
Oxidative DNA Damage: Mutagenic Properties of 5-Hydroxycytosine,
5-Hydroxyuracil, and Uracil Glycol in Eschericia coli

by

Deborah Anne Kreutzer

B. A. Chemistry
Wheaton College, 1992

SUBMITTED TO THE DIVISION OF TOXICOLOGY IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN TOXICOLOGY

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1998

© The Massachusetts Institute of Technology
All rights reserved.

Signature of Author:

Certified by:

Accepted by:

Division of Toxicology
May 11, 1998

( John M. Essigmann
Professor of Chemistry and Toxicology

Thesis Supervisor

Peter C. Dedon
Chairprson, Committee on Graduate Students

MASSACHUJSETS INSTITUTE
OF TECHNOLOGY 1

JUN1z51U
4U~A* B



Thesis Committee

Professor Gerald N. Wogan

6.) Chairperson

Professor John M. Essigmann
Thesis Supervisor

Professor Peter C. Dedon

Professor Steven R. Tannenbaum

f



Oxidative DNA Damage: Mutagenic Properties of 5-Hydroxycytosine,
5-Hydroxyuracil, and Uracil Glycol in Eschericia coli

by

Deborah Anne Kreutzer

Submitted to the Division of Toxicology on May 11, 1998
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Toxicology

ABSTRACT

Oxidative DNA damage has been implicated in mutagenesis, carcinogenesis and
aging. Endogenous cellular processes such as aerobic metabolism generate reactive
oxygen species (ROS) that interact with DNA to form dozens of different types of DNA
damage products. If unrepaired, these lesions can exert a number of deleterious effects
including the induction of mutations. In an effort to understand the genetic consequences
of cellular oxidative damage, many laboratories have determined the patterns of
mutations generated by the interaction of ROS with DNA. Compilation of these
mutational spectra has revealed that GC- AT is the most commonly observed mutation
resulting from oxidative damage to DNA. Until now, however, the chemical nature of
the altered DNA base giving rise to this mutation has remained elusive. Since a single
oxidizing agent causes multiple lesions, and since mutational spectra convey only the end
result of a complex cascade of events (which includes formation of lesions, repair
processing, and polymerase errors) it is impossible to assess the mutational specificity of
individual DNA adducts directly from mutational spectra. The task of assigning specific
features of mutational spectra to individual DNA lesions has been made possible with the
advent of a technology to analyze the mutational properties of single defined adducts in
vitro and in vivo. Using this technology, the oxidative adducts 5-hydroxy-2'-
deoxycytidine (5-OH-dC), 5-hydroxy-2'-deoxyuridine (5-OH-dU) and 5,6-dihydro-5,6-
dihydroxy-2'-deoxyuridine (dUg) are herein examined. 5-OH-dU and dUg are found to
be highly mutagenic in Eschericia coli (E. coli), producing exclusively C-T transition
mutations, whereas 5-OH-dC is found to be weakly mutagenic, inducing C-+T as well as
C--G mutations. The implications of these finding are discussed in terms of the literature
and in terms of a future program of in vivo repair studies.

Thesis Supervisor: John M. Essigmann

Title: Professor of Chemistry and Toxicology
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INTRODUCTION

Throughout history, humans have always feared certain diseases more than others,

from leprosy in biblical times to the bubonic plague in the Middle Ages to tuberculosis in

the nineteenth century (Pitot, 1993). Thanks to modem advances in the medical sciences,

people in industrialized countries today do not hold the same level of fear toward

infectious diseases that they once did. Today, as people are living longer lives, it is

cancer that most affects us. A first step towards controlling this disease should be to

acquire a basic understanding of its genesis. Although we do not yet fully comprehend

the molecular mechanisms that lead to cancer development, studies of the past two

decades have provided insights into the constellation of genes that play roles as enhancers

or suppressors of cancer.

Civilizations as far back as the ancient Egyptians recognized the presence of

tumors and, in fact, autopsies of mummies reveal the existence of bone tumors (Pitot,

1993). The term cancer has its roots in Latin, and is based on the Greek work karkinoma,

or crab. It was initially coined by Hippocrates who, around 400 BC, described the long,

distended veins radiating from some breast tumors as the limbs of a crab (Varmus and

Weinberg, 1993). Traditionally descriptive in nature, biology has been transformed in the

twentieth century into a science capable of explaining complex phenomena such as

cancer. This new power stems largely from the merging of two distinct fields, genetics

and biochemistry, into the science of molecular biology.

The field of genetics was born in the late nineteenth century with the publishing

of Gregor Mendel's pea breeding experiments, bringing to the forefront of biology the



concept of the gene as the hereditary unit (Mendel, 1866). Seminal experiments by O. T.

Avery in 1944 (Avery et al., 1944) and by A. D. Hershey and M. Chase in 1952 (Hershey

and Chase, 1952) showed definitively that deoxyribonucleic acid (DNA) is the molecule

that comprises the genetic material of a cell. Together with these discoveries, the

elucidation of the double-helical structure of DNA by J. T. Watson and F. H. Crick in

1953 (Watson and Crick, 1953a; Watson and Crick, 1953b) catalyzed the development of

the field of molecular biology. The advancement of this field has been further propelled

by the development of biochemical methods for purifying molecules and characterizing

enzymes, by the advent of procedures for growing cells and viruses under controlled

conditions, and by the improvement in physical techniques for describing molecules at

the atomic level (Varmus and Weinberg, 1993). All of these approaches have played

major roles in furthering our knowledge of the molecular origins of cancer.

In the field of cancer research, it is widely believed that alterations in the

nucleotide sequence of DNA are the underlying cause of cancer development. This is one

of nature's great double-edged swords: while DNA mutations are a necessary part of

adaption and natural selection, they may also lead to the development of serious disease.

The question thus becomes, what is the underlying cause of DNA mutation?

First and foremost, there is the simple fact that the copying of the nucleotide sequence of

DNA is not perfect (for a review, see Vogelstein and Kinzler, 1993), and hence a low

level of mutation is introduced into the genome by DNA polymerases. In addition, the

experiments of H. J. Muller in 1927 demonstrating that X-rays cause DNA mutations

(Muller, 1927) led to the investigation of other exogenous chemical agents, such as UV



radiation from sunlight, as potential sources of mutagenesis. More recently, however,

attention has been directed toward the role that chemicals produced within the body may

play in mutagenesis (Mamett and Burcham, 1993). Much effort is currently aimed at

understanding the cellular fate of the reactive metabolites of molecular oxygen that are

formed during the process of aerobic respiration. Thus, the focus of this work rests on the

DNA damaging effects of reactive oxygen species.

This dissertation will review what is known about oxidative damage to DNA and

what questions remain to be answered. It proposes, tests, and suggests an answer to one

such question: What is the molecular cause of the most frequently observed DNA

mutation, GC-+AT transitions?

The final answer to this question, beyond its immediate scientific value, will help

to complete an emerging picture of oxidative DNA damage that lays the foundation for

the understanding of cancer and the eventual eradication of one of today's most prevalent

diseases.



CHAPTER I:

Mutagenicity and Repair of Oxidative DNA Damage:

Insights from Studies Using Defined Lesions



A. INTRODUCTION

Life in an aerobic environment provides organisms with enormous benefits, but

also presents significant dangers. Through the process of oxidative phosphorylation, the

energy currency of the cell, ATP, is generated, but ironically, the highly reactive oxygen

species (ROS) necessarily produced to fuel this process can also cause deleterious

chemical changes within the cell. When the levels of cellular ROS increase, a state of

oxidative stress can occur resulting in covalent modifications to cellular macromolecules.

Although all macromolecules are subject to damage by ROS, the primary deleterious

consequences of oxidative stress probably arise from damage to DNA because DNA is

the source of information for all other macromolecules. The formation of oxidized DNA

adducts has been implicated in mutagenesis, carcinogenesis, aging and a number of

neurological disorders (Ames et al., 1993; Halliwell and Gutteridge, 1989). (Note: the

terms adduct and lesion will be used here interchangeably to refer to covalently modified

DNA bases.)

There are various endogenous and exogenous sources of oxygen radicals, and

oxygen has been appropriately called the "sink" for electrons generated in various redox

reactions of aerobic metabolism (Riley, 1994). Aerobic respiration involves the step-wise

four electron reduction of 02 to H20. The reduced intermediates generated through this

process, superoxide (02-), hydrogen peroxide (H20 2), and OH radical, are highly reactive

species, and it has been suggested that a small percentage of these species generated

during aerobic respiration may leak from the mitochondrial membrane and thus

contribute significantly to the intracellular load of ROS (Riley, 1994). An additional



source of ROS is macrophages; these cells produce numerous free radicals including 02

and NO., which can react to form peroxynitrite. Other endogenous sources of reactive

oxygen species include peroxisomes, which produce H20 2 during the P-oxidation of fatty

acids, and cytochrome P450s (Ames et al., 1993).

The most important exogenous source of oxidative damage is ionizing radiation.

Exposure to ionizing radiation can directly damage DNA, but the predominant pathway

arises from radiolysis of H20, which results in the formation of reactive species such as

OH radical that can in turn react with DNA (von Sonntag, 1987). It is noteworthy that

most of our detailed knowledge regarding the interaction of DNA with ROS has

accumulated from extensive studies of ionizing radiation (von Sonntag, 1987).

DNA damage resulting from attack by ROS includes base modifications, sugar

damage, strand breaks, abasic sites and DNA protein-crosslinks. Studies in vitro have

demonstrated that 02- and H20 2 are themselves fairly inert to reaction with DNA (Aruoma

et al., 1989). In contrast, the OH radical is highly reactive, with measured rate constants

reaching the diffusion controlled limit (von Sonntag, 1987). Much of the observed

toxicity of 02- and H202 has been attributed to intracellular reduction of these species to

OH radicals. For example, in the presence of metal ions such as Fe 2
+, H202 can be

reduced by the Fenton reaction to OH radical, or a similar iron bound oxygen species

(Henle and Linn, 1997). Similarly, processing of 02- by superoxide dismutases produces

H20 2, which can then be converted to OH radical.

The primary reactions of OH radical with DNA are hydrogen abstractions from

deoxyribose or additions to the 71 bonds of DNA bases (Breen and Murphy, 1995).



Hydrogen atom abstraction from the deoxyribose moieties of DNA by OH radical can

lead to base loss and single-strand breaks due to fragmentation of the sugar (Henner et al.,

1983; von Sonntag, 1987). An analysis of the partitioning of damage in polymeric

structures indicates that reaction with the bases is favored by three to four fold over

reaction with sugars (von Sonntag, 1987). Thus, it is oxygen radical damage to the four

nucleobases that appears to be the primary cause of DNA mutations, with many distinct

lesions formed from each nucleobase (von Sonntag, 1987). Systematic in vitro studies of

the reaction of oxidants (Douki et al., 1996b; Henle et al., 1996; Luo et al., 1996) or

ionizing radiation (von Sonntag, 1987) with individual nucleosides or nucleotides, as well

as polynucleotides, have facilitated the identification of many of these oxidized base

derivatives (Figure 1).

Advances in analytical chemistry have been applied to the quantitative

measurement of adduct levels. The primary methods involve use of either high pressure

liquid chromatography (HPLC) with electrochemical detection (Shigenaga et al., 1994) or

gas chromatography coupled with mass spectrometry (GC-MS) (Dizdaroglu, 1994) to

detect specific adducts. Initial estimates suggest that DNA in a single human cell suffers

approximately 10,000 oxidative hits per day (Fraga et al., 1990) and that the level of

damage to mitochondrial DNA is approximately 10-fold higher than damage to the

corresponding nuclear DNA from the same tissues (Richter et al., 1988). More recently,

these estimates have been revised downward by approximately one order of magnitude as

artifactual oxidation during the analytical processes has been uncovered (Cadet et al.,

1997; Helbock et al., 1998).



Cells possess defense systems that prevent formation of DNA damage by

intercepting ROS as well as repair enzymes that excise damaged nucleobases or sugars

(Ames et al., 1993). Small molecules that act as radical scavengers include ascorbic acid

(vitamin C), c-tocopherol (vitamin E), P-carotene and glutathione (Farr and Kogoma,

1991) (Figure 2). Enzymatic defenses include superoxide dismutase, which catalyzes the

dismutation of 02- to H20 2 and 02, and catalase, which converts H20 2 to H20 and 02. In

addition, glutathione peroxidase can reduce potentially deleterious peroxides (Farr and

Kogoma, 1991).

Cellular DNA repair systems act to remove DNA damage and ultimately preserve

the informational integrity of the genome. Since the cellular adduct load is dictated by

the balance between adduct formation and adduct repair, repair processes play a critical

role in determining the biological consequences of oxidative stress. Although several

discrete repair pathways exist, the base excision repair (BER) pathway is believed to be

the primary defense against oxidative damage. BER has been the subject of several

recent reviews (Friedberg et al., 1995; Krokan et al., 1997; Seeberg et al., 1995), as has

BER of oxidative damage (Croteau and Bohr, 1997; Demple and Harrison, 1994;

Wallace, 1997). The BER pathway involves several proteins that act to excise a single

damaged nucleobase from DNA and replace it with the correct undamaged nucleotide

(Figure 3). The first protein in this process is a glycosylase, whose role is to recognize a

damaged nucleobase and catalyze hydrolysis of the glycosydic bond to release the adduct.

Typically, glycosylases are small, roughly 20-40 kDa proteins that do not require ATP or

cofactors for their activity (Friedberg et al., 1995). In the past three years, X-ray



crystallography has revealed that many glycosylases appear to possess a "base-flipping"

motif that turns out the target nucleobase from the helix into an active-site pocket on the

enzyme (Krokan et al., 1997). By "base-flipping," the damaged nucleobase is presumably

more accessible to the various side-chain functionalities in the enzyme that contribute to

catalysis and substrate discrimination. Subsequent enzymatic activities necessary to

complete the repair process include cleavage of the resulting abasic site, creation of an

extendable 3' terminus, repair synthesis, and ligation (Friedberg et al., 1995).

Although efficient, DNA repair enzymes are by no means perfect, and in spite of

their existence, low levels of adducts persist in DNA. These unrepaired DNA adducts

can inhibit replication and transcription, and cause mutations. Assessment of the

mutational properties of DNA adducts has relied on two complementary approaches:

global mutational spectra analysis and site-specific mutagenesis studies (Loechler, 1996;

Singer and Essigmann, 1991).

A mutational spectrum is the composite of the number, types, and sites of all

mutations observed in a given sequence of interest and can be determined in either the

absence or presence of an exogenous DNA damaging agent (providing spontaneous or

induced spectra, respectively). A particular genomic or vector sequence is monitored

following replication, typically by some form of phenotypic selection, and ultimately the

frequency, type and position of mutations are determined by sequencing. Mutational

spectra can be determined with either double-stranded (ds) or single-stranded (ss) DNA.

One advantage to examining ss mutational spectra is that observed mutations can be

ascribed to modifications at a specific base whereas with ds DNA the modification can



only be localized to either of the two bases in the mutated base pair.

Both spontaneous and oxidant-induced mutational spectra provide insight into the

mutational properties of oxidized lesions (Table 1). Most oxidant-induced mutations are

base substitutions, although some deletions, insertions and frameshifts are also induced.

In spontaneous mutational spectra, the most commonly observed base substitutions are

GC-+AT transitions followed by GC+TA transversions, reflecting the mutations derived

from inherent replication errors, stochastic depurination events, and DNA adducts arising

from endogenous sources (Glickman et al., 1980; Moraes et al., 1990; Sargentini and

Smith, 1994; Shaaper and Dunn, 1991).

Numerous induced mutational spectra have been obtained using different sources

of oxidizing equivalents, such as ionizing radiation, 0-, H20 2, and metal ions (Ayaki et

al., 1986; Glickman et al., 1980; Grosovsky et al., 1988; McBride et al., 1991; Moraes et

al., 1990; Ono et al., 1995; Sargentini and Smith, 1994; Tkeshelashvili et al., 1991). The

results of these studies reveal that just as in the spontaneous mutational spectra, the most

prominent base substitutions are GC-±AT transitions followed by GC-+TA transversions,

hinting that the primary pathways to oxidative damage of DNA are independent of the

source of oxidation.

Mutational spectra provide important information regarding the frequency and

types of mutations that arise from a particular DNA damaging agent, but cannot attribute

the mutations to specific DNA adducts due to the multiplicity of lesions formed by typical

damaging agents. Deconvolution of complex mutational spectra has been facilitated by

the advent of technology to prepare synthetic oligonucleotides containing a single DNA



lesion. These single lesion substrates can be used directly to study replication in vitro by

DNA polymerases, or they can be incorporated into vectors, introduced into cells, and

evaluated for mutational frequency and specificity (Singer and Essigmann, 1991). From

these experiments, the mutagenicity of a number of discrete oxidative adducts has been

analyzed. Compilation of the available data to date reveals an aggregate profile that

begins to resemble at least one aspect of the overall mutational spectrum, namely the

types of mutations observed. Another important use of the singly modified substrates has

been in the determination of repair enzyme substrate specificity. Collectively, these

studies have provided much insight into the properties of individual oxidative DNA

adducts.

