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Abstract

The Vibrating Island Accelerometer (VIA) is targeted for 1 A g accuracy and requires both
a precise transducer element and a high resolution readout scheme. The quartz crystal
transducer angle-modulates two stable oscillators, and is analogous to an FM/PM trans-
mitter. The readout scheme can either phase demodulate the oscillator waveforms to yield
velocity, or frequency demodulate to read acceleration. First, this thesis derives an equa-
tion that relates velocity resolution to acceleration resolution and digital integration error,
and then estimates the resolution performance of the analog phase-locked loop, period
readout scheme, and a conventional cross-differentiate multiply (CDM) FM demodulator.
For a readout time of 360 seconds, the CDM receiver requires a fourth-order delta-sigma
modulator to achieve the same velocity resolution as the phase readouts. Second, this the-
sis designs the quadrature demodulation cross-differentiate multiply (QCDM) digital
receiver to readout the VIA. The FM bandwidth required for the VIA to achieve the
desired accuracy is found to be twice the Carson Rule estimate and is used to design the
FIR filters. It is also discovered that highly accurate numerical integration using Simp-
son's Rule can be implemented using a polyphase decimator. Using Matlab simulations,
for a DSP input SNR of 122 dB, the designed QCDM demodulator achieves 8 g g resolu-
tion.
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Chapter 1

Introduction
analogy n., pl. -gies. 1. Correspondence in some respects
between things otherwise dissimilar. 2. An inference that if
two things are alike in some respects they must be alike in
others [20].

The spark that ignites both the technical and the artistic imagination is often a simple

analogy. When applied to solving an engineering problem, an analogy that highlights cor-

respondence between the problem at hand and other problems, can infer possible solutions

that otherwise might never have been considered. The exploitation of an analogy is at the

origin of this thesis, which began with the observation that the quartz crystal transducer of

the Vibrating Island Accelerometer behaves much like a frequency modulation (FM)

transmitter in an analog communication system.

Accelerometers are inertial instruments that are used to guide aircraft, satellites, mis-

siles, and unmanned vehicles, such as autonomous submarines. By integrating accelera-

tion measurements over time, an Inertial Navigation System (INS) can determine

instantaneous velocity and, after a second integration, position information. The accuracy

of this position information depends, in part, on the bias stability of the accelerometer,

with smaller bias stabilities reflecting smaller measured position error and thus better per-

formance. Commercial applications require bias stability's of about 10,000 g g, aircraft

demand 100 g g, and strategic missile applications need approximately 1 g g bias stability

[21].

For strategic applications, the best accelerometer to date has been the Pendulous Inte-

grating Gyro Accelerometer (PIGA), an electromechanical design. However, since PIGA

is very costly to build and to maintain, there has been an interest in looking at solid state



devices that promise to be smaller, cheaper, and easier to manufacture. Among the emerg-

ing technologies are silicon micromechanical accelerometers and the Vibrating Island

Accelerometer [21].

At the heart of the Vibrating Island Accelerometer (VIA) is a quartz crystal that is the

resonant frequency determiner of two oscillator circuits. Crystal oscillators are often used

as timing devices,-and are generally designed to be insensitive to external parameters such

as temperature and force. The VIA crystal, on the other hand, is designed to be as sensitive

to force, and thus acceleration, as possible. Therefore, in the midst of an acceleration field,

the VIA oscillators will modulate their frequencies by an amount proportional to the mag-

nitude of the acceleration. The crystal for this device is expected to linearly relate acceler-

ation to frequency change, and thus can be viewed as an acceleration-controlled oscillator.

Much like a voltage-controlled oscillator in a simple radio transmitter, the VIA transducer

generates an FM modulated signal.

One half of the VIA is the quartz crystal transducer and its associated electronics. The

second half of the instrument must extract acceleration information from the angle-modu-

lated oscillator output. The portion of the inertial instrument that achieves this is called the

readout of the accelerometer. Not simply a digital or liquid crystal display of some sort, as

the name might suggest, the readout scheme is analogous to a radio receiver that demodu-

lates an FM signal. In fact, for this particular device, the readout scheme can be imple-

mented exactly as an FM demodulator or receiver.

The greatest challenge in designing the readout electronics for the VIA is to meet the

high resolution requirements that it faces. Intended to be used for strategic military appli-

cations, the instrument is desired to have an acceleration resolution that would rank it

among the most highly accurate in the world. The repercussions of this system-level

design goal affect even the most detailed levels of design, for to achieve high resolution



collectively, each component in the accelerometer must introduce extremely small

amounts of error to the acceleration signals. Therefore, not only must the VIA quartz crys-

tal oscillators have extremely high stability waveforms (1 part in 1011), but the readout

scheme must not contaminate the acceleration signal while extracting it from the trans-

ducer.

It is the high resolution requirement of the accelerometer that motivates making the

analogy between the accelerometer and a communication system. The hope is that in the

vast, mature field of communications, where frequency modulation is a ubiquitous tech-

nique, there exists technology that can lend insight into finding a solution to the high reso-

lution readout problem. The analogy leads naturally to three questions that this thesis will

attempt to answer.

1. What insight to the general nature of the problem can the analogy lend? For exam-

ple, communication theory should be able to reveal how the bandwidth of an FM signal

translates into the signal-to-noise ratio of a demodulated output.

2. Can a digital FM receiver theoretically achieve the resolution requirements of the

VIA ? Despite the analogy relating the accelerometer to a communications system, a num-

ber of differences do exist, nevertheless, which might preclude an exact transfer of tech-

nology from one field to the other. In addition, although there may not be an off-the-shelf

digital receiver that can be used directly to achieve the resolution requirements of the VIA,

perhaps there are various emerging subsystem communication technologies that might be

useful components in the readout scheme.

3. What motivations are there for researching the implementation of a frequency

demodulator over other schemes? Other readouts, such as phase readout and period read-

out methods, exist for other accelerometers. How might they perform for this application?



Chapter 2 will give an overview of the VIA project in greater detail, constructing the

communication-system analogy more clearly. The quartz crystal design will be shown, but

not discussed in detail. The expected system specifications will be disclosed and defined,

as well.

Chapter 3 will address Question 3 by quantifying the inherent challenges to imple-

menting a frequency readout. It will then review two common phase readout methods pro-

posed to demodulate a similar accelerometer, deriving expressions to estimate their

theoretical performance. Next, consideration of frequency readout methods will discuss a

few possible advantages to performing frequency demodulation. A specific FM demodula-

tor, called the Cross-Differentiate Multiply demodulator, will then be compared to the

aforementioned phase readouts. The thesis will not, however, perform a more detailed

comparison between phase and frequency readout schemes.

Detailed analysis of the Quadrature Cross-Differentiate Multiply demodulator will

take place in Chapter 4, seeking to answer Question 2 through the design and simulation

of a digital FM receiver that can achieve the desired resolution requirements of the VIA. A

detailed subsystem design and simulation with Matlab 5.1 is followed by a system simula-

tion that studies the performance of the system in the presence of noise. Two of the sub-

system analyses, in particular, look at the necessary FM bandwidth requirements to

achieve high resolution, and the implementation of numerical integration methods using

digital filters. The simulations are described in detail, and results are reported to show that

the resolution can in fact be achieved in theory.

All the while, throughout this thesis, the answer to Question 1 is addressed. For by the

end of this text, the reader will hopefully have observed and learned about the fruits of the

central analogy that drives this thesis forward.



Chapter 2

Vibrating Island Accelerometer Background
The existence of quartz crystal accelerometers date back to at least as early as the

1960's, when IBM designed a unit targeted for inertial instrument applications. The most

important advantages of these devices have traditionally been their implementation of a

solid state rather than a mechanical transducer, a readout scheme that does not need an

analog-to-digital (A/D) converter, and relatively simple readout electronics. These charac-

teristics enabled the accelerometers to be low-cost, highly reliable devices. Although the

feasibility of high resolution applications were cited as early as in 1971, no research has

pursued the development of this application. Nor has any research fully explored the radi-

ation hardness potential that crystal quartz accelerometers exhibit, an attribute that would

deem them extremely useful for strategic military applications. The Vibrating Island

Accelerometer being developed at Draper Laboratory is different from previous quartz

crystal accelerometers in that it specifically targets the high resolution, radiation hard

application. [30]

Since the high resolution application has never been built before, many uncertainties

enshroud the VIA research effort with regards to the feasibility of its goals, including its

intended linearity and reduced common mode effects. The efforts of this thesis focus on

the exploratory study of a readout scheme that must likely be more complex than previous

quartz accelerometers in order to achieve high resolution performance. One consider-

ation, in the following chapters, will mention the reintroduction of an analog-to-digital

converter into the readout scheme to improve upon the resolution performance of past

devices. Significant advances in oversampling A/D conversion technology in recent years

gives promise that this can be done. In parallel with the readout study, a novel transducer
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Figure 2.1: Draper Laboratory VI-A Quartz Crystal Design

is being designed and analyzed that implements an AT crystal cut. The preliminary design

of the quartz crystal is shown in Fig. 2. 1.

Electrodes sandwich the crystal at points A and B, with each sandwich connected to a

separate oscillator circuit. Points A, B, C, D, E, and F are joints that suspend the proof

mass, located at the center of the crystal like an "island," from the rest of the quartz.

Acceleration is measured by taking the difference between the frequencies of the two

oscillator circuits. When the instrument is accelerated in the X or Z direction, the joints A

and B are tensed and stressed symmetrically so there should be no difference in the fre-

quencies of oscillation. However, when the quartz is accelerated in the Y direction, points

A and B are stressed differently, resulting in disparate operating frequencies from which a

difference is obtained. This difference indicates the acceleration along the inertial axis of

the instrument, which is the Y-axis in this case.



Actual implementation of the device will require that the zero g resonant frequencies

of oscillator A and B be offset to avoid nonlinear performance that might occur near zero

g, when the oscillators may tend to synchronize. In addition, by simply taking the differ-

ence between oscillator frequencies centered around identical carriers, it is impossible to

distinguish between positive and negative acceleration along the inertial axis. Chapter 4,

however, will show that quadrature demodulation can achieve sign resolution. The advan-

tage of running two oscillators from the same crystal is that external parameters, such as

temperature fluctuation and acceleration along the X and Z axes, should affect the oscilla-

tor signals in a similar fashion. The common modes from these errors are expected to can-

cel one another when differencing and demodulating the two oscillator signals.

The oscillator circuits themselves have a modified-Meacham structure and are

implemented with high bandwidth operational amplifiers. An automatic gain control cir-

cuit is required to stabilize the amplitude of the oscillator, which impacts the stability of

the oscillator frequency. As mentioned earlier, the frequency of the oscillators will be

directly related to the sensed acceleration. Thus, the transducers are basically accelera-

tion-controlled oscillators, and like voltage-controlled oscillators, what they produce are

frequency modulated signals. However, frequency modulation (FM) and phase modula-

tion (PM), although two distinct schemes of angle modulation, are closely related by an

integration [3]. In defining frequency to be analogous to acceleration, then accordingly, in

a linear system, phase will be analogous to velocity. So the outputs of the oscillators can

be viewed as two angle modulated waves, either frequency modulated by acceleration, or

phase modulated by velocity. The mathematical model of these signals will be described

shortly. The functionality of the VIA oscillator can be modeled as in the block diagram of

Fig. 2.2, and is analogous to a transmitter in a communication system.
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Figure 2.2: Block diagram of Vibrating Island Accelerometer.

It is important to accurately model the noise characteristics of an oscillator because the

noise levels primarily dictate its stability. Different types of noise include random walk of

frequency, flicker of frequency, white frequency, flicker of phase, and white of phase [22].

The sources of the noise include the quartz crystal transducer itself, the oscillator electron-

ics, and external noise such as Johnson thermal noise. It is important to categorize the

noise of an oscillator as either modulation, such as n1(t) and n2(t), or additive carrier, such

as n3(t) and n4(t) because FM demodulators can shape the noise added to the carrier signal

(Section 4.3). A detailed noise model of the VIA oscillator has not been constructed yet.

The simulations in Chapter 4 will model the noise as zero-mean, independent, and wide-

sense stationary.

While the input to the readout scheme consists of two analog angle-modulated

waveforms, the output is expected to be a digital word representing velocity, v[n], pro-

-a(t)



duced at a rate specified by the Inertial Navigation System (INS) (Fig. 2.2). The resolu-

tion of the readout is the value, in units of velocity, assigned to one quantum of the

accelerometer's discretized output. The value of a single quantum is also related to the

measure of the peak magnitude of noise, or error, that has accumulated through the system

in one period of measurement. For an average acceleration error of ea(t) over time t, the

resulting average velocity error due to ea(t) is

e,(t) = ea(t) t. (2.1)

The corresponding position error is

e(t) = ea(t)t 2 = ev(t)t . (2.2)

Therefore, for a position error of ep(360)=3.6 ft for a flight of t=360 seconds, the

velocity error is

e,(t) = 2 e(t) (2.3)

1 fte,(360) = 2 3.6 = 0.02
360 sec

The acceleration error is

ea e) e(t) (2.4)

sec 360 sec2

These first order calculations are the basis for the first two fields of the following VIA

accelerometer specifications. A similar derivation will be treated in more detail in Section

3.1.2. The oscillator frequency and scale factor are parameters of the quartz crystal. The

range and bandwidth of the measured acceleration are estimates. The INS data rate is an

approximation based on systems in use at Draper.



Table 2.1: Vibrating Island Accelerometer parameters.

Acceleration resolution (A a) 1 . g

Velocity resolution (A v) 0.02 ft/sec

Oscillator carrier frequencies (fl,f2) 24 MHz

Scale factor (kl,k2) 50 Hz/g

Bandwidth of acceleration signal (fa) 100 Hz

Range of measured acceleration 0-20 g

INS required data rate (1/To) 500 Hz

Modeling the oscillator outputs as angle-modulated waves, they can be described as

follows:

sl(t) = SIcos 21tfIt+ 2nkfa(t)dt = Scos(2ntflt+2ntkjv(t)) = Slcoso,(t) (2.5)

0

s 2(t) = S2 cos (27f 2t - 2k2 a(t)dt = S 2 cos(21Cf 2t-2 2k 2v(t)) = S 2cos02 (t). (2.6)

0

In these equations, the analogy between an FM transmitter and the accelerometer has

been decomposed into an analogy between acceleration, a(t), and frequency, velocity, v(t),

and phase. Signals sl(t) and s2(t) can be described as either phase-modulated by v(t) or

frequency-modulated by a(t). Throughout this thesis, from this point onward, "phase read-

out" and "velocity readout" will be synonymous, as will "frequency readout" and "acceler-

ation readout."

Using values from Table 2.1, the frequency stability requirement of the oscillator

can be derived as follows:

Aa . k, g (g512-
stability - - = 2.08x10- (2.7)

fz 24MHz



The signal-to-noise ratio of the oscillator output that corresponds to this level of stabil-

ity, can be calculated from the following equation that approximates FM demodulator

error as a function of carrier noise [17]:

23 n2
SNRin 42f 42100 = 5.26x10 15  (2.8)

3k 2  2  3(50)2(1x10 -6) 2

SNRin = 101oglo(5.26x10 15) = 157dB.

The largest desired signal-to-noise ratio of the acceleration readout corresponds to the

maximum acceleration signal and acceleration resolution specified:

SNRout 20g = 2x10 7  (2.9)
1lg

SNRout = 201oglo(2x10 ) = 146dB.

Equations 2.5-2.8 characterize what the readout scheme receives as input from the

oscillator. The goal of the readout design is to extract high resolution velocity information

from these inputs. Therefore, the readout could either frequency demodulate sl(t) and s2(t)

and integrate the resulting acceleration, or it could phase demodulate sl(t) and s2(t) to get

velocity directly. (Note that despite whether the demodulator directly reads acceleration or

velocity, the instrument is still called an "accelerometer" since the quartz crystal trans-

ducer can measure both.) The challenge of the readout design is to meet the velocity and

acceleration resolution requirements, which translates to achieving (2.9) for the accelera-

tion reading. Different readout methods vary in how accurately and efficiently they can

produce the measurements. Chapter 3 will discuss five different schemes and Chapter 4

will design and analyze the Quadrature Cross-Differentiate Multiply FM demodulator.

Having drawn a parallel between the VIA readout scheme and an analog communica-

tion receiver, a few words should be said about the possibility of borrowing techniques

from digital communication schemes. Although the input and output of a digital commu-



nication system is a digital signal, usually a bit-stream, it must be transformed into an ana-

log waveform before it can be transmitted over a real-world channel, which is inherently

analog. The digital receiver must filter and resample the received waveform after the sym-

bol timing is recovered, and identify the detected symbol. Digital systems are measured

by how closely they can approach the Shannon Limit [23], which provides an upper bound

to the quantity of information that can be transmitted over a channel having a given signal-

to-noise ratio. High resolution digital systems that approach this limit exploit channel

coding schemes for which the digital receiver has specific knowledge of the transmitter

encoding technique. For this particular accelerometer application, the transmitter is inher-

ently an analog modulator. Therefore, while the design of the receiver can be optimized

by considering as much knowledge of the transmitter as possible, since the VIA oscillator

does not implement any convolutional coding, viewing the oscillator as a digital system

transmitter, like an M-ary Phase Shift Keying (MPSK) device, gives little if no advantage

to viewing the oscillator as an analog frequency modulator. The important distinction,

then, is that the analogy here involves an analog communication system rather than a digi-

tal communication system. The proposed QCDM receiver in Chapters 3 and 4 will imple-

ment digital signal processing to solve an analog communication problem. The

demodulator will be called a digital receiver to imply that it implements digital signal pro-

cessing, but not to imply that it employs techniques specific to digital communications.



Chapter 3

Comparison of Velocity and Acceleration Readout
Schemes
The desire for a single parameter drives the design and function of all navigation systems,

inertial or otherwise. Everything else is like an oyster shell or a strand of copper wire, all

other quantities can be discarded once the pearl, the electrical signal, or the position is

obtained. Gyroscopes, accelerometers, the Global Positioning System, an explorer's com-

pass and map, all are used to derive position information for a given time. Therefore,

although the ensuing discussion focuses on velocity and acceleration measurement, the

context of the problem is that the INS ultimately calculates position information.

Chapter 3 will seek to answer Question 3 from the introduction by comparing common

phase readouts to frequency readout methods. First, it will show that for general acceler-

ometer design, digital integration error and the integration of quantization error are penal-

ties of using frequency rather than phase demodulation. Then two phase readout schemes

are reviewed to obtain benchmarks against which the feasibility of acceleration readout

methods can be evaluated. In Section 3.3, the specific VIA characteristics and design fea-

tures will be looked at to quantify performance measures of the benchmark phase readout

systems. Considering the bandwidth requirements of the VIA, the possibility of hetero-

dyning the oscillator outputs, and making use of oscillator output amplitude information

to improve the readout resolution will be shown to be additional incentives to implement

something other than a phase readout. In Section 3.4, four possible frequency readouts are

reviewed, and the conventional cross-differentiate multiply demodulator is analyzed in

greater detail. Using a conventional A/D conversion strategy with the CDM demodulator

will be shown to result in very little improvement over the phase readout schemes. How-

ever, Section 3.4.3, will show that using delta-sigma modulation with the CDM demodula-



tor and frequency down-conversion provide flexibility in trading off sampling rate for

amplitude quantization resolution. For a time of 360 seconds, the frequency readout can

attain the same resolution as the velocity readout schemes using only one hundredths of

the phase readout sampling rate.

3.1 Relationship Between Acceleration and Velocity Resolution
Most accelerometers and velocimeters have analog transducers that measure accelera-

tion and velocity, quantities which are digitized and then converted into a position mea-

surement by an INS microprocessor. Mathematically, the conversion is accomplished by

integrating acceleration over time to get relative velocity, and integrating velocity over

time to get relative position. Assuming that an analog transducer element has infinite reso-

lution, the digitizing of the analog signal introduces quantization error. A second source of

error, which is dependent on the sampling rate, surfaces in digital integration of the quan-

tized signal. Assuming an accelerometer transducer physically contains quantities of both

velocity and acceleration to infinite resolution, and assuming that the same noise power

results from quantizing either of the two, digitizing the velocity signal and integrating

once to get position will introduce less error than digitizing the acceleration signal and

integrating twice. In the former case, the quantization error is digitally integrated once in

calculating position, while in the latter case, the quantization error is digitally integrated

twice. For these fundamental reasons, without considering implementation issues, reading

out velocity directly from a transducer is generally preferred to reading out acceleration.

If, however, the acceleration quantization noise power is smaller than the velocity quanti-

zation noise power, then the preferred readout method depends on the time period over

which readings are taken. If the digital integration of acceleration error over a specified

time period is smaller than the direct quantization of velocity, then it is preferable, from a

mathematical standpoint, to read acceleration from the transducer.



Since acceleration and velocity can be read directly from the VIA oscillator by either

frequency demodulating or phase demodulating, respectively, design of the best readout

scheme must select between the two. In order to compare the theoretical performance of

each scheme, an analytical expression relating digital integration error, acceleration quan-

tization error, velocity quantization error, and time-of-reading, will now be derived.

3.1.1 Digital Integration Error

The derivation begins by considering an acceleration signal from a general accelerom-

eter transducer:

a(t) = Asin(2nfat). (3.1)

The resulting velocity at time t, assuming v(0)=O, can be expressed as the definite inte-

gral of the acceleration.

(t) a(t)dt A cos(2fat) + (3.2)
v(t) = a2f 2ffa

0

The continuous-time acceleration and velocity signals are plotted in Fig. 3.1 (a) and

(b) for A=1, fa= 100-Hz.

Next, the continuous-time definite integral can be expressed as a Riemann sum with

infinitely many area terms, and can be rewritten as follow:

I t

t dt T
v(t) = fa(t)dt = lim a(idt)dt = lim Tya(iT), for T=dt. (3.3)

0 i=0 i=0

Assuming no amplitude quantization, sampling both v(t) and a(t) faster than the

Nyquist rate (fs> 2 fa), the following relationship between discrete-time acceleration, a[n],

and discrete-time velocity, v[n], falls out from (3.3) by setting t=nT:



n

v[n] = v(nT) = lim T a[i], for T=1/f s. (3.4)
T -- 0

i= 0

From (3.4), it is apparent that in order for discrete-time accumulation to be equivalent

to a continuous-time integration, the sampling period must approach zero and the sam-

pling frequency must approach infinity. Therefore, sampling a(t) at a finite frequency, fs,

accumulating the samples over time, and scaling the sum by the sampling period, T= 1/fs,

will yield a discrete-time representation of velocity, va[n], that is not equal to v[n], the

velocity v(t) sampled at fs. The two digital representations of velocity differ by a digital

integration error.

For example, sampling a(t) from (3.1) and v(t) from (3.2) at a sample rate of fs= 1-kHz

(T=0.001-sec), gives a[n] and v[n] as shown in Fig. 3.1 (c) and (d). The dashed lines show

a(t) and v(t) as references, and the "staircase" waveforms are the sampled discrete-time

signals. Discrete-time integrating a[n], that is, accumulating a[n] and multiplying by T, the

discrete-time representation of velocity, va[n], results, as shown in Fig. 3.1 (e). Notice that

v[n] and va[n] are different. The digital integration error, ei[n], is the difference between

them and is plotted in Fig. 3.1 (f).

For a finite sampling frequency, then, equation 3.4 must be adjusted to account for dig-

ital integration error, edti[n]:

v[n] = edti[n ] + va[n], where (3.5)

n

i=0

For a sinusoidal acceleration, the integration error is a function of n, as can be seen in

Fig. 3.1 (f), as well as the amplitude of the integrand and the sampling frequency. As the

sampling frequency gets larger and larger, the Riemann sum is a better and better approxi-

mation for the integral. Approximating the maximum magnitude of the error as,
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numerical analysis (Section 4.2.5, Fig. 4.30) shows that a= 1 for sinusoidal a(t) with

0 < fa < kHz. Therefore,
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led,[n]il = jv[n]vn - v A[l . (3.7)

Since the acceleration is sinusoidal, note that edti[n], is periodic with essentially the

same period as the acceleration, resulting in two significant implications. First, the maxi-

mum value of the digital integration error is independent of time and sample as seen in

(3.6). So for larger and larger n, the integration error will be no greater than A . The sec-

ond implication is that the deterministic qualities of the digital integration error with

knowledge of the accuracy of integrand suggests that error correction can improve upon

digital integration. Section 4.2.5 will, in fact, show that two other numerical integration

methods, the Trapezoidal Rule and Simpson's Rule, produce smaller errors than the Rie-

mann Sum.

What is the digital integration error for an arbitrary bandlimited acceleration signal?

