EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

Single-Pass Covariance Matrix Calculation on a Hybrid
FPGA/CPU Platform

Lukas On Arnold"* and Muhsen Owaida®

'Columbia University, formerly ETH Zurich
2ETH Zurich

Abstract. Covariance matrices are used for a wide range of applications in
particle physics, including Kdlman filter for tracking purposes or Primary Com-
ponent Analysis for dimensionality reduction. Based on a novel decomposition
of the covariance matrix, a design that requires only one pass of data for cal-
culating the covariance matrix is presented. Two computation engines are used
depending on parallelizability of the necessary computation steps. The design
is implemented onto a hybrid FPGA/CPU system and yields speed-up of up to
5 orders of magnitude compared to previous FPGA implementation.

1 Introduction
1.1 Covariance matrix

Covariance is a measure of variability between two different data sets X and Y defined as:
cov(X,Y) = E[(X — E[XD(Y - E[YD)]. ey

We will use the understanding of the expected value as the sample mean:

_ 1 n

EX)=X = - Z x;. 2)
n 4

i=1
The covariance matrix K represents the covariances between all the permutations of the
different data sets. We use the convention that m denotes dimensionality, i.e. the number of
different data sets, and n the number of samples. Data are represented by an m X n matrix X.

Then the covariance matrix is defined as:

Kij = cov(X;, X;). 3

Note: subscripts denote indices and subscript A, is referring to the subvector with all the
elements in row z from matrix A. The covariance matrix will be a symmetrical m X m matrix,
with the diagonal K;; being the variance on data set X :

var(Xy) cov(Xi,X5) ... cov(Xy,X,)
cov(Xy., X2) var(Xs,)

K= “

cov(Xy,X,n) cov(Xo,X,) var(X,,.)

*e-mail: lukas.arnold@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

1.2 Applications and challenges

Covariance matrices serve a variety of purposes within particle physics, particularly as di-
mensionality reduction and filtering techniques. They are used within Primary Component
Analysis (PCA) to decompose the eigenvalues from [1], and form the base of Whitening
transformation [2]. Its most prevalent use in particle physics is its employment in the
Kalman filter. Kélman filters are linear estimators that rely on covariance matrices of state
vectors. They are widely applied as particle tracking algorithms, and their implementation
onto FPGA forms one of the approaches to increase low-lever trigger capabilities for future
luminosity upgrades. [3] [4]

Covariance matrices face the challenge of the curse of dimensionality — denoting the
exponential increase in computation complexity with increasing dimensionality — leading
to unbearable memory usage and computation times. To mitigate this obstacle, estimators
such as the maximum likelihood estimator can often approximate the covariance matrix up to
sufficient accuracy [5], but might be vulnerable to non-normally distributed random variables.

1.3 Related work

As the implementation base line we use the work of Perera and Li (2011) [6]. They im-
plemented an accurate covariance matrix calculator on a Xilinx Virtex-6 FPGA clocked at
100MHz. Their design was tested on 8.56MB of integer input data, representing a fixed
amount of 64 dimensions. The design is built upon two passes of data: Firstly, the mean
is calculated according to eq. 2, and after the means X, and ij, have been calculated, the
corresponding covariance is calculated according to:

_ pIY (Xik - ii.) (Xjk - Yj.)

n2

ij &)
This approach requires two passes of data: data has to be passed a first time to calculate the
means — including a division — and then a second time to calculate the actual covariance value
— with the number of mn? multiplications, as eq. 5 is performed for each covariance matrix
value.

2 Theory

For our implementation, focus is lead on having a single-pass design that requires just one
pass of data. The reasoning is that we expect to face a huge number of data samples within
a lower (< 160) range of dimensions in potential applications. Thus, the computation task
is an I/O-bound problem limited by data transfer via cache line from CPU to FPGA up to
the point where dimensionality exceeds parallelizability. Assuming that computation time
is proportional to sample size, a single-pass design will be able to speed up every dual-pass
design by the factor of two at least and it can potentially be used in real-time applications.
We use a novel decomposition of the covariance matrix:

1 1
K== (XXT - —XlXT), (6)
n n

where 1 refers to an n X n matrix of ones.