In the quest to identify lesions responsible for the prominent mutations observed in

mutational spectra, this lab and others initially focused on the primary guanine oxidation

product, 8-OXO-dG. Since then, the emphasis has evolved to other purine and

pyrimidine derived lesions. The strategies used to synthesize singly modified

oligonucleotides will be discussed later in this dissertation; therefore this review will

focus on the results from many experiments employing these substrates. For each of the

following nine oxidatively derived adducts (Figure 1), this discussion will relate the

known pertinent structural features, behavior in in vitro polymerase replication assays, in

vivo mutagenicity, and repairability.



B. OXIDATIVE PURINE ADDUCTS

1. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OXO-dG)

Oxidation of guanine at the C-8 position has been demonstrated following

treatment of DNA with various oxidizing agents, metals, and y-radiation (Dizdaroglu,

1985; Floyd, 1990; Kasai et al., 1986; Kasai and Nishimura, 1984). 8-OXO-dG is highly

abundant in DNA. In fact, it is the most commonly observed oxidized adduct in y-

irradiated mammalian chromatin (Gajewski et al., 1990), as well as in human tissues

(Wagner et al., 1992).

Of all the oxidized lesions found in DNA, 8-OXO-dG has been the most

extensively analyzed from the structural standpoint. NMR spectroscopy has determined

that free 8-OXO-dG in solution adopts a syn conformation about the glycosidic bond and

that the modified base exists predominantly as the 6,8-diketo tautomer (Figure 4A) (Aida

and Nishimura, 1987; Culp et al., 1989; Uesugi and Ikehara, 1977).

The diketo form of 8-OXO-dG also predominates in duplex DNA (Cho et al.,

1990), but the conformation about the glycosidic bond depends upon the identity of its

base pair partner. When paired opposite dC, 8-OXO-dG resides in an anti orientation

and is capable of forming a stable Watson-Crick pair (Lipscomb et al., 1995; Oda et al.,

1991). However, when 8-OXO-dG assumes a syn conformation, it can form a stable

Hoogsteen mispair with dA in DNA (Figure 5) (Kouchakdjian et al., 1991; McAuley-

Hecht et al., 1994). The observed mutagenicity of 8-OXO-dG has been attributed to its

ability to undergo this conformational switch from anti to syn relative to the deoxyribose

sugar.



The mutagenic potential of 8-OXO-dG was initially assessed by primer extension

assays in vitro which suggested that 8-OXO-dG could mispair with any nucleotide and

also cause misinsertions at adjacent pyrimidines (Kuchino et al., 1987). Subsequent

studies, however, demonstrated that the primary mutagenic activity of 8-OXO-dG arose

from its mispairing with dA. Additional studies of both bacterial and mammalian DNA

polymerases in vitro revealed that the replicative and repair DNA polymerases exhibit

differential degrees of dATP incorporation opposite 8-OXO-dG. DNA pol a, pol 6 and

pol III have greater tendencies to misincorporate dATP, whereas DNA pol I and pol P

preferentially insert dCTP (Shibutani et al., 1991).

Upon examining the mutagenicity of 8-OXO-dG by replication of a single adduct

in Eschericia coli (E. coli), 8-OXO-dG was determined to be 0.5-1% mutagenic and

exclusively gave G-+T transversions at the site of the adduct, presumably through 8-

OXO-dG:dA mispairing as shown in Figure 5 (Wood et al., 1990). The biological

importance of the 8-OXO-dG:dA base pairing intermediate was confirmed by subsequent

in vivo experiments (Cheng et al., 1992; Moriya et al., 1991).

Studies of 8-OXO-dG mutagenicity in mammalian systems are consistent with

those in bacteria. Replication in HeLa cells of a single 8-OXO-dG adduct in a ds shuttle

vector induces targeted G+T transversions at a frequency of 1-2% (Klein et al., 1990;

Klein et al., 1992). Interestingly, when the vector is introduced into excision repair

deficient XP-A cells, the mutation frequency of the adduct increases by three to five fold.

A similar mutation frequency for 8-OXO-dG (2.5-4.8%) is observed when the lesion is

replicated in a ss shuttle vector in COS cells (Moriya, 1993a). The effect of sequence



context on the mutagenicity of 8-OXO-dG in mammalian cells has also been investigated

(Kamiya et al., 1992; Kamiya et al., 1995a); 8-OXO-dG was incorporated into multiple

sites in the c-Ha-ras gene and then transfected into NIH3T3 cells. Depending upon the

sequence context examined, 8-OXO-dG induces G-T transversions and G-*A

transitions, as well as random substitution mutations at the 5' flanking base.

In addition to direct oxidation of bases within the DNA duplex, oxidized

nucleotide triphosphates may also be erroneously incorporated from the nucleotide pool

by DNA polymerases. Viral, bacterial and mammalian polymerases efficiently

incorporate 8-OXO-dGTP into DNA opposite dC and, to a lesser extent, opposite dA

(Cheng et al., 1992; Pavlov et al., 1994). Thus depending upon the origin of the 8-OXO-

dG residue in DNA, two distinct mutations can arise; misincorporation of 8-OXO-dGTP

opposite dA leads to A-+C transversions, and misinsertion of dATP opposite template 8-

OXO-dG results in G-T transversions.

Fortunately, cellular repair systems exist to counteract oxidative damage in both

template DNA and the nucleotide pool. The set of repair enzymes aimed at mitigating the

effects of 8-OXO-dG in E. coli has been extensively studied both biochemically and

genetically. The interplay of the three genes, mutM(alsofpg), mutY and mutT, and their

gene products, MutM (also known as fapy glycosylase, but for clarity we shall refer

hereafter to the protein as MutM), MutY, and MutT, has been elucidated and presents an

elegant paradigm of how different proteins can contribute to minimize the consequences

of a single adduct (reviewed in, Michaels and Miller, 1992b). The E. coli MutM protein

is a glycosylase that excises 8-OXO-dG most efficiently when it is paired with dC,



resulting in formation of an abasic site and subsequent productive repair synthesis. In

contrast, MutM is much less active on 8-OXO-dG when it is present in an 8-OXO-dG:dA

pairing. This discriminatory power is biologically advantageous since excision of 8-

OXO-dG from such an intermediate would actually lead to fixation of a G-*T mutation.

Fortunately, the second enzyme in this repair system, MutY, can act efficiently upon the

8-OXO-dG:dA mispair to remove the A. Gap-filling by a repair polymerase offers

another opportunity for insertion of dC opposite the 8-OXO-dG and generation of a

suitable substrate for repair by MutM. Not surprisingly, cells deficient in either mutM or

mutY are mutators specific for G-+T transversions (Cabrera et al., 1988; Nghiem et al.,

1988), and the mutator phenotype is greatly exacerbated in mutM mutY double mutants

(Michaels et al., 1992a). Consistent with these properties, a strikingly increased mutation

frequency is observed when a single 8-OXO-dG is replicated in a mutM mutY E. coli

strain (Moriya and Grollman, 1993b).

The third protein in this system, MutT, hydrolyzes 8-OXO-dGTP to 8-OXO-

dGMP and pyrophosphate, thus purifying the nucleotide pool and preventing

misincorporation of 8-OXO-dGTP into DNA (Maki and Sekiguchi, 1992). Cells

deficient in MutT show significantly elevated levels of A-C mutations (Yanofsky et al.,

1966). In addition, since MutT is also capable of hydrolyzing the ribonucleoside

triphosphate 8-OXO-GTP, it has been suggested to play a role in preventing

transcriptional misincorporation of 8-OXO-GTP into RNA (Taddei et al., 1997).

The components of the genoprotective system described above are conserved, and

identification of homologs in eukaryotes has been the subject of intense recent effort. A



number of laboratories has reported the cloning of yeast (Nash et al., 1996; van der Kemp

et al., 1996) and mammalian (Aburatani et al., 1997; Arai et al., 1997; Lu et al., 1997;

Radicella et al., 1997; Roldan-Arjona et al., 1997; Rosenquist et al., 1997) functional

homologs of MutM designated Oggl (for oxo-guanine glycosylase) that excise 8-OXO-

dG from DNA. Disruption of the yeast Oggl gene results in a mutator phenotype with

enhanced levels of GC- TA transversions (Thomas et al., 1997). It appears that there

may also be a second discrete Ogg activity in yeast (Ogg2) that differs in its recognition

of the base opposite 8-OXO-dG (Nash et al., 1996; van der Kemp et al., 1996). Similarly,

mammalian homologs of MutY (McGoldrick et al., 1995; Slupska et al., 1996) and MutT

(Kakuma et al., 1995; Sakumi et al., 1993) exist.

Several other repair proteins have activity in vitro against 8-OXO-dG. The

mammalian alkylpurine DNA glycosylase has a very broad in vitro substrate specificity,

including 8-OXO-dG (Bessho et al., 1993); however, in recent experiments, extracts

derived from mice deficient in this enzyme still retain activity against 8-OXO-dG,

suggesting that it is not a major glycosylase for 8-OXO-dG (Engelward et al., 1997; Hang

et al., 1997). In addition, the human nucleotide excision repair (NER) system has been

reported to process 8-OXO-dG (Reardon et al., 1997), and the ribosomal S3 protein of

Drosophila has been observed to possess glycosylase activity for 8-OXO-dG

(Sandigursky et al., 1997). The biological relevance of these activities remains to be

determined.



2. 7,8-Dihydro-8-oxo-2'-deoxyadenosine (8-OXO-dA)

The formation of 8-OXO-dA, the adenine analog of 8-OXO-dG, has also been

observed in DNA (Malins and Haimanot, 1990; Stillwell et al., 1989). Similar to 8-

OXO-dG, free 8-OXO-dA in solution resides in the syn conformation (Giessner-Prettre

and Pullman, 1977; Uesugi and Ikehara, 1977). In DNA, however, 8-OXO-dA resides in

the anti orientation and causes only minor conformational changes of the duplex

(Guschlbauer et al., 1991). Although 8-OXO-dA can adopt several tautomeric forms,

under physiological conditions the 6-amino-8-keto conformation predominates (Figure

4B) (Cho and Evans, 1991).

Replication of DNA templates containing 8-OXO-dA by the bacterial

polymerases DNA pol I (KFexo-) and Taq DNA pol, reveals that the lesion is not a block to

DNA synthesis and that exclusive incorporation of thymine occurs opposite the damage

(Guschlbauer et al., 1991). The lack of 8-OXO-dA mutagenicity in bacteria is confirmed

by replication of a bacteriophage genome containing a single 8-OXO-dA lesion in E. coli

cells (Wood et al., 1992). Although not mutagenic in bacterial systems, some studies

suggest that 8-OXO-dA may cause mispairing in mammalian cells. In vitro replication of

oligonucleotides containing 8-OXO-dA shows that in addition to dTTP, mouse DNA pol

c can misinsert dGTP while recombinant rat DNA pol 0 can misinsert both dATP and

dGTP (Kamiya et al., 1995; Shibutani et al., 1993). When a single 8-OXO-dA is

incorporated into the c-Ha-ras gene and transfected into mammalian cells, A-G and

A-+C mutations are induced at a mutation frequency of approximately 1% (Kamiya et al.,

1995).



Due to the relatively benign nature of 8-OXO-dA, analysis of the repair of 8-

OXO-dA has been limited for the most part to examinations of the substrate specificity of

MutM. One initial study found 8-OXO-dA to be refractory to cleavage by MutM (Tchou

et al., 1991) but a more recent study indicates that small amounts of 8-OXO-dA are

released by this enzyme (Boiteux et al., 1992). It has also been reported that MutY can

remove A from a dA:8-OXO-dA pairing (Michaels et al., 1992c).

3. 2-Hydroxy-2'-deoxyadenosine (2-OH-dA)

Another oxidation product of adenine, 2-OH-dA, has also been observed in

oxidatively damaged DNA (Kamiya and Kasai, 1995; Mori et al., 1993; Nackerdien et al.,

1991; Olinski et al., 1992). Because the yield of 2-OH-dA is 70-80 times higher

following oxidation of dA and dATP as compared to oxidation of duplex DNA, it has

been suggested that the presence of 2-OH-dA in cellular DNA most likely arises through

its incorporation from the nucleotide pool (Kamiya and Kasai, 1995). Modification of the

C2 position of adenine may affect the base pairing properties of the base. Moreover, 2-

OH-dA exists in two tautomeric forms in aqueous solution (Figure 4C) with the ratio of

the keto tautomer (N1-H, C2-keto) to the enol tautomer (C2-OH) approximating 9:1

(Sepiol et al., 1976).

The in vitro and in vivo mispairing properties of 2-OH-dA in template DNA have

been investigated (Kamiya and Kasai, 1996; Kamiya et al., 1995b; Switzer et al., 1993).

Collectively, the results of these studies suggest that formation of 2-OH-dA in DNA can

lead to all of the base substitution mutations involving A (A-HG transition, and A-+T and



A-*C transversions). Efficient insertion of 2-OH-dATP by DNA pol I (KFex-) and by calf

thymus DNA pol c has also been demonstrated in vitro (Kamiya and Kasai, 1995;

Switzer et al., 1989) and, in addition to incorporation opposite dT, 2-OH-dATP is

misinserted opposite dC. Subsequent replication of this mispair would result in the

formation of a GC--AT transition.

The mutation frequency and specificity of 2-OH-dA was evaluated in E. coli by

using site-specifically modified ds and ss vectors (Kamiya and Kasai, 1997). 2-OH-dA

showed little to no genotoxicity, and the mutation frequency of the adduct varied with its

placement in a particular DNA sequence or strand. When placed in the (+) strand, 2-OH-

dA exhibited a mutation frequency between 0.07 and 0.8%, and the primary mutation

induced was a -1 deletion; no increase in mutation frequency was observed for ss versus

ds DNA. The mutation frequency of 2-OH-dA when situated in the (-) strand was

comparable to that of the (+) strand (between 0.1 and 0.3%), but the mutation specificity

differed. The predominant mutations observed from 2-OH-dA in the (-) strand were

A- T and A-G substitutions. Unfortunately very little is known about the repair of 2-

OH-dA; the only suggestion of repair activity thus far is a report that a ds oligonucleotide

containing 2-OH-dA is weakly nicked by an E. coli extract (Kamiya and Kasai, 1997).



C. OXIDATIVE PYRIMIDINE ADDUCTS

1. 5,6-Dihydro-5,6-dihydroxy-2'-deoxythymidine (Thymidine Glycol or dTg)

dTg is the major thymine derived adduct detected after oxidation or irradiation of

DNA in vitro and in vivo (Breimar and Lindahl, 1985; Teoule et al., 1977). Although

both cis- and trans-isomers of dTg exist in DNA (Gajewski et al., 1990), the most

common laboratory syntheses of dTg involve oxidation of thymidine by OsO4 or KMnO 4,

which predominantly provide a mixture of the cis-isomers that cannot be readily resolved

by standard chromatographic techniques (Frenkel et al., 1981; lida and Hayatsu, 1971;

Teebor et al., 1987). Thus, studies that have introduced dTg into DNA via chemical

oxidation have measured the combined effects of both cis-lesions. Structurally, NMR

studies reveal that dTg induces significant, localized change to duplex DNA, and that the

lesion as well as the opposing base reside in a largely extrahelical conformation (Kao et

al., 1993; Kung and Bolton, 1997).

In vitro studies show that dTg inhibits primer elongation by bacterial and viral

polymerases, and that polymerase arrest occurs at the site of the oxidized lesion (Hayes

and LeClerc, 1986; Ide et al., 1985; Rouet and Essigmann, 1985). Interestingly, certain

sequence contexts such as 5'-C(Tg)A-3' and, to a lesser extent, 5'-C(Tg)C-3', permit

bypass by polymerases in vitro (Clark and Beardsley, 1989; Hayes and LeClerc, 1986).

When positioned in such a by-passable sequence, a single dTg induces T-C transitions at

a frequency of 0.3-0.4% upon replication in E. coli (Basu et al., 1989). One additional

mutagenic outcome can arise that is dependent on the base precursor of dTg. The primary

product of 5-methylcytosine oxidation is dTg (Zuo et al., 1995) and, given the propensity
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of dTg to pair with dA, the presence of such an adduct would cause a CG-+TA transition.

In addition to base excision repair by endonuclease III and endonuclease VIII,

there is biochemical evidence that Uvr(A)BC as well as the human NER system also can

act to repair dTg lesions (Kow et al., 1990; Lin and Sancar, 1989; Reardon et al., 1997).