To apply the preceding development would require knowledge of the spectrum, the DFT,

of the expected acceleration signal. The digital integration error for each discrete fre-

quency could be estimated by (3.6), where ~ would be the discrete Fourier series coeffi-

cient corresponding to a discrete acceleration frequency, fa. The errors for each discrete

frequency of the DFT could then be summed to get an estimate for the total digital integra-

tion error of the bandlimited acceleration signal. Moreover, if each error is in fact sinusoi-

dal with known frequency and amplitude, it is likely that a very good estimate of the error

could be obtained. Section 4.2.5 will show how the integration rules can be approximated

as digital filters, for which frequency responses could be computed. However, at this point,

having obtained a bound on digital integration error using accumulation, attention turns

now to considering amplitude quantization error.



3.1.2 Amplitude Quantization Error

In analog to digital conversion, not only is the time axis discretized into periods of

time but the amplitude axis is discretized into quanta as well. In the preceding section, dis-

cretizing the time axis contributed to the digital integration error in (3.6). This section will

reveal how amplitude quantization introduces error.

Continuing to refer to ideal unquantized acceleration and velocity (unquantized in

amplitude) as a[n]=a(nT) and v[n]=v(nT), respectively, the following notation is now used

to represent amplitude-quantized acceleration for an acceleration readout and amplitude-

quantized velocity for a velocity readout:

a[n] = a[n]+ (3.8)

9[n] = v[n] + v. (3.9)

The quantization noise, according to [5], can be denoted by an and vn , samples of inde-

pendent random variables identically distributed between - and ±2, respectively,

where Aa is one discrete quantum of acceleration and Av is one discrete quantum of

velocity. Each quantum is the value assigned to the least significant bit of the digital word.

Therefore, Aa is acceleration resolution and Av is velocity resolution. The probability

density functions of a and v are uniform distributions and are shown in Fig. 3.2.

fa(an) fy(vn)

1 1

Aa Aa a A, A, V

2 2 2 2

Figure 3.2: Probability density functions of random variables (a) a and (b) v.

The subscript, n, of random variable samples an and vn in (3.8) and (3.9) denote that

each sample, n, corresponds to a unique sample of the random variables having experi-



mental values within the distribution of a and v. Therefore, the set or experiment, { a0, a1,

a2 ,... an }, contains n+1 samples of random variable a, each having an experimental value

within the distribution of a, with each value having no other dependence on n except for

distinction.

To compare acceleration resolution and velocity resolution, the accelerometer readout

output, a[n], must be integrated to yield the following derived estimate of v[n], denoted as

'a[n]°

n

i=0

By (3.8), this can be rewritten as

n 1

Va[n] a[i] +- ai .
i=O i=0

As in (3.5), the first term is the ideal accumulated acceleration. So,

n

Va[n] = Va[n]+ -jai.
Ji=0

Also by (3.5), the derived estimate can be written in terms of the integration error and

the ideal velocity:

n

Pa[n] = v[n]-edti[n] +- ai
i=0

n

va[n]-v[n] = -edti[n + - ai = eva[n]. (3.10)
Si=0

Comparing (3.10) to (3.9), it is evident that for an acceleration readout to achieve bet-

ter resolution than a velocity readout, the following must hold true:

maxleva[n]I = max-edti[n] +_ ai < maxjv = A
i= 0

By the triangle inequality,

-edti[n] + a i <I-edi[n]I +

i=0 i=O



Therefore,

max - edi[n] + a < maxled[n]I + nAa

i=O 0

Since t =

tAa Avmaxledi[n < (3.11)

Equation 3.11 is a fairly simple expression that is a slight modification of (2.1). It is a

first order metric by which the resolution of frequency and phase readouts for the VIA can

be compared. For an acceleration readout scheme to outperform a velocity readout scheme

over a period of time, it must depend on accurate digital integration. The accuracy of inte-

gration using an accumulator depends on the sampling rate and acceleration amplitude.

Having obtained the metric in (3.11), the next step is to determine the fundamental

limitations on Av and Aa for various readout schemes. First, Section 3.2 will consider

some traditional schemes that have been used or proposed to read phase in the Vibrating

Beam Accelerometer and other Quartz Resonant Accelerometers. Then, motivation for

implementing a frequency demodulator to read acceleration will be discussed. Lastly, a

first-order comparison between phase and frequency demodulation will be derived to dem-

onstrate that in theory, the fundamental limitations of an accelerometer readout warrant its

consideration as a viable readout scheme. Note that purely functional analyses are devel-

oped here, while a noise model of an acceleration readout will be discussed in the next

chapter.

3.2 Velocity Readout Schemes
While a detailed comparison between specific velocity and acceleration readout schemes

is beyond the scope of this thesis, taking some time to look briefly at two common phase

readout approaches as points of reference will be imperative to understanding the motiva-



tion for designing an acceleration readout.

3.2.1 Analog Phase-Locked Loop
The analog phase-locked loop (PLL) readout [1][2], shown in Fig. 3.3, functions like a

standard PLL that accurately tracks the phase of its input. In fact, the PLL functions

exactly like PLLs in common timing circuit frequency synthesizers that output high fre-

quency signals coherent to lower frequency inputs. The only difference between frequency

multipliers and the analog PLL readout is that the outputs are taken from different points

in the loop. Whereas the output of a frequency synthesizer loop is taken from the voltage-

controlled oscillator (VCO) output, the phase-locked loop velocity readout is taken from

the N-bit counter. Understanding what the N-bits represent is the key to understanding

how this readout works.

The N-bit counter in Fig. 3.3 is enabled to count from zero to 2N continuously during

the operation of the device. Each time the counter output reaches 2N, it resets or overflows

and begins counting from zero again. The output is clearly periodic, and in fact can equiv-

alently be viewed as counting from zero to 2n repeatedly. The least significant bit of the

N-bit counter represents 2 n /2N radians, which is the value of one discrete quantum and

the resolution of the phase reading. The feedback loop drives the most significant bit

(MSB) to follow the input, sl(t) (as in equation 2.5), so that the error between them is zero.

Note that in Fig. 3.3, [N-l] denotes a 1-bit-wide word that is the MSB of the N-bit counter

outputs. Any error between the two is integrated by the filter and subsequently adjusts the

frequency of the VCO output until phase-lock between the N-bit counter MSB and s (t) is

regained.

At any time t=t0o, the N-bits represent the fraction of the period of the input at time t=t0

relative to t=O. In other words, the N-bit counter indicates [4 (to)mod(2c )], the



s,(t) = cos41(t)

[N-l]

[N-l]

- -- ? Register

K+N

l[n] = l(nTo)

Figure 3.3: Analog phase-locked loop readout.

instantaneous phase at to modulo 2n. To develop an intuitive understanding about how the

readout indicates instantaneous velocity, Fig. 3.3 includes a K-bit counter which outputs,

for any time t=to, the number of full 27c cycles completed between t=O and t=to. Both

counter outputs are latched every To. Therefore, the register output is a digital representa-

tion of the phase of sl(t) which can be further processed by a digital signal processor

(DSP). If the DSP clock frequency, To, and the instantaneous frequency of sl(t) fall within

relative ranges of each other, actual implementation can exclude the K-bit counter, leaving

accumulation of total phase for the DSP. Note that implementing a readout for the VIA

might use two PLLs, one for both sl(t) and s2(t).

The resolution of this readout is determined by the size of N and the maximum output

frequency of the VCO, fvco, which are generally related by the Nyquist frequency, fN, of

the input, sl(t), as follows:



fvco 2 2 x fN

Assuming that the phase detector, limiter, and filter are ideal components, and that infi-

nite-bit counters exist, the fundamental limits of velocity resolution depend on a high

VCO frequency. Since phase resolution is 2 x/2N radians, velocity resolution, where kp is

the scale factor in units of rad/(m/s), is:

2it fN
Av 0 2- x m/s (3.12)

kp fVCO

3.2.2 Period Readout Scheme
Like the analog phase-locked loop readout, the period readout accomplishes input

phase digitization using a high resolution counter clocked by a high frequency signal. In

the PLL readout, the VCO output essentially serves as a variable high frequency clock for

the N-bit counter. For the period readout, however, the counter clock signal is a fixed fre-

quency at fclk=l/T 1 , as shown in Fig. 3.4(a). The M-bits of the counter are latched by a

register that is clocked by a squarewave form of the input signal. Although the high speed

clock is fixed in this case, an accurate phase word is available irregularly, only at rising

edges of the input. That is, the sample rate of the output varies and depends on the fre-

quency of sl(t)

1 d I(t)
Ts  dt

Whereas in the PLL readout the clock To could read instantaneous phase from the

counters, the period readout scheme requires interpolation to derive instantaneous phase at

a constant rate. Such interpolation methods use software to turn the period readout into a

virtual phase-locked loop and rely heavily on digital filters to improve upon resolution [1].

Other schemes can be employed to improve upon performance of the period readout.

One technique uses capacitor interpolation (Fig. 3.4(b)) to improve upon resolution and
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Figure 3.4: (a) Period readout scheme (b) Period readout with capacitor interpolation

effectively makes clocks seem faster than they really are. The paper in which it is

described claims that a system that uses a 10-MHz clock with capacitor charge interpola-

tion can read phase as if using a virtual 7-GHz clock [1].

Again, assuming ideal components and not considering digital filtering, a first-order

approximation to the fundamental limit of resolution depends on the clock frequency and

the bandwidth of the input signal. In this readout, each binary value of the counter repre-

sents a quantum of time and not phase. Therefore, the phase resolution will vary and



depend on frequency of sl(t). The worst case, and thus the limit of resolution, occurs when

the input frequency is as large as possible.

2r f/
AvI 2 x m/s (3.13)

;, ICLK
The period readout scheme also has a lower bound to the input frequency that depends

on the rate at which a velocity readout is desired. Even with interpolation methods, the

minimum input frequency must be greater than or equal to l/T o, the output rate of the

readout to an inertial navigation system which is 500 Hz for the VIA

. (d4l (t)'} 1
min dt I>(t) (3.14)

3.3 Motivations for Reading Acceleration
Now, the requirements and unique specifications of the Vibrating Island Accelerome-

ter will be considered. In addition, the advantages of reading acceleration will be dis-

cussed.

Recall from Chapter 2 that the VIA crystal quartz transducer is expected to output two

angle modulated signals, defined again here for convenience:

s1 (t) = Slcos 27tfit+27tk, a(t)dt (3.15)

0

s 2(t) = S2 cos 2nf 2 t -2k 2 a(t)dt (3.16)
0

The carrier frequencies, fl and f2, are expected to be on the order of 24 MHz, the band-

widths of al(t) and a2(t), fa, are expected to be 100 Hz. The scale factor is 50 Hz/g, and the

maximum acceleration to be measured is 20 g. Total accumulated velocity is expected to

be output at 1/T0=500 Hz to a guidance computer.



3.3.1 Signal Bandwidth and Processing Speed Considerations
Section 3.2 concluded that approximations to the velocity resolution of both the analog

PLL and period readouts depended on the maximum frequency, fN, of the input signals.

Therefore, this critical parameter must be derived from the above specifications. As dis-

cussed in Chapter 2, because the VIA is expected to linearly relate acceleration to fre-

quency change, the oscillator outputs can be viewed as angle modulated waves as

described in (3.15) and (3.16). Thinking of sI(t) and s2(t) as FM signals, analog communi-

cations theory approximations will be used to estimate their necessary FM bandwidth for

this first-order analysis.

First, consider the modulation index, mf, of the frequency modulated signals. The

modulation index is a ratio of the peak carrier frequency deviation to the modulating sig-

nal frequency, and is a measure of the bandwidth of the modulated signal centered at the

carrier frequency.

S= max(Af 1) (3.17)

The signal spectrum behaves as a Bessel function of the first kind, with dependence on

m. For mr<0.25, the signal is categorized as narrowband FM (NBFM), and its spectrum is

a single-carrier with double-sideband, precisely like an amplitude modulated waveform

except the sideband is 90 degrees out of phase with the carrier [3][4]. Thus, the NBFM

signal has a bandwidth of fB= 2 fa around the carrier. For wideband FM (WBFM), where

mf>0.2 5 , the often used Carson Rule states that 99% of the signal power will fall within

the frequency band defined as the following [3][4]:

fB = 2fa(1 + mf) . (3.18)
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For the VIA parameters, the following modulation index is calculated:

(20g)(50-)
= (100Hz) = 10

Since mf>0. 2 5, Carson's Rule approximates the bandwidth around fl as,

fB = 2(100)(1 + 10) = 2.2kHz (3.19)

Fig. 3.5 shows the spectrum of sl(t) for SI=1, k1=50 Hz/g, f1=10 kHz, and

al(t)=Acos(2n 100t), with A={ 1, 10, 20}. For a carrier frequency of f1=24 MHz, the spec-

trums would be identical to those shown only centered around 24 MHz rather than 10 kHz

(10 kHz is used here simply to get a clearer graphic from Matlab). Notice that each pair of

bands is separated by the acceleration frequency of 100 Hz, which is consistent with

Bessel function theory. For a maximum acceleration of 1 g (Fig. 3.5(a)), mf=0.5 and the

spectrum resembles a single carrier, double sideband picture. Lastly, observe that for 20 g

acceleration (Fig. 3.5(c)), the 99%-power bandwidth as calculated using the Carson Rule

(3.19), lies between 8.9 kHz and 11.1 kHz. In this chapter, the Carson Rule is used only as

an approximation of the signal bandwidth. The bandwidth required to meet the resolution

specifications of the instrument is a more stringent figure, and is considered much more

carefully in Chapter 4.

Having used Carson's Rule to estimate the FM bandwidth around the carrier, the

Nyquist frequency of sl(t) can be approximated by adding in the carrier, fl:

fN fI + . (3.20)

Now it is possible to get a first order estimate on the performance requirements of pos-

sible velocity readout schemes using equations 3.12 and 3.13. Taking the phase sensitivity

to be kp=314 rad/(m/s) and the desired velocity resolution to be A v=0.02 ft/s, as discussed



in Chapter 2, for fN approximately equal to 24 MHz, fvco and fCLK are likewise approxi-

mately 24 MHz.

While this is certainly within the range of available VCO and clock frequencies, since

velocity readout is only required at 500 Hz, and moreover the acceleration signal is only

100 Hz itself, one design issue that must be addressed is the possibility of obtaining the

desired resolution using slower clocks.

Heterodyning

By multiplying the inputs with a local oscillator, the input can be modulated down to

cos(2 t fLot)

(a)

Low Pass
sI(t) = cos, 1(t) -- * " Filter - cos(0l(t)-2ntfLot)

Low Pass
s 2(t) = cos0 2(t) ) Filter -) cos( 2(t) - 2 7tfLot)

cos(2C f ot)

(b)

Low Pass
Filter cos(Q0(t) - 4 2 (t))

s 2 (t) = COS0 2 (t)

Figure 3.6: Beating down oscillator signals. (a) Multiplying each input by a Local Oscil-
lator (LO). (b) Multiplying two inputs together for common mode reduction.

lower frequencies, reducing fN, fVCO and fCLK by a proportional amount. In fact, the

lower the fN the better. Fig. 3.6(a) shows how this might be done.



Although at first this seems like a good idea, phase readout schemes may have trouble

reading cos(oi(t) - 27fLot). The period readout scheme has a lower bound on the input fre-

quency, as seen in (3.14). Furthermore, if the scale factor is increased, the Nyquist fre-

quency, fN, can conceivably increase until the dynamic range is larger than an

interpolating period readout scheme can handle. Regarding the PLL readout, most VCO's

have lower bounds to their frequency outputs, as well, that would not be able to handle a

higher scale factor and wider band FM signal, despite its being beaten down to lower fre-

quencies.

Rather than mixing the FM inputs with local oscillators, mixing them with each other

(Fig. 3.6(b)) would be a particularly desirable possibility, and would be the ideal

approach. One of the principle attributes of the VIA, as discussed in Chapter 2, is that the

two oscillators on the same crystal will be similarly affected by temperature transients and

other environmental factors. Beating the two oscillator signals together should therefore

allow common modes to cancel out in looking at the difference frequency between sl(t)

and s2(t). However, if If - f 21 < , for a zero acceleration signal, beating sl(t) with s2(t)

would produce a low frequency signal that would be below the dynamic range of the

period readout. In order to use the period readout, the product of the two inputs would

have to be mixed with another local oscillator to raise the beat note into the dynamic range

of the readout. Ideally, a readout scheme would be able to directly process the beat note of

sl (t) and S2(t).

In summary, analog PLL and period readout schemes for the VIA seemingly require

unnecessarily high clock speeds. It is desirable to run the phase-readout schemes at lower

frequencies if possible. However, reducing the velocity readout clock requirements by

beating down the oscillator outputs may potentially be difficult due to inherent dynamic

range resolutions of the devices.



Next, one further observation is made on possible shortcomings of phase readout

schemes for the VIA.

3.3.2 Utilizing Amplitude Information
Both the analog PLL and period readout methods are essentially zero-crossing detec-

tors that digitize the time axis. Both methods saturate the angle modulated oscillator out-

puts with limiters to virtually eliminate amplitude noise. However, in eliminating the

amplitude noise, a significant amount of amplitude information has been reduced to con-

taining only one bit of information! The amplitude is essentially digitized into 1-bit, while

the time axis is digitized into N- or M-bits, depending on the readout scheme. Therefore,

both phase readout methods, as seen by (3.12) and (3.13), have only one degree of free-

dom, one fundamental variable that can be adjusted. For the PLL, the fosc can be

adjusted, and for the period readout, fCLK is the sole parameter. A very intriguing possibil-

ity begins to unfold. Increasing the amplitude resolution to be greater than 1-bit by sam-

pling the amplitude and retaining its information, can reduce the required resolution of the

time axis, thereby reducing the necessary readout clock speed. Instead of one degree of

freedom, there would be two degrees to work with, for more design flexibility. As men-

tioned in Chapter 2, previous accelerometers were not used for high resolution applica-

tions and the avoidance of using A/D conversion could simplify the readout scheme.

However, for a high resolution application, use of an A/D converter may be worth the

extra cost of implementation. Sampling the amplitude would also allow the usage of digi-

tal signal processing techniques which, after suffering quantization noise in the conver-

sion, can be designed to have good noise performance, hinting at the possibility of

achieving high resolution.



From a purely conceptual viewpoint, the desire, then, is to use amplitude information

of sl(t) and s2(t) to help extract information about the phases of sl(t) and s2(t). This is

another opportunity to borrow ideas from analog communication theory. Implementing a

traditional phase demodulator would closely parallel the analog PLL readout scheme pre-

viously discussed, and be bounded by similar limitations. The desire to make use of ampli-

tude information leads to the possibility of using a digital FM receiver to obtain

instantaneous frequency information from the amplitude by differentiating sl(t) and s2(t).

3.4 Acceleration Readouts

As in the rest of this chapter, up to this point, this section's analysis makes a number of

assumptions in proceeding to uncover first-order theoretical results. In seeking to make

some telling first comparisons between reading out phase and reading frequency, too much

detail, at this point, would further hinder progression to the more detailed treatments con-

tained in the next chapter. In this section, a few standard FM digital demodulation schemes

will be briefly discussed, one of which involves digital differentiation. For that demodula-

tion scheme, called cross-differentiate multiply demodulation, using an extreme number

of bits at the minimum sampling rate in a traditional analog-to-digital (A/D) conversion

process will be considered. Then, Section 3.4.3 will consider how using sigma-delta mod-

ulation in the A/D conversion allows the trade-off of sampling frequency for bits required

in the quantizer.

3.4.1 Four Digital FM Demodulators
The fundamental limits of reading out frequency are limited by at least two factors:

analog-to-digital conversion and choice of demodulation scheme. Since various FM

demodulators take advantage of different A/D conversion strategies, four distinct varieties

of digital FM demodulation will be briefly considered, first.



The digital phase-locked loop system is first and foremost a coherent phase detecting

scheme. The implementation is similar to the phase readout scheme in Section 3.2.1.

Again, the scheme does not make use of carrier amplitude information, and is probably

best suited for narrowband applications.

The digital arctangent PM/FM demodulator [7][8] separates an angle modulated signal

into its in-phase and quadrature components, A/D converts them, and then divides the

former by the latter. The arctangent of the result is either computed or found using a ROM

look-up table. The measured phase could then be differentiated to complete FM demodu-

lation, allowing it to serve as a PM or FM demodulator. Despite its function, however, the

method requires a jump detector to handle the numerical division by zero. For the VIA

readout, this scheme would be implemented as a phase readout that takes advantage of the

amplitude information of the modulated carrier. Additionally, it has been shown to be suit-

able for both narrowband and wideband FM, and can achieve signal-to-noise ratios of 70-

dB [7]. In order to obtain a high resolution readout, however, the arctangent method would

require a large amount of memory. Nevertheless, as memories get faster and larger, this

scheme shows promise as a potential phase-readout strategy for the VIA.

The oversampling delta-sigma frequency discriminator [9][10][11], the most recently

discovered of the four detection schemes considered here, directly quantizes instantaneous

frequency using delta-sigma modulation. Delta-sigma modulation has been studied exten-

sively in the context of AID conversion. Section 3.4.3 will, in fact, touch upon the basics

and apply certain results to A/D conversion for the VIA. The delta-sigma frequency dis-

criminator shows potential in a report that demonstrates how it can achieve signal-to-quan-

tization noise ratio of 115-dB [10]. However, while this scheme seems simple and

efficient, two primary concerns exist regarding performance for the VIA. First, the achiev-

able resolution of delta-sigma frequency discriminator is limited by an analog phase



detector, which has been implemented using a standard D-flip flop. Second, the reported

work suggests that this scheme is best suited for narrowband FM, and it is unclear how it

might perform for WBFM.

The conventional cross-differentiate multiply (CDM) FM digital receiver [12][13] sep-

arates the in-phase and quadrature components of an FM modulated signal like the arctan-

gent method, A/D converts, then differentiates the branches, and then cross multiplies the

various terms to reject the AM components from the differentiation. Although the scheme

requires a relatively large number of mathematical operations, its functional implementa-

tion is very straight forward, as shall be seen in Chapter 4, and it has been used to demod-

ulate wideband FM, with reported signal-to-distortion ratios of up to 90 dB [12]. For these

reasons, this scheme has been elected as the most suitable for theoretical analysis and

comparison with phase demodulaton methods.

3.4.2 CDM Demodulation with Traditional A/D Conversion

Chapter 4 will focus on the CDM in much greater detail and discover that two

Sl(t)

i(t) i[n] 1[n]

Low Pass Sample & b-bit Discrete-
X Filter Hold Quantizer Time

Differentiator

L _ _ A/D Converter _j

s2(t)

t t

i(t) = S1S 2 cos 27 k al(t)dt +k2 a2(t))dt= 2cosi ( t )

Figure 3.7: Simplified CDM Frequency Demodulator



fundamental constraints on its performance are the resolution attainable by analog-to-dig-

ital conversion and the accuracy of discrete-time differentiation. Consider the simplified,

incomplete CDM demodulator in Fig. 3.7. Analyzing only this portion of the scheme will

yield the necessary first-order acceleration resolution estimate. Section 4.2.2 will show

that the output '[n] is proportional to acceleration.

One of the advantages of this scheme is that it naturally functions as a baseband

demodulator. Therefore, the inputs can be mixed to eliminate common mode and the

resulting beat note can be processed.

The velocity readout schemes attained resolution in sampling the phase directly with a

high sampling rate, while relying on only 1-bit of amplitude intelligence. Considering

these two parameters to be fmax and bmin, the desire now is to achieve the same velocity

resolution by sampling the angle modulated input at a smaller frequency than fmax by rely-

ing on amplitude discretization great than bmin bits. However, first, having already defined

a lower limit on amplitude resolution and an upper bound on sampling frequency, com-

plete definition of the playing field occurs by defining an upper limit on amplitude resolu-

tion and a lower bound on sampling frequency. Only thereafter will other considerations

be placed into meaningful perspective.

The lower limit of sampling frequency is ultimately dictated by the Nyquist theorem,

which ensures that aliasing can be avoided if the sampling rate is at least twice the maxi-

mum frequency of the analog signal to be sampled. For the VIA readout parameters, how-

ever, the minimum sampling frequency will also depend on the frequency at which the

velocity reading is to be output to the inertial navigation system, which could be above the

Nyquist frequency for certain parameters.

The maximum number of bits used to quantize the amplitude ultimately would be dic-

tated by the state of A/D converter technology. For this theoretical analysis, it is simply



denoted as bmax, and will be determined in deriving the fundamental resolution limit for

the CDM demodulator.

For linear and time-invariant (LTI) systems, the system frequency response reacts to

sinusoidal and complex exponential inputs in a very special and powerful way. Sinusoids

and complex exponentials are eigenfunctions of LTI systems, and when they serve as the

input they emerge at the output of the system scaled in magnitude and shifted in phase.

