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Abstract. Data acquisition systems are a key component for successful data
taking in any experiment. The DAQ is a complex distributed computing system
and coordinates all operations, from the data selection stage of interesting events
to storage elements. For the High Luminosity upgrade of the Large Hadron
Collider, the experiments at CERN need to meet challenging requirements to
record data with a much higher occupancy in the detectors. The DAQ system
will receive and deliver data with a significantly increased trigger rate, one mil-
lion events per second, and capacity, terabytes of data per second. An effective
way to meet these requirements is to decouple real-time data acquisition from
event selection. Data fragments can be temporarily stored in a large distributed
key-value store. Fragments belonging to the same event can be then queried
on demand, by the data selection processes. Implementing such a model relies
on a proper combination of emerging technologies, such as persistent memory,
NVMe SSDs, scalable networking, and data structures, as well as high perfor-
mance, scalable software. In this paper, we present DAQDB (Data Acquisition
Database) — an open source implementation of this design that was presented
earlier, with an extensive evaluation of this approach, from the single node to
the distributed performance. Furthermore, we complement our study with a
description of the challenges faced and the lessons learned while integrating
DAQDB with the existing software framework of the ATLAS experiment.

1 Introduction

Decoupling real-time data acquisition from event selection is a promising approach for future
data acquistion (DAQ) systems of large-scale experiments like the Large Hadron Collider
(LHC) at CERN. In [1], facing the new requirements of the High Luminosity upgrade of
the LHC, we analyzed this approach in detail and proposed a possible design using a large
distributed key-value store (KVS) as a generic high-bandwidth data storage system. In this
paper we present the first performance evaluation of our open-source implementation of this
design — Data Acquisition Database (DAQDB) [2].
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DAQDB builds on emerging technologies like persistent memory, NVMe SSDs, scalable
networking, and scalable data structure. It becomes feasible to substantially increase the
temporary buffer for the incoming data and to reduce the tight coupling of the data readout
and data processing subsystems in a typical DAQ system. In effect, processing timeouts
can be less strict, sensor calibration can be improved implying a purer selection of events,
and the use of computing resources can be optimized by designing for the average instead
of the peak data rate. These factors can be particularly important for the High Luminosity
upgrades of LHC, for which the DAQ systems will need to digest a few terabytes of data each
second. Also, DAQDB hides away many physical aspects usually needed for experiment’s
data assembly abstracting it with a logical interface.

The remainder of this paper is organized as follows. We first summarize the key con-
cepts behind logical event building with DAQDB in Section 2. An extensive performance
evaluation in different scenarios is then given in Section 3. Next we briefly describe the
TDAQ architecture of the ATLAS experiment with the first attempts of integrating DAQDB
in Section 4. We conclude our work in Section 5.

2 Logical event building with DAQDB

In the High-Luminosity upgrade of the LHC, large-scale experiments such as ATLAS or
CMS are considering a logical event building approach contrary to the standard physical
event building in which fragments are transferred over a network from the readout nodes
to a single physical location. Logical event building relies on saving all the fragments in
a distributed storage buffer such as a large key-value store. The event building process is
then taken care internally by the KVS by only using metadata operations. For example, the
processing nodes can request or delete fragments belonging to a particular event by executing
a query to the KVS.

DAQDB is used as a distributed key-value store that implements the logical event building
approach. In practice, this means associating each fragment with a unique identifier (key). Its
structure has to be configurable and large enough to support specifics of DAQ systems: it has
to identify the event, the subdetector and the run of the experiment. Considering 64 bits for
event ID, and 16 bits for subdetector and run IDs, the total length of the key is in the order
of 100 bits. The value of the fragment can then be added into the database by implementing
a put(key, value) operation. Similarly, a get(key) operation can be used to retrieve the value
associated with a specific fragment. In this way, a consuming object such as a filtering node
can query the KVS to retrieve the values of the fragment. Finally, in order to scale the system
the KVS is distributed across several nodes. DAQDB uses a hashing function on the fragment
key to identify the location and the node where the data entry is stored.