Moreover, in human cells dTg is apparently repaired in a transcriptionally coupled

fashion, raising the intriguing possibility that this mode of repair may extend to other

oxidized lesions (Cooper et al., 1997).

2. 5-Hydroxy-2'-deoxycytidine (5-OH-dC), 5-hydroxy-2'-deoxyuridine (5-OH-dU)
and 5,6-dihydro-5,6-dihydroxy-2'-deoxyuridine (Uridine Glycol or dUg)

Oxidation of cytidine initially leads to formation of cytidine glycol (dCg), a highly

unstable species that is believed to decompose rapidly (Douki et al., 1996b; von Sonntag,

1987). Deamination of dCg is enhanced by saturation of the 5-6 position of cytosine

resulting in formation of dUg. dUg and dCg can also dehydrate to form 5-OH-dU and 5-

OH-dC, respectively (Figure 6). These adducts have been identified in vitro (Dizdaroglu

et al., 1986) and in mammalian tissues (Wagner et al., 1992).

In vitro replication studies have shown that DNA pol I (KFexo-) incorporates dA

opposite 5-OH-dU; in the same experimental system, 5-OH-dC pairs mainly with dG, but

also to a lesser extent with dA and dC. The same mispairing specificities are observed

when 5-OH-dCTP and 5-OH-dUTP are incorporated into newly synthesized DNA

(Purmal et al., 1994a; Purmal et al., 1994b). In addition, the efficient insertion of dUgTP

opposite dA has been demonstrated (Purmal et al., 1998).



3. 5-Hydroxymethyl-2'-deoxyuridine (5-HM-dU)

5-HM-dU is a less-studied oxidative adduct that is detected in DNA in vivo

(Frenkel et al., 1985; Teebor et al., 1984) as well as in human and rat urine at levels

comparable to those of dTg (Cathcart et al., 1984). Since the thymine-like base pairing

properties of this lesion are unaltered by the addition of a C5-OH group, the mutagenicity

of 5-HM-dU may be weak. However, X-ray crystallographic and NMR solution studies

have demonstrated that the nucleoside resides in an unusual conformation in which the

pucker at the Cl' position of the 2'-deoxyribose moiety of 5-HM-dU is changed to exo

instead of the normal endo pucker (Birnbaum et al., 1980).

Studies on the mutagenic potential of 5-HM-dU show conflicting results.

Although one study demonstrates the lack of mutagenicity of a single 5-HM-dU in E. coli

(Levy and Teebor, 1991), others show the SOS dependent mutagenicity of 5-HM-dU, as

well as the mutagenicity of the lesion in the Ames assay (Bilimoria and Gupta, 1986;

Shirname-More et al., 1987). The base pairing properties of 5-HM-dU in DNA have been

examined by NMR (Mellac et al., 1993) and suggest that 5-HM-dU can pair with both dA

and dG. When paired with dA, the 5-HM-dU:dA base pair is in Watson-Crick geometry

stabilized by an interresidue hydrogen bond between the hydroxymethyl group and the

neighboring 5' base. Alternatively, when 5-HM-dU is paired opposite dG, a wobble base

pair can be formed, which is stabilized by an intramolecular hydrogen bond between the

hydroxymethyl group and the 04-carbonyl. Mispairing in vivo of 5-HM-dU:dG could

subsequently result in the formation of T-C transition mutations. Since mammalian

cells possess a specific glycosylase responsible for the removal of 5-HM-dU from DNA
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(Hollstein et al., 1984), more careful investigation into the mutational properties of this

lesion is warranted.

4. 5-Formyl-2'-deoxyuridine (5-FO-dU)

Another minor oxidation product of thymidine that may possess mutagenic

potential is 5-FO-dU. This lesion can form directly as a product of oxidative damage to

DNA (Kasai et al., 1990) and may also result from the decomposition of thymidine

hydroperoxides (Tofigh and Frenkel, 1989). In addition, 5-FO-dU may also result via the

oxidation of 5-HM-dU. Whereas thymidine contains an electron donating methyl group

at the 5-position, 5-FO-dU contains an electron withdrawing group, predicting increased

ionization of the N3 imino proton under physiological conditions (Privat and Sowers,

1996).

In vitro studies have shown that 5-FO-dUTP can be incorporated by viral and

bacterial DNA polymerases opposite template dA and, to a lesser extent, opposite dG,

which would subsequently result in the formation of a G-A mutation (Yoshida et al.,

1997). Interestingly, the efficiency of incorporation opposite dG increases with

increasing pH, strongly suggesting that the base-ionized form of 5-FO-dU is involved in

mispairing (Privat and Sowers, 1996; Yoshida et al., 1997). Furthermore, primer

extension assays reveal that DNA polymerases also can direct the misincorporation of dC

opposite the lesion, resulting in the formation of a T--G transversion (Zhang et al., 1997).

The biological significance of 5-FO-dU is underscored by the presence of repair enzymes

able to remove the lesion from DNA. Bacterial AlkA, originally discovered as a 3-
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methyladenine glycosylase, has been shown to release 5-FO-dU from DNA (Bjelland et

al., 1994) and DNA glycosylase activities for the removal of 5-FO-dU have recently been

identified in cell extracts from mouse and rat liver (Zhang et al., 1995), as well as from

human cells (Bjelland et al., 1995).

D. CONCLUSION AND PROSPECTIVE

Over the past decade or so, a wealth of structural and biological data has been

amassed on oxidative DNA adducts, much of it garnered through the use of singly

modified substrates (Table 2). With this knowledge, the task of deconvoluting observed

mutational spectra has begun. The two dominant base substitutions observed in

spontaneous and oxidant-induced mutational spectra are G-T transversions and C-+T

transitions (Table 1). Which lesions are responsible for these mutations? In vitro

experiments followed by in vivo studies have now solved a large part of the problem: the

G--T transversions observed in mutational spectra could be the result of oxidative

damage to dG in the form of 8-OXO-dG. 8-OXO-dG levels are normally controlled by

the repair proteins MutM, MutY and MutT, and loss of these protein functions results in

high levels of genomic mutation.

At the start of this work, evidence for the lesion(s) that gives rise to the C-T half

of the mutational spectrum was just beginning to accumulate. In 1992, Wagner et al.

reported the detection of 5-OH-dC, 5-OH-dU and dUg in tissue from rats and in human

cells, immediately hypothesizing that these lesions could give rise to C--T transitions



(Wagner et al., 1992). Subsequent in vitro polymerization studies supported the

mutagenic potential of 5-OH-dC, 5-OH-dU and, more recently, dUg (Purmal et al., 1998;

Purmal et al., 1994a; Purmal et al., 1994b).

The balance of this thesis work details the design and execution of experiments

which seek to investigate the mutagenicity of 5-OH-dC, 5-OH-dU and dUg in vivo, and

which uncover molecular origins of the C-T transitions so prevalent in the mutational

spectra of living systems.
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Table 1: Base substitutions observed in spontaneous and oxidant-induced mutational spectra.
Mutations are listed from top to bottom in decreasing order of occurrence.

Spontaneous y-radiation 0 2-  H20 2 Fe2+  Cu2+

a b c d e f g h i j k l

GC-AT GC- AT GC-AT GC- AT GC- AT C- T GC- AT GC- AT GC-AT GC-AT G C C *T

GC-~TA GC- TA AT- CG GC-TA GC-TA G-T TA- GC AT -GC GC >TA GC CG C-T G +T

AT-CG GC ->CG AT-+GC AT- TA AT-CG C >A AT-TA GC- TA AT >CG GC TA G-T CC >TT

AT->TA AT- GC AT -TA AT-CG AT-TA G-C AT->GC GC >CG GC-CG AT-CG T-tC T >C

GC-CG AT-TA GC-TA AT-GC GC -CG A-C CG- GC AT-~TA AT-GC AT >TA A >G A >C

GC-CG GC-CG T-C GC- CG AT-CG AT -TA A-C A >T

C-G A -T

C A

C G

(a) (Glickman et al., 1980); (b) (Moraes et al., 1990); (c) (Shaaper and Dunn, 1991); (d)
(Sargentini and Smith, 1994); (e) (Glickman et al., 1980); (f) (Ayaki et al., 1986); (g) (Grosovsky
et al., 1988); (h) (Sargentini and Smith, 1994); (i) (Ono et al., 1995); (j) (Moraes et al., 1990); (k)
(McBride et al., 1991); (1) (Tkeshelashvili et al., 1991).

The studies listed are a representative fraction of the total mutational spectra published in the
literature. For compilations of mutational spectra see http://info.med.yale.edu/mutbase/html and
http://sunsite.unc.edu/dnam/mainpage.



0
H

A HN N
H2 N N I

dR

NH2 HNH

N O

dR

NH2

ON N

H dR

Figure 4: Keto-enol tautomerization of purine adducts.
2-OH-dA.

O

HN N

H2N N - O H

dR

NH2

N N-OH
N N

NH2

HON N\>HO N N

(A) 8-OXO-dG; (B) 8-OXO-dA; (C)



NH 2  ............ H ,

N ............. dRH NN

dR O ......... H2N

dC (anti) 8-OXO-dG (anti)

H NH2

N NN H2
N 

0 N

dR 0

dA (anti) 8-OXO-dG (syn)

Figure 5: Normal (A) and potentially mutagenic (B) base-pairing properties of 8-OXO-dG.



NH2

N OH -H20

0O, N OH
dR

dCg

-NH3

0

HN OH

0 N OH
dR

-H20

dUg

0

HN OH

dR

5-OH-dU

Figure 6: Pathways of oxidized pyrimidine formation. Initial oxidation of dC can form the
relatively unstable species, dCg, that can either dehydrate, deaminate, or undergo both reactions to
form 5-OH-dC, dUg, or 5-OH-dU, respectively.

NH2

ON
dR

dC

NH2
OH

0 N

dR

5-OH-dC

-NH,



Table 2: Mutagenicity and repair of oxidative DNA adducts as determined through site-specific
analyses.

Mutagenic Specificity Repair Processes

DNA Bacterial Mammalian
Adduct Systems Systems in vitro in vivo in vitro

8-OXO-dG G-,T G-+T G-+T, A-+Ca MutM, MutM, MutY,
MutY, NER MutT, NER

8-OXO-dA no mutation A- G, A-C A- C, A-+Tb nd MutM, MutY

2-OH-dA A-T, A-G ndc A-+G, A-+T nd nd
A-+C, C-*Ta

dTg replication nd replication nd endo III, NER,
block, block, endo VIII
T-+C G-Aa, C-+Td

5-OH-dC nd nd C-,T, C-+Ge, nd endo III,
A-+Ga endo VIII

5-OH-dU nd nd C-T nd endo III, MutM,
endo VIII, UDG

dUg nd nd C-+T nd endo III, MutM,
endo VIII

5-HM-dU no mutation nd T-C f  nd HMU
glycosylase

5-FO-dU nd nd T-+G, G-Aa nd AlkA

a Mutation resulting from incorporation of the modified nucleoside from the nucleotide pool.
b No mispairing was observed when bacterial polymerases were used.
c Not yet determined.
d dTg formed as a result of 5-Me-dC oxidation would lead to a C-+T mutation.
e Mutation resulting from translesional synthesis as well as from incorporation from the

nucleotide pool.
f Mutations suggested by NMR stability studies of 5-HM-dU mispairs.



CHAPTER II:

Preparation of 5-OH-dC, 5-OH-dU and dUg Singly-Modified

Oligonucleotides and Bacteriophage Genomes



A. INTRODUCTION

A program of adduct site-specific mutagenesis was undertaken in order to probe

the mutagenic properties of 5-OH-dC, 5-OH-dU and dUg. This technique, previously

employed to effect in the study of many DNA lesions, allows a chemically modified DNA

adduct to be incorporated at a defined site into DNA and then introduced into a cell.

Thus, a single base change to the genome may be monitored in the context of the entire

organism.

Especially in the case of oxidative lesions, adduct site-specific mutagenesis is a

powerful method by which to study the mutagenic properties of a particular DNA lesion.

While several methods exist to oxidize DNA for in vivo studies (e.g., treatment with H20 2

and Fe2+), such procedures suffer from the unavoidable formation of multiple copies of

multiple oxidative products (e.g., dC is converted to 5-OH-dC, 5-OH-dU, dUg, among

other lesions) thereby diminishing the precision with which resulting mutagenic data may

be interpreted. By contrast, adduct site-specific mutagenesis allows the study of a single

copy of a specific type of synthesized adduct.

Adduct site-specific mutagenesis involves the synthesis of an oligonucleotide that

contains a lesion of known structure at a defined position, and the use of recombinant

DNA techniques to incorporate this oligonucleotide into a plasmid or viral genome. This

vector can be studied in vitro or introduced into cells, where replication of the genome

can be monitored by analyzing the progeny generated. The techniques of constructing

site-specifically modified oligonucleotides and genomes has been recently reviewed

(Yarema and Essigmann, 1995a), and is summarized below.



An important step in designing an adduct site-specific mutagenesis study is the

construction of a singly modified oligonucleotide. Three factors are important to

consider: (1) oligonucleotide size and base composition, (2) synthesis strategy, and (3)

purification and characterization techniques.

First, the choice of oligonucleotide size must strike a balance between the

advantages of a short oligonucleotide for purification and characterization purposes, and

the advantages of a longer oligonucleotide for more efficient annealing and ligation

during the construction of the genome. In practice, many site-specific mutagenesis

studies have made use of modified oligonucleotides of approximately 4-15 bases in

length. In addition to oligonucleotide length, the DNA sequence of the modified

oligonucleotide must be considered. Often, the selection of oligonucleotide sequence is

influenced by the mutability of a lesion in a particular context and by the technique used

to select or screen for mutants. While it may be desirable to position an adduct in a

sequence that is known to be a preferred site of adduct formation, slow DNA repair, and a

mutational hot spot, this information is not always readily discernable. Thus, the choice

of sequence context is often determined by selecting a sequence that will facilitate the

eventual separation of mutant and wild-type populations. Often, DNA adducts are

situated within a restriction endonuclease site so that any mutation arising from the

adduct will prevent cleavage of that site by a restriction enzyme.

A second factor to be considered in the construction of a singly modified

oligonucleotide is the synthesis strategy to be employed. The two most common

techniques used are postsynthetic chemical modification and total chemical synthesis.



The former technique is useful in constructing modified oligonucleotides that contain

either labile DNA adducts such as those formed by aflatoxin B, that would not survive

solid phase DNA synthesis (Gopalakrishnan et al., 1989), or DNA adducts that form

intra- and inter-strand crosslinks such as those formed by cisplatin (Toney et al., 1989).

Following reaction of the oligonucleotide with a DNA damaging agent, extensive

purification to isolate the oligonucleotide containing the particular adduct of interest is

required. A main drawback to this approach is the limitation in sequence flexibility since

it is favorable to have an oligonucleotide sequence containing only one site of reactivity

toward a particular DNA damaging agent. A preferable method of modified

oligonucleotide construction is by total chemical synthesis, which involves creating a

modified, protected nucleotide that can be directly used for solid phase, automated DNA

synthesis (McBride and Caruthers, 1983). The advantages of this approach are threefold:

(1) a well characterized adduct is produced, (2) large amounts of modified

oligonucleotide are easily obtained, and (3) placement of the lesion in any sequence

context is possible.

Once synthesized, it is important to purify and characterize modified

oligonucleotides thoroughly prior to their use in genetic experiments. Typically, modified

oligonucleotides can be resolved from their unmodified counterparts by using standard

high pressure liquid chromatography (HPLC) and polyacrylamide gel electrophoresis

(PAGE) techniques. Characterization of the modified substrates generally involves

digestion of the oligonucleotide to its corresponding nucleosides followed by reverse

phase (RP) HPLC analysis with chemically synthesized standards. Mass spectrometry



(MS) is often used to confirm the molecular weight of a modified oligonucleotide and has

recently been used to determine the exact position of an adduct within an oligonucleotide

(for a review, see Miketova and Schram, 1997). Other characterization approaches

include NMR, X-ray crystallography, and a variety of enzymatic and chemical methods

that depend upon the nature of the particular DNA adduct.

To perform an adduct site-specific mutagenesis study in vivo, a biologically viable

singly modified DNA substrate must be constructed. To accomplish this, multiple

methods have been developed based upon the use of recombinant DNA technology to

incorporate a modified oligonucleotide into a plasmid or viral genome (for a review, see

Yarema and Essigmann, 1995a). The basic genome construction method employed in

this thesis research was developed by C. W. Lawrence (Banerjee et al., 1988) and has

been used to study the mutagenesis of many DNA adducts such as an abasic site

(Lawrence et al., 1990), the AFB, N7 guanine adduct (Bailey et al., 1996b), the intra-

strand DNA crosslink adducts of cisplatin (Yarema et al., 1995b) and the cis-syn T-T

cyclobutane dimer (Banerjee et al., 1988). Regardless of the particular construction

method employed, in the end each results in the creation of a biologically viable singly

modified DNA substrate. More important than the particular genome construction

method, however, is whether a single-stranded (ss) or a double-stranded (ds) DNA vector

is used to study adduct mutagenesis.