The scale factor and phase shift depend solely on the frequency of the eigenfunction and

the frequency response of the LTI system. Fig. 3.8(a), shows that if the input to an LTI sys-

tem is a sinusoid, the output is also a sinusoid, but scaled and shifted by a phase and mag-

nitude determined by the instantaneous frequency of the sinusoid and the frequency

response of the system. To be consistent with the development thus far, the instantaneous

frequency of i[n], from Fig. 3.7, is defined as

oO = -i[n] = 21c(klal(nT) + k2a2(nT)) (3.21)

where ,i[n] is the phase of i[n]. When the LTI system is a differentiator, as in Fig. 3.8(b),

the eigenvalue magnitude is merely the instantaneous frequency of the input and the

eigenvalue phase is 5 radians, resulting in i'[n], the derivative of i[n], as it should be.

(a)

i[n] = S1S2 coso 0 n LTI [n] = H(e 0e ( )S 1S 2 co s 0n
H(ej )

(b)

LTI J
i[n] = SlS 2 cosO0 n H ff(e j i'[n] = jiole S1S2 cosco0 n

= -O 0 S 1S2 sino)0 n

Figure 3.8: Eigenfunction and eigenvalues of LTI systems.



The ideal discrete-time differentiator is commonly defined as follows [14]:

j 0 0 : < o 5 2 nrFp

Hdiff(e) = (3.22)
j(2n - o) 2( - Fp) o 2

Fp is the maximum frequency of the signal to be differentiated. DSP texts commonly

express Fp as a frequency that is normalized to the sampling frequency. That is, Fp is

expressed as a decimal number in the range 0<F<0.5, for an unaliased spectrum. On the

normalized frequency axis, 0.5 corresponds to the Nyquist frequency and 1.0 represents

the sampling frequency. Since the discrete-time Fourier Transform is periodic in 2rt, the

region from zero to one on the normalized frequency axis represents the entire spectrum.

Like digital integrations differ from ideal integrations, actual discrete-time differentia-

tors differ from the ideal differentiator described in (3.21). However, well characterized

discrete-time differentiators with low error can be designed using the Remez Exchange

Algorithm for optimal FIR filter design [14]. Achieving low magnitude error in the differ-

entiator requires low Fp and a high order, or large length, impulse response. Low Fp means

the sampling frequency is large compared to the maximum input frequency.

Fig. 3.9 gives an example of a 17-point discrete-time differentiator and its magnitude

error. For a maximum input frequency of 1 kHz sampled at 10 kHz, Fp=0.1. Fig. 3.9,

shows that this results in a maximum amplitude error of approximately ediff[n]=lxl0 -7 .

The ideal magnitude response is plotted as a dashed line in the Magnitude Response plot.

Since this is a finite impulse response filter, the phase is linear, resulting in a delay as the

only phase distortion. Therefore, the phase error is negligible.

Consider the input to be a sinusoid, as in Fig. 3.8(b), the magnitude error of the differ-

entiator would contribute to the scaling of the eigenfunction at the output. A second
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Figure 3.10: Error model of simplified CDM frequency demodulation method.

major source of error at the output is the quantization noise contributed by the A/D con-

verter. As in equations 3.8 and 3.9 in Section 3.1.2, quantization noise can be modeled as

additive white noise, in the case of rounding, with a variance, or power, dependent on the

number of bits used in the conversion and the maximum signal amplitude. Therefore, to

get a first order estimate on the fundamental limitations of the CDM demodulator resolu-

tion, two primary error sources can be modeled as in Fig. 3.10.

Now, an estimate can be derived for the acceleration resolution achievable by the

CDM receiver. The output of the differentiator can be expressed as the following:

i[n] = I[n](jioIl + ediff[n])e . (3.23)

Since ?[n] = i[n] + ei[n] ,

i[n] = (i[n] + ei[n])(wo + ediff[n])e . (3.24)

Expanding the product on the right-hand side of the equation,

2 Ji[n] = ooi[n]e + (i[n]ediff[n] + Ooei[n] + ei[n]ediff[n]) . (3.25)

The term ei[n]ediff[n] is negligible and is dropped. Meanwhile, writing the output as

i[n] = i[n] + e,,[n], and substituting this into the above equation,



i[n] + ei,[n] = woi[n]e + (i[n]edff[n] + 0 ei[n])e (3.26)

Separating the ideal output from the error terms,

i'[n] = cooi[n]e 2  (3.27)

e,[n] = (i[n]ediff[n] + ooei[n])e . (3.28)

Now, taking the magnitude of (3.28),

|ei,[n]l = li[n]ediff[n] + coei[n]l . (3.29)

By the triangle inequality,

le,,[n]l 5 li[n]llediff[n]l + oolei[n]l . (3.30)

Considering the maximum quantization and differentiator error magnitudes,

lej4n]l < li[n]llediff[n]l + oolei[n]lI liJilmax lediff[n]lmax + oolei[n]lmax. (3.31)

Since the amplitude of i[n] is SIS 2 , and the maximum quantization error is S1S2/2b ,

the maximum error of (3.28) can be denoted as follows:

lei4[nlmax = SIS 2 lediff [nlmax + - . (3.32)

Substituting back in the expression for instantaneous frequency from (3.21),

e.[n]lmax = SS2(lediff[nl + 27(kjla(nT)ax + k2 la2 (nT)max) (3.33)

Since sl(t) and s2(t) are unit-less, and al(nT) and a2(nT) have units of acceleration, the

expression in (3.33) is a quantity of acceleration. In fact, Chapter 4 will show that i'[n] is

proportional to a[n], the demodulated acceleration. Accordingly, the maximum error of

i'[n] is equivalent to the maximum acceleration scaled by a constant. For now, assuming

that the scale factor is unity, (3.33) is taken as an expression of acceleration resolution for

the CDM demodulator.



Aa = SS 2 (e[n]ax+ 2 7 (k, la l (n T)j ax +k2 a2(nT)max) (334)Aa = S(S2diff max + 4)

For S 1=S2=1, lediff[n]lmax = 0.1gg, kl=k2=50 Hz/g, lal(nT)Imax=Ia2(nT)Imax= 2 0 g, and

b=32 bits, the CDM demodulator resolution, or error, is Aa = 1.56.g.

For the phase readout schemes, equations 3.12 and 3.13 indicate that the velocity reso-

lutions are dependent on either a high clock or VCO frequency. In this frequency readout

scheme, given angle modulated inputs as in (3.15) and (3.16), and given a particular dis-

crete-time differentiator, the acceleration resolution depends on the number of bits, b, of

the A/D converter. Equation 3.34 also shows that the full-scale range of the A/D converter

should be dictated by not only the amplitudes of sl(t) and s2(t), but also the largest fre-

quency of sl(t) and s2(t). Frequency is, after all, the parameter that is digitized, so it makes

sense that frequency helps determine the resolution of the A/D converter in this case.

Additionally, one motivation, as described in Section 3.3.2, was to make use of the ampli-

tude information of sl(t) and s2(t), which is also happening here in (3.34). As stated a few

paragraphs ago, the amplitude of the angle-modulated waves are unit-less, and it is in fact

the frequency of the waveforms that give units to the digitized values.

Equation 3.34 confirms that the acceleration resolution is dependent on both differenti-

ator error (first term) and quantization error (second term). Assuming the differentiator

error can be made arbitrarily small by designing it with an arbitrarily large length (in prac-

tice, the DSP processing speed and the sampling frequency would combine to limit the fil-

ter length), enabled looking solely at the dependence of resolution on the number of bits of

the A/D converter. For the parameters listed above, and ignoring the differentiator error,

the acceleration resolution as a function of the number of bits in the quantizer is plotted in

Fig. 3.11. The next section will discuss how oversampling decreases the number of bits

required in the A/D converter.
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Figure 3.11: Acceleration resolution versus number of A/D bits from (3.34).

While this thesis will not further prove the results of (3.12) and (3.13), it will attempt

in later chapters to verify the validity of (3.34) through more detailed analysis and simula-

tion of the CDM FM demodulation scheme.

Now, to calculate instantaneous velocity from the acceleration measurement, the

acceleration must be integrated from time zero to the time at which the velocity is desired.

As seen in equation 3.10, the error of the derived discrete-time velocity, eva[n], will be

attributed to a discrete-time integration error, edti[n], and the accumulation of acceleration

error over time. The metric used to compare acceleration to velocity resolution (3.11) is

repeated here:

tAa Av
maxledi[n]l + - -.. (3.35)

Using Riemann Sum integration, the maximum error (3.11) can now be calculated as,



edti[n S2- lx10 (3.36)
fs s

Therefore, for the acceleration resolution found using (3.34), and for the digital inte-

gration error in (3.36), for a duration of t=360 seconds,

maxed tAa (110 )+ 360 sec2 1.56g) = 0.01 ft (3.37)

dil 2 2 Ig sec (337

Comparing (3.37) to the velocity readout schemes of Section 3.2, this resolution is on

the same order of magnitude as the desired velocity resolution for the VIA (0.02-ft/sec).

Section 3.3.1 estimated that without beating down the oscillator outputs, the period read-

out scheme would need a 24 MHz clock to achieve Av =0.02 ft/sec. Although the accelera-

tion readout, in beating down the signals, gets close to this, achieving (3.38), it needs a 32-

bit A/D converter to do so! So while the velocity readout schemes need fast clocks to

achieve low velocity resolution, the cross-differentiate and multiply frequency demodula-

tion scheme needs large A/D converters. And since a 24-MHz clock is much more feasible

than a 32-bit A/D converter with 0.01-msec conversion time, the acceleration readout

scheme does not seem promising.

However, the next section will show how sigma-delta modulation enables the trading-

off of A/D converter bits with oversampling ratio to achieve the desired velocity resolu-

tion.

3.4.3 Oversampling Delta-Sigma Modulator A/D Conversion
In this section, trading in the traditional A/D converter (Fig. 3.12(a)) studied in the

previous section for a delta-sigma-modulator-(DSM)-based A/D converter (Fig. 3.12(b))

will be shown to relax the required resolution of the quantizer by oversampling the filtered

beat note of the oscillator outputs. After a brief description of DSM's, the noise shaping



capabilities of first and second order DSMs will be compared. This will provide intuition

regarding why they are able to achieve good resolution. Then, attention will focus on how

decimation can turn the oversampled modulator output into a multi-bit digital word, with

the number of output bits dependent on the oversampling ratio. Lastly, equation 3.34 will

be revised to consider DSM implementation

As seen in Fig. 3.12(b), A/D conversion using DSM's begins with a sample and hold

block, with an oversampling ratio, N. DSM's usually use 1-bit quantizers whose output are

fed back to be compared to the sampled analog input. The output of the DSM is a 1-bit,

clocked signal and its average tracks the analog input. In this sense, delta-sigma modula-

tors differ from delta-modulators (DM). DM's have 1-bit outputs whose average tracks the

derivative of the analog input. Therefore, to match the DSM's application, the DM output

must be digitally integrated. Furthermore, the DM does not shape the quantization noise in

(a) r- - - ------------ -

i(t) I Sample& i[n] b-bit I [n]

A/D Converter
L A/D Converter I

i(t) ame& i[n] Delta-Sigm im[n I [n]i(t) Sale & i[n] Modulator Decimate

A/D Converter

Figure 3.12: (a) Traditional A/D converter and (b) delta-sigma A/D converter.
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Figure 3.13: First-order sigma delta modulator.

the same way that a DSM does. So while DM's are useful for encoding signals at reduced

bit rates, they do not function well in A/D conversion schemes [15].

Fig. 3.13 displays a z-transform representation of a first order DSM [15][16]. The

summation of Ei(z) represents a d-bit quantizer, similar to the b-bit quantizer representa-

tion in Fig. 3.10, where the quantization noise is modeled as a uniform distribution with

average power dependent on the number of quantization levels. The input, I(z), is the z-

transform of i[n] in Fig. 3.12, which is the oversampled filtered beat-note, i(t) (Fig. 3.7), of

the oscillator outputs. The modulator output, Im(z), can be described as follows:

Im(z) = z-'1(z) + (1 - z-')E i(z) . (3.38)

This equation shows that the DSM output is simply the input delayed by one sample

plus an error term,

Im(Z) = Z-I(z) + Ei,(Z) (3.39)

where

Ei.(Z) = (1 - z- 1)EI(z). (3.40)



In Fig. 3.10, the quantization error propagates through the system exactly as the input,

i[n], does. In (3.40), while the input is merely delayed, the quantization error term, Ei(z),

is filtered and thus "shaped."

Assuming the quantization noise is wide-sense stationary, the power spectral density

of the modulator output noise can be written as a function of the modulator quantization

noise as follows:

De,.(f) = I1 - e-j22"f2 e, (f). (3.41)

This expression can be further simplified in the following three steps:

e,, (f) = e - j f (e j - e-Jf ) 2 e,(f) (3.42)

4e, (f) = le-'f2jsin(nf)12 e,(f) (3.43)

e,.(f) = 4(sin(ltf))2 e,(f) . (3.44)

From (3.44), it is apparent that the flat spectrum of (De,(f) is attenuated at low frequen-

cies and accentuated at higher frequencies by the squared sinusoid.

Now, consider the second-order DSM in Fig. 3.14 [15][16]. Again, the quantizer is

simply represented as additive white noise, Ei(z). Solving for Im(z),

I,(z) = Z- 'I(z) + (1 - z - 1) 2Ei(z) . (3.45)

The modulator output is again the sum of the unit-sample-delayed input and the fil-

tered quantization noise. The difference, now, is that the noise is shaped by a second order

transfer function:

Im(Z) = z-I(z) + Ei.(z) (3.46)

where

Ei,(z) = (1- -1) 2Ei(z) (3.47)
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Figure 3.14: Second-order sigma-delta modulator.

SO,

Ei(z) = (1 - 2z- 1 + z-2 )Ei(z). (3.48)

Again, assuming that the noise is wide-sense stationary, the power spectral density of

the quantization noise, Q,,(f), can be related to the power spectral density of the DSM

output noise, De,m(f):

Deim(f) = I1 - 2e -j 2nf + e-j 4 f2 e,(f). (3.49)

Further simplifying (3.49),

De, (f) = +-2e- j 2 f + + e-J47f12 (f) (3.50)

#e,(f) = 1-2e -j 21f + e-j2' f (ej 21f + e-J27f ) 2 De,(f), (3.51)

De,,(f) = 1-2e-j2 =f + 2e-j2f cos (2cf ) 2 e,( f) , (3.52)

'De,m(f) = 1-2e-j 2 f(1 - cos(2r7f))12 e,(f), (3.53)

and finally,

GDe,(f) = 4(1 - cos(27tf))2e(f). (3.54)

As in (3.44), (3.54) shows that the noise spectrum, De,(f), is attenuated at low frequen-

cies, as well. Fig. 3.15 shows a plot of (3.44), (3.54), as well as the unshaped quantization



noise spectrum. As the input frequency lowers, the signal-to-noise ratio improves dramati-

cally as the noise power in the baseband approaches zero. Without noise shaping, the

quantization noise spectrum is uniform at all frequencies, as seen by the solid line in Fig.

3.15.

Interesting to note is that the shaped quantization noise spectrum is very similar to the

noise spectrum of demodulated FM signals [17]. That is, white noise added to the carrier

of a frequency modulated waveform gets shaped by the FM demodulation process in an

analogous fashion to the shaping of quantization noise using delta-sigma modulation. This

insight helps explain the function of delta-sigma descriminator described in Section 3.4.1.

The output of the DSM, im[n] (Fig. 3.12(b)), is the same number of bits, d, as the DSM

quantizer. The words are clocked at a high rate, T/N. The decimator converts the high rate,
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d-bit data, im[n], into low-rate, (d+klog 2N)-bit data, i[n], where k is the order of the deci-

mator which is set to be the same order (number of feedback loops) as the DSM [16].

In Section 3.4.2, the conventional A/D converter needed a 32-bit quantizer to achieve

the desired velocity resolution. Therefore, employing Fig. 3.12(b) as the A/D converter,

d+klog 2N=32 bits were necessary to achieve the same velocity resolution. Table 3.1 lists

different combinations of d, k, and N that can result in 32-bit DSM A/D conversion. For a

modulator loop order of k=2, using a 12-bit quantizer requires an oversampling ratio of

1024. Therefore, for a sampling rate of 10 kHz, then an oversampled frequency of approx-

imately 10 MHz would be necessary. Recall that using only 1-bit of oscillator output

amplitude information, the PM demodulator schemes in Section 3.2 could achieve 0.02-ft/

sec velocity resolution by sampling at 24 MHz. Therefore, using the DSM to quantify the

amplitude with 12-bits instead of 1-bit only decreases the necessary sampling rate by

approximately one-half, from 24 MHz to 10 MHz.. However, looking at the case in Table

Table 3.1: Theoretical Delta Sigma Modulator Parameter Values

modulator over- bits in modulator over- bits in
loop sampling quantizer loop sampling quantizer

order k ratio N d order k ratio N d

2 64 20 4 16 16

2 128 18 4 32 12

2 256 16 4 64 8

2 512 14 4 128 4

2 1024 12 4 256 1

3.1 where k=4, N=64, and d=8, a fourth-order DSM A/D converter, oversampled by N=64,

results in a sampling frequency of about 640 kHz, where the minimum sampling rate is

again assumed to be 10 kHz. By quantizing the amplitude of the filtered beat note by 8-



bits instead of 1-bit with the PM demodulators, the necessary sampling rate can be

reduced from 24 MHz to 640 kHz, nearly a factor of 100 improvement. This improvement

is what was hoped for in Section 3.3.2, and it is clear that using a DSM is necessary for

implementing a CDM FM receiver as an accelerometer readout.

Equation 3.34 can be rewritten as follows:

21L(kIai(nT)max + k2 Ia2(nT)I)" 1
Aa = SIS2 lediff[n]la +2 dlal(nT)+k2loga2(nT) max)  (3.55)2 + klog2)

Using a DSM A/D converter, in theory, has the flexibility to trade off sampling rate

with quantizer resolutions to achieve the desired acceleration and velocity resolution.

Oversampling in the A/D conversion does not affect the differentiator error ediff[n],

because the decimator reduces the sampling frequency so that the differentiator filters the

data at the same rate as when using conventional A/D conversion. Increasing N also does

not affect the maximum acceleration signals lai(t)lmax and lai(t)lma x. Therefore, (3.55) is

exactly (3.34), except with b=d+klog 2N.

3.5 Summary
Chapter 3, primarily addressed Question 3 of the Introduction and performed first-order

analyses to estimate the performance of the device. It was estimated that using a fourth-

order DSM in conjunction with the CDM demodulator could theoretically attain 0.02 ft/

sec velocity and 1 g acceleration resolution over a duration of 360 seconds.

This chapter contains purely theoretical developments and results. Very few imple-

mentation issues were considered. For instance, delta-sigma modulators have many practi-

cal limitations, especially for high resolution A/D conversion. For high precision

instruments, often the performance of certain electronic components provide the funda-

mental constraints on the instrument. Nevertheless, theoretical results provide a bound on



the best resolution achievable, and are an indication of what design goals should be set for

implementation efforts.

While further analysis of the phase demodulators and velocity readouts is beyond the

scope of this thesis, further scrutiny of the CDM demodulation scheme will follow, as well

as consideration of practical issues with regards to its design and implementation.



Chapter 4

Acceleration Readout Design and Simulation
Can a digital FM receiver achieve the readout resolution desired of the VIA? While

this is the central question that drives Chapter 4, it has an overly simplified phrasing that

demands so much more than a simple answer. A mere "yes" or "no" response immediately

prompts the questions "how?" and "why not?" which will lead inevitably to statements

that must be proven and doubted and questioned, repeatedly, until the final answer is noth-

ing less than a sixty-page exposition that renders a binary response to the central question

virtually meaningless. For, in answering the initial question and examining the validity of

the derivations in Chapter 3, many unanswered issues arise. At once the value and beauty

of a Master's thesis, and at once its plague, this spawning of questions sheds new light on

the research matter by opening and closing both old and new doors in a struggle to tame

the question. While addressing the facets of design and feasibility of using the QCDM

demodulator as a VIA readout, Chapter 4 seeks not only to provide answers, but to raise

the central question to a new level.

While Chapter 3 discussed a variety of phase and frequency readout methods, Chapter

4 focuses entirely on the design and simulation of a single frequency demodulator. Since

much of the system is implemented with digital signal processing, the design and simula-

tion of the subsystems are intimately connected, and simulations will often be used exten-

sively to design the subsystems. First, Section 4.1 will briefly give both a functional and a

detailed overview of the entire Vibrating Island Accelerometer system. Then, in Section

4.2, the subsystems will be designed and simulated in a cumulative fashion. That is to say,

the first subsystem will be simulated by itself; the second subsystem will be analyzed in

isolation, then simulated together with the first; the third will be designed independently,



then tested collectively with the first two; and so on and so forth until Section 4.3, which

simulates the entire system. Attention is paid to the design and analysis of the subsystems

to facilitate the understanding of how individual parameters limit the overall system.

Additionally, since the simulations primarily make repeated use of one set of assumed

VIA performance specifications, if the specifications were to change during the course

project, the readout would have to be redesigned and resimulated. Thus, the scrutiny of the

subsystems will hopefully make their redesign much easier. Lastly, Section 4.4 summa-

rizes the effects of each parameter on the readout resolution, and discusses additional

implementational issues.

The response to "how?" commences next.

4.1 System Description
4.1.1 Functional Description

The cross-differentiate multiply structure of the baseband FM demodulator, shown in

boxed section of Fig. 4.1, has been developed in the context of FM and televisions receiv-

ers. Song and Lee [12] have simulated an all-digital implementation of the demodulator,

and discussed how hi-fi FM receivers are concerned with introducing low phase distortion,

as is the VIA readout scheme. However, while conventional FM broadcasting receivers are

particularly concerned with intermediate frequency (IF) bandpass filtering to reject adja-

cent channels, the VIA readout does not need to protect again distortion from other chan-

nels. Another difference lies in the demodulation scheme. In an FM broadcasting receiver,

a signal is received and then demodulated into its inphase and quadrature components with

a local oscillator, in a superheterodyning implementation. For the VIA readout, instead of

one FM signal to demodulate, two signals, sl(t) and s2(t), defined as in (3.15) and (3.16)

are available to the receiver. Furthermore, as seen in Chapter 2, it is known that the signals
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Figure 4.1: Functional block diagram of readout scheme.

are inversely modulated by the same acceleration signal. These observations lead, in part,

to one of the most intriguing attributes of this design: the quadrature demodulation.

One of the reasons why quadrature demodulation is used often in communications sys-

tems is that it allows a receiver to distinguish the sign of a demodulated signal. For the

VIA, it seems, at first, that the oscillator carrier frequencies must be offset from one

another to eliminate the ambiguity of the sign of the beat note between them. If the carrier

frequencies, f, and f2, were identical, acceleration in one direction and acceleration of the

same magnitude in the opposite direction, would produce the same beat note. This is one

of the reasons why the carrier frequencies would have to be offset from one another if the

demodulation scheme were implemented as in Fig. 3.6b. The quadrature demodulation

scheme in Fig. 4.1, on the other hand, allows the carrier frequencies to be the same

because it does not require an offset between them to distinguish between positive and



negative acceleration. There are a couple of reasons for offsetting the carrier frequencies,

as discussed in Chapter 2. The important point here is that the quadrature scheme elimi-

nates one of these reasons, and takes one step closer to relaxing the requirements placed

on the VIA crystal oscillator.

A second attribute of the quadrature demodulation is that it eliminates the need for a

local oscillator. Since the VIA oscillators must be highly stable to achieve good resolution,

a local oscillator used to demodulate sl(t) and s2(t) would have to be highly stable as well.

Since the quadrature demodulation in Fig. 4.1 uses the oscillator outputs to demodulate

themselves, a third highly stable oscillator is unnecessary.

Since the readout scheme includes a quadrature demodulation stage cascaded with the

traditional cross-differentiate multiply demodulation scheme, it will be called the Quadra-

ture demodulation and Cross-Differentiate Multiply (QCDM) demodulator.

