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Abstract

This thesis is concerned with the biomechanical bases of tactile sensing and their implica-
tions to neural response of Slowly Adapting Type-I (SA-I) mechanoreceptors in the skin.

In addition, possible non-linear mechanisms used by the central nervous system (CNS) for

decoding tactile information from the afferent nerve fibers were also investigated.

To investigate the mechanics of touch, a high resolution three dimensional multilay-
ered finite element model of a primate fingerpad was developed. Predictions of the
model matched empirically obtained surface displacements very well, thereby validating
its biomechanical behavior. The model was used to simulate static indentation of the
fingertip by rigid objects of different shapes such as rectangular bars, cylinders, and si-

nusoidal step shapes. The corresponding surface pressure distribution was found to be

highly dependent on the curvature of the object that indented the finger. A simple model

for surface pressure as a function of the indenting object's curvature and the local depth of

indentation was developed. To study the mechanism of transduction by the mechanore-

ceptors (transformation of the mechanical stress state into neural signals), 18 mechanical
quantities were obtained from the calculated stress and strain tensors, and were matched
with experimentally recorded neural response data. Three quantities - maximum com-
pressive strain, maximum tensile strain and strain energy density - were found to be
related to the neural responses of SA-I nerve fibers through a simple scaling-threshold
model and are thus considered to be possible relevant stimuli for SA-I afferents.

To investigate the inverse problem of decoding (computation of surface loads from neu-
ral response) by the CNS, a non-linear shift-invariant system for modeling the encoding
process, which treats the surface pressure as input and neural responses as output, was
developed. Because of the non-linearities due to the relevant stimulus measures and
threshold parameter, a simple inverse transformation cannot be applied. A signal estima-
tion algorithm using the univariate non-linear optimization technique was employed to
decode the surface pressure from the neural responses. The decoding was demonstrated
for both the ideal case where no sensor noise is present, as well as the case where the sensor
noise (assumed to be additive Gaussian) is present, as long as the signal-to-noise ratio is
greater than 20 dB.
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Title: Principal Research Scientist
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1
Introduction

1.1 Overview

This thesis is concerned with biomechanical bases of human tactile sensing, the implica-

tions of such a study to the neural behavior of mechanoreceptors embedded in the skin,

and the development of systems approach to coding and decoding of tactile information.

Each of the five sensory systems in humans has unique features. The sense of touch

is unique in that there is a direct interaction with the object being touched, unlike in vision,

hearing, and smell, wherein the information source is located elsewhere. Certain proper-

ties of objects like mechanical compliance can be realized only through touch. Unlike in

vision, hearing, or smell, during touch, one can modify the signals that are imposed on the

skin by moving one's finger over the object and exploring it. A study of the human tactile

system will lead to a better understanding of human interaction with surroundings and

will also aid engineers in the development of tactile communication aids, teleoperation

systems, intelligent robots and virtual environments.

The sequence of events resulting in human tactile sense can be divided into four events

for the ease of analysis: First, the object contacts the skin and this leads to a distribution

of forces on the skin surface. Second, these surface force distributions lead to sub-surface

distributions of mechanical stresses and strains, depending on the mechanical filtering

properties of the skin. Third, these stresses and strains are transduced into neural im-

pulses by the mechanoreceptors in the skin. Finally, these neural impulses reach the brain

where the object is perceived. Figure 1-1 shows the above sequence of events.



Object contacts finger

Skin-object contact mechanics

Information represented in the distribution of
stresses and strains in the skin

Receptor mechanics

Information represented as neural impulses
from a population of mechanoreceptors

Transmission through peripheral nerves
to the Central Nervous System (CNS)

Information processed by the CNS

Perception of object

Figure 1-1: Sequence of events leading to tactile sensing.

Human tactile sensing has been studied mostly through neurophysiological studies

(recording neural responses of peripheral nerves), psychophysical studies (evaluating re-

sponses of human subjects to tactile stimuli) or biomechanical studies (mechanistic mod-

eling of fingerpad, determination of stress/strain measures etc.). Neurophysiological

studies have provided information on the neural behavior of the mechanoreceptors and

the peripheral nerves that innervate these receptors. Psychophysical studies have yielded

insights on the relationship between the stimuli applied to the skin and the overall per-

ception of humans. Biomechanical studies have sought to establish a link between the

mechanics of contact between objects and the finger to neural recordings from afferent

nerve fibers.

1.2 Motivation

An understanding of the human tactile system requires the understanding of each of the

steps described in Figure 1-1. Though experimental techniques to record neural responses



of afferent nerve fibers exist, no techniques exist to observe the stress-state inside the

finger or measure the pressure distributions on the surface of the finger. Finite element

simulations provide a way to obtain both the stress-state inside the finger and the pressure

distributions on the surface of the finger when an object is indented onto the finger. The

results of these simulations can be used to (1) study the relationship between the surface

pressure distributions and shape of the object that indents the finger (2) determine which of

the tensorial stress-strain measures, or a combination of the measures (referred to as relevant

stimulus) can be related to experimentally recorded neural responses and (3) construct

neural responses from a population of mechanoreceptors and reduce the need for invasive

neurophysiological experiments. Such studies would provide a link between macroscopic

mechanistic phenomena and the molecular mechanisms of nerve-impulse generation (for

example, stretch activated ionic channels). The study would aid in the development of

tactile communication devices in rehabilitation, the development of tactile sensors for

intelligent prostheses, and the development of human-machine interfaces for interaction

with virtual environments and teleoperation systems.

1.3 Thesis Overview

This thesis describes a study of tactile sensing using a three dimensional finite element

model of the primate fingertip. Various biomechanical and neurophysiological experi-

ments are simulated using the model. A systems approach to tactile sensing and percep-

tion is also developed.

Chapter 2 provides background information on the anatomy of the human fingertip and

summarizes previous work in human tactile sensing. The need for further biomechanical

studies and the relevance to neurophysiological studies is discussed. A systems approach

to tactile information processing is described.

Chapter 3 describes the development of a high resolution finite element model of the

fingertip and its validation through comparison with empirical data.

Chapter 4 explains the biomechanical aspects of indentation of various shaped objects



on the fingerpad. The relationship between the surface pressure and the geometry of the

contacting object is studied.

In chapter 5, the link between the stress/strain measures and experimentally recorded

neural responses is investigated. Both chapters 4 and 5 are written so that they can be read

more or less as independent papers.

Chapter 6 develops a systems approach to tactile sensing. The (spatial) impulse response

functions for subsurface strain measures is obtained. A non-linear optimal signal estima-

tion technique is used to achieve decoding of neural responses to infer surface pressure

from the neural responses.

Chapter 7 summarizes the significance of the present work and discusses future research

directions.



2
Background

2.1 Anatomy of the Human Fingertip

The human fingertip is a complex organ. The major structural components that make

up the fingertip are the skin, subcutaneous tissues mostly composed of fat, bone and

nail. Figure 2-1 (a) shows a cross-sectional view of a human fingertip. A typical human

fingerpad is about 10 to 20 mm in diameter and the length of the distal phalanx (endmost

bone) varies between 20 to 30 mm. The skin on the palmar side is thick compared to

most parts of the body and is used for grasping as well as fulfilling sensory functions. The

palmar skin is also characterized by the presence of finger prints. The following subsection

contains a detailed anatomical description of the fingertip skin.

(b)

Figure 2-1: (a) Cross-section through a finger (adapted from O'Rahilly (1969)). (b) Different

layers in the epidermis (adapted from Thomine (1981)).



2.1.1 Fingertip skin

The fingertip skin can be subdivided into an outer layer called epidermis, and an inner

layer called dermis. The epidermis, in turn, is made up of five layers as shown in Figure 2-1

(b). The topmost layer is the stratum corneum which consists of dead keratinized cells with

no detectable intercellular spaces. This layer is considered almost water-proof (Lockhart

et al., 1965). The next layer is the stratum lucidum which contains cells that have lost their

nuclei and cell boundaries. It is typically present only in the palmar or plantar skin and

is about two or three cells thick. The third layer is the stratum granulosum which contains

granules produced during chemical changes occurring within cells as they progress to

the topmost layer. This layer is also about two to three cells thick. The fourth layer is

the malphigian layer which consists of a thick, multicellular layer of polygonal cells which

get flatter as they approach the surface. This layer is the site of cellular multiplication

and plays a significant part in skin regeneration. The bottom most layer is the stratum

basale, which is separated from the bottom dermis by a fine acellular structure called the

basement membrane. The stratum basale is attached to the basement membrane by means

of protoplasmic prolongations known as hemidesmosomes. The dermis is attached to the

basement membrane by collagen or retinacular fibrils, which thus indirectly fasten the

dermis to the epidermis. The epidermis and dermis are separated by internal ridges called

intermediate and limiting ridges.

The dermis consists of a superficial papillary layer and a deeper reticular layer, and is made

up of collagen fibers, elastin fibers, blood vessels and nerve endings. The papillary layer

is a close knit network of fibrous and elastic tissue. The reticular layer contains thicker

collagen fibers than the papillary layer, and has numerous elastin fibers that run mostly

parallel to the skin's surface.

The surface of the finger is characterized by the presence of ridges. The direction of

these ridges reflect that of the underlying internal ridges. Also, most of the epidermal and

dermal layers run parallel to these ridges. The spacing between the ridges is about 500 ym

in the human fingertip.



Figure 2-2: Cross-section through a fingertip skin showing the four mechanoreceptors (adapted
from Johansson and Vallbo (1983)): Mr - Meissner's Corpuscles; MI - Merkel Discs; R - Ruffini
Corpuscles and P - Pacinian Corpuscles. The figure is not drawn to scale.

2.1.2 Mechanoreceptors

The human fingertip skin is innervated by a variety of peripheral afferent nerve fibers. The

receptors at the end of the nerves can be classified broadly as mechanoreceptors, thermal

receptors and nociceptors (pain receptors). Among the mechanoreceptors in the human

fingertip skin, four types have been identified and their locations are shown in Figure 2-

2. These are the Meissner's Corpuscles, Merkel Discs, Ruffini Corpuscles and Pacinian

Corpuscles. These four mechanoreceptors vary in their size, location and neural behavior.

Table 2.1 summarizes some of the properties of these mechanoreceptors.

The nerve fibers innervating the mechanoreceptors have been classified primarily based

on their adaptive properties in response to time-varying indentation on the most sensitive

part of the fiber's receptive field. A "ramp and hold indentation" as shown in Figure 2-3 is

applied to the finger and responses of the corresponding peripheral afferents are recorded.

Two of the afferents respond only to the ramp (dynamic) phase of the stimulus and are

referred to as the Rapidly Adapting (RA) and the Pacinian (PC) afferents. The other two

afferents respond to both the ramp (dynamic) as well as the hold (static) phase of the

stimulus and are referred to as the Slowly Adapting Type-I (SA-I) and Slowly Adapting

~
p



Merkel Ruffini Meissner Pacini
Location Basal layer Dermis Dermal Deeper layers

cells of the papillae of dermis,
epithelial protruding subcutaneous
glandular upward into fat
ridges the epidermis

Depth 0.7-1.0 mm 0.8-1.5 mm 0.5-0.7 mm 1.5 -2.0 mm
Size 10 Im 500 - 1000 pm 100 x 50 1 m long axis 0.3 -

long, 200 pm 1.5 mm,
in central zone diameter 0.2 -
and 30-40 mm 0.7 mm
diameter near
the poles

Shape Oval or Ellipsoidal Ellipsoidal Ovoid
rounded

Morphological Un- Encapsulated, Encapsulated, Encapsulated,
Classification encapsulated, Dermal Dermal Dermal

Epidermal
Structure Groups of 4-5 layers of Each fiber has Several layers

5-10 cells at a lamellar cells a irregular of
site covered by a discoidal form concentrically

basement oriented at packed
membrane right angles to lamellar cells,

the long axis subcapsular
of the space filled
corpuscle with fluid

Sensitivity to displacement displacement velocity velocity
Stimuli and velocity and velocity
Innervating Slowly Slowly Rapidly Pacinian (PC)
Afferent Fiber Adapting type Adapting type Adapting

I (SA-I) II (SA-II) (RA)

Table 2.1: Comparison of four mechanoreceptors found in the primate fingerpad. Adapted from
Dandekar and Srinivasan (1995).

Type-II (SA-II) afferents. From Table 2.1 it can be seen that all the mechanoreceptors are

located within the top 2 mm of the skin surface.

2.2 Previous Studies in Human Tactile Sensing

This section summarizes some of the salient works in the field of human tactile sensing.

The work done in human tactile sensing can be categorized into three distinct areas:



S" W Hold

C Ramp

SI Time
I I I I

RAI I

SA-I
SA-II

Figure 2-3: The four afferent nerve fibers innervating the mechanoreceptors are classified based
on their response to time-varying stimuli such as the one shown. The RA and PC afferents
respond only to dynamic stimuli while the SA-1 and SA-II afferents respond to both dynamic as
well as static stimuli.

neurophysiology, biomechanics, and psychophysics. Recent works have also included

the systems approach, which combines both the biomechanical and neurophysiological

approaches.

2.2.1 Neurophysiological studies

Neurophysiological studies in tactile sensing have involved applying a known object to

the fingertip of a monkey or human, recording the peripheral neural responses, and ana-

lyzing the data to infer the neural behavior of the mechanoreceptors. These works include

the study of neural behavior of the mechanoreceptors such as the mechanical-to-electrical

transduction mechanism, size of receptive fields, sensitivity, threshold, and innervation

density. Mountcastle and co-workers studied extensively the relation between neural re-

sponse and perception (Mountcastle and Powell, 1959; Mountcastle et al. , 1972). Loewen-

stein and Skalak (1966) studied the mechanical-to-electrical transduction in the pacinian

corpuscle. Knibestol and Vallbo (1970) established that there are at least four classes of

cutaneous mechanoreceptors in the human fingertip. Knibestol (1973; 1975) studied the

stimulus-response functions of slowly and rapidly adapting afferents and developed math-



ematical models for the discharge rate as functions of stimulus intensity. Johansson (1978),

and Johansson and Vallbo (1979) studied the receptive field characteristics of the human

mechanoreceptors and their innervation densities. These, and other works are well re-

viewed in Darian-Smith (1984), and Johansson and Vallbo (1983). Later studies have also

focused on the relationship between the properties of the object contacting the fingertip

such as its shape, compliance etc., and the responses of the afferent nerve fibers. Phillips

and Johnson (1981; 1981a) indented monkey fingerpads with rectangular bar shapes and

recorded the afferent neural responses. Srinivasan and LaMotte (1987) indented sinusoidal

step shapes to monkey fingerpads and recorded the afferent neural responses under both

static and dynamic conditions. These works led to hypothesis that the geometrical fea-

ture of the object that is encoded by the afferent responses is its curvature (LaMotte and

Srinivasan, 1993). To summarize, neurophysiological studies utilized peripheral neural

recordings to learn about the neurophysiological properties of the afferents, as well as the

relationship between the responses and properties of the objects indenting the fingerpad.