Although a duplex genome more closely represents the true environment of a

DNA adduct in a cell, ds DNA substrates can severely hinder the study of adduct

mutagenesis in vivo for two reasons. First, the repair efficiency of a DNA adduct is



increased when situated in ds versus ss DNA. Since many repair systems, including the

NER pathway (Sancar, 1996) and many glycosylases such as endonuclease III (Breimer

and Lindahl, 1984), have been shown to remove preferentially adducts from DNA

duplexes, a lesion may be repaired prior to mutation fixation. Second, some singly

modified genomes, particularly those containing bulky, helix-distorting lesions exhibit

strand bias during DNA replication that results in favored recovery of progeny from the

non-adduct containing strand (Koffel-Schwartz et al., 1987). Since progeny DNA would

primarily be generated from the unmodified strand, the measured mutation frequency of

an adduct would be greatly diminished. To eliminate the complications of strand bias and

DNA repair, ss genomes are often used for mutagenesis studies.

The combined efforts of organic synthesis and recombinant DNA techniques have

enabled the construction of both short oligonucleotides and entire genomes containing a

single modified DNA base, and these DNA substrates have been used to elucidate the

biological properties of many DNA adducts. In this chapter, the synthesis and

characterization of short oligonucleotides containing a single 5-OH-dC, 5-OH-dU or dUg

lesion shall be described, followed by the construction and characterization of singly

modified bacteriophage genomes.



B. METHODS

1. Materials

Restriction enzymes and bacteriophage T4 polynucleotide kinase were from New

England Biolabs. Sephadex G-50 Quick Spin Columns were from Boehringer

Mannheim. Bacteriophage T4 DNA ligase and exonuclease III were from Pharmacia.

Uracil DNA glycosylase (UDG) was from GIBCO/BRL. [y32P]dATP (6000 Ci/mmol)

was from New England Nuclear. Plasmid preparation kits were from Qiagen.

Bacteriophage M13mp7L2 was from C. W. Lawrence (Banerjee et al., 1990). OsO4 (4%

solution in H20) was from Sigma.

2. Preparation and Purification of Modified Oligonucleotides.

Novel phosphoramidite analogs of 5-OH-dC and 5-OH-dU were synthesized by

Marshall L. Momingstar (Momingstar et al., 1997; see also, Fujimoto et al., 1997 and

Romieu et al., 1997). The 5-OH-dC and 5-OH-dU phosphoramidites were used to

prepare oligonucleotides of the sequence 5'-CAXGCAG-3', where X is 5-OH-dC or 5-

OH-dU, on an Applied Biosystems 391 DNA Synthesizer (Figure 7). To protect the

modified nucleosides during solid-phase DNA synthesis, the exocyclic hydroxyl group of

the 5-OH-dU nucleoside was protected with an acetyl group, and the exocyclic amino and

hydroxyl groups of 5-OH-dC were protected with benzyl groups. Following synthesis,

the resin bound oligonucleotides were deprotected by treatment with NH4OH for 5 hr at

60'C, filtered, and then concentrated to dryness. 5-OH-dC and 5-OH-dU

oligonucleotides were purified by C 18 RP-HPLC. The collected fractions were further
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purified by 23% denaturing gel electrophoresis and the oligonucleotides were extracted

from the gel by the Crush and Soak method (Maniatis et al., 1989).

The dUg containing oligonucleotide was prepared by oxidation of the

corresponding uridine containing oligonucleotide with OsO 4 (Wang and Essigmann,

1997). Three hundred [ig of 5'-CAUGCAG-3' (0.5 mM final concentration) were mixed

with 6 mg OsO4 (from a 4% solution in H20; 93 mM final concentration) in a buffer of 20

mM NH4Cl adjusted to pH 9.0 with NH 4OH. The total volume of the reaction was 253

jil. The sample was incubated at 55'C for 30 min, on ice for 60 min, and then extracted 3

times with 250 Il ether, and centrifugally evaporated for 2 min to remove excess ether.

The reaction mixture was purified by RP-HPLC on a C18 Beckman Ultrasphere column

with a gradient of 0-10% B for 10 min and then 10-40% B for 60 min (A: 0.1 M

NH4OAc and B: 0.1 M NH4OAc, 1:1 CH 3CN). Homogeneity of the oligonucleotide was

confirmed by 23% denaturing gel electrophoresis.

3. Characterization of Modified Oligonucleotides.

Oligonucleotides of the sequence 5'-CAXGCAG-3' where X is dC, 5-OH-dC, 5-

OH-dU or dUg were anlayzed by negative ion electrospray mass spectrometry (ES-MS)

by Dr. J. Wishnok of the Division of Toxicology Mass Spectrometry Facility. dC, 5-OH-

dC and 5-OH-dU containing oligonucleotides were further characterized by enzymatic

digestion to the corresponding nucleosides. 10 gg of oligonucleotide, 1 1l of 1 M NaOAc

(pH 5.0), 1 jl of 20 mM ZnC12, and 1 [l of nuclease P1 (1.7 U/Vl, Sigma) were incubated

at 37°C for 1 hr. The reaction was cooled on ice and then 1.3 pl of 1 M Tris-HCI (pH



9.0), 1.0 [l snake venom phosphodiesterase (0.05 U/tl, ICN) and 1 gl of alkaline

phosphatase (25 U/pl, Sigma) were added. After a 90 min incubation at 37°C, the

sample was analyzed by C 18 RP- HPLC using a photodiode array detector.

4. Construction ss M13mp7L2 Genomes

Before genome construction was attempted, it was essential to devise conditions

that would maintain the integrity of the modified nucleosides. The integrity of 5-OH-dC,

5-OH-dU and dUg was assessed by subjecting the 7-mer oligonucleotides to the

following conditions: 500 ng oligonucleotide were dissolved in a buffer of 50 mM Tris-

HCI (pH 7.8), 10 mM MgC12 and 50 gg/ml BSA. After incubation at 160 C for 105 min,

65'C for 10 min and 100 0 C for 2.5 min, the sample was analyzed by C18 RP-HPLC with

a gradient of 0-30% B over 60 min (A: 0.1 M NH4OAc and B: 0.1 M NH4OAc, 1:1

CH3CN). While integrity of 5-OH-dC and 5-OH-dU was maintained, degradation of the

dUg containing oligonucleotide was observed under these conditions, and thus an

alternative method for genome construction was required to construct the dUg containing

genome. Success was achieved with 500 ng of dUg containing oligonucleotide using the

same buffer of 50 mM Tris-HCI (pH 7.8), 10 mM MgCl 2 and 50 gg/ml BSA, but

incubating only at 160 C for 2 hr 15 min. The dUg sample was analyzed by C18 RP-

HPLC as described above.

M13mp7L2 ss DNA was obtained by infection of E. coli cells with the phage

DNA. To 500 ml 2xYT were added 5 ml of an overnight GW5100 cell culture (one

colony grown in 5 ml media) and one phage plaque. Following a 9 hr incubation at 370 C



with shaking, the cell suspension was incubated on ice for 10-15 min, and then the cells

were pelleted by spinning at 10,000 x g for 30 min. To precipitate the phage, the

supernatant (500 ml) was combined with 20 g PEG and 14.6 g NaCl and stirred overnight

at 4°C. The phage were pelleted by spinning at 10,000 x g for 30 min, and then

resuspended in TE buffer (10 mM Tris*HC1, 1 mM EDTA pH 8.0). Following phenol

extraction and ethanol precipitation, the ss DNA was resuspended in 0.7 M

K2HPO 4/KH 2PO4 buffer (8 ml) and loaded onto a hydroxylapatite column. The ss DNA

was eluted from the column with 0.14 M K2HPO4/KH 2PO 4 buffer. 1 ml aliquots were

collected in tubes containing 10 il of 0.5 M EDTA, and 3 p of each fraction were

spotted on an agarose plate containing ethidium bromide (22.5 ml H20, 0.2 g agarose, 2.5

ml 10x TBE [TBE buffer: 89 mM Tris base, 89 mM H3BO 3, 2 mM EDTA pH 8.0] and

1.25 pl ethidium bromide [10 mg/ml]). The fractions containing ss DNA (#3-9) were

combined and dialyzed into TE buffer as follows using freshly made buffer each time: 30

min in 1 1 TE, 30 min in 1 1 TE, overnight in 2 1 TE and 1 hr in 1 1 TE. The DNA was

then butanol extracted twice and then ethanol precipitated and resuspended in TE buffer.

M13mp7L2 ss DNA (130 ng/pl) was linearized by restriction enzyme digestion

with EcoRI (1.7 U/tl) in a buffer containing 50 mM NaCl, 100 mM Tris-HCI (pH 7.5), 5

mM MgCl2 and 100 pg/pl BSA for 2 hr at 23 C (Figure 8). The linear genome was

diluted 1.5-fold with H20 (90 ng/pl), and the 47-mer oligonucleotide scaffold was

annealed to the linear ss DNA by heating at 80'C for 5 min and allowing the reaction to

cool to room temperature over overnight. The resulting circular M13 molecule contained

a 7-base gap that was complementary to the sequence 5'-CACGCAG-3'. Gapped duplex



formation was confirmed by the conversion of ss linear DNA to ss circular DNA as

analyzed by electrophoresis on a 1% agarose gel at 120 V for 5 hr in TBE buffer. The gel

was stained in ethidium bromide (1 pg/pl) for 1 hr and photographed. The circular

gapped-duplex yield was estimated by visual inspection.

Approximately 1 pmol of unmodified (dC), 5-OH-dC, 5-OH-dU and dUg 7-mer

oligonucleotide was phosphorylated in a total volume of 10 ml by using T4

polynucleotide kinase (10U) and 1 mM ATP in a buffer of 50 mM Tris-HCI (pH 7.8), 10

mM MgCl2 and 50 pg/ml BSA for 45 min at 160 C. Oligonucleotides were ligated into an

equimolar amount of the freshly prepared 7-base gapped molecules (8 pmol/ml) by using

T4 DNA ligase (0.05 Weiss units/pl) for 1 hr at 160 C. The 47-mer oligonucleotide

scaffold was removed by heating the sample at 1000 C for 2 min in the presence of a 2-

fold molar excess of the 47-mer scaffold's complement, resulting in the construction of a

uniquely modified, ss circular genome.

Due to the lability of the dUg lesion, a modified genome construction scheme was

employed (Bailey et al., 1996a) (Figure 8). M13mp7L2 ss DNA was linearized as

described above. The circular M13 molecule containing a 7-base gap was constructed as

described except that a uracilated 47-mer oligonucleotide scaffold was used. The dUg

containing oligonucleotide was removed by incubation with UDG (0.04 U/pl) and

exonuclease III (0.4 U/gl) for 90 min at 16'C.

Finally, singly modified genomes were spun at 2,000 x g for 4 min through a G-50

Quick Spin column that was pre-equilibrated with H20; the genomes eluted in the void

volume. A 30 pl portion of each genome preparation mixture was examined by gel



electrophoresis, and the presence of completely ligated genome was confirmed by

comigration with ss circular DNA.

5. Characterization of ss M13mp7L2 Genomes

Singly modified genomes were constructed and characterized by restriction

enzyme digestion in order to assess the amount of oligonucleotide fully ligated in the

genome (Bailey et al., 1996a). The genomes were constructed as previously described

except that the singly modified heptamers were phosphorylated by using [y32P]dATP.

Following ligation, the genomes were digested with Hinfl (100 U) and Haelll (75 U) in a

buffer of 50 mM NaC1, 10 mM Tris-HC1, 10 mM MgCl2 and 1 mM DTT (pH 7.5) at

370C for 1.5 hr. The digestion products were then electrophoresed through a denaturing

23% polyacrylamide gel. In parallel, a known amount of the labeled oligonucleotides was

also electrophoresed. Ligation efficiencies were approximated by comparing the amount

of radioactivity in the bands from the digested sample to that of the known amount of

oligonucleotide.



C. RESULTS AND DISCUSSION

1. Preparation and Purification of Modified Oligonucleotides

Two factors influenced the selection of an oligonucleotide sequence for this study.

First, the synthetic method used to construct the dUg containing oligonucleotide

precluded the presence of dT in the sequence of the oligonucleotide, since OsO4 reacts

with both dT and dU (Beer et al., 1966) and the presence of dT in the oligonucleotide

would result in the formation of oxidized thymidines as well as oxidized uridines.

Second, the lesion had to exist within a unique restriction site such that mutations

induced by the lesion would render the site refractory to digestion, thus providing a

means to separate mutant sequences (DNA unaltered by digestion) from wild-type (DNA

linearized by digestion) sequences. It was impossible to design an oligonucleotide

composed of only dC, dG and dA that would create a unique restriction site in

M13mp7L2. Therefore, it was necessary to combine nucleotides from the M13mp7L2

genome with those from the oligonucleotide to establish a new restriction site. Three

bases on the 3' end of the EcoRI digested M13mp7L2 were combined with three bases on

the 5' end of the oligonucleotide to create an unique ApaLI restriction site, 5'-GTGCAC-

3', where the underscored C represents the site of modification (Figure 9). It is important

to note that by using ApaLI restriction digestion for mutant selection in this system, only

mutations induced at, and up to five bases 5' of, the site of modification were selected.

Oligonucleotides of the sequence 5'-CAXGCAG-3' where X is either 5-OH-dC or

5-OH-dU were prepared on a 1-gmole scale by automated solid phase DNA synthesis.

All couplings, including those with the modified phosphoramidites, were >97% as
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indicated by release of trityl cation (Morningstar et al., 1997). Following DNA synthesis,

the modified oligonucleotides and a control oligonucleotide, where X is dC, were

deprotected in concentrated aqueous ammonia at 600 C for 5 hr. The deprotected

oligonucleotides were subsequently purified by using C18 RP-HPLC.

The lability of dUg precluded the synthesis of a singly modified oligonucleotide

through standard solid phase synthesis techniques. To generate a dUg containing

oligonucleotide, a uracilated 7-mer of the sequence 5'-CAUGCAG-3' was synthesized

and chemically oxidized with OsO4 to create a dUg modified oligonucleotide (Wang and

Essigmann, 1997). Reaction of OsO4 with DNA is known to give exclusively cis-glycols

(Schr6der, 1980), and it is likely that oxidation of the oligonucleotide 5'-CAUGCAG-3'

produces a mixture of the two diastereomers (5S, 6R and 5R, 6S) of cis-dUg as has been

reported for the KMnO4 oxidation of dT to dTg (Teebor et al., 1987). The oxidation

reaction of dU to dUg did not proceed in high yield (average yield was 14%) and a

number of peaks corresponding to various oxidation products were observed; however,

the major oxidation peak was easily separated and corresponded to the dUg modified

oligonucleotide. Facile separation is an advantage of short modified oligonucleotides.

2. Characterization of Modified Oligonucleotides

The molecular weight of 5-OH-dC, 5-OH-dU and dUg containing heptamer

oligonucleotides was confirmed by negative ion ES-MS. This procedure involves gentle

ionization of an oligonucleotide to prevent fragmentation, thus producing molecular ions

with one or more charge. For example, a 7-mer oligonucleotide can exist in six different



charge states corresponding to the six phosphodiester groups on the DNA backbone. The

instrument measures the signal of [(m-z)/z], where m is the molecular weight of the

oligonucleotide and z is the number of charges on the phosphodiester backbone, and one

can thereby back-calculate the molecular weight of the oligonucleotide at zero charge.

The ES-MS results for the oligonucleotides are shown in Figure 10 and Table 3.

Quantitative assessment of the base composition of the 5-OH-dC and 5-OH-dU

modified oligonucleotides was performed by HPLC integration of the nucleoside peaks

following digestion of the oligonucleotides to their corresponding nucleosides (Figure

11). Standard curves of the amount of nucleoside versus peak area were constructed and

used to quantitate the amount of each nucleoside present in the digested sample. The

nucleoside peaks for the oligonucleotides were observed in the correct ratios based upon

integration of the peak areas at both 254 and 280 nm. HPLC analysis additionally

showed that the modified nucleosides co-eluted and had identical UV spectra to those of

standards.