The functional analysis of the QCDM demodulator is fairly straightforward, and is

performed here for the standard model of the oscillator outputs described in (3.15) and

(3.16). Assume, then, that the oscillator outputs are defined as follows:

sl(t) = Slcos 21f t+ 2kia(t)dt (4.1)

0

s2(t) = S2cost2tf2t-27k2a(t)dt . (4.2)

0

After the quadrature demodulation stage,

si(t) = S, cos 2f t + 2 k a (t)dtS 2cos(2f 2t - 2k 2 a(t)dt

0 0 '(4.3)

= cos((f+ f 2)t) + + + k2) a(t)dt

0



sq(t) = -S cos 2ctf, t + 21ck a (t)dt S2 sin[ 2f 2t - 2tk2 a(t)dt

0 0

S 2 sin(2(f + f 2)t) + 2sin 27c(fI-f2)t + 2(k + k2) a(t)dt . (4.4)

o

Filtering out high frequency components yields the in-phase and quadrature signals:

i(t) -= 12xcos 2(fl-f2)t + 2T(k + k2) a(t)d) (4.5)

0

i(t)= 2

q(t) = S sin 2n(f -f 2) t +2(k +k 2) a(t)dt . (4.6)
0

The derivatives of i(t) and q(t) are

i'(t) = -2t[(f 1 - f 2) + (k +k S 2 2t(k) (47)i'(t) =-21E[(ffl -f2) + (k + k 2)a(t)]-'-" sin 27(fl-f2)t+2i(k I +k 2 ) a(t)dt (4.7)

0

q'(t) = 27t[(fI - f 2) + (k, + k 2)a(t)]S2cos 27(fI-f 2)t+2r(kI+k) a(t) . (4.8)
0

Cross multiplying and then differencing the products,

d(t) = -2[(fl -f 2) + (kl + k2)a(t)] sin 27(fl-f2 )t + 2(k +k 2) a(t)dt

0

-27[(fl - f 2) + (kl + k2)a(t)] 2cos 27(f-f2)t + 27(k, + k2) a(t)

0
2 2

= -2x[(f -f 2)+(kl+k 2)a(t)]S [(sin( ))2 + (COS( ))2]
2 2

= -2n[(f I -f 2) + (k + k2)a(t)] 2 . (4.9)

The sum of the squares of i(t) and q(t) is

i2 (t) + 2(t) = ((cos( ))2 + sin( )2)
(4.10)

S1 2S

4



Therefore, after the division the acceleration term appears as

2d(t) = -2(fI - f 2 ) - 2 n(k + k 2 )a(t). (4.11)
i2(t) + q2(t)

In the calibration of the accelerometer, a and J can be measured for zero acceleration.

For

a = 2t(f - f 2)

-1 , (4.12)

S27t(k 1 + k 2)

t(t) = a(t) and ^(t) = Ja(t)dt . (4.13)

0

Note that in Section 4.2, the carrier frequencies fl and f2 will be assumed to be equal

to simplify the simulations. It is assumed that offset between them could be accounted for

by adding a as in Fig. 4.1.

4.1.2 Detailed Description
In Chapter 2, a block diagram for the VIA oscillator was disclosed and discussed. In

Section 4.1.1, a functional block diagram of the QCDM was the topic of interest. Now, the

two blocks are juxtaposed in Fig. 4.2 to reveal the VIA system block diagram.

In Section 4.1.1, a mathematical analysis was performed on an infinite precision con-

tinuous-time model of the QCDM demodulator. Fig. 4.2 shows the additional consider-

ations necessary for a practical digital implementation of the scheme. First, the analog-to-

digital conversion must take place, which necessitates the inclusion of an anti-aliasing fil-

ter, Haa,,(jo). Second, implementation of a digital system requires consideration of the

sampling rate, fs, and changes in the sampling rate. Third, the mathematical operations of

differentiation and integration in the continuous-time domain are implemented in the dis-

crete-time domain with digital filters Hdiff(eiw) and Hin(e e). Fourth, as will be
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discussed in Section 4.2.1, since digital FIR filters introduce time delays, non-filtered data

paths must be delayed with e-j '" blocks. Lastly, the wordlengths of the data paths are an

important issue for fixed point implementations. Although some of these details are obvi-

ous, while others are less so, they are highlighted here simply to bridge the gap between

the mathematically demonstrated scheme in Fig. 4.1 and the equivalent analog and digital

design in Fig. 4.2.

The important system-level design consideration is the determination of the sampling

rate, fs. The constraint on fs comes from i(t) and q(t) in (4.5) and (4.6), which are the sig-

nals that are A/D converted. Section 4.2.3 will show that for a high resolution readout, the

Nyquist frequency, fN, of i(t) and q(t), must be fN=2 .4 kHz for fl=f2 . Therefore, the mini-

mum sampling rate to avoid aliasing is min{ fs}=4.8 kHz. To leave room for carrier offsets,

where fl, f 2 , the sampling rate is chosen to be fs=10 kHz. For this sampling frequency,

the maximum offset of the carriers is

If - f2 < - f = 15kHz - 2.4kHzI = 2.6kHz. (4.14)

In the simulations, it will be assumed that fl=f2 so that a =0. Note, also, that high fre-

quency acceleration signals detected by the transducer, such as vibration transients, will be

filtered out by the anti-aliasing filter, and then further attenuated by Hipf(ej"). Finally,

since the acceleration and velocity signals are expected to be bandlimited to fa=100 Hz,

the integrated acceleration can be downsampled to output 9[n] at least 500 Hz.

Section 4.2 will discuss the design and analysis of the demodulator subsystems inde-

pendently, along with increasingly large groupings of the subsystems. First, the design of

the differentiator is considered. Then, the CDM structure is simulated. Analysis and study

of the constraints on the FM bandwidth of 7[n] and q[n] comes next, and is followed by

the design of the low pass filter Hipf(ejc) and narrowband filter, Hnbf(eJo). Then, the numer-



ical integration filter, Hi,,t(e), is designed and simulated. Lastly, the oscillator and analog

component noise models are added to the simulation.

This thesis project has designed, on a system level, the proposed QCDM demodulator

readout scheme for the VIA. The analysis and simulation, however, are concentrated on

the Digital Signal Processing block of the system. The VIA oscillators and the analog

electronics are treated and simulated with relatively simple noise models and surface-level

designs. In particular, the Delta-Sigma Modulator of the A/D converter is a significant fac-

tor in constraining the overall readout performance. Section 4.3 will only suggest possible

directions for performing a more detailed analysis and simulation of DSMs.

4.2 Subsystem Design and Simulation

4.2.1 Discrete-Time Differentiator Design

This section begins by discussing general digital filter design issues. Then, discussion

turns to the design of the discrete-time differentiators of the readout.

In designing the digital filters for the demodulator, including the differentiator dis-

cussed in this section, three key decisions must be made. First, whether to design an infi-

nite impulse response (IIR) or finite impulse response (FIR) filter must be considered.

Then, the implementational structure of the filter, whether direct form I or II, cascade, or

parallel, has to be decided upon. Lastly, the type of coefficient quantization, whether trun-

cation or rounding, should be determined, as well as the type of binary arithmetic imple-

mented, fixed point or floating point.

A digital filter can be described in the discrete-time domain as either a linear constant

coefficient difference equation or a state space representation [5]. This section considers

the former description, which can be expressed mathematically as follows:



N M

_aky[n - k] = bv[n - l] ao = 1. (4.15)
k=0 1=0

The corresponding transfer function in the z-transform domain can be written as a

ratio of polynomials:

M

H(z) = 1=0 (4.16)

1 + akZ- k

k= 1

Another z-transform description (among many) of a difference equation can be

expressed in terms of the transfer function poles and zeros:

M

H(z) = bo . -' . (4.17)

J(1 -pk')
k= I

Equation 4.17 begins discussion of the differences between FIR and IIR filters. The

key distinction between the two categories of filters is that FIR filters do not have poles,

and so the denominator of (4.17) is unity and the ak's of (4.16) are zero. Therefore,

whereas stability is an important design constraint for IIR filters, FIR filters are inherently

stable. However, IIR filters generally perform better for real-time applications because

they usually can be implemented more efficiently, requiring lower filter order and thus

fewer coefficients than an FIR filter having similar magnitude performance. While this is

an important consideration for the VIA readout, another significant consideration is the

phase distortion, or group delay, of the filter, which directly affects the resolution of the

accelerometer. While a zero-phase filter response for this application is ideal but impossi-

ble for causal systems, FIR filters can have linear phase which results in constant group

delay. Therefore, while FIR filters introduce time delays, they do not nonlinearly distort



the phase of an input signal as most IIR filters do. Choosing between implementing FIR or

IIR filters, then, amounts to making a choice between minimum allowable processing

speed and maximum possible resolution. Since the latter result is of particular interest for

this theoretical study, FIR filters are used in the design of the QCDM demodulator.

In addition to the polynomial (4.16) and pole-zero (4.17) expressions, two other math-

ematical descriptions of digital filters are the partial fraction expansion of (4.17) and the

aforementioned state space form. Each one of these four mathematical descriptions of a

digital filter leads to a different structural implementation of the filter. The polynomial

expression naturally describes what are called the direct form structures I and II, the pole-

zero description leads to the cascade structure, the partial expansion form reflects the par-

allel structure, and the state space representation can be used to conveniently design struc-

tures based on state variables and linear transformations.

For IIR systems, the cascade, parallel, and normalized lattice implementations are gen-

erally more robust to errors from fixed point coefficient quantization, a very practical con-

sideration, whereas the direct forms are less so and rarely used to implement filters with

order larger than two. With regard to IIR digital filter roundoff noise, which stems from

the quantization of products, the cascade structure has the best performance because it can

be implemented with fewer multipliers. For FIR systems, the direct form (direct form I

and H turn out to be the same structure for FIR filters, but not for IIR filters) is used most

often because it is least sensitive to coefficient quantization; the quantized zeros are uni-

formly spread in the z-plane and are less sensitive to the quantization noise. Furthermore,

the direct form more easily preserves the linear phase characteristic of FIR filters. For

these reasons, and the simplicity of direct form analysis in Matlab, this structure was cho-

sen to implement the digital filters in the design and simulation of the QCDM demodula-



tor. A much more detailed analysis can be done to justify this choice and might be useful

for future efforts.

For FIR filters, setting ak=O for k>O, the difference equation in (4.15) reduces to

M

y[n] = bv[n-l]. (4.18)
1=0

Making a substitution of variables, a system output, y[n], can be written as a convolu-

tion of an impulse response, h[n], and an input, x[n]:

M
y[n] = _h[k]x[n-k] (4.19)

k=0

Figure 4.3 shows a flowgraph representation of an infinite precision direct form real-

ization of an FIR filter. The 'filter' command in Matlab implements the transposed form

illustrated in Fig. 4.3(b), which is functionally equivalent to Fig. 4.3(a).

(a) (-1 Z-1 Z-1

x[n] Q

h[O] h[1] h[2] h[M-1] h[M]

O-- Dy[n]

(b)

Z- .1 -1 -1
------- y[n]

h[M] h[M-l] h[2] h[1] h[O]

x[n]O - , -------

Figure 4.3: (a) Direct form, (b) transposed direct form realization of an FIR system.



Fixed-point arithmetic is usually implemented with 2's complement numbers. The

value represented by a fixed-point number is normally scaled so that it is a fraction repre-

sented by a fixed, finite wordlength. Therefore, the product of two fixed-point numbers

would also be a fraction, and will never be greater than one. Rounding off a fixed-point

number eliminates the least significant bits, and introduces quantization error that can be

modeled as white noise that is independent of the signal. Summing two fixed-point num-

bers, however, can introduce register overflow, which can be avoided by appropriately

scaling the input. For direct form realizations of FIR filters using fixed-point, only the out-

put of the system needs to be prevented from overflowing, because all other sums are par-

tial sums and their overflowing does not affect the output. To achieve wider dynamic range

and lower quantization error simultaneously, the wordlength must be increased.

Floating-point arithmetic represents a number by quantifying its mantissa and an

appropriate scale factor. One of the greatest advantages of floating-point realizations is

that it has high dynamic range. But while overflow is rare, rounding errors accrue after

both addition and multiplication. Furthermore, floating-point systems are more difficult to

analyze because the quantization noise is no longer white and independent of the signal.

For the QCDM, only FIR filters are implemented and no feedback is employed. There-

fore, the overflow problem can be avoided, without too much difficulty, by proper scaling.

Additionally, the dynamic range of the device will be known, and a fixed level of resolu-

tion is desired throughout the range; note that i(t) and q(t) in (4.5) and (4.6) are periodic

and have limited amplitudes. Whereas the quantization error of floating-point numbers

scale up and down with signal level, fixed-point numbers have the same quantization error,

and thus resolution, throughout its dynamic range. For these reasons, a fixed-point realiza-

tion is used for this theoretical study and implementation of the QCDM demodulator.

Coefficient quantization and round off noise will be considered further in Section 4.3.



Having just chosen to design FIR filters and to implement them with direct form real-

ization and fixed-point arithmetic, attention turns now to the selection of digital filter

design technique. Two common FIR filter design methods are window-based and optimum

equiripple design techniques.

In digital signal processing terminology, windowing is the act of truncating an infinite-

length discrete-time signal by multiplying it by a finite length signal called a window.

Calling the window length "finite" can be somewhat deceiving, for the window sequence

is, in theory, an infinite length sequence consisting of all zero-valued samples outside of a

group of adjacent nonzero samples. The number of nonzero samples is generally equiva-

lent to the length of the window, and it is normally only the group of nonzero samples that

are referred to as the "window." In short, the zeros are ignored, but assumed to cancel out

samples of the infinite-length discrete-time signal through multiplication.

In the window-based design for low pass filters, an ideal impulse response, which is a

sinc in the time domain, is multiplied by a window. In the frequency domain, this corre-

sponds to convolving the ideal impulse with the Fourier transform of the window. The

convolved waveform is subtracted from the ideal frequency response to derive a measure

of error. Minimizing the mean square error is the design objective, and can be accom-

plished for a certain window length constraint by varying the shape of the window. Com-

mon window types are rectangular, Bartlett, Hamming, Hanning, Blackman, and Kaiser,

which has variable parameters.

For a high resolution application, the minimum mean square error criterion is not ideal

because it does not say anything about the maximum error of the designed filter. The opti-

mum equiripple filter design, on the other hand, is based on the minimization of maximum

error criterion. This design technique ensures that the filter error is smaller than a specified
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Figure 4.4: Low pass filter design specifications.

level, which makes it particularly suitable for designing high resolution systems. For this

reason, the optimum approximation technique is used to design the QCDM FIR filters.

Optimum filter design is based on the Parks-McClellan Algorithm [5], an iterative

algorithm that designs the minimum length filter for specified passband (Fp) and stopband

(Fs) cutoff frequencies, as well as maximum allowable passband (Dp) and stopband (Ds)

amplitude ripple. Fig. 4.4 shows the filter specifications that the algorithm requires for the

design of a low pass filter. Section 4.2.4, will demonstrate how to generate the filter coeffi-

cients of a low pass filter from the above specifications using Matlab's Remez Algorithm.

The Remez Algorithm can also be used to design discrete-time differentiators, as seen in

Section 3.4.2, using the following command:

hdiff=remez(N,[FL FH],[AL AH], 'differentiator');.
In this case, N is the desired filter order number, FL is the minimum frequency, FH is

the maximum frequency for which a desired level of resolution must be obtained, and AL

and AH are the desired filter amplitudes corresponding to FL and FH. The specified fre-

quencies are normalized to the sampling frequency. Therefore, for successively larger



sampling frequencies, FH is successively lower, and the filter order is smaller. This will be

elaborated on with the help of an example.

First, consider the differentiator block shown in Fig. 4.5. The objective of this section

turns now to the characterization of the differentiator block and to design a discrete-time

differentiator having low magnitude error. Note that the scale factor block is necessary to

achieve the correct derivative from differentiator, which is designed using a Remez script.

SIM1(M), in Appendix A.1, designs a discrete-time differentiator of length M+1 using

the Remez Algorithm. The function plots the differentiator impulse response, magnitude

response, and magnitude error. Additionally, the function returns the maximum magnitude

error of the differentiator for a given bandwidth and sampling frequency of an input signal.

Lastly, the simulation also examines a test case by differentiating an FM input signal, i(t),

based on the VIA oscillator parameters. By subtracting the filtered output, i'(t), from the

ideal filtered output, a measure of error can be derived. The simulation is repeated with

different values of M until the maximum output error is less than 10 R g, 1 R g, and 0.1 t g.

It is assumed, at this point, that these resolutions will be preserved by the rest of the CDM

structure. The next section will look at how good an assumption this is. The differentiators

generated for these error levels are the differentiators that will be used in the rest of the

Figure 4.5:) Hiff(erentiator block.

Figure 4.5: Differentiator block.



simulations. The test case is chosen to model the VIA oscillator signals using parameters,

listed in Section 3.3, that will presumably result in the largest acceleration error. The

assumption is that if the differentiators are designed using this worst-case test scenario, the

differentiator will perform at least as well and, in most cases, better, than it performs using

the test case. This assumption will be validated in Section 4.3.

The input signal, i(t), is defined in SIM1(M) as follows:

i(t)= SIS 2 cos n f sin(2nfat) = SIS 2cos 2k, a(t)dt where (4.20)
0

a(t) = Acos(21fat)

Note that i(t) here is in the same form as i(t) in (4.5). The parameter values are

S1=S2=1, A=20 g, k1=50 Hz/g, fa=100 Hz, fl=f2, and fs=10 kHz. The input is shown in

Fig. 4.6a., and it's spectrum is show in Fig. 4.6b. Note that the sidebands are located every

2fa=200 Hz, whereas the sidebands in Fig. 3.5 were spaced only 100 Hz apart.
Input Signal i(t)
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Figure 4.6: Input i(t) and its magnitude response.
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Figure 4.7: Differentiator characteristics for M=26.
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The difference is that i(t) is at baseband, while sl(t) was centered around carrier frequency

f1=10 kHz.

A differentiator, Hdiff(e j), of order M=26 was found to meet the 1 pg resolution level.

The impulse response, hdiff[n], the magnitude response, and magnitude error are show in

Fig. 4.7. Since M is even, the differentiator is a Type III FIR filter, and has an integer delay

M/2. By the Carson Limit calculated in Section 3.3.1, the baseband Nyquist frequency, fN,

for sI(t) is approximately 1.1 kHz. The parameters used to calculate the Carson Limit are

the same for i(t), and so it is expected that the largest frequency component of interest in

i(t), fN, is roughly 1.1 kHz. Since the sampling frequency is 10 kHz, fN/fs= 0.11.Fig. 4.7c.

shows that for a normalized input frequency of 0.11, the magnitude error is approximately

xtf
2x10-11. Scaling this error by -, an estimate for lediff[n]lmax can be obtained:

lediff[n]Imax = (2). (1.660xlO- 11 ) = 2.6078xlO-7 . (4.21)

Simulating the direct form implementation of Hdiff(e'" ), i(t) yields the output, i'(t),

displayed in Fig. 4.8. The ideal derivative of (4.20) is

ilideal(t) = (-Ak1 2n)cos(2nffat)[S S 2 sin ((k sin(2f at)). (4.22)

The difference between i'ideal(t) and i'(t) is the error shown in Fig. 4.9, where the max-

imum error is 2.3790x10 -7. Note that the large output error between time t=0 and t=0.005

seconds is the result of the start-up transient that would occur harmlessly during the cali-

bration of the instrument, and is not included in the maximum error estimate. The simula-

tion results for 10 g g and 0.1 g g resolution are shown in Table 4.1.

The results suggest that the output error of a discrete-time differentiator can be

approximated by finding the differentiator magnitude error corresponding to the Nyquist
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Table 4.1: SIM1(M) results for M=22, 26, and 28

frequency component of the input, using a graph like Fig. 4.7c., and scaling this error by

f-. Simulated results support the derived estimate in Section 3.4.2.

This is, of course, only a means of approximation and a rule of thumb at best. The

accuracy of the approximation depends on the accuracy of fN estimate, which was based

on the Carson Limit. In Section 4.2.3 the Carson Limit will be shown, in fact, to be an

inadequate indicator of necessary FM bandwidth for a high resolution readout.

The recommended design procedure is to estimate the differentiator performance by

using its magnitude error, and to use SIM1(M) to design the differentiator and to better

predict its performance.

4.2.2 Cross-Differentiation Multiply Structure

In the previous section, the differentiator block was characterized with differentiators

of order 22, 26, and 28 shown to introduce errors on the order of 10 g g, 0.2 g g, and 0.04

j g. This section simulates the cross-differentiate multiply structure of the demodulator,

seeking to verify the mathematical analysis in Section 4.1.1, while demonstrating how

much the differentiator error propagates through multipliers and adders to affect the final

acceleration readout (round off errors will be considered in Section 4.3). Up until this

point, the acceleration resolution was estimated by the error at the output of the differenti-



ator, both in Sections 3.4.2 and 4.2.1. It was assumed that this error could be representa-

tive of the actual acceleration resolution. This section will finally look at the actual

acceleration resolution of the demodulated acceleration signal itself to reveal how good

the previous assumptions actually were.

Fig. 4.10 shows the system blocks that are simulated in this section. Notice that Fig. 10

has a few more blocks separating i(t) and q(t) from a(t) than the corresponding section of

the functional block diagram in Fig. 4.1. Creating the simulation for this section revealed

the necessity of including the extra blocks in the design. First, notice the blocks containing

e-j N . These are ideal delays with the delays set equal to the differentiator delay, so that

N=M/2 (for even M). The absence of these delay blocks significantly distorts the accelera-

xfstion output, a(t). Second, the T blocks are necessary to complete the differentiator oper-

ation, as discussed in Section 4.2.1. Lastly, for the expected oscillator outputs, the

S= 1 block was found to be a necessary scale factor for the oscillator signals.
in(kI + k 2)

i(t) Hdiff(e ") ~ l



SIM2(M) (Appendix A.2) implemented Fig. 4.10 with the following i(t) and q(t):

i(t) = SS 2 cos( k J )in(2xfat)) = SS 2 cos 2itki a(t)dt and

o (4.23)

q(t) = SIS 2 in - -sin(2fat) = SIS 2 sin 2k 2 a(t)dt where
0

a(t) = Acos(2nfat). (4.24)

The parameters are exactly as in Section 4.2.1: S1=S2=1, A=20 g, kl=k2=50 Hz/g,

fa=100 Hz, and fs=10 kHz. Equation (4.24) is the input acceleration to the entire acceler-

ometer (see Fig. 4.2) and so ideally, for this subsystem, a(t) should be a(t) delayed by the

differentiator delay:

tideal(t) = Acos(2a f (t - ff)) (4.25)

where fs is the sampling frequency and M/2 is the differentiator delay. This ideal output is

plotted in Fig. 4.11 along with its spectrum.
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Figure 4.11: Ideal acceleration output for (4.23) and (4.24).
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Running SIM2(26), the demodulator output, a(t), is shown in Fig. 4.12. The accelera-

tion error is displayed in Fig. 4.13, and the maximum error, excluding the start-up tran-

sient, is 7x10 -10 g, or 0.0007 R g! The performance is three orders of magnitude better than

the originally intended 1 p.g resolution. The pleasant surprise comes from, in fact, the

1 af sscaling of the error by - . Already, it is evident that perhaps the ! and
n(k, + k2) 2

S 1 blocks can be combined, and would be required in a practical implementation
n(k, + k2)

to prevent overflow using fixed arithmetic.

The simulations for M=22, M=26, and M=28 are summarized in Table 4.2

Table 4.2: SIM2(M) results for M=22, M=26, and M=28.

M Acc. Err. (g)

22 3.00x10 -8

26 6.98x10 -10

28 8.35x10 1-

Apparently, the differentiators were designed with higher order than necessary and the

error estimate (4.7) would do better by multiplying lediff[n]Ilm, by 7(k + k2)

These exceedingly accurate differentiators will continue to be used in the simulations,

however, for at some point, degradation will occur as more and more blocks in Fig. 4.2 are

included in the simulation.

4.2.3 FM Bandwidth Requirements
Section 3.3.1 estimated the bandwidth of the oscillator FM signals by using Carson's

Rule (3.18), which approximated the width of the frequency band that contained 99% of

the signal power. Bandwidth was critical in Section 3.3 because the minimum clock speed

and velocity resolution of the phase readouts depended on the maximum frequency of the

FM signal (3.12) and (3.13). The theoretical analyses of Chapter 3, however, did not con-



sider, at any point, the repercussions of bandlimiting the FM signal, such as degradation of

the signal and decreased resolution. These effects must be considered in a more detailed

system analysis because a practical system includes low pass filters necessary to eliminate

high frequency noise. Even the differentiator error discussed in Section 4.2.1 was a func-

tion of FM signal bandwidth. If the passband cutoff frequencies of the QCDM demodula-

tor are set according to the Carson Rule, then 1% of the FM signal power would be

discarded. For a high resolution system requiring an SNR of 146 dB (Chapter 2), the Car-

son Limit seems an inadequate estimate of FM bandwidth necessary to achieve the desired

resolution. The objective of this section, then, is to determine the minimum bandwidth of

an FM signal that can achieve a desired level of demodulator output resolution. The results

will be used in the next section to design the low pass filters of the system.

Obtaining a closed form analytical expression relating FM bandwidth and demodula-

tor resolution would be difficult, and Chapter 3's exclusion of such an expression in its

first order theoretical analyses was not unreasonable. For perhaps the most straightforward

approach to estimating this FM bandwidth-resolution (FMBR) relationship is through

simulation, which is performed for a specific FM demodulation method. Therefore, only

after obtaining adequate knowledge of a particular demodulator can the FMBR relation-

ship be estimated. How well the estimate holds for other FM demodulators is unclear. The

results of this analysis, then, pertain specifically to the CDM readout in question, and can

be used merely as a benchmark for other systems.

