make the design of controllers more

complex and difficult to implement. We highlight these cases in Table 4.1, and provide

further detail in the following sections. In the scope of this thesis, only the first two scenar-

ios (deposition and CMP) have been implemented in order to verify the performance of

the benchmarking system.

Scenario Process Order Noise I/O

Deposition * first order * white noise * univariate
* drift

CMP * first order or * white noise * multivariate
* second order * drift

* shifts

Etch * non-linear * noise * multivariate
* drift
* shifts

Photolithography * non-linear * noise * multistep

Table 4.1: Control Scenarios

4.1.1 Rate Tracking/Time Control (Deposition) Scenario

The simplest scenario that we have is one in which the controller is considerably restricted

in the available recipe or control decisions it may make. In several processes, the process

recipe essentially seeks to define a rate (e.g. a material deposition or material removal

rate), but the production practice is such that this recipe is considered "fixed." However,

the duration of the process step, or process time, is allowed to be modified in order to

achieve a desired target (e.g. thin film thickness deposited or removed).

One example control approach is to simply track the rate of a process and then modify

the time parameter to achieve the target output. An example of this type of scenario is con-

trol of metal sputter deposition. Metal sputter deposition is characterized by a decrease in

the deposition rate, due to sputter target degradation and the build up of material within

the collimator, and various amounts of process noise. These systematic sources of varia-

tion in the process are well suited to correction or compensation by RbR control [2].

Time-based control is a univariate problem. The rate of a process is taken as the single

output and the target output values are achieved via the modification of the process time,

which is the single input. In addition, rate tracking and time adjustment control can often

be modeled well as a first order process [2]. These aspects make it attractive as a simple

test for an RbR controller. However, by extending the simple time control scenario with

the many practical scenarios a controller of this type might face in an industrial setting, we

create a scenario which will challenge RbR controllers. See Table 4.2 for a list of exten-

sions to the time control scenario.

Extension # Description

1 Multiple process or product targets

2 Delay in post-process measurements

3 Non-periodic measurements

4 Non-periodic delays

5 Process outliers

Table 4.2: Time-Based Control Scenario Extensions

Extension #1 deals with the fact that some time-based control processes have different

rates or process characteristics for different output targets or recipes. For example, the

deposition rate of the titanium sputter deposition process is a function of the final film

thickness [2], and therefore the process model must take into account this variation. Exten-

sion #2 addresses the issue of starting a new run before the post-process measurements

from the previous run have been completed. In this case, there is a time delay between the

control action and the feedback. Extension #3 considers the fact that measurements are not

taken for every wafer in semiconductor processes. There may be varying length delays

between successive measurements. Extension #4 is similar to Extension #3 in that it

involves non-periodic measurements, but in addition the measurements that do take place

are delayed. Finally, Extension #5 addresses the fact that many processes have outliers

which complicate the control of processes with even a simple model.

4.1.2 Multivariate Process (CMP) Scenario

The second scenario that we present is one based upon the Chemical-Mechanical Pla-

narization (CMP) process. The CMP process can be characterized as a drifting process,

due to pad wear, with noise and occasional large shifts, due to pad changes [3]. The types

of systematic disturbances seen in CMP processes make them excellent candidates for

RbR control.

CMP is a multivariate process. The two major outputs typically of concern are the

removal rate and the wafer-level spatial uniformity. Depending on the CMP tool being

used, the inputs can include spindle and table speed, back-pressure, down force and condi-

tioning profile. The CMP process is typically modeled using a first order polynomial

response surface, but sometimes second order models are used [7]. CMP, along with the

extensions given in Table 4.3, is a good process with which to test the functionality of a

multivariate RbR controller.

Table 4.3: CMP Scenario Extensions
Extension #1 deals with the fact that input settings on actual pieces of equipment are

not continuous. An RbR controller should provide feasible recipes, in a manner which

admits the least error in the controlled output. Extension #2 deals with creating varying

amounts of system change between control actions by changing the number of wafers that

are processed between output measurements. Extension #3 addresses the need for control-

lers which can control processes with infrequent or missing measurements. Finally, Exten-

sion #4 tests the ability to control a changing process by interpolated control actions,

perhaps only on engineer or operator demand, in between infrequent measurements.

4.1.3 Multivariate Nonlinear Process (Plasma Etch) Scenario

The third scenario that we consider is one well represented by the plasma etch process.

Etch is characterized by a non-linear response that often requires more complex RbR con-

trol. In addition to many input and output variables with complex nonlinear behavior, a

number of important extensions can also be identified, as summarized in Table 4.4.

Extension # Description

1 Spatial uniformity sensor information

2 Time-sampled equipment, process, or wafer state information

3 Need for built-in or add-on diagnostics

Extension # Description

1 Input bounds and discretization

2 Variations in lot size

3 Infrequent measurements

4 Intermittent control

Table 4.4: Etch Scenario Extensions
Extension #1 deals with the fact that the etch process often has available a multitude of

sensors which provide a large amount of data. A controller's ability to deal with all this

information is also important [18, 19]. For example, emerging sensors are capable of pro-

viding a wealth of spatial uniformity information which could be used to advantage in the

control. Similarly, Extension #2 involves emerging sensors (such as radio frequency mon-

itors, optical emission spectroscopy [OES] sensors) which provide a great deal of finely

time-sampled information from the process, which may also provide the opportunity for

improved control [4, 20]. These characteristics drive the need for controllers which not

only provide control but provide or work with process diagnostic systems as well. Exten-

sion #3 could test the ability of the controller to distinguish between events that are con-

trollable and those that require maintenance or operator intervention.

4.1.4 Multiple Step Process (Photolithography) Scenario

The final difficult scenario we examine is one well-represented by photolithography. The

previous scenarios focused on individual step or unit process, and assume the use of mea-

surements in a "feedback" sense to improve the performance of the tool or process on

wafers that subsequently come to that tool. A multiple step control scenario is one in

which information from one step may be used to influence a later step that the same wafer

or lot will later experience. This "feed-forward" capability offers the opportunity to

actively compensate for deviations on the current wafer or lot, and requires substantially

better communications infrastructure.

Photolithography is a critical step in the manufacturing of integrated circuits. In many

cases, photolithography is the bottleneck in the fab, both in terms of speed and product

scrap. More importantly, the process capability requirements for lithography are increas-

ingly stringent and directly impact the performance of the resulting devices and circuits,

motivating attention to this process. The basic characteristic of the process is that it

involves both feedback (on unit steps) and feed-forward decision making [21]. Extensions

to this scenario are not yet clear, but this scenario is a good candidate for future test and

benchmarking development.

4.2 Addressing the Feedback from Industry

The distribution of the RbR benchmarking survey resulted in valuable responses and feed-

back from industry and the control community which aided this work. The ideas and sug-

gestions received were used to identify the above set of control scenarios.

The types of process disturbances identified in the survey include drift, process recipe

memory, time delays, input noise and target variations. Each of these disturbances was

identified as causing deviations in the process outputs from what was desired. Every sce-

nario and extension identified earlier contains one or more of these disturbances, and each

disturbance is covered.

The processes that were identified as being good candidates for RbR control include

photolithography, CMP, CVD, sputter deposition, epi, etch, ion implantation and high-

temperature processes. For the control scenarios presented above, we attempt to provide a

sampling of the type of control issues that will be encountered in IC production and thus

identified the four scenarios of deposition, CMP, plasma etch and photolithography pre-

sented above. These scenarios cover the major categories of process disturbances that

could be improved through RbR control (simple/univariate rate and time based control,

multivariate control, non-linear processes and multiple step sequences) and as such should

give a good indication of the controller's performance on other processes. It is believed

that these four scenarios cover most of the disturbances and problems that an RbR control-

ler is likely to encounter. These include disturbance states such as complex noise models,

drifts, shifts and noise due to model mismatch, as well as limitations such as input bounds

and discretization, asynchronous measurements, time delays, the effect of multiple prod-

uct or process targets, nonlinear processes, and multiple step process sequences.

Issues relating to the testing of RbR controllers that were brought up in the returned

surveys include the need for flexibility in the RbR controllers to allow for a wide range of

products produced on a processing line. There were some responses in favor of evaluating

RbR controllers based partially on the simplicity of their solution. Also, the respondents

were in favor of the ability to incorporate complex process models.

Chapter 5

RbR Benchmarking Framework
After having defined a set of RbR control scenarios and identified the needs and require-

ments for a benchmarking system, the next step was to develop a benchmarking frame-

work. This software framework is designed to support the simulation, benchmarking and

comparison of RbR control products. The goal here is to construct a software framework

that allows for the emulation of the above control scenarios, and permits easy connection,

testing, and comparison of different RbR control products. Interfaces between the bench-

mark simulation framework and commercial or experimental controllers are defined using

open standards based on socket-based communications and integrated source code stubs

for multiple languages (C and Java.) The goal is to support multiple ways for controllers to

communicate with the simulation/benchmarking system.

