
Lr>

A Simulation Environment for Multi-User Telerobotics

by

OzgO Tokg6z

B.S., Middle East Technical University (1996)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1998

© Massachusetts Institute of Technology 1998. All Rights Reserved

A u th o r
Author . . .Department of Mechanical Engineering

/ May 22, 1998

Certified by,.,............
David Brock, Research Scientist

MIT Artificial Intelligence Laboratory
Thesis Supervisor

Accepted by
Ain A. Sonin

Mechanical Engineering
Chairperson, Department Committee on Graduate Students

SS ;i ~

Eng

A Simulation Environment for Multi-User Telerobotics

by

OzgO Tokg6z

Submitted to the Department of Mechanical Engineering on May 26, 1998,
in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

Networked telerobotic systems require the optimum use limited resources with
operational efficiency. Providing access to a specific group of users and
restricting access to the others during operation along with simulation tools for
both training and real-time operation are the basis of this efficiency. A three
dimensional virtual environment allowing multiple users simulate a collaborative
task over the network has been developed. The simulation has been enhanced
with a control interface allowing real-time control with embedded entity and task
locking mechanisms allowing the access of a single user or a specific group of
users to selected resources.

http://ferrari.ai.mit.edu/demo/demo.html

Thesis Supervisor: David L. Brock
Title: Research Scientist, MIT Artificial Intelligence Laboratory

Acknowledgements

I would like start with my advisor, Dave, who has sparked the fire in this
thesis with his deep vision and brilliant ideas. The freedom he provided helped
me to pursue my ideas confidently.

I am grateful to my partner Loma, who with his passion, enthusiasm, and
never-ending energy motivated me to stay focused. Collaboration with him turned
the most challenging problems into a "piece of cake". Daniel, my ex-officemate,
thank you for being such a fun person to hang out and enter the 50K competition
with.

Givenq, my "virtual" brother, no matter what I write down, it will not
convey the full meaning, thanks for everything.

Hale, thanks for giving me the chance to see how marvelous life can be at
MIT.

And all the lovely people, I had the chance to meet, thanks for the fun we
had together.

Finally, I would like to thank my parents, who made a dream come true
with their never-ending love, and support.

Table of Contents

1 INTRODUCTION ... 6

1.1 INTRODUCTION ... 6
1.2 B A C K G R O U N D .. 6

1.3 O U T L IN E ... 8

2 STRUCTURE OF THE SYNTHETIC ENVIRONMENT... 10

2 .1 IN T R O D U C T IO N I 0
2.2 ENTITY DEFINITION AND CLASSIFICATION ... 10

2.2.1 Deterministic Entities... 1
2.2.1.1 Static Entities 1 1
2.2.1.2 A nim ated Entities................................ 11

2 .2 .2 D yn a m ic E n tities .. 1 1

3 LOCKING MECHANISM .. 15

3 .1 IN T R O D U C T IO N 15
3.2 CLASSIFICATION OF LOCKING TYPES... 15

3.2.1 Access Based Locking ... 15
3 .2 .1.1 E x p lic it L o c k s 16
3 .2 .1.2 Im p lic it L o ck s .. 16

3.2.2 Operation Based Locking.. 16
3 .2 .2.1 A ctive E ntity L ocking 17
3 .2 .2 .2 P assive E ntity L o ck ing .. 22
3 .2 .2 .3 T ask L o ck in g .. 2 4

4 CLIENT PRIORITIZATION ... 32

4.1 INTRODUCTION .. 32
4.2 D EFINITIONS ... 32
4.3. SERVER AND CLIENT WAITING TIMES 33
4.4 CLIENT PRIORITIZATION .. 34

4.4.1 D eterm ination of the Threshold Value ... 35

5 IMPLEMENTATION ... 37

5.1 INTRO D UCTIO N .. 37

5.2. SYSTEM D ESCRIPTION 37
5 .3 V R M L M O D E LS .. 3 8
5.4 JAV A C ON TRO L INTERFACE .. 41
5.5 VIDEO IMAGE INTERFACE .. 47

6 CONCLUSION ... 49

6 .1 IN TRO D U C T IO N .. 49
6.2 REVIEW............. ... 49
6.3 FUTURE DEVELOPMENTS IN THE FIELD............................... 50

6.3.1 Developments in Network Connections............................. 51
6.3.2 Developments in PC Hardware................................ 51

6.4 FUTURE WORK 52
6.4.1 Hardware Design for Networked Telerobotics ... 52
6.4.2 Programmable Interface Design for Networked Telerobotics 52
6.4.3 Predictive Simulations for Space Exploration .. 53
6.4.4 Failure Detection and Prevention for Networked Machinery 53

A PPEN D IX .. 54

A. I1 THE VIRTUAL REALITY MODELING LANGUAGE 54

A. 1.1 Advantages of VRML as a Simulation Tool .. 54
A.2 NETWORK SPECIFICATIONS... 56

R EFER EN C ES ... 59

Chapter 1

1 Introduction

1.1 Introduction

Computer networks have long existed to allow users to transfer
information to one another. Operating machinery remotely over the network is an
extension of this information transfer. It requires reliable data transfer back and
forth via an interface, which can function equally well on multiple computer
platforms allowing increased accessibility.

The types of machines operable over the network ranges from very high
level complicated systems like the Hubble Space Telescope [21] and scanning
electron microscopes to home automation systems as simple as turning on and
off household devices [17].

This thesis work, although not covering the extreme ends of the machinery
range specified above, defines standards for a control interface for multiple
machines that can be operated collaboratively by multiple users over the
network. The interface provides a locking mechanism, which selectively gives
access to users over the network while placing the others in a waiting queue.

A three dimensional virtual environment representing the real world is
provided as a simulation tool for the users to test their inputs to the machines in
advance. Since remote operation can be collaborative, the virtual environment is
also designed to receive multiple input from different users and simulate the
outcome.

Section 1.2 provides a background by introducing the definitions of the
terms frequently used in the context of this thesis and by giving information about
similar research in the field. The chapter concludes with section 1.3, presenting
the outline of the thesis.

1.2 Background

Networked Telerobotics is simply defined as supervisory control of robots
via the network. Teleoperation is the control of an object or a process remotely
by a human operator regardless of the autonomy of the object or complexity of
the process. Supervisory control is defined by Sheridan; "in the strictest sense,
supervisory control means that one or more human operators are intermittently
programming and continually receiving information from a computer that itself
closes an autonomous control loop through artificial effectors to the controlled
process or task environment." [38].

Telerobotics has found application in space program, undersea
environments, hazardous environments, medical operations, manufacturing, and
training [11],[20].

The Internet, which is originally defined as a "distributed heterogeneous
collaborative multimedia information system", provides the most readily available
network for teleoperation. Controlling robots from the Internet took start with
independent works of Ken Goldberg at the University of Berkeley [13], and Ken
Taylor at the University of Western Australia [42]. The work of Kevin O'Brien and
Dr. David L. Brock at MIT Artificial Intelligence Lab established the first telerobot
with a virtual interface [28].

The term Virtual Reality (VR) used by many different people with many
meanings. There are some people to whom VR is a specific collection of
technologies, that is a Head Mounted Display, Glove Input Device and Audio.
Some other people stretch the term to include conventional books, movies or
pure fantasy and imagination. For the purposes of this thesis VR will be restricted
to computer mediated systems. The selected definitions of VR [17] in parallel to
this text are:

"Artificially stimulated simulation" by Marjan Kindersley

"A way for humans to visualize, manipulate and interact with computers
and extremely complex data" , from the book "The Silicon Mirage"

"A tool for design and forward simulations of the real world".

The last definition is anonymous and closest to the way it is utilized in this
thesis.

The recent attention to VR over the last decade stems mainly from a
change in the perception of the accessibility of the technology. Though its roots
can be traced to the beginnings of flight simulation and telerobotics displays,
drops in the cost of interactive 3D graphics systems and miniature video displays
have made it realistic to consider a wide variety of new applications for virtual
environment displays [10], [27],[38].

The development of Internet Oriented Virtual Reality tools such as Virtual
reality Modeling Language (VRML) introduced the terminology " Distributed
Virtuality" as Bernie Roehl defines it: "a simulation environment running on
multiple computers connected over the Internet, allowing users sharing the same
virtual world interact in real time" [36].

There are recent applications of multi-user virtual reality such as
Distributed Interactive Simulations (DIS) over the Internet which is led by Don

Brutzman of Naval Postgraduate school [5],[6] and virtual socializing
environment, Living Worlds by Tim Regan of BT labs [32].

The virtual environments designed for telerobotics must allow translation
of the viewpoint, interaction with the environment, and interaction with the
autonomous agents. All this must occur through sensory feedback and control.
The human-machine interface aspects of telerobotic systems are, therefore,
highly relevant to VR research and development from a device, configuration,
and human perspective.

A large part of the supervisor's task is planning, and the uses of computer-
based models have a potentially critical role. The virtual environment is deemed
an obvious and effective way to simulate and render hypothetical environments
to pose "what could happen if" questions, run the experiment, and observe the
consequences. Simulations are also an important component of predictive
displays, which represent an important method of handling large time delays.

Telerobotics and VR should therefore not be viewed as disparate but
rather as complementary endeavors whose goals include the exploration of
remote environments and the creation of adaptable human-created entities.

This thesis work utilizes the existing interface technology to provide
architecture for a multi-user networked telerobotics. A virtual environment
allowing the users to simulate the actions of intelligent machines is presented
along with a locking mechanism, which regulates the access to the machines in
order to provide the optimum use of limited resources available for networked
operation.

The locking mechanism introduces object and task locking and provides a
probabilistic analysis to solve The interface is designed specifically for multi-user
operation and provides means to the clients of the system interact, share data
and plan and simulate collaborative tasks.