2.2.2 Psychophysical studies

Psychophysics is concerned with the quantitative relationship between physical stimuli

and the resulting behavioral responses of human subjects under carefully designed test

conditions. Unlike neurophysiology, psychophysics adresses the overall behavior of the

tactile system including the final subjective perception. Some specific earlier works in this

area include the study of vibrotactile perception (Verillo et al. , 1969), roughness percep-

tion (Lederman and Taylor, 1972), spatial resolution (Loomis, 1979), and texture discrim-

ination (Lamb, 1983) during touch. Though psychophysical studies were initially done

independently, later they were often combined with neurophysiological studies in order

to relate the peripheral neural responses to perception (Talbot et al. , 1968). A good review

of earlier psychophysical and neurophysiological research in tactile sensing is presented

in Loomis and Lederman (1986). Later efforts have involved tactile discrimination of cur-

vature (Goodwin et al. , 1991), tactile discrimination of softness (Srinivasan and LaMotte,

1995) and tactile discrimination of thickness (John et al., 1989; Ho and Srinivasan, 1996).

Psychophysical evidence that four "channels" participate in perception was reviewed by

Bolanowski et. al. (1988). These four channels are believed to have unique properties with

regard to their frequency response, threshold, temperature dependence, etc. To summa-



rize, psychophysics utilized subjective human perception to study the overall mechanism

of touch.

2.2.3 Biomechanical Studies

The biomechanical approach to tactile sensing focuses on the mechanical aspects of touch

including determination of mechanical properties of skin and other fingertip tissues, mech-

anistic modeling of the fingerpad, computation of stress-strain measures in the vicinity of

the mechanoreceptors, and a study of the relationship between these stress-strain measures

and recorded peripheral neural responses. The study of mechanical properties of the skin

in general also contributed to the effort in this direction. For example, the mechanical prop-

erties of the skin were found to be strongly dependent on species, age, sex, exposure and

hydration (Tregear, 1966; Lanir, 1987), which implies that in vitro measurements of the me-

chanical properties of the skin could vary considerably. Skin has also been found to exhibit

viscoelastic behavior and has rate-dependent stress-strain relations (Fung, 1981). Phillips

and Johnson (1981b) in their study of relationship between subsurface strain measures

and recorded neural impulses, modeled the finger as an infinite, isotropic, linear elastic,

homogeneous medium, and found that maximum compressive strain measured at a depth

of 0.75 mm was the best mechanical measure that could be linearly related to SA-I affer-

ent responses. Srinivasan (1989) modeled the finger as an incompressible fluid enclosed

by an elastic membrane and was able to predict the experimentally measured deforma-

tions on the surface of the finger. Gulati and Srinivasan (1996) indented human fingers

with shaped objects, measured the temporal force responses and proposed a non-linear

Kelvin type model to describe the overall mechanical behavior of the fingerpad. Dandekar

and Srinivasan (1996) developed two dimensional and three dimensional finite element

models of primate fingertips in order to relate subsurface strain measures to recorded neu-

ral responses of SA-I afferents. Maximum compressive strain and strain energy density

were found to be the best candidates that could be linearly related to the responses of

SA-I afferents. Recent work includes the development of pressure sensors to experimen-

tally determine the surface pressure distributions during tactile contact (Pawluk, 1997),

and modeling of fingertip pulp for ergonomic studies during tasks such as typing (Serina,

1997). To summarize, the biomechanical studies have aided the neurophysiological studies

in relating the mechanical quantities such as stress and strain to recorded neural responses.



2.2.4 Systems Approach

The systems approach uses input-output relationships to model the behavior of the tactile

system. A system is an abstraction of anything that takes an input, operates on it, and

produces an output (Karu, 1995). A physical process can then be represented as a math-

ematical transformation between the input and the output. The use of systems approach

has led to significant advances in other fields such as vision, telecommunications, radar

etc. In the case of human tactile sensing, the surface force distributions form the input, as

the entire information about the indenting object is available to the human in the form of

surface loads within the region of contact. The corresponding neural responses can then

be considered as the output. This approach, thus integrates both the biomechanical and

neurophysiological approaches. The systems approach has two components: the encoding

problem and the decoding problem. The encoding problem is the computation of neural

responses based on the surface force distributions. This problem has been studied using

plane strain assumption in Johnson and Phillips (1981b). The problem is also of interest

to the robotics community and there have been several studies in this area (Fearing and

Hollerbach, 1985; Speeter, 1992; Howe and Cutkosky, 1993). Decoding is the inverse prob-

lem of computation of surface pressure distributions based on the neural responses. This

problem has been studied mostly by the robotics community (Rossi et al. , 1991; Pati et al.

, 1988; Fearing and Hollerbach, 1985). The combined study of both encoding and decod-

ing from both human and robot tactile sensing perspectives was presented in Karason et.

al. (1998). To summarize, the systems approach uses overall input-output relationships to

study tactile sensing.

2.3 Need for Further Studies

Currently, the most advanced model used for biomechanical studies on tactile coding of

object shapes is the three dimensional finite element model developed by Dandekar and

Srinivasan (1996). However, this model had limitations in that the size of the elements on

the surface of the fingertip was not high enough to simulate indentation by steeply curved

surfaces like the edges of bars. This means that the edge enhancement effects of SA-I

responses cannot be effectively studied using that model. Higher resolution of the mesh

on the surface will be useful not only in capturing steep curvatures, but will also useful in



preventing aliasing that could occur if enough sampling points are not used in the contact

region. Higher resolution for the subsurface mesh will also be useful in predicting the

response from a population of mechanoreceptors without aliasing. Thus a high resolution

version of the existing model needs to be developed'.

In the analysis by Dandekar and Srinivasan (1996), the relevant stimulus for SA-I af-

ferents was evaluated based only on two dimensional models. The three dimensional

model was used only to confirm the predictions of the 2-D models. A better approach

would be to use the 3-D model itself to evaluate the relevant stimulus.

The systems approach simplifies the study of tactile sensing without having to resort

to time-consuming finite element simulations, or experimental recordings. However the

systems approach that have been used till now (Karason et al., 1998) models the fingerpad

as an infinite, flat, elastic space, which means the indentation by shapes cannot be fully

studied. A better approach would be to take the curvature of the finger into account while

using the systems approach, which can be done using the finite element model.

The inverse problem of decoding (i.e., obtaining surface pressure distributions from neural

responses) has been studied only using linear systems approach. As will be shown in this

work, a non-linear model is be needed to model the behavior of the static response of SA-I

afferents. Hence non-linear signal estimation techniques are needed to decode surface

pressure distribution (and consequently object's shape) from the distribution of neural

responses.

2.4 Description of Object's Shape

In this thesis we study the indentation of objects that are rigid and are convex shaped.

This section briefly describes the definition of shape as used in this thesis. In general,

any geometrical attribute of the object can be used to quantify its shape. For example,

1Even though we study human tactile sensing, most of the neurophysiological recordings are done on
monkeys. Thus the finite element model developed is that of monkeys and not of humans. In this thesis, we
will use the term human tactile sensing to distinguish it from robot tactile sensing. The term actually refers to
primate tactile sensing.



the coordinates of the points on the surface of the object with respect to some fixed axis,

or the local slope of the object at each point on the object's surface as a function of the

coordinates of the point can both be used to describe shape. However both these measures

are not invariant with respect to translation or rotation of the object because they depend

on the choice of the coordinate axes used. A better measure, which does not depend on the

particular choice of coordinate axes, is the object's curvature. From differential geometry,

it is known that the curvature distribution of an object's surface uniquely determines the

form of the surface (Gauss, 1827). The curvature of the object has also been shown to be

related to the responses of the mechanoreceptors in the finger (Srinivasan and LaMotte,

1991). In this thesis we consider the object's curvature to be an indicator of its shape.



3
Development of High Resolution
Finite Element Model

This chapter describes the development of the high resolution 3D finite element model of

the primate fingertip, and verification of the model through comparison of prediction of

simulations with experimentally observed data.

3.1 Need for an Optimum High Resolution Model

In order to accurately model the contact of the fingerpad with objects I that have high

curvatures such as the edges of bars, the deforming body should be able to conform to

the steep curvature of the indenting rigid body. This is possible only if there are sufficient

nodes on the deforming body in the contact region. In addition, a high mesh density at

subsurface depths is needed to compute the subsurface strain measures without aliasing

effects. Also higher resolution for the model improves the accuracy of the finite element

simulation results. However, as the resolution of the model increases, the computational

effort also increases. The 3-D model described in Dandekar and Srinivasan (1996) had

about 8500 nodes and elements, and the size of the elements on the surface was about

500 ym. The model took about 30 minutes on the CRAY C90 supercomputer to solve each

contact problem of indentation to a given depth by a cylinder. Further increase in the

number of nodes will lead to even higher computational times. Thus it becomes necessary

to optimize the resolution of the finite element mesh by using varying mesh densities

throughout the model, with high mesh density only near the region of contact.

'Only rigid, convex objects are considered in this work.



3.2 Development of the Solid Model

The development of the model is divided into two steps: (1) development of the solid

model and (2) development of the finite element model. A solid model is a model of the

geometry of the object consisting of geometrical primitives such as curves (bounded by two

points), surfaces (bounded by four curves) and solids (bounded by six surfaces). Curves,

surfaces and solids are also referred to as lines, patches and hyperpatches respectively. A

finite element model on the other hand contains elements and nodes, which are usually

created after the solid model is defined. The advantage of separating the development

of the solid model from that of the finite element model is that the same solid model can

be used to generate different finite element models with different mesh densities. The

development of the finite element model is not however totally independent of that of

the solid model. For example, if the entire solid model is filled with only one solid, the

resulting finite element model will not capture the geometry of the finger accurately, irre-

spective of the number of elements used. Also, generating a high resolution finite element

model in general requires a solid model with high number of internal solids so as to ensure

acceptable topology for the elements (aspect ratios close to 1, angles close to 90 degrees).

The first step in the development of the solid model is to obtain the geometry of the

fingertip. Since the detailed internal geometry of the fingertip is not currently available,

only the external geometry of the finger was used to develop the model. The internal

geometry was idealized - it was assumed that the finger contains layers of tissues, with

each layer being a homogeneous material. The process of obtaining the external geometry

of the fingertip is described in detail in Dandekar and Srinivasan (1996). The external

geometry of the finger was specified in the form of coordinates of points on the surface

of the finger. For convenience, the finger was divided into 49 axial cross-sections, and at

each cross-section, 72 points on the surface of the finger were specified.

To facilitate the generation of a model with varying mesh densities, the finger was di-

vided into a number of sections in 3 orthogonal directions, radial (r), circumferential (0)

and axial (z) as shown in Figure 3-1 (a). It was decided to have 18 sections in the circum-

ferential direction, 5 layers in the radial direction and 16 slices in the axial direction.



(a) Coordinate axes used in the development of
the solid model

Front view Cross-sectional side view

(b) Each cross-section subdivided into patches

patch

Figure 3-1: Development of the solid model

To begin with, the points specifying the boundary of each cross-section were joined to-

gether in a circular fashion and subdivided into a set of 18 curves (arcs). These curves

were then scaled to obtain 4 more set of curves, which were concentric to the curves on

the boundary, but had smaller radii. Thus, a total of 90 curves were created per cross-

section. Patches were then created between pairs of curves to obtain 90 patches per section

(Figure 3-1 (b)). The process was repeated for all the 49 cross-sections. Solids were then

created by joining surfaces in four adjoining sections, so as to maintain C2 continuity (con-

tinuity of curvature). Joining 4 contiguous axial cross-sections (patchwise) for all the 49

cross-sections results in 16 "slices", and a total of 16 x 90 = 1440 solids. Additionally, 3

more slices were created at the tip of the finger, as geometry data were not available at the

tip. Thus the entire fingertip solid model contained 1440 + 3 x 90 = 1710 hexagonal solids.

All the above steps were done using the software PATRAN. The software also provides

a convenient programming environment called Patran Command Language (PCL) which

was used to automate the development process.



Figure 3-2: An optimal high resolution finite element model of the primate fingertip. The mesh
resolution is high in the pulp region (element size is about 170 microns) where the finger would
be in contact with objects and is lower in the bottom half portion of the finger. Also along the axis
of the finger the mesh resolution is lower as we move toward the proximal end: The slice shown
at the center has four elements in the axial direction whereas the slice at the proximal end has
only one element in the axial direction. The inset shows that the region which appears to be fully
shaded is actually composed of a mesh of elements and appears continuous because the mesh
density is very high.

3.3 Development of the Finite Element Model

Having developed the solid model, the next step is to develop the finite element model,

which is done by "filling" the solids with elements. The mesh density within a solid will

depend on the number of elements chosen to fill that solid. In order to provide flexibility

in varying the mesh density throughout the model, a general program was written in PCL.

The program allows the user to choose the number of elements within each of the 90 solids

in one axial slice. The same number of elements is followed throughout all the slices.

However, from one slice to another, the number of elements in the axial direction can be

varied so as to have fewer elements near the ends, where contact with objects are not likely

to occur. This flexibility in choosing the mesh density makes it possible to choose high

mesh density in the portion of the fingertip that would contact objects, and at the same



time limits the total number of elements for the model.