The use of ammoniacal deprotection of the 5-OH-dC and 5-OH-dU

oligonucleotides could have presented a complication in that it recently has been

observed that 5-acetoxy and 5-benzoyloxy nucleosides can undergo, albeit as a minor

reaction, an addition/elimination reaction to yield 5-amino-substituted nucleosides (Yu et

al., 1993). In the present study, oligonucleotides containing 5-OH-dC and 5-OH-dU

would be partially converted to 5-amino-2'-deoxycytidine (5-NH2-dC) and 5-amino-2'-

deoxyuridine (5-NH2-dU), respectively. To determine if these side reactions were

significant events, 5-NH 2-dC and 5-NH2-dU were synthesized by M. Morningstar from



the corresponding 5-bromo derivatives (Ferrer et al., 1996; Momingstar et al., 1997).

C18 RP-HPLC analysis revealed that the 5-amino derivatives of dC and dU had retention

times that would easily allow their detection if they were contaminants in enzymatic

hydrolysates of 5'-CA(5-OH-C)GCAG-3' and 5'-CA(5-OH-U)GCAG-3' (Figure 12). The

absence of the 5-amino nucleosides (detection limit, approximately 1%) suggests that the

amination reaction is rare, if indeed it occurs at all, under the conditions used here.

Characterization of the dUg oligonucleotide confirmed that it possessed physical

properties consistent with that of an oxidized product. The dUg heptamer eluted earlier

by C18 RP-HPLC and had retarded mobility during electrophoresis through a denaturing

polyacrylamide gel compared to the dU containing oligonucleotide.

3. Stability of Modified Oligonucleotides

To assess the stability of the lesions, the modified oligonucleotides were subjected

to the conditions used for genome construction. The heptamers were incubated under the

reaction temperatures and in the buffers used for genome construction, and then the

samples were analyzed by C18 RP-HPLC (Figure 13). Under these conditions, no

detectable degradation of the 5-OH-dC and 5-OH-dU modified oligonucleotides was

observed. However, the dUg containing oligonucleotide was not stable under these

conditions and was found to suffer approximately 43% degradation. Based on earlier

degradation studies of a dUg containing pentamer, degradation of the oligonucleotide

most likely involves depyrimidination of the lesion and fragmentation at the AP site.

Because of the lability of the dUg containing oligonucleotide, it was necessary to employ



milder conditions for the construction of a dUg containing genome. As discussed

previously, the milder genome construction method required that the lesion only be

incubated at 160 C for 2 hr 15 min (Bailey et al., 1996a). Under these conditions, no

detectable degradation of the dUg containing oligonucleotide was observed.

4. Construction of ss M13mp7L2 Genomes

Single-stranded M13mp7L2 DNA was obtained by isolating phage from GW5100

E. coli cells. Following phenol extraction and ethanol precipitation, purification of the ss

DNA through a hydroxylapatite column was found to be a critical step in the genome

construction process; DNA not purified by using such a column was found to degrade,

specifically during digestion by EcoRI and heat annealing to form a gapped molecule.

While hydroxylapatite columns are primarily used to separate ds from ss DNA, it is

believed that during the passage of the sample through the column, proteins that degrade

DNA may also be removed.

Purified M13mp7L2 ss DNA was digested with EcoRI, and the linearized DNA

was annealed to a 47-mer scaffold oligonucleotide that brought the ends of the linearized

DNA to within 7 nucleotides of one another. The gapped genomes were analyzed by

agarose gel electrophoresis, and a typical yield for gapped genome formation was 50%,

with 50% linear M13mp7L2 remaining. Subsequently, the 5'-phosphorylated heptamer

containing either dC, 5-OH-dC, 5-OH-dU or dUg was ligated into the gapped molecule.

Removal of the 47-mer scaffold by heat denaturation, or of the uracilated 47-mer scaffold

by UDG and exonuclease III, yielded the ss modified genomes.



It was important to completely remove the scaffold from the ss genomes to ensure

replication of the lesion following transfection of the genomes into E. coli. Although

untested, the possibility that the DNA replication machinery of the cell could use the

scaffold as a primer for DNA synthesis did exist. In the case of the unmodified, 5-OH-dC

and 5-OH-dU genomes, removal of the scaffold was accomplished by the addition of a 2-

fold molar excess of a 47-mer oligonucleotide complementary to the scaffold. Following

heat denaturation of the scaffold from the circular genome, it was believed that if

reannealing were to occur, it would preferentially do so with the excess complementary

DNA strand, and not with the circular genome.

Because of the instability of dUg, the scaffold of the dUg containing genome was

unable to be denatured by heating without compromising the integrity of the lesion. A

milder genome construction scheme was used in which a uracilated scaffold was used to

construct the gapped molecule (Bailey et al., 1996a). Following ligation of the modified

oligonucleotide, the uracilated scaffold was removed by the concerted efforts of UDG and

exonuclease III. Oligonucleotides containing dUg are refractory to the action of UDG.

5. Characterization of ss M13mp7L2 Genomes.

Singly modified genomes were constructed and characterized by restriction

enzyme digestion in order to assess the ligation efficiency of the modified

oligonucleotides (Figure 14). The restriction enzymes Hinfl and HaeII were used to

excise a section of DNA surrounding the modified oligonucleotide; an Hinfl site exists 8

nucleotides (nt) away from the 5' end of the oligonucleotide, and an HaeIII site is located



10 nt away from the 3' end of the oligonucleotide. If the modified heptamer were ligated

on both its 5' and 3' ends, a 25 nt DNA fragment would be excised following restriction

digestion. Likewise, ligation at only the 5' or 3' end would produce a 15 nt or 17 nt

fragment, respectively. Any oligonucleotide not ligated into the gapped genome would

run as a 7 nt fragment.

The efficiencies of genome construction for dC, 5-OH-dC, 5-OH-dU, and dUg

were determined to be 85%, 80%, 44%, and 32%, respectively. Oligonucleotides

containing dC or 5-OH-dC were ligated more efficiently than those containing oxidized

uridines. One explanation for the increased efficiency is that during ligation of the

oligonucleotides into the gapped genome, the lesions were placed opposite dG; perhaps

ligation of 5-OH-dU and dUg would be more favorable opposite a template dA. In

addition, the low ligation efficiency of the dUg containing heptamer could be

compounded by the bulkiness of the lesion.

D. CONCLUSION

The work described above details the construction of biologically viable DNA

substrates containing a single oxidized lesion. The procedures used enabled complete

control over the DNA sequence surrounding the adduct and allowed the chemical purity

of the lesion to be monitored at every stage. With the construction of single-stranded

genomes containing either 5-OH-dC, 5-OH-dU or Ug within a specific ApaLI site, the

stage was now set to examine lesion mutagenicity in E. coli.
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M13mp7L2 ss modified genome ApaLl Restriction
(In frame, dark blue plaque) Site

Figure 9: DNA sequence of the lacZ oa gene containing the modified cytosine lesion.
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Table 3: Results from negative ion ES-MS analysesa of the singly modified oligonucleotides,
5'-CAXGCAG-3', where X = dC, 5-OH-dC, 5-OH-dU or dUg.

m-z
CAXGCAG z

Molecular
X Weight z = 2 z = 3 z = 4

dC 2090.9 (209 1.4)b 1044.4 (1044.7) 695.9 (696.1) 521.9 (521.9)

5-OH-dC 2106.7 (2106.4) 1052.3 (1052.2) 701.3 (701.1) 525.9 (525.6)

5-OH-dU 2107.7 (2107.4) 1052.8 (1052.7) 701.6 (701.5) 526.1 (525.9)

dUg 2125.6 (2125.6) 1061.8 (1061.7) 707.6 (707.5) 530.6 (530.4)

a Analyses were performed by Dr. J. Wishnok.
b Numbers are presented as "observed (calculated)".
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Figure 11: RP-HPLC (280 nm) of deoxynucleosides following digestion of 5'-CAXGCAG-3'.
(A) X dC; (B) X = 5-OH-dU; (C) X = 5-OH-dC. The labels indicate the identity of the peaks as
determined by coincident retention times and identical UV spectrum with authentic samples.
Retention times: 5-OH-dC, 4.5 min; 5-OH-dU, 6.9 min; dC, 11.1 min; dG, 19.9 min; dA, 30.0 min.



Figure 12: RP-HPLC analyses with detection at 280 nm: (A) deoxynucleosides following
enzymatic digestion of 5'-CA(5-OH-C)GCAG-3'; (B) 5-NH -dC standard; (C) deoxynucleosides
following enzymatic digestion of 5'-CA(5-OH-U)GCAG-3'; (D) 5-NHI-dU standard;
(E) coinjection of 5-OH-dC; 5-NH2-dC; (F) coinjection of 5-OH-dU and 5-N~ -dU. Retention

times: 5-OH-dC, 7.4 min; 5-NH-dC, 10.0 min; 5-OH-dU, 12.0 min; 5-NI- -dU, 14.6 min;
dC 15.8 min; dG, 30.3 min; dA, 43.4 min.

68



5'- CA(5-OH-U)GCAG -3'

Figure 13: (1) RP-HPLC profiles of the 7-mer oligonucleotide, 5'-CAXGCAG-3' where (A) X =
5-OH-dC; (B) X = 5-OH-dU; (C) X = dUg. (2) The same oligonucleotide after incubation under
standard genome construction conditions (16'C for 105 min, 65°C for 10 min and 100°C for 2.5
min). Under these conditions, 43% of dUg modified oligonucleotide was found to degrade. (3) The
same oligonculeotide incubated under milder genome construction conditions (16 C for 135 min).
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5'-TG TTCAGTG CAXGCAGAATTCACTGG CC-3'
3'-ACTAAGTCACGTGCGTCTTAAGTGAC GG-5'

Digest with
Hinfl and Haelll

B 25 nt l i full lig.

17 nt 3' lig.
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Figure 14: Restriction endonuclease characterization of singly modified genomes. (A) Map of the Hinf7 and HaeII restriction sites.
(B) Following digestion of the genomes with HinfJ and HaeIII, complete 5' and 3' ligation of the 7-mers into the gapped molecule yielded
a 32 P-labeled 25 nt fragment, whereas ligation on either the 5' or 3' side produced 32P-labeled fragments of 15 and 17nt, respectively.
(C) Phosporimage of the reaction products electrophoresed on a 23% denaturing polyacrylamide gel.
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CHAPTER III:

Mutational Properties of 5-OH-dC, 5-OH-dU and dUg

Bacteriophage Genomes in Eschericia coli



A. INTRODUCTION

The filamentous bacteriophages of E. coli consist of extra-chromosomal ss

circular molecules of DNA that naturally occur in bacteria. Filamentous phages are

useful molecular cloning vehicles for a number of reasons: (1) phage can tolerate the

packaging of foreign DNA up to seven times the unit length of a single viral DNA

molecule during replication, (2) bacteriophage do not lyse the host bacterium, and (3)

phage DNA can be recovered in ss circular or ds circular forms (Maniatis et al., 1989). In

Chapter 2, the construction of filamentous bacteriophage genomes containing a single

oxidized cytosine lesion was described. This chapter shall focus on the replication of the

singly modified bacteriophage genomes in E. coli and the determination of the mutation

frequencies and specificities of 5-OH-dC, 5-OH-dU and dUg.

Filamentous phages, such as the M13mp7L2 strain used in this study, are thread-

like viruses containing a ss copy of DNA approximately 6400 nucleotides in length

(Figure 15). In order to replicate, filamentous phages must infect E. coli and, since these

phages are male specific, they can only infect E. coli cells bearing hair-like F pili on the

cell surface (for a review, see Kornberg and Baker, 1992). The first step in viral infection

involves attachment of one of the minor phage coat proteins to the receptor at the tip of

the F pilus of the host E. coli. Upon binding, the pilus is thought to retract, bringing the

phage in contact with the bacterial cell surface. The coat proteins are removed from the

phage particle and the ss circular DNA, the (+) strand of the phage DNA, is inserted into

the cell (Figure 16).

Phage DNA replication occurs in three stages within the infected cell. In stage
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one (complementary strand synthesis), a complementary (-) strand of phage DNA is

synthesized. This synthesis converts the infecting ss circular DNA, the (+) strand, into ds

replicative-form (RF) DNA. Synthesis of the (-) strand begins at the (-) strand origin and

is carried out by the host E. coli replicative enzymes. In the second stage of replication,

the intracellular pool of RF DNA is increased by the sequential action of both replication

origins. Rolling-circle type replication from the (+) strand origin is followed by

conversion of the progeny ss circles to double strands by replication starting and the (-)

strand origin. The resulting RF DNA molecules are intermediates in DNA synthesis and

transcription templates for the synthesis of the phage-encoded proteins. The third stage of

replication (single-strand production) takes place late in infection. This stage of DNA

replication is asymmetric because the (-) strand origin functions at a reduced level late in

the infection and therefore mainly (+) strands are produced. These ss circles, (+) strands,

are packaged into phage particles for export instead of being converted into RF DNA.

The protein coat that protects phage DNA is composed of two proteins: (1) the product of

gene VIII which is the major structural protein of bacteriophage particles that forms a

filamentous rod, and (2) the product of gene III which is a minor coat protein that is

located at one end of the rod. Thus packaged, the (+) strand viral particles are prepared

for further infection of bacteria. Ordinarily, infection with filamentous phages is not

lethal and the host cells do not lyse, although their growth rate slows approximately 2-

fold.

All genes of filamentous bacteriophages are essential, but there is an

approximately 500 nucleotide region located between genes II and IV into which



segments of foreign DNA may be inserted (Figure 15). The mp series of bacteriophage

M13 vectors were developed by Messing and co-workers to contain a short segment of E.

coli DNA in this intergenic region (Messing, 1983). Construction of these vectors

allowed for the use of a simple color test, known as an a-complementation assay, to

distinguish between vectors that carry a segment of foreign DNA and those that do not.

The a-complementation assay was first developed by Ullmann, Jacob and Monod

in 1967 (Ullmann et al., 1967), and is based upon the ability of a cell to synthesize the 3-

galactosidase (P-gal) protein. Normally this protein serves to cleave lactose into glucose

and galactose, which the cell can then utilize for energy production. However, expression

of P-gal can be induced in the presence of IPTG (isopropylthio P-D-galactoside), and the

protein is capable of cleaving other lactose analogs such as X-gal (5-bromo-4-chloro-3-

indolyl P-D-galactoside); the color component of this assay arises from cleavage of X-gal

by -gal resulting in the formation of a chromogenic compound that is blue in color.

The monomer of the P-gal protein can be dissected into two parts: the N-terminal,

called the a-fragment, and the C-terminal, referred to as the o-fragment. Ullmann et al.

showed that a cell bearing any number of deletions of the 5' end of the lacZ gene

synthesized an inactive o-fragment of P-galactosidase, and that a cell bearing a deletion

of the 3' end of lacZ encodes an inactive a-fragment (Ullmann et al., 1967). However, if

a cell contained two genes, one directing the synthesis of the a-fragment and the other

directing synthesis of the o-fragment, the two fragments were able to complement one

another and P-gal activity was restored.



Many vectors contain the lac a gene sequence, and exploitation of these vectors

for ac-complementation requires the use of a bacterial strain carrying the lac (o gene

fragment which is usually harbored on the extra-chromosomal F' plasmid (Figure 17).

The vectors of the M13mp series contain densely packed restriction sites in the lac a

sequence, enabling their further usefulness in molecular cloning. The presence of this

polycloning region has little effect on the ability of the P-gal peptide to carry out a-

complementation. Thus, M13mp vectors plated on bacterial hosts carrying the

appropriate F' episome will form blue plaques when the medium contains IPTG and X-

gal. Insertions of additional DNA into the polycloning site can shift the peptide sequence

out of frame, and thus destroy a-complementation. Plaques generated from these

recombinant bacteriophages are colorless when grown in the presence of IPTG and X-gal.

The experiments of this chapter were performed using ss M13mp7L2

bacteriophage genomes into which was inserted a specific oligonucleotide containing a

single 5-OH-dC, 5-OH-dU or dUg. The lesion was situated within a unique restriction

site and the oligonucleotide was itself situated within the a-fragment of the lacZ gene. In

this chapter, the following experiments shall be described: (1) Transfection and

replication of the singly modified genomes in wild-type E. coli, (2) Selection of phage

containing the modified oligonucleotide and production of RF DNA, (3) Selection of

mutant from wild-type DNA by restriction enzyme digestion, and (4) Determination of

the mutation frequencies and specificities of 5-OH-dC, 5-OH-dU and dUg.



B. MATERIALS AND METHODS

1. Materials

5-Bromo-4-chloro-3-indolyl P-D-galactopyranoside (X-Gal) and isopropyl P-D-

thiogalactopyranoside (IPTG) were from Gold Biotechnology. [cc35S]dATP and

Sequenase version 2.0 sequencing reagents were from Amersham. The cell line used for

transfection was DL7 (ABI1157; (lac) AU169) (Lasko et al., 1988) and for plating was

GW5100 (JM103, P1-) from Graham Walker (MIT).