1.3 Outline

This thesis describes a simulation environment for multi-user networked
telerobotics. This chapter presented an introduction to the topic and made some
definitions relevant and essential to the thesis, as well as a review of some
literature and current research. Chapter two introduces the properties of the
simulation environment, by defining and classifying the concept of entity. This
chapter concludes with the discussion of entity behavior to illustrate how the
simulation environment receives input and provides user-based output for
multiple users in the network.

Chapter three presents the locking mechanism, which monitors and
arranges the access to machinery in the telerobotic environment. This
mechanism is discussed in sections namely, machinery, object, and task locking.
The problems that arise with task locking are solved with a probabilistic analysis
based on the user's access time to entities.

Chapter four provides optimization techniques and user prioritization for
the locking mechanism presented in Chapter three.

Chapter five is the implementation chapter where the theory in the
preceding three chapters are implemented over the Internet using the available
programming tools such as Java, VRML, and Hypertext Markup Language
(HTML).

Chapter six concludes with a review of the thesis. Predictions on software
and hardware development that will increase the efficiency of the implementation
are made. The thesis is concluded with future work suggestions in the field.

Chapter 2

2 Structure of the Synthetic Environment

2.1 Introduction

This chapter defines the properties of the synthetic environment created
for multi-user networked telerobotics. The "synthetic" environment represents
both the real and simulation environment. Since the aim of simulation is to
represent the real environment as closely as possible, both of these
environments are designed to share the same properties. Section 2.2 introduces
the definition of an "entity" and presents different entity categories. The data
transmission mechanism, which allows the modification of the synthetic
environment along with the concept of "task" execution, is then introduced. These
definitions provide a background for the locking mechanism that is presented in
the next chapter.

2.2 Entity Definition and Classification

Entities are objects in the synthetic environment. They are described by
vectors that identify their position, orientation, velocity and acceleration in the
environment space. They also have other distinguishing characteristics such as
shape, color, and texture.

The classification of entities in the simulation environment is depicted in
figure 2.1.

Entities

Deterministic Dynamic

Static Animated Active Passive

Figure 2.1: Entity Classification in a Synthetic Environment

The classification is mainly based on the entity states, which are the
physical properties of the entity such as position, orientation, velocity, or
temperature.

2.2.1 Deterministic Entities

The deterministic entities are built into the system during initial setup and
do not change their states by user input. They are further classified into static
entities and animated entities.

2.2.1.1 Static Entities

They are basically the building blocks of the surrounding environment
such as the workspace the machines and other entities are located. In the
simulation environment, these models have fixed states, which have been
programmed at initial setup. This static environment provides a navigation option
to the user so that the user can move around the world and observe it from many
different viewpoints.

2.2.1.2 Animated Entities

Animated entities do not have fixed states as opposed to static entities:
their states change as a function of time however the changes are predictable
and already programmed into the system. The most descriptive example for this
category is the movement of a clock's hand. During simulation, increasing the
number of animated entities helps reducing the network load. This issue will be
explained more clearly in the implementation chapter.

2.2.2 Dynamic Entities

Dynamic entities form the most important category in the synthetic
environment. Like animated entities, the state of dynamic entities change as a
function of time. However these changes occur as a result of the data input sent
over the network. The change of states in response to this data occurs based on
the laws of dynamics. Data transmission is achieved by means of a server-client
system. Server is a set of instructions programmed into a host machine or a
group of host machines, which listens to and receives connections over the
Internet. The intelligence built into the server will be presented step by step
within the context of this thesis. Additional information is also provided in the
appendix.

Clients are defined as the agents who get connected to the user interface
and make requests to submit data to an active entity. The server then selects

one client to be the user who is allowed to make inputs into the synthetic
environment. This is the distinction between the client and the user. Clients can
only observe the tasks specified by the users; they cannot send their own data.
As an insanely simple analogy, the user can be thought of as the driver of the car
capable of giving the inputs, whereas the clients are the passengers who only
observe the outcome of the inputs specified by the driver. This concept is
illustrated in figure 2.2.

Client2 Client 1 User 1

The clients can only observe the tasks
executed by the user in the system by the user Erdity

Figure 2.2: The Distinction between the User and the Clients in the System

The dynamic entities can further be divided into another category such as
active dynamic entities and passive dynamic entities. Active entities are the
direct recipients of the data. Their states are observable, and modifiable at all
times via data input from the network.

The interaction between an active and a passive entity occurs with
physical contact. The states of the passive entities are just observable initially,
and they become modifiable when contact between two entities is established.
This interaction is shown in the figure 2.3.

Data transmitted
over the network

Active
There is aphysicl Entity States: observable, and modifiable

Thereisaphysical Entity
connection

between the
active and the
passive entity

Passive States: observable only when there is no contact

Entity observable and modifiable vwhen contact
is established

Figure 2.3: Interaction between Active and Passive Models

Consider a robot arm, which is moving a block from one position to
another. The robot is the active and the block is the passive entity in this
example. Initially the states like position velocity of the block are observable but
not modifiable. Whenever the robot grabs the block, the physical contact is
established and they start moving together, and thus the states of the passive
object now become modifiable. Besides, at this point the passive model can be
considered as a sub-entity of the active entity in the sense that they share the
same states such as position, velocity and acceleration. Thus, this sub-entity
assumption reduces the number of variables required for dynamic calculations.

However, this is not necessarily the only and the best example. An active
entity can be a refrigerator trying to keep the temperature, of several passive
entities at a certain value. The state of the passive entity is changed via the
change of the state of the active entity. In this case, the refrigerator temperature
is set to a specific value; this eventually changes the temperature of the stored
items in the refrigerator.

The availability of active entities for data input introduces three new states,
namely on, off, or down. On state means that that entity, whether passive or
active is being used by a selected user, in other words locked by a user, and is
going to be manipulated in the simulation environment. The details of the locking
mechanism are going to be discussed in the next section. Off means that there is
no lock imposed on the entity, however it is available for this locking mechanism.
Down means that a mechanical failure has occurred in the entity, In the
simulation environment, this entity changes its color to a predefined color, which
is selected as red in the implementation. If this state occurs during the simulation,
the simulation stops, this entity is no longer available for locking, and cannot be
manipulated until the failure is fixed.

The interaction of active entities with passive entities in response to data
input over the network is defined as a task. In cases, where there are multiple
active and passive entities are involved, tasks are divided into subtasks, each
dealing with a single state change of a passive entity. This task definition is
further going to be used in the next chapter to establish a task locking
mechanism which will grant the execution right of a task to a selected user over
the network.

Chapter 3

3 Locking Mechanism

3.1 Introduction

In this chapter, a locking mechanism for multi-user telerobotics has been
developed. Locking an entity in a telerobotic environment is defined in the
simplest sense as preventing all other users from accessing an entity while a
user is using it. The locking mechanism developed in this thesis accepts requests
from clients over the network, and gives one client the right to send data to the
entity and still keeps the other clients in the network queue where they can do
simulations before gaining access to the entity.

Using the simplest analogy, locking mechanism serves as a way to
determine who is the driver and who are the passengers in a car. As soon as one
driver completes the lap, one of the other passengers is given the right to drive.
The mechanism makes sure that nobody sits in the driver seat passenger without
gaining the proper access right.

3.2 Classification of Locking Types

Locking in a multi-user environment can be classified under two
categories, namely access based locking and operation based locking. These
categories are not mutually exclusive but are used to develop the theory in this
thesis.

3.2.1 Access Based Locking

Access based locking determines how access rights to entities are given
to selected users in the system. The access right is either controlled by the user
or the server as illustrated in the figure 3.1.

Access Based Multi-user Loclking

Explicit Implicit
(User C ontroll ed) (Server C ontrolled)

Figure 3.1: Classification of Access Based Multi-User Locking

3.2.1.1 Explicit Locks

These are the locks established by the users of the system. The user
explicitly locks the machine he wants to work with as long as it is available, and
when the task is over the user can at, his own will, releases the lock.

3.2.1.2 Implicit Locks

These locks are the ones, which are controlled by the server. They are
specifically included in the classification so that server has the ultimate right to
decide on which user locks a specific entity. The following example will clarify this
point:

Consider a user who has established a lock on the machine he is currently
using. During the operation, a network loss occurs and the user gets
disconnected. If there are only explicit locks are the system, then this machine
would not be recoverable until that user reconnects to the system. Therefore the
server is given the superior right to remove the previous locks in these cases and
grant them to new clients. The waiting time for the server to decide if the user
has got disconnected from the system is defined in Chapter 4.

3.2.2 Operation Based Locking

The second classification, shown in figure 3.2, is based on the types of
operations locks are used for. It is named as Operation-Based Locking. The
classification is given in the figure below. Entity locking includes the locks
established on the dynamic entities discussed in section 2.2.2. Active locking is
defined for locks on the active dynamic entities whereas passive locking is
defined for the ones on the passive dynamic entities. During task execution,

passive entities can become sub-entities of active ones. However, as far as
locking is concerned, all the locks are established by the user, in other words an
active entity cannot lock a passive entity but rather establish physical contact
with it as required within the context of the task specified. Task locking is defined
under a new classification due to the fact that it embodies both active and
passive locking and introduces its unique design problems, which will be
discussed and resolved in section 3.4.

Operation-B ased MultiU ser Locking

Entity Locking

Active Entity
Locking

(Machinery)

Task Locking

Passive Entity
Locking
(Objects)

Figure 3.2: Classification of Operation Based Multi-User Locking

3.2.2.1 Active Entity Locking

Based on the locking mechanism described above, entity locking is simply
giving access right to a selected user in the network. When there are new users
assigned to an active entity, the server waits for a specified amount of time t, and
accepts connections from the clients as shown in figure 3.3.