There have been many goals for this thesis, all of which are focused on making the

framework as easy to use as possible while still maintaining the feel of a real processing

tool as much as possible. These goals have included creating a robust, distributable system

that can be run locally or over the internet; simple simulator creation; and multiple easy-

to-use client controller connections. Accomplishing these goals has led to the creation of

the RbR benchmarking framework that is presented in this chapter. This framework has

four major tiers: 1) the benchmarking server that handles the interaction between the con-

trollers and the simulators, 2) the simulators, 3) the client controllers, and 4) the messag-

ing system used to communicate between the client and the benchmarking system.

5.1 RbR Benchmarking System Topology

The system topology for the RbR benchmarking framework is developed to be as flexible

as possible. It consists of three major, independent parts that are connected together via a

transmission control protocol/Internet protocol (TCP/IP)-based messaging system. These

three parts are client controllers (a client controller is often referred to simply as a client in

this thesis), the benchmarking server, and a set of process simulators. Figure 5.1 presents a

graphical overview of how these systems interact to form the overall RbR benchmarking

framework.

The benchmarking server is a computer program that can run on either a remote or

local computer. This server is written in Java to allow it to be easily distributable. The

server handles all of the communications between the client controllers and the process

simulators. When the server is running, it waits for clients to connect either from the same

computer or from any computer connected to the internet. When a client connects, the

benchmarking server creates a thread to handle the benchmarking. This is done so that

multiple clients can be connected to the benchmarking server at the same time (controlling

the same, or different, process simulators). This thread then handles all of the communica-

tions with the client controller via a pre-defined set of TCP/IP-based messages, and then

passes on this information to the selected simulator which has been loaded into the thread.

The messages used in the RbR benchmarking framework allow the client controller to

receive information about the process it is controlling, send recipes to be used in the next

run of the simulator, and receive messages about the output of its control.

Result File 1
Input: 10
Output: 100

Result File 2
Input: 100

Abstract Java clas BenchmarkBenchmarkin
I Client I--- - - - - - - -ulato

MIT I Server
TCP/IP based CMP extl
communications CMP ext2

C based functionI
I Client 2 I - - - - -ep - extl

Stanford)

Figure 5.1: RbR Benchmarking Framework Topology

When a client first connects to the benchmarking server, it indicates what process it

wishes to control. (The communication does not need to be done directly with TCP/IP

communications. A set of classes have been written in Java, and a set of functions written

in C to make it easier for client controllers to connect to the benchmarking server. This is

indicated by the wrapper around the clients in Figure 5.1, and is described in more detail

in Chapter 8.) When the client indicates its simulator selection, the benchmarking server

instantiates the proper process simulator class. The benchmarking server then simply acts

as a go-between for the client and the simulator. The benchmarking server also creates a

log of all the control activities that occur. This log is written to a unique file where it can

be viewed as a text file via the world wide web (at http://www-mtl.mit.edu/rbrBench/

rbrBenchResults), and therefore downloaded into Matlab or some other mathematical

package where further data analysis and plotting can take place. The name of this file is

given to the client by the server via the SetSimulator and GetCtrlResults messages.

The next four sections describe each of the tiers of the RbR benchmarking framework

in more detail.

5.2 RbR Benchmarking Message Protocol

The definition of the client to server communication is a critical component of the RbR

benchmarking system. Much of the robustness and expandability of a system such as this

is dependent upon the messaging system. A system that defines an insufficient or overly

limited set of messages quickly outlives it usefulness and must be compensated for, often

with deleterious effects. Therefore the messages chosen for the RbR benchmarking system

are designed to be as minimal as possible, while still providing the ability to expand to

accommodate any simulator or controller. A full listing and specification of the messages

is on the web at http://www-mtl.mit.edu/rbrBench/Messages.html, and a copy is contained

in Appendix B.

The messaging system has three major types of messages: 1) messages that are spe-

cific to the RbR benchmarking framework and are used to configure the system; 2) those

that are used to get information, such as process details and outputs, from the simulator to

the client; and 3) messages used to give settings and instructions to the simulator from the

client. More about these messages and the way they are used will be discussed in Chapter

7, which describes the client integration utilities used to help connect RbR controllers to

the benchmarking framework.

Much of the flexibility in the messaging system comes from the ability to fully define

the number of inputs, outputs, and parameters for the simulator in the GetProcessinfo

message. With these three categories, all of the information that a simulator may have can

be given to the controllers. There is much similarity in the way that outputs and parame-

ters are provided to the client, but there is an important difference between the two. The

outputs are used to provide directly controllable process output values, while the parame-

ters can be anything (i.e. uncontrolled outputs, process information, maintenance reports,

etc). Using the combination of these two fields, all information can be provided to the con-

troller.

The messaging system is designed to have the look and feel of an actual process tool.

Since no industry standard has been defined for what information should be passed (or

how it should be passed) between an RbR controller and an actual process tool, we have

had to determine our own set of messages. This has been a good exercise and has garnered

some good information about what is necessary to allow a controller to control a process

tool. We believe that a robust and expandable messaging system has been formulated.

5.3 RbR Benchmarking Server

The RbR benchmarking server is the framework that allows the controller and simulator to

come together. The server accepts connections from clients, sets up the appropriate simu-

lator, handles the communication between the client and the simulator, and records all of

the control decisions and results.

The RbR benchmarking server is run by executing the command java Benchmark.Bench

from the command line. When it is run, the server listens for client controllers to connect

via TCP/IP on socket 4444. Clients can connect from either a remote system or the local

system. The server is set up to handle multiple connected clients at the same time (by

spawning a separate thread for each attached client), so only one server needs to be run-

ning for any given application.

One of the first things that a newly connected client does is send a message indicating

which process to control via a SetSimulator message. Assuming that the indicated pro-

cess is valid, the server instantiates an object of that process' simulator class to be used for

the rest of the connection. Once the simulator is connected, the server simply serves to for-

ward messages back and forth between the client controller and the simulator. The server

does however also make a record (between each run and after each Reset message) of the

control actions taking place. It writes these values, and some additional summary and pro-

cess information, to a unique file in the directory http://www-mtl.mit.edu/rbrBench/

rbrBenchResults.html which is then accessible via the web. The name of this file is given

to the client in the return messages to both the SetSimulator and GetCtrlResults mes-

sages. The owner of that client can then get on the web and view the results of the control.

When either the client or server disconnects, the thread spawned to handle that connection

ends and the server returns to the state it started in.

5.4 RbR Benchmarking Clients

The clients to the RbR benchmarking system are RbR controllers that have had the ability

to communicate with the RbR benchmarking server incorporated into them. Currently

there are three ways to incorporate this ability into an RbR controller. The first way is to

directly implement the messaging scheme, which is done via the John Carney Messaging

system [22]. A much simpler way is to use one of the two sets of client integration utilities

that have been written that handle all of the communications with the server. These two

integration utilities are an extendable Java abstract class called BenchClient, and a set of C

functions and structures in the file Bench_help.c. Both of these utilities provide functions

for each message in the messaging system that perform the same operation as the corre-

sponding message, but frees the client from having to deal with actually sending and

receiving the messages. These functions can be used just like the messages would be used,

except much more easily and readily because the communication implementation is hid-

den. More details on connecting a controller using these client integration utilities is

described in Chapter 7, and an example of connecting controllers to the benchmarking

system is presented in Chapter 8.

5.5 RbR Benchmarking Simulators

The RbR benchmarking simulators are process simulators that are written to simulate a

given semiconductor process. Because of the flexibility of the RbR benchmarking frame-

work and messaging system, there is a wide range of processes that can be simulated. It is

straightforward to create a new process simulator to be used in the RbR benchmarking

framework. There are two classes provided in the BenchSimulations package that are used

to create a new simulator, BenchProcess and ConnectProcess. BenchProcess is an abstract

class that is extended in order to create a new process simulator. In this extended class, the

process detail fields should be set in the constructor, and the methods Run() and Reset()

should be overridden to perform a run for the process, and to reset the simulator's state,

respectively. Then, an entry should be added to the ConnectProcess class to let the RbR

benchmarking server know that this new simulator exists. More details on creating and

integrating a new simulator are presented in Chapter 6.

An important aspect of the RbR benchmarking system is the ability of a client to spec-

ify a random number generator seed in the SetSimulator message, which is then passed to

the simulator by the benchmarking server. This seed can then be used to provide a seed

value for the disturbance state used in the simulator. This allows for repeatable control

runs by allowing the exact same disturbance state to be used multiple times, and thus

allowing for easier comparisons between control runs. By convention, a seed value of zero

indicates that a random seed should be given to the disturbance state.

41

Chapter 6

Implementing Simulators in the RbR Benchmarking

System
This chapter describes the creation and implementation of new process simulators to be

used in the RbR benchmarking framework. For this benchmarking framework to be

usable, the integration of client controllers and the creation of new simulators must be

straight-forward and as simple as possible, and so a set of classes that were created to

implement simulators is described. This chapter also contains descriptions of the currently

existing process simulators that are based on the benchmarking process scenarios that

were described in Chapter 4.

