EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

Data Analysis using ALICE Run 3 Framework

Giulio Eulisse"*, Anton Alkin?, Jan Fiete Grosse-Oetringhaus', Peter Hristov',
Gian Michele Innocenti', and Maja Jadwiga Kabus?

!Organisation Européenne pour la Recherche Nucléaire, CERN, Meyrin, Switzerland

2Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv,
Ukraine

3Warsaw University of Technology, Warsaw, Poland

Abstract. The ALICE Experiment is currently undergoing a major upgrade
program, both in terms of hardware and software, to prepare for the LHC Run
3. A new Software Framework is being developed in collaboration with the
FAIR experiments at GSI to cope with the 100-fold increase in the number of
recorded events. We present our progress to adapt such a framework for the end
user physics data analysis. In particular, the design and technology choices are
highlighted. How Apache Arrow is adopted as the platform for the in-memory
analysis data layout is discussed. The benefits of this solution are illustrated,
these include: efficient and parallel data processing, interoperability with a large
number of analysis tools and ecosystems, integration with the modern ROOT
declarative analysis framework RDataFrame.

1 ALICE analysis in Run 1 and 2

The implications for the software architecture and framework of the ALICE experiment up-
grades [1] for the so called Run 3 of the Large Hadron Collider (LHC) have already been
detailed elsewhere, in particular describing the new Online - Offline (O? [2]) architecture and
its Data Processing Layer (DPL [3]). How those changes will reflect on the end-user analysis
software and how it is run is hereby illustrated.

During Run 1 and Run 2, ALICE physicists were able to run their analysis using two
kinds of physics objects:

e Event Summary Data (ESD), i.e. the detailed reconstruction output, including multiple
reconstruction snapshots for calibration and QA purposes;

e Analysis Object Data (AOD), i.e. an analysis specific, distilled subset of the previous.

In both cases, the event was represented as an object, stored using ROOT [4] serialization
capabilities.

In order to process data, physicists wrote analysis tasks, nicknamed wagons, organized
in workflows, nicknamed trains, which run on the data using the WLCG Grid via ALICE
developed Grid submission Middleware, AliEn [5]. This allowed the experiment to offset the
cost of data access per wagon, since data is read once per train.

*e-mail: giulio.eulisse@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

While the core of such an architecture will remain, the fact that ALICE will take hundred
times more (minimum bias) collisions in Run 3, necessitates significant changes for both
the computing model and the software to cope with the increased data rate. In particular,
it will not be feasible to store and retrieve the equivalent of ESD during the Run, so all the
analyses will have to be performed at AOD level. AODs will not contain any quantities that
can be calculated on the fly, in order to fit into the estimated 100-fold increase in required
throughput.

2 ALICE computing model in Run 3

A first challenge is to reduce the latency of Analysis Trains while tuning the various aspects of
analysis. In order to achieve this, an extension to our computing model to include a new entity
named "Analysis Facility" is planned. This is an optimized computing resource, hosting 10%
of the data, which will be used to run all the trains daily and provide a quick feedback loop.
The plan is that only the wagons or trains which qualify will then be allowed to run on the
whole dataset, over a few days, by running jobs on the Grid.

A second aspect that concerns the computing model is the fact that certain well defined
analysis on rare processes, like for instance certain heavy-flavoured probes, high pr jets, and
nuclei, will be allowed to store organized selections (skims) of data, so that the amount of
data to be read for them will be highly reduced [6]. In the past, the advantages this approach
were overweighted by the bookkeeping concerns, however the increased data rates of Run 3
is expected to move the balance in favour of a well maintained set of skimmed datasets.

Finally, lossy compression of the data by zeroing the least significant bits of the mantissa
of floating point will be performed, as allowed by the uncertainty on the represented quantity.

The goal, as stated in the ALICE Software and Computing TDR [2], is to go through the
equivalent of 5 PB of AODs every 12 hours (100 GB/s) which roughly translates to 20 MB/s/-
core with the current resource estimates for the Analysis Facilities.