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

2.1 Proof

The first part of the proof is commonly known: Taking the definition of covariance from
eq. 1 with our understanding of the expected value given in eq. 2 and the definition of the
covariance matrix in eq. 3 we come from

n n n n

COV(XL,X]") = % Z (Xikak) - Z (X,"Xj](> - Z (X]-,Xik> + Z (ilij) (7)
k=1 k=1 k=1 k=1
to
1 1 & n
cov(i,»;T X)) =~ kZ‘ (XaXe) =~ ; Xik kZ‘ X |- ®)
=Ajj =B;;

For the second part, we use individual equivalencies to the terms A;; and B;; defined in the
previous eq. 8. In the first part, we can use the general definition of matrix multiplications to

derive
n

Aijzkz;(xikxjk) XX} = (XX"), . ©)

. . 4
and for the second part, we use an n-dimensional vector of ones 1:

n

1 n n 1 n 1 =
By =5 2% X = D5 X LIS L X | = 2 ((XI)(E'XT), 10

)

and — building an n X n matrix of ones 1 and using the definition of matrix multiplication
again — we get:

1 > 1
B =~ |X 11T XT| =~ (xaxT) . (11)
n T n 17

ij
Eq. 9 and eq. 11 correspond to the term definitions in eq. 8, thus correspond to the decompo-
sition in eq. 6.

Also, another approach is given. From eq. 8, it can be seen that

K,‘j = X,"Xj' - X,'. . Xj,.

12)

Equivalency of %XXT to X; X; can be directly derived from eq. 9. The second part also holds:
(-XlXT) = Zx,k (1- XT lek Z (1-Xa) =X - X;. (13)

3 Design
3.1 Algorithmic complexity

In order that our assumption on speed-up holds, the computation task has to be I/O-bound.
As it would be the case in real-time applications, data will be sent sample by sample, or — in
terms of the above-defined data matrix X — column by column. We will split our calculations

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

Table 1. Specifications for the Intel HARP v2 system [8].

CPU Family Intel Xeon Broadwell ES
Number of CPU Cores 14

CPU speed 2.4GB/s

FPGA Family Intel Arria 10

FPGA-CPU bandwidth 20GB/s

described in eq. 6: Firstly, we will calculate the values XTk ® X for each data sample k via
tensor product, whose outputs then are added up. This exploits the equivalency

XXT=) XTeoXi(eeq In((XEe@Xy) =XuXul). (14)
k k i J
k=1

Secondly, we will compute the sums);;_, Xj in parallel, as they lie base for calculating the
second term By, as can be derived from eq. 13.

The computationally most complex step is the tensor product that requires O(m> + m)
multiplications to be performed in parallel (m denotes the number of dimensions), in order
that the calculation is a strictly I/O-bound problem, meaning that it is cache transfer and not
compute that limits throughput. By omitting this necessity, we can increase dimensionality.

3.2 Hardware and framework

The covariance matrix accelerator is implemented onto a hybrid FPGA/CPU device: the Intel
HARP. Intel HARP v2 contains both an FPGA and a CPU; the FPGA and CPU both have
access to a shared memory region [7]. The specifications are listed in table 1. Software-wise,
it was implemented using doppioDB, a hardware-accelerated database framework [9].

3.3 Implementation

A strictly I/O-bound solution only works to the number of dimensions where the tensor op-
eration is fully parallelizable. For higher dimensions, a compromise has to be found. Thus,
our design is split into two cases: The first case holds, if the number of dimensions is below

receive module

Number of dimension

exceeds threshold

Parallel computation engine | Semi-Parallel computation engine

Figure 1. Which computation engine is used depends on dimensionality.

this threshold (which is by coincidence about the same as one cache line); in the second case
where dimensionality exceeds parallelizability, an adjusted design will be used. The scheme
is outlined in fig. 1 and a depiction of the data flow is illustrated for both cases in fig. 2. The
computation engine is synthesized onto FPGA where it can take advantage of parallelizability
of tensor operations using Digital Signal Processors (DSPs):

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

Parallel engine For every data point Semi-Parallel engine For every data point
) [Gmi [dm2 o] Cacheline 1 [dim1 [dm2 [.. |
Cochelne 1 Cacheline2 [, dimm)
For every dimension ! Y For every dimension
Buffer am1 [am2 [i i iBuffer [dm1 [dm2 [.. _[.. [dimm] i
— i i Shif o Multplicator Registor |

dim1 |... - dim m

uuuuuuuuuuuu

Multiplicator iMultiplicator

DSPs All necessary combinations iDSPs

of multiplications

Accumulate { Accumulate

XX [11 12 1,m x1" N XX'[11 1.2 im X 1"
21 |22 (T2 T. T. m] 21|22 T2 7 [[m]
mi mz [.. . [mm mi Im2 lmm
data to SW M data to SW
Covariance matrix
(a) Data flow in fully parallel mode. (b) Data flow in case dimensionality exceeds paralleliz-
ability.

Figure 2. Data flow of the covariance matrix calculation within the FPGA. On the left side, the case
is given where all the samples fit into the cache line in one go; on the right side, the case is illustrated
where the samples have to be shifted into the multiplier DSP registers.

The engine receives data sample by sample. Then, the tensor operation is performed by
Digital Signal Processors (DSPs). Depending on dimensionality, this is either done fully in
parallel (fig. 2(a)) or batched by shifting the multipliers consecutively into the DSP registers.
An accumulator than adds the DSP outputs to the XXT matrix and the sample values to the
X1XT (sum) matrix.

The values are stored in RAM blocks that represent rows of the XXT matrix. As this
matrix is symmetrical, only the upper diagonal is stored. Data is sent sample per sample
and cache line per cache line; thus, for lower dimensions, not the whole cache line is filled.
Therefore, whereas the algorithm theoretically is I/O-bound, throughput is below the theo-
retical I/O-bound value. For values that require semi-parallel computation, computation time
is bound by the time of shifting values to the DSP multiplication registers which is propor-
tional to the number of dimensions; therefore, for higher dimensions, computation time will
increase linearly with dimensionality.

After these operations are completed, the m X m output matrices are transferred to the
CPU to perform the divisons. As dimensionality is assumed to be much lower than sample
size, their computational costs are low. As these are mostly floating point operations, it would
be disadvantageous to perform these on the FPGA, because this would either result in high
hardware resource usage or high latency. The current design exploits advantages of both
FPGA and CPU.

4 Results
4.1 Experimental setup

The test set-up uses homogeneously distributed random integer values. The sample size is
set from 200k to 3G values, and the number of dimensions ranges from 2 to 160. These
correspond to data sizes of 3MB to 10GB. The maximum number of dimensions is limited
by the design; whereas there is no formal limit for sample size, the latter is constrained by
accumulator overflow. Two different baselines are used:

o as the FPGA base line, the design by Perera and Li (2011) [6]. This design has — unlike the
presented design — fixed dimensionality of 64.

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

e as the CPU base line, the NumPy covariance estimator, an estimation function run on an
Intel i5 with 4 cores at 2.3GHz clock speed [10].

For both base lines, results are measured from the beginning of the compute until the results
have been obtained by the host machine.

4.2 Comparison to FPGA designs

Throughput for the covariance matrix algorithm has been measured for data samples con-
taining 2 to 160 dimensions, as presented in fig. 3. The threshold up to which the fully
parallel data flow is used, is 16 dimensions. Up to this threshold, memory throughput is
steadily increasing from 450MB/s to 3.9GB/s. For dimensions beyond that, throughput will
drop sharply to — and stay constant at — 850MB/s, as the semi-parallel data flow is used
and throughput is bound by computation time rather than I/O. The result shows a speed-up

Throughput [GB/s]

4 S @ FPGA+CPU
@ Perera, Li (2011)
3 ° @ Kalman Sandhu (2017)
2 °
[J
[]
1 °
° e®0000000 00

0 -
VRO 0NN D PR FA PR Number of dimensions

Figure 3. Throughput of the presented design, and the baselines [6], [11]. Note that the current imple-
mentation has variable input dimensionality, whereas the baseline designs have fixed dimensionality.

(increase of throughput) of up to 183000x compared to the base line (21.2kB/s [6]). The
speed-up for dimensions above 16 is 40000x. For comparison, also a real-time covariance
updating algorithm for the Kalman filter has been included [11] for which the presented im-
plementation achieves 3% higher throughput; but this yields limited significance due to the
different nature of the algorithms. Compared to a standard CPU implementation of maximum
likelihood covariance matrix estimation [10], significant speed-up is only achieved for num-
ber of dimensions using the fully parallel engine (< 16 dimensions, up to 5X), but remains
within the same order of magnitude for number of dimensions using the the semi-parallel
engine.

5 Conclusion and outlook

A single-pass covariance algorithm design based on a novel decomposition of the covariance
matrix has been implemented and successfully tested. It shows speed-up that is significant
compared to previous FPGA implementation as well as compared to standard covariance
estimation on lower number of dimensions. An outlook of a possible real-time application
would be to use a novel covariance matrix: update: XX would be updated according to eq. 15
(k denotes the index of the new sample), the sums would be accumulated in parallel, and then

EPJ Web of Conferences 245, 09006 (2020) https://doi.org/10.1051/epjconf/202024509006
CHEP 2019

the covariance values would be calculated based on these updated values. This could provide
an alternative to the currently used most common covariance updating algorithm [12]:

xxT

new

= XX%, + X% ® X (15)

Acknowledgments

The research has been performed within and has been supported by the Systems group, De-
partment of Computer Science, at ETH Zurich. We express out gratitude to Gustavo Alonso,
David Sidler and Kaan Kara for advice and support. We also thank Nevis Laboratories,
Columbia University, for generous support to present the conducted research.

References

[1] D. Fernandez, C. Gonzalez, D. Mozos and S. Lopez. J Real-time Image Pr. 16(5), 1395-
1406 (2019).

[2] W. Cho, S. Choi, D. Park, I. Shin and J. Choo. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (IEEE, 2019), pp. 10639-10647.

[3] G. Cerati, P. Elmer, S. Krutelyov, S. Lantz, M. Lefebvre, K. McDermott, D. Riley,
M. Tadel, P. Wittich, F. Wurthwein and A. Yagil, J Phys Conf Ser. 898(4), 042051 (2017).

[4] S. Summers and A. Rose, EPJ Web Conf. 214, 01003 (2019).

[5] H. Li, S. Stoica and J. Li. IEEE Trans Signal Process. 47(5), 1314-1323 (1999).

[6] D. Perera and K. Li. 2011 International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (IEEE, 2011), pp. 100-108.

[7] G. Alonso, Z. Istvan, K. Kara, M. Owaida and D. Sidler. IEEE DE Bull. 42(2) (2019).

[8] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon and P. Melet. Proceedings VLDB
Endowment. 13(1), 71-85 (2019).

[9] D. Sidler, Z. Istvan, M. Owaida, K. Kara and G. Alonso. Proceedings of the 2017 ACM
International Conference on Management of Data (Association for Computing Machinery,
2017), pp. 1659-1662,

[10] S. van der Walt, S. Colbert and G. Varoquaux. Comput Sci Eng. 13(2), 22-30 (2011).

[11] F. Sandhu, S. Hazlina, S. Alavi and V. Mabhalleh. IEEE Sens J. 17(17), 5749-5758
(2017).

[12] R. Friithwirth. Nucl Instrum Meth A. 262(2-3), 444-450 (1987).