6.1 Process Simulator Development

In the BenchSimulations package within the RbR benchmarking system there are two Java

classes that are used to create a process simulator: BenchProcess, and ConnectProcess. The

abstract class BenchProcess should be extended and used as the base of all process simula-

tors. The class ConnectProcess, which is used by the Benchmark package to connect to the

process indicated by a client controller, should be modified each time a new process simu-

lator is created by adding an entry that lets the Benchmark package know that the new

simulator exists. In the rest of this section, the abstract class BenchProcess, the ConnectPro-

cess class, and the way to use these classes to create a new process simulator are

described. On-line documentation on these classes are available at http://www-

mtl.mit.edu/rbrBench/BenchDoc/Package-BenchSimulations.html.

BenchProcess
The BenchProcess class contains three things: fields, methods that can be overridden, and

final methods (methods that cannot be overridden). The fields defined in BenchProcess

contain all of the details about the process. There are two main types of fields defined:

those whose values remain constant and should be set only once, upon initialization, and

those whose values change with each run. See Table 6.1 for a listing and a description of

the fields in each category. The constant fields are variables which should not change over

the course of a simulation, and so should be initialized in the constructor of the simulator.

The dynamic fields are variables that can change with each run and are typically set in the

Run() method of a simulator. Memory is not pre-allocated for these fields except for

in_setting which is set in the SetRecipeo method, and so this should be taken into consider-

ation. Param_value is a dynamic field, but it can also be used to provide some preliminary

parameter values to the client. Therefore, its values should be set in the constructor of the

simulator since the client will receive these values immediately after connection. After the

initial setting, param_value can be treated just like a dynamic field and changed after each

run. However, num_params and param_name are constant fields and cannot be changed out-

side of the constructor. The num_wafersin_run and out_target fields are also expected to

have initial values set in the constructor before the Run() method is executed for the first

time, and so should therefore be initialized in the simulator's constructor. There is one

additional field that is not mentioned in Table 6.1, the field Active which is used to indicate

if this simulator can be used. If for some reason a simulator should not be used (i.e. it is

still under development), the Active field should be overridden and set to false, in which

case no client can connect to it.

Most of the numerical manipulation done within the BenchSimulations package, as

well as the rest of the RbR benchmarking system, is done using the MatrixCafe Java math-

ematical libraries (more information about these libraries can be found at http://www-

mtl.mit.edu/-taber/MatrixCafe/MatrixCafe.html). Each of the fields in Table 6.1 are

defined as DoubleMatrix (DoubleMatrix is the class defined in MatrixCafe for use in

Matrix manipulations). Note however, that in_name, out_name, and param_name are arrays

of strings.

ConstantConstant Dynamic Fields Description
Fields

numinputs The number of inputs

num_outputs The number of outputs

num_params The number of parameters

in_name The inputs' names

out_name The outputs' names

param_name The parameters' names

in hirange The inputs' upper bounds

in lorange The inputs' lower bounds

in_resolution The inputs' resolution

in_weight The input weights

outweight The output weights

in_setting The input recipe

out_target The output targets

out_value The output values

param_value The parameter values

num_wafersinrun The number of wafers in next run

Table 6.1: BenchProcess Fields

In the BenchProcess class there are a number of final methods that cannot be overrid-

den. These methods provide information to be used by the RbR benchmarking server and

do not need to be considered when writing new simulators.

There are two abstract methods which must be overridden, Run() and ResetO, and one

method that can be overridden, SetRecipeo. SetRecipeo is called by the benchmarking

server to give the simulator the next recipe from the client controller (and so therefore, is

not directly used by the simulator). There is a default implementation of SetRecipeo which

takes the input recipe values, checks them for correct bounding and discretization, and

stores them in the in_setting field. However, this method can be overridden if additional

functionality is desired (i.e. to add input noise). The Run() method is the method that is

called by the benchmarking server to actually perform a run. It should use the value in

in_setting to compute values for the out_value and param_value fields. The Run() method

should also determine new settings for the num_wafersin_run and out_target fields as

needed. The Reset() method should be used to reset the process (i.e. set the drift compo-

nent back to zero). Implementations of Run() and Reset() must be provided for any new

process simulator.

ConnectProcess
The purpose of the ConnectProcess class is to provide the RbR benchmarking server with a

means to connect to the available process simulators. This class consists of a static method

named Connect() that takes the name of a simulator and returns an instantiated object of

that simulator. The outcome of the connect attempt is recorded in the ErrorValue field. The

ErrorValue field is set to zero for a successful connection and set to nonzero for a non-exis-

tent or inactive process. The Connect() process operates via a set of "if else" statements.

So, when a new simulator is written, an "if else" statement needs to be added to Connect-

Process. See Figure 6.1 for the structure of the "if else" statement to be inserted. This com-

ment block is in the ConnectProcess.java file, near the end. Simply copy this group of code

directly above itself, remove the comments, and replace each instance of the word New-

Process with the name of the new simulator. This will allow the RbR benchmarking sys-

tem, and thus all client controllers, to connect to the new simulator.

/***** This is an example of a how to add a new process *****
else if (processName.equals("NewProcess"))

{
if (INFO) System.out.println("NewProcess Process chosen");
if (NewProcess .ACTIVE)

{
ErrorValue = 0;
return (new NewProcess(seed));

}
else

{
if (DEBUG) System.out.println("NewProcess Process not active.");
ErrorValue = 3;
return null;

}

Figure 6.1: ConnectProcess "if else" Model

6.2 Creating a New Simulator

The classes required to make a new process simulator for the RbR benchmarking system

have been described in the previous two sections. There are two tasks to create a new sim-

ulator: 1) create a new class by extending the abstract BenchProcess class, and 2) add an

entry for this newly developed simulator class to the ConnectProcess class. In this section,

the creation of an actual simulator will be described. Appendix C contains a listing of the

code for the Deposition simulator, and can be consulted to trace through the following dis-

cussion.

The first step is to make an extension of the abstract BenchProcess class and call it Dep-

osition. This new class needs to be in the BenchSimulations package in order to be able to

access the fields in BenchProcess. Also, since we will be using matrixCafe, and Java's Ran-

dom class, we want to import those classes. Next, all the private fields and state variables

that will be used to compute the output within the simulator should be declared.

The next step is to write a constructor, Deposition (long seed), that sets values for all of

the constant fields and allocates space for the dynamic fields. In addition the constructor

should take care of any tasks specific to that controller, such as how to handle the seed pro-

vided by the client. In this case, if a non-zero seed is provided, it is used to seed the noise

used for the disturbance state in the simulator, otherwise a random seed is used. As men-

tioned before, most of the fields are DoubleMatrixs, but a few are arrays of strings. In this

simulator, since there are no parameters, the param_name and param_value fields are set to

null. Notice that space is allocated for out_value, while the rest of the fields are given spe-

cific initial values. (One note should be made here about the format of strings used in the

RbR benchmarking framework. Strings must be a continuous set of letters, numbers, or

underscores and must start with a letter (i.e. no spaces). This includes the input, output,

and parameter names as well as the name of the process itself. This is the reason for the

dash in the input name.)

The next step is to override the int Run() method and use in_setting, and the rest of the

fields and local variables, to generate out_value and update the dynamic variables as appro-

priate. Next, the int Reset() method should be overwritten and made to re-initialize the state

variables of the process when it is called. For example, in this simulator, the two state vari-

ables, num_runs and elapsed_time, are set back to zero. Here there is no reason to override

SetRecipeo since no additional functionality is desired in setting the input values, beyond

checking for proper discretization and bounding.

Finally, after the new simulator, Deposition, is completed, an entry must be made for it

in ConnectProcess by inserting the code within the comments in Figure 6.1 (with the

"NewProcess" entries replaced with "Deposition") into the "if else" structure in Connect-

Process.Connect().

6.3 Existing Process Simulators

So far, ten process simulators have been implemented. These simulators are different

extensions of two different processes: a four input, two output CMP process, and a single

input, single output metal sputter deposition process. The choice of these processes and

the scenarios for these simulators was made with the help of feedback from the semicon-

ductor industry as described in Chapter 4. (More information about each of these simula-

tors can be found at http://www-mtl.mit.edu/rbrBench/BenchDoc/Package-

BenchSimulations.html.) Table 6.2 contains the names and a description of each of these

process simulators.

* CMP - a 4 input 2 output linear process model

* Scenario 1: Discrete steps and bounds on recipes (CMP_extl.java)

* Scenario 2: Same as Scenario 1 with random lot sizes (CMP_ext2.java)

* Scenario 3: Same as Scenario 2 with infrequent measurements (CMP_ex3.java)

* Scenario 4: Same as Scenario 3 with missing measurements (CMP_ext4.java)

* Sputter Deposition - single input single output process model

* Scenario 1: Discrete steps and bounds on the input (Deposition.java)
* Scenario 2: Same as Scenario 1 with various thickness goals (Dep_extl.java)

* Scenario 3: Same as Scenario 2 with a constant measurement delay (Dep_ext2.java)

* Scenario 4: Same as Scenario 3 with non-periodic measurements (Dep_ext3.java)

* Scenario 5: Same as Scenario 4 with non-periodic delay (Dep_ext4.java)

* Scenario 6: Same as Scenario 1 with outliers (Dep_ext5.java)

Table 6.2: Existing Process Simulators

49

Chapter 7

Integrating Clients into the RbR Benchmarking System
The ease of the connection of client controllers to the benchmarking system is an

important barrier to overcome in developing a benchmarking system. Developers want to

spend as little time as possible getting their controllers connected to the system so they can

spend more time testing. Because of the expandable and distributed nature of the RbR

benchmarking system, connection will have some complexities. However, much of the

problem of having to communicate over the network via TCP/IP sockets has been allevi-

ated by two sets of client integration utilities that have been written. The structure and use

of these two integrations utilities, BenchClient and Bench_help, is described in this chapter.