3 DAQDB evaluation

We evaluate DAQDB using minidaq application that is part of the DAQDB repository [2].
Minidaq is built on top of DAQDB and runs a configurable number of readout and collector
threads that emulate the operation of a typical DAQ system. The readout threads insert event
data into the DAQDB store, while the collector threads request all event’s data and remove
them without any processing. DAQDB is either embedded locally into the minidaq applica-
tion or runs as a server on an independent node accessible over the network. This simplified
data flow focuses on data I/O operations. The following section gives a detailed description
of the evaluation configurations.
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Figure 1. Single-node configuration.
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Figure 2. Multi-node configuration.

3.1 Evaluation configurations

Figure 1 and Figure 2 show two configurations that are being evaluated. The application con-
taining the actual DAQDB store runs always on the same server platform being S2600WF
board with two Intel® Xeon® Platinum 8280L 28-core CPUs running at 2.70 GHz. It is
equipped with 3 TB of Intel® Optane™ persistent memory (PMem) 100 series and 96 GB
of DDDR4 memory per each CPU node, but DAQDB is evaluated using only one CPU to
avoid cross CPU effects. Eventually, an independent DAQDB server instance is to be run on
each CPU. DAQDB uses 64-bit adaptive radix tree (ART) [3] with 8b per ART node, with
DAQ-specific optimizations [1]. Both event data and data structure are kept on PMem. The
former is kept volatile, while the latter is persisted.

Two additional nodes are used for evaluations using a remote DAQDB instance. In this
case minidaq client nodes are the same server platforms as the DAQDB server’s, but equipped
with Intel® Xeon® Gold 6252 or 6140 CPUs running at 2.10 GHz or 2.30 GHz respectively.
eRPC [4] in raw Ethernet mode with OFED 4.7 is used as transport layer for DAQDB. Net-
work cards are Mellanox ConnectX-5. In this configuration DAQDB server runs 14 request
handler threads serving remote minidaq clients. We use Centos 7.7 with kernel 4.19 and
CERN LCG environment 95 [5] with GCC 8 in all cases.

DAQDB is configured with a 64-bit key: 40b event ID, 8b detector ID, 16b component
ID. Each minidaq readout thread inserts a single fragment with a unique event ID. Detector
and component IDs are fixed, which means that an entire event consists of just a single event
fragment. Although this is not a typical event configuration, the goal of this evaluation is to
assess base performance numbers of DAQDB. Single test time is either five minutes or a total
of 50M iterations. Throughput samples are measured in 5 ms intervals

3.2 Multi-core scalability

Figure 3 shows how DAQDB scales with the increasing number of readout and collector
threads for different event fragment sizes. DAQDB store is first filled with data by readout
threads, followed by filtering threads draining the store event by event with incremental event
IDs. Local write requests saturate at approximately 2 MOPS with good multi-core scalability
and requiring less than 15 client threads to reach maximum performance for smaller frag-
ment sizes. Bandwidth-wise DAQDB saturates at 10 GB{s with 10 kB fragments with similar
amount of threads. Local read requests show similar characteristics reaching the maximum of
7 MOPS and 20 GB{s respectively. We compare these numbers with the basic measurements
of PMem [6] reporting 39.4 GB{s of read and 13.9 GB{s of write throughput. Those numbers
represent sequential operations in volatile mode of operation. Since DAQDB uses mixed-size
operations on non-volatile data structure and short-lived volatile values, reaching more than
50 % of this baseline is considered satisfactory. The readout system of the ATLAS experiment
will require 6 TB{s input bandwidth after the Phase-II upgrade. A DAQDB-based hot storage
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Figure 3. DAQDB throughput (operations per second and bytes per second) for different number of
client threads.

Function Time spent
@100 B @10 kB

Ñ DaqDB::KVStore::Alloc 77 % 20 %
ë DaqDB::TreeImpl::findValueInNode —- 71 % —- 13 %

ë pmemobj_mutex_lock ——– 33 % ——– < 5 %
ë pmemobj_mutex_unlock ——– 28 % ——– < 5 %

Ñ pmem_memcpy_nodrain < 5 % 60 %
Ñ DaqDB::KVStore::Put 5 % 13 %

Table 1. Code profiling summary for 100 B and 10 kB fragment sizes for a minidaq readout thread
with embedded DAQDB.

solution would require a reasonable amount of 300 dual-CPU servers, assuming 10 GB{s per-
CPU DAQDB bandwidth and 10 kB fragment size. Those numbers look promising, but they
neglect some DAQDB features that are still under development, like data structure cleanup
and offload to second-line buffer.