Figure 3-2 shows the finite element model that was developed. It can be seen that the

mesh density is high only in the top pulp region and is very coarse in the nail region. The

number of elements in the top half of the model is an order of magnitude greater than the

number of elements in the bottom portion. All the elements in the model were either 8

noded isoparametric elements or 6 noded wedge elements. The entire model had about

30,000 nodes and 30,000 elements. The size of the elements in the top surface region was

at most 170 ym.

The model developed here can be compared to the earlier model developed by Dan-

dekar and Srinivasan (1996). The earlier model had 8500 nodes and elements and had a

resolution of 500 pm on the top surface of the finger. By comparison, the current model

has three times the resolution, and three times the number of nodes. Had a simpler task

of subdividing the previous model been taken, the new model would have had 33 = 27

times the number of nodes of the previous model. However the current model has only a

three fold increase in the number of nodes. Thus the increase in the number of nodes has been

reduced by almost an order of magnitude. For 3D problems, the computational time goes

at least as the square of the number of nodes. Thus the computational time for the analysis

using the current model has been reduced by about two orders of magnitude compared to the

model that would have resulted by a simple subdivision of elements.

To complete the model development, material properties and boundary conditions have

to be specified. At present no consistent material properties of fingertip tissues in vivo is

available. The published data on material properties varies considerably. The best data

consistent with in vivo biomechanical experiments is presented in Dandekar and Srini-

vasan (1996) and the same properties are used in the present model. The layers in the

finger correspond to different tissues inside the finger. The outermost layer represents the

epidermis, the second layer represents the dermis, the next two layers represent layers of

fat, and the innermost layer represents the bone. All the layers were assumed to be linear

elastic and isotropic. The ratio of the Young's Moduli of the five layers were chosen to

be 104 : 103 : 103 : 103 : 108 (Dandekar and Srinivasan, 1996), based on matches between
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Figure 3-3: Line load indentation of the monkey fingertip. The line load was indented into the
monkey finger model to a depth of indentation (DOI) of 2 mm. The figure on the left shows
the deformed model superimposed over the undeformed model. The vertical displacements
of the nodes in the deformation region of the finger in this side profile are compared with the
experimental results from Srinivasan (1989) in the figure on the right. The four plots correspond
to DOls of 0.5, 1.0, 1.5 and 2.0 mm. For all the DOls, the model predictions match the empirical
data very well, thus validating the model.

model predictions and experimental data on fingertip surface deflection under a line load.

The Poisson's ratio of all the layers was taken to be 0.48 (nearly incompressible). The

boundary conditions consisted of fixed boundary conditions at all the nodes correspond-

ing to the finger nail and also all the nodes at the proximal edge of the fingertip. Since

the material properties were obtained by matching simulations under small displacement

formulations (Dandekar and Srinivasan, 1996) with experimental data, small displacement

formulations were used for all the simulations described in this work.

3.4 Verification of the Model

This section describes biomechanical validation of the finite element model with exper-

imental data. The experimental data for comparison is taken from Srinivasan (1989) in

which monkey fingertips were indented with a thin bar positioned perpendicular to the

axis of the finger. Vertical displacements were obtained as a function of the distance from

the location of the load for a number of points lying perpendicular to the load. The same



experiment was simulated on the finite element model. The thin bar was modeled as a

'line load' and all the nodes under the load were moved down vertically. Figure 3-3 shows

the deformed mesh superimposed on the original mesh, and a comparison between the

experimental predictions (Srinivasan, 1989) and the model predictions. It can be seen that

the model predictions match very well with the experimental data, thus validating the

model.



4
Mechanical Signals in Tactile

Sensing

4.1 Motivation

During manual exploration and manipulation, the mechanics of contact between the

skin and the contacting object plays an important role in determining the response of

mechanoreceptors embedded in the skin, and consequently, in tactile perception. In these

tasks, primates predominantly use their fingerpads owing to the fine spatial resolution

due to the high density of mechanoreceptors and also the high degree of dexterity due to

fine motor control that can be achieved. It has been hypothesized that the response of each

mechanoreceptor is determined by the stresses and strains at its immediate neighborhood.

The collection of the stresses and strains at all mechanoreceptor locations represent spatial

sampling of the mechanical state in the fingertip. This mechanical state is determined by

the mechanics of object-skin interactions, which are governed by: (1) the geometric (e.g.

shape) and material properties (e.g., compliance) of the object (2) the geometric and ma-

terial properties of the finger, and (3) the contact conditions such as the average depth of

indentation, or, equivalently, the net contact force. The mechanoreceptors then transduce

the stresses, strains or a combination (hereafter referred to as the mechanical state) in their

vicinity into neural impulses, which convey information about the object properties and

contact conditions through the SA-I, SA-II, RA and PC afferents to the central nervous

system (CNS). It is evident that to study the process of information coding during touch,

one has to know the mechanical state in the fingertip when the finger contacts an object.

No experimental techniques exist to directly observe the mechanical state within the fin-

gertip in contact with an object. To overcome this difficulty Johnson and Phillips (1981b)



developed an analytical mechanistic model of the fingertip to numerically compute the

distribution of the stresses and strains. They assumed the fingertip to be mechanically

equivalent to a flat and homogeneous elastic medium of infinite extent and were able to

predict well the responses of SA-Is to static indentations of rectangular gratings. However,

because this model does not take into account either the geometry of the fingertip, or the

inhomogeneous composition of tissues within the fingertip, it is unable to model well the

contact interactions with arbitrarily shaped objects. For example, in touching a planar

surface that is large relative to the size of the finger, the actual contact region would oc-

cupy a small portion of the object surface, whereas the semi-infinite model would predict

that the entire surface of the object would be in contact. Therefore, finite element models

of primate fingertips that capture the external geometry and the tissue layers within the

fingertip were developed. Srinivasan and Dandekar (1996) developed 2-D finite element

models of the primate fingertip. These models were able to predict the static responses of

SA-I receptors only along a cross-section. Subsequently three dimensional finite element

models that predicted well the deformations on the surface of the finger (Dandekar and

Srinivasan, 1996) were developed. This chapter describes the use of a high resolution 3D

finite element model for the investigation of the mechanistic bases underlying tactile sense

during static contact with rigid and frictionless objects.

From the principles of contact mechanics, it is clear that the entire information about the

shape, orientation, and the amount of indentation of a frictionless rigid object indenting

the fingertip is uniquely contained in the surface pressure distribution within the region of

contact. Pressure on the skin surface is non-zero only within the region of contact. Tactile

mechanoreceptors can gather information about the object that contacted the finger only

by tracking the loads on the skin within the region of contact. For example, when our

finger touches a knife-edge, the surface pressure is present only in the narrow region of

the skin that contacts the edge. In contrast, if we touch a flat plate with the same force of

indentation, the surface pressure will be spread over a wider region and will have a lower

magnitude. Therefore, the mere extent of surface pressure distribution conveys some in-

formation about the shape of the object that is in contact with the finger. In addition, the

spatial variations in pressure intensity within a contact region give more detailed informa-

tion about object shape. From a systems point of view, the surface pressure distribution can



therefore be considered as the "input" to the tactile system. The corresponding responses of

the population of mechanoreceptors can be considered as the "output" of the tactile system.

Using a Cray C90 supercomputer the static indentation of various objects on the fin-

gertip is simulated. All the objects are assumed to be rigid and frictionless. Rectangular

bars (Phillips and Johnson, 1981b), circular cylinders (Srinivasan and LaMotte, 1991) and

sinusoidal step shapes (Srinivasan and LaMotte, 1987) are indentors for which SA-I re-

sponses have previously been recorded. The same objects and indentation depths were

simulated to obtain the surface pressure distribution in the region of contact.

4.2 Methods

4.2.1 Three dimensional finite element models

The 3D finite element model of the primate fingertip that is used was described in Chapter

3 and is summarized here for convenience. The model has four layers with different elastic

moduli governing the stiffnesses corresponding to the epidermis, dermis, adipose tissue

and bone. In order to study the mechanics of contact between the finger and steeply

curved objects such as the edges of bars, the model must have sufficient spatial resolution,

and consequently a large number of nodes in the contact region. However, increasing

the number of nodes arbitrarily will lead to very high computational times even with a

supercomputer. Hence an optimal high resolution model of the monkey fingertip that

has a large number of nodes in the pulp region of the finger where contact occurs and

less number of nodes in other locations, was developed. The size of the elements in the

contact region is about 170 microns. The model has about 30,000 nodes and elements,

corresponding to about 90,000 degrees of freedom. Such a high number of degrees of

freedom necessitated the use of the Cray C90 supercomputer. All the simulations to study

the pressure distributions on the surface of the finger were done using this high resolution

model of the monkey fingertip.

4.2.2 Simulations

Simulation of static contact between the finger and an object can be done under two modes

- prescribed depth of indentation (DOI) or prescribed force of indentation. When the



object is indented up to a prescribed DOI, the area of contact and the force required to

indent the object are not known a priori. Therefore, only when an object is smaller than

the fingertip, has sharp boundaries, and is indented to sufficient DOI that the edges are in

complete contact with the finger, the contact region is known. Except for this special case,

the contact region (defined as the region having non-zero pressure) is governed by the

deformation of the fingertip, which, in turn, depends on the pressure distribution within

the contact region whose extent is unknown. Therefore, simulations involving contact

interactions are generally nonlinear, and need to be done iteratively i.e. the indentation is

done in increments. More details can be found in Chapter 5 in Abaqus/Standard User's

Manual (1995). The case of prescribed force of indentation is similar except that the object

is now moved toward the finger until the necessary force gets reflected onto the object. In

our models however, the amount of force, usually specified in gram weights or Newtons

is only in pseudo units. This is because the exact values of Young's Modulus (a measure

of stiffness) of the tissues are not known under in vivo conditions. This problem can be

easily overcome by converting the prescribed force of indentation into one with prescribed

DOI, as long as the equivalent DOI is known from the actual biomechanical experiments.

(For a given pair of contacting surfaces of elastic objects and a given prescribed force of

indentation there is only one DOI). Thus, in our simulations whenever we needed to indent

up to a prescribed force of indentation, we first indent the object up to the corresponding

DOI and then use the force that was reflected back to perform other simulations that might

need the same force of indentation.

In the case of indentation by sinusoidal step shapes (referred to simply as "steps"), the

steps were indented at different lateral locations (along the x axis - see Figure 3-2 for axis

conventions used in this work) with respect to the finger. The location of the step is taken

to be the location of a reference point on the step and is indicated in the figures using a +

mark. The lateral distance is measured from the center of the fingertip surface, which is

taken to be the origin (x = 0).

Although the model is of high spatial resolution, since the surface of the finger model

is actually polyhedral due to the finite number of nodes, artifacts will be introduced in

the surface pressure distributions wherever the surface of the finger has local bumps. The



artifacts will manifest as spurious peaks. Median filtering (Gonzalez and Wintz, 1987) is

a commonly used technique to eliminate such artifacts and has been used extensively in

digital image processing techniques to enhance visual images. In our calculations, a 4x1

median filter was used to eliminate spurious peaks in the surface pressure distributions.

Matlab software package was used for this purpose.

Each of the prescribed depth of indentation simulations for the rectangular bar inden-

tors took about 2 hours and 40 minutes on the CRAY C90 supercomputer to be solved. The

prescribed force of indentation problems for the sinusoidal indentors took about 3 hours

and thirty minutes to be solved. The computations averaged about 700 MFLOPS.

4.3 Results

4.3.1 Surface pressure distributions caused by rectangular bars

Rectangular bars have a shape that has constant zero curvature in the flat portion and

infinite curvature at the edges. Two bars of 3 mm and 1.5 mm widths were used to study

the pressure distributions that are produced on the surface of the fingertip when in contact

with rectangular bars.

Rectangular bar - 3 mm wide

This section describes the features of surface pressure distribution when the monkey

fingertip model is indented by a 3 mm wide rectangular bar that is much longer than the

fingertip. The axis of the bar is parallel to the axis of the finger and is placed at the center of

the fingertip surface (x=0). The bar is placed such that the flat portion is parallel to the top

portion of the finger. The bar is indented up to a maximum DOI (measured with respect to

the topmost point on the finger) of 1.33 mm. Figure 4-1 shows the deformed finger and the

surface pressure distribution for DOI equal to 0.33, 0.67, 1.0 and 1.33 mm. When the DOI

is 0.33 mm, neither of the edges of the bar contact the finger. The area of contact, which

is the portion of the finger that actually touches the bar, is small. The surface pressure is

maximum at the point of the finger that got indented the most and decreases as we move

away from that point along both the lateral (x) and axial (z) directions. When the DOI is

0.67 mm, the left edge of the bar comes in contact with the finger, but not the right edge,



because of the asymmetry of the finger. The contact area has increased in both the lateral

and axial directions. Along the lateral direction, the surface pressure remains flat for most

of the contact region, except under the left edge of the bar where the pressure begins to

show a peak. When the DOI is increased to 1.0 mm, the left edge of the bar fully contacts

the finger whereas the right edge indents the finger only slightly. The width of contact

in the lateral direction begins to saturate at 3 mm but continues to increase in the axial

direction. The surface pressure along the lateral direction shows a higher peak under the

left edge and a lower peak under the right edge, but is approximately flat in between the

two edges. When the DOI is 1.33 mm, both edges fully contact the finger. The extent of

contact in the lateral direction does not increase beyond 3 mm, but continues to increase

in the axial direction because the bar is longer than the finger along the finger axis. The

surface pressure under both the edges show sharp peaks compared to the other regions

where the pressure is more or less flat. For all the DOI, along the axial direction of the

finger the pressure attains higher values near the center of the contact region and decreases

smoothly away from the center.