Actual uses of these integration utilities to connect two controllers to the benchmarking

framework, and subsequent testing of these controllers against the RbR benchmarking

simulators are presented in Chapter 8.

7.1 Client Integration Utilities

BenchClient is a client integration utility for controllers that are written in Java. Bench_help

is one for controllers written in C. Both of these integration utilities perform the same task

for their respective languages; they simplify the communications with the RbR bench-

marking server by providing functions for each message in the RbR benchmarking mes-

saging protocol. BenchClient is an abstract Java class (that provides a method and fields for

each message) which can be extended to make a client. Bench_help is a set of C functions

that implement the messages and a set of data structures for information storage that can

be integrated into a client controller. For example, to send a Reset message to the bench-

marking system, the controller would call the Reset() function. (For a complete listing of

the messages in the RbR benchmarking system see Appendix B.)

These two integration utilities are both used in a similar way. Each has the same func-

tions and variables available for use. The rest of this section will describe the manner in

which these functions and variables should be used, and the following two sub-sections

will describe the individual integration utilities.

See Table 7.1 for a listing of the typical order in which the functions in the client inte-

gration utilities should be used and the order in which the variables should be accessed.

Steps 1 through 4 in Table 7.1 are steps used to set up the connection with the RbR bench-

marking server and the appropriate simulator, and so only need to be performed once for

each connection. Steps 5 and 6 are used to reset the state of the simulator and to set the

mode of the controller. The two types of modes are EXPERIMENTAL and CONTROL. Exper-

imental mode should be used for design of experiments (DOEs) to determine a model for

the process. Control mode should be used for actual control. Statistics used for evaluating

the performance of controllers are only computed for runs made in control mode. Steps 7

through 11 are the steps needed to actually perform a run, and should be repeated for each

desired run. Step 12 is used to get information on the runs performed during the entire

connection, and Step 13 is a function that should be overwritten to locally record this

information. Step 14 is used to disconnect from the RbR benchmarking server.

Function Vars set before Vars viewed after

1 ConnectToHostO HOST, SOCK

2 InitO name

3 SetSimulator() process, seed results_file

Function Vars set before Vars viewed after

4 GetProcesslnfo() num_inputs, num_outputs,
num_params, in_name,
out_name, param_name,
in_hi range, in_lo_range,
in_resolution, in_weight,
outweight, param_value

5 Reset()

6 SetModeO mode

7 GetRunlnfoO num_wafers_inrun, out_target

8 GenerateRecipeo

9 SetRecipeo num_runs, in_setting

10 Run() num_runs, out_value,
param_value

11 RecordRunResultsO

12 GetCtrlResultso num_exp_runs,
num_ctrl_runs, results_file

13 RecordCtrlResultsO

14 Disconnect()

Table 7.1: Use of Client Integration Utilities

BenchClient

BenchClient is the java version of the client integration utility described above. It consists

of two classes BenchClient and Processinfo. (On-line documentation for these classes is

available at http://www-mtl.mit.edu/rbrBench/BenchDoc/Package-BenchClient.html.)

BenchClient is an abstract class that provides all of the (RbR benchmarking message imple-

menting) methods necessary to connect a client controller. It contains one abstract method,

GenerateRecipe, that should be overridden with the actual RbR control algorithm, and two

unimplemented methods, RecordRunResults, and RecordCtrlResults that can be overridden

to keep track of controller performance locally. BenchClient provides all of the methods

described in Table 7.1. Table 7.2 describes where each of the fields used in integrating a

client controller are located. Note that most of the fields are contained in an object of the

ProcessInfo class. This class stores most of the process information and provides some

methods used by BenchClient.

Processinfo Fields AbstractClient Fields Description

num_inputs The number of inputs

num_outputs The number of outputs

num_params The number of parameters

in_name The inputs' names

out_name The outputs' names

paramname The parameters' names

in hi range The inputs' upper bounds

inlorange The inputs' lower bounds

in_resolution The inputs' resolution

in_weight The input weights

out_weight The output weights

recipe The input recipe

out_target The output targets

out_value The output values

param_value The parameter values

numwafersinrun The number of wafers in next run

num runs The number of runs in next Run
message

num_exp_runs Total number of experimental
mode runs performed

num_ctrl_runs Total number of control mode
runs performed

mode Mode of the controller

name Name of the controller

process Name of the process to control

Processlnfo Fields AbstractClient Fields Description

results_file Name of file results are written to

seed The seed value to be used

Table 7.2: AbstractClient and ProcessInfo Fields

Bench_help
Bench_help is the C version of the client integration utility. It is designed to look and

perform just like the java version of the integration utility. There are three files,

Bench_help.c, Bench_help.h and Processlnfo.c. Bench_help.c and Processlnfo.c

contain the same functions as the corresponding classes in the java version.

Bench_help.c contains the functions defined in Table 7.1, and Processlnfo.c contains

functions used by Bench_help.c. However the key difference is the way in which the

variables described in Table 7.1 are stored. In the C version of the integration utility,

Bench_help.h defines a set of structures that contain entries for each variable. To make a

client, a program should be written which creates these structures, sets the appropriate

variables and calls the functions in Bench_help.c, as described in Table 7.1. See Table

7.3 for a description of the variables that are contained in these structures.

struct proc_details struct run_info struct ctrl_results struct ctrl_details
Variables Variables Variables Variables

num inputs

num_outputs

num_params

in name

out_name

param_name

inhirange

in lo range

struct proc_details struct run_info struct ctrlresults struct ctrldetails
Variables Variables Variables Variables

in_resolution

in_weight

out_weight

recipe

out_target

out_value

paramvalue

num_wafersinrun

num runs

prevnum_runs

num_exp_runs

numctrlruns

mode

name

process

results_file

seed

Table 7.3: Bench_help.h Structures

7.2 Example of an Integrated Controller

As a specific example of how to integrate an RbR controller into the RbR benchmarking

framework, the listing of the code for the client controller Client.java in Appendix D is pro-

vided and can be consulted in parallel with the following discussion. Since this is a Java

controller, it uses the java version (the AbstractClient and Processlnfo classes) of the client

integration utilities.

The first step is to make an extension of the abstract AbstractClient class and call it Cli-

ent. Since we will be using matrixCafe, and the BenchClient class, we want to import those

classes. Next, all the private fields and state variables that will be used to compute the next

recipe within the controller should be declared.

The next step is to write a constructor, Client (), that sets values for the name, process,

and seed fields. In this case, the Simple_Java_EWMA controller is controlling the Deposi-

tion process with a seed of 200. (Again note that the format of strings used in the messages

must be alphanumeric with no spaces.)

The next step is to override the GenerateRecipeo method to cause it to compute the next

recipe to use. This new recipe, and the number of runs to be performed via the next run

message should be entered into the recipe and num_runs fields of the ProcessInfo instance.

Note that the num_runs field is provided because the benchmarking system allows for the

entry of multiple recipes (i.e. allows for multiple runs to be specified) in one Run mes-

sage. This is done by entering an array of recipes into the recipe field, and the correspond-

ing results from the simulator will be an array of outputs. Note however, in Client.java

num_runs is always set to one.

Next, the RecordRunResultsO and RecordCtrlResultsO methods could be overwritten if

desired, but in this case they are left unimplemented.

Since Client.java is a free-standing program, it needs a main() method which is located

at the end of the listing. In this client's mainO method, it instantiates an instance of itself,

and then calls the Operate() method. The Operate() method is where the communications

with the RbR benchmarking system takes place. (Using the Operate() method to do the

communications was chosen out of convenience, but is not the only way to do it.)

The Operate() method uses the methods in the sequence described in Table 7.1. Note

that a value is given to the mode field before the SetModeO method is called. In this imple-

mentation Steps 7 through 11 in Table 7.1 are repeated 100 times, to perform the actual

control runs.

Chapter 8

Benchmarking Framework Verification
The final task in the development of the RbR benchmarking system was to perform a sam-

ple benchmarking of two RbR controllers. This chapter reports on the integration of these

two controllers into the benchmarking framework and presents the results of a set of

benchmark control runs performed. One of the controllers connected to the system was a

previously existing exponentially weighted moving average (EWMA) controller written in

C. This EWMA controller was then ported over to Java, and then this new Java version of

the EWMA controller was connected to the benchmarking system.