3 ALICE analysis framework in Run 3

The analysis software of the experiment will also undergo a significant reorganization, aimed
at improving its performance and integrating it into the new O? Data Processing Layer (DPL)
in order to provide a coherent environment from data taking to analysis.

The same terminology of Run 2, where wagons (tasks) will be organized in trains (work-
flows) will be maintained. However, each wagon will be mapped on a DPL Data Processor.
This will allow us to parallelise the processing of our wagons, both in terms of parallel ex-
ecution on a single timeframe, and in terms of ability to pipeline the processing of multiple
timeframes. Moreover, the inherently distributed and dynamic nature of the ALICE 02 frame-
work opens the possibility to run on multi-node slots (e.g. to amortize the cost of I/O and
common computations) or to remove poorly performing or crashing wagons.

Compared to the current framework, the underlying data model will be flattened out in
set tables arranged in a relational-database-like manner. The goal is to minimize the cost
due to serialization, exploit the shared memory backend of FairMQ, and to pave the way for
vectorised processing of the bulk data present in the timeframe.

As a baseline, tables will be stored as a set of flat ROOT trees, both for original AODs
and for derived skimmed data. Histograms and output objects in general will be serialized
using ROOT objects serialization to facilitate drawing.

In order to minimize the amount of changes that physicists will have to do, a compatibility
API which will allow the users to port their old code incrementally, with minimal adjustments,

EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

will be provided. However, for the analyses which are on the critical path a more declarative
API will be recommended, as it allows for the optimization and reuse of common filters and
computations.

3.1 Core features of the analysis framework

As previously said, data is described in terms of Tables. Each table is merely the union of
columns and some metadata associated to it. In order to define the schema for a given table,
users have to specify the columns, via the DECLARE_SOA_COLUMN macro and group them into
tables via the DECLARE_SOA_TABLE macro (see listing 1 for an example). This approach is not
dissimilar to those being investigated by the CMS [7] and LHCDb [8] collaborations, with the
notable difference that the backing store for the columns will be provided by the open-source
library Apache Arrow (Arrow, [9]).

namespace track

{

// An index column, referring to the separate Collision table.

DECLARE_SOA_INDEX_COLUMN(Collision, collision);

// The declaration of a normal column, associated to the C++ type track::X,

// with accessor X::x() and storing a float in the fX branch.

DECLARE_SOA_COLUMN(X, x, float, "fX");

DECLARE_SOA_COLUMN(Alpha, alpha, float, "fAlpha");

DECLARE_SOA_COLUMN(Y, y, float, "fY");

DECLARE_SOA_COLUMN(Z, z, float, "£fZ");

DECLARE_SOA_COLUMN(Snp, snp, float, "fSnp");

DECLARE_SOA_COLUMN(Tgl, tgl, float, "fTgl");

DECLARE_SOA_COLUMN(Signed1Pt, signed1Pt, float, "fSignedlPt");

// A dynamic column, i.e. a column which is calculated on the fly from the contents of other columns

DECLARE_SOA_DYNAMIC_COLUMN(Pt, pt, []J(float signedlPt) -> float { return fabs(1.0 / signedlPt); });

DECLARE_SOA_DYNAMIC_COLUMN(Phi, phi, [](float snp, float alpha) -> float { return asin(snp) + alpha
+ M_PI; 1);

DECLARE_SOA_DYNAMIC_COLUMN(Eta, eta, [](float tgl) -> float { return log(tan(®.25 * M_PI - 0.5 *
atan(tgl))); 1);

}

// The declaration of the Tracks table, mapping on the 02 Message with header
// AOD/TRACKPAR and consisting of the specified columns.
DECLARE_SOA_TABLE(Tracks, "AOD", "TRACKPAR",

02::soa::Index<>, track::CollisionId, track::X, track::Alpha,

track::Y, track::Z, track::Snmp, track::Tgl,

track: :Signedl1Pt,

track: :Phi<track: :Snp, track::Alpha>,

track: :Eta<track: :Tgl>,

track: :Pt<track::Signed1Pt>,

track: :Charge<track: :Signed1Pt>);

// Shortcut to iterate over the rows of the Tracks table.
using Track = Tracks::iterator;

Listing 1. An example for the schema of table with the track propagation properties.