Rectangular bar - 1.5 mm wide

When the width of the rectangular bar is reduced from 3 mm to 1.5 mm, the general

features of the pressure distribution remain approximately the same, but specific events

such as contact by the left edge or by both edges, happen at a lesser DOI. Figure 4-2 shows

the monkey finger model indented by a 1.5 mm wide rectangular bar for DOI of 0.33 and

0.67 mm. When the DOI is 0.33 mm, the left edge of the bar just touches the finger while

the right edge does not touch the finger. The situation is similar to that of the 3 mm bar at

a DOI between 0.33 mm and 0.67 mm. The surface pressure starts to show a slight peak

only under the left edge. When DOI is 0.67 mm for the 1.5 mm bar, both the edges fully

contact the finger and the situation is similar to that of the 3 mm bar at a DOI = 1.33 mm:

the surface pressure shows two sharp peaks corresponding to the two edges of the bar.

In this case the width of contact in the lateral direction does not increase beyond 1.5 mm,

which is the width of the bar.
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Figure 4-1: Monkey fingertip indented by a rectangular bar of width 3.0 mm. The bar was placed

at the center of the finger and indented onto the fingerpad. Only a portion of the finger is shown.
The region of contact for DOI = 0.33, 0.67, 1.0 and 1.33 mm is shown by the dark shaded
region at the top of the fingertip surface. It can be seen that the extent of contact increases
with increasing DOI, but saturates along the lateral direction at a width equal to the width of
the bar. Additionally, two contours of constant vertical displacements are shown on the finger.
The corresponding pressure distributions on the skin surface are plotted. Panels (c) and (d)
indicate that the surface pressure forms a peak when the edges of the bars come into contact.
The surface pressure has dimensions of force/area in pseudo units. Pressure in Pascals can

be calculated by multiplying the values shown by E/10,000 where E is the Young's Modulus (in

Pascals) of the top layer of the skin.

(a) DOI = 0.33.mm



(a) DOI = 0.33

Figure 4-2: Monkey fingerpad indented by a rectangular bar of width 1.5 mm. The pressure
distributions on the skin surface for DOI = 0.33 and 0.67 mm are shown. The extent of contact
is shown on the finger by the shaded region on the fingertip surface. When DOI = 0.33 mm, the
left edge just touches the finger and causes pressure peaks to arise. When DOI = 0.67 mm both
the edges fully contact the finger and the surface pressure has two sharp peaks at the locations
where the edges contact the finger.

4.3.2 Surface pressure distributions caused by cylindrical shapes

A cylinder is an object whose shape is characterized by zero surface curvature along its axis

and a constant curvature (equal to the reciprocal of the radius) perpendicular to it. Two

cylinders, one with a diameter of 3 mm (small cylinder) and another with a diameter of 9

mm (large cylinder) were used to study the pressure distributions that are produced when

finger pad comes in contact with cylindrical objects. The 3 mm diameter cylinder has a

high curvature, 3 times that of the 9 mm diameter cylinder. As in the case of rectangular

bars, the axes of the cylinders are placed parallel to the finger axis during indentations.

Figure 4-3 shows the surface pressure distributions due to cylindrical indentors. At a

DOI of 0.33 mm, the surface pressure distribution for both the cylinders is of the same
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Figure 4-3: Monkey fingertip indented by cylindrical indentors. The top panels show the surface
pressure distributions when a cylinder of diameter 3 mm is indented into the fingertip. In each
panel, the DOI, force required for that indentation (F, expressed in gwt) and the peak pressure
(Peak) are shown on top. The bottom panels show the pressure distributions for the case of
indentation by a 9 mm diameter cylinder. The left and middle sets of panels show results for
prescribed DOls of 0.33 mm and 1.0 mm respectively. The right set of panels is for a prescribed
force of indentation, equal to that required to indent the 9 mm diameter cylinder to a DOI of 1.33
mm. For a given DOI or force, the 3 mm diameter cylinder shows higher peak pressures and
lower contact widths compared to those caused by the 9 mm diameter cylinder. At any locus,

non-zero pressure indicates that the point is inside the contact region between the cylinder and
the fingertip.



general shape, except that for the smaller cylinder, the peak magnitude is higher and the

area of contact is smaller. The total force required to indent the bigger cylinder was actually

about 10% higher (the total force can be obtained by integrating the surface pressure over

the area of contact). At a DOI of 1.0 mm, the surface pressure distribution for both the

cylinders shows a more flat response. The characteristic peaks that were present under

the edges of rectangular bars are absent. For the same DOI, the surface pressure is higher

and the width of contact is smaller for the smaller cylinder, as in the case of the rectangular

bars. The total force required to indent the bigger cylinder was about 15% higher. Since

the difference in pressure is partly due to the different forces required to indent the two

indentors, in one simulation we fixed the force of indentation to be constant and the results

are shown in the right panel. It is seen that the surface pressure is about 30% higher for

the smaller cylinder compared to the larger cylinder.

4.3.3 Surface pressure distributions caused by sinusoidal step shapes

Srinivasan and LaMotte (1987) indented monkey fingertips with sinusoidal step shapes

and recorded the neurophysiological response of cutaneous mechanoreceptors. The same

experiment was simulated using the monkey fingertip model. The geometry of the steps

is discussed in detail in Srinivasan and LaMotte (1987). The step has a bottom flat portion,

then a convex curved portion, followed by a concave curved portion, and then a top flat

portion that is 0.5 mm higher than the bottom. The flat portions of the step have zero

curvature whereas the convex portion has a positive curvature and the concave portion of

the step has a negative curvature. In the simulations, the step is indented onto the finger

up to a force of about 2.33 gwt 1 and the indentation is repeated after moving the step

laterally to subsequent locations in a direction perpendicular to the axis of the finger.

Step 1- Steep Step

This section describes the results for step 1, which has a half-wavelength of 0.450 mm and

is considered to be a steep step. Figure 4-4 shows the surface pressure distributions and

the extent of contact in the lateral direction for six different locations of the step as it is

indented onto the finger pad with same forces at all locations. When the step is at x=2 mm

'In the experiments by Srinivasan and LaMotte (1987) the force of indentation was 8 gwt. See Section 5.3
for comments on the differences due to the two forces.



(i.e., the sharpest point of the step, is 2 mm to the right of the center of the finger pad), only

the bottom flat part of the step contacts the finger (Figure 4-4 (a)). The pressure distribution

is diffuse and is spread over a region. As the step is lifted up, moved from right to left

above the finger, and then indented onto the finger, the convex portion of the step comes

into contact with the finger in addition to the flat bottom part (Figures 4-4 (b) and (c)).

In Figure 4-4 (b), the surface pressure shows a flat portion to the left and a small peak to

the right corresponding to the convex portion. In Figure 4-4 (c) , the surface pressure is

dominated mostly by the peak under the convex portion. In Figure 4-4 (d) only the steep

convex portion contacts the finger. The surface pressure peak has increased and the contact

area has decreased. From Figures 4-4 (b) through (d) it can be seen that the surface pressure

under the steep convex portion of the step progressively increases in magnitude, while the

area of contact decreases. With further movement of the step to the left, both the convex

portion and the top flat portion of the step come into contact with the finger(Figure 4-4

(e)). The pressure distribution has two disconnected regions: a high peak on the left under

the convex portion of the step and much lower values under the top flat portion of the

step. The pressure distribution is spatially separated into two regions because the concave

portion of the step does not come into contact with the finger. With further movement of

the step to the left, the convex portion barely touches the finger and the top flat portion

contacts the finger more, as seen in Figure 4-4 (f). The left peak has decreased in magnitude

and the right peak has increased to the extent that both the peaks are comparable. When

the step is moved even further to the left, the top flat portion would contact the finger

completely and the loading on the finger is identical to that of the contact by the bottom

flat portion of the step. Therefore the pressure distribution will be identical to that of

Figure 4-4 (a). It can also be seen that the concave portion of the step does not contact

the finger at any time. In summary, as the steep step is moved from right to left starting

from the bottom flat portion of the step contacting the finger, the pressure distribution is

initially diffuse, then increases to a peak, then a second (discontinuous) portion starts to

appear on the right, then the left peak decreases in magnitude and vanishes, and finally the

pressure distribution assumes the original shape we started with. Comparing Figures 4-4

(a) through (f), the maximum pressure is seen to be inversely related to the area of contact

between the step and the finger. In all the figures the peak pressure occurs at the point

where the sharpest point of the step touches the finger.
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Figure 4-4: Monkey fingertip indented by the steep sinusoidal step (step 1). The step was
indented into the finger up to a prescribed force of indentation. The pressure distribution on the
skin surface and the extent of contact region in the lateral direction is shown for six cases - for
each case the step was located at a different position with respect to the finger. The location of
the step is the location of the reference point shown on the step by a + mark and is indicated
above each of the figures (note: x=O corresponds to the center of the finger pad surface). The
plots show the corresponding surface pressure distributions. In panels (a) through (d), there

is only one contact region. In panels (e) and (f) there are two contact regions. In panels (b)
through (f) the surface pressure shows a peak at the location directly under the most curved
convex part of the step (denoted by the + mark). For all the figures, the scale used in plotting the
surface pressure is only approximately the same as the scale used to show the contact between
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Step 5 - Gradual Step

The gradual step is also sinusoidal and hence is similar in shape to the steep step, except

that the curvature of the curved portion is lower than that of the steep step. The half-

wavelength of the gradual step is 3.134 mm, making the curved portion of the step to be

much wider than that of the steep step.

Figure 4-5 shows the extent of contact and surface pressure distribution for six locations

of the step. Since the step has a wider curved portion, the locations of the step spanned a

wider region compared to that of the steep step. When the step is at x = 2 mm (Figure 4-

5(a)), only the bottom flat portion contacts the finger. The contact mechanics is identical to

that of the steep step at x = 2 mm (see Figure 4-4 (a)). In Figure 4-5 (b) the convex portion

of the step comes into contact with the finger, in addition to the bottom flat portion. The

surface pressure shows a peak under the convex portion and a flat portion under the flat

part of the step. In Figure 4-5 (c) only the convex portion of the step touches the finger.

The pressure distribution has some peaks, but is more diffuse than in Figure 4-4 (d) for

step 1. In Figure 4-5 (d) both the convex and the some of the concave portions of the step

touch the finger. The pressure distribution is diffuse with a reduction in its magnitude

owing to an increase in contact area, and shows a downward slope to the right where the

concave portion contacted the finger. In Figure 4-5 (e), the convex, concave and the top flat

parts of the step contact the finger. The surface pressure shows a left peak corresponding

to the convex portion of the step and a right peak corresponding to the flat portion of the

step. In between the two peaks the pressure shows a drop, corresponding to the concave

portion of the step. The pressure magnitudes are much lower than before and the contact

area is high. In Figure 4-5 (f), the concave part of the step and the top flat part of the step

touch the finger. The surface pressure shows a peak under the flat portion and a drop

in its magnitude under the concave portion of the step. When the step is moved to the

left further, the finger would be fully in contact with the top flat portion of the step and

the pressure distribution will be identical to Figure 4-5 (a), in the case of the steep step

(Figure 4-4 (a)).

Comparing Figures 4-4 and 4-5 it can be seen that unlike in the case of the steep step,

the area of contact for the gradual step does not become disconnected. The peak pressures



in the case of the steep step is higher than the peak pressures in the case of the gradual

step, but the area of contact is lower for the steep step. For example, for the same force, the

highest pressure for the steep step is about 2000 (which occurs near x = -1.63 mm) whereas

the highest pressure for the gradual step is less than 1000.

4.3.4 Subsurface strain measures

In the fingertip, the merkel cells that innervate the SA-I afferents are known to be located

at approximately 0.75 mm below the skin surface (Phillips and Johnson, 1981b). Since the

mechanical state influences the neural response rates of the SA-I afferents, in this section

we discuss the mechanical state at a depth of 0.75 mm.

Indentation by step 1

Figure 4-6 shows a plot of two strain measures, strain energy density (energy of deforma-

tion in a unit volume element) and axial stress (normal stress component along the finger

axis i.e. along z direction in units of force per unit area) at a depth of 0.75 mm for two

different DOIs. The step is located at x=-1.63 mm. While strain energy density is a scalar,

does not have an orientation and is always a positive quantity, axial stress is one of the

components of the stress tensor, acts in a specific direction along the axis of the finger and

could be either compressive or tensile. From Figure 4-6, three points are evident. First,

the shape of the strain energy density distribution is very different for the two DOIs. At

the smaller DOI, the distribution shows only a single peak, whereas at the higher DOI two

separate peaks are seen. Second, in the case of axial stress, even though the distribution is

similar to the strain energy density distribution at the lower DOI, the distribution is quite

different at a higher DOI in that two separate peaks are not seen. Third, even though the

surface pressure had two disconnected regions in the case of lower DOI (Figure 4-4 (e)),

the strain energy density and axial stress have no separate disconnected regions - this

indicates that the mechanical state at a depth of 0.75 mm is a low pass filtered version

of the pressure on the surface of the finger. At higher DOIs, the filtering is not severe

enough to blur the strain energy density distribution, but is strong enough to blur the

axial stress distribution. An implication is that a mechanoreceptor population triggered

by strain energy density as relevant stimulus will have a better spatial resolution than that

triggered by axial stress as the relevant stimulus.
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Figure 4-5: Monkey fingertip indented by the gradual sinusoidal step (step 5). The step was
indented up to a prescribed force of indentation, the same force used in the indentation of the
steep step. The pressure distribution on the skin surface and the extent of contact region are
shown for six locations of the step indicated on top of each of the figures. Note that these
locations are not the same as that shown in Figure 4-4 for step 1. For this gradual step, the
contact region is continuous at all step locations. As in the case of step 1, the surface pressure
shows the highest peaks under the most curved convex portion of the step. But the peak
pressures are smaller and the contact regions are wider than those for step 1 indented with the
same overall force.
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Figure 4-6: Subsurface strain measures for two different DOls when step 1 is indented onto the
monkey fingertip. The step is located at x = -1.63 mm (panel (e) in Figure 4-4 corresponds to
this location). Distribution of two strain measures, strain energy density, and axial stress (normal
stress component along the finger axis) are shown at a depth of 0.75 mm from the skin surface
for two different DOls. The lower DOI corresponds to the plots used to create Figure 4-4. The
higher DOI of 0.73 mm corresponds to a force of 8 gram weight used by Srinivasan and LaMotte
(1987). The axial stress is compressive. It can be seen that in the case of strain energy density,
the distribution at lower DOI has only one peak. From Figure 4-4(e) it can be seen that the
flat portion of the step barely touches the finger and hence does not cause a second peak in
subsurface strain energy density. At a higher DOI, the strain energy distribution has two peaks
which correspond to the two disconnected contact regions. In the case of axial stress, however,
the distribution at both DOls show only one peak.