8.1 Connection to the Benchmarking Framework

In the benchmarking framework, two client integration utilities are provided that help to

connect an RbR controller to the RbR benchmarking server so that simulations can be per-

formed and a benchmarking performed as described in Chapter 7. BenchClient is the client

integration utility for controllers that are written in Java, and Bench_help is the one for con-

trollers written in C. Both of these integration utilities perform the same task for their

respective languages; they simplify the communications with the RbR benchmarking

server. These integration utilities are described in more detail in Chapter 7 and on-line

documentation can be found at http://www-mtl.mit.edu/rbrBench/BenchDoc/Package-

BenchClient.html.

These integration utilities were used to connect the two RbR controllers to the RbR

benchmarking server. The first controller is an EWMA controller written in C. Bench_help

was used to help integrate this controller. The second controller is a Java-based version of

the EWMA controller that uses BenchClient to integrate into the RbR benchmarking sys-

tem.

Connection of C RbR Controller
The C RbR controller that was connected to the RbR benchmarking system is an EWMA

controller, written in previous work [23], that performs bounding and discretization and

allows for input and output weightings. This controller was integrated into the benchmark-

ing system with the help of the Bench_help integration utility as described in Chapter 7.

The integrated controller prompts the user for the type of rounding to use, the system

model for the process being simulated, and the EWMA weights to use. The rest of the

information needed for control comes from the RbR benchmarking system and the spe-

cific simulator being accessed through the messaging system.

Connection of Java RbR Controller
In order to test the ability to connect a Java-based RbR controller to the benchmarking sys-

tem, it was necessary to create one. Therefore, the C-based EWMA RbR controller

described above was implemented in Java and then integrated into the benchmarking sys-

tem with the help of the BenchClient integration utility. This controller was integrated

almost exactly the same as the integrated controller shown in Appendix D, except the Gen-

erateRecipe() method was replaced with one that simply makes a call to the new Java-

based EWMA controller.

In the sample benchmarkings described in Section 8.2, the Java-based EWMA control-

ler was specially set up to allow easier (qualitative) comparisons to be made. There were

two modes it was used in. In the first mode, the EWMA weights were set to 0, which

causes no change in the input to occur, thus providing the same recipe for each run. This is

referred to as the no-update controller. In the second mode, the EWMA weights were set

to 1. In this mode, the next recipe is changed completely after each run based only on the

previous output, thus not providing any smoothing (or averaging). This is referred to as the

full-update controller.

8.2 Results of the Sample Benchmarking

Once these two controllers were integrated into the RbR benchmarking system, they were

run and tested against two of the process scenarios available in the system. Tests were run

on the CMP_extl and Deposition simulation scenarios. CMP_extl is a 4 input, 2 output CMP

simulator that has discrete inputs and input bounds. Deposition is a 1 input, 1 output sputter

deposition simulator that has discrete inputs, input bounds, and a constant target. More

information on these and the other scenarios can be found at http://www-mtl.mit.edul

rbrBench/BenchDoc/Package-BenchSimulations.html. An important component of these

simulators is the RbR controller's ability to provide a seed in the SetSimulator message. If a

non-zero seed is provided by the controller, then the noise and randomness present in that

control run can be recreated exactly in another run or by another controller by providing

the same seed (while a seed value of zero provides different noise for each run). This is

very useful in a benchmarking effort as it allows different controllers to be more accu-

rately compared.

Figures 8.1 through 8.5 present some of the results from the control runs performed.

Figure 8.1 is an example of the results printout from a control run that can be found at

http://www-mtl.mit.edu/rbrBench/rbrBenchResults after a run has been performed. This

particular printout is from control of the CMP_extl simulator by the C EWMA controller.

Figures 8.2 and 8.3 are plots of the outputs and inputs from control runs performed on the

CMP_extl simulator. Figure 8.2 is from a control run performed by the C controller, while

Figure 8.3 is from the no-update Java controller. In both of these figures, the exact same

set of noise values are used so that one can clearly see the difference in the ability of the

controllers to keep the process on target. The ability to use the same noise is achieved by

giving a non-zero seed value to the benchmarking system; in this case the seed was set to

100 for both control benchmark runs. These two figures demonstrate the ability of the

benchmarking system to compare the performances of different controllers. In this case,

Figure 8.3 (with no model update) also illustrates the types of disturbances implemented

by the CMP_extl scenario. In particular, one sees long drifts, large shifts (at run 30), and

random "noisy" measurements (e.g. at runs 15 and 81). It is obvious that the C controller

does a much better job at maintaining the targets than the no-update Java controller. Also

notice that the inputs of the Java controller do not change, while those of the C controller

provide more and more aggressive control to compensate for the drift.

Similarly, Figures 8.4 and 8.5 compare the performances of the C controller and the

full-update Java controller on the Deposition process simulator with a seed value of 200. In

Figure 8.5, the Java controller does modify the input to compensate for the change in the

process model (unlike in the no-update case in Figure 8.3) as can be seen by comparing

the actual output to the baseline output (the output that would have occurred had there

been no control actions taken) represented by the dashed lines in Figures 8.4 and 8.5.

Notice, however, the larger number of input modifications in Figure 8.5 than in Figure 8.4.

The higher EWMA weight in the full-update Java controller causes more reactionary con-

trol actions than those of the C controller.

These test scenarios demonstrate the ability of the RbR benchmarking system to com-

pare the performances of RbR controllers, and demonstrates the feasibility of RbR bench-

marking and this benchmarking framework.These examples demonstrate the ability of the

RbR benchmarking system to provide both a qualitative and quantitative comparison of

controller performances.

Controller name: MIT_C_EWMA
Process simulator selected: CMPextl
Seed value used: 0
Number of inputs: 4
Input names: Speed Pressure
Input low range: 11.0 1.0
Input high range: 45.0 7.5
Input resolution: 0.5 0.1
Input weights: 28.0 10.0 32.0
Number of outputs: 2
Output names: RemovalRate Non-Unif
Output weights: 0.8 0.3
Number of parameters: 0
Parameter names:
Initial parameter values:

Force Profile
1.0
18.0
0.1
4.0

ormity

-1.8
0.9
0.05

RUN DATA
numExp numCtrl setmodeMsg
0 0 1 1
0 1 0 1
0 2 0 1
0 3 0 1
0 4 0 1
0 5 0 1

SUMMARY STATISTICS
Number of Experimental Runs:
Number of Control Runs: 5
Output Mean Squared Error:
Input Mean Squared Change:

mode runMsg num_runs

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

batchsize

36.0 4.4 6.4
38.0 4.4 5.4
39.0 4.4 5.0
40.0 4.4 4.6
40.0 4.4 4.6

3526.375731455176 64.33703930093097
1.5 0.0 0.3300000000000002 0.0

Figure 8.1: Printout of Results from a Sample Control Run

2200

2000

1800

1600

0 10 20 30 40 50
Run #

50'
0 10 20 30 40

60 70 80 90 1. 50 100 0 50
Run# Run#

20

15

-210

5

0
so 60 70 80 90 100 0 50 100

Run # Run #

1

0.5

sO

0 -05

-1

-1.5
0 50 100

Run #

Figure 8.2: Control Run on CMP_extl by C-based Controller

inpu

-0.4
-0.4
-0.4
-0.4
-0.4

34nn. 1 I

9 . ..

F-- ---

85

8

75

7

65
0 50 100

Run #
10 20 30 40 50 60 70 80 90 100

Run #

------------------- ---------------

50'
0 10 20 30 40 50 60 70 80 90 100

Run #

Figure 8.3: Control Run on CMP_ext by No-update Java-based Controller

300

200 -

150
0 10 20 30 40 50 60 70 80 90 1

Run #

40

35-

30

0 10 20 30 40 50 60 70 80 90 100
Run #

Figure 8.4: Control Run on Deposition by C-based Controller

Run #

45

40

S35

30

0 10 20 30 40 50 60 70 80 90 100
Run#

Figure 8.5: Control Run on Deposition by Full-update Java-based Controller

63

2200

2000

1800

1600

1400

250

.200

150

Z 100

4AO . ..

Chapter 9

Conclusions and Future Work
This thesis has presented the definition and development of an RbR control benchmarking

and simulation system. We have shown the feasibility of RbR benchmarking and have cre-

ated a framework that allows simple connection of controllers to a set of process scenario

simulators to support the simulation, benchmarking and comparison of RbR control prod-

ucts. This thesis contained two primary phases: first, the determination of the capabilities

and performance of RbR controllers, and the requirements and specifications for a bench-

marking system and its process scenarios; and second, the creation and verification of a

benchmarking system including a server, simulators, and client integration utilities.

The first phase involved a gathering of information through a survey of RbR control

literature, and the development of a questionnaire that was distributed to semiconductor

industry companies. This phase of the thesis was critical in the development of a bench-

marking framework that is indeed feasible, and served to determine the needs and wants of

the benchmarking framework user. The goal of the literature search was to identify results

and benefits gained in the semiconductor and other industries through the use of RbR con-

trol, while the industry questionnaire aimed to identify the key problems, opportunities,

and scenarios for RbR control, as well as the needs or requirements for successful product

adoption. Once this information was gathered it was used to help determine the makeup of

the benchmarking system, including the specific process scenarios that should be used to

fully test the ability of an RbR controller. Four control scenarios, with extensions, were

selected. These four scenarios (deposition, CMP, plasma etch, and photolithography)

cover most of the disturbances and problems that an RbR controller is likely to encounter.