Performance drop is observed when switching DAQDB into remote mode. More client
threads are required in order to reach the same throughput as in the local mode. With 10 kB
fragment size the same level is not even reached, saturating below 4 GB{s on write. The
reasons are two-fold. Firstly, DAQDB supports now only fully synchronous operations with-
out any batching, which means that for every request each thread waits until a response is
received before proceeding with its workflow. Thus, round-trip network latency is added to
every request, so more threads are needed to saturate the bandwidth offered by DAQDB. Sec-
ondly, eRPC operates with 1000 B MTU, so additional segmentation latency and CPU power
affect the characteristics for 1 kB and 10 kB fragment sizes. Another interesting effect is that
with remote DAQDB write performance is close to read performance, contrary to the local
mode of operation. This indicates that network latency is the dominating factor and becomes
the bottleneck, not the memory access to the data store on the server side itself. This effect
does not occur for 10 kB fragments though, when memory bandwidth and network latency
are both significant factors.

The effects of persistent memory bandwidth and access latency on the DAQDB perfor-
mance are confirmed by the profiling summary in Table 1. With small fragments, most time
is spent while traversing the tree structure looking for the requested key and allocating new
nodes within. The latter requires locks to prevent multiple threads from modifying the struc-
ture concurrently, which becomes the limiting factor. On the contrary, for larger fragments,

4

EPJ Web of Conferences 245, 10004 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024510004



0.1k 1.0k 10.0k

Value size [bytes]

0.0M

0.1M

1.0M

10.0M

T
h
ro

u
g
h
p
u
t

[O
P

S
]

L-14-00
L-28-00
R-18-00
R-36-00

L-14-14
R-18-48
R-36-48

0.1k 1.0k 10.0k

Value size [bytes]

0.0G

0.1G

1.0G

10.0G

T
h
ro

u
g
h
p
u
t

[b
y
te

s/
se

c]

Figure 4. DAQDB throughput (operations per second and bytes per second) for different value sizes.

it is the event data copy to DAQDB directly dependent on the persistent memory bandwidth
that defines the upper bound on DAQDB performance.

3.3 Dependence on value size

In the second evaluation we are analyzing how DAQDB performance depends on event frag-
ment size in more detail. We also study if there is any performance impact when both the
readout and filtering threads are running in parallel with the latter using the GetAny feature
[1] to request the next available event ID from the store. The performance characteristics are
presented in Figure 4. The legend is coded with the code X ´ nRO ´ nCL. X denotes the
DAQDB mode of operation being either L meaning locally embedded DAQDB store or R for
a remote DAQDB server with network access. nRO defines the number of readout threads
accessing DAQDB, whereas nCL is the number of collector threads working in parallel with
the readout threads and using GetAny feature for next event retrieval. Both figures show the
total throughput achieved by the readout threads only. Data collection throughput is not plot-
ted as it is close to the readout throughput. The latter sets also the upper bound when both
worker types are running in parallel with GetAny.

With local DAQDB access, the number of operations per second start to decline from
its maximum CPU-bound 2 MOPS with fragments of 20 kB and larger. This is when the
memory becomes the limiting factor, reaching the saturation throughput of nearly 10 GB{ sec
with 20 kB data fragments. This confirms the observations already described in the previous
section. Most important here to observe is the fact that enabling parallel data collection
threads does not significantly affect the overall DAQDB performance.