Indentation by step 5

Figure 4-7 shows similar plots as Figure 4-6, but for the case of indentation by step 5. The

step is located at x = -3.13 mm (see Figure 4-5 (e)). The main difference compared to step

1 is that even at the higher force of 8 gwt, strain energy density does not have two peaks.

This is because in the case of this gradual step, the surface pressure does not contain two

disconnected regions that are present for the steep step. Although the pressure distribution

has two mild peaks (Figure 4-5(e)), after low pass filtering, the subsurface strain energy
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Figure 4-7: Subsurface strain measures for two DOls (0.23 and 0.62 mm) when step 5 indented
onto the monkey fingertip. The step is located at x = -3.13 mm (see panel (e) in Figure 4-5 which
corresponds to this location). Same format as in Figure 4-6. In this case, even at the higher
DOI, the strain energy density does not show two distinct peaks, in contrast to the corresponding
case for step 1 (see Figure 4-6).

density is blurred out and contains mostly only a single peak. Axial stress shows only one

peak and is similar to that of step 1. It is interesting that in spite of significant differences

in the contact areas for steps 1 and 5 (as indicated by the extent of non-zero pressures in

Figures 4-4 and 4-5), because of the blurring effects of low pass filtering by the skin, the

subsurface quantities shown in Figures 4-6 and 4-7 have approximately the same overall

widths.

Thus, with regard to encoding of object information by the SA-I afferents, the afferent

response depends on (1) the shape of the object (in the case of strain energy density for the

same force of indentation, step 5 does not have two separate peaks as does step 1) (2) the

amount of loading, specified either by DOI or force of contact between the finger and the

object (for the case of strain energy density, lower and higher DOI lead to different shapes
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of distributions in the case of step 1), and (3) the strain measure that activates the receptor

(strain energy density is different from axial stress).

Comparing Figures 4-4 and 4-5, it can be seen that step 5 requires a lower DOI to at-

tain the same force of indentation (to reach an indentation force of 8 gwt, step 1 required a

DOI of 0.73 mm whereas step 5 required only 0.62 mm). This is to be expected since step

5 has a more gradual profile, it has a higher area of contact as compared to step 1, and

therefore encounters a higher resistance to indentation, and thus attains the same force for

a smaller DOI.

4.3.5 Dependence of surface pressure and subsurface strain measures on the

shape of the object

Having discussed the features of both surface pressure and subsurface strain measures, we

now focus our attention on what attributes of object geometry (or, shape) determine the

surface pressure intensities, and consequently the subsurface strain measures. Figure 4-8

shows the surface pressure distributions and strain energy density distributions at 0.75 mm

and 2.5 mm depth from the surface, for the cases of indentation by the 3 mm rectangular

bar, and 3 mm and 9 mm diameter cylinders. All the plots in this figure were extracted

from the 3-D plots at a particular cross-section of the finger. The 3 mm bar has zero

curvature (except at the edges), the 9 mm diameter cylinder has intermediate curvature

and the 3 mm cylinder has the highest curvature among the three indentors. At a low DOI

of 0.33 mm (when the edges of the rectangular bars do not contact the finger) the shape of

the surface pressure distribution for the bar and the cylinders look similar in the overall

shape in that all of them have have a single peak at the center. However the peak pressure

and contact width are different - the bar has the lowest peak pressure but highest width

of contact and the 3 mm diameter cylinder has the highest peak pressure, but smallest

contact width. When the DOI is 1.33 mm, the surface pressure for the bar shows peaks at

the edges whereas the surface pressure for both the cylinders maintain their overall shape.

The strain energy density distribution has been plotted for all the three indentors at two

receptor depths, 0.75 mm and 2.5 mm from the surface. When the DOI is 0.33 mm, the

strain energy density distributions at both the depths have more or less the same shape.

When the DOI is 1.33 mm the strain energy density at 0.75 mm depth is seen to be different



from one shape to another. The bar shows 2 peaks whereas the cylinders show more or

less a single peak at the center. The two tiny peaks seen for the case of the 9 mm diameter

cylinder is due to irregularities in the finite element mesh used. At a depth of 2.5 mm, the

strain energy distributions for all the three indentors are almost identical in shape, and

differ only in magnitude.

4.3.6 Relationship between surface pressure and object curvature

This section develops a quantitative model for the surface pressure. Figure 4-9 shows

a plot of surface pressure (P) at each point within the contact region as a function of

displacement at that point, for the three indentors discussed in the previous section (4.3.5).

At a particular depth of indentation (DOI), several points on the finger contact the object

and each point will have a different downward displacement (d). The surface pressure is

non-zero only in the region of contact, but points that lie outside the region of contact may

have non-zero displacements even though the surface pressure at those points is zero. For

all the three indentors and for each DOI, the plot of P vs d is seen to be mostly a straight

line characterized by two variables, a threshold and a scaling parameter. As the curvature

of the indentor increases, P also increases. For all the indentors, the peak value of pressure

within the contact region increases along a straight line whose slope is lower than the slope

of the P vs d line for a particular DOI.

4.4 Discussion

4.4.1 Surface pressure

Throughout this chapter we studied the surface pressure distributions due to indentations

by various shapes (bars, cylinders, sinusoidal shapes). The finite element models provided

a way of computing the surface pressure distributions, which currently cannot be experi-

mentally observed at an adequate spatial resolution. The surface pressure distribution is

important, as it determines the input to the tactile system from a systems point of view.

The task is to relate the object's shape to the surface pressure. We have seen that the surface

pressure is influenced by both the curvature of the object and the downward displacement

at each point within the contact region where the surface pressure is measured.
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smallest width of contact. When DOI=1.33 mm the edges of bars contact the finger and the

surface pressure has peaks at the edges. The strain energy density distribution at depths of

0.75 mm and 2.5 mm from the surface are low pass filtered versions of the surface pressure

distributions. When DOI is 0.33 mm, the strain energy density looks similar for all the shapes.

When DOI is 1.33 mm, the strain energy density distributions at 0.75 mm depth look different

for the three shapes, but those at 2.5 mm depth are almost identical in shape, differing only in

magnitude.
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Figure 4-9: Dependence of surface pressure on skin displacement and curvature of the indentor.
The left panel contains data from both the 1.5 mm and 3 mm wide bars, but with the edge effects
omitted (as the edges have infinite curvature). The x-axis is the vertical displacement at the point
where the surface pressure is computed. The values shown in the legend are the DOls in mm.

Based on the observations from Figure 4-9, we propose the following model for the surface

pressure:

P = K2(d - do) + K3C (4.1)

where P is the surface pressure at a point on the skin surface, d is the vertical displacement

of that point, do is a threshold parameter that depends only on the overall depth of

indentation (DOI), K2 and K3 are scaling constants, and C is a measure of the relative

curvature between the finger and the object contacting the finger. The above expression

implies that P has two contributions: one purely due to curvature and the other purely due

to the downward displacement of the skin surface. Figure 4-10 provides an illustration

of this model. To explain this figure, we first assume that the contacting object has zero

relative curvature. At a particular point, the surface pressure varies linearly with its vertical

displacement, shown by dashed lines with slope Ki. For a given DOI, only points that

51200-
U)

C-1000
U0

800-(n

600

400

200[



are in contact with the object have non-zero pressures. The threshold displacement (do)

corresponds to the minimum of the displacements of all points within the contact region

and generally occurs at a boundary point. Points lying outside the contact region will have

displacements smaller than this threshold displacement, but will have zero pressure. The

threshold is not a constant - it increases with increasing overall DOI. This is true because,

with increasing DOI, the smallest displacement within the region of contact also increases.

From Figure 4-10, the value of threshold can be seen to be

K1do = DOI(1 - K- (4.2)
K2

Thus P in Equation 4.1 can be written completely in terms of only three parameters K 1, K2

and K3 (for a given overall DOI and relative curvature C).

As the DOI increases (shown by the horizontal arrows), the threshold displacement and

the area of contact both increase. Beyond a level of indentation, the area of contact does

not increase and the P vs d plot starts to move up at an angle (shown by the angled arrow)

whose slope is exactly K1. This is because there is no more contact mechanics and all

points on the indentor have contacted the finger.

We now consider the effect of curvature. If the indentor has a non-zero relative cur-

vature, two additional effects happen: (i) all the P vs d plots are simply shifted vertically

upwards (shown by the vertical arrow). The shift is taken to be directly proportional to the

relative curvature (ii) the slope K2 increases with increasing relative curvature. A simple

shift implies that all points within the region of contact have a non-zero value of surface

pressure. However, for smooth objects without edges (e.g. cylinders) the surface pressure

falls to zero at the ends of the contact. This is a limitation of the proposed model. However

as seen in Figure 4-9 this model explains most of the features of the surface pressure and

is also simple to use. To summarize, the surface pressure distribution, for a given object

geometry and DOI, depends on only three parameters: K 1, K2 and K3.
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Figure 4-10: Quantitative model for skin surface pressure under shaped objects.

4.4.2 Subsurface strain measures

The subsurface strain measures were found to be low pass filtered versions of surface

pressure. Different strain measures had different distributions. This implies that receptors

that transduce different strain measures will receive different information to transduce

into neural responses. This result is significant not only for human tactile sensing, but also

robot tactile sensing.

4.4.3 Receptor depths

The depth at which the strain measures are computed is important because the skin tissues

low pass filter the surface pressure distributions. From Figure 4-8 it was seen that if the

receptors are at 2.5 mm depth from the surface, the strain energy density becomes blurred

enough that there is no identifying difference between the distributions due to different

indentors. Thus receptors located at a depth of 2.5 mm cannot properly distinguish be-

tween different kinds of shape. Thus it is likely that the deeper receptors like Pacinian



corpuscles are unlikely to aid in shape perception. The merkel cells innervating the SA-I

are at about 0.75 mm depth and hence can participate in coding of shape information.



5
Relevant Stimulus

5.1 Motivation

The previous chapter dealt with the mechanistic aspects of tactile sensing - the relationship

between object geometry and surface pressure, and the computation of subsurface strain

measures. This chapter deals with the link between the subsurface strain measures and

experimentally recorded neural impulses of the SA-I afferents. Studying this transduction

mechanism requires computation of the strain measures in the vicinity of the mechanore-

ceptors and also experimental recordings of neural responses of the afferent nerve fiber.

Previous studies in this area have used simplified, 2D models of the finger to compute

the strain measures. In this chapter, the 3D multilayered finite element model of the fin-

ger is used to compute strain measures at the vicinity of the mechanoreceptors. Then,

these strain measures are analyzed to see which one of them would best match available

recorded neural responses for the case of SA-I afferents 1.

5.2 Methods

5.2.1 Simulation of neurophysiological experiments involving stimulus shapes

indented onto the monkey finger pad

All the neurophysiological experiments were simulated using the three dimensional multi-

layered finite element model of the primate fingertip described in Chapter 3. The model

was used to simulate the neurophysiological experiments of (1) Srinivasan and LaM-

otte (1987) wherein sinusoidal step shapes were indented up to a predetermined force of

1The neurophysiological data used in this Chpater is taken from Phillips and Johnson (1981a) and Srinivasan
and LaMotte (1987) and the author wishes to acknowledge the same.



indentation and (2) Phillips and Johnson (Phillips and Johnson, 1981a) wherein rectangular

bars and gratings were indented up to a prescribed depth of indentation. The nonlinear

contact problem between the stimulus shape and the finger pad was solved iteratively

until the prescribed force or depth of indentation was reached (more explanation is given

in Chapter 4). The stimulus shapes were considered rigid and frictionless. To construct

the simulated spatial response profile (SSRP) the stimulus object was indented successively at

different lateral locations and the problem was solved at each location.

(a) Sinusoidal Steps: In the experiments of Srinivasan and LaMotte (1987) six steps were

used. In this work three of them denoted as step 1, step 3 and step 5 are used for compar-

ison between the neurophysiological data and simulation results. For the most part, the

lateral locations were separated by about 170 microns, which was the spacing between the

nodes on the model. It is to be noted that the minimum stepping distance is the spacing

between the nodes. To reduce computational effort, the spacing between lateral locations

was increased in situations where the sinusoidal portion of the step was away from the

central region of the finger pad. Totally about 20 indentations per step were simulated.

Since the stepping distance in the experiment was not the same as that in the simulations,

a linear interpolation was used to obtain the simulation data at the locations used in the

experiment.

(b) Rectangular bars: Phillips and Johnson (1981a) used gratings consisting of rectan-

gular bars to indent the monkey finger pad and recorded the SA-I neural response. The

gratings were indented up to a prescribed depth of indentation of 1.0 mm. Since simulat-

ing the entire experiment using the full grating would be computationally very expensive,

only isolated rectangular bars of 1.5 mm and 3 mm width were used. In the simulations,

the rectangular bars were indented onto the finger pad up to 1 mm depth in four incre-

ments of 0.25 mm each. The bars were stepped laterally at a spacing of 170 ym and the

simulation was done for several locations (25 locations for the 1.5 mm bar and 34 locations

for the 3 mm bar) to obtain data for constructing the SSRP.



5.2.2 Receptor locations

To study the dependence of SSRP on the location of the receptor, ten receptor locations on

a cross section of the fingertip were chosen. The cross sectional plane was located at 5.86

mm from the distal tip of the finger and the receptors were located at 760 microns below

the skin surface. The lateral locations of the receptors were x = -2.0, -1.5, -1.25, - 1.0, -0.5,

0, 0.5, 1.0, 1.5 and 2.0, all expressed in mm. The location x = 0 corresponds to the center of

the finger pad.