The results of Sections 4.2.1 and 4.2.2 provide the necessary background to approxi-

mate the FMBR relationship for the CDM demodulator. Again, the analysis in this section

is of the block diagram in Fig. 4.10. In the previous section, SIM2(M) used inputs (4.23)

and (4.24) and compared the output, a(t), to the ideal output in (4.25). In this section,

SIM3(M,Ni) (Appendix A.3) uses, instead, ideally bandlimited inputs, then compares the



output a(t) once again, to the ideal output in (4.25). The variable M is the differentiator

order, and Ni is the number of sidebands contained in the input, as will be discussed in the

next paragraph. SIM2(M) simulates how the differentiator limits the acceleration readout

resolution, while SIM3(M,Ni) simulates how both the differentiator and FM signal band-

width together restrict the acceleration resolution. By comparing the two simulation

results, an estimate of the FMBR relationship can be obtained. Presumably, in starting

with Ni=1 and increasing it for successive simulations, eventually the acceleration resolu-

tion will converge to the values in Table 4.2, at which point the differentiator is the domi-

nant limiter of resolution.

An angle modulated signal can be approximated by a series of modified Bessel func-

tions of the first kind as follows [3][4]:

Ni

Acos(BlsinX,) = lim AJo(B1) +Al 2J 2k(B)cos(2kXl) (4.26)
Ni -+ k=1

k= 1

Ni

A2 sin(B 2sinX 2) = limA2 2J2k+ I(B2)sin((2k + 1)X2) (4.27)

SIM3(M,Ni) uses the above descriptions to generate the ideally bandlimited FM inputs

by defining the parameters Al, B1, X1, A2, B2, and X2, as follows:

Ni

i(t) = AIJo(B 1 ) + A 1  2J 2k(Bl)cos(2kX,) where

k=l

A = S1S 2 = 1 (4.28)

k1A
B1 =

fa

X , = 2 R fat

and



Ni

q(t) = A 2d2J 2 k+,(B 2)sin((2k + 1)X 2 ) where

k=O

A 2 = S 1S 2  (4.29)

k2A
B 2 = k2 A

X 2 = 2c fat

Comparing equations 4.28 and 4.29 to equations 4.23 and 4.24, it is clear that as Ni

gets large, the ideally bandlimited inputs approach the ideal FM inputs used in SIM2(M).

Notice in (4.28) and (4.29) that each sideband increases the baseband Nyquist frequency

of the FM signal by 2fa Hz. Therefore, the maximum frequency generated in the ideally

bandlimited signal is approximately

fN = 2 Ni - fa. (4.30)

For Ni=6, fN=12 0 0 Hz, which is approximately the Carson Limit for i(t) and q(t). Exe-

cuting SIM3(26,6), the Bessel-function generated FM signal is shown in Fig. 4.14a. Note

that the spectrum in Fig. 4.14b. is similar to the spectrum of the ideal FM input shown in

Fig. 4.6b, but has only six sidebands.

The resulting acceleration error at the output of the demodulator is show in Fig. 4.15b,

with a maximum error, after the start-up transient, of 0.5996 g. As expected, the Carson

Limit bandwidth fails to achieve the desired resolution of 1 R g. In fact, it does not even

come close!

Running the simulation for Ni=12, or fN=2 4 0 0 Hz, the generated FM signal is shown

in Fig. 4.16a. The spectrum in Fig. 4.16b. should have six more sidebands than in Fig.

4.14b, but the upper sidebands are too small to be seen (non-rectangular windowing would

help). Their effect, however, is apparent as the acceleration error is shown to be much

larger in Fig. 4.17a. The maximum error, after the start-up transient, is 0.14 i g, which

achieves the desired resolution. These simulations suggest that to achieve 1 g g resolution,
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Figure 4.16: Input ideally bandlimited to 2400 Hz. Ni=12, fa=100.
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the Nyquist frequency needs to be at least twice the Carson Limit at baseband.

SIM4(M,NSB) (Appendix A.4) is an extension of SIM3(M,Ni). For a differentiator of

order M, as designed in SIM 1(M), this simulation computes the acceleration error for FM

bandwidths

fN = 2 -Ni -fa 1 < Ni < NSB, (4.31)

thereby giving data from which to determine the FMBR relationship. SIM4(M,NSB) was

executed for (M=22,NSB=18), (M=26,NSB=18), and (M=28, NSB=18), and the results

Table 4.3: SIM4(M,NSB) for M=22, 26, 28, and NSB=18.

Ni fN (Hz) Acc. Err. (g) Acc. Err. (g) Acc. Err. (g)
for M=22 for M=26 for M=28

1 200 16.8 16.8 16.8

2 400 13.4 13.4 13.4

3 600 101 101 101

4 800 9.63 9.63 9.63

5 1000 2.40 2.40 2.40

6 1200 6.00x10-' 6.00x10 "1  6.00x10 -1

7 1400 8.90x10 -2  8.90x10-2  8.90x10-2

8 1600 1.00x10 -2  1.00x10 -2  1.00x10 -2

9 1800 8.06x10 -4  8.06x10-4  8.06x10 -4

10 2000 5.83x10 5  5.83x10 -5  5.83x10 -5

11 2200 3.06x10 -6  3.06x10 -6  3.06x10 -6

12 2400 1.30x10 -7  1.35x10-7  1.35x10 -7

13 2600 3.09x10-8  5.86x10 -9  5.51x10 -9

14 2800 3.00x10 "8  7.84x10 -10  2.02x10-10

15 3000 3.00x10 "8  6.98x10-10  8.45x10 -11

16 3200 3.00x10 -8  6.97x10-10  8.30x10 -11

17 3400 3.00x10-8  6.97x10-10  8.31x10-11

18 3600 3.00x10-8 6.97x10 -10 8.31x10-1



are displayed in Table 4.3. Note that as the bandwidth increases, the resolution for each M

converges to the differentiator limited resolutions listed in Table 4.2, as expected. There-

fore, prior to convergence, the resolution is limited by the FM bandwidth. After conver-

gence, the resolution is limited by the differentiator error.

Fig. 4.18 shows a plot of the FMBR relationship for the CDM. Again, as the FM band-

width increases, the resolution improves until leveling off at the resolution limits deter-

mined by the differentiator.

SIM4(M,NSB), therefore, is a useful design tool that relates both FM bandwidth and

differentiator order to the acceleration resolution for the CDM demodulator and the

expected worse-case parameters of the VIA. SIM4(M,NSB) computes the best possible

theoretical performance of the CDM based on the two parameters. As more and more

blocks are included in the simulation, still more parameters will be taken into consider-

ation.
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4.2.4 Low Pass Filter Design
This section adds discrete-time low pass filter blocks to the simulation, as can be seen

in Fig. 4.19. First, Hf(ej ) will be designed and tested by itself with SIM5 (Appendix

A.5), followed by a cumulative system simulation with SIM6 (Appendix A.6). In Section

4.2.3, SIM4 looked at the effects of ideally bandlimiting the FM signal on the acceleration

resolution. In this section, SIM6 will look at bandlimiting an ideal FM signal with

Hpf(ej ) and how it affects acceleration resolution. SIM7 (Appendix A.7) and SIM8

(Appendix A.8) will look at the added effects of the narrowband filter, Hbf(e j).

As discussed in Section 4.2, it is desirable to use optimal equiripple filter design for

this high resolution application. Designing the filter, therefore, amounts to specifying the

frequency domain characteristics of the desired filter, and running the Remez algorithm in

Matlab to produce the coefficients. The four specifications are shown in Fig. 4.4, and

include the passband and stopband frequencies, Fp and Fs, and the passband and stopband

i(t) H- H (e)  - Hdiff(e ) fk + k2 ) H bf(e ) " (t)

q(t) Hipf(e )  H diffi(e j) o s

Figure 4.19: Low pass filter blocks cascaded with CDM demodulator.



ripple amplitude, Dp and Ds. First, to ensure that the desired resolution can be achieved,

the Fp must be at least 2 -Ni -fa for the resolution achieved in the previous section. Sec-

ond, the ripple magnitudes need to be at least as small as the desired resolution, so that

they do not distort the FM signal by more than the intended resolution. Lastly, the Fs will

primarily be chosen to balance the trade-off between minimizing the filter length and max-

imizing the high frequency noise attenuation. The lower Fs is, the higher the order of the

filter, but the better the noise rejection. The higher Fs is, the lower the order of the filter,

but the out-of-band noise attenuation is worse.

SIM5(Fp,Fs,Dp,Ds) designs an FIR filter that minimizes the filter order while meeting

the specifications. There are limitations, however, and the Remez Algorithm fails to con-

verge for certain specifications. The function then filters the ideal input FM signal, i(t),

defined in (4.23), at a 10 kHz sampling rate, to observe the distortion introduced by the fil-

ter.

Executing [hlpf,N]=SIM5(2.4e3,4.5e3,le-8,le-8), the function designs an order-45 fil-

ter with magnitude response shown in Fig. 4.20a. and passband and stopband ripples given

in Fig. 4.20b. and c. The ripples are less than 1x10 -8, as specified for Dp and Ds, and the

passband is sized correctly. The distortion introduced in filtering i(t) with Hipf(e i') is

shown in Fig. 4.21. The error is less than Dp=Ds=lxl10 -8 as expected.

SIM6(M,Fp,Fs,Dp,Ds) does as much and more than SIM3(M,Ni). By setting

Fp = 2 -Ni -fa, the bandwidth of the FM input signal can be controlled. Specifying M sets

the differentiator order, as before. The three new parameters, Fs, Dp, and Ds, now give

greater freedom in designing the filters, and can be adjusted in future simulations. The fol-

lowing three test were done using SIM6:
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Figure 4.20: Order-45 low pass filter.
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Figure 4.21: Distortion of i(t) due to low pass filter.

1. [hlpfl ,N1]=SIM6(22,2.4e3,4.5e3,le-7,le-7);
2. [hlpf2,N2]=SIM6(26,2.4e3,4.5e3,le-8,le-8);
3. [hlpf3,N3]=SIM6(28,2.4e3,4.5e3, le-9,le-9);
While Fp and Fs are kept the same in each test, Dp and Ds are set to be one hundredth

of the desired resolutions 10 0g, 1 jig, 0.1 j g. The acceleration error for M=26 is shown

in Fig. 4.22, and the maximum errors, excluding the start-up transients, for the other test

are included in Table 4.4. As Dp and Ds decrease, the order of the designed low pass filter

increase, as expected.

Table 4.4: SIM6(M,Fp,Fs,Dp,Ds) for tests 1., 2., and 3.

M Filter Order Acc. Err. (g)

22 39 8.47x10 -6

26 45 1.39x10 -7

28 50 3.86x10 -8
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Figure 4.22: Acceleration error for M=26, and order-45 low pass filter.

The narrowband filter is designed in a similar way, using SIM7(Fp2,Fs2,Dp2,Ds2).

Since the maximum acceleration frequency is expected to be 100 Hz, Fp2 is set to be 200

Hz. The passband and stopband ripple are set at Dp2=Ds2=le-7, and the stopband cutoff

is set to Fs2=1.5e3. As in the design of the LPF, decreasing Fs2 will increase the order of

the filter while increasing Fs2 will lower the length of the optimal filter. For these values,

SIM7 designs the narrowband filter shown in Fig. 4.23.

For a test acceleration signal, where

a(t) = 20cos(2n100t), (4.32)

the distortion introduced by the filter is shown in Fig. 4.24. The primary purpose of this fil-

ter is to eliminate noise outside of the band dictated by the maximum acceleration signal.

The effects of this filter will be seen more clearly in Section 4.3.
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Error in a(t) Introduced by LPF
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Figure 4.24: Distortion of acceleration signal due to narrowband filter.

SIM8(M,Fp,Fs,Dp,Ds,Fp2,Fs2,Dp2,Ds2) cascades the narrowband filter to the back

end of the CDM demodulator. For the input signals defined in (4.23) and (4.24),

SIM8(26,2.4e3,4.5e3,1e-8,1e-8,2e2,1.5e3,1e-7,1e-7) produces the results in Figures 4.25

and 4.26. Comparing Fig. 4.25b. to Fig. 4.22b., note that the output acceleration signal is

degraded slightly by the narrowband filter, but the error spectrum has been further band-

limited. This will be an important means of rejecting high frequency error, as previously

stated. Fig. 4.26 shows the acceleration output after narrowband filtering

4.2.5 Numerical Integration
Section 3.1.1 discussed in detail the error introduced by digital integration, and

showed that to obtain high resolution the sampling frequency needs to be high for Rie-

mann Sum integration. This section reveals how the integration resolution can be
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improved by decreasing the sampling rate rather than increasing it. It will show that

polyphase decomposition might be a method of achieving arbitrarily accurate integration

without relying solely on a high sampling frequency. The most fascinating aspect of this

section, however, is the description of three analogies that intimately connect numerical

methods to digital filter structures.

Numerical methods are often employed when certain expressions or experimental data

cannot be easily described with closed form analytical functions. In such cases, rather than

abandoning the data because processing it cannot yield exact solutions and descriptions,

more often than not, numerical methods are used to come up with answers, where none

would exist otherwise. The answers, however, have varying degrees of accuracy depend-

ing on the numerical method employed. The errors are smaller for more computationally

intensive strategies, and the trade-off that must be made is one of computational efficiency

versus accuracy.

In Section 4.2.1, the design of discrete-time differentiators was treated. High accuracy

was dependent on the sampling frequency, the Nyquist frequency of the input, and the fil-

ter length. Designing highly accurate digital integrators, however, does not seem to be as

straightforward, and is less commonly treated in introductory DSP texts. An ideal integra-

tor is an IIR filter, whereas the digital filters designed for the CDM are FIR, and therefore

optimal filter design with the Remez Algorithm is not possible. Since the integrator instills

a significant limitation on frequency readout schemes, a highly accurate scheme is neces-

sary. Turning to calculus and numerical methods sheds much insight onto the design of an

accurate digital integrator.

In two dimensions, integration can be viewed, in a graphical perspective, as the deter-

mination of the area under a continuous time curve. All numerical methods inherently

involve discretization, and integration is no different. Numerical integration, or discrete-
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time integration in the time domain, sums up small, elemental, discrete areas to approxi-

mate the larger area under the curve. The three numerical methods described here vary in

the shape of the discrete elements used in the summation. The Riemann Sum, as seen in

Section 3.1.1, uses rectangles to approximate the area of the elements, the Trapezoidal

Rule uses trapezoids, and Simpson's Rule constructs parabolas, with each successive

method outperforming its predecessor.

The definite integral of a function, f(x), between points x=a and x=b of the x-axis, can

be expressed in the following three ways [18]:

b n

Riemann Sum: f(x)dx= Ax f, fo=f(a), fn=f(b). (4.33)
a i=0

b n-1

Trapezoidal Rule: f (x)dx = fo + fn + 2 fi , fo=f(a), fn=f(b). (4.34)

a i= 1

b 2 2

Simpsons Rule: f(x)dx = fn + 4 f2i- +  f2j , f 0=f(a), fn=f(b), n is even. (4.35)

a i=1 =

The derivation of each of these approximations stems from the Taylor Series expan-
b

sion for I(x + Ax) and I(x - Ax), where I(x) = f (x)dx. The derivatives of f(x) in the Taylor

a

Series are replaced by finite difference approximations using f(x). In short, Simpson's

Rule outperforms the other two methods because it uses more points in the approximation

of higher order derivatives of f(x), that is, it uses more knowledge of f(x) to calculate each

elemental area. Notice, too, that Simpson's Rule works only for even n. This can be

viewed as downsamping the x-axis by two, or using knowledge of f(x) at two points to cal-

culate each point of the integral.

To develop the analogous digital filter implementations of (4.33), (4.34) and (4.35),

first define a digital system, shown in Fig. 4.27, where the output, ,[n], is an
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a[n]

Figure 4.27: Integrator block

approximation of the integral of the input a[n] sampled at frequency fs. The input is anal-

ogous to the samples of f(x), such that a[n] = fi for a i b where i is an integer. The

1sampling rate is inversely proportional to the stepsize, such that I = Ax. The system out-

put is analogous to the series integration approximation, while the digital system is analo-

gous to a chosen numerical method. The initial conditions are considered to be zero, with

a[0] = fo = 0. The analogous digital systems are then implemented in block-diagram

form by inspection of (4.33), (4.34), and (4.35). The block diagrams are then simplified,

combining blocks into transfer functions. The digital filter implementations of the numeri-

cal integration methods are shown in Fig. 4.28 and the simplified diagrams are shown in

Fig. 4.29.

The most fascinating aspect of this development, lies in the interpretation of the result-

ing digital filters in Fig. 4.29. The Riemann Sum is implemented with a standard accumu-

lator, the method of digital integration analyzed in Section 3.1.1 The Trapezoidal Rule is

implemented with the bilinear transform, which maps the imaginary axis of the Laplace

Transform domain to the unit circle of the z-transform domain [5]. In the Laplace domain,

integration is equivalent to multiplying by I. Using the bilinear transform to map s to z, 1
s s

maps to the filter in Fig. 4.29b. The most interesting and least intuitive of the three analo-

gies is the implementation of Simpson's Rule. Fig. 4.29(c) is a polyphase implementation

of a decimator filter, that uses the bilinear transform as one of its filters and an accumula-

tor as the other! The polyphase structure is used often in filter banks, which are multirate

digital systems that process many different bands of a signal spectrum separately in
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(a) Riemann Sum Implementation

a[n] J P[n]

(b) Trapezoidal Rule Implementation

a[n]

(c) Simpson's Rule Implementation

a[n]

Figure 4.28: Digital filter implementation of numerical integration methods.

(a) Accumulator
a[n] (1 1 [n]
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(c) Polyphase Decimator

a[n]

v[n]

Figure 4.29: Simplified block diagrams.

P[n]

P[n]



parallel channels. Multirate digital systems have received much attention lately in the

fields of communications, speech processing, and image compression.

SIM9(Fs,A,fa,input) (Appendix A.9) implements each of the three integration filters

and outputs the velocity error for the following input, which is specified by 'cos':

a(t) = Acos(2Rfat). (4.36)

The simulation was run a number of times for sampling frequency of 10 kHz and vari-

ous values of A and fa. The results are plotted in Figures 4.30, 4.31, and 4.32, with the

decimator performing the best out of the three.

For the VIA readout, the DSP sampling frequency is limited on the front end by the

necessary FM bandwidth, as seen in Section 4.2.3. After demodulation, however, the

velocity signal can be output at approximately 500 Hz, depending on the inertial naviga-

tion in use. Therefore, the acceleration signal can be downsampled in the integration to the

x 10 - 3  Error from Integration using Accumulator for (-) A=1, (--) A=10, (-.) A=20
2.5 I I I I I I I I

1.5

1.5 "- - - - - . -. .

0.5

0 100 200 300 400 500 600 700 800 900 1000
Frequency fa (Hz)

Figure 4.30: Maximum accumulator error.

107



x10 -  Error from Integration using Bilinear Transformation for (-) A=1, (--) A=10, (-.) A=20
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Figure 4.31: Maximum bilinear transform filter error.
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Figure 4.32: Maximum polyphase decimator filter error.
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x[n]

M EM.I(z) + y[n]

Figure 4.33: M-filter polyphase decimator.

velocity output. This makes the implementation of Simpson's Rule particularly attractive.

Simpson's Rule, however, only decimates by a factor of two, whereas the sampling rate

reduction of 10 kHz to 500 Hz is a factor of 20. The most useful aspect about the

polyphase description in Fig. 4.29(c) is that it hints at how even greater integrator resolu-

tion can be obtained by further downsampling. Fig. 4.33 shows a general implementation

of a decimation filter with M separate branches, where M is the downsampling ratio. The

implementation of Simpson's Rule suggests that better integrators can be designed by

downsampling by more than two with the appropriate choice of E0 (z), El(z),... EM.I(z).

Although this is a terribly intriguing possibility, Simpson's Rule suffices for this applica-

tion, and attention turns now to the system analysis of the QCDM.

4.3 System Simulation
The significance of Section 4.2 is that it demonstrated the theoretical resolution that

can be achieved by QCDM demodulator. Having done this, in addition to having designed

the system, the results of Section 4.2 provide a valuable reference by which performance
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degradation due to additive white noise can be measured. There are many noise sources in

the system found in the transducer, the analog electronics, and the digital system itself, as

partially shown in Fig. 4.2. This section studies how the QCDM Demodulator performs in

the presence of noise, to determine under what conditions it can achieve the readout reso-

lution desired of the VIA.

Fig. 4.2 showed that the noise is generated by the oscillator, the analog mixers, and the

phase shifter. Section 3.1.2 discussed how quantization noise can degrade a signal. Within

the DSP, there can be roundoff noises after multiplication and overflow following addi-

tions. Each noise source can have different statistics, and accurately modeling each one

would be a tedious task, albeit an essential one for the future. At the present, this first anal-

ysis of the QCDM receiver vastly simplifies the system noise models by assuming that

they are all wide-sense stationary, independent random processes. Then, all of the noise

sources are modeled as a single noise source that has a variance equal to the sum of all the

individual noise-source variances. As see in Fig. 4.34, this single source, nl(t), is injected

at the input of the DSP, added to i(t) and q(t), which are defined as in (4.23) and (4.24).

The noise source has a uniform probability density distribution, zero-mean, and can pro-

duce values in the range of - < n(t) < . Therefore, its variance, or power, is 12

In simulating the DSP system in Fig. 4.34 and its response to additive noise, the vali-

dation of three key results is sought. First, one of the most important specifications of the

VIA readout scheme is that its electronics must add as little noise as possible to the highly

stable oscillator waveforms. Therefore, the signal-to-noise ratio (SNR) at the input of the

readout must be roughly preserved by the electronics. Second, FM signals exhibit better

noise immunity than AM signals as a result of what is often called the "FM Advantage

[17]." This advantage comes from the noise shaping that occurs in general FM demodula-

tion: white noise added to an FM signal will be shaped into a triangular spectrum after
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demodulation. For a low frequency modulating signal, the SNR at the output can be high if

the shaped noise is filtered out. The resolution of a demodulated FM signal can be approx-

imated by (2.8) as [17]

Aa -= 2 3SNR (4.37)

where Aa is the acceleration resolution, fa is the acceleration bandwidth, k1 is the scale

factor, and SNR is the signal-to-noise ratio of the FM signal. One goal of this simulation is

to see how well the QCDM demodulator performs in comparison to (4.37). Thirdly, the

simulations will seek to verify the validity of (3.34) and (3.35).

The Matlab function created to simulate Fig. 4.34 was called QCDM (Appendix

A.10). This function is the culmination of all the subsystems designed in Section 4.2.

However, the function is not restricted to simulating the system designed in the previous

section, because the parameters of the system are left to be defined by the arguments of

QCDM. Calling of the function takes the following form:

[names,values]=QCDM(M,Fp,Fs,Dp,Ds,Fp2,Fs2,Dp2,Ds2,Q,input,A,fa,fs,t);

Most of the arguments should be familiar by now, as most were seen in previous simu-

lations. The variables M, Fp, Fs, Dp, Ds, Fp2, Fs2, Dp2, and Ds2 are defined here exactly

as in Section 4.2.4. The variables A, fa, fs, and t are familiar, too, although they were not

available to be freely defined in the calling of the other functions. They represent accelera-

tion amplitude (g), acceleration frequency (Hz), sampling frequency (Hz), and the dura-

tion of the flight or simulation (seconds), respectively. The new arguments are Q and

input. The variable Q determines the noise power of n1(t) that is added to i(t) and q(t).

Since Sl and S2 in (4.23) and (4.24) are coded as unity in this simulation, Q also sets the

SNR of the FM signals. The argument, input, can be specified as either 'cos' or 'con,'
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which sets the input acceleration equal to either a cosine with amplitude A and frequency

fa, or a constant with amplitude A.

The simulation was run for a number of different test cases. For all of the simulations,

the filters used were the ones designed in Section 4.2. Therefore, the first arguments were

defined as M=26, Fp=2.4e3, Fs=4.5e3, Dp=le-8, Ds=le-8, Fp2=2e2, Fs2=1.5e3, Dp=le-

7, Ds=le-7. Recall that the low pass filter designed by these specifications had order 45,

and the narrowband filter had order 65. For each simulation, the amplitude of acceleration

was A=20, the acceleration frequency for cosine input was fa= 100 Hz, and the sampling

frequency was fs=10 kHz. All other parameters not explicitly mentioned, were defined as

in Section 4.2.2. The three parameters that varied between tests were Q, input, and t.