The second phase consisted of developing a software framework to support the bench-

marking process. This framework was designed to be a robust, expandable, distributable,

platform-independent system that is easy to use and connect to, while still maintaining the

look and feel or a real process tool. This framework incorporates four tiers: a messaging

system, a server, clients, and simulators.

1. The first tier is a messaging system that allows the client controllers to communicate

with the server and the simulators. This messaging system was designed to be robust

and flexible enough to handle all types of RbR control situations that may be

encountered.

2. The next tier is the benchmarking server that allows the controller and the simulator

to come together. It handles all of the communications between the two and also

handles the recording of the results of the control run taking place.

3. The third tier is the connection of RbR controllers to the benchmarking system to

act as clients to control a simulator through the benchmarking server. There are two

client integration utilities that are included in the framework: BenchClient for Java-

based controllers, and Bench_help.c for controllers written in C.

4. The fourth tier is the set of process simulators themselves. These simulators are

based on the control scenarios and extensions defined in phase one of this thesis and

were integrated into the framework with the help of a set of java classes that are used

to incorporate new simulators into the framework, BenchProcess and ConnectProcess.

Finally, once these two phases of the thesis were completed (background research, and

system development), it was time to test the feasibility of benchmarking RbR controllers.

This was done by incorporating two RbR controllers into the benchmarking framework

and running control runs against some of the simulators. This proved that the benchmark-

ing framework does indeed perform as designed, and that the ability to connect controllers

and simulators to the system does indeed exist. Therefore the ability of the benchmarking

system to support simulation, benchmarking and controller comparison was demonstrated.

There are many exciting directions that this project can take in the future. As with all

projects of this nature, the gathering of information (as performed in phase one) should be

an on-going process. Close interactions with industry and developers of RbR controllers

should be maintained and the benchmarking system should be left open to changes should

new information become available. During development of this framework we have dis-

covered that the RbR benchmarking framework promises utility not only as a benchmark-

ing tool but also as a simulation and testing tool because of its design features. Future

work could include a general RbR controller benchmarking effort where industry mem-

bers could evaluate RbR controllers. A smaller scale benchmarking could also be per-

formed on a specific process simulator, by a tool company or a specific fab, to determine

the best RbR controller for that process. In either case, the creation of a standard set of

scenarios and benchmarks will foster comparisons and discussion within industry.

Another avenue of exploration for this framework could be as a tool in developing control-

ler algorithms and/or process models. This could become even more important if the mes-

sages used in this framework help lead to an industry standard for the protocol or message

content for communicating between RbR controllers, process sensors, and tools. Evaluat-

ing the merits of such a standard could be a very interesting continuation of this thesis.

67

References
[1] V. Bakshi, "Benchmarking of Commercial Software for Fault Detection and Classifi-

cation (FDC) of Plasma Etchers for Semiconductor Manufacturing Equipment," Proc.
of the Amer. Ctrl. Conf., Vol. 3, pp. 1579-82, June 1997.

[2] T. Smith, D. Boning, J. Stefani, and S. Butler, "Run By Run Advanced Process Con-
trol of Metal Sputter Deposition," TI Internal Report, 1996.

[3] D. Boning, W. Moyne, T. Smith, J. Moyne, R. Telfeyan, A. Hurwitz, S. Shellman, and
J. Taylor, "Run By Run Control of Chemical Mechanical Polishing," IEEE Trans. on
Components, Packaging, and Manufacturing Technology, Vol. 19, No. 4, pp. 307-314,
Oct. 1996.

[4] M. Le, "Variation Reduction in Plasma Etching via Run-to-Run Process Control and
Endpoint Detection," S.M. Thesis, MIT EECS, July 1997.

[5] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley, New
York, 1985.

[6] E. Sachs, A. Hu, and A. Ingolfsson, "Run by Run Process Control: Combining SPC
and Feedback Control," IEEE Trans. on Semi. Manuf, Feb. 1995.

[7] T. Smith, "Novel Techniques for the Run by Run Process Control of Chemical-
Mechanical Polishing," S. M. Thesis, MIT EECS, May 1996.

[8] E. Del Castillo and A. Hurwitz, "Run to Run Process Control: a Review and Some
Extensions," J. Qual. Tech., 1997.

[9] S. Butler, and J. Stefani, "Application of Predictor Corrector Control to Polysilicon
Gate Etching," Proc. of the American Control Conference, San Francisco, June 1993.

[10] T. Smith, and D. Boning, "A Self-Tuning EWMA Controller Utilizing Artificial Neu-
ral Network Function Approximation Techniques," International Electronics Manu-
facturing Symposium, IEMT '96, Oct. 1996.

[11] E. Del Castillo, and J. Yeh, "An Adaptive Run-to-Run Optimizing Controller for Lin-
ear and Nonlinear Semiconductor Processes," IEEE Transactions on Semiconductor
Manufacturing, Mar. 1997.

[12] J. Baras, and N. Patel, "Designing Response Surface Model Based Run by Run Con-
trollers: A New Approach," IEEE/CMPT International Manufacturing Technology
Symposium, pp. 210-217, 1995.

[13] J. Mullins, W. Campbell, and A. Stock, "An Evaluation of Model Predictive Control
in Run to Run Processing in Semiconductor Manufacturing."

[14] M. Hankinson, T. Vincent, K. Irani, and P. Khargonekar, "Combined Real-Time and
Run-to-Run Control of Etch Depth and Spatial Uniformity in Plasma Etching," Jour-
nal of the Electrochemical Society, vol. 144, no. 7, pp. 2473-2479. July 1997.

[15] Z. Ning, J. Moyne, T. Smith, D. Boning, E. Del Castillo, J. Y. Yeh, and A. Hurwitz,
"A Comparative Analysis of Run-to-Run Control Algorithms in the Semiconductor
Manufacturing Industry," Seventh Annual SEMI/IEEE Advanced Semiconductor Man-
ufacturing Conference and Workshop, Cambridge, Mass., Nov. 1996.

[16] D. Boning, W. Moyne, T. Smith, J. Moyne, and A. Hurwitz, "Practical Issues in Run
by Run Control," Sixth Annual SEMI/IEEE ASMC, Boston, Nov. 1995.

[17] D. Boning, "Run by Run Control Benchmarking," A White Paper, Oct. 1996.

[18] G. Smith and I. Highberg, "Real Time Statistical Process Control for Improved Etch
Tool Performance," J. Vac. Sci. Tech., Jan. 1996.

[19] S. Butler and J. Stefani, "Supervisory Run-to-Run Control of Polysilicon Gate Etch
Using In Situ Ellipsometry," IEEE Trans. on Semi. Manuf., May 1994.

[20] A. Gower, "An Architecture for Flexible Distributed Experimentation and Control
with an AME 5000 Plasma Etcher," S.M. Thesis, MIT EECS, August 1996.

[21] S. Leang, S.-Y. Ma, J. Thomson, B. J. Bombay, and C. J. Spanos, "A Control System
for Photolithographic Sequences," IEEE Trans. on Semi. Manuf., Vol. 9, No. 2, pp.
191-207, May 1996.

[22] J. Carney, "Message Passing Tools for Software Integration," S. M. Thesis, MIT
EECS, June 1995.

[23] W. Moyne, "Run by Run Control: Interfaces, Implementation, and Integration," S. M.
Thesis, MIT EECS, May 1995.

Appendix A

Run by Run Process Control Benchmarking Surveys

SEMATECH Run By Run Process Control Benchmarking
SURVEY - Also available at http://www-mtl.mit.edu/rbrBench/Survey.html

Name: Please return survey to:
Address: Prof. Duane S. Boning

MIT Room 39-567
Cambridge, MA 02139

Phone: Email: boning@mit.edu
Fax: Ph: 617-253-0931
Email: Fax: 617-253-9606

Run by run (RbR) process control is a methodology which utilizes process measurements to modify
process settings on a run by run or lot by lot basis to improve or maintain process performance in the face of
process drift or other disturbances. We are currently soliciting input from SEMATECH member companies
regarding the benchmarking of process controllers.

2. What processes and equipment could most benefit from RbR process control, and why?

3. Are there issues which RbR controllers should address that have not been considered?

4. Please rate the importance of each of the following criteria for RbR process controllers (1 - very impor-
tant through 5 - not important.)