5.2.3 Stress/Strain measures

Indentation of the finger pad by a stimulus shape leads to a distribution of stresses and

strains at every point below the skin surface. Stresses, having the units of force/area,

measure the intensity of loading (e.g., pressure) at that point. Strains, being a ratio of the

change in length to the original length of a material element, are non-dimensional. Both

stresses and strains are direction dependent. In the 3D space considered here, they are

both 3 x 3 cartesian tensors (matrices) and have nine components in each of them, of which

only six are independent (the matrices are symmetric). Of the six independent stresses,

three are normal stresses and three are shear stresses. In this work, the normal stresses are

denoted as sil, s22 and s33. The shear stresses are denoted as s12, s23 and s13. Similarly

there are six independent strains, of which the three normal ones are denoted as ell, e22

and e33 while the three shear strains are denoted as e12, e23 and e13. It is to be noted

that though the three normal strains can be calculated from the three normal stresses by

the multiplication of a matrix whose elements are governed by material properties such as

stiffness and compressibility, individually they are not directly proportional to the corre-

sponding normal stresses. For example, ell does not simply scale with sli, but depends

on s22 and s33 as well. However, each of the three shear strains are proportional to the

three corresponding shear stresses. For example, the shear strain e12 is equal to s where

the constant G is the shear modulus of the material of the tissue at the location where

the mechanical quantities are measured. Hence in the search for the relevant stimulus by

matching the shapes of recorded and simulated SRPs, it is enough to consider either the

shear strains or shear stresses. In this thesis, shear strains are used.



From the normal and shear strains defined along the coordinate axes, three principal

components can be calculated, two of which represent the maximum and the minimum

values of the strains. The three principal strains are denoted as epl, ep2 and ep3 2. Using

a much simplified model of the finger pad, the maximum compressive strain was found

to be the relevant stimulus for static response of SA-Is by Phillips and Johnson (1981a). In

our simulations, epl is the maximum compressive strain and ep3 is the maximum tensile

strain. The intermediate principal strain ep2 was found to be mostly tensile. In contrast,

all the three principal stresses were found to be compressive. Hence they are referred to

as maximum compressive stress (spl), intermediate principal stress (sp2) and minimum

compressive stress (sp3).

Additionally, the stress tensor has three "invariant measures" - quantities that do not

change with orientation of coordinate axes. The first stress invariant is the mean of the

three normal stresses and is referred to as mean normal stress. Physically, the mean nor-

mal stress is a measure of the hydrostatic pressure at that particular point. The second

stress invariant is related to strain energy density, which is a measure of the distortion at

the particular point. The third stress invariant has no known physical significance, but is

mathematically equal to the determinant of the stress tensor and is included for sake of

completeness. Thus a total of 18 stress and strain measures (3 normal stresses, 3 principal

stresses, 3 normal strains, 3 shear strains, 3 principal strains and 3 stress invariants), here-

after referred to as candidate measures were considered in the search for relevant stimulus.

In this thesis we will study whether one or more of the above candidate measures is closely

related to the experimentally determined spatial response profile (SRP).

5.2.4 Comparison of recorded neural data and strain measures

Figure 5-1 (a) shows the recorded SRP for steps 1, 3, and 5, replotted as the mirror image

of Figure 4 in Srinivasan and LaMotte (1987). As the step is moved from right to left, first

2In solid mechanics, epi, ep2 and ep3 are commonly referred to as minimum principal strain, intermediate
principal strain and maximum principal strain, as compressive strains are assigned a negative sign. With this
sign convention, epl < ep2 < ep3. Similarly the three principal stresses are denoted as spl, sp2 and sp3, where
spl < sp2 < sp3. Alternate names for spl, sp2 and sp3 are minimum principal stress, intermediate principal
stress and maximum principal stress. In plotting the above stress/strain measures, if any particular measure
was always found to be negative (i.e., compressive), then its magnitude was used. For example, the maximum
compressive strain is always negative and hence its absolute value is used.



the lower flat part of the step is in contact, then the convex part moves towards a centrally

located receptor, followed by the concave part and then the upper flat part. The SRP

from right to left, first shows a rise to a peak, followed by a dip and then rise to a final

value that is about the same as the initial value. The rise in discharge rate occurs when

the convex portion of the step is directly above the receptor while the dip occurs when

the concave portion is above the receptor. In order to determine if a candidate measure

is closely related to the recorded neural responses, it is necessary that the SSRP based on

the candidate measure should also have the peak-dip characteristic. SSRPs that did not

show the peak-dip characteristic were considered not to match the shape of the recorded

SRP. Also, relative to the response to flat parts, since the increase in the neural response

rate due to the convex portion of the step is much higher than the decrease in the neural

response rate due to the concave portion of the step, the SSRPs whose dip was more than

the peak were considered not to match the shape of the recorded SRP. To reduce the long

list of 18 candidate measures, we first compared the SSRP of each strain measure due to

indentation by step shapes with that of the recorded SRP. Once we narrowed down the list

we then used the recorded SRP for the case of rectangular bars (Figure 5-1 (b)) to further

reduce the list. The SRPs for both the bars showed two peaks corresponding to the two

edges and a dip when the center of the bar was above the receptor and hence candidate

measures that did not show this peak-dip-peak trend were considered unlikely to be the

relevant stimulus.

In order to mathematically relate the experimentally recorded neural responses to a

particular strain measure, a quasi-linear receptor model, same as that used by Phillips and

Johnson (1981b), with two parameters representing scaling and threshold was used. The

model can be represented mathematically as R = k(c - Eco) where R is the neural discharge

rate, E is the candidate measure, and k and co are the scaling and threshold parameters

respectively.

5.2.5 Generation of SSRP from population response

Figure 5-2 illustrates how the spatial response profile is obtained from the population

responses. First, population responses were obtained for several locations of the indentor.

For the case of sinusoidal steps, about 22 locations were used. At each location the contact
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Figure 5-1: Experimentally recorded spatial response profile (SRP) for sinusoidal step and
rectangular bar indentations, taken from Srinivasan and LaMotte (1987) and Phillips and

Johnson (1981b), respectively. In (a), the SRPs for three steps are shown as mirror images

of Figure 4 in Srinivasan and LaMotte (1987). All the three SRPS are normalized with respect

to the maximum response rate for step 1. The location of the step is taken to be the lateral

location of the sharpest point of the step on the skin surface measured with respect to the center

of the receptive field of the receptor. The steps are moved from right to left over successive

indentations. The SRPs show a peak when the convex part of the step is directly above the

receptor and a dip when the concave part of the step is above the receptor. In (b), the SRPs

for indentations by 3 mm and 1.5 mm wide rectangular bars are shown. Both the SRPs are

normalized with respect to the maximum response rate for the 1.5 mm bar. The location of the

bar is the location of the center of the bar measured with respect to the center of the receptive

field. The SRPs show two peaks when the edges of the bars are directly above the receptor and

a dip when the center of the bar is above the receptor.

mechanics problem was solved and all the mechanical quantities were obtained. Plotting

the value of the candidate measure as a function of receptor location gives the population

response - such a population response was obtained for each location of the indentor. From

these population responses, the values of the candidate measure for any given receptor

location were extracted for each of the indentor locations. These extracted values were

then plotted as a function of the step location. In the example shown in Figure 5-2, five

step locations were shown. The corresponding five population responses are shown. The

values of the population responses at -1.0 mm are extracted and used to plot the SSRP.

All the plots were generated using the Matlab software package. Also, a library function
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Figure 5-2: Extraction of simulated spatial response profile (SSRP) from the population re-
sponse. The step (step 1) was moved from right to left over successive indentations. The graph
on the left shows population response for five locations of the step denoted by A, B, C, D and E.
The values of the population response at a particular receptor location were then extracted from
these population responses to generate the SSRP. This example demonstrates how the SSRP
for the receptor at x = -1.0 mm was generated. The numbers 1 through 5 denote the values
of the population responses corresponding to the receptor located at -1.0 mm for the five step
locations. Note that 1 and 5 were the same because the indentations corresponding to A and
E are mechanically identical - in both cases only flat portions of the step touch the finger. The
values 1 through 5 are plotted with respect to the step location to generate the SSRP for that
receptor (graph on the right).

in Matlab was used to compute correlation coefficients to measure the goodness of fit

between a candidate measure and the experimentally recorded neural responses.

5.3 Results

5.3.1 Influence of force of indentation on the population response and SRP

In the neurophysiological experiments by Srinivasan and LaMotte (1987) the step shapes

were indented up to a force of indentation of 8 gwt. The higher the force of indentation,



the higher is the computational effort required to simulate the experiment. This is because

as indentation progresses from initial contact, the contact region gradually changes, re-

quiring computation of the solution (i.e., the determination of stresses and strains within

the fingertip) for each increment in force. In this section we demonstrate that a lower force

of indentation (approximately 2.33 gwt.) could be used to match experimentally recorded

SRPs with those obtained through simulations (SSRPs).

For this purpose, we simulated the neurophysiological experiments for five locations of

step 1, with the force of indentation being equal to that used in the experiments. Figure 5-3

shows the population response and SSRPs obtained for the higher force of indentation

(corresponding to that used in the experiment) and a lower force of indentation equal to

about a third of that used in the experiment. It can be seen that the shape of the population

response can be quite different for the two forces of indentation at certain locations. At

the higher force of indentation, the population responses have two peaks when the step is

located at -1.63 mm, but at the lower force of indentation the population responses have

only a single peak. The reason is that at the lower force, only the convex portion of the

step is in contact with the finger pad, whereas at the higher force, the upper flat part of

the step also comes into contact. At step locations of 2.0 and -3.69 mm also the higher

force of indentation leads to two peaks, but these two peaks merge and hence they are not

distinguished clearly. But the lower force of indentation leads to only a single peak. For

step location at -2.25 mm the higher force of indentation leads to two peaks with almost

equal magnitudes but the lower force of indentation leads to two peaks with a smaller

magnitude for the second peak. Thus the population responses for the two forces of in-

dentation are quite different. Figure 5-3 also shows the comparison between the SSRPs

obtained for five receptor locations. Since the simulations with higher force of indentation

are computationally expensive, only four simulations were done with this force (the fifth

simulation is identical to the first one, because only the flat portion of the step contacts the

finger in both the cases). It can be seen that the shape of the SSRPs are not very different

for the two forces of indentation. The same trend is seen for both the forces in SSRPs for

the receptors at -2.0, -1.0 and 0.0. For example the receptor at -1.0 mm shows the rise-dip

trend for both the forces of indentation. The receptors at +1.0 and +2.0 mm also show

similar trends for both the forces of indentation, except that the dip in the graph is shifted



to the right for the case of higher force of indentation. The overall shape is however same

for all the receptor locations. The shift in the dip for positive receptor locations does not

affect our further analyses because the selection of the relevant stimulus is based on the

match between overall shape of the SSRP with that of the experimentally obtained SRP (a

shift in the dip or an increase in magnitude does not affect the overall shape). Therefore,

from now on, all our results on SSRPs are based on the lower force of indentation.

5.3.2 Influence of receptor location on the SSRP

Figure 5-4 shows the SSRPs for the case of maximum compressive strain for 10 receptor

locations, all at a depth of 0.75 mm from the skin surface (Figure 5-2). The SSRPs for

the ten locations are all different from one another. For example, none of the receptors at

positive locations show the peak-dip trend. All of them show only a single dip. Among the

receptors at negative locations many show the peak-dip characteristic. The receptors at -1.5,

-1.25 and -1.0 show the peak-dip characteristic that is consistent with the experimentally

recorded SRP. The receptors at -0.5 and 0.0 show a dip that is higher in magnitude than

the peak and hence their SSRPs do not match that of the experimentally recorded SRP.

The receptor at -2.0 does not show the dip and hence its SSRP does not match that of the

experimentally recorded SRP. Thus it is clear that the shape of the SSRP greatly depends on

the location of the receptor within the finger. Our first objective then is to determine, for a

given strain measure, if any of the receptors would show the trend that is consistent with

the peak-dip trend seen in the experimentally recorded SRP. In the following paragraphs

we illustrate this procedure with several candidate measures and their SSRPs based on five

receptor locations, for the case of indentation by step 1. In Table 5.2 we then summarize for

all the candidate measures and for all the 3 step shapes, which receptor locations would

have an SSRP that can match the experimentally recorded SRP.

Figure 5-5 shows the SSRPs based on three strain measures, namely tensile strain ep3,

shear strain e13 and axial tensile strain e33, when step 1 is indented onto the finger pad.

These quantities were chosen so as to have one measure from each category of strain -

principal, shear and normal. The results are shown for five receptor locations. It can

be seen that in the case of ep3, the receptor at -1.0 shows the peak-dip characteristic of

recorded SRP (Figure 5-1 (a)). The receptor at -2.0 does not show a dip. The receptor at 0.0

shows a peak that is of higher magnitude than the dip. The receptors at 1.0 and 2.0 show
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Figure 5-3: Influence of force of indentation on the population response and the SSRPs. The
two graphs on the left show population responses obtained from the fingertip model for five
locations of step 1. The higher force of indentation (8 gwt.) corresponds to that used in the

experiment while the lower force of indentation (2.33 gwt.) corresponds to that used in most of
the simulations. For both the cases the response values are individually normalized with respect
to their maximum values. The actual peak magnitude for the case of higher force of indentation
is about five times higher than the peak magnitude for the case of lower force of indentation.
The population responses for the lower force of indentation show only a single peak (except for
a small second peak when the step is at -2.25). The population responses for the higher force
of indentation show two peaks when the step is at -1.63 mm. Thus the population response is

dependent on the force of indentation, except for when only the flat part of the step is fully in

contact (i.e., for step locations 2.0 and 3.69 mm). The figure on the right shows the SSRP for

both the forces of indentation for five receptors. For the receptors located at -2.0, -1.0 and 0, the

shapes of the SSRPs are the same for both the forces of indentation. The receptors at +1.0 and

+2.0 also show the same shape for both the forces, except that the dip is shifted to the left for

the higher force of indentation.
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Figure 5-4: SSRPs for step 1 with maximum compressive strain as the candidate measure for
10 receptors. The receptor locations (x) are indicated in mm. The location of the step is the
location of the most convex part on the step measured with respect to the center of the finger.
The shape of the SSRP depends strongly on the location of the receptor. The receptors located
at positive locations (x > 0) show a single dip. All the receptors located at negative locations,
except for the one at x = -2.0 mm, show a peak-dip characteristic. Only the receptors at -1.5,
-1.25 and -1.0 show the peak-dip characteristic that would match the experimentally recorded
SRP (Figure 5-1(a)).

only a dip. In the case of shear strain e13 the receptors at -1.0 and 0.0 show the peak-dip

characteristic. In the case of axial strain e33, none of the receptors show the peak-dip

characteristic.