The function QCDM returns in values the input SNR, the low pass filter order, the

acceleration signal power, the acceleration error variance and maximum value prior to nar-

rowband filtering, the narrowband filter order, the acceleration error and variance and

maximum value after narrowband filtering, the output acceleration SNR, the maximum

velocity error and the variance of the velocity, and finally, the velocity output SNR. The

function also plots the acceleration and velocity outputs. The results of the simulation are

summarized in Figures 4.35-4.42, and Tables 4.5 and 4.6.

The first impetus in analyzing the data is to observe whether or not the device is per-

forming functionally as an accelerometer. That is, having set the acceleration signal at the

input of the system, it is known precisely what the readout should output. As in Section

4.2, this knowledge is used to determine the readout error and resolution. Given a constant

20 g input, the demodulator is expected to produce - [n] = 20 and a velocity i[n] that is a

ramp with slope 20 g. Defining a cosine acceleration input, the same signal is the expected

acceleration output, along with a sinusoidal velocity. Fig. 4.35-4.37 show the
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Figure 4.35: Simulation with QCDM for t=10 seconds, input='con', and Q=e-6.
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Figure 4.36: Simulation with QCDM for t=10 seconds, input='con', and Q=le-6.
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Figure 4.37: Simulation of QCDM with t=10 seconds, input='con, and Q=le-6.
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Figure 4.38: Simulation with QCDM for t=10 seconds, input='cos', and Q=le-1.
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Figure 4.39: Simulation of QCDM for t=10 seconds, input='cos', and Q=le-1.
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results for t=10 seconds, input='con', and Q=le-6. The acceleration output is 20 g, as

expected, and the velocity is a ramp with slope 20 g. Fig. 4.38-4.40 show the results for

t=10 seconds, input='cos', and Q=le-1. The acceleration is a delayed cosine and the

velocity is a delayed sinusoid. Note that due to the start-up transient from the filters, Mat-

lab returns some NaN (Not a Number) values. The simulator, QCDM, zeros out these val-

ues and sets the initial condition of the integrator based on the ideal, expected output. This

procedure must also happen in the calibration of the actual instrument.

Having seen that the simulation is functionally correct, a number of other observations

are now highlighted. Figures 4.35, 4.36, 4.38, and 4.39 demonstrate the direct impact the

narrowband filter has on the resolution of the acceleration signal. Its effectiveness is

accentuated by the noise shaping characteristics of the demodulator, as will be discussed

shortly. For both the constant and cosine inputs, the narrowband filter improves the resolu-

tion by at least one order of magnitude. Changing the parameters Fp2, Fs2, Dp2, and Ds2

will have a noticeable effect on the resolution. By limiting the acceleration bandwidth,

Fp2 and Fs2 can be lowered, and the resolution should improve. Columns 4 and 5 of Table

4.5 show that the order of magnitude improvement was consistent throughout the tests.

Table 4.5 and Figures 4.35, 4.36, 4.38, and 4.39 also indicate the resolution of the

QCDM demodulator for the various input noise levels. If the noise is assumed to be com-

pletely composed of A/D quantization noise and nothing else, the results can be compared

ot the derivations of Chapter 3, in which acceleration resolution was predicted using dif-

ferentiator and quantization error. In equations 3.34, it was shown that the acceleration

resolution could be approximated by the sum of the differentiator error and the quantiza-

tion noise. Since the differentiator error for M=26 is 2.38e-7 g (from Table 4.1), equation

3.34 predicts that for quantization error much larger than 2.38e-7 g, the acceleration reso-

lution is proportional to the quantization error. Comparing Q with the maximum
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Table 4.5: Simulation Results from QCDM.

t Maximum Maximum
(s a(t) Acceleration Error Acceleration Error Maximum Output
e type before Narrowband after Narrowband Velocity Error
c) Filter (g) Filter (g) (gxsec)

1 le-6 con 5.68790531971e-5 7.56501597365e-6 6.66361612468e-4

1 le-6 cos 5.28181406391e-5 7.404855194792e6 8.35664734880e-5

1 le-3 con 0.05739293792060 0.00601655061161 6.68549886203e-4

1 le-3 cos 0.05817972520395 0.00772063397553 8.59779883802e-5

1 le-1 con 5.18689127586051 0.70810531667502 8.76597497494e-4

1 le-l cos 5.36282253487642 0.70687902126487 2.88852863730e-4

30 le-6 con 6.37566251775e-5 8.71279739911e-6 6.57034938001e-4

30 le-6 cos 7.14743347458e-5 9.01011290466e-6 8.35665337903e-5

30 le-3 con 0.06185275495234 0.00769001909055 6.57940850260e-4

30 le-3 cos 0.06491357060339 0.00873317936462 8.64822805700e-5

30 le-1 con 6.29793117540774 0.82625664119261 9.72919373680e-4

30 le-1 cos 6.64586007000836 0.95952948548596 3.59174166181e-4

acceleration error after narrowband filtering in Table 4.5, it is evident that the quantization

resolution is roughly preserved by the demodulator, but degraded by nearly one order of

magnitude. This result suggests that as (3.34) predicts, one fundamental limitation of the

readout resolution is the quantization in the A/D conversion. Section 4.2 showed how the

acceleration error is also dependent on the differentiator error as (3.34) suggests. However,

Section 4.2 showed that the resolution depended significantly on the FM bandwidth of the

signal, and by Table 4.5, the bandwidth of the acceleration signal, too. Furthermore, when

other noise sources are considered, the contribution of quantization error to the size of Q

decreases in proportion, but (3.34) does not include these other considerations. Equation

3.34 is clearly an inadequate approximation of the actual resolution of the QCDM demod-

ulator. The significance and utility of (3.34), however, is that it does indeed provide
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Table 4.6: Simulation Results from QCDM (continued).

FM Acc Vel
Acc Acc Vel

time a(t) SNR Err SNR Err SNR
Q Ave in Err ou Err

(sec) type Pow in Var out Var out
(dB) (dB) (dB)

1 le-6 con 400 122 2.44e-10 140 2.16e-3 41.9

1 le-6 cos 200 122 1.98e-10 137 3.83e-5 11.3

1 le-3 con 400 61.7 2.37e-4 80.5 2.13-3 41.9

1 le-3 cos 200 62.0 2.09e-4 76.9 3.83e-5 11.3

1 le-1 con 400 21.8 2.54 39.9 2.16e-3 41.9

1 le-1 cos 200 22.0 2.04 37.0 3.82e-5 11.3

30 le-6 con 400 122 2.38e-10 140 7.34e-5 86.1

30 le-6 cos 200 122 2.04e-10 137 1.30e-6 25.9

30 le-3 con 400 61.8 2.38e-4 80.2 7.34e-5 86.1

30 le-3 cos 200 62 2.03e-4 77.2 1.30e-6 25.9

30 le-1 con 400 21.8 2.38 40.3 7.34e-5 86.1

30 le-1 cos 200 22.0 2.05 37.2 1.30e-6 25.9

a minimum bound on the readout error, as was originally intended. That is, for a given dif-

ferentiator and quantization error, (3.34) indicates the best possible resolution attainable.

The data in Table 4.5 support this conclusion about (3.34).

In (3.35), the velocity error was predicted to be the sum of a discrete-time integration

error, edti[n], and the accumulation of acceleration error over time, eva[n]. Fig. 3.37b.

shows that the slope of the error is approximately

(-6.6025 x 10-4)g - (-6.608 x 10-4)g = 5.5 x 10-7g.
1 sec

This should give an indication of the acceleration error. In Table 4.5, for Q= le-6, the max-

imum acceleration errors are about 8e-6 g. The average acceleration error would probably

be less, and closer to 5.5e-7 g, but the collected data is inconclusive in this regard. The dif-
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ference between the tests done for t=1 and t=30 seconds give some unexpected results,

too. For instance, the maximum acceleration error multiplied by the duration of the flight,

t, should give an indication of the minimum velocity error as in (3.35). The data does not

show this. The results are inconclusive in this regard, as well, and simulations should be

run for larger durations than t=30 seconds. This time period was chosen due to the limita-

tions of the Sun machines used to run the simulations.

Using Tables 4.5 and 4.6, the expression (4.37) can be tested. For fa=100, and k1=50

Hz/g, the expected demodulator resolution for SNR's equal to 122 dB, 62 dB, and 22 dB,

are 5.76e-5 g, 5.76e-2 g, and 5.76 g, respectively. From Table 4.6, the FM SNRs 122 dB,

62 dB, and 22 dB correspond to the Q values le-6, le-3, and le-1. Table 4.5 shows that

these Q values correspond to acceleration resolutions of 7.40e-6 g, 7.72e-3 g, and 7.07e-1

g, respectively. In each case, the QCDM receiver resolution is better than the resolutions

predicted by (4.37). Interesting to note, however, is that (4.37) actually does much better

job of predicting the acceleration signal before the narrowband filtering: 5.38e-5 g, 5.82e-

2 g, and 5.36 g. The derivation of (4.37) in [17], however, seems to suggest that it should

predict resolution for after narrowband filtering.

Fig. 4.41 and Fig. 4.42 show the noise shaping effects of the demodulator. For t=l,

Q=le-1, and input='cos,' the spectrum of i(t) corrupted with noise is shown in Fig. 4.41a.

Comparing this plot with Fig. 4.16b, shows clearly the effect the noise has on the spec-

trum. Fig. 4.41b. shows the spectrum of the acceleration output before narrowband filter-

ing. Notice that the lower frequency noise has been shifted to the higher frequencies,

creating a triangularly-shaped noise spectrum, similar to the quantization noise shaping of

delta-sigma modulators (Section 3.4.3). Subtracting out the 100 Hz sinusoid signal would

show this more clearly, although a plot of this is not included here. The attenuation of the

spectrum at normalize frequency 0.4 results from the low pass filtering done at the front
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Figure 4.41: Simulation with QCDM for t=1 second, input='cos', and Q=le-1.
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Figure 4.42: Simulation with QCDM for t=1 second, input='cos', and Q=le-1.
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end of the DSP. Fig. 4.42 shows similar results for input='con.' The significance of the

noise shaping characteristics of the FM demodulator, is that by further bandlimiting the

acceleration signal, the narrowband filter Fp2 can be decreased (increasing the filter order,

of course), and the acceleration resolution should be improved.

In the same way that the DSP input noise could be viewed as purely quantization

noise, it could also be viewed as the noise from a number of different sources, separately

or collectively, including the oscillator, roundoff noise within the DSP, mixer and phase-

shifter noise, and quantization noise. These simulations have shown that if the sum of all

of these noise sources results in an SNR of 122 dB at the DSP input, then the QCDM

demodulator designed in Section 4.2 can achieve 8 gg resolution.

4.4 Further Tests and Design Directions
A number of further tests should be done using QCDM. To improve the demodulator

noise performance, the response of each subsystem to noise should be looked at individu-

ally to see where possible gains could be obtained. The simulations should also be run for

longer durations of time on a machine that has more memory available than the ones used

for this thesis. Next, better and more accurate noise models should be used in the simula-

tion. Decomposing the noise sources might be a significant step in reducing the degrada-

tion they cause. For example, the FM noise shaping affects noise that is added to the

carrier of the FM signal. It is not clear whether or not the demodulator would shape any

noise added to the modulating signal itself in the oscillator (such as nl(t) and n2(t) in Fig.

4.2). Furthermore, the oscillator, as discussed in Chapter 2, is expected to have extremely

high frequency stability. How good the SNR measure in (2.8) is should be checked. Still

further steps would require that the VIA oscillator parameters be better understood. That

is, the scale factors, the acceleration bandwidth, the maximum acceleration, the oscillator

carrier frequencies and their offset, should be settled upon. Equally as important, perhaps,
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is obtaining knowledge about the specific inertial navigation system the readout scheme

would operate with. This will significantly impact such readout system parameters such as

sampling rate, and output digital word length and format.

The most important theoretical task that lies ahead is research on the delta-sigma mod-

ulator used for the A/D conversion. As seen in Section 3.4.2 and Section 4.3, the A/D

quantization places one of the most significant restrictions on the readout resolution.

Much research is currently being done on high resolution DSMs and bandpass DSMs, and

the 32-bit resolution required for this application will seemingly soon be much more com-

mon. A fourth-order DSM running at 2.56 MHz, with oversampling ratio (OSR) equal to

64, was simulated to achieve SNDR=94.5 dB for a 20 kHz input sinusoid [24]. A single

loop, multi-bit DSM sampling at 32 MHz, was simulated to achieve 16-bit accuracy, or

SNR=85 dB, for a 500 kHz input signal [25]. Tan and Eriksson [26] cascaded two second-

order stages to create a fourth-order DSM, and simulated the sampling of a 1 kHz input at

a rate of 1.024 MHz for SNRs beyond 150 dB. Fischer and Davis [27] simulated a third-

order second-order cascade DSM by sampling a 320 kHz input at 20.48 MHz to achieve

an SNR=136 dB. Still another effort studied a fourth-order, single-loop, single-bit DSM

architecture and reported that sampling a 600-700 Hz signal at 256 kHz, SNRs could

achieve 130 dB [28]. The literature seems to suggest that DSMs are worth looking at for

the VIA application.

The next design iteration of the QCDM receiver should include a bandpass DSM as

described in [12]. This scheme would perform digital quadrature demodulation, and elim-

inate the need for using noisy analog mixers and phase shifters. The phase shifter could be

implemented with the Hilbert Transform in the digital domain. The DSM required for the

QCDM readout certainly pushes the envelope of available technology, and a DSM specific
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to this application would probably have to be designed. Looking at oversampling delta-

sigma frequency discriminators mentioned in Section 3.4.1 would be a good idea.

A number of practical implementational issues need to be considered, as well. Imple-

menting the readout with a DSP would require efficient coding that would dictate the max-

imum possible sampling rate. In addition, selection of an appropriate processor would be

necessary. Implementing the readout with an ASIC would require prototyping with a Field

Programmable Gate Array, and would first have to be simulated. The different possible

implementations should be compared and contrasted. Consideration of other multirate dig-

ital signal processing techniques should be considered, including the use of efficient sinc

filters and differentiators as described in [29].

In summary, the analysis of this chapter has shown the digital system parameters nec-

essary for the QCDM FM demodulator to theoretically achieve acceleration resolutions on

the order of 1 g g.



Chapter 5

Conclusion
Why should the frequency demodulator be considered in the design and implementa-

tion of the VIA readout? This thesis attempted to address this inquiry with two responses.

First, the entire essence of Chapter 3 was devoted to answering this question as it derived

analytical expressions with which comparison of phase and frequency readout methods

was made possible. One key issue that was raised described how the phase readout

schemes can be viewed as performing 1-bit digital quantization of the oscillator outputs at

high sampling rates. Implementing a multi-bit A/D convertor could theoretically achieve

higher resolution by extracting more intelligence from the oscillator signal amplitude at

lower sampling rates. The implementation of multi-bit quantizers pointed naturally to

reading out frequency because instantaneous frequency can be derived by taking the deriv-

ative of an angle modulated signal, such as those generated by the VIA oscillator. Later in

Chapter 3, four possible frequency readout schemes were described, with ensuing analysis

of the CDM demodulator in particular. The CDM receiver was compared with two com-

mon phase readouts, and no single method proved to be superior than the others. Since

frequency readouts have seemingly received less attention for inertial instrument applica-

tions, focusing on them in this research endeavor was particularly attractive.

A second general response to the initial question stems from the high resolution

requirement of the VIA. Often times, the only way to solve a difficult, complex problem

is to decompose it into smaller problems, each of which can be solved independently. The

high resolution goal can be seen as a complex problem, and frequency discrimination

methods decompose the problem into finer components than phase demodulators do. For

example, a high resolution acceleration readout could achieve much better velocity resolu-
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tion than a velocity readout for short time periods. The acceleration readout has an extra

dependence on time, that corresponding velocity readouts do not. One of the main bene-

fits of decomposing a problem is the general increase of understanding that can happen.

For instance, this thesis looked carefully at three pieces of the high resolution problem that

revealed some general results about the nature of the problem. First, the importance of

accurate digital integration for frequency readouts was discussed, and three numerical

integration methods were explored to solve the problem. Second, the relationship between

FM bandwidth and the receiver resolution was studied, showing that for this high resolu-

tion application, the required bandwidth exceeded twice the Carson Limit. Lastly, it was

learned that the resolution of the readout depended highly on the quantization of the ana-

log oscillator outputs. A first order theoretical analysis showed that a fourth order delta-

sigma modulators might be capable of achieving the necessary resolution.

The thesis also addressed the following question: what can be learned by exploiting

the analogy of the FM transmitter in a digital communication system? The thesis

described that little could be obtained from looking at digital transmission systems in the

virtual bit-link sense, but much could be gained by looking at analog communication the-

ory and digital signal processing techniques. First, potential benefits of using quadrature

demodulation were described as an ideal front end to the CDM demodulator. Secondly,

the thesis discussed the appropriateness of using digital finite impulse response filters

because of their linear phase characteristics. One of the most fascinating aspects of the

thesis was the discovery that highly accurate digital integration could be achieved by

implementing Simpson's Rule with a polyphase decimator, which hinted at a means of

designing even better digital integrators. Lastly, although this thesis did not, unfortu-

nately, analyze delta-sigma modulators in depth, it was discovered in the literature
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searches that bandpass delta-sigma modulation is an emerging technology that could be

particularly useful for this application.

The most important benefit of exploring the communication system analogy, however,

was not simply the discovery of useful techniques that could theoretically work to achieve

a high resolution readout. Bandpass delta-sigma modulators and polyphase filterbanks are

currently active areas of research in their respective fields. And although there may not

exist a DSM right now that can achieve the exact, desired resolutions for the VIA, it is

likely that it can and will be developed somewhere in the near future. Since the Vibrating

Island Accelerometer is a long-term project, it might be worthwhile to design and research

readout schemes that implement forward-looking technology.

Finally, can an FM receiver theoretically achieve the high resolution required of the

VIA readout? In theory, the answer, of course, is "yes." The more important contribution

of this thesis is that it showed how it might be achieved with the design and simulation of

a specific frequency demodulator: the QCDM discriminator. A Matlab function, QCDM,

was written that enables easy design and simulation of the frequency readout scheme by

specifying a number of pertinent parameters. Preliminary tests were done on the readout

designed in Section 4.2. The data supported some of the derivations in Chapter 3, and was

inconclusive regarding others. The simulations did successfully demonstrate the noise

shaping characteristics of the FM demodulator, while showing that the QCDM structure

performs better than a common metric (4.37) used to predict the resolution of FM receiv-

ers. Lastly, Section 4.4 suggested further QCDM tests that could be performed, and rec-

ommended direction for future theoretical and practical work to follow up the research

described in this now-concluded thesis.
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Appendix A

Simulations

A.1 SIM1
function Iy,e]=siml(M)

% SIMI(M) designs a discrete-time differentiator of length M+I using the
% the Remez Algorithm, plots its impulse response, frequency response,
% and magnitude error, and then plots the results of differentiating an
% example input. The differentiator is designed for the VIA QCDM
% demodulator acceleration readout scheme. The function also returns the
% maximum differentiator magnitude error for a given input bandwidth and
% sampling frequency, as well as the error in differentiated example.

% If M is even, the differentiator, Hdiff, is a Type Ill FIR filter with
% integer delay M/2. If M is odd, then Hdiff is a Type IV FIR filter with
% non-integer delay M/2.
%
% The sampling frequency, fs, is 10-kHz. The input signal, i(t), used in
% the example plots is defined as in Fig. 3.7 of this thesis, with the
% following parameter values:

% al(t)=A*cos(2*pi*fa*t)
% a2(t)=0
% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% Si=S2=1
% i=S I*S2*cos((kl*A/fa)*sin(2*pi*fa*(n/fs)))
%
% These parameters result in the maximum expected modulation index of the
% VIA oscillator outputs.

% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
fs=10e3, % fs=10-kHz

% DIFFERENTIATOR
hdiff=remez(M,[0 0.5],[0 l],'differentiator');% Differentiator
hdiff_dft=fft(hdiff,356);
N=0 1/356'(1-(1/356));
hideal=4*N,
error=-hideal-abs(hdiff_dft);

figure(l)
n=0.1 length(hdiff)-I;
subplot(3,l,1); stem(n,hdiff); gnd;
title('Impulse Response of (M-1)-Point Optimal Differentiator')
xlabel('Sample'); ylabel('Amplitude');

subplot(3,1,2); plot(N,abs(hdiffdft),'-',N,hideal,'--');
axis(10 0.5 0 3]); grid
title('Magnitude Response of (M-l)-Point Optimal Differentiator')
xlabel('Normahzed Frequency'); ylabel('Magnitude')

subplot(3,1,3); plot(N,error);
%axis([0 02 -5e-I 5e-1 I]);
grid
title('Magnitude Error of (M-1)-Point Optimal Differentiator');
xlabel('Normalized Frequency'); ylabel('Error')

%***** INPUT DEFINITION *****
f=1e3;% Approximate Input Bandwidth from Carson Limit

% calculated in Section 3.3.1.

% MAXIMUM DIFFERENTIATOR ERROR
% Maximum differentiator error for fs=10-kHz and input bandwidth=l-kHz
% occurs at l-kHz/10-kHz=0.l, which is the (0.1*356)th sample of hdiff.
max_hdiff_error=max(abs(error( 1:1 :floor((f/fs)*356))))
axis([O 0 2 (-2*maxhdiff_error) (2*max_hdiff_error)])
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% CONTINUOUS TIME AXIS
t=: l/fs:10*(10/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3, This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L=10*(10/f)*fs,
n=--0:1 :L;

% *********** FM INPUT **********
fa=100;% fa=100 Hz Frequency of acceleration.
kl=50;% kl=50 Hz/g
A=20;% A=20 g <-- Maximum acceleration, for max mf.
SI=1;% SI=I unitless, voltage.
i=S I *cos((k I *A/fa)*si n(2*pi*fa*(n/fs)));

% INPUT SPECTRUM
L2=2A 16;
N=0:I/L2:(1-(I/L2));
i_dft=fft(i,L2);

figure(2)
subplot(2, 1,1)
plot(t,i)
grid;
title('Input Signal i(t)')
xlabel('Time (seconds)')
ylabel('Amplitude')
subplot(2,1,2)
plot(N,abs(i_dft));
grid;
axis([0 0.25 0 4001)
title('Input Signal i(t) 65536-Point DFT')
xlabel('Normalized Frequency')
ylabel('Magnitude')

% IDEAL OUTPUT
nd=M/2,% Delay
yli=(-A*kl*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S *sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% *********** FILTERED OUTPUT **********
a=1,
b=hdiff;
yl=(pi*fs/2)*filter(b,a,i),% Notice that the output needs to be scaled

% by (pi*fs/2) to be consistent with the
% traditional definition of ideal discrete-
% time differentiators. See Oppenheim and
% Schafer p. 96

figure(3)
subplot(2, I, 1)
plot(t,yi,'-',t,yii,'--')
grid;
title('Differentiated Output y(t)')
xlabel('Time (seconds)')
ylabel('Amplitude')
subplot(2,1,2)
yi_dft=fft(i,L2);
plot(N,abs(idft));
grid;
axis(10 0.25 0 400])
title('Output Signal y(t) 65536-Point Spectrum')
xlabel('Normahlzed Frequency')
ylabel('Magnitude')

% *********** MAGNITUDE ERROR ***********
error_1=yii-yi;
error_max=max(abs(errori(floor(U2): I:L)))% Look later samples.

figure(4)
subplot(l, 1,1)
plot(t,error i)
axis([0 (100/f) (-5*error_max) (5*error max)l)
grid;
title('Output Error')
xlabel('Time (seconds)')
ylabel('Amplitude')
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y=yi;
e=errori;

A.2 SIM2
function [yl=sim2(M)

% SIM2(M) designs discrete-time differentiators of length M+I, just as
% in SIMI(M), and then implements the cross-differentiate multiply scheme
% using infinite precision floating point mathematics. This simulation
% demonstrates that the method works to reject the amplitude modulation
% that occurs during the differentiation.

% This simulation shows that the error in the differentiator is
% proportional to the acceleration resolution, as stated in Section 3.4.2
% of the thesis. This verifies the portion of Equation 3.34 that indicates
% dependency of acceleration resolution on the differentiator error.

% This simulation also shows the importance of the necessary delays
% included in the non-differentiated branches of the demodulator. If the
% delays are not accounted for exactly, there is added error to the
% acceleration readout.

% Lastly, the simulation helped to discover the necessity of certain scale
% factors that are now included in this code.