In the remote mode, due to the reasons described in the previous section, more threads
are required to reach the maximum number of operations per second. It also starts to decline
with lower fragment size of approximately 1 kB because of the extra overhead of data seg-
mentation in order to match eRPC’s MTU. Still, the reported eRPC single-thread throughput
for large messages is more than 9 GB{s [4]. Such level are not reached with DAQDB in this
evaluation. Interestingly, in our case, using less readout threads leads to better performance
for large messages above MTU. This indicates that the required packet fragmentation for
event data fragments larger than MTU becomes a new point for multi-thread contention. As a
consequence the overall DAQDB is severely limited by this transport layer effect. It requires
further investigation and optimization at the DAQDB-eRPC interface boundary.
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4 Integration with ATLAS TDAQ framework

The trigger and data acquisition (TDAQ) system of the ATLAS experiment uses a two stage
selection based on a first level trigger (L1) and a High Level Trigger (HLT). The L1 trigger
uses custom made electronics and FPGAs to reduce the input rate from 40 MHz to approx-
imately 100 kHz within a constant latency of 2.5 µs. Even if the L1 trigger makes a quick
and rough selection of the most interesting collision data events, it is nonetheless able to
considerably reduce the data rate and to identify Regions of Interest (RoI). This information
represents hints of where potentially interesting events are located across the detector.

The RoI information is then used by HLT to perform a more detailed selection. HLT
uses a commodity computing farm with more than 2000 nodes to perform a software based
selection. The algorithms used in this stage are more powerful compared to the L1 algorithms.
The processing time of each collision data takes on average 100 ms. Finally, accepted data
events are sent to a temporary storage solution at a rate of 1.5 GB{s. Figure 5 represents a
functional diagram of the ATLAS TDAQ system used during the 2015-2019 (Run 2) data
taking. The corresponding event and data rates at each stage are also highlighted.

Figure 5. Diagram of the ATLAS Trigger and Data Acquisition system in Run 2 [7].

It is worth mentioning that in the current ATLAS architecture data fragments are stored
in the DRAM of the readout nodes and made available for the high level trigger. A dedicated
application is responsible for dynamically orchestrating the dataflow process by assigning
and transferring the relevant fragments to the processing units in the computing farm. If an
event is accepted by the HLT, it is built into a single location and passed on for persistent
storage.

The initial approach to integrate DAQDB into the ATLAS TDAQ framework involved the
swROD application. This is a software tool designed to interface the readout system (Read-
out detector or ROD) with the ATLAS High-Level Trigger. The swROD is responsible for
building and formatting fragments, as well as executing detector specific operations such as
fragment validation or monitoring. A considerable amount of time was invested in integrat-
ing the swROD data input to the DAQDB storage back-end and a successful prototype was
obtained. Using ATLAS applications is the desired solution because it allows to integrate
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DAQDB with a real DAQ system. However, a synchronization element was missing in the
emulation environment, such as the one used in minidaq for the initial measurements. This is
required in order to prevent the reader threads (HLT) from running ahead of the data writers
(swROD).

We noticed that with this approach it was too complex to perform basic performance and
scaling tests and as a consequence another method is being considered. It involves setting up
a DAQ emulator by developing standalone put and get applications that would act as readout
and event filtering nodes. This flexible approach allows to benchmark and validate the system
with applications that have been extensively tested. As an example, the performance of the
standalone put and get applications for a single node was evaluated and the results were
compatible with the ones obtained with minidaq. In the future, tests with a complete dataflow
system are foreseen in order to assess the performance of DAQDB with the ATLAS TDAQ
framework.

5 Conclusion

In this paper we presented the first performance characteristics of a key-value store designed
specifically for DAQ based on the emerging persistent memory technology, DAQDB. Single-
node evaluation confirms its capabilities to meet the challenging requirements of the High
Luminosity upgrade of the LHC reaching 1 MOPS with 10 kB data fragments on write opera-
tions. Although these performance levels are not yet reached in distributed mode of operation,
our results confirm that DAQDB is functionally capable of providing next unprocessed event
retrieval for the filtering farm with negligible impact on the readout performance. The future
work will focus on optimizing DAQDB transport layer with asychronous mode of operation,
NVMe-based second-level buffer, range scan operations, and proving DAQDB’s scalability
in large DAQ farms with typical event fragment distributions. In addition, further tests and
integration with the ATLAS trigger and data acquisition framework are also foreseen in the
future. This will allow to have a more accurate understanding of the performance of DAQDB
in a real benchmarking scenario.
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