Besides standard columns, which correspond to a branch in a ROOT tree, it is also possi-
ble to define as columns indices to other tables or quantities to be calculated on the fly, either
when requested, or in bulk at the beginning of the first requesting task. These quantities are
planned to be computed only once for complex operations and then cached for all tasks in the
workflow.

The table declaration will effectively describe an Apache Arrow (Arrow) table which will
be filled by the values in a TTree on disk or computed by a given task. Exploiting Apache
Arrow gives us solid foundations for the in-memory layout of the data, and fits particularly
well the zero-copy, shared memory backed, message passing paradigm of the O? framework.

While only basic types are supported at the moment for columns, we plan to expose, at
least partially some of the nested types provided by Arrow, e.g. to handle jet constituents.

EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

In order to process the data, the user has to provide a task struct with (at least) a process)
method. Its signature will define to which tables a given task subscribes. Certain special
members of the struct will allow the user to describe Filters on the data, new tables produced
by the task and configurable parameters associated to the task (see listing 2 for an example).

struct SomeTask {
OutputObj<TH2F> etaphiH{TH2F("etaphi", "etaphi", 100, 0., 2. * M_PI, 100, -2.f, 2.£)};
// Create a configurable which can be used inside the process method.
Configurable<float> ptCut{"pt", 0.1f, "A cut on phi"};

void process(aod::Tracks const& tracks)
{
for (auto& track : tracks) {
if (track.pt() > ptCut) {
etaphiH->Fill (track.phi(), track.eta());
}
}
}
1

Listing 2. An example task which subscribes to the track table and produces an histogram with the n
and ¢ of all the processed tasks.

The framework inspects the structure of a wagon and creates the associated DPL Dat-
aProcessor which will describe the computation. In case it is desirable from a performance
point of view, the framework might decide to stack multiple wagons in a single data processor
if the data flow allows for it.

Given the importance that selection and filtering has in a physics analysis, the vectorized
query engine provided by the Apache Arrow subproject Gandiva [10] has been integrated in
the framework. Such an engine allows us to create a declarative C++17 based Domain Spe-
cific Language which allows the physicist to write filters on the table columns in a declarative
way. The framework will then convert such a description in an Abstract Syntax Tree, which is
then used to Just-In-Time generate the actual code for the query, vectorised as needed, thanks
to the LLVM compiler infrastructure [11]. A simple example can be found in listing 3.

struct Task {
Filter trackCuts = aod::track::pt > 0.1f;

void process(Tracks &tracks) {
// Only tracks passing the filter will be processed.

}...
1

Listing 3. Simple pr cut example

Finally, integration with ROOT is provided both via some helper functions to simplify
reading and creation of ROOT Trees and Histograms and by providing an Arrow compatible
RDataSource, which allows us to integrate our table based data model with RDataFrame [12],
giving the user access to the familiar ROOT environment. Similarly, thanks to Apache Arrow
ubiquity, integration with common python analysis tools like Pandas [13], plotting tools like
Matplotlib [14] or machine learning packages like Tensorflow [15] is planned.

3.2 New trains infrastructure

In order to run our analysis, an upgraded the trains infrastructure is planned, modernizing the
GUI front end exposed to the users and adapting it to exploit some of the facilities the new
framework provides.

In particular, the ability to run tasks in parallel seamlessly is one of the most interesting
aspects, together with the ability to dynamically change the train content in term of wagons.

EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

Moreover, compared to the current implementation, not only the topology of the train
will be exposed to the infrastructure, but also the configurable parameters and the input and
outputs in terms of data type. This is thanks to the fact that such information is easily provided
by the DPL. This will allow the train infrastructure to better introspect trains and facilitate
their optimal composition and the bookkeeping of both the data and metadata resulting from
running a train.