% Again, the sampling frequency, fs, is 10-kHz. The input signal, i(t),
% used in the example plots is defined as in Fig. 3.7 of this thesis, with
% the following parameter values:

% al (t)=Acos(2*pi*fa*t)
% a2(t)=A*cos(2*pi*fa*t)
% kl=k2=50-Hz/g
% A=20-g
% fa=100-Hz
% S1=S2=1
% i=S I *cos((kl *A/fa)*sin(2*pi*fa*t))
% q=S2*sin((k2*A/fa)*sin(2*pi*fa*t))

% These parameters result in the maximum expected modulation index of the
% VIA oscillator outputs

% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
fs=10e3, % fs=10-kHz

%***** INPUT DEFINITION *****
f=le3;% Input frequency

% CONTINUOUS TIME AXIS
t=0 l/fs 10*(10/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L=10*(10/f)*fs;
n=0:l:L,

% *********** FM INPUT **********

fa=100,% fa=100 Hz Frequency of acceleration.
kl=50;% kl=50 Hz/g
k2=50;% k2=50 Hz/g
A=20;% A=20 g <-- Maximum acceleration, for max mf.
Sl=1;% SI=1 unitless, voltage.
S2=1; % S2=1 unitless, voltage.

si=SI *cos((kl *AJfa)*sin(2*pi*fa*(n/fs)));
sq=S2*sin((k2*A/fa)*sin(2*pi*fa*(n/fs)));

% DIFFERENTIATE
hdiff=remez(M,(0 0 5],[0 I ],'differentiator');% Differentiator
a= I,
b=hdiff,



sid=(pi*fs/2)*filter(b,a,si);
sqd=(pi *fs/2)*filter(b,a,sq),

% IDEAL DIFFERENTIATED OUTPUT
nd=M/2;% Delay
sidi=(-A*kl I*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S Il*sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));
sqdl=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S2*cos((k *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
side=SI*cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs)));
sqde=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% SQUARED DELAYED INPUT
sis=side *side;
sqs=sqde.*sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.*sqde)-(sqd.*side);

% IDEAL CROSS MULTIPLIED TERMS
dividendI=(sidi.*sqde)-(sqdi.*side);

% IDEAL OUTPUT
a=A*cos(2*pl*fa*((n-nd)/fs));
figure(l)
subplot(2,1,1)
plot(t,a)
axis(10 0.1 -50 50])
title('Acceleration Input/Ideal Acceleration Output')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
grid
subplot(2,1,2)
L2=2A16;
N-0: I/L2:(I-(1/L2)),
adft=fft(a,L2),
semilogy(N,abs(a_dft));
grid
axis([0 0 02 leO le51)
title('Ideal Acceleration Output a[n] 65536-Point DFT')
xlabel('Normalized Frequency')
ylabel('Magnitude')

% ACCELERATION OUTPUT
acceleration_out=(dividend./divisor)/(-2*pi*kl);
figure(2)
subplot(2, 1,1)
plot(t,acceleration_out)
title('Acceleration Output')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
axis(10 0 1 -50 50])
grid
subplot(2,1,2)
accelerationoutdft=fft(acceleration_out,L2);
semilogy(N,abs(accelerationout_dft));
grid
axis([0 0.02 leO le5])
title(' Acceleration Output 65536-Point DFT')
xlabel('Normalized Frequency')
ylabel('Magnitude')

% ACCELERATION ERROR
erroracceleration=(acceleration_out)-a;
error_max=max(abs(error_acceleration(floor(L/2): I:L)))

figure(3)
subplot(2,1,1)
plot(t,error_acceleration),
axis(10 0.1 (-5*error_max) (5*errormax)])
grid;
title('Acceleration Error')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
subplot(2,1,2)

132



error_acceleration_dft=fft(error_acceleration,L2);
semilogy(N,abs(error_accelerationdft));
grid
%axis([0 0.02 leO le5])
tltle('Acceleration Error 65536-Point DFT')
xlabel('Normalized Frequency')
ylabel('Magnitude')

A.3 SIM3
function [error_max]=sim3(M,Ni)

%
% SIM3(M,Ni) generates ideally bandlimited spectra of the frequency

% moduluated input using bessel function formulation. The ideally

% bandlimited FM signal is then demodulated by the CDM demodulator, as

% described in SIM2(M), and the acceleration error is determined. This

% function plots the bandlimited input and its spectrum, and plots the

% error and the error spectrum.
%
% M is the differentiator order, and Ni is the number of sidebands used in

% the bessel function to generate the FM input. The bandwidth of the

% FM input is 2*Ni*fa, where fa is the acceleration frequency. Bandwidth,

% in this case, refers to the width of the band of positive frequencies of

% the spectrum centered at DC. The total input bandwidth, including

% negative frequencies, would be 4*Ni*fa.
%
% Using SIM2, the resolution limitation due to the differentiator can be

% determined. SIM3 determines the resolution limitations due to both

% the differentiator and the FM bandwidth Therefore, by comparing the

% results of SIM3 to SIM2, it is possible to estimate the effect of FM

% bandwidth on the theoretical CDM demodulator acceleration resolution.

%
% The function returns error_max, the maximum acceleration error due to

% the parameters M and Ni.

% SAMPLING FREQUENCY
fs=10e3, % fs=10 kHz

%***** INPUT DEFINITION *****

f= I e3;% Input frequency

% CONTINUOUS TIME AXIS
t-0 I/fs.10*(100/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L=10*(100/f)*fs;
n-0.l:L;

% *********** FM INPUT **********

fa=100;% fa=100 Hz Frequency of acceleration.
kl=50;% kl=50 Hz/g
k2=50,% k2=50 Hz/g
A=20,% A=20 g <-- Maximum acceleration, for max mf.

Sl=l;% Sl=1 unitless, voltage.

S2=1;% S2=1 unitless, voltage.

% THESE ARE THE FUNCTIONS I NEED TO APPROXIMATE WITH BESSEL:

% si=S I *cos((kl *A/fa)*sin(2*pi*fa*(n/fs)));
% sq=S2*sin((k2*A/fa)*sin(2*pi*fa*(n/fs)));

% GENERATE BANDLIMITED si

Bi=kl*A/fa;
si=SI *besselj(0,Bi)*ones(1,L+l);
for i=l:Ni

si=si+(2*S I *besselj(2*i,Bi)*cos(2*i*2*pi*fa*(n/fs)));
end;
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% GENERATE BANDLIMITED sq
Nq=Ni,% Number of sidebands. Bandwidth if fa*Nq.
Bq=k2*A/fa;
sq=zeros(l,L+ );
for i=0:Nq

sq=sq+(2*S2*besselj(((2*i)+ ),Bq)*sin(((2*i)+l)*2*pi*fa*(n/fs)));
end;

%************************** FROM sim2.m **************************

% DIFFERENTIATE
M=26;
hdiff=remez(M,[0 0.5],[0 1 ],'differentiator');% Differentiator
a=l;
b=hdiff;

sid=(pi*fs/2)*filter(b,a,si),
sqd=(pi*fs/2)*filter(b,a,sq);

% IDEAL DIFFERENTIATED OUTPUT
nd=M/2;% Delay
sidi=(-A*kl *2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S1 *sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));
sqdi=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S2*cos((kI *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
% side=S *cos((kl *A/fa)*sln(2*pl*fa*((n-nd)/fs)));
% sqde=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% GENERATED DELAYED BANDLIMITED INPUT side
side=Sl*besselj(0,Bi)*ones(,L+1);
for i=I:Ni

side=side+(2*S *besselj(2*i,Bi)*cos(2*i*2*pi*fa*((n-nd)/fs)));
end;

% GENERATED DELAYED BANDLIMITED INPUT sqde
sqde=zeros(l,L+);
for i=0:Nq

sqde=sqde+(2*S2*besselj(((2*i)+),Bq)*sin(((2*i)+l)*2*pi*fa*((n-nd)/fs)));
end;

% SQUARED DELAYED INPUT
sis=side.*side;
sqs=sqde *sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.*sqde)-(sqd *side);

% IDEAL CROSS MULTIPLIED TERMS
dividendi=(sidi.*sqde)-(sqdi.*side);

figure(l)
subplot(2,1,1)
plot(t,si)
axis([0 0.01 -1 II)
title('In-phase Input i(t) Ideally Bandlimited to 2*Ni*fa Hz')
xlabel('Time (Seconds)')
ylabel('Amplitude')
grid
subplot(2,1,2)
L2=216;
N=0: 1L2:(I-(1/L2));
si_dft=fft(si,L2);
semilogy(N,abs(sl_dft));
axis([0 0.25 le-I le4])
%plot(N,abs(sl_dft));
%axis([O (2*Ni*fa/fs) 0 3501)
%axis([0 0 3 0 100])
title('65536-Point DFT of In-phase Input (It) Ideally Bandlimited to 2*Ni*fa Hz')



xlabel('Normalized Frequency')
ylabel('Magnitude')
grid

% ACCELERATION
acceleration_out=(dividend./divisor)/(-2*pi*kl);

% IDEAL OUTPUT
a=A*cos(2*pi*fa*((n-nd)/fs));

% ACCELERATION ERROR
error_acceleration=(acceleration_out)-a;
error_max=max(abs(error_acceleration(floor(L

2
): 1 :L)))

figure(2)
subplot(2,1,1)
plot(t,erroracceleration);
axis([0 0 1 (-5*error_max) (5*error_max)])

grid;
tle('Acceleration Error')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
subplot(2,1,2)
erroracceleration_dft=fft(error_acceleration(floor(U4):1:L),L2);
senulogy(N,abs(erroracceleration_dft));
%plot(N,abs(error_acceleration_dft));
%axis([0 (2*NI*fa/fs) 0 350])
%axis([0 0.5 0 600])
title('65536-Point DFT of Acceleration Error')

xlabel('Normalized Frequency')
ylabel('Magnitude')
grid

A.4 SIM4
function le]=sim4(M,NSB)

%
% SIM4(M,NSB) generates a matrix, e, that displays in its first column

% sideband numbers ranging from I to NSB; in its second column the

% positive frequency bandwidth corresponding to the sideband number in

% that row; and in the third column the maximum acceleration error for

% the QCDM demodulator acceleration readout. The errors are maximum

% values corresponding to the worst-case (maximum acceleration error)

% input parameters listed at the end of this description.

% When NSB is sufficiently large, the acceleration error converges to

% the maximum acceleration error found using SIM2(M) for differentiator

% order M. Pnor to this point of convergence, the FM bandwidth limits

% the theoretical resolution of the demodulator. At the point of

% convergence and thereafter, the differentiator limits the theoretical

% resolution.

% The sampling frequency, fs, Is 10-kHz The input signal, i(t), used in

% the example plots is defined as in Fig. 3.7 of this thesis, with the

% following parameter values:
%
% al (t)=A*cos(2*pi*fa*t)
% a2(t)=0
% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% Sl=S2=1
% i=S I *S2*cos((kl *A/fa)*sin(2*pi*fa*(n/fs)))

% These parameters result in the maximum expected modulation index of the

% VIA oscillator outputs.
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% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
fs=10e3; % fs=lO kHz

%***** INPUT DEFINITION *****

f=le3;% Input frequency

% CONTINUOUS TIME AXIS
t=0:l/fs:10*(l/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L=10*(l/f)*fs;
n=0:1:L;

% ********** FM INPUT **********
fa=100,% fa=100 Hz Frequency of acceleration.
kl=50;% kl=50 Hz/g
k2=50;% k2=50 Hz/g
A=20,% A=20 g <-- Maximum acceleration, for max mf.
S1= ; % S= 1 unitless, voltage.
S2=1; % S2=1 unltless, voltage

% THESE ARE THE FUNCTIONS I NEED TO APPROXIMATE WITH BESSEL:
% si=Sl*cos((kI *A/fa)*sin(2*pi*fa*(n/fs)));
% sq=S2*sin((k2*A/fa)*sin(2*pi*fa*(n/fs)));

% GENERATE BANDLIMITED si
for Ni=I:NSB% Number of sidebands. Bandwidth is fa*Ni.

Bi=kl*A/fa;
si=S I*besselj(0,Bi)*ones(i,L+l);
for i=l:Ni

si=si+(2*S1 *besselj(2*i,Bi)*cos(2*i*2*pi*fa*(n/fs)));
end;

% GENERATE BANDLIMITED sq
Nq=Ni;% Number of sidebands. Bandwidth if fa*Nq.
Bq=k2*A/fa;
sq=zeros(l,L+l);
for i=0-Nq

sq=sq+(2*S2*besselj(((2*i)+ 1),Bq)*sn(((2*i)+ )*2*pi*fa*(n/fs))),
end;

%************************** FROM cdm3.m **************************

% DIFFERENTIATE
hdiff=remez(M,[0 0 51,[0 1 ],'differentiator'),% Differentiator
a= l;
b=hdiff;

sid=(pi*fs/2)*filter(b,a,si);
sqd=(pi*fs/2)*filter(b,a,sq);

% IDEAL DIFFERENTIATED OUTPUT
nd=M/2;% Delay
sidi=(-A*kl *2*pi)*(cos(2*pi*fa*((n-nd)/fs))). *(S l*sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));
sqdl=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(2*cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
% side=S I*cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs)));
% sqde=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% GENERATED DELAYED BANDLIMITED INPUT side *****NOT FROM cdm.m *****
side=Sl*besselj(0,Bi)*ones(,L+1);
for i=l:Ni

side=side+(2*S I *besselj(2*i,Bi)*cos(2*i*2*pi*fa*((n-nd)/fs)));
end;

136



% GENERATED DELAYED BANDLIMITED INPUT sqde *****NOT FROM cdm.m *****
sqde=zeros(I,L+1);
for i=0O:Nq

sqde=sqde+(2*S2*besselj(((2*i)+ 1),Bq)*sin(((2*i)+ I)*2*pi*fa*((n-nd)/fs)));
end;

% SQUARED DELAYED INPUT
sis=side.*side,
sqs=sqde.*sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.* sqde)-(sqd.*side);

% IDEAL CROSS MULTIPLIED TERMS
dividendi=(sidi.*sqde)-(sqdi.*side);

% ACCELERATION
accelerationout=(dividend./divisor)/(-2*pi*k );

% IDEAL OUTPUT
a=A*cos(2*pi*fa*((n-nd)/fs));

% ACCELERATION ERROR
erroracceleration=(acceleration_out)-a;
errormax(Ni,3)=max(abs(error._acceleration(floor(2): I :L)));
error_max(Ni, )=Ni,
error_max(Ni,2)=Ni*fa*2,

end,

e=error max

A.5 SIM5
function Ihlpf,Nfl=sim5(Fp,Fs,Dp,Ds)

% SIM5(Fp,Fs,Dp,Ds) designs a linear-phase FIR filter using the remez
% algorithm. The filter is designed to meet the passband and stopband
% cutoff frequencies, Fp and Fs (normalized to the sampling frequency),
% and the passband and stopband maximum ripple, Dp and Ds. The function
% returns the filter coefficients in hlpf and the filter order in Nf.

% After designing the filter, the function filters an FM input to
% observe error introduced by the passband and stopband ripple, and
% distortion introduced by the bandlimiting of the FM input. The input
% and its spectrum, the filtered input and its spectrum, and the frequency
% response of the filter and its ripple characteristics are plotted.
%
% The sampling frequency, fs, is 10-kHz. The input signal, i(t), used in
% the example plots is defined as in Fig. 3.7 of this thesis, with the
% following parameter values
%
% al (t)=A*cos(2*pl*fa*t)
% a2(t)-0
% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% SI=S2=1
% i=S l*S2*cos((kl *A/fa)*sin(2*pi*fa*(n/fs)))

% These parameters result in the maximum expected modulation index of the
% VIA oscillator outputs.
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% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
fs=10e3; % fs=10-kHz

%***** INPUT DEFINITION *****

f=le3;% Input frequency

% CONTINUOUS TIME AXIS
t=0: /fs. 10*(100/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L= 10*(100/f)*fs;
n=0: I:L;

% *********** FM INPUT **********
fa=100,% fa= 100 Hz Frequency of acceleration.
k1=50;% kl=50 Hz/g
k2=50;% k2=50 Hz/g
A=20;% A=20 g <-- Maximum acceleration, for max mf
S 1=;% S1=1 unitless, voltage.
S2=1; % S2=1 unitless, voltage.

sio=S I *cos((k I *A/fa)*sin(2*pi *fa*(n/fs)));

% LOW PASS FILTER
[Nf,F,M,w]=remezord([Fp Fs], [1 0], [Dp Ds], fs); Nf
I hlpf,errl=remez(Nf,FM,w), err
al=1;
bl=hlpf;

% FILTER FM INPUTS
si=tilter(bl,al,sio),

% ERROR INTRODUCED BY FILTER
sio=SI *cos((kl *A/fa)*sin(2*pi*fa*((n-(Nf/2))/fs)));
error_lpf=sio-si,
max(abs(error_lpf(floor(L/2): I.L)));

figure(l)
subplot(2,1,1)
plot(t,sio)
grid
title('Ideal Input i(t)')
xlabel('Time (Seconds)')
ylabel('Amplitude')
axis(J0 0.01 -1 1 )
subplot(2,1,2)
L2=2

^
16;

N=0:1/L2.(I-(l/L2)),
slo_dft=fft(sio,L2);
plot(N,abs(sio_dft))
title('65536-Point DFT of Filter Output')
grid
xlabel('Normalized Frequency')
ylabel('Magnitude')
axis(10 0.5 0 4000])

figure(2)
subplot(3,1,1)
hlpf_dft=fft(hlpf,L2);
plot(N,abs(hlpf_dft))
axis
title('Low Pass Filter hlpf')
xlabel('Normalized Frequency')
ylabel('Magnitude')
grid
subplot(3,1,2)
hideal_pas( I.floor(L2*(Fp/fs)))=I;
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pass_ripple=hideal_pass-abs(hlpfdft(l :floor(L2*(Fp/fs))));
plot(N(l :floor(L2*(Fp/fs))),pass_ripple)
grid
title('Passband Ripple')
xlabel('Normalized Frequency')
ylabel('Amplitude')
subplot(3,1,3)
plot(N,abs(hlpf_dft))
grid
title('Stopband Ripple')
xlabel('Normalized Frequency')
ylabel('Magnitude')
axis([(Fs/fs) 0.5 (-Ds) (3*Ds)])

figure(3)
subplot(2,1,1)
plot(t,errorpf);
grid
title('Error in i(t) Introduced by LPF')
xlabel('Time (Seconds)')
ylabel('Amplitude')
axis([0 1 (-3*Dp) (3*Dp)])
subplot(2,1,2)
error_1pfdft=fft(errorlpf(floor(L/2): :L),L2);
plot(N,abs(errorlpf_dft))
title('65536-Point DFT of Error')
axis([0 0.5 0 (l.5*max(abs(error_lpf_dft)))])
xlabel('Time (Seconds)')
ylabel('Amplitude')
grid

A.6 SIM6
function (e,Nf]=sim6(M,Fp,Fs,Dp,Ds)

% SIM6(M,Fp,Fs,Dp,Ds) designs an FIR differentiator of length M+1 as in
% SIMI, and a low pass filter with passband and stopband frequencies Fp
% and Fs, respectively, and passband and stopband ripple Dp and Ds, as
% in SIM5. The order of the designed FIR low pass filter is returned in
% Nf. The maximum acceleration error when hlpf is cascaded with the
% CDM block simulated in SIM4, is returned in e. The input to the system
% for this error Is listed at the end of this function description.
%

% SIM6 generates a plot of the acceleration error and its spectrum.
%

% The sampling frequency, fs, is 10-kHz The input signal, i(t), used in
% the example plots is defined as in Fig 3.7 of this thesis, with the
% following parameter values:
%

% al(t)=A*cos(2*pi*fa*t)
% a2(t)=0
% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% SI=S2=1
% I=S 1 *S2*cos((kl *A/fa)*sin(2*pi*fa*t))
% q=S I *S2*sin((KI *A/fa)*sin(2*pi*fa*t))
%

% These parameters result in the maximum expected modulation index of the
% VIA oscillator outputs.

% (c) 1998 Lawrence K Chang

% SAMPLING FREQUENCY
fs=10e3; % fs=10-kHz

%***** INPUT DEFINITION *****
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f=le3;% Input frequency

% CONTINUOUS TIME AXIS
t=0. /fs:10*(100/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods
% of input frequency f.

% DISCRETE TIME AXIS
L=10*(100/f)*fs;
n=0:l:L;

% *********** FM INPUT **********
fa=100,% fa=100 Hz Frequency of acceleration.
kl=50,% kl=50 Hz/g
k2=50,% k2=50 Hz/g
A=20,% A=20 g <-- Maximum acceleration, for max mf.
S 1= I; % S = 1 unitless, voltage.
S2=1; % S2=1 unitless, voltage.

sio=S I *cos((kl *A/fa)*sin(2*pi*fa*(n/fs)));
sqo=S2*sin((k2*A/fa)*sin(2*pi*fa*(n/fs)));

% LOW PASS FILTER
[Nf,F,MI,w]=remezord([Fp Fs], [1 0], [Dp Ds], fs); Nf
[hlpf,err]=remez(Nf,F,Ml,w), err
al=l;
bl=hlpf;

% FILTER FM INPUTS
si=filter(bl,al,sio);
sq=filter(bl,al,sqo);

% ************ Cross Differentiate Multiply ************
% DIFFERENTIATE
hdiff=remez(M,[0 0.5],[0 1 ],'differentiator');% Differentiator
a= 1;
b=hdiff,

sid=(pl*fs/2)*filter(b,a,si);
sqd=(pi*fs/2)*filter(b,a,sq);

% IDEAL DIFFERENTIATED OUTPUT
nd=(M+Nf)/2;% *****THIS DELAY IS DIFFERENT FROM sim4.m.
sid_ideal=(-A*kl*2*pi)*(cos(2*pl*fa*((n-nd)/fs))).*(S *sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));
sqd_ideal=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S2*cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
sideideal=S I*cos((kl *A/fa)*sin(2*pl*fa*((n-nd)/fs)));
sqdeideal=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% DELAYED (FILTERED) INPUT
adelay=1;
b_delay=zeros(l,(M/2)+ 1),
b_delay(l,(M/2)+ 1)= 1;
side=filter(bdelay,adelay,si);
sqde=filter(b_delay,a_delay,sq);

% SQUARED DELAYED INPUT
sis=side.*side;
sqs=sqde.*sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.*sqde)-(sqd.*side);

% IDEAL CROSS MULTIPLIED TERMS
dividendi=(sidideal.*sqde_ideal)-(sqd_ideal.*side_ldeal);

% ACCELERATION
accelerationout=(dividend./divisor)/(-2*pi*kl);
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% IDEAL OUTPUT
a=A*cos(2*pi*fa*((n-nd)/fs));

% ACCELERATION ERROR
error_acceleration=(acceleration_out)-a;
max_error_acceleration=max(abs(error_acceleration(floor(L/

2
): 1 :L)))

figure(l)
subplot(2, 1,1)
plot(t,error_acceleration);
axis([0 1 (-100*Ds) (100*Ds)])
grid;
title('Acceleration Error')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')

subplot(2,1,2)
L2=2A 16;
N=0:I/L2:(I-(1/L2)),
error_acceleration_dft=fft(error_acceleration(floor(L2): 1:L),L2);

semilogy(N,abs(erroraccelerationdft))
title('65536-Point DFT of Acceleration Error')

xlabel('Normalized Frequency')
ylabel('Magnitude')
grid

e=max_error_acceleration;

A.7 SIM7
function thnbf,errornbf_max]=sim7(Fp2,Fs2,Dp2,Ds2)

% SIM8(Fp2,Fs2,Dp2,Ds2) designs a narrowband filter. This file is very

% similar to SIM5, with the exception that the test input is the

% acceleration signal, and not an FM waveform

% (c) 1998 Lawrence K. Chang

%********** DIGITAL SYSTEM PARAMETERS **********

fs=10e3,% fs=10 kHz
t=0 I /fs:0.5;% DISCRETE-TIME AXIS WITH SAMPLING RATE fs

L=0 5*fs,
n=0 I L,% SAMPLE NUMBER

%********** ACCELERATION INPUT **********

A=20,% Acceleration Magnitude
fa=100;% Acceleration frequency
a=A*cos(2*pi*fa*t);% COSINE ACCELERATION SIGNAL.