Figure 5-6 shows the SSRPs for minimum compressive stress sp3, shear stress s23 and

vertical compressive stress s22 for the case of indentation by step 1. As in the case of strains,

these stresses represent a candidate from each of three stress types - principal, shear, and

normal. In the case of s22, the receptor at -1.0 shows the peak-dip trend of the recorded

SRP, while the receptors at other locations do not show the trend. In the case of minimum

compressive stress sp3 and shear stress s23, none of the receptors show the peak-dip trend

of the recorded SRP.

Figure 5-7 shows the SSRPs for mean normal stress, strain energy density, and the third

stress invariant for step 1. These three "invariants" are quantities that do not change with
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Figure 5-5: Step 1 SSRPs for three strains - maximum tensile strain ep3, shear strain e13 and
axial strain e33. The SSRPs are shown for five receptor locations. The SSRP for all the three

strains depends on the location of the receptor. For example, in the case of maximum tensile
strain, the receptor at -1.0 shows the peak-dip trend whereas the receptors at other locations do
not show the trend.

orientation at that location. The receptor at -1.0 shows the peak-dip trend for both mean

normal stress and strain energy density. The receptors at other locations do not show the

peak-dip trend. The third stress invariant at -1.0 shows a very sharp peak and a broad

dip that is the mirror image of the empirical SRP and hence is unlikely to be the relevant

stimulus.

Thus it is clear that the location of the receptor plays an important role in determining

the kind of mechanical stimulus it receives. At a given location, it is also clear that the
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Figure 5-6: Step 1 SSRPs for three stresses - minimum compressive stress sp3, shear stress
s23 and vertical compressive stress s22. The SSRPs depend on the location of the step.
Whereas s22 has only one location (-1.0) that showed the peak-dip characteristic, the other
two stress measures do not have any receptor locations at which the peak-dip characteristic
emerges.

shape of the SSRP depends on the candidate measure. If the receptors were to linearly

transduce any one of the above candidate measures above a certain threshold into neural

responses, then the shape of the SSRP should match that of the experimentally recorded

SRP.
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Figure 5-7: Step 1 SSRPs for mean normal stress, strain energy density and the third invariant
of stress tensor. As in the previous four figures, the receptor location dominantly influences the

SSRP.

5.3.3 Correlation coefficient is alone not a good indicator for determining rele-

vant stimulus

In order to determine the relevant stimulus for SA-I receptors under static stimuli a

goodness of fit measure, usually the correlation coefficient, has been used in previous

works (Phillips and Johnson, 1981b; Srinivasan and Dandekar, 1996). Correlation coeffi-

cient is a measure of how well two sets of data points match each other in the overall sense

and does not depend upon the specific features of the two set of data points. In this sec-

tion we illustrate that the correlation coefficient alone cannot be used to infer the relevant

stimulus. Table 5.1 shows the correlation coefficient between the SSRP as predicted by



Location (mm) Max comp. strain epl Min comp. stress sp3 Strain energy density
-2.00 0.9631 0.9377 0.9565
-1.50 0.9716 0.9485 0.9543
-1.25 0.9557 0.9233 0.9339
-1.00 0.9159 0.9691 0.9483
-0.50 0.8087 0.9651 0.7452
0.00 0.9255 0.9378 0.9120

+0.50 0.9468 0.9161 0.9413
+1.00 0.9401 0.9262 0.9228
+1.50 0.9357 0.9220 0.9169
+2.00 0.9354 0.7804 0.9212

Table 5.1: Correlation coefficients between SSRP and recorded SRP for three strain measures,
for the case of indentation by step 1. The recorded SRP was taken from Srinivasan and
LaMotte (1987).

the strain measures and the experimentally recorded SRP for three candidate measures:

maximum compressive strain epl, minimum compressive stress sp3, and strain energy

density. For each strain measure the correlation coefficients are tabulated for ten receptor

locations. Two points can be noted: First, in the case of maximum compressive strain

and strain energy density, even though the receptors at positive locations did not match

the shape of the experimental SRP (no peak-dip characteristic), some of them have high

correlation coefficients. Second, in the case of minimum compressive stress, even though

none of the SSRPs at ten different locations matched the recorded SRP, many of them show

high correlation coefficients. Hence by using correlation coefficient alone it is not possible

to decide which strain measure best matches the experimental SRP.

5.3.4 Determination of the relevant stimulus

SSRP based on the mechanical stimulus should predict the shape of experimental SRP

for all three step shapes

Since the experimental SRPs were recorded from the same peripheral nerve for all the

three steps, two conditions should hold: (1) The SSRPs predicted by the relevant stimulus

should be able to match the shape of the corresponding experimental SRPs for all three

step shapes - step 1, step 3 and step 5; (2) there should be at least one matching receptor



Strain measure Step 1 alone Step 3 alone Step 5 alone Common
Normal strain ell -1.0, -1.25, 1.5 -1.0, -1.25 none none
Normal strain e22 -1.0, -1.25 -1.0, -1.25 -0.5 none
Normal strain e33 none none none none
Shear strain e12 0 none none none
Shear strain e23 none none none none
Shear strain e13 0, -0.5, -1.0, 0, -0.5, -1.0, -1.0, -1.25 -1.0, -1.25

-1.25, -1.5 -1.25, -1.5
Max comp. strain epl -1.0, -1.25, -1.5 -1.0, -1.25, -1.5 -0.5, -1.0 -1.0
(Min principal strain)
Intermediate none none -1.0, -1.25 none
principal strain ep2
Max tensile strain ep3 -0.5, -1.0 -0.5, -1.0 -0.5, -1.0 -0.5, -1.0
(Max principal strain)
Normal stress sll none none none none
Normal stress s22 -1.0, -1.25 -1.0 none none
Normal stress s33 -1.0 -1.0 none none
Max comp. stress spl -1.0, - -1.0 -1.0, -1.25 none none
(Min principal stress)
Intermediate none none none none
principal stress sp2
Min comp. stress sp3 none none none none
(Max principal stress)
Strain energy density -1.0, -1.25, -1.5 -1.0, -1.25 -1.0 -1.0
Mean normal stress -1.0 -1.0 -0.5 none
Third stress invariant none none none none

Table 5.2: Determination of relevant stimulus. Eighteen strain measures are used in the search
for relevant stimulus. The table shows the receptor locations in mm for which the shape of the
SSRP matches that of the recorded SRP for three step shapes.

location that is common to all three steps. The SSRPs based on all the 18 strain measures

were obtained for all the three steps at 10 receptor locations and plots similar to that in

Figures 5-4 through 5-7 were obtained. From these figures the receptor locations which

match the experimental SRP were obtained. Table 5.2 lists the receptor locations for which

the SSRP based on the strain measures matched that of the experiments for step 1, step 3

and step 5 and also locations which are common to all three step shapes.

Thus it can be seen that there are only four quantities that have a common receptor

location that can match the shape of the experimental SRP for all the three step shapes -

maximum compressive strain epl, maximum tensile strain ep3, shear strain e13, and strain

energy density. These four quantities are therefore considered as possible candidates for
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Figure 5-8: Recorded neural discharge rates vs computed candidate measures based on data
for sinusoidal steps 1, 3 and 5, plotted for the four relevant stimulus candidates. The goodness
of fit and the best linear model are indicated for each of the candidates. All the values for the
candidate measures were extracted from the receptor located at -1.0 mm.

relevant stimulus for the SA-I receptors.

5.3.5 Goodness of fit for the four candidates based on step indentations

Figure 5-8 shows the plot of experimentally recorded neural response for all the three steps

against each of the four strain measures. The best linear fit is shown by a straight line.

The best strain measure is the one which has minimum spread or equivalently maximum

correlation coefficient. It can be seen that shear strain e13 has the highest correlation

coefficient. However the best fit model for e13 suggests that the threshold is -0.016 and

all values of e13 below that value will evoke no response. The other quantities, epl, ep3

and strain energy density have positive thresholds. It is to be noted that in relating the

e13 strain to the neural responses, the absolute value was not chosen (as was done for epl)

because e13 was not negative at all locations.



5.3.6 Predicted neural response for step indentations

Figure 5-9 shows the predicted neural responses for the three steps based on the four

candidate strain measures. It can be seen that the strain measures, maximum compressive

strain, maximum tensile strain and strain energy density are able to predict the experi-

mentally recorded by Srinivasan and LaMotte (1987) in the case of steps 1 and 3. In the

case of step 5, the three strain measures predict a higher value for the SSRP as compared to

the recorded SRP. The shear strain e13 is able to predict well the SRP for all three step shapes.

Thus based purely on sinusoidal step shapes, there are four candidates for the relevant

stimulus for SA-I receptors - maximum compressive strain epl, maximum tensile strain

ep3, shear strain e13, and strain energy density. Of these four, shear strain e13 is a slightly

better candidate in terms of predicting the recorded SRP.

5.3.7 Indentation by rectangular bars

Dependence of SSRP on receptor location

Figure 5-10 shows the SSRPs for the case of indentation by a 3 mm wide rectangular bar.

Only the four strain measures, maximum compressive strain epl, maximum tensile strain

ep3, shear strain e13 and strain energy density, which emerged as likely candidates from

the results on step indentations, are used. As in the case of step indentations, results for

five receptor locations are shown. It can be seen that once again the SSRP depends on

the location of the receptor. In the case of epl, ep3 and strain energy density the recep-

tor located close to the center of the finger shows the peak-dip-peak characteristic of the

recorded SRP (Figure 5-1 (b)). In the case of e13 strain, none of the receptors show the

peak-dip-peak characteristic.

Figure 5-11 shows the SSRPs for the case of indentation by 1.5 mm wide rectangular

bar. Again, the SSRP depends on the location of the receptor. In the case of e13, none of

the receptors show the dip at the center. The results are similar to that of the 3 mm wide

bar, but the dip at the center is seen to be less.
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Figure 5-9: Comparison of predicted SRP (solid line) and recorded SRP (dashed line) for the
three step shapes plotted for each of the four relevant stimulus candidates. All the four candidates
are able to predict the shape of the three recorded SRP quite well. Maximum compressive
strain epl, maximum tensile strain ep3, and strain energy density generally underestimate the
response for steps 1 and 3, and overestimate the response for step 5. The shear strain el3 is
able to predict the response for all the three steps well.
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Figure 5-10: SSRPs for indentation by 3 mm wide rectangular bar, used in the experiment
by Phillips and Johnson (1981a). In the case of maximum compressive strain epl, maximum
tensile strain ep3, and strain energy density, the receptors at the center of the finger pad show
the symmetric edge enhancement effects present in the recorded SRP (Figure 5-1 (b). At other
locations, the SSRP for a receptor at a positive location is nearly the mirror image of the SSRP
for the receptor at a corresponding negative location. For example, the SSRP at x=- 2.0 mm is
the mirror image of the SSRP at x=+2.0 mm. Shear strain el 3 does not show the peak-dip-peak
characteristic of the recorded SRP.

5.3.8 Goodness of fit for the four candidates based on bar indentations

Figure 5-12 shows a plot of experimentally recorded neural responses (Phillips and John-

son, 1981a) for both the 3 mm and 1.5 mm wide bars against each of the four candidates.

The straight line shows the best linear fit. It can be seen that epl, ep3 and strain energy

density fit the recorded data fairly well. The e13 shear strain, however, does not fit the

recorded data at all and has a very low correlation coefficient. Among epl, ep3 and strain

energy density, strain energy density has the highest correlation coefficient.
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Figure 5-11: SSRPs for indentation by 1.5 wide rectangular bar, used in the experiment by
Phillips and Johnson (1981a). As in the case of 3 mm bar (Figure 5-10), only the SSRP for the

receptor close at the center of the finger pad shows the symmetric edge-enhancement due to
the two edges of the bar. Shear strain e13 does not show the edge enhancement and its shape
does not match the recorded SRP.

Predicted SRP for bar indentations

Figure 5-13 shows the predicted neural responses for both the 3 mm and 1.5 mm wide bars

based on the four strain measures. The measures ep, ep3 and strain energy density all

show the dip at the center and have two peaks that correspond to the two edges of the bars.

The prediction is better in the case of 3 mm bar than the 1.5 mm bar. It is to be pointed

out that rectangular bars have sharp edges at their ends and to simulate the indentation

of such shapes, the mesh density should be high enough so that the deformed mesh can

approximate the high curvature. This is particularly important if the width of the bar is

small, in which case the bar width becomes comparable to the element size. Previous

attempts with low mesh density models did not show the sharp dip at the center of the

1.5 mm wide bar (Dandekar and Srinivasan, 1996). The current model has a much higher

mesh density and has been found to be able to show the dip at the center. The reduced
mesh density and has been found to be able to show the dip at the center. The reduced
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Figure 5-12: Recorded neural discharge rate vs. computed candidate measures based on datafor 3 mm and 1.5 mm wide rectangular bars, plotted for the four relevant stimulus candidates.

The goodness of fit and the best linear model are indicated for each of the candidates. All the
values for the candidate measures were extracted from the receptor located at 0 mm. Of the
four candidates, good linear fits are obtained from maximum compressive strain epi, maximum
tensile strain ep3, and strain energy density. Shear strain e13 does not fit the recorded neural
data at all.

dip at the center in the case of 1.5 mm bar is due to the artifact of the simulation and arises

because the element size cannot be made infinitesimally small. It is expected that with
an even higher mesh density the prediction will be better and the correlation coefficients

will also be higher. The shear strain e13 does not predict the neural response of either of

the bars. Based on the results of bar indentations, it is unlikely that shear strain e13 is a

candidate for the relevant stimulus of SA-I receptors.