2. Transfection of ss M13mp7L2 Genomes into E. coli

E. coli DL7 cells were prepared for transfection by electroporation as described

(Wood et al., 1990; Bailey et al., 1996b). Briefly, 2 ml of an overnight culture of DL7

cells were diluted in 100 ml LB media and incubated with shaking at 370 C to a density of

8x108 cells/ml. The cells were cooled on ice for 10-15 min and then spun at 4,000 x g for

5 min. (Note: all cell spins were performed at 40 C.) Next, the cells were resuspended in

an equal volume of ice cold sterile deionized H20 (100 ml) and then immediately spun at

8,000 x g for 10 min. Finally, the cells were resuspended in 1/2 volume cold H20 (50 ml)

and then spun at 13,000 x g for 10 min. The cells were resuspended in 1-2 ml cold H20

and then used directly for transfection.

A 190 pl portion of cell suspension was added to 5-10 [tl of the DNA solution

containing the prepared genomes. The mixture was transferred to a cold Bio-Rad gene

pulser cuvette (0.2 cm) and electroporations were performed with a BTX electro cell



manipulator 600 system set at 50 mF and 129Q. The electroporation field strength

optimal for cell survival was 12.5 kV/cm. Immediately after electroporation, 1 ml of

room temperature SOC medium (Hanahan, 1985) was added and a portion of the bacterial

suspension was plated in the presence of GW5100 cells, X-Gal and IPTG to determine

the number of infective centers. Following plating, the remaining electroporation mixture

was incubated for 2-3 h at 370 C, after which the progeny phage were isolated from the

supernatant.

3. Mutant Enrichment Protocol

The pooled progeny phage were used to produce RF DNA by using the Qiagen

midi-plasmid purification system. RF DNA was purified by 0.6 % agarose gel

electrophoresis in TAE buffer (40 mM Tris-CH 3CO2, 2 mM Na2 EDTA, pH 8.5) for 1 hr

at 100 V. The RF DNA band was visualized by soaking the gel in a 1 jtg/ml solution of

ethidium bromide. The band was excised from the gel and the DNA was extracted by

electroelution with Centricon 10s.

The pool of purified RF DNA was enriched for mutants by digestion with the

restriction enzyme, ApaLI. Equimolar amounts of RF DNA (250 ng) were treated either

in the presence or absence of ApaLI (20 U/pl) at 370 C for 4 h in a buffer consisting of 50

mM K(CH3CO 2), 20 mM Tris-CH3CO2, 10 mM Mg(CH 3CO 2) 2, 1 mM DTT and 100

itg/ml acetylated BSA. The two fractions, labeled ApaLI+ and ApaLI-, respectively, were

diluted to 100 [l and 10 ptl (12 ng of DNA) were used to transfect 190 ptl of E. coli DL7



cells by electroporation as described above.

4. Determination of Mutation Frequency

The mutation frequency was defined as the ratio of mutant to wild-type plus

mutant progeny. The ratio of infective center plaques produced from the ApaLI+ fraction

to the ApaLI- fraction gave the percentage not digested by ApaLI, the first approximation

of mutation frequency. Individual plaques from the ApaLI+ fraction were sequenced by

the Sanger dideoxy method to determine the mutational specificity of each lesion (Sanger

et al., 1977). Since the ApaLI+ fraction included some wild-type DNA that had evaded

digestion (as determined by sequence analysis), the true mutation frequency was

determined by multiplying the percentage not digested by ApaLI by the ratio of mutants

sequenced.



C. RESULTS AND DISCUSSION

1. Transfection of ss M13mp7L2 Genomes into E. coli

The modified genomes were transfected into DL7 E. coli cells (Figure 18). The

DL7 strain is what our laboratory refers to as a wild-type cell strain (i.e., it has no known

repair or replication defects). As compared to other strains (e.g., AB 1157), it contains a

chromosomal lac gene deletion preventing its interference with the a-complementation

assay between the vector and the GW5 100 cells. Following transfection, the

cell/DNA/phage mixture was plated with GW5100 E. coli cells in the presence of IPTG

and X-Gal. This cell strain contains a full chromosomal lac gene deletion, but carries an

extra-chromosomal copy of the o-fragment of the P-gal gene, and can therefore be used

along with the appropriate vector in an c-complementation assay. DNA used in the

above transfections gave rise to dark-blue and colorless plaques. Dark-blue plaques

resulted from restoration of the M13mp7L2 lacZ reading frame (which is normally out of

frame by +2) upon ligation of the 7-mer oligonucleotide. The sequence context of the

system was such that both wild-type and mutant progeny exhibited a dark-blue

phenotype. As determined by sequence analysis, the colorless plaques resulted from

undigested parental M13mp7L2 DNA.

Neither 5-OH-dC, 5-OH-dU nor dUg appear to be cytotoxic lesions since the

numbers of infective centers generated from transfection of similar amounts of fully

ligated genomes are roughly the same. For each lesion, progeny phage representing a

total of 50,000 independent transformational events (dark-blue plaques) generated in at



least 9 transfections and at least 3 separate genome construction experiments were pooled

for further analysis

2. Enrichment of Mutant DNA by Restriction Enzyme Digestion

The M13mp7L2 genomes were constructed such that the oxidized cytosine was

situated within a unique ApaLI restriction sequence. If replication past the lesion did not

result in mutation, the ApaLI restriction sequence would remain intact and, upon

digestion with the enzyme and transfection into E. coli, the DNA molecule would be

linearized and biologically inactivated. If, however, a mutation did occur, the DNA

molecule would be refractory to cleavage by ApaLI and hence retain its ability to

replicate in E. coli and form a plaque.

A population of progeny RF DNA generated from unmodified (dC), 5-OH-dC, 5-

OH-dU and dUg containing genomes was cleaved by ApaLI indicating that none of the

lesions were 100% mutagenic in this system. The percentage of DNA not cleaved by

ApaLI provided an initial estimate of the mutation frequency of each lesion. In the case

of 5-OH-dU and dUg, these initial estimates (83% and 80%, respectively) were accurate.

However, in the case of the unmodified and 5-OH-dC containing genomes, these

estimates (0.08% and 0.09%, respectively) were higher than the true mutation frequencies

(0.003% and 0.05%, respectively). This discrepancy arises because the ApaLI enzyme is

only 99.9% efficient under these conditions, and thus approximately 0.1% of the dC and

5-OH-dC genomes were left uncleaved not because of a mutation but because of enzyme

inefficiency. The true mutation frequencies were thus the percentage of uncleaved DNA
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multiplied by the percentage of mutant genomes in that DNA population.

3. Determination of Spontaneous Mutation Frequency

The background mutation level of the experiment was defined by the observed

mutation frequency of the control genome containing unmodified cytidine (Table 4).

Keeping in mind that only the 6 bases comprising the ApaLI restriction site could be

monitored, the spontaneous mutation frequency in this system was found to be 0.003%,

which corresponds to 3 mutational events per 100,000 bases or 3x 10- . The handling of

the unmodified oligonucleotide (heating, air exposure) and the genetic engineering

techniques used for genome construction may contribute to the spontaneous mutation

frequency as observed in this study. Although only 3 spontaneous mutants were

observed, it is interesting to note that all were C -+T transitions, identical to those

observed for the oxidized cytidines. While the number of observed spontaneous events is

admittedly small, the data are in accord with the view that these lesions may play a role in

spontaneous mutation. The frequency and specificity of spontaneous mutation observed

in this site-specific mutagenesis study is consistent with that found for replication of a ss

M13 genome in E. coli (Yatagai and Glickman, 1990).

The spontaneous mutation frequency of the lacI gene of E. coli has been

previously determined by cloning the gene into ss bacteriophage M 13 (Yatagai and

Glickman, 1990) and by placing the gene in the F' episome (Schaaper et al., 1986). In

the context of M 13, the spontaneous mutation frequency of the lad gene was determined

to be 1.4x 10-4 with 80% of the mutations being base substitutions, primarily GC-AT
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transistions (Yatagai and Glickman, 1990); in contrast, the mutation frequency of the

gene in the F' episome was shown to be 2.0x 10-6 (Schaaper et al., 1986). Interestingly,

the frequency of transition mutations in the M13 system was shown to be 9.4x 10-, which

is similar to the value obtained for the spontaneous transition mutations observed in this

work. The discrepancy between these results may be a reflection of the enhancement of

dC deamination in ss versus ds DNA (Lindahl and Nyberg, 1972; Lindahl and Nyberg,

1974).

4. Mutation Frequency of 5-OH-dC

Although one order of magnitude greater than background, a modest mutation

frequency (0.05%) was observed for 5-OH-dC (Table 4). The predominant mutation

observed was a C-T transition, and several C-+G transversions were also observed. The

data presented here for 5-OH-dC are in agreement with in vitro polymerase bypass and

dNTP incorporation studies demonstrating that this lesion is processed without significant

error by the Klenow fragment of DNA polymerase I (Purmal et al., 1994b; Purmal et al.,

1994a).

Although one study by Feig et al. suggests that 5-OH-dC is significantly

mutagenic in E. coli (2.5% mutation frequency), the technique used to generate 5-OH-dC

in that study also allowed for the generation of other oxidized products (Feig et al., 1994).

Whereas the work presented here employed a direct chemical synthesis to generate 5-OH-

dC, in the Feig experiment dCTP was oxidized with Fe 2+ and H20 2, and the "5-OH-

dCTP" peak was isolated by HPLC. The putative cytidine oxidation product was
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incorporated into a viral genome by the low fidelity HIV reverse transcriptase (Preston et

al., 1988). In order to cause a C-+T mutation, the oxidized species had to be incorporated

opposite template dGs. Given the high mutagenicity of 5-OH-dU and dUg, it is possible

that interpretation of the results of the earlier study could be skewed considerably if only

a small amount of a highly mutagenic oxidized uridine or readily deaminated oxidized

cytosine species were present after HPLC purification. Furthermore, due to the low

fidelity of HIV reverse transcriptase, the possibility that an oxidized uridine or readily

deaminated cytidine was incorporated opposite template dGs cannot be excluded. The

present study was a more direct approach to the problem and it is unlikely to have given

rise to ambiguous results.

The molecular mechanisms of 5-OH-dC mutagenesis have yet to be investigated.

In its enol conformation, 5-OH-dC is not expected to cause mispairing since it retains

cytidine-like base pairing properties (Figure 19). However, it is plausible that a minor

conformation of 5-OH-dC such as the imino tautomer exists in DNA and that this

conformation of the lesion may result in misreplication by a DNA polymerase.

Previously, the minor imino tautomers of DNA bases were believed to be relatively

unimportant in lesion mutagenesis (von Borstel, 1994), however, more recent evidence is

beginning to mount that this may not be the case (Fazakerley et al., 1993). Theoretically,

the imino tautomer of 5-OH-dC can form a stable base pair with dA, resulting in a C--T

transition, or it may pair with dC, resulting in a C--G transversion. Interestingly, both of

these mutations were observed in the current mutagenesis study (Kreutzer and

Essigmann, 1998), as well as in the in vitro polymerase bypass studies from the Wallace
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laboratory (Purmal et al., 1994b; Purmal et al., 1994a).

4. Mutation Frequencies of 5-OH-dU and dUg

In contrast to the low mutation frequency of 5-OH-dC, the mutagenicities of 5-

OH-dU and dUg were strikingly high (Table 4). The mutation frequencies of 5-OH-dU

and dUg were determined to be 83% and 80%, respectively, with 100% of the sequenced

mutations derived from these two lesions being C-ST transitions.

5-OH-dU and dUg are oxidative deamination products of cytidine, and the

extremely high mutation frequencies observed probably result from deamination of the 4-

amino group of the oxidized dC, altering the base-pairing properties of the pyrimidine

from dC to dT. Given this argument about the mutagenicity of 5-OH-dU and dUg, an

interesting question to ask is why are these lesions only 80% mutagenic in this system?

That is, 80% of the time 5-OH-dU and dUg preferentially base pair with dA, but why do

these lesions pair with dG 20% of the time?

A significant body of literature exists focusing on the mutagenic properties of 5-

substituted uridine derivatives, particularly their ability to base pair with dG. Based

primarily on the mutagenicity of 5-halogenated dU lesions, the hydrogen bonding

properties of a dU:dG base pair have been investigated, and it has been suggested that

three factors may be involved (Figure 20): (1) formation of the dU enol tautomer (Freese,

1959), (2) ionization of the dU base (Lawley and Brookes, 1962), and (3) formation of a

dU:dG wobble base pair (Crick, 1966; Patel et al., 1984) Each of these scenarios may

contribute to the oxidized dU:dG base pairing indirectly observed in the current
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mutagenesis study; however, the extent to which 5-OH-dU and dUg adopt either imino or

ionized conformations or participate in wobble base pairing remains to be investigated.

5. Repair of Lesions Resulting From Cytidine Oxidation

The primary defense against oxidized pyrimidines was initially attributed to the

glycosylase activity of endonuclease III, primarily based on its broad substrate specificity.

Experiments in vitro indicate that dUg, 5-OH-dC, and 5-OH-dU, as well as many other

modified pyrimidines, are all excised by endonuclease III (Breimer and Lindahl, 1984;

Dizdaroglu et al., 1993; Hatahet et al., 1994; Purmal et al., 1998; Wagner et al., 1996;

Wang and Essigmann, 1997). However, nth mutants, which lack endonuclease III,

display no sensitivity to ionizing radiation and are only weak mutators, suggesting that

additional repair systems may exist that provide functional redundancy (Cunningham and

Weiss, 1985). In support of this possibility, another glycosylase designated endonuclease

VIII has been identified, and biochemical experiments indicate that endonuclease VIII

and endonuclease III share some overlapping substrate specificity (Jiang et al., 1997b;

Melamede et al., 1994). Interestingly, analysis of its amino acid sequence reveals that

endonuclease VIII shares homology with MutM rather than with endonuclease III (Jiang

et al., 1997a). Conflicting genetic data have been reported as to the phenotype of cells

deficient in both endonucleases III and VIII (nth nei). In one study, nth nei double

mutants are sensitized to killing by oxidative stress but are not mutators (Saito et al.,

1997). A second study indicates that nth nei cells have nearly wild-type survival

characteristics, but have an approximately 20-fold increased mutation frequency (Jiang et



al., 1997a). Further experimentation is required to reconcile the observed differences.

Homologues of endonuclease III have been cloned from yeast (Augeri et al., 1997; Eide et

al., 1996; Roldin-Arjona et al., 1996) and humans (Aspinwall et al., 1997; Hilbert et al.,

1997). Unlike endonuclease III deficient E. coli, yeast deficient in this activity are

sensitive to H20 2 and the oxygen radical generator menadione, suggesting that this repair

enzyme is physiologically significant as a genoprotectant in yeast (Eide et al., 1996). In

addition to endonuclease III and endonuclease VIII, Wallace and coworkers report that

MutM from E. coli excises 5-OH-dC, 5-OH-dU and dUg from oligonucleotides in vitro

(Hatahet et al., 1994; Purmal et al., 1998). Furthermore, it is possible that UDG from E.

coli and humans may repair 5-OH-dU (Dizdaroglu et al., 1996; Hatahet et al., 1994)

although others have found otherwise (Fujimoto et al., 1997; Zastawny et al., 1995).

Another glycosylase, whose function in the repair of oxidized uridine lesions in E.

coli warrants further investigation, is the MUG (mismatch-specific uracil DNA

glycosylase) protein (Gallinari and Jiricny, 1996). This enzyme is believed to function in

the excision of uracil and thymine from mispairs with dG. A recent crystal structure of

MUG revealed structural and functional homology to UDGs despite low sequence

homology, and suggested that the enzyme's specificity may result from direct recognition

of dG in the complementary DNA strand (Barrett et al., 1998). Much effort is currently

focused on determining the true substrate specificity of this enzyme; oxidized uridines are

attractive candidate lesions since productive repair depends upon removal of the lesions

when they are situated opposite dG. If the lesions were removed from DNA when

situated opposite dA, repair synthesis would result in incorporation of dT, thus fixing a



mutation.

The adverse role that oxidized, deaminated cytidines may play in mammalian

cells remains to be investigated. 5-OH-dU and dUg have both been detected in

mammalian tissues and in human cells at levels comparable to that of 8-OXO-dG

(Wagner et al., 1992). For example, the levels of 5-OH-dU, dUg, and 8-OXO-dG in

human leukocytes have been determined to be 7, 20 and 12 adducts per 107 bases,

respectively. If mammalian polymerases misincorporate nucleotides opposite 5-OH-dU

and dUg with similar frequency to that of E. coli polymerases, these lesions pose a

serious threat to genomic integrity. Proteins that may be involved in diminishing the

cellular effects of oxidized cytidines in mammalian cells include functional homologues

of endonuclease III, and TDG, the human homologues of MUG (Wiebauer and Jiricny,

1989; Neddermann and Jiricny, 1994).