Simplicity of algorithm Customer support for RbR packages

Ability to handle different processing conditions

Integration with CIM systems

Ability to handle complex sensor
information

Ability to incorporate complex process models

5. Please provide contact information for any specific controllers you believe should be included in RbR
benchmarking.

Closing Remarks - The usefulness and appropriateness of the benchmarking project depends on your
response to this survey. Please return the survey and any additional comments or questions to authors at the

address above. Thank you. - T. Smith, A. Gower, E. Stuckey, and D. Boning

SEMATECH Run By Run Process Control Benchmarking

Appendix - Extended Survey

Name: Please return survey to:
Address: Prof. Duane S. Boning

MIT Room 39-567
Cambridge, MA 02139

Phone: Email: boning@mit.edu
Fax: Ph: 617-253-0931
Email: Fax: 617-253-9606

Run by run (RbR) process control is a methodology which utilizes process measurements to modify
process settings on a run by run or lot by lot basis to improve or maintain process performance in the face of
process drift or other disturbances. We are currently soliciting input from SEMATECH member companies
regarding the benchmarking of process controllers.

General Overview

The SEMATECH run by run (RbR) process control benchmarking project is aimed at providing infor-
mation about the technical capability and available implementations (commercial or otherwise) to the gen-
eral semiconductor manufacturing community.

We are currently soliciting input on the issues the community feels are important to the success of the
RbR process control benchmarking project. In addition to the "short form" (one page) survey, we have put
together this more extensive set of questions. The questions are divided into the following three main sec-
tions: general questions about processes and the benchmarking project, questions regarding the criteria by
which the technical capability of the RbR process control methodologies will be judged, and questions
regarding the basis for which implementations of these control algorithms will be compared and contrasted.

General Questions

These are questions probing which process technologies have difficult problems which run by run con-
trollers may be able to address, what the major categories of interest are in comparing RbR control methods,
and finally what tasks are needed to accomplish the project goals.

1. What are current process or equipment barriers and/or control problems (e.g. significant uniformity
problems, machine wear and target drift, tuning complexity, etc.) in the following:
a) Epitaxial Film Growth

b) Chemical Vapor Deposition

c) Thermal Oxidation

d) Diffusion

e) Ion Implantation

f) Sputter Deposition

g) Lithography

h) Plasma Etching

i) Chemical-Mechanical Polishing

j) Rapid Thermal Processing

2. Where and when do you see RbR process control being used?

3. Are there particular advanced processes which you believe may require RbR process control in order to
achieve future requirements?

4. What current processes might most benefit from RbR process control, and why?

5. What criteria do you see as being most important to the benchmarking of RbR process control solutions
(e.g. applicability to specific processing scenarios, experimental verification, level of implementation or
commercialization)?

6. What can the benchmarking team do to make the benchmarking system widely available?

7. What are effective ways to get the community involved in the project?

8. What else can the benchmarking team do to make the RbR process control benchmarking project a suc-
cess?

Technical Capability Issues

This section of the survey is designed to assess the technical capability of the various RbR control algo-
rithms in the face of several different semiconductor process control scenarios. The focus here is on techni-
cal quality of algorithms, rather than focusing on whether a commercialized version with factory integration
exists.

We have initially chosen to segment the technical capability section into realistic scenarios a controller
might face in the industry. This allows the controller the freedom to run design of experiments, simulated
test runs, and simulated control runs. The following questions are aimed at determining what scenarios are
important and challenging.

1. Should the RbR technical capability assessment be segmented into scenarios? If not, how should the
methodologies be segmented and tested?

2. What processes are least and most formidable to control on a run to run or lot to lot basis?

3. What types of sensor information should a RbR process controller be able to handle?

4. What practical issues are important for RbR controllers to address (e.g. bounds checking, recipe round-
ing, dead-bands, or embedded SPC)?

5. Should RbR process controllers be assessed with regard to the complexity (order) of processes which
they are able to control?

6. What types of process disturbances are common in semiconductor manufacturing?

7. What other technical criteria should RbR process controllers be compared and contrasted on
(e.g. questions 4-6)?

Commercial Availability and Implementation Issues

This section of the survey is aimed at assessing the implementation quality of RbR process control solu-
tions. Although a RbR process control methodology may be technically capable, its ability to perform reli-
ably in an integrated fashion with factory computer integrated manufacturing (CIM) systems and equipment
automation systems is often an essential criteria in the assessment of the benefit of a particular control solu-
tion.

The questions that follow attempt to determine the critical integration issues for RbR control software
solutions.

1. What are the key integration issues a controller must address in order to be viable for use in a fab?

2. What communication tools should a controller be able to support
(e.g. SECS, CORBA, CIM Compliant, stand-alone GUI)?

3. Should controllers have time restrictions on recipe generation (i.e. a limitation on how long it takes to
generate or suggest a new recipe)? If so, should these be process dependent?

4. What platforms should controller systems run on?
What platforms should controller systems be required to run on?

5. Should control systems support plug and play modular control methodologies
(Plug and play control modules within a cell controller)?

6. Should control solutions be client/server?

7. Should control solutions have embedded database technologies?

8. Should our benchmarking project report which controllers are available for which processes?

9. Should the project report pricing for commercial products?

Closing Remarks

The usefulness and appropriateness of the benchmarking project depends on your response to this sur-

vey. Please return the survey and any additional comments or questions to authors at the address above.

Thank you!

Appendix A

Run by Run Process Control Messaging System

This appendix contains a description of the messages used to communicate with the RbR bench-
marking server. These messages use the John Carney Messaging system [22]. The S_HDR entry
identifies the initial message, and the R_HDR entry identifies the resulting return message. The
entries that follow these are the corresponding initial and reply variables. The columns of the
tables correspond to the variable name, the variable type, and the value to be entered in that vari-
able. For example, in the GetProcessinfo message below, the client sends a message with no
variables, and the server replies by sending variables describing the details of the process to be
simulated.

GetProcessInfo Message

SHDR: OB ASCII "S GETPROCESSINFO"
RHDR: OB ASCII "R GETPROCESSINFO"

NUMINPUTS:
NUMINPUTS: OB_LONG n (Number of controllable inputs to the system)

IN NAME: (Names of the inputs embedded in a sub-message with title
OBBYTE[] IN_NAMES with an ASCII entry (labeled Namel,

Name2...) for each input.)
IN HI RANGE:

OB_DOUBLE[n] (Upper limit of range for input i)

IN_LO_RANGE:
OB_DOUBLE[n] (Lower limit of range for input i)

IN_RESOLUTION:
OB_DOUBLE[n] (Spacing between possible settings of input i)

IN WEIGHT:
OB_DOUBLE[n] (Preferences for changing input i)

OUT_WEIGHT:
OB_DOUBLE[k] (Preferences for changing output i)

NUM OUTPUTS:
OB_LONG k (Number of controlled outputs of the system)

OUT_NAME: (Names of the outputs embedded in a sub-message with
OB_BYTE[] title OUT_NAMES with an ASCII entry (labeled Namel,

Name2...) for each output.)
NUM PARAMS:

OB_LONG r (Number of uncontrollable parameters in system)

PARAMNAME: (Names of the parameters embedded in a sub-message with
OB_BYTE[] title PARAM_NAMES with an ASCII entry (labeled

Name l, Name2...) for each parameter.)
PARAM VALUE:

OB_DOUBLE[r] (Setting of parameter i)

(return code)

RETCODE: * 0 = SuccessOB_SHORT
* 1 = Error parsing message
* 99= Error, no process specified yet via Connect msg

SetMode Message

SHDR: OB ASCII "S SETMODE"
(Set to Experimental or Control mode)

SETTING:
OB_SHORT 0 0 = Set to Experimental mode (Default)

* 1 = Set to Control mode

RHDR: OB ASCII "R SETMODE"
(return code)

RETCODE: 0 0 = Success
OB_SHORT

* 1 = Error parsing message
* 2 = Error, invalid mode

SetRecipe Message

S HDR: OB ASCII "S SETRECIPE"
NUMRUNS:NUMRUNS OB_LONG 1 (Num runs this message specifies inputs for)

IN SETTING:
OB_DOUBLE[I*n] (Setting for input i. n inputs in a row for each of the 1 runs)

RHDR: OB_ASCII "R_SETRECIPE"
(return code)

RETCODE: 0 0 = SuccessOB_SHORT
* 1 = Error parsing message
0 99 = Error, no process specified yet via Connect msg

GetRunlnfo Message

SHDR: OB ASCII "S GETRUNINFO"
RHDR: OBASCII "RGETRUNINFO"

NUMWAFERS:WAERS: OB_LONG (Number of wafers to be processed in next run)

TARGET: OB_DOUBLE[k] (Target for output i)

(return code)

RETCODE: O 0 = SuccessOB_SHORT
* 1 = Error parsing message
* 99 = Error, no process specified yet via Connect msg

Run Message

SHDR: OB ASCII "S_RUN"
SHDR: OB ASCII "R_RUN"

(return code)

RETCODE: O 0 = Success
OB_SHORT

* 1 = Error parsing message
* 99 = Error, no process specified yet via Connect msg

GetCtrlResults Message

SHDR: OB ASCII "S GETCTRLRESULTS"
RHDR: OB ASCII "R GETCTRLRESULTS"

NUMEXP:NU EXP: OB_LONG (Number of experimental runs performed)

NUMCTRL:NUMCTRL: OB_LONG (Number of control runs performed)

RESULTS FILE:
SOB_ASCII (File where results from this run are stored)