5.4 Discussion

This chapter focused on the identification of the relevant stimulus for the SA-I afferents.

The relevant stimulus provides the link between the mechanical stresses and the neural re-The relevant stimulus provides the link between the mechanical stresses and the neural re-
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Figure 5-13: Comparison of computed SSRP and recorded SRP for the two rectangular bars.
Three candidate measures, the maximum compressive strain epl, maximum tensile strain ep3,
and strain energy density, are able to predict the recorded SRP. The prediction is better for the
case of the 3 mm bar than for the 1.5 mm bar, owing to the spatial resolution limitations in the
simulations. The smaller the bar, the higher the resolution of the mesh that is needed to model
the indentation accurately. Hence for the same mesh density, the prediction is better for the 3
mm bar. Shear strain el3 is not able to predict the recorded SRP.



sponses. The study of relevant stimulus requires experimental data of neural recordings.

Currently, such data is available for indentation experiments for two indentors. Based

on simulations with the first class of indentors (sinusoidal steps), the long list of 18 strain

measures was reduced to four. Based on further simulations with the second class of inden-

tors (rectangular bars), only three measures remained. These are maximum compressive

strain, maximum tensile strain, and strain energy density. Maximum compressive strain

was found to be the relevant stimulus for SA-I afferents based on the simplified model

by Phillips and Johnson (1981b). The present study which uses a more realistic model

has shown that there are two additional strain measures that are also candidates for the

relevant stimulus. The correlation coefficients of fit for the above three candidate measures

are almost equal. Hence purely based on the current work, it is not possible to determine

the best candidate among the three. However based on physical considerations it might

be possible to argue in favor of one of them. Strain energy density is a measure of the

distortions at a point and is also orientation independent. Both maximum compressive

strain and maximum tensile strain are orientation dependent and hence the receptors must

be oriented in a certain direction if they are to code these strains. Strain energy density is

thus likely to be a better candidate. It is possible that further simulations might reduce the

list further.



6
Decoding

The previous two chapters dealt with coding of object information into neural responses

by the SA-I mechanoreceptors. This chapter deals with the inverse problem of decoding

- how a central processing unit like CNS would decode the neural responses to obtain

information about the object that contacted the finger. In order to study the problem of

decoding we introduce the idea of non-linear shift-invariant systems. The motivation

for using this approach is that well developed tools like convolution, which are used to

analyze linear shift-invariant systems, can be applied to model the tactile system even in the

presence of certain non-linearities. The use of linear and shift-invariant approach to model

systems have led to significant advances in other fields such as vision, telecommunications

and radar.

6.1 Linear Systems

A system is an abstraction of anything that takes an input, operates on it, and produces

an output (Karu, 1995). The actual physical process, when viewed as a system, can then

be represented as a mathematical transformation between the input and the output. In

general this transformation may not be unique, may be non-linear etc. Figure 6-1 shows

a systems representation of the human tactile encoding process. The input to the system

is the pressure distribution on the surface of the finger. The output is the neural response

from a population of afferent nerve fibers. The transformation describes the way the sur-

face pressure is converted into neural response, which depends on the mechanics of the

fingerpad and the receptor transduction.

In certain classes of systems, the transformation may obey superposition and scaling -
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Figure 6-1: Input-output model of the human tactile encoding process.

the output due to two different inputs is the sum of the outputs due to the individual

inputs, and scaling the input by some factor, also scales the output by the same factor.

Such systems, which obey superposition and scaling are called linear systems. Based on the

studies in the previous chapters, the human tactile system is seen to be non-linear for two

reasons: (1) the relevant stimulus for SA-I afferents (maximum compressive strain, maxi-

mum tensile strain, or strain energy density) is a non-linear combination of the individual

stress/strain measures and (2) the receptor model has a threshold parameter which also

makes the transformation non-linear. This is true even for the case where the materials

inside the finger are considered linear elastic, and the deformations that occur are con-

sidered small - that is, even if both material and geometric linearity are assumed to hold

good.

6.2 Shift-Invariant Systems

A system is shift-invariant if a shift in the input leads to an identical shift in the output.

When we say that the input is shifted, we mean that location of all the loads on the surface

of the finger is laterally shifted. We now evaluate under what conditions shift-invariance

holds true. Figure 6-2 shows a generic mechanical system - some loads are applied to the

surface and there is a boundary which imposes a constraint that no point on that boundary

can move. Load P1 (at location A) leads to a certain distribution of stresses and strains

within the system. If the same load is applied at another point B (denoted as P2), then the

stress-strain distribution will be more or less identical, except that they are now laterally

shifted because the load itself has been shifted. If we assume that all the mechanoreceptors

are identical, the distribution of neural responses will also be a simple shift compared to

the distribution due to P1. Thus, between the loads P1 and P2, there is no difference in the

behavior of the system except for a shift in the position. However an identical load applied



to point C, or D will not lead to a simple shift in the distribution of stresses and strains. This

is because there is a difference in geometry at these points. Between points A and C, point

C is closer to the fixed boundary and hence will not undergo the same mechanical behavior

as the point A. Between points A and D, point D has a larger local curvature and hence the

mechanical behavior at point D will not be identical to that at point A. However points A

and B are similar in that both have the same local curvature and are both far away from

the fixed boundary. Hence while the mechanical system is shift-invariant with respect to

points A and B, it is not shift-invariant with respect to points A and C, or A and D. It is also

evident that, even in the case of constant curvature (between points A and B), one has to

compute strains and stresses in a curvilinear coordinate system - the cartesian stress and

strain components will obviously change if the point of application of load is changed. In

this chapter, we assume that the finger is more or less flat so that the stresses and strains

can be computed in the xyz cartesian coordinate system. This assumption is however not

required to develop the systems approach. Also such an assumption does not mean that

the curvature of the finger can be neglected as this will mean that the contact of shaped

objects cannot be simulated accurately. This assumption only simplifies the computation

required. We now state the conditions under which shift-invariance for mechanoreceptor

response holds good:

* The curvature of the body must be constant over the region where shift-invariance

is evaluated.

* The boundary conditions should be far away from the region of where shift-invariance

is evaluated.

* All the mechanoreceptors should be identical.

The human finger does not have a constant curvature. Also during touch, not all points of

contact will be far away from the nail region that imposes the fixed boundary conditions.

Also, the mechanoreceptors are not identical to one another. Hence the human tactile is

not, in general a strictly shift-invariant system.
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Figure 6-2: Illustration of shift-invariance. Both points A and B are located far away from the
boundary and the surface curvature is same at both points. If the material distribution around
points A and B is the same, both the points see the same conditions in terms of geometry and
material distribution. Hence the stress strain distributions due to one of them, is simply the stress
strain distributions due to the other, but shifted by a distance equal to the distance between the
two points. However a loading at C is quite different from that at A or B because of the fixed
boundary condition. Also the loading at D is different because the curvature at point D is different
from that at A or B.

6.3 Idealizations of the real system

Thus the tactile system is neither linear nor shift-invariant in a strict sense. We now make

simplifying assumptions that can help us make the problem more tractable. First we

consider the shift-invariance property. If the loading on the finger is such that the area of

contact is quite small, the curvature of the finger within the area of contact will be nearly

constant. Also, if only the pulp region in the fingerpad is used for tactile sensing, the region

of contact will be quite far away from the nail region which imposes the fixed boundary

condition. With the further assumption that all the mechanoreceptors are identical, we can

then model the finger as being approximately shift-invariant within the region of contact.

We also note that since the region of contact is considered small, we can always define a

local coordinate system that is cartesian. Similar assumptions of shift-invariance, though

broad in nature, have led to significant advancements in fields like robot vision (Horn,

1986). Next we consider the linearity property.

In all the simulations described in this thesis (Chapter 3-5), both material and geomet-

ric linearity have been assumed. This assumption is valid as long as the deformations



inside the finger are small. We now assume that the threshold in the receptor model is

very small and can be neglected. This linearizes the receptor mechanics. However, we are

still left with one non-linearity - all the three possible relevant stimuli (maximum compres-

sive strain, maximum tensile strain and strain energy density) are non-linear measures of

the cartesian stress-strain components. Of the three, we will consider strain energy den-

sity, which for physical reasons is likely to be a better candidate than the other two. The

non-linearity in strain energy density arises because it is a weighted sum of the product of

the cartesian stresses and strains. We will retain this non-linearity in our further analyses.

To summarize, based on our assumptions, we are left with a non-linear but shift-invariant

system .

In order to further simplify our analysis, we limit ourselves to the case of plane-strain,

incompressible problems. This assumption, however, is not a requisite for our further

analysis, but simplifies our analysis. Under these conditions the expression for strain

energy density becomes (Dieter, 1988)

Sener = G(e 1 + ej2 + 0.5e 2) (6.1)

where Sener is the strain energy density, G is the Shear Modulus of the material where the

strain energy density is computed, and ell, e22, and e12 are the three components of the

strain tensor under plane-strain assumptions.

6.4 Illustration of Shift-Invariance

We now illustrate that the assumption of shift-invariance is reasonable for the human

tactile system. A point load (spatial impulse) was applied to the high resolution finite ele-

ment model of the fingertip (Chapter 3) and the strain energy distribution was computed

at a depth of 760 microns from the surface. The simulation was repeated 24 times after

changing the location of the load each time. In all the simulations, the load had the same

magnitude and was applied normal to the surface. The locations of the load are shown in

Figure 6-3.

'It is to be noted that the individual stresses and strains are linear with respect to the loads applied on the
surface when contact region does not change with loading.
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Loc# X(mm) Y (mm) Z (mm)

1 1.403 2.996 4.068
2 1.677 3.696 5.009
3 1.832 4.067 5.983
4 1.907 4.239 6.893
5 1.917 4.243 7.807
6 1.818 4.013 8.809

7 0.094 3.656 4.067
8 0.098 4.380 5.204
9 0.100 4.720 6.137
10 0.098 4.839 6.893
11 0.099 4.752 7.958
12 0.100 4.358 8.993

13 -2.100 3.282 4.084
14 -2.370 3.726 5.208
15 -2.507 3.940 6.136
16 -2.528 3.987 7.047
17 -2.413 3.806 7.961
18 -2.180 3.425 8.997

19 1.668 3.627 9.761
20 0.913 2.438 11.501
21 0.111 4.003 9.754
22 0.055 2.643 11.510
23 -1.987 3.104 9.752
24 -1.569 1.977 11.500

Figure 6-3: Locations of the point load used to test shift-invariance. The first 18 locations are
located on the top portion of the finger and the last six locations are located at the tip of the
finger. All dimensions are in mm.

Figure 6-4 shows an example of the point load simulation when the load is located at

location # 10. The point spread function, which is the distribution of strain energy density 2

to the point load, is seen to be more or less radially symmetric. This radial symmetry helps

us to reduce the 2D distribution into a 1D distribution:

Sener = '-
r
m (6.2)

where Sener is the strain energy density, A is a scaling parameter and m is an exponent.

The data was fit so as to obtain the best A and m through the least squared error method.

2which is also the same as the distribution of neural response if we assume that the threshold is zero and

that all mechanoreceptors are identical and continuously distributed.

Top region

Tip region
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Figure 6-4: A point load applied to the finger. The left panel shows the deformed mesh. The
right panel shows the point spread function -- strain energy density has been plotted as a function
of the radial distance between the point of application of load and the point at which the strain
energy density is computed (r). The distribution was found to fit the model Sener = 12.8 with a
correlation coefficient of 0.96, thus indicating radial symmetry.

This procedure was repeated for all the 24 locations and the best fit model was obtained at

each location and the obtained values of A and m are tabulated in Table 6.1. Two features

are evident from the table: First, for each location, the correlation coefficient is high. This

indicates that it is possible to use radial symmetry to reduce the 2D distribution into a 1D

distribution. Second, for the first 18 locations, the model parameters do not vary much

from location to location. The standard deviation in the parameters A and m are only 10%

and 4.8% of the mean respectively. If we accept an error of 10%, then we can say that the

strain energy density distribution does not change considerably within the 18 locations

(which included the top portion of the finger). Thus the distribution of strain energy

density, is approximately shift-invariant within that region. When all the 24 locations are

included, the standard deviations in the parameters A and m increase to 17.7% and 6.2%

and the shift-invariance is less likely to hold true. This is to be expected, based on the

discussion in Section 6.2.



Location # A m R2

1 9.094 3.881 0.954
2 11.754 3.792 0.975
3 11.373 3.732 0.984
4 11.493 3.738 0.987
5 12.293 3.777 0.983
6 11.907 3.798 0.980
7 11.854 3.983 0.963
8 12.851 3.981 0.978
9 13.629 4.041 0.980

10 12.805 3.959 0.961
11 13.975 4.082 0.980
12 13.369 4.172 0.980
13 12.820 4.272 0.971
14 13.176 3.999 0.979
15 11.967 3.828 0.986
16 10.990 3.666 0.988
17 10.285 3.548 0.987
18 11.168 3.698 0.983
19 17.464 4.189 0.974
20 14.760 4.301 0.888
21 20.042 4.336 0.982
22 14.671 4.320 0.909
23 14.757 3.957 0.990
24 14.619 4.470 0.915

Mean (all 24 loc) 13.046 3.98 0.969
Std (all 24 loc) 2.315 0.246 0.027

Mean (first 18 loc) 12.045 3.886 0.978
Std (first 18 loc) 1.231 0.189 0.01

Table 6.1: Model parameters (Sener = r4)
the correlation coefficient of the fit.

for strain energy density for all the locations. R 2 is

6.5 System Identification using Impulse Response Functions

With the simplifying assumptions made in Section 6.3, the computation of neural responses

reduces to the computation of the strain energy density distributions as described by

Equation 6.2 3. The coding problem, then requires the computations of the three strain

components. Since the strain components anywhere in the finger are linear functions of the

load applied on the surface and are