4 Conclusions and future work

While still under heavy development, ALICE O Analysis Framework for Run 3 has demon-
strated ability to port non-trivial analyses from the Run 2 environment, fully reproducing
earlier results.

A complete prototype of a heavy-flavour analysis that uses the O? framework is indeed
already in place. The current implementation uses all the utilities described above to perform
track selection, secondary vertex reconstruction and heavy-flavour candidate selection.

As an example, in Fig. 1, the invariant mass spectrum of D° candidates from Monte
Carlo simulations obtained with the legacy Run 1 framework and with the O2 framework is
presented.

1500

;

D Run1 framework

t
H‘%ﬂ + % [Runa tramework
! ﬂﬁﬁﬁﬁ % %

t
P

fit
4 4
+*+++

19 1.95 2 2.05
Invariant mass Kt (GeV)

1400

Entries/GeV

1300

1200

1100

1000

900

800

I|IIII|IIII|IIII|IIII|IIII|IIII|I_L+I_I|_|_IIII|I

700

17 1.75 18

=
foe}
a

Figure 1. Invariant mass distribution of D° candidates from a Pb—Pb Monte Carlo simulation performed
using the legacy Run 1 software and the new O2 framework.

EPJ Web of Conferences 245, 06032 (2020) https://doi.org/10.1051/epjconf/202024506032
CHEP 2019

The development will continue in the directions described in these proceedings and the
framework will shortly be exposed to a larger audience of physicists. The goal is to perform
a veritable data challenge by the summer of 2020.

Our future efforts will mostly consist in extending the framework to simplify porting
more complex analyses, profiling and performance optimization. In particular, the aim is to
demonstrate how the vendor-agnostic Apache Arrow platform allow us to seamlessly inte-
grate a number of open source tools in a coherent, parallel and distributed environment.

References

[1] The ALICE Collaboration, Journal of Instrumentation 3, S08002 (2008)

[2] P. Buncic, M. Krzewicki, P. Vande Vyvre, Technical Design Report for the Upgrade of
the Online-Offline Computing System (2015)

[3] G. Eulisse, P. Konopka, M. Krzewicki, M. Richter, D. Rohr, S. Wenzel, EPJ Web Conf.
214, 05010 (2019)

[4] R. Brun, F. Rademakers, Nucl. Instrum. Meth. A389, 81 (1997)

[5] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras,
A. Hayrapetyan, A. Harutyunyan, A.J. Peters, P. Saiz, Journal of Physics: Conference
Series 119, 062012 (2008)

[6] L. Musa, Tech. Rep. CERN-LHCC-2012-013. LHCC-P-005, CERN, Geneva (2012),
https://cds.cern.ch/record/1475244

[7]1 C. Jones et al., FWCore/SOA (2019), https://github.com/cms-sw/cmssw/
commits/master/FWCore/SOA

[8] M. Schiller et al., Soacontainer (2019), https://gitlab.cern.ch/LHCbOpt/
SOAContainer

[9] The Apache Arrow team, From the apache arrow wiki: Physical memory layout (2016),
https://github.com/apache/arrow/blob/master/format/Layout.md

[10] Dremio, Introducing the gandiva initiative for apache arrow (2018), https://www.
dremio.com/announcing-gandiva-initiative-for-apache-arrow/

[11] LLVM Foundation, The llvm compiler infrastructure (2019), https://1lvm.org

[12] E. Guiraud, A. Naumann, D. Piparo, TDataFrame: functional chains for ROOT data
analyses (2017), https://doi.org/10.5281/zenodo.260230

[13] W. McKinney, Data structures for statistical computing in python, in Proceedings of
the 9th Python in Science Conference (Austin, TX, 2010), Vol. 445, pp. 51-56

[14] J.D. Hunter, Computing in Science & Engineering 9, 90 (2007)

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on
heterogeneous systems (2015), software available from tensorflow.org, https://www.
tensorflow.org/