(return code)

RETCODE: O 0 = Success
OB_SHORT

* 1 = Error parsing message
* 99 = Error, no process specified yet via Connect msg

Disconnect Message

SHDR: IOB- ASCII I"S DISCONNECT"

Reset Message

SHDR: OB ASCII "S RESET"
R HDR: OB ASCII "R RESET"

(return code)

RETCODE: O 0 = Success
OB_SHORT

* 1 = Error parsing message
* 99 = Error, no process specified yet via Connect msg

Server -> Controller Messages

RunResults Message

(Sent after a Run message is sent by controller)

SHDR: OB ASCII "S RUNRESULTS"
(Flag to indicate successful run)

SUCCESS:
OB_SHORT 0 0 = Success

* 1 = Failure

NUMRUNS:NUMRUNS: OB_LONG 1 (Num runs this message gives results for)

OUTMEAS: OBDOUBLE[k](Measured output after a run. k outputs in a row for each ofOUT_MEAS: OB_DOUBLE[k]
Sthe I runs)

OUTPARAMS: OB_DOUBLE[r] (Parameters from the previous run. r params in a row for each
of the 1 runs)

RHDR: OB ASCII "R RUNRESULTS"
(return code)

RETCODE:
OB_SHORT 0 0 = Success

* 1 = Error parsing message

Disconnect Message

S_HDR: JOB_ASCII "S_DISCONNECT"

Appendix B

Example Simulator: Deposition.java
package BenchSimulations;

import matrixCafe.*;
import java.util.Random;

/**
* The <code>Deposition</code> class is a single input, single output
* metal sputter deposition process simulator.
* The input is Time-seconds.
* The output is Thickness
* This extension uses a constant target thickness.
*

* @author Eric Stuckey
* @version 11/27/97

*/

public class Deposition extends BenchProcess

{
private static final boolean DEBUG = false;
private static final boolean ERRMSG = true;

/**
* The number of runs so far.
*/

private DoubleMatrix num_runs = new DoubleMatrix(new double[]{0});

/**
* This is the baseline rate for the process.
*/

private DoubleMatrix rate = new DoubleMatrix(new double[] {8.735});

/**
* Parameters for the Deposition disturbance state model.
*/

private DoubleMatrix drift_ratio=new DoubleMatrix(new double[] {.3});
private DoubleMatrix drift_time=new DoubleMatrix(new double[] {10});
private DoubleMatrix kWHper_sec=

new DoubleMatrix(new double[] (.0027777778});
private DoubleMatrix noise_std=new DoubleMatrix(new double[] {.5});
private DoubleMatrix elapsed_time=new DoubleMatrix(new double[] {0});

/**
* Whether or not the process is active.
*/

public static final boolean ACTIVE = true;

/**
* The Random noise class to use.
*/

private Random thick_noise;

* Constructor for <code>Deposition</code>.
*

* @param seed The seed (for noise) provided by the client.

* A value of zero indicates random noise.
*/

public Deposition(long seed)

{
super(seed);

if (DEBUG) System.out.println("In Deposition's Constructor");

if (seed != 0)

{
thick_noise = new Random(seed);

}
else

{
thick_noise = new Random();

}

num_inputs = new DoubleMatrix(new double[] {1});

in_name = new String[] {"Time-seconds"};

in_hi_range = new DoubleMatrix(new double[] {150});

in_lo_range = new DoubleMatrix(new double[] {0});

in_resolution = new DoubleMatrix(new double[] {1});

in_weight = new DoubleMatrix(new double[] {l});

out_weight = new DoubleMatrix(new double[] {U});

num_outputs = new DoubleMatrix(new double[] {1});

out_name = new String[] {"Thickness"};

out_target = new DoubleMatrix(new double[] {250});

out_value = new DoubleMatrix(l,l);

num_params = new DoubleMatrix(new double[] {0});

param_name = null;

param_value = null;

num_wafersinrun = new DoubleMatrix(new double[] {1});

}

/**
* Performs a single run.
*

* @return An error code: 0 for a successful run,

* nonzero otherwise.
*/

public int Run()
{
String src = "Deposition.Run(): ";

DoubleMatrix noise;

DoubleMatrix drift;

try

{
// Keep track of the number of runs.

num_runs = numruns.plus(num_wafers_in_run);

/* Calculate the disturbance state. */

// Set up Noise.
noise = noise_std.times

(new DoubleMatrix(1,1,thick_noise.nextGaussian()));

// Set up Drift.
drift = DoubleMatrix.ones(l).minus

((drift_ratio.times(kWH_per_sec.divide(drift_time)))

.times(elapsed_time));

// Calculate the rate for this run.
rate = (drift.times(rate)).plus(noise);

/* Calculate the output. */
out_value = rate.times(in_setting);

// Keep track of the amount of time machine has been run.
elapsed_time = elapsed_time.plus(in_setting);

}
catch (MatrixDimensionException e)

{
if (DEBUG) System.out.println (src+e.getMessage());
return 1;

}
catch (MatrixException e)

{
if (DEBUG) System.out.println (src+e.getMessage());
return 1;

return 0;

}

/**
* Resets the controller.

* @return An error code: 0 for a successful reset,
* nonzero otherwise.

public int Reset()
{
String src = "Deposition.Reset(): ";

try

{
num_runs.setElement(0,0,0);

elapsed_time.setElement(0,0,0);

I
catch (MatrixDimensionException e)

{
if (DEBUG) System.out.println (src+e.getMessage());

return 1;

return 0;

Appendix C

Example Client Controller: Client.java
import BenchClient.*;

import matrixCafe.*;

/**
* The <code>Client</code> class is an example of a Client controller
* program written in Java.

* @author Eric Stuckey
* @version 08/25/97

*/

public class Client extends AbstractClient

{
private static final boolean DEBUG = false;
private static final boolean ERRMSG = true;

/**
* These are the parameters for the CMP_extl plant model.
*/

private DoubleMatrix A = new DoubleMatrix(new double[] {10});
private DoubleMatrix invA = new DoubleMatrix(new double[] {0.1});
private DoubleMatrix b = (new DoubleMatrix(new double[] {0}));
private boolean FirstRun = true;
private DoubleMatrix num_runs = new DoubleMatrix(new double[] {}1);
// recipe's dimensions are nun_runs by num_inputs.

private DoubleMatrix recipe = new DoubleMatrix(l,l);

/**
* Constructor for <code>Client</code>.
*/

Client()

{
super();

String src = "Client.Client(): ";

name = "Simple Java_EWMA";
process = "Deposition";

seed = 200;

/**
* This method generates the Recipe for the next run
* (or sequence of runs.)

*/
public void GenerateRecipe()

{
String src = "Client.GenerateRecipe(): ";

try

{
// If it's the first run pick a dummy last recipe.

if (FirstRun)

{
recipe.setElement(0,0,30.0);

FirstRun = false;

// Otherwise compute the next recipe.
else

{
// Update the EWMA offset. A full update controller.

b = (processInfo.outvalue.transpose().

minus(A.mtimes(recipe.transpose()));

// Compute the next recipe.
recipe = invA.mtimes((processInfo.out_target).minus(b));

// Round and discretize the recipe.
for (int j=0; j<(processInfo.num_inputs).getElement(0); j++)
{
double temp = ((double)((int)((recipe.getElement(0,j)

/ processInfo.in_resolution.getElement(j,0))+0.5)))

* processInfo.in resolution.getElement(j,0);
if (temp < processInfo.in _lorange.getElement(j,0))

temp = processInfo.in_lorange.getElement(j,0);
else if (temp > processInfo.inhi_range.getElement(j,0))

temp = processInfo.in_hirange.getElement(j,0);
recipe.setElement(0,j,temp);

}

// Set the recipe and num_runs in the processInfo object.
processInfo.num_runs = num_runs;
processInfo.recipe = recipe;

catch (MatrixDimensionException e)

{
if (ERRMSG) System.err.println(src+e.getMessage());
Exit ();

/**
* This method records the control results after each run.
* It is not currently implemented.
*/

public void RecordRunResults()

}

* This method records the final control results.
* It is not currently implemented.
*/

public void RecordCtrlResults()

{
}

/**
* This is the <code>Operate</code> method.

* It does all of the control for the given process.

*/
private void Operate()

{
ConnectToHost();

Init();
SetSimulator();

GetProcessInfo();

Reset();

mode = EXPERIMENTAL;

SetMode();

for (int i=0; i < 100; i++)

{
GetRunInfo ();

GenerateRecipe();

SetRecipe();

Run() ;

RecordRunResults() ;

/******

Reset();

mode = CONTROL;

SetMode();

for (int i=0; i < 100; i++)

{
GetRunInfo ();

GenerateRecipe();

SetRecipe();

Run();
RecordRunResults();

GetCtrlResults();

RecordCtrlResults();

Disconnect();
I

* This is the main method for the <code>Client2</code> program.
* It does all of the control for the given process.
*

* @param args the command line arguments to the program.
* None currently implemented.
*/

public static void main(String[] args)
{
Client client = new Client();
client.Operate();