D. CONCLUSION

Replication in E. coli of a single stranded vector containing a unique 5-OH-dU or

dUg shows that these lesions exclusively induce C-±T transitions at a frequencies of 83%

and 80%, respectively (Kreutzer and Essigmann, 1998). By contrast, 5-OH-dC is much

less mutagenic (0.05%) in the same experimental system, and in addition to C-T

transitions, some C- G transversions are induced (Kreutzer and Essigmann, 1998).

Although a previous study suggested that 5-OH-dC was more significantly mutagenic in

E. coli (2.5% mutation frequency), the technique used to generate 5-OH-dC in that study

also allowed for the generation of other oxidized products (Feig et al., 1994); the

possibility that a small amount of a highly mutagenic oxidized dU or readily deaminated

oxidized dC species confounded the measurement of the mutation frequency of 5-OH-dC

cannot be excluded. Since the levels of 5-OH-dC, 5-OH-dU and dUg experimentally

found in cellular DNA are fairly comparable (Wagner et al., 1992), the biological

significance of 5-OH-dC relative to 5-OH-dU and dUg may be minimal when one

considers that the mutation frequency of 5-OH-dC is three orders of magnitude smaller

than that of 5-OH-dU and dUg.

The presence of 5-OH-dU and dUg in oxidatively damaged DNA (Douki et al.,

1996b; Wagner et al., 1992) taken together with the 83% and 80% mutation frequencies

observed in this work for these lesions implicate 5-OH-dU and dUg as likely sources of

the frequently observed C-T transitions in the mutational spectrum of oxidatively

damaged DNA. However, the relative contributions of these lesions to the overall



observed spectra of C-+T mutations cannot be assessed until further experiments

addressing the rates of formation of these lesions are performed. More specifically, it

would be of interest to examine the rates of cytidine glycol deamination and/or

dehydration that lead to the formation of 5-OH-dC, 5-OH-dU and dUg in cellular DNA.

In addition, the relative contribution of these lesions compared with that of dU arising

from deamination of dC should be addressed.

A primarily goal of this laboratory has been to understand the chemical nature and

mutagenic properties of DNA lesions arising from oxidative DNA damage. When

viewed en masse, the spectrum of spontaneous and oxidant-induced mutations is

primarily dominated by two base substitutions: GC-*TA transversions and GC-+AT

transitions. Which lesions are responsible for these mutations? Clearly, dG and dC

oxidation products are logical candidates for investigation. In studies from the early

1990s, it became evident that 8-OXO-dG caused significant levels of G-+T transversions.

Moreover, the close interrelationship between the repair of 8-OXO-dG and mutagenicity

provided a paradigm of nature's efficiency in her ability to minimize risks to the genome.

Subsequently, efforts were made to study dC derived lesions. As demonstrated by the

work of this thesis, the determination of the mutational properties of 5-OH-dU, dUg, and

5-OH-dC offers several explanations for the preponderance of C-+T mutations. In

addition, thanks to studies of other purine and pyrimidine adducts in many laboratories,

lesions sharing mutational specificity with all six possible base pair substitutions have

been identified (Table 5).

Current accomplishments are by no means exhaustive and many more oxidative
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adducts remain to be evaluated; it is likely that there are additional lesions capable of

inducing the same type of mutations. Moreover, of the twelve possible single base

substitutions, some that have been observed in mutational spectra have not yet been

assigned to any specific DNA lesion. For example, G-+C mutations are observed after

treatment of DNA with Fe2+ (McBride et al., 1991), yet the nature of the dG derived

lesion causing this mutation has not been determined.

Nevertheless, much progress has been made toward the goal of understanding the

chemical progenitors to genetic change. This progress is a consequence of the

convergence of experts in many fields: organic synthesis, mutagenesis, DNA repair,

structural biology, and analytical chemistry. The synthesis of defined DNA adducts has

permitted extensive studies of the biological properties of individual adducts, including

mutational specificity. Moreover, a chemical rationale for some of these observations has

been buttressed by NMR and X-ray crystallographic structural data. From studies of

repair enzymes, the critical role of DNA repair in mitigating the effects of DNA adducts

has also been established. As improvements in analytical techniques permit the detection

of rarer oxidative species, and chemical synthetic means advance, more pieces of the

puzzle will fall into place. Second order variables such as sequence context effects on

repair and replication will also be analyzed. Eventually, it may be possible to realize the

ultimate goal of site-specific studies on the mutagenic potential of DNA adducts:

attributing every observed mutation in the reported mutational spectrum to a specific

DNA adduct and understanding the factors contributing to the non-random distribution of

mutations.
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Figure 15: The genome of wild-type bacteriophage M 13 is a ss circular DNA molecule
approximately 6400 nucleotides in length. The figure shows the approximate locations of the
genes (Roman numerals), the positions of the major promoters (P>), and the terminators of
transcription. Between genes II and IV exists an intergenic region into which foreign DNA may
be inserted. Adapted from Maniatis, 1989.
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Figure 17: Schematic representation of the a-complementation assay. The a-fragment of the lacZ
gene carried on a vector can complement the o-fragment of the gene carried on the F' episome of
E. coli to generate a fully functional P-galactosidase (P-gal) protein.
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Figure 18: Experimental design to evaluate the mutation frequency of 5-OH-dC, 5-OH-dU and
dUg. Mutation frequency was determined in two steps. First, a preliminary mutation frequency
was determined by measuring the ratio of phage produced from RF DNA that was either treated
with or without ApaLI. That ratio, or preliminary mutation frequency, was next adjusted by
multiplying it by the fraction of phage in the ApaLI-resistant population that was verified to be
mutant by DNA sequencing. This adjustment is necessary because some wild-type RF DNA
escapes ApaLI selection. In the example shown, 66% of the progeny were in the pool that was
resistant to digestion by ApaLI. Of these, one-half were true mutants as determined by sequencing.
Thus, as shown, the mutation frequency was (66%)(50%) = 33%.



Table 4: Mutation frequencies and specificities of the unmodified control (dC), 5-OH-dC, 5-OH-
dU and dUg.

Lesion
Not Digested Mutants in Mutation Mutation

by ApaLI, ApaLI+, Frequency, Specificity
Lesion % % % (# of mutants)

dC 0.08 4 (3/79) 0.003 C-+T (3)

5-OH-dC 0.09 57 (79/139) 0.05 C- T (77)
C-G (2)

5-OH-dU 83 100 (95/95) 83 C-FT (95)

dUg 80 100 (92/92) 80 C-+T (92)

Data represent a total of three independent genome constructions and a total of nine transfections
per lesion. The progeny phage from these transfections were combined. ApaLI digest data for
dC, 5-OH-dC, and 5-OH-dU represent one experiment and for dUg represent three pooled
digests. Sequence analysis was performed once.
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tautomeric conformation, base pairs with dA (A) and dC (B) are possible; these mispairs would
subsequently result in C to T and C to G mutations, respectively.
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Table 5: Potential correlation between mutations observed in spontaneous and oxidant-induced
mutational spectra and oxidative DNA lesions

Observed base
substitution

DNA adducts of that mutational
specificitya

GC-+AT 5-OH-dC, 5-OH-dU, dUg

GC-TA 8-OXO-dG

GC-*CG 5-OH-dC

AT-CG 8-OXO-dA, 8-OXO-dGb

AT--GC dTg, 8-OXO-dA, 2-OH-dA

AT-+TA 2-OH-dA

a As determined by replication of a single adduct in vivo.
b Mutation induced if the lesion is incorporated into DNA from the

nucleotide pool.



CHAPTER IV:

Future Program of In Vivo Repair Studies



A. INTRODUCTION

Since previous work has shown that oxidized cytidines and uridines are present in

cells (Wagner et al., 1992), and since the work of this dissertation has shown that at least

two of these lesions, 5-OH-dU and dUg, are extremely mutagenic in E. coli (Kreutzer and

Essigmann, 1998), it follows that there is a high probability that organisms maintain a

means of removing these lesion from DNA. In vitro, it has been established that a

number of repair enzymes can excise oxidized dC and dU lesions from DNA including

endonuclease III, endonuclease VIII and MutM (Hatahet et al., 1994; Jiang et al., 1997b;

Wang and Essigmann, 1997). Although each of these enzymes is capable of removing

said lesions from DNA, none of them do so with high efficiency, and thus it is unclear

whether any of these enzymes is involved in the excision of the aforementioned lesions

from DNA in vivo. Moreover, cells deficient in these enzymes display only a minor, if

any, increase it C-T transitions (Cabrera et al., 1988; Cunningham and Weiss, 1985;

Jiang et al., 1997a), suggesting that overlapping repair systems operate on these lesions.

This chapter proposes a method as well as the experimental groundwork by which several

known repair systems may be tested for their efficacy in removing lesions from DNA in

vivo.

The idea underlying the proposed experimental work of this chapter is that there

exists in a repair deficient cell strain an increased level of DNA adducts as compared to a

wild-type cell strain, and that this differential is measurable. More specifically, a cell line

deficient in a repair protein known to excise a particular adduct from DNA will possess a

larger number of that lesion in its genome as compared to a repair proficient strain. Let it
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be noted at the outset that there is no direct experimental evidence supporting this

hypothesis, although indirect mutagenesis studies appear to bolster this claim; the case of

8-OXO-dG is a perfect illustration of this point. The bacterial repair system responsible

for mediating the detrimental effects of 8-OXO-dG is comprised mainly of three proteins,

MutM, MutY and MutT (Michaels and Miller, 1992b), the roles of which have been

described earlier in this dissertation. In bacteria, 8-OXO-dG induces GC-+TA

transversions (Wood et al., 1990), and the frequency by which this mutation occurs is

significantly higher when the lesion is replicated in a mutM, mutY cell line (Michaels et

al., 1992a; Moriya and Grollman, 1993b). Interestingly, E. coli cells deficient in either

mutM, mutY, or mutT display an increase in the frequency of GC-TA transversion

mutations (Michaels and Miller, 1992b), thus leading to the assumption that an increased

level of 8-OXO-dG lesions exists in these cells as well.

To test the idea experimentally that an elevated level of DNA adducts exists in

repair deficient as compared to repair proficient cells, two criteria must be fulfilled. First,

a series of cell strains deficient in the repair proteins believed to act on the particular

adduct of interest must be created. For the work proposed here, E. coli cells are a logical

choice since most knowledge about the repair of oxidative dC and dU adducts has been

garnered through the use of bacterial proteins, and since genetic manipulation of bacteria

is fairly straightforward enabling the creation of cell strains deficient in more than one

repair protein. Second, a sensitive and reproducible method to measure the level of

adducts in DNA must be used. Two methods of analysis are put forward below. The first

making use of gas chromatography-mass spectrometry (GC-MS) (Watson, 1997) and the
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second using a site-specific genetic approach.

GC-MS is a combination of two analytical techniques: GC, a separation

technique, and MS, an identification technique (Watson, 1997). Compared to HPLC-EC,

GC-MS is a more versatile technique because it is less dependent on the chemical

properties of the compound to be measured (for a review, see Dizdaroglu, 1990;

Dizdaroglu, 1994). The method, however, requires hydrolysis of DNA followed by

derivatization of the corresponding bases or nucleosides to make them volatile for GC

analysis. For accurate quantitation, a known amount of an internal standard can be added

to each sample. The internal standard, usually a compound that has a similar GC

retention time to the analyte, but a different mass, is used to compensate for any loss of

the sample during the hydrolysis and derivatization steps, as well as to offset the lack of

reproducibility between sample injections. The ideal internal standard is a stable isotope-

enriched analogue of the analyte that differs by at least three mass units. To increase the

sensitivity of detection, the mass spectrometer can be set in the selected-ion-monitoring

(SIM) mode in which only a few selected mass values for each analyte are monitored

during the time in which they elute from the GC (for a review, see Watson, 1990). This

provides a specific and sensitive detection, which is on par with that of HPLC-EC.

GC-MS has been used to successfully measure the levels of oxidative adducts

from DNA treated in vitro with an oxidizing agent, and from DNA isolated from treated

mammalian cells. However, to date, these techniques have not been used to assess the

levels of DNA adducts generated in E. coli. In this chapter, a proposed method enabling

the measurement of adduct levels in the genomic DNA of E. coli is presented. In
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addition, the way in which this method can be used to evaluate the in vivo repair of

oxidized dC and dU lesions is detailed.

B. GC-MS Approach

1. Characterization of Isotopically-Labeled 5-OH-C, 5-OH-U and 8-OXO-G by RP-
HPLC

Isotopically-labeled 5-OH-C (13C, 15N2), 5-OH-U (13C, 15N2) and 8-OXO-G (13C,

15N3) were synthesized and generously provided by Dr. Victor Nelson at NCI-Frederick

Cancer Research and Development Center. The isotopically labeled DNA bases were

characterized and quantitated by UV (Moschel and Behrman, 1974; Singer and

Grunberger, 1983). Typically, a small aliquot of compound was dissolved in

approximately 1 ml H20 and 10-100 tl NH40OH. For quantitation, a portion of each

sample was diluted into the appropriate buffer and analyzed by UV (Table 6).

The purity of the 5-OH-C, 5-OH-U and 8-OXO-G isotope standards was assessed

by RP-HPLC. Each standard (20-30 nmol) was analyzed by using a gradient of isocratic

A for 2 min followed by a gradient of 0-33% B over 33 min (A: 10 mM (NH4) 2HPO 4 and

10 mM tetrabutylammonium hydroxide pH 7.4, and B: 10 mM (NH4) 2HPO4, 10 mM

tetrabutylammonium hydroxide, CH 3CN (3:1) pH 7.4). The chromatograms for these

samples are shown in Figure 21.

2. Characterization of DNA bases by GC-MS

Prior to analysis of DNA samples, it was necessary to determine the GC retention
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times and characteristic ions of the normal and isotope-labeled DNA bases (C, A, T, G,

U, 5-OH-U and 8-OXO-G were purchased from Sigma). A small amount of each base

was dissolved and quantitated as described (Table 6) (Maniatis et al., 1989).

Samples were derivatized by mixing 2 pg of each base with 15 ld CH 3CN, 10 p

pyridine and 25 pl N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA)

(silylation grade reagents, including CH 3CN, pyridine and MTBSTFA, were from Pierce

and were stored under argon) in a silanized reaction vial. (One ml conical reaction vials

were from Wheaton. To silanize the vials, glassware was filled with a 5% solution of

dimethyldichlorosilane in toluene for 15 min, rinsed with toluene, rinsed with CH 3OH,

and then dried in an oven. Following an experiment, the vials were rinsed with H20 ,

sonicated in CH 3CN for 30 min and rinsed.) The samples were vortexed, capped with

argon, and then heated at 130 0 C for 30 min.

After cooling, 1 pl of the sample (40 ng) was directly analyzed by GC-MS

(Hewlitt-Packard [HP] 5890 Series II GC and an HP Model 5898A MS) in the scan mode

under the following conditions: GC injector temp at 240'C, GC detector temp at 280 0 C,

oven temp at 100C with a gradient of 20'C/min, solvent delay at 2-3 min, electron

multiplier at 2200 V, MS temp at 250'C and MS quadrapole at 100 C. The GC column

was an HP-5 column #19091J-1 12 370 from HP and consisted of a cross-linked 5%

phenyl-methyl silicone gum phase with a 0.2 mm internal diameter and a 0.33 pm film

thickness. The purchased column was 25 m long, but it was cut to 12.5 m for use in these

experiments. Other GC equipment, including column ferrules, glass liner and gold seal

were purchased from HP. Septas for the GC injector and the reaction vials were from
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Supelco.

Structures of the MTBSTFA-derivatized modified bases are shown in Figure 22.

The bases were easily separated under the GC conditions employed, and the retention

times, state of derivatization and characteristic ions for the DNA bases are listed in

Table 7.

3. Construction of Standard Curves for Selected Ion Monitoring

For successful quantitative analysis, the MS response must be calibrated with

standard quantities of the analyte to ensure that the instrument responds linearly. The

way in which this is often done is by mixing varying quantities of the analyte and internal

standard. The response of the GC-MS to the isotope standards was assessed by

constructing calibration curves for 5-OH-U and 8-OXO-G. Samples containing 5 ng of

the isotope compound and 0, 2.5, 5, 10 and 20 ng of the standard were derivatized and

analyzed by GC-MS-SIM. Current at 452 and 456 was monitored for 8-OXO-G, and

current at 414 and 417 was monitored for 5-OH-U. (Subsequently, current at 413 and

416 was monitored for 5-OH-U, and this change was shown to have no effect on the

linearity of the calibration curve.) The ratios of corresponding ion currents were

measured and plotted against the sample-composition ratio to give the calibration plot

(Figure 23).