%********** LOW PASS FILTER **********

[Nf2,F2,M2,w2]=remezord([Fp2 Fs2], [10], [Dp2 Ds2], fs); Nf2

fhnbf,err2]=remez(Nf2,F2,M2,w2);
a12=1;
bl2=hnbf;

%********** FILTER DEMODULATED SIGNAL **********

af=filter(bl2,al2,a);

%********** ERROR INTRODUCED BY FILTER **********

ai=A*cos(2*pi*fa*(t-(Nf2/(2*fs))));
error nbf=ai-af;
error.nbfmax=max(abs(errornbf(floor(U2): I:L)));

%********** PLOTS **********

figure(l)
plot(t,af,'-',t,ai,'--')



tigure(2)
subplot(3, 1,1)
L2=2A 16;
N=0. I/L2(1-(1/L2));
hnbf_dft=fft(hnbf,L2),
plot(N,abs(hnbf_dft))
title('Low Pass Filter hnbf')
xlabel('Normalized Frequency')
ylabel('Magnitude')
grid
subplot(3,1,2)
hideal_pass(l:floor(L2*(Fp2/fs)))=;
pass_ripple=hideal_pass-abs(hnbf_dft(l :floor(L2*(Fp2/fs))));
plot(N( :floor(L2*(Fp2/fs))),pass ripple)
grid
title('Passband Ripple')
xlabel('Normalized Frequency')
ylabel('Amplitude')
subplot(3,1,3)
plot(N,abs(hnbf_dft))
grid
title('Stopband Ripple')
xlabel('Normalized Frequency')
ylabel('Magmntude')
axis([(Fs2/fs) 0 5 (-Ds2) (3*Ds2)])

figure(3)
subplot(2,1,1)
plot(t,error_nbf);
grid
tltle('Error in a(t) Introduced by LPF')
xlabel('Time (Seconds)')
ylabel('Amplitude')
axis([0 0.05 (-10*Dp2) (10*Dp2)])
subplot(2,1,2)
error_nbfdft=fft(error_nbf(floor(L/2) 1 :L),L2);
plot(N,abs(errornbfdft))
title('65536-Point DFT of Error')
axis([0 0.5 0 (1.5*max(abs(errornbfdft)))])
xlabel('Time (Seconds)')
ylabel('Amplitude')
grid

A.8 SIM8
function fe I,e2]=sim8(M,Fp,Fs,Dp,Ds,Fp2,Fs2,Dp2,Ds2)

% SIM8(M,Fp,Fs,Dp,Ds,Fp2,Fs2,Dp2,Ds2) combines the code of SIM6 and SIM7.
% Parameter M is the differentiator order. Parameters Fp, Fs, Dp, and Ds
% are the passband and stopband cutoff frequencies, passband and stopband
% ripple of the low pass filter. Parameters Fp2, Fs2, Dp2, and Ds2 are the
% passband and stopband cutoff frequencies, passband and stopband ripple of
% the narrowband filter.

% SIM9 generates three figures. Figure 1 is the acceleration error before
% the narrowband filter. Figure 2 is the error after the narrowband filter.
% Figure 3 is the acceleration output, which should give an indication of
% the SNR.
%
% The next step is to add noise to the input, and to see how well the FM
% demodulator can shape additive white noise that degrades the resolution.

% The sampling frequency, fs, is 10-kHz. The input signal, i(t), used in
% the example plots is defined as in Fig. 3.7 of this thesis, with the
% following parameter values:
%
% al(t)=A*cos(2*pi*fa*t)
% a2(t)=0
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% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% Si=S2=1
% i=S I *S2*cos((kl *A/fa)*sin(2*pi*fa*t))
% q=S I*S2*sin((KI *A/fa)*sin(2*pi*fa*t))

% These parameters result in the maximum expected modulation index of the

% VIA oscillator outputs.

% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
fs=10e3; % fs=10-kHz

%***** INPUT DEFINITION *****

f=le3,% Input frequency

% CONTINUOUS TIME AXIS
t=0:l/fs:10*(100/f);% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods

% of Input frequency f.

% DISCRETE TIME AXIS
L=10*(100/f)*fs;
n=O:l:L,

% ********** FM INPUT **********

fa=100;% fa=100 Hz Frequency of acceleration.
kl=50,% kl=50 Hz/g
k2=50;% k2=50 Hz/g

A=20;% A=20 g <-- Maximum acceleration, for max mf.

S I =1;% S 1= unitless, voltage.

S2=I; % S2=1 unitless, voltage.

sio=S 1 *cos((kl *A/fa)*sin(2*pi*fa*(n/fs)));
sqo=S2*sin((k2*A/fa)*sin(2*pl*fa*(n/fs)));

% LOW PASS FILTER

tNf,F,MI,wl=remezord([Fp Fs], [1 0], [Dp Ds], fs), Nf
Ihlpf,err]=remez(Nf,F,Ml,w); err

al=l,
bl=hlpf,

% FILTER FM INPUTS
si=filter(bl,al,sio);
sq=tilter(bl,al,sqo);

% ************ Cross Differentiate Multiply ************
% DIFFERENTIATE
hdiff=remez(M,[0 0.5],[0 1 ],'differentiator');% Differentiator
a= 1,
b=hdiff,

sid=(pi*fs/2)*filter(b,a,si);
sqd=(pi*fs/2)*filter(b,a,sq);

% IDEAL DIFFERENTIATED OUTPUT
nd=(M+Nf)/2,% *****THIS DELAY IS DIFFERENT FROM sim4.m.

sid ideal=(-A*kl *2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S*1 sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

sqd ideal=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S2*cos((k *A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
side_ideal=S IS*cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs)));

sqdejideal=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% DELAYED (FILTERED) INPUT
a_delay=l;
b delay=zeros(l,(M/2)+I);
b_delay(l,(M/2)+l)= ;
side=filter(b_delay,a_delay,si);



sqde=filter(b_delay,a_delay,sq);

% SQUARED DELAYED INPUT
sis=side.*sjde,
sqs=sqde.*sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.*sqde)-(sqd.*side);

% IDEAL CROSS MULTIPLIED TERMS
dividendi=(sid_ideal *sqde_ideal)-(sqd_ideal.*side_ideal);

% ACCELERATION
acceleration_out=(dividend./divisor)/(-2*pi*kl);

% IDEAL OUTPUT
a=A*cos(2*pi*fa*((n-nd)/fs));

% ACCELERATION ERROR
error_acceleration I =(acceleration_out)-a,
max_error_acceleration 1 =max(abs(erroracceleration I (floor(L/2): I:L)))

% ********** NARROWBAND FILTER **********
[Nf2,F2,M2,w2]=remezord([Fp2 Fs2], [1 0], [Dp2 Ds2], fs); Nf2
[hnbf,err2l=remez(Nf2,F2,M2,w2);
a12= 1;
bl2=hnbf,

%********** FILTER DEMODULATED SIGNAL **********

acceleration_outf=filter(bl2,al2,acceleration_out);

% IDEAL OUTPUT AFTER NARROWBAND FILTERING
a2=A*cos(2*pi*fa*((n-nd-(Nf2/2))/fs));

% ACCELERATION ERROR AFTER NARROWBAND FILTERING
erroracceleration2=(acceleration_out_f)-a2,
max_erroracceleration2=max(abs(erroracceleration2(floor(L2): I:L)))

figure(l)
subplot(2, I, 1)
plot(t,error_acceleration I);
axis([0 I (-100*Ds) (100*Ds)])
grid;
title('Acceleration Error')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')

subplot(2,1,2)
L2=2^ 

16;
N=0.1L2:(1-(11/L2));
en-or_acceleration I _dft=fft(erroracceleration I (floor(L/2): I:L),L2);
semilogy(N,abs(error_acceleration dft))
title('65536-Point DFT of Acceleration Error')
xlabel('Normalized Frequency')
ylabel('Magnitude')
grid

figure(2)
subplot(2,1,1)
plot(t,erroracceleration2);
axis([0 I (-100*Ds) (100*Ds)])
grid;
title('Acceleration Error After Narrowband Filtering')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')

subplot(2,1,2)
error_acceleration2_dft=fft(erroracceleration2(floor(L/2). 1:L),L2);
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semilogy(N,abs(erroracceleration2_dft))
title('65536-Point DFT of Acceleration Error')
xlabel('Normalized Frequency')
ylabel('Magnitude')
grid

figure(3)
subplot(2, 1, 1)
plot(t,acceleration_outf)
title('Acceleration Ouput After Narrowband Filtering')

xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
axis([0 0.1 -25 25])
grid,

subplot(2,1,2)
acceleration_out_fdLft=ff(acceleration_out_f(floor(L/2). 1 :L),L2);

semilogy(N,abs(acceleration outfdft))
ttle('65536-Point DFT of Acceleration Error')
xlabel('Normalized Frequency')
ylabel('Magnitude')
axis([0 0.04 10e0 10e5])
grid

e I=max_error accelerationl;
e2=maxerroracceleration2;

A.9 SIM9
function [error_yaccmax,errorytrap_max,error_ysimp_max]=sim9(fs,A,fa,nput)

% SIM9(fs,A,fa,input) examines the performance of three different

% numencal integration methods: the Riemann Sum, the Trapezoidal

% rule, and Simpson's Rule. The discrete-time signal processing

% implementations of each of these methods are accumulation, bilinear

% transformation, and decimation. The decimation is accomplished

% using an analysis filter bank.

% SIM7 numerically integrates either a constant input, specified by

% input='con', or a cosine input specified by input='cos'. The

% amplitude and frequency of the inputs must be specified by A and fa.

% The sampling frequency is specified by fs, and time axis ranges from

% zero to 0.5 seconds.
%
% The function returns the maximum amplitude error resulting from each

% of the methods.

% (c) 1998 Lawrence K. Chang

%***** DIGITAL SYSTEM PARAMETERS *****

R=2; % DECIMATION FACTOR.
t-O:I/fs:0.5;% DISCRETE-TIME AXIS WITH SAMPLING RATE fs.

t2=0.R/fs:0.5;% DISCRETE-TIME AXIS WITH SAMPLING RATE fs/R.

%***** TEST INPUT AND IDEAL OUTPUT DEFINITION *****

If input='con'
a=A+(0*t);% CONSTANT ACCELERATION SIGNAL.

yideal=A*t;% IDEAL OUTPUT.
yldeal2=A*t2;

else
a=A*cos(2*pl*fa*t);% COSINE ACCELERATION SIGNAL.

yideal=(A/(2*pi*fa))*sin(2*pi*fa*t);% IDEAL OUTPUT.

yideal2=(A/(2*pi*fa))*sin(2*pi*fa*t2);
end
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%***** INTEGRATED OUTPUTS *****
% ACCUMLATOR IMPLEMENTATION OF A RIEMANN SUM USING A FIRST ORDER
% IIR FILTER.

yacc=(l/fs)*filter(l,[I -l],a);
erroryacc=yideal-yacc;
error_yacc_max=max(abs(error_yacc));
%figure(l)
%subplot(2,1,1)
%plot(t,yacc')
%title('yacc')
%subplot(2,1,2)
%plot(t,erroryacc)
%title('error_yacc')

% BILINEAR TRANSFORM IMPLEMENTATION OF THE TRAPAZOIDAL RULE USING
% A FIRST ORDER IIR FILTER.
ytrap=(1/(2*fs))*filter([1 ],[ 1 -l],a);
error_ytrap=yideal-ytrap,
error_ytrap_max=max(abs(error_ytrap));
%figure(2)
%subplot(2,1,1)
%plot(t,ytrap)
%title('ytrap')
%subplot(2,1,2)
%plot(t,error_ytrap)
%title('error_ytrap')

% POLYPHASE IMPLEMENTATION OF SIMPSON'S RULE USING A
% DECIMATION.
ae=a(l:2:length(a));% DOWNSAMPLE BY 2 TO GET EVEN SAMPLES.
ad=filter(I0 I ],[ 1 ],a);% UNIT SAMPLE DELAY.
ao=ad(1:2:length(a));% DOWNSAMPLE BY 2 TO GET ODD SAMPLES.
aef=filter([I 1 ,[ I -I ],ae),% TRAPAZOIDAL INTEGRATION.
aof=4*filter([ ],[1 -I],ao);% RIEMANN SUM.
ysimp=(l/(fs*3))*(aef+aof);% SIMPSON'S RULE.
errorysimp=yideal2-ysimp;
errorysimp_max=max(abs(error_ysimp));
%figure(3)
%subplot(2, 1,1)
%plot(t2,ysimp)
%title('ysimp')
%subplot(2,1,2)
%plot(t2,error_ysimp)
%title('errorysimp')

%***** PLOT OF ERRORS *****

%figure(4)
%plot(t,abs(erroryacc),'-',t,abs(error_ytrap),'--',t2,abs(error ysimp),'-.')
%title('Digitial integration error using (-) Accumulation, (--) Bilinear Transformation, (-.) Decimation')
%xlabel('Time (seconds)')
%ylabel('Velocity (m/s)')
%grid

A.10 QCDM
function [parameter-names,parameter-values]=qcdm(M,Fp,Fs,DpDs,Fp2,Fs2,Dp2,Ds2,Q,input,A,fa,fs,t)

% SYSTEM SIMULATION OF THE QCDM DEMODULATION SCHEME.

% M = Differentiator filter order
% Fp = Low pass filter passband cutoff frequency
% Fs = Low pass filter stopband cutoff frequency
% Dp = Low pass filter passband ripple amplitude
% Ds = Low pass filter stopband ripple amplitude
% Fp2= Narrowband filter passband cutoff frequency
% Fs2= Narrowband filter stopband cutoff frequency
% Dp2= Narrowband filter passband ripple amplitude
% Ds2= Narrowband filter stopband ripple amplitude
% Q = Uniform random noise between -Q and Q, with variance Q^2/12
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% input = 'con' specifies constant acceleration input

% = 'cos' specifies cosine acceleration input
% A = Amplitude of acceleration input (g)
% fa = Frequency of acceleration input (Hz)
% fs = Sampling frequency (Hz)
% t = Duration of simulation (seconds)

% The sampling frequency, fs, is 10-kHz. The input signal, i(t), used in

% the example plots is defined as in Fig. 3.7 of this thesis, with the

% following parameter values:

% al(t)=A*cos(2*pi*fa*t)
% a2(t)=0
% kl=50-Hz/g
% A=20-g
% fa=100-Hz
% Sl=S2=1
% I=SI *S2*cos((kl *A/fa)*sin(2*pi*fa*t))
% q=S l*S2*sin((K l*A/fa)*sin(2*pi*fa*t))
%
% These parameters result in the maximum expected modulation index of the

% VIA oscillator outputs.
%
% (c) 1998 Lawrence K. Chang

% SAMPLING FREQUENCY
%fs=10e3; % fs=lO kHz

%***** INPUT DEFINITION *****

% DISCRETE TIME AXIS
%L-le4;% Number of samples in simulation.
L=floor(t*fs);
n=0:l:L;

% CONTINUOUS TIME AXIS
t=0. I/fs L/fs;% Nyquist rate is fN=fs/2=5e3, so maximum input

% frequency is fN=5e3. This will create 10 periods

% of input frequency f.
t2-=0:2/fs:L/fs;% Time axis downsampled by two.

% ********** UNIFORMLY DISTRIBUTED WHITE NOISE GENERATOR *********

noise=unifmd(-Q,Q, 1,length(t));

% *********** FM INPUT **********

%fa=100;% fa=100 Hz Frequency of acceleration.
kl =50;% kl=50 Hz/g
k2=50,% k2=50 Hz/g
%A=20;% A=20 g <-- Maximum acceleration, for max mf.
SI=1, % SI=1 unitless, voltage.
S2=1;% S2=1 unitless, voltage.

if input='con'
sio=S I *S2*cos(kl *2*pi*A*(n/fs))+noise;
sqo=S2*S2*sin(k2*2*pi*A*(n/fs))+noise;

else
sio=S1 *S2*cos((kl *A/fa)*sin(2*pi*fa*(n/fs)))+noise;
sqo=S2*S2*sin((k2*A/fa)*sin(2*pi*fa*(n/fs)))+noise;

end

SNR_in=lO0*log 1(var(sio)/var(noise))

% LOW PASS FILTER

[Nf,F,Ml,w]=remezord([Fp Fs], [1 0], [Dp Ds], fs); Nf

1hlpf,err]=remez(Nf,F,MI,w); err

al=l;
bl=hlpf;

% FILTER FM INPUTS
si=tfilter(bl,al,sio);
sq=filter(bl,al,sqo);
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% ************ Cross Differentiate Multiply ************
% DIFFERENTIATE
hdiff=remez(M,[0 0.5],[0 I ],'differentiator');% Differentiator
a= I;
b=hdiff;

sid=(pi*fs/2)*filter(b,a,si);
sqd=(pi*fs/2)*filter(b,a,sq);

% IDEAL DIFFERENTIATED OUTPUT
nd=(M+Nf)/2;% *****THIS DELAY IS DIFFERENT FROM sim4.m.
sid_ideal=(-A*kl *2*pi)*(cos(2*pi*fa*((n-nd)/fs))).*(S1 *sin((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs))));
sqd_ideal=(A*k2*2*pi)*(cos(2*pi*fa*((n-nd)/fs))) *(S2*cos((kl*A/fa)*sin(2*pi*fa*((n-nd)/fs))));

% DELAYED (IDEAL) INPUT
side_ideal=S 1 *cos((kl *A/fa)*sin(2*pi*fa*((n-nd)/fs)));
sqde_ideal=S2*sin((k2*A/fa)*sin(2*pi*fa*((n-nd)/fs)));

% DELAYED (FILTERED) INPUT
a delay=1;
b delay=zeros(l,(M/2)+);
b_delay(l,(M/2)+ 1)= 1;
side=filter(b_delay, a_delay,si);
sqde=filter(b_delay,a_delay,sq);

% SQUARED DELAYED INPUT
sis=side.*side;
sqs=sqde.*sqde;

% AMPLITUDE NORMALIZED TERM FOR AM REJECTION
divisor=-(sis+sqs);

% CROSS MULTIPLIED TERMS
dividend=(sid.*sqde)-(sqd.*side);

% IDEAL CROSS MULTIPLIED TERMS
dividendi=(sid_ideal.*sqde_ideal)-(sqd_ideal.*side ideal);

% ACCELERATION
accelerationout=(dividend./divisor)/(-2*pi*kl);

% IDEAL OUTPUT
If input='con'

a=A+(O*t);
var_a=A^2

else
a=A*cos(2*pl*fa*((n-nd)/fs));
var_a=var(a)

end

% ACCELERATION ERROR
error_acceleration 1 =(acceleration_out)-a;
max_error_acceleration 1 =max(abs(error acceleration 1 (floor(L/2):1:L)))
var_errorl=var(erroraccelerationl (floor(U2):length(error_accelerationl)))

% ********** NARROWBAND FILTER **********

[Nf2,F2,M2,w2]=remezord([Fp2 Fs2], [1 0], [Dp2 Ds2], fs); Nf2
Ihnbf,err2l=remez(Nf2,F2,M2,w2);
a12=1;
bl2=hnbf;

%********** FILTER DEMODULATED SIGNAL **********

acceleration_out_f=filter(bl2,al2,acceleration_out);

% IDEAL OUTPUT AFTER NARROWBAND FILTERING
if input=='con'

a2=A+(0*t);
else
a2=A*cos(2*pi*fa*((n-nd-(Nf2/2))/fs));

end
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% ACCELERATION ERROR AFTER NARROWBAND FILTERING

erroracceleration2=(accelerationoutf)-a
2 ;

max_error_acceleration2=max(abs(erroracceleration
2(floor(U

2 ): 1 :L)))

varerror2=var(error_acceleration2(floor(/2):ength(error_acceleration
2 )))

% ACCELERATION SIGNAL TO NOISE RATIO

SNR_out=O0*log I0(var_a/var_error2)

startup_transient=isnan(accelerationout_f);% DETECT NaN VALUES OF VECTOR.

startuptransient=find(startup_transient);% FIGURE HOW MANY.

total_filterdelay=floor(nd+(Nf2/2));
%if total_filterdelay<length(startuptransient)
% startuptransient_length=length(startuptransient)
%else
% startup_transient_length=total_filter_delay;
%end;
startuptransientlength=2*total_filterdelay;
acceleration_out_f(1 :startup_transient_length)-0; % SET NaN VALUES = 0.

%********** HIGH RESOLUTION INTEGRATION **********

% DOWNSAMPLED IDEAL VELOCITY
if input=='con'
velocity_ideal=A*t;
velocity_ideal=velocity_ideal(1:2:length(velocityideal));

else
velocity_ideal=(A/(2*pi*fa))*sin(2*pi*fa*((n-nd-(Nf2/2))/fs));
velocity jdeal=velocity_ideal(1:2:length(velocity_ideal));

end

% POLYPHASE IMPLEMENTATION OF SIMPSON'S RULE USING DECIMATION.

ae=accelerationout_f(l:2:length(accelerationout_f));% EVEN SAMPLES

ad=filter([0 I],[l],acceleration_out_f);% UNIT SAMPLE DELAY.

ao=ad(I -2:iength(accelerationout_f));% ODD SAMPLES.

aef=filter(f 11,[1 -l],ae);% TRAPEZOIDAL INTEGR.

aof=4*tilter([ ],[ -l],ao);% RIEMANN SUM.

% INITIAL CONDITION FROM IDEAL VELOCITY
vic=velocity_ideal(floor(startup_transientlength/2)+ I)*(ones( ,length(aef))),

velocity=((l/(fs*3))*(aef+aof))+vlc;% SIMPSON'S RULE.

% VELOCITY ERROR
error_velocity=velocityideal-velocity;
error_velocitymax=max(abs(errorvelocity(floor(U

4
):length(velocity))))

var_error3=var(errorvelocity);

% VELOCITY SIGNAL TO NOISE RATIO
SNR_vel= 10*log10(var(velocity)/var_error3)

%********** SIMULATION OUTPUT PARAMETERS **********

parameter_values=[SNR_in;Nf;vara;max_error_acceleration I ;var_errorl ,Nf2;max_error_acceleration2;var_error2;SNRout;error_velocity_max;
var_error3,SNR_vel];

parameternames=['Input SNR
'LPF Order
'Acc Signal Power';
'Acc Error Varl ';
'Max Acc Errorl
'NBF Order

'Max Acc Error2 ';
'Acc Error Var2 ';
'Acc Output SNR ';
'Max Vel Error
'Vel Error Var ';
'Vel Output SNR '];

output=Iparameternames, parameter_values];

%********** PLOTS **********

L2=2^ 16,
N=O. 1/L2.(1-(1/L2));
p=le3;% NUMBER OF POINTS IN PLOTS
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figure(8)
subplot(2,1,1)
%plot(t2(floor(L/2)-p:floor(L/2)),velocity((2)-p:floor(L/2))2))'-',t2(floor(L/2)-p::loor(L2)),velocityideal(floo /2)-p:floor(L/2)) -- ')
plot(t2,velocity,'-',t2,velocity_ideal,'--')
title('(-) Velocity Output, Ideal Velocity Output (--)')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid
%axis([0.1 0.2 -0.04 0 05])
subplot(2,1,2)
%plot(t2(floor(L/2)-p:floor(L/2)), error velocity(floor(U2)-p floor(U2)))
plot(t2,error_velocity)
title('Velocity Error')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid
axis(0 10 (-2*error_velocitymax) (2*error_velocity_max)])

figure(5)
subplot(2,1,1)
plot(t(L-p:L),acceleration_out(L-p L))
title('Acceleration Output Before Narrowband Filtering')
xlabel('Time (Seconds)')
ylabel('Acceleraiton (g)')
grid
%axis([O 0.1 -30 30])
subplot(2,1,2)
%acceleration_outdft=fft(acceleration_out(floor(U2):length(acceleration_out)),L2);
%plot(N,20*log l0(abs(accelerationout_dft)))
%xlabel('Normalized Frequency')
%ylabel('Magnitude (dB)')
%grid
plot(t(L-p:L),error_acceleration I (L-p:L));
%axis(10 0.1 (-2*max_error_accelerationl) (2*maxerroracceleration l)])
grid;
title('Acceleration Error Before Narrowband Filtering')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')

figure(3)
subplot(2,1,1)
plot(t(L-p:L),acceleration_out_f(L-p:L))
title('Acceleration Ouput After Narrowband Filtering')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')
%axis([0 0.3 -25 25])
grid;
subplot(2,1,2)
%acceleration_outf_dft=fft(acceleration outf(floor(2): I1.L),L2);
%plot(N,20*log 10(abs(acceleration_outfdft)))
%title('65536-Point DFT of Acceleration Output After Narrowband Filtering')
%xlabel('Normalized Frequency')
%ylabel('Magnitude (dB)')
%axis([0 0.1 lOe0 10e5])
%axis([0 0.3 0 100])
%grid
plot(t(L-p:L),error_acceleration2(L-p:L));
%axis([0 0.3 (-2*max_error_acceleration2) (2*maxerror_acceleration2)])
grid;
title('Acceleration Error After Narrowband Filtering')
xlabel('Time (Seconds)')
ylabel('Acceleration (g)')

%figure(4)
%sio_dft=fft(sio,L2),
%subplot(2,1,1)
%plot(N,20*log 10(abs(siodft)))
%grid
%xlabel('Normalized Frequency')
%ylabel('Magnitude (dB)')
%title('Inphase FM Input Corrupted with Noise')
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%subplot(2,1,2)
%acceleration_outdft=fft(accelerationout(floor(U2):ength(acceleration_out)),L

2
)

%plot(N,20*log I 0(abs(acceleration_outdft)))
%grid
%title('Acceleration Output Before Narrowband Filtering')

%xlabel('Normalized Frequency')
%ylabel('Magnitude (dB)')
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