The server waits for

A. Entity a specified time,

tn

Figure 3.3: Clients Trying to Access an Active Entity over the Network

At the end of this time interval, the server gives access to one of the

clients and puts the others in a waiting queue as shown in figure 3.4 by using aclient prioritization mechanism. Each client placed in the waiting queue is sent a
network message indicating his approximate waiting time The calculation of the

waiting time for the server to wait for client connections, user prioritization
mechanism, and waiting times for each client, will be discussed in detail in
Chapter 4.

Server gives the access A. Entity
to one of the users according

to a prioritization scheme twi

tw2 Client 1

-- Client 2

These Clients are placed
in a waiting queue

and informed about the server' s decision
and their individual

approxirrate waiting time

The full arrow represents
the locking

established between
the machine and the user

User 1 is now free to
send comrrands

to the machinery till
he sends a command

to release the lock.

Figure 3.4: User Selection by the Server

During the time interval, Tws, which will be defined as the server waiting
time in section 4.3, the current user has the access to the active entity, the server
keeps accepting new clients over the network as shown in figure 3.5.

Client 1 and 2
are in the queue

This line makes the
distinction

between the first and second
group of the clients

accepted to the system

Client 3 Client 4 The server keeps
accepting

new clients within the
specified server
waiting interval

Figure 3.5: Accepting New Clients into the System

Client 2

After accepting these new clients in fixed intervals of Tws the server places
them in the queue, and these clients are also notified about their approximate
waiting time in the system as shown in figure 3.6.

A. Enity User 1

Client I

Client 2

Client 3
These Clients are placed

in a waiting queue
Client 4 and informed about their

approxinate waiting time

Client 5

Figure 3.6: Average Waiting Times for Each Client in the Queue

All of the clients in the system have the chance to observe the actions of
userl, but will not have access to operate this machine. However, they can use
the simulation tool to test the tasks they are planning to perform with the entity.
Whenever, user1 is finished with his operations, he removes his lock by clicking
on the "release" control button, as depicted in the figure 3.7.

User 1 sends a release request
in order to release the lock

Upon requestthe lock is released,

and userl is notified of this action

Figure 3.7: User 1 Trying to Release the Entity

As soon as the current user releases the lock, the access right is
automatically given to the next client in the waiting queue. The server keeps track
of all the clients in the queue, and if one of the clients does not want to keep
waiting and leaves, the queue, then the server recalculates the waiting time. The
following figure 3.8 shows the transfer of the access right to the next client.

User 2
A. Ertity (Client 1)

User 1 releases thelock and
leaves the system Client 1 now gains

Client 2 control and becomes User 2

All ofthe clients in the system
updated on their new

approximate waiting times

Figure 3.8: Assigning a New User to the Entity

It should also be noted that the clients connecting to the system are given
priority only within their own group. In other words, their best location in the
queue is the first place in their own group. This principle is depicted in figure 3.9.

Client 2

Client 3

Client 4
I at24

The clients are sequenced
according to the

detennined priority
only within their group

Client 5

Client 6

Client 7

Client 8

client 9

Client 10

Group 1

Group 2

Group 3

Figure 3.9: Grouping Clients depending on the Connection Interval

This type of grouping allows the users with less priority to still have the
chance to access the machinery, because these users will still be ahead of the
user who have connected to the system later on in the successive groups.
Otherwise the sequencing would be unstable, in other words, the users with
more priority would keep accessing the system while the others wait indefinitely
in the queue.

3.2.2.2 Passive Entity Locking

The previous chapter determined how active entities are assigned to users
in the system. However, since active entities are used together with passive
entities to accomplish tasks as indicated in the task definition in section 2.2.2,
without an additional locking mechanism, the following situation could have
occurred: Consider a refrigerator in a chemistry lab, that is storing two solutions.
The refrigerator is the active entity and the solutions are two passive entities. If
the user has locked one of those passive entities, then another user with an
active entity like a robot is not allowed to pick up and remove this solution that is

22

supposed to stay within the refrigerator. This second user can, however, access
the other solution if any other user in the system did not lock it previously. The
problem that occurs without a locking mechanism is also illustrated in the figure
3.10.

User 1 User 2

A. Entity 1 A. Entity 2

If there is not any locking \
between the user and the passiv
entity, then there is not any
control on which active
entity is going to change the state 1
of the passive entity.

Figure 3.10: Object Locking Problem in a Multi-User Environment

Therefore, the user interface also provides a list of objects that can be
used during the operation of the machine. Using the interface, the user
controlling the machine can lock one or several objects as depicted in figure
3.11.

The user establishes locks both
on the machinel and the objectI
so that machine 1 can be used to

A. Entity 1 change the state obj ect 1

P. Entity 1

Figure 3.11: User 1 Locking both Machine 1 and Object 1

Thus, when multiple users try to access the same object, the user who
has established object locking gains access to the object and the other user is
notified of this locking established. This locking does not necessarily have to be
established during the initial login to the system. The availability data of the
objects are continuously displayed to the user so that new object locking and
releasing can be made at all times during operation. Due to the delay existing
between the time data is sent by the user and the time it is received by the
server, an object that has just been locked might temporarily seem available to
another user. Therefore the user always has to wait for the server's confirmation
on the locks he tries to establish. In addition, the server requests the user to
confirm previously established object locks at the end of each task so that
objects that are not going to be used any further are released from that user.

3.2.2.3 Task Locking

The third type of operation based locking is task locking. In order to
minimize the operation times, and release the workload from the user we can
have pre-programmed tasks built into the interface. These tasks can be the most
frequent operations that the users perform. Creating these tasks also decreases
the network load, and hence the transmission delay because instead of sending
data, observing the output, and sending another set of data, this sequence can
be programmed into a task and can be executed by sending data to the system
only once. However, unlike object locking, the user can only select one task at a
time. Tasks, as expected, have the list of machines and objects to be utilized and

therefore task selection inherently takes care of both locking types discussed
above. This is illustrated figure 3.12.

User 1 Task 1

A. Entity 1 A.Entity 2

P. Entity 1" P. Entity2) P. Entity 3

Figure 3.12: Task Locking in a Multi-User Environment

Once a user selects a certain task, until that task is completed, the other
users are prevented to perform the very same task. However, two clients can
choose different tasks, which might access to same objects during operation.
This problem is illustrated in figure 3.13.

Task 1 Task 2

Figure 3.13: Task Locking Problem in a Multi-User Environment

The simplest yet the most unpractical solution is to reject access to task 2,
however then the list of available tasks would be very limited because they have
to provide access to totally different objects in the system. The solution
implemented into the server is that, the task is divided into a couple of subtasks.

A subtask Ti is designed to be as compact. It can be as simple as
changing only one state, Sij of an active entity Ai. When this active entity is in
contact with a passive entity, then the most compact subtask Ti becomes
changing a single state Sij of this passive entity Pi. In addition, for each subtask
the average completion time and the probability of successful execution are also
defined. Decomposition of tasks into simpler subtasks is adapted from the work
of Brock [3] who introduced task level control subdividing tasks until, at some
level, the decisions to be made are intuitive and programmed simply. The server
simply allows the other tasks to be accepted and then it checks which subtask is
currently being executed. If the shared object is never going to be used by task 1
again, the access and therefore the lock are directly given to the task 2. If both of
the tasks will have access to that object in the future, the server calculates the
access time to that object for each task, and gives the access to the task with the
shorter access time. Whenever that task is completed, the object locking is
automatically passed to the other task in execution.

Each subtask Ti is associated with an average completion time, tci, and a
probability of successful completion, pi.

There is a set of required inputs to achieve a subtask Ti, 1 after a preceding
subtask Ti has been achieved.

In trivial case, a task may have x unique input variables, which are
mutually exclusive from one another. That is to say, the changes in one or many
variables do not influence the change in another variable. In this case, the set of
different inputs has v elements.

If these inputs are not mutually exclusive, the set contains 2x elements.
For instance the accomplishment of a task may require the movement of the
machine to a specific location which requires 3 dimensional variables. This
creates a set of 23 possible inputs. At initial system setup, the subtasks have
been tested for all these inputs for reliable execution and thus have an initial
successful completion probability of

pi = 2x/2x = 1.0 (3.1)

For each task, the total number of successful subtask executions s. and
the number of attempted subtask executions, sa are recorded for each user. This
data is then used to update the previous probability value so that the final
probability pi becomes:

26

Pi = (2x + s,)/(2x + sa)

Coming back to the previous example of moving to a location, if a user, for
example has made 4 successful subtask executions out of 8 attempts, then the
final probability of successful completion pf(n) for that subtask becomes:

pi = (23 + 4)/ (23 + 8) = 0.75 (3.3)

It should be noted that these attempts may either be the operation of real
machinery or simulation carried out in the waiting queue. This probability value is
unique and has to be computed for each user. Other user customization
attributes are discussed in section 4.2.

Then one way to estimated the task completion time is:

ETCi = TCi/pi (3.4)

If the probability of the event is one, then there will not be any failure
during operation at all and therefore average completion time becomes equal to
the estimated completion time, if the probability is less than one, then there is the
chance of failure. Additional time might be spent trying to fix the failure occurred
and repeat the task. If the task is impossible to do, that is p(task) = 0, then the
estimated task completion time becomes infinity, as expected.

The execution of one subtask can begin only after a preceding subtask
has been completed successfully. This relation is simply described in figure 3.14

sTask 1 I sTask 2

Figure 3.14: Two Tasks Connected in Series

Therefore a conditional probability definition should be made.

P(211): probability of successful completion of task 2 given that task 1 is
successfully completed.

N subtasks, which are serially connected, are shown in figure 3.15. The
entity becomes available at the end of subtask n.

27

(3.2)

User I sTask 1 . sTask 2 sTask n

I Entity

Figure 3.15: N Tasks Connected in Series

The time to reach that entity is given by :

Te = X (TC /(H (p(j I j -1))))
i=1 j=1

Using this relation, entity access time in the
shown in figure 3.16.

following subtask layout

sTask 1 sTask2 . a sTask 3
UserI Entity

Figure 3.16: Calculating Entity Access Time for Three Tasks Connected in Series

can be calculated as :

Te = TC1/p(1) + TC2/(p(211)*p(1)) + TC3/(p(312)*p(211)*p(1)) (3.6)

However, serial layout is not the only way subtasks are connected to one
another.

A subtask can be executed only after a number of subtasks have been
successfully completed, as illustrated in figure 3.17.

28

(3.5)

Figure 3.17: N -1 Tasks Combined to Trigger Task n

In this case, the probability of successful execution of task n, provided that
all preceding tasks are accomplished successfully is defined as

p(nln-l&n-2&n-3....&1) (3.7)

The other possibility is that a
This case is depicted in figure 3.18.

subtask may lead to multiple of subtasks.

I Entity
Figure 3.18: One Task Triggering Multiple Tasks

29

The entity in this case is reached only after these n tasks have been
successfully completed. The time to reach this entity is then defined as:

Te: max (TCn/p(nll), TCn_-1/p(n-1), , TC 3/p(3), TC2/p(2)) (3.8)

Since all of the tasks must have been accomplished before accessing the
entity, the maximum completion time among these tasks is selected.

The following example, depicted in figure 3.19, will make use of these
principles explained above to calculate the entity access time, Te.

sTask 2 -10 sTask 4

sTask 5 -1 sTask 6

User sTask3 Entity

Figure 3.19: Subtask Layout for the Example Problem

In this example, the completion of subtask 1 triggers the start of both
subtask 2 and subtask 4, and subtask 5 can begin only after both subtask 4 and
subtask 3 are completed successfully. The entity becomes available at the end of
subtask 6.

The time to reach entity, Te , in this case is given by:

T1 = TC6/(p(615)*p(514&3)*p(31 1)*p(412)*p(211)*p(1))

T2 =TCs/(p(514&3)*p(311)*p(4 12)*p(211)*p(1))

T3 = TC4/(p(412)*p(211)*p(1) + TC2/(p(211)*p(1)) + TC1/p(1)

T4 =TC 3/(p(311)*p(1)) + TC1/p(1)

Tel = T1+ T2 + T3

Te2 = T1 + T2 + T4

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Te, is then taken to be the greater of the two terms Tel and Te2

Te = max(Tel,Te2) (3.15)

In this equation p(514&3) is the probability of success of subtask 5 given
that both subtask 4 and subtask 3 are accomplished properly. Te is selected to
be the greater term among Tel and Te2 due to the branching between subtask 2
and subtask 3 after the completion of subtask 1.

As the subtasks are completed, Te is recomputed. For instance whenever
subtaskl is completed successfully, TC1 is set to zero, simplifying the
calculations. If there is a mechanical breakdown during the execution of a
subtask, or the network connection gets broken, completion time for the specific
subtask is set to infinity (actually a very high number in the actual code) so that
the sequence does not keep on locking an entity. Completion time is set back to
its original value when the problem is fixed. Besides tasks might take actually
take longer than the expected completion time due to a possible hardware or a
network error, therefore the initial calculations have to be updated. The users are
locking tasks with shared objects are continuously notified about the current
object locks.

Chapter 4

4 Client Prioritization

4.1 Introduction

In the previous chapter, a locking mechanism, which determined the
access to a selected entity has been introduced. Simply restated, the server
waited for a fixed amount of time to accept requests from clients over the
network. Afterwards the group of clients connected was arranged in a network
queue, and one client in the group has been given the priority to access the
selected entity. The other clients are informed of their waiting time, which is
determined by their position in the queue formed. This chapter presents the
prioritization method utilized along with the definitions of the server and client
waiting times. The prioritization scheme is based on selecting the more
experienced client, and therefore a discretization of experience, which depends
on the input types sent, has been developed using the prior client data gathered
in the system. Section 4.2 will introduce the definitions of the variables used to
formulate the server and client waiting times that are going to be defined in
section 4.3, and Section 4.4 will conclude the chapter by describing the
prioritization scheme.

4.2 Definitions

In this section, we will introduce variables needed to compute the server
wait time Tws and individual client wait time Twc.

Initial login time, T, is defined as the time it takes for the client to login and
to the interface site. TI is dependent on the network load at the time of the day,
complexity of the interface and the user's hardware capabilities. Complex
interfaces that require larger data transmission will take longer time to load. TI
cannot be directly measured by server, and therefore client feedback is required
for precise measurements. However initially an average value is determined by
login tests from different sites.

Transmission time is defined as the time it takes for the data to travel
between the client and the entity. Tft is forward transmission time, which is the
time from client to server, and Trt is the reverse transmission time, which is from
server to client, as shown in figure 4.1. Transmission time is directly dependent
on the environment. It can be almost instantaneous for local area networks and a

32

few minutes or longer for space telerobotics (15 minutes of time delay between
Earth and Mars).

Tft
Entity

Client

Figure 4.1: Forward and Reverse Transmission Times

Each task is associated with an average task completion time, TCn as
discussed in the previous text.

Each task also has a planning time, Tp which is the time it takes to decide
to perform a certain task. For collaborative tasks, where there is n number of
users Tp is defined as:

T, = f(n)*Tp (4.1)

In other words, it is a function of time and increases as the number of
users involved, n, increases.

4.3. Server and Client Waiting Times

We set the server waiting time to be independent of the clients in the
system. Since TI, Tft and T, are not fixed quantities and are client dependent,
mean values are used in the definition of the server waiting Time Tws, which is:

Tws = Ti + Tt + TC + TP (4.2)

The server accepts new clients continuously at fixed intervals of Tws.
During the "off-hours", the time intervals where the number of clients logging into
the system is comparatively low, the server waits for an interval of Tws only if the
entity is currently being used by another user. Else, "first come first serve"
principle is applied, and the client who gets connected to the system first gets the
access to the entity. Otherwise, a single client would have to wait for an amount
of Tws before having access to the entity at a time with low connection rate. Thus,
unnecessary waiting times are prevented. For the time being, the "off-hours" are

33

set to be between 11pm and 8am when the connection rate to the system is
comparatively very low.

The server waiting time, Tws is also used to accept users who were
disconnected from the system during task execution. Whenever a user is
disconnected from the system without releasing the entity, this means that there
is a network connection loss. The server waits for a duration of Tws without
granting access to any other clients in the queue. If the disconnected user
achieves to login to the system in this time interval, then he regains control, else
the access is granted to the next client in the queue.

The waiting time for each client in the queue is calculated individually. The
first client should wait for the time interval in which the current plans his task,
(Tp), executes it (TC), and finally notifies the server that he is releasing the lock
(Tft). Then the server notifies the first client in the queue that access has been
granted to him (Trt). Therefore the waiting time for the first client is:

Twe1 = Tft + Trt + TC + Tp (4.3)

Generalizing this expression, the client having the pth position in the
queue will have an approximate waiting time of

Twcp = p*(Tft + Trt + TC + Tp) (4.4)

When compared to the server waiting time Tws, the client waiting time Two
is not constant, it is an approximate value. The entity access right is passed to
the next client only after the current user releases the lock. In other words, the
actual waiting time can either be smaller or higher and that is why it is
recalculated for each client in the queue every time a new user is assigned to the
entity.

4.4 Client Prioritization

The missing part in the discussion is how we arrange these clients in this
queue that we are talking about. The aim is to give priority to more experienced
and successful clients yet, still allow the less experienced clients have
considerable amount of access and allow them to build up their experience by
using the simulation environment.

Before the discussion, it should be made clear that users are not
necessarily human beings but may also be other entities in the system. This
gives a chance for machines to communicate and execute tasks together. In this
perspective, the prioritization scheme, especially evaluating the experience of the
user, becomes applicable to only users. Since humans do not like to wait a lot in
a queue, when the server accepts requests from the clients in time interval of Tws,

34

the machines are placed at the end of the queue in the group. The following
principles are then used to arrange the human being remaining in queue.

The total number of attempted moves, and the number of accepted
moves are recorded to determine the success rate of each client, Sr that is
defined as:

S,: Number of accepted moves/Number of attempted moves (4.5)

The definition requires a definition of a threshold number of moves so that
the calculation of the success rate becomes justifiable. Otherwise perfect records
with small number of moves would have an overweighed value.

4.4.1 Determination of the Threshold Value

Each entity has certain pre-defined control values specified as inputs over
the network. These inputs can classified to be either binary or analog.

Binary inputs are numerical values specified within a range with cause a
change in one or more states of the entity. A three degree freedom robot for
example requires three binary input values for full operation.

The client is gaining logging to a system with multiple entities with different
number of binary input variables. For the client to gain experience with an entity,
he is at least expected to know the effect of each variable on the operation of that
entity. In the trivial case, as discussed in section 3.4, for x number of mutually
exclusive binary input variables, there are v different inputs, and if the variables
are not mutually exclusive, then the number of different inputs becomes 2x

Since the user has the option to collaborate with different users and use
multiple machines, he is expected to know the operation modes of all of the
machines in the system, therefore the number of different possible inputs, X, in
the system becomes:

y
X = ,2xi (4.5)

i=1

where y is the is the number of entities in the system. However, this equation is
only valid for entities, which are mutually exclusive from each other, so that the
changes in the states of one entity do not affect the states of another entity. If
there are dependent entities in the system then they should be grouped together
and their combined number of different inputs, x, becomes:

k

Xc= - 2 x" (4.6)

j=1

where k is the number of dependent entities. Then the result xc should be
inserted in equation (4.5) to find the total number of different inputs, X. We have
decided to set this number to be the threshold value to calculate the success rate
Sr for each client. As long as the number of attempted moves exceed the total
number of different inputs in a system, then the calculation of Sr becomes
justifiable.

The clients in the waiting queue can be defined as either "veteran" of
"rookie". This is achieved by discretization of experience. If the number of
attempts exceed the defined threshold value, the client is categorized as veteran,
else as rookie. In a group of clients accepted to the system, priority is given to
the veteran clients with the highest efficiency percentage. When there are no
veteran clients left in the group, the priority passes on to the rookie clients, who
are sequenced according to the login time and the client with the earliest time
stamp gains access to the entity.

Another input type is the analog input, which can best be defined by the
following analogous example. A driver in a car gives provides analog inputs to
the car, and based on his expertise level, these inputs might end up in driving at
a steady cruise speed of 20mph up to 200mph depending on the type of the car.
The drivers who can drive smoothly at very high cruise speeds are expected to
be the more experienced users, and less experienced users are expected to
drive much slowly. Based on this definition, the analog inputs are divided into
several operational ranges and each client is expected to use the simulation
environment and have experience on the entity response before moving into the
next range of inputs. The server keeps track of these operation ranges for each
client and gives priority to the client who has reached a higher range of
operation.

In order to make this prioritization scheme as stable as possible for both
type of the inputs, the clients are accepted to the system within certain time
intervals, Tws, as defined in the previous section, and are arranged only within
their group. A client, no matter how experienced might be, will not be placed
anywhere above his own group within the queue. This provides a protection for
the less experienced clients who have previously connected to the system.
Besides, the clients are allowed to make simulations while they are in the waiting
queue and thus can increase their experience and success percentage by
making successful inputs. Client success rate is updated every time they leave
the system.

36

Chapter 5

5 Implementation

5.1 Introduction

The purpose of this chapter is to present the implementation of the
simulation environment and the locking mechanisms based on the design
principles discussed in the chapters 2, 3, and 4. Section 5.2 will present the
overall system description and will compare it with previous work in the field.
Section 5.3 will present the multi-user simulation environment developed using
the existing software tools, and finally Section 5.4 will present the user interface
developed and explain how the locking mechanism is implemented using the
existing programming tools.

5.2. System Description

We developed originally a control model for operating machinery over the
Internet has been shown in the figure 5.1. Similar models also exist in the
literature [13],[42], [28].

WWW HTML CGI Izdezmediate C/C ++ Cordrl , Amplifiers Motr
User Table Prgram Data File Prgram Card (RIb t)

Figure 5.1: Telerobotic Control over the Internet (Previous Model)

The user logged into the homepage, and submitted data to the machine
though html tables whose data is received and saved to an Intermediate data file
by a Common Gateway Interface (CGI) program. The C or C++ program in the
host machine read the data file and sent commands to the controller card which
converted this data into the control signals. These signals are amplified and sent
to the motors on each axis of the machine, and thus remote operation over the

37

network has been achieved. The user has seen the result of his action by camera
images transmitted at regular intervals and text messages displayed on the html
page. This system could only handle a single user at a time, and the other users
trying to connect to the interface were simply blocked by an html page indicating
that the machine is currently being operated by another user.

The interface developed in this thesis on the other hand has the following
layout, as shown in the figure 5.2.

Camera

WWW JavafVRML Ci++ Cordrol IA3 t'i Moto
User Itde face Pricam Card (Robot)

Figure 5.2: Telerobotic Control over the Internet (Current Model)

This model uses a Java/VRML interface, which directly calls the functions
in the C/C++ program by the use of Native Methods in the Java language. A
server-client architecture has been programmed in Java, and this allows multiple
users to login to the system simultaneously. The interface consists of a 3D virtual
model programmed in VRML and a Java applet. The networking details of the
server-client system embedded in the applet have been described in detail in the
appendix section. The VRML world presents a 3D model of the real system that
is being operated remotely. This world is used to simulate future tasks before
sending data to the actual machine. Camera image is still used as a feedback to
show the user the operations being performed. The Java applet provides the
control interface used to send data to the machine. It is also embedded with the
locking mechanisms described in chapter 3.

5.3 VRML models

Several VRML models have been developed to implement the system
discussed in the preceding chapters. The animation of the models has been
programmed using the External Authoring Interface (EAI) [24], which allows
manipulation of the VRML world with an external program such as a Java applet.

The world shown in figure 5.3 is the control interface for a Cartesian robot
designed to be used in a chemistry lab.

Figure 5.3: Virtual Interface of the Cartesian Robot

This virtual world has been designed to simulate the operations of the
Cartesian Robot which is programmed to perform "pick and place" tasks in a
chemistry lab to take objects to various lab machines such as refrigerator, oven,
and pHmeter.

Event triggers in the simulations were directly programmed into Java
instead of the VRML code and a continuous simulation sequence is obtained. For
instance as soon as the Cartesian robot brought the object into the workspace,
the machine in that workspace started operating on it. This very much resembles
the real operating environment where the presence of the approaching object is
detected with a sensor, and a second machine starts operating on it.

The VRML model of the Cartesian robot was built as simple as possible,
yet identical to the real one in terms of operation. This is one of the main features
of the models made so that the file size is reduced as much as possible.

The interface has various task options such as moving the robot to
specific x, and y coordinates, moving the arm in and out along the gripper axis,
grabbing and taking the object from its current location and delivering it to a
specific work cell. There is also a task menu, which allows the simulation of tasks
such as neutralization, mixing, and titration. Programming of these tasks, as
indicated in chapter three, reduced the amount of data transfer over the network.

The second VRML model has been designed to present a multi-user
simulation environment. A simple client server is prepared for this purpose. It
accepts two clients and denies any other requests until one of the users gets out
of the system. Each user can control one robot and observe the motion of the
other robot. The control scheme is depicted in figure 5.4

39

Entit 1

Client 1

Entit7 2

Client 2

Figure 5.4: 1 to 1 Match up Simulation

Two models of 3 degree of freedom robots with end-effectors serving as a
gripper are designed using V-Realm Builder. The interface is shown in the figure
5.5 below.

VRML MODEL

COliIT.OL PANEL
.............: 0. 01:1Connecting to :6000 ...

Figure 5.5: User Interface

40

i . .

5.4 Java Control Interface

The Java applet serving as the control interface is shown in the figure 5.6.

MULTIUSER TELEROBOTIC CONTROL I NTERFACE

The other available machines are: ARH2 ARM3 ARM4

Figure 5.6: Java Applet Serving as the Control Interface for Multi-User Operation

For the initial log on we apply the "first come, first serve" principle. If no
one is using the machine at that moment, the first user who clicks on the "grab"
button gets the access to the machine, and all of the users that are connected
are notified through a text message.

Unless the current user hits the "release" button, shown in figure 5.7, the
other users cannot gain access to the machine. They are informed with a
warning text message saying that the robot is being used by another user.
Actually the person who is controlling that machine is continuously displayed as
one of the text fields in the interface.

Figure 5.7: Grab & Release Buttons

Whenever the current user clicks on the "release" button, the other users
are informed that the machine is available and again the user who clicks on the
grab button first gets hold of the machine. The programming is achieved by
using two flag values namely "control and precontrol. The precontrol values
correspond to the current state of the machine. If the machine is occupied, its
value is one, else it is zero. The control value stands for the control request from
another client. If it is one it means that another user has clicked on the grab
button, and if it is zero it means that there is no request from the users. To
demonstrate this principle, lets assume that user A has the control of the
machine, and the server is getting requests from user B. The possible outcomes
are listed in the following table.

Precontrol value for A Control value for B Result
null, no one is in control
A keeps control
B gains control
A stays in control, the
request from B is rejected

Table 5.1: Decision Mechanism for the Server

The total usage time, the number of moves attempted, and the number of
accepted moves are also being kept track of. This data is then used to calculate
the user efficiency as discussed in chapter 4.

Figure 5.8: Current User Data Display

42

The interface also gives the status and user information about other
machines in the environment. The server creates a data file for each machine in
the environment, and continuously reads from the file to send the proper values
to the clients. The use of threads for each client has been mentioned before. If
one thread is reading from the file at the same time another thread is writing to it,
we would have a bug in our client-server system. However, using synchronized
methods in Java handles this problem and assures that only one thread
accesses a file at a time. The architecture of data sharing is depicted in the figure
5.9. The machine status is designed to be "on", off", and "down". "On" means
that the machine is being currently operated by a user. The user is also specified
in the near by text field. If the status is off, the machine is available and waiting
for a user to get connected. The "down" status indicates that there is a problem
with the machine, therefore it is not operational. This down signal will also be
used by other machines in the system so that they will not provide any
references to it. The interface is show in Figure 5.10.

Server reading data Server sending data
to clients upon request

Figure 5.9: The Architecture of Data Sharing

43

k

I
I

r

Figure 5.10: Status of Other Machines in the System

The user can also try to access other machines by click on the hyperlinks
at the bottom of the interface, which is shown in figure 5.11. If the user gets the
user interface for arm3, then arml, arm2, and arm4 will be displayed in other
machine interface, as expected.

The other available machines are: ARM2 ARM3 ARM4

Figure 5.11: The Hyperlinks to Other Machines in the System

There are four checkboxes in the user interface implemented to provide
the object locking discussed in section 3.3. When the client decides to use a
certain machine, he also decides if he is going to use any of these objects during
his operation, and clicks on these checkboxes. As described previously, there
are data files for each machine. The first line includes the state and user of the
machine. The second line has the list of objects associated with this machine.
Therefore when a new user tries to lock an object, the server simply checks
these data files, and if the object is not included in any of these files, then the
access is given to this user. The content of the data file is presented in the figure
below.

On (status) (username)
Object 1, Object 2 (objects allocated by the user)

As seen from the file, the user has the right to lock more than one object.
The internal timer mentioned above, which decides whether the user is still
connected to the machine also takes care of the object locking. As soon as the
user releases the control of a machine, all the locks that user has placed on the
objects in the system are disabled.

At the end of each task, the user has to confirm the locks he has
established on the objects. The user also has the option to lock new objects,
provided that they are available, or release previously locked objects once he is

done using them. This feature becomes really helpful when one object is
manipulated for a short time during the operation and is never used again. After
the usage, the user can simply release that lock, simply by setting the new locks
and clicking on the "SetLock" button. The interface is shown in figure 5.12

Figure 5.12: Object Locking Interface

The user interface designed for task locking is also embedded in the
control panel as shown in figure 5.13. The default value is the null selection,
which means that no task locking is established.

Figure 5.13: Task Locking Interface

Tasks, as expected, has the list of machines and objects to be utilized and
therefore the task selection inherently takes care of the hierarchical locking
mentioned in the previous section. When a task is selected in the interface, the
data file for the machine takes the following form:

On (status)
Task 2

(usemame)
(name of the task selected)

If another client is trying to select a task or lock an object, then the server
simply checks the data files for each machine. If the client is trying to select the
same task, or lock an object, which is hierarchy of the task listed in the file, then
his request is rejected by the server.

The structure of the data file is presented in the figure below.

On (status) (usemame)
Task 2 Subtask 3 (the number of the subtask that is being currently executed).

The access time calculation should be calculated at the end of every
subtask for each task due to the fact that subtasks might actually take longer that
the expected completion time due to a possible hardware or a network error. In
addition, the clients executing the tasks are notified by the following text
message. "Object 1 is a sharable entity, currently being used by client X "

In a telerobotic control panel, the users should not be restricted in the type
of data they should send. They should be given the freedom to pick the type of
data, which suits best to their purpose. That is why our interface provides
multiple options such as angular data, and Cartesian data (this corresponds to
the tip position of the mechanism) to illustrate this principle. In order to provide
general functionality for the interface, there are also on and off check buttons so
that the interface can also be used to turn on and off simple machines such as an
over or a refrigerator. The interface is shown in figure 5.14.

Figure 5.14: Interface Allowing Different Types of Data Input

46

- ~'C~ps~EC.rr...-r-.'----- C"Y- -II~I~- i ----rl IP --sl 1I;I-~~--~-~ ..r.-.-.E~--..-P~1 II

5.5 Video Image Interface

Video has been the preferred client feedback since the first Internet
telerobotics demonstration in 1994. Some applications sent back camera images
taken at certain update intervals, like 15 seconds [28]. Other applications, which
have more complicated environments transmitted multiple camera images [42].
Recent cameras have the server push capability [19] to perform live image
transmission.

There is also research going on to combine virtual reality and video
imaging on the same frame. This approach is called Augmented Reality. There
are researchers trying two different approaches, either using graphical image to
augment a graphical interface or using computer graphics to augment a video
display [25].

In every approach, video transmission is a necessity and a major part of
the interface. In the interface described in this work, the camera image is not a
necessity but rather complimentary, assuring the user that he is really operating
the real machines over the Internet. The virtual simulation does exactly what the
machine should do in real life, however there might be unexpected changes
which the virtual interface that cannot represent properly such as dropping an
object. Future work is expected to find solutions to some of these random, error-
based motions that might occur in the real system. Another interesting area to
investigate is how to create a virtual image of an environment from video input.

The hardware used in our implementation was WebCam 32 V4 [19]. The
interface provides a default Java class, namely, javacam.class which enables the
camera image to be used as an applet on the Internet. This applet obtains the
image from WebCam 32 and replaces the previous image after configurable
number of seconds have elapsed by using a sleep function inside the thread
which obtains the image from the camera.

This file is modified and combined with the client-server interface so that it
refreshes the image only if the server gets a request from the client. A request
indicates that the machine will change its previous location, and therefore the
camera image needs to be updated. After the data is sent to the server, the
camera keeps refreshing the image for 15 seconds, this threshold time can easily
be changed in the server code, depending on the nature task. This time interval
accounts for the possible network delays that might occur during data
transmission and the duration of the actual operation. If no operation is being
made, the camera displays the static previous image so that the data
transmission load is decreased.

47

Another advantage of the Java applet is that its image refreshing
approach is superior to the refresh meta tag approach as only the image will be
refreshed and the rest of the web page will be left alone and hence no flicker.
Here is how the Java applet is included in html.

<TD><APPLET CODE = "javacam.class" width = 250 height = 215><PARAM
name = "URL" value =http://128.52.37.96:81 ">
<PARAM name = "interval" value = "1 "></APPLET></TD>
</TR>

Parameter value refers to the URL of the address the machine that the
camera is connected to. The JavaCam applet must be loaded from the same
machine as the target image, or else an error will occur. Java requires that any
applet dynamically downloaded from the Internet only connect back to the
machine from which it was loaded. The interval value is the multiplication factor
in the sleep function in the Java program. Therefore the user can simply change
this value from the html file without changing and recompiling the Java code.

try
{

// Put the refresh thread to sleep for the supplied interval
Thread.sleep(int_lnterval* 10);
// Code to repaint image when data is submitted to the server...

}

catch (Exception e) {}

48

Chapter 6

6 Conclusion

6.1 Introduction

This chapter concludes the thesis, starting in section 6.2 with a brief
review of the work done. Section 6.3 makes prediction on the future
developments in this field, and finally section 6.4 concludes with several research
avenues that can be taken from this thesis.

6.2 Review

The development of platform independent programming languages and
simulation tools in compliance with the current Internet browsers provided the
platform to develop a robust multi-user interface for networked machines which
are gaining more popularity in the science community since their first applications
in 1994.

This thesis work used these programming languages, namely Java 1.1
and VRML97 in order to develop a user interface for networked telerobotics. The
simulation has been made by providing a linkage between Java and VRML
thorough VRML's External Authoring Interface. Simply stated, VRML served as
the media providing 3D environment over the Internet, and Java provided a
client-server architecture with an embedded intelligence.

The server-client system provided a locking mechanism so that two users
could not send data to the same machine at the same time. Whenever a client
logged in to the system, it has been notified about the status of each machine in
the system. In addition messages indicating the availability of machine that was
being used are provided for the users waiting in the queue to operate machine.
The locking mechanism has also been extended to include the objects that these
machines are interacting with so that no two machines such as two robots tried to
access the object simultaneously.

The client-server system has been programmed to support up to 50
clients, and was tested with up to 14 clients successfully. The server used
broadcasting to send data to each client. Due to broadcasting, the load on the
server increases linearly with the number of clients, because the server has to
send data separately to each client. The future version of the interface is
expected to use multicasting to overcome this problem. Multicast can be simply
defined as the ability to send one message to one or more nodes in a single
operation. Therefore no matter what the number of users in the system is the

49

network load on the server is at the same minimum level. There is currently an
experimental Multicast Backbone, called the MBone [7], which is acting as a test
bed for multicast application and protocol design and refinement. The use of
multicast will definitely enable the server to distribute the simulation and real
operation images to larger number of clients over the network.

The 3D-simulation interface gave the users the advantage of testing their
commands before they submitted it to the real interface. For collaborative tasks,
involving more than one user, the simulation environment provided a medium
where each user simulated his task and observed the task execution of others.
The simulation environment is intended to replace the common camera image
interface, which requires large data transmission and thus creates problems due
to bandwidth limitations. However the camera images were still used only when
the task has been executed so that the clients had the feeling that they were
really operating real machines over the Internet.

The time delay problem has become evident in multi-user simulations
even for users accessing the system from the similar domains such as ai.mit.edu,
and mit.edu. Therefore in order to minimize the data submitted over the Internet
for complex collaborative tasks, the interface provided a series of pre-defined
tasks which are coded into the system. This has allowed the users to execute a
series of operation simply by sending a 4-byte integer data. The inclusion of
these tasks introduced a hierarchical locking mechanism where a user selecting
a task gained the access to all the machines and objects associated with this
task.

For collaborative environments, the use of the chat applet has proven to
be successful. The clients also had the chance to chat with the system
administrator to ask their questions about the interface.

The clients, when asked, found the presence of the camera image,
psychologically reassuring. That is to say, they wanted to really observe that they
were operating a machine at the remote site. This indicates that future work
should come up with an interface that will incorporate the VRML model with the
camera image. Currently MPEG4 provides linkage between these two displays.
The inclusion of the real image should be kept minimum to decrease the size of
data transferred over the network, but still be indicative to the user regarding the
real operation.

6.3 Future Developments in the Field

Since "multi-user networked" telerobotics is assumed to be widely
practiced in the next coming years, we have to look into the probable
technological developments of the future. The selected categories are:

a) Developments in the Simulation Tools Used (i.e. Java, VRML)

b) Developments in Network Connections

c) Developments in PC Hardware.

The developments in the simulation tools are discussed in detail in the
appendix.

6.3.1 Developments in Network Connections

Fast Ethernet or 100BASE-T is the leading choice among the high-speed
LAN technologies available today. Building on the near-universal acceptance of
10BASE-T Ethernet, Fast Ethernet technology provides a smooth, non-disruptive
evolution to 100 MBPS performance. The growing use of 100BASE-T
connections to servers and desktops, however, is creating a clear need for an
even higher-speed network technology at the backbone and server level. The
next level seems to be the Gigabit Ethernet, which will provide 1 Gbps bandwidth
for campus networks with the simplicity of Ethernet.

In a graphical simulation environment, as the file size that has to be
transmitted over the network increases, a larger bandwidth and therefore a
network that is capable of providing this for desktops, and the servers is required.

6.3.2 Developments in PC Hardware

In this field there is a continuos development for increased memory,
increased graphic capabilities and increased storage capacity. Increased
memory will allow us to make real time computations faster. (This especially
becomes important for simulation applications for training purposes in which the
user continuously sends real time data back to the simulation, and in return the
simulation makes the necessary computations to respond to that.) In addition the
simulation will have faster response and update capability to unexpected
disturbances from the real system (such as falling of the object from the robot's
hand, or an unexpected collision). Besides currently most of the CAD programs
started to allow file conversions into VRML so that engineering drawings can be
displayed and in future animated over the web, having high ram will help file
conversion and animations to become widespread.

Increased graphic capabilities will make the virtual worlds as realistic as
possible. One of the leading companies in this field is 3Dlabs, which is
specialized in developing 3D graphics processors to meet the demand for 3D on
the PC. This means that ordinary desktop PCs will have sophisticated graphics
and this will increase the interest for the user interface provided.

As it can easily be seen, these three categories are almost inseparable
and will depend on each other most of the time for future development. Here is a
simple example that clarifies that. As the software becomes more sophisticated,
it will require sophisticated PCs and the PCs interacting with each other will
require a sophisticated network.

6.4 Future Work

Networked telerobotics is a broad topic, which is prone to exponential
development in the nearest future. Based on the work in this thesis, there are a
couple of further research topics, which will motivate many, including me.

6.4.1 Hardware Design for Networked Telerobotics

The concept of operating machines over the Internet is not definitely
limited to robots. Considering a chemistry lab, there are numerous instruments
that can be operated via web such as a centrifuge station, or a simple pH-meter.
There are some automated laboratory applications (give reference), but they still
require the presence of a human operator, which defeats the purpose of
networked machinery. This brings up the question of how do we use these
machines without a single human being. Do we need the classical doors and
handles on machines such as a oven or a refrigerator? What is the ideal design
of a networked pH-meter? Only after design modifications that will be flexible
enough to fit both remote and local operation, will networked automated
machinery become practical to operate in large scales.

6.4.2 Programmable Interface Design for Networked Telerobotics

Although the interface developed in this thesis provides a collaborative
environment with its simulation tools and locking mechanism, it uses a server-
client code, which does not allow the client to make programming changes when
necessary. This becomes of crucial importance for space telerobots such as the
Sojourner. If a failure occurs during operation, or a situation that has not been
considered and programmed into the interface comes up, the supervisory users
should have the chance to simply reprogram the server-client architecture and
upload it to the remote machine. This feature will function better than any artificial
intelligence embedded into the system because the supervisory controller will
have the flexibility to intervene and insert "real intelligence" into the machine.
This system will work fine as long as these clients are the professional scientists
can perfectly debug these "to-be-inserted" programs by knowing the capabilities
of their design. However if a machine which provides access to the general
community is placed on the Internet, programming should be as simple as

possible. Besides, it should have a debugger and warning mechanism to give
feedback to the client before his program is uploaded to the machine. In addition
it should prove inter-operability between multiple machines so that the client can
include multiple entities in his program. This interface will definitely simplify the
interface designs which currently become complicated by trying to present the
user with more task options.

6.4.3 Predictive Simulations for Space Exploration

Another future work related with space explorations is to make an
intelligent simulation environment, which can gather sensory data from the real
world and create a virtual environment. This work is closely related to vision and
object recognition studies. For example, a device like Sojourner can be equipped
with sensors capable of object recognition, and the gathered data along with prior
data can be used to build the virtual workspace of this machine. Afterwards the
planned tasks can be executed using this simulation and with the feedback
received, future tasks can be adjusted accordingly. However, building a virtual
environment just with sensory data gathered from the environment seems far
way from being doable. Therefore this sensory data should be supported with
supervisory data received from the video images obtained. For example if the
space robot can measure the distance to a nearby rock. Based on the video
image, its virtual model can be created. The material composure can be
estimated from prior data and its weight can thus be approximated. Therefore a
preliminary virtual model to simulate the path of the robot or a simple task like
bringing the rock back to the space ship can be simulated. The virtual models are
continuously updated, as more real world data becomes available.

6.4.4 Failure Detection and Prevention for Networked Machinery

Another issue in networked machinery is to be able to detect and prevent
failure so that the machine is available for remote operation at all times.
Providing this reliability will eliminate the presence of a human operator at the
site for failure recovery. This requires the placement of sensors on the machine
that will be capable of detecting the causes of failure and warning the client. The
data from the sensor can also be sent to the virtual model where detailed views
of the predicted failure location are displayed upon the request of the client. More
automated systems are predicted to have remotely controlled machines that will
fix the machine by for example changing a malfunctioning part. This research
field is expected to become attractive for those working on remotely controlled
production in factories where savings in time corresponds to huge savings in
cost.

53

Appendix

A.1 The Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) is a language for
describing multi-user interactive simulations, virtual worlds networked via the
global Internet and hyper-linked within the World Wide Web.

The latest version VRML 2.0 [1], [15],[23], introduced in 1995, provides the
concept of behavior into virtual worlds and puts the static geometry into motion.
Currently there are two ways to create animation in VRML 2.0. The first one is
called VRML Scripting, which makes use of either Java, or JavaScript languages
embedded in the Script node [34].

The second method is the use of External Authoring Interface (EAI) [24],
[32], [35]. EAI provides the modification of the static VRML world by means of
data input from an external interface such as a Java applet [2],[12],[22], [33]. In
the examples shown in the Implementation section EAI has been used to provide
the simulations.

A. 1.1 Advantages of VRML as a Simulation Tool

Displaying 3D graphics is very different from displaying 2D images.
Objects are positioned in three dimensions but must be viewed on a twO
dimensional computer display. Because the objects exist in three dimensions, it
must be decided from which direction they should be viewed. To do this, I will
use the analogy of a camera. When you shoot a picture with a camera, you first
aim at the desired scene. Then you snap the picture, which places an image of
the three dimensional scene onto the flat surface of the camera film. Similarly, a
#d scene in the computer has a camera that is placed by the author to view the
desired part of the scene. Then the computer draws what the camera sees onto
the two dimensional computer display. This operation is known as rendering.

This is a very powerful notion. To look at the scene from any angle, you
simply place your virtual camera at a different viewpoint, render the image, and
show it onscreen. If you move the camera little by little and render the image
again at each step, you can create the walk-through of your scene. This is
something you could never do with a 2D image, and it is part of the power of 3D.
But this operation is as difficult as it is powerful. Rendering quickly enough to
make the movement fluid requires a powerful computer. Faster computer
hardware has made it possible for PCs to do a good job of rendering simple
scenes.

Embedded with this feature, the users can walk around the generated VRMI
scene and observe it from multiple viewpoints. The other advantages of using
VRML as a simulation tool are listed as follows:

* VRML is platform independent, standard way to describe 3D objects that can
be used on the Internet or locally.

* ISO has adopted VRML as a standard Virtual Reality tool for the Internet.

* Window 98 will come with a VRML Browser. Netscape and Internet Explorer
are putting plug-ins for VRML therefore users will not go through the trouble
of downloading the plug-ins themselves. This will expose the internet users to
VRML at an enormous rate because currently whenever these users come up
to a page with VRML such as a movie advertisement that lasts 15 seconds,
they do not go through the trouble of selecting a specific browser and
downloading 6MB just to enjoy a VRML movie. This widespread usage of
VRML will also give the end user some experience to move through VRML
worlds.

* In the next version , VRML 3.0, downloading worlds will become faster
because input streams will have a binary format.

* Apart from its interface with Java, it has built in commands that enable multi-
user capabilities (Shared Objects), and good multi-user browsers started to
show up in the market.

* Multithreading capability of Java enables simultaneous animations with
different animation speeds. A thread becomes responsible for each animated
object. The system itself will uniformly distribute the load amongst different
threads. However you might hit the other extreme. The time spent in setting
up a thread is not negligible - taking the time to set up hundreds of threads
might be a hindrance rather that a benefit.

* User has the freedom to explore the 3D environment. If you are working with
multiple machines you immediately learn the environment they are working in.
Besides it would require multiple cameras to represent a 3D environment and
this would impose bandwidth restrictions. Besides it has these pre-defined
viewpoints

* The embedded parent-child node relationship enables the digital control of
complex robotics mechanisms in a very simple manner. The kinematics
matrices are taken care of by defaults. All the user has the input are the
relative or absolute link angles or positions. (We can support this by
presenting a source code for one of our robot demos)

* VRML has the capacity to encapsulate and organize many media types,
including image, animation, and 3D audio.

Since VRML enables large amounts of information to be displayed with a
3D graphical interface, people incorrectly conclude that VRML must be a
bandwidth hog. This myth often stems from the fact that in some of the worlds on
the web the content has been converted from some other 3D format to VRML
inefficiently. Native VRML is considerably more efficient than other media types
such as QuickTime movies and even static images. For example, 20sec
animation in VRML might only be only about 50k, while that same animation
might weigh several megabytes were it created as a GIF or MPEG file. This is
because VRML worlds are rendered locally. VRML is text at download time, not
images as in a QuickTime movie or a bitmap file. With this smaller content
footprint, VRML enables quicker download time.

A.2 Network Specifications

The communication protocol used in the server-client design is TCP/IP.
TCP/IP stands for "Transport Control Protocol/Internet Protocol"[9] .TCP and IP
are really two different protocols, but together govern the basics of the Internet.
TCP is all about ensuring that data is transmitted correctly between two
computers. If any errors occur, these are detected and data is retransmitted. If
data sent to a particular machine had to be divided into smaller pieces, called
data packets, and sent separately, all of these packets are reassembled on the
receiving end in the correct order. The Internet Protocol (IP) uses a four-byte
value to identify computers over the Internet, this value is called the IP address.
In addition to the IP addresses, there is one more piece of information that
distinguishes where the data should go, which is the port number.

By convention port numbers are divided into two groups. Port numbers
below 1024 are reserved for well-known system uses such as Web protocols,
email, ftp, and so on. The numbers above 1024 up to 2e16 minus 1 are all left to
the user who can assign personal programs and services to these port numbers.

The combination of IP address and port number uniquely identifies a
service on the machine. Such a combination is known as a socket. A socket
identifies one end of a two-way communication. When a client requests a
connection with a server on a particular port, the server identifies and keeps track
of the socket it will use to talk to the client.

Even though the server is communicating over the same port with many
clients, it uses these sockets to determine the destination and source of that
communication. The figure A.1 illustrates this concept.

client 1

to server

Figure A.1: Server - Client Communication via Sockets

The server developed listens for connections on a particular port; when it
receives a connection, it obtains a socket to use for the communication and
begins a dialog with the client at the other end of the socket. The client initiates
the connection and communicates with the server via this socket as shown in
figure A.2.

client server

Figure A.2: Basic Interaction between a Client and a Server

The multi-user client server architecture is based on the very same
principle with the additional use of threads to handle communication between the
server and each client.

connect
acquire socket for server
send and receive data
close connection

wait for connection
_acquire socket for client

send and receive data
close connection

The term thread is the shorthand for thread of control, which is simply the
path taken by a program during execution. This determines what code will be
executed: does the code in the if block gets executed, or does the else block?
How many times does the while loop execute? If we were executing tasks from a
"to do" list, much as a computer executes an application, what steps we perform
and the order in which we perform them is our path of execution, the result if our
thread control. Having multiple threads of control is like executing tasks from a
number of lists. That is how the server is set to handle different requests of
multiple clients in multi client-server system. The basic flow chart of the
multithreading server is shown in the figure A.3.

wait for a conne cti on

connection received

start a thread to handle
all future communication
with the client

Figure A.3: Java Algorithm Handling Multiple Clients

Theoretically the number of clients that can connect to a server is
unlimited but we can set a hardcore limit within the code, 50 in our case, with the
intent of ensuring the server does not get swamped with requests. Otherwise, the
server might get bogged down with keeping track of lots of network connections
and performance could become slow.

References

[1] Ames, L. Andrea, et al. VRML 2.0 Sourcebook. New York, NY: John Wiley &
Sons, Inc. 1997.

[2] Boone, Barry. Java Certification Exam Guide for Programmers and
Developers. New York, NY: McGraw-Hill. 1997.

[3] Brock, L. David. "A Sensor Based Strategy for Automatic Robot Grasping,"
Ph.D. Thesis, ME, MIT. 1993.

[4] Brock, L. D. "Remote Controlled Machinery, Processes Over the Web Closer
then You Think." The MIT Report 25.7(1997): 1-2.

[5] Brutzman, Don, and Don McGregor. "DIS-Java-VRML: Streaming Physical
Behavior into VRML Worlds." VRML 98 Third Symposium on the Virtual Reality
Modeling Language Lecture Series, Monterey, CA. 17 Feb. 1998.

[6] Brutzman, Don (1998, February 15). Distributed Interactive Simulation, DIS-
Java-VRML Working Group. [WWW document]. URL http://www.stl.nps.navy.mil/
dis-iava-vrml/.

[7] Byne, Magnus, et al. (n.d./1997) An Introduction to IP Multicast. [WWW
Docuiment]. URL http://ganges.cs.tcd.ie/4ba2/multicast/.

[8] Campbell, Bruce. "3D Multi-User Collaborative Worlds for the Internet," M.S.
Thesis, University of Washington, 1997.

[9] Comer, E. Douglas, and David L. Stevens. Internetworking with TCP/IP, Client
Server Programming and Applications. Upper Saddle River, NJ: Prentice-Hall,
Inc. 1997.

[10] Durlach, I. Nathaniel, and Anne S. Mavor, eds. Virtual Reality Scientific and
Technological Challenges, Washington, D.C.: National Academy Press. 1995.

[11] Ellis, R. Stephen. (n.d./1997). Virtual Environments and Environmental
Instruments. [WWW document]. URL http://duchamp.arc.nasa.gov/papers/veei/
veei.htmi.

[12] Flanagan, David. Java in a Nutshell. Sebastopol, CA: O'Reilly & Associates,
Inc. 1997.

[13] Goldberg, Ken. (1996). The Telegarden. [WWW Document] . URL
http://www.usc.edu/deDt/garden.html

[14] Gossweiler, Rich, et al. "An Introductory Tutorial for Developing Multiuser
Virtual Environments." Presence 3.4 (1994): 255-264.

[15] Intervista Software,Inc. (1998). Virtual Reality Modeling Language. [WWW
Document]. URL http://www.intervista.com/vrml/index.html

[16] Harold, R. Elliotte. Java Network Programming. Sebastopol, CA: O'Reilly &
Associates, Inc. 1997.

[17] Hoehnen, Dan. Home Automation Index. [WWW Document].
http://www.infinet.com/-dhoehnen/ha/list.html.

[18] Isdale, Jerry (1993, October 8). What is Virtual Reality?. [WWW Document].
URL http://www.cms.dmu.ac.uk/-cph/VR/whatisvr.html

[19] Kolban, Neil (1997, August 19). Webcam32 and Java Applets. [WWW
Document]. URL http://www.kolban.com/webcam32/iava.htm

[20] Laguna, Glenn (n.d/1997). Virtual Reality is ... [WWW Document]. URL
http://www.sandia. gov/2121/vr/vr.html.

[21] Landis, Rob (n.d/1997). Overview of the Hubble Space Telescope. [WWW
Document]. http://oposite.stsci.edu/pubinfo/HSToverview.html

[22] Lea, Doug. Concurrent Programming in Java, Design Principles and
Pattems. Reading, MA: Addison Wesley Longman, Inc. 1997.

[23] Marrin, Chris, and Bruce Campbell. Teach Yourself VRML 2 in 21 Days.
Indianapolis, IN: Sams.net. 1997.

[24] Marrin, Chris (1996, August 2). External Authoring Interface Reference.
[WWW Document]. URL http://reality.sgi.com/cmarrin/vrml/externalAPl.html.

[25] Milgram, Paul, and Anu Rastogi. (n.d/1997). Augmented Telerobotic Control:
A Visual Interface for Unstructured Environments. [WWW Document]. URL
http://vered.rose.utoronto.ca/people/anu dir/papers/atc/atcDND.htmi

[26] Mosteller, Frederick, Robert Rourke, and George Thomas. Probability with
Statistical Applications. Reading, MA: Addison-Wesley: 1970.

[27] Natonek, E., et al. "Virtual Reality: an Intuitive Approach to Robotics"
Telemanipulator and Telepresence Technologies Vol. 2351 (1994): 260-269.

60

[28] O'Brien, M. Kevin. "Task-level Control for Networked Telerobotics, " M.S.
Thesis, ME, MIT. 1996.

[29] Oaks, Scott, and Henry Wong. Java Threads. Sebastopol, CA: O'Reilly &
Associates, Inc. 1997.

[30] Peck, B. Susan, and Stephen Arrants. Building Your Own Website.
Sebastopol, CA: O'Reilly & Associates, Inc. 1997.

[31] Pitman, Tim. Probability. New York, NY: Springer-Verlag. 1993.

[32] Regan, Tim. "Taking Living Worlds Into Peoples Living Rooms" VRML 98
Third Symposium on the Virtual Reality Modeling Language (1998): 71-76.

[33] Rice, C. Jeffrey, and Irving Salisbury. Java 1.1 Programming. New York,
NY: McGraw-Hill. 1997.

[34] Roehl, Bernie, et al. Late Night VRML 2.0 with Java. Emeryville, CA: Ziff-
Davis Press. 1997.

[35] Roehl, Bernie. "Channeling the Data Flood." IEEE Spectrum 34.3 (1997): 32-
38.

[36] Roehl, Bernie (n.d/1997). Distributed Virtual Reality-An Overview. [WWW
Document]. URL http://sunee.uwaterloo.ca/-broehl/distrib.html.

[37] San Diego Computer Center(SDSC). (n.d/1997). The VRML Repository.
[WWW Document]. URL http://www.sdsc.edu/vrml/

[38] Sheridan, B. Thomas. Telerobotics, Automation, and Human Supervisory
Control, Cambridge, MA: MIT Press. 1992.

[39] Stark, W. Lawrence, and Theodore T. Blackmon. "Model-Based Supervisory
Control in Telerobotics." Presence 5.2 (1996): 205-223.

[40] Stiles, Randy, et al. "Adapting VRML for Free-form Immersed Manipulation"
VRML 98 Third Symposium on the Virtual Reality Modeling Language (1998): 89-
94.

[41] Story, David, Delle Maxwell, and Geoff Brown. "Authoring Compelling,
Efficient VRML 2.0 Worlds." VRML 98 Third Symposium on the Virtual Reality
Modeling Language Lecture Series, Monterey, CA. 16 Feb. 1998.

[42] Taylor, Ken, and Barney Dalton. (1997, December 8). Issues in Internet
Telerobotics. [WWW document]. URL http://telerobot.mech.uwa.edu.au/robot/
anupaper.html

[43] Turoff, Murray. "Virtuality." Communications of the ACM 40.9 (1997): 38-43.
Wagner, G. Michael. "Advanced Animation Techniques in VRML 97." VRML 98
Third Symposium on the Virtual Reality Modeling Language Lecture Series,
Monterey, CA. 16 Feb. 1998.

[44] Waters, C. Richard, and John W. Barrus. "The Rise of Shared Virtual
Environments." IEEE Spectrum 34.3 (1997): 20-25. 1996

[45] Vogel, Jorg.(Maint.) (1997, October 23). VRML and Robotics Library. [WWW
Document]. URL http://dv.op.dlr.de/FF-DR-RS/STAFF/ioerg vogel/Vrml/lib.html