The graph obtained from these plots is linear and passes through the origin. Since

the presence of a non-zero intercept is indicative of contamination with unlabeled

material in the isotopically-labeled sample, it appears that the isotope compounds
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obtained for use as internal standards for these experiments is pure. A calibration curve

for 5-OH-C was not constructed due to the lack of pure non-isotopically-labeled

compound. It was assumed that the GC-MS response to the isotopically-labeled 5-OH-C

would be similar to that of 5-OH-U and 8-OXO-G. Also, when the isotope standard of 5-

OH-C was analyzed by GC-MS in the scan mode, no unlabeled compound was observed

by extracting the chromatogram for current at 412.

4. GC-MS Method

To assess the accuracy of GC-MS for quantitating the amount of adduct present in

a DNA sample, a mock experiment was performed in which the amount of 5-OH-U in the

singly modified oligonucleotide 5'-CA(5-OH-U)GCAG-3' was measured. To hydrolyze

the oligonucleotide to its corresponding bases, 190 Cl H 20 and 310 pl 98% formic acid

were added to 1 p g of the oligonucleotide and 5 ng of the 5-OH-U and 8-OXO-G isotope

standards. Argon was blown over the sample, and then the sealed vial was heated at

1000C for 1 hr. Following acid hydrolysis, the sample was lyophilized by using a Speed-

Vac and derivatized with MTBSTFA as previously described. After cooling, 1 pC of the

sample (20 ng of oligonucleotide and 100 pg of standard) was directly analyzed by GC-

MS-SIM, with current monitored at 413 and 416 for 5-OH-U and at 452 and 456 for 8-

OXO-G.

The amount of 5-OH-C in the sample was determined through comparison of the

GC peak area for 5-OH-U and the 5-OH-U isotopically-labeled internal standard. Using

the value, a back calculation was performed to confirm the amount of oligonucleotide in
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the original sample (Figure 24). Interestingly, following hydrolysis and derivatization of

the oligonucleotide, no detectable levels of 8-OXO-G were observed in this sample.

5. Isolation of Genomic DNA from E. coli

Since this experimental method requires measuring the level of adducts in cellular

DNA, a technique was developed to isolate genomic DNA successfully from E. coli

cells. Liquid cultures of cells were grown in K medium (1% glucose, 1% Casamino

acids, 1 jtg/ml thiamine hydrochloride, 1 mM MgSO 4 7H 20, 0.1 mM CaC12, M9 salts

[Miller, 1992]); saturated overnight cultures (5 ml) were diluted to a density of 1 x 107

cells/ml (approximately 4 ml of the overnight culture into 500 ml K medium), and the

cultures were grown at 370 C with 195 rpm of shaking. Genomic DNA was isolated by

using a Qiagen Genomic DNA isolation kit on the Midi scale. The isolation was

performed as directed by the kit except that the lysozyme/Proteinase K digestion was for

1 hr at 370C, and the Buffer B2 (3 M guanidine*HCI and 20% Tween-20) digestion was

for 1 hr at 50'C. The DNA pellet was resuspended in 500 ptl TE by overnight incubation

at 370C, and the typical DNA yield was approximately 75 Gpg.

6. Repair Deficient Cell Strains

As previously discussed, it is of interest to measure the level of oxidative dC and

dU lesions in cell lines deficient for enzymes known to repair these adducts. Cell lines

deficient in all possible combinations of the nth, nei and mutM genes have been

constructed by Professor Michael R. Volkert (UMass Medical Center, Worcester, MA).
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In addition, it may also be interesting to look at the effects, if any, of the mug gene.

7. Induction of Oxidative Stress in E. coli

If the difference between steady-state adduct levels of repair proficient and

deficient cells can not detectable by the method described, it may be useful to increase the

overall number of adducts in order to enhance any differences that may exist. It may,

therefore, be necessary to treat the cells with an agent that induces oxidative DNA

damage, such as ionizing radiation, H20 2, or an 02- generating chemical. For simplicity,

initial treatment experiments were performed with H20 2.

Cytotoxicity induced by H20 2 appears to progress by two pathways (Imlay et al.,

1988; Imlay and Linn, 1986). At low concentrations (1-3 mM), H20 2-mediated cell

killing is characterized by DNA damage and requires active cellular metabolism during

exposure. In contrast, at higher concentrations of H20 2 (up to 50 mM), the mechanism of

cell killing is less well defined, but appears to be independent of cellular metabolism.

Since the purpose of treating cells in this experiment is to increase the number of DNA

adducts in the cell, it is of interest to treat cells under conditions that would induce DNA

damage. Thus, it is necessary to treat cells with a low concentration of H20 2 at a dilute

culture density to ensure active metabolism, while simultaneously culturing enough cells

from which to isolate 50 tg DNA. Based on a protocol from the Linn laboratory (Imlay

and Linn, 1986), innoculation of overnight cultures as previously described, challenging

the cells at a density of 4x 10' cells/ml with 1.5 mM H202 (84 [tl of a 30% solution from

Sigma) for 15 min at 370 C with 195 rpm shaking, and terminating the challenge by
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addition of 20 tg of beef liver catalase (1 [l of a 20 pg/ml, 65,000 U/mg suspension from

Boehringer Mannheim) should result in H20 2-mediated DNA damage. Under these

treatment conditions, a 500 ml cell culture should produce 50 pg of isolated DNA.

8. Discussion

Although GC-MS analysis is a widely used technique for the detection of

oxidative DNA bases, until recently, the yields of 8-OXO-dG by using this method were

much higher (approximately 50-fold) than those obtained by RP-HPLC with

electrochemical detection (HPLC-EC) (Halliwell and Dizdaroglu, 1992). The HPLC-EC

method most commonly used for analysis of DNA samples is based on the measurement

of current resulting from oxidation of analyte molecules (Rocklin, 1993). Thus, in work

with DNA adducts, this method is useful only in the detection of oxidized lesions with a

low oxidation potential. Initially developed for the measurement of 8-OXO-dG (Floyd et

al., 1986; Kasai et al., 1986), HPLC-EC has been extended to the detection of other

oxidized lesions including 8-OXO-dA, 5-OH-dC, and 5-OH-dU (Berger et al., 1990;

Wagner et al., 1992).

Observation of an artifactual oxidation of dG or G during the silylation step of the

GC-MS analysis is the likely cause of these discrepancies (Hamberg and Zhang, 1995;

Ravanat et al., 1995). More recently, this observation has been extended to other

oxidized bases including 5-OH-C and 8-OXO-A (Douki et al., 1996a). Thus, artifactual

oxidation may confound the measurement of adducts in this experimental system.

A number of analytical steps has been suggested to reduce the levels of undesired
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oxidation. First, during the DNA isolation step, addition of an antioxidant prior to cell

lysis may be useful (Kvam and Tyrrell, 1997). In addition, since it is believed that

oxidation of the normal bases is the source of the observed artifactual oxidation, inclusion

of a pre-purification step to separate the oxidized bases away from their normal

constituents prior to sample derivatization may be helpful. In fact, it has been recently

demonstrated that addition of this purification procedure lowers the adduct levels

detected by the GC-MS method to those observed by HPLC-EC (Ravanat et al., 1995).

Another stage at which error may be introduced into the experiment is during the

release of the bases or nucleosides from DNA, since incomplete hydrolysis of the DNA

or degradation of the analytes will result in inaccurate and inconsistent measurements

(Cadet et al., 1997). Thus, conditions should be established such that the bases or

nucleosides will be liberated from DNA while the chemical integrity of the adducts is

maintained. Compared to formic acid hydrolysis, gentler methods of releasing a base or

nucleoside from DNA include enzymatic hydrolysis by nuclease P (Shigenaga et al.,

1994) and incubation with HF/pyridine (Douki et al., 1996b).

If after optimization of the DNA extraction and preparation methods, still no

difference in adduct levels between repair deficient and proficient cells is detected, then

two possibilities remain: (1) the appropriate repair deficient cell lines were not selected,

implying that further efforts should be directed toward identifying and isolating new

repair proteins that have activity toward oxidized dC and dU lesions, or (2) the analytical

methodology is not yet sensitive enough to detect the differential adduct levels. If (2) is

found to be the case, a more sensitive genetic method for assaying repair deficient cells is
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available as described below.

C. Mutagenesis Approach

An alternative method that could be used to probe the putative effects of a given

repair protein involves a similar procedure to that described in Chapter 2 of this

dissertation, and has been previously used to confirm the role of MutM and MutY

proteins in mediating the mutagenicity of 8-OXO-dG in vivo (Michaels et al., 1992a).

Briefly, a double-stranded bacteriophage genome containing either 5-OH-dC, 5-

OH-dU or dUg is constructed such that replication of both the (+) and (-) strands can be

monitored (Figure 25). The basis of this method involves manipulation of the CC-

complementation assay described in Chapter 2 of this dissertation. The (-) strand of the

genome is built such that the sequence of the lacZ gene is out of frame. This may be

accomplished, for instance, by either the insertion or deletion of nucleotides. Thus,

progeny phage derived from this strand would lead to the formation of colorless plaques.

The oxidized lesion is incorporated into the (+) strand such that the sequence of

the lacZ gene is in frame, and progeny derived from this strand would give rise to blue

plaques. Since a mismatch is required in order to create a color selection for the (+) and

(-) strands of the proposed genome, transfection into a mismatch repair deficient strain

may be required. Following transfection and replication of the genomes in E. coli, the

experiment could proceed as described in Chapter 2: (1) blue plaques are selected, (2) if

the lesion is situated within a restriction enzyme sequence, then a mutant enrichment
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procedure can be performed, and (3) the mutation frequencies and specificites can be

determined by sequencing.

As shown in Chapter 2, the predominant mutation induced by 5-OH-dC, 5-OH-dU

and dUg is a C-+T transition. Thus, if only this mutation is examined, a second method

of analysis may be used that will eliminate the requirement of excess DNA sequencing

for mutation frequency determination. Use of this method requires placement of the

oxidized lesion in the (+) strand within the nucleotide sequence C*AG. Thus, if a C-+T

mutation occurs, the nucleotide sequence would be altered to TAG, which is read by

RNA polymerase as a stop codon resulting in truncation of protein synthesis. The

resulting P-gal protein product would not be functional in an a-complementation assay,

however, if plated in the presence of an amber suppressor E. coli strain, a low level of

transcription beyond the stop codon will occur. Thus, a mixture of functional and

nonfunctional protein will be transcribed, resulting in the formation of a light blue plaque.

The mutation frequency of the lesion can be calculating by determining the ratio of light

blue to light plus dark blue plaques.

The mutagenic experiment outlined above using either sequencing analysis or

color analysis in an amber supressor strain is designed to measure the fluctuation of

adduct-induced mutagenesis in repair deficient cell strains, and would provide suggestive

evidence of which repair enzymes are responsible for protecting a cell against the

detrimental effects of oxidized dC and dU lesions in vivo. While not as direct as the GC-

MS method described previously in this chapter, assay of individual plaques provides

maximum possible sensitivity to the mutational event in question, and would resolve the
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issue even if the use of GC-MS was ineffective in measuring increased adduct levels over

background oxidation. Thus, through either the use of whole cell oxidation and GC-MS

measurement of DNA lesion or an adducted DNA construct, the question of adduct repair

by a given protein or set of proteins can be positively answered.

Either or both of these methods provide a set of experiments for the continued

exploration of in vivo pyrimidine oxidation and repair. It is hoped that this dissertation

provides both a waypoint in the field of oxidative DNA damage and a springboard to the

future understanding of mutagenesis and ultimately cancer.
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Table 6: Spectral characteristics of normal and oxidized DNA bases.

Base pHa Xmax (nm) Emax(M)

Cb  7.0 267 6130

A 7.0 260.5 13350

T 7.0 264.5 7890

G 7.0 246 10700
275.5 8150

U 7.0 259.5 8200

5-OH-Cc 6.8 288 5000

5-OH-Uc 7.0 282 6200

8-OXO-Gd 9.5 283 8140

a Samples were quantitated in 0.1 M KH 2PO 4/K2HPO 4 buffer,
except for 8-OXO-G which was in 0.02 M NH4C1/NH 4OH

buffer.
b (Maniatis et al., 1989)
' (Moschel and Behrman, 1974)
d (Singer and Grunberger, 1983)
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5-OH-C Isotope

5 10 15 20 25 30

5-OH-U Std

5-OH-U Isotope

5 10 15 20 25 30

8-OXO-G Std

8-OXO-G Isotope

5 10 15 20 25 30

Figure 21: HPLC chromatograms (280 nm) of base standards and isotopically labeled compounds.
(A) 5-OH-U; (B) 5-OH-C; (C) 8-OXO-G.
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Figure 22: Derivatization for GC-MS analysis: Silylation of 5-OH-C (A), 5-OH-U (B) and
8-OXO-G (C) by N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA).
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Table 7: GC-MS characterization of normal and oxidized DNA bases.

Base

C

A

T

G

U

5-OH-C (13C, 15N 2)

5-OH-U

5-OH-U ("3C, 15N2)

8-OXO-G

8-OXO-G (13C, 15N3)

Retention
time,
(min)

5.48

7.13

4.89

7.5
8.78

4.48

7.25

6.84

6.84

8.65

8.65

Theoretical
Derivatization

Sites

2

2

2

3

2

3

3

3

4

4

Actual
Derivatization

State

2 TBDMSb - 1 T

2 TBDMS - 1 T

2 TBDMS - 1 T

1 TBDMS - 1 T

3 TBDMS - 1 T

2 TBDMS - 1 T

3 TBDMS - 1 T

3 TBDMS - 1 T

3 TBDMS - 1 T

3 TBDMS - 1 T

3 TBDMS - 1 T

Characteristic
iona

282

306

297

208
436

283

415

413

416

452

456

BC

B

B

B
B

B

B

B

B

B

B

a Characteristic ions corresponded to those mass values that gave the strongest signal.
b Samples were derivatized by addition of tert-butyldimethylsilyl groups, TBDMS, MW =

115.27.
c TBDMS groups are prone to loss of the tert-butyl (TB) moiety, MW = 57.

117

--



A 5

4

-

Z2

1-

0-
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ng 5-OH-U per
1000 ng 5-OH-U (13C, 15N2)
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Figure 23: Calibration plots for (A) 5-OH-U with current monitored at 414 and 417 and
(B) 8-OXO-G with current monitored at 452 and 456. Samples containing 5 ng of the isotope
standard and 0, 2.5, 5, 10 and 20 ng of the appropriate base were derivatized and analyzed by
GC-MS-SIM. The response of the MS increased linearly with increasing amounts of analyte.
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1 [Lg 5'-CA(5-OH-U)GCAG-3' + 5 ng 5-OH-U isotope std

Acid hydrolyze to bases
(formic acid, 1000C, 1 hr in sealed vial)

Derivatize
(MTBSTFA, CH3CN, pyridine, 1300C, 30 min)

Inject 1 pll onto GCMS

5-OH-U in Sample*
347,000
311,000
392,000

1,457,000

100 pg Std*
27,000
23,000
29,900
136,000

pg 5-OH-U in Sample
1280
1350
1310
1070
1260

1260 pg 5-OH-U in 1 l = 63 ng per 50 pC (0.49 nmol)

0.49 nmol 5-OH-U = 0.49 nmol oligo or 1.0 [Lg

Figure 24: Mock experiment to test the accuracy of the GC-MS method for determining the level
of adducts in a DNA sample. Briefly, the amount of 5-OH-U in a sample containing a known
amount of singly modified oligonucleotide was measured. (*) Values were obtained by integration
of the GC peak corresponding to the 5-OH-U and 5-OH-U isotopically-labeled compounds.
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I
Transfect into E. coli and

plate on amber suppressor host strain

"7

LIGHT BLUE
Plaque

DARK BLUE
Plaque

Figure 25: An alternative genetic method to determine the repair proteins removing oxidized dC
and dU lesions from DNA in vivo. Briefly, ds M13mp7L2 genomes containing either 5-OH-dC,
5-OH-dU and dUg are constructed such that ligation of a modified oligonucleotide into the (+)
strand puts the nucleotide sequence of the oc-fragment of the lacZ gene in frame. Moreover, the
lesion is situated within the sequence, C*AG, and thus, a C to T mutation would result in the
formation of the stop codon, TAG, in the lacZ gene. If plated in the presence of an amber
suppressing E. coli strain, plaques derived from replication of this strand would be light blue. In
contrast, if no mutation is induced, replication of the (+) strand of the genome would yield dark
blue plaques. In addition, the (-) strand of the genome is constructed such that the lacZ gene is
shifted out of frame. Thus, if replication of the (-) strand occurs, clear plaques would be formed.
The frequency of C to T mutations can be assessed by determining the ratio of light blue to light
plus dark blue plaques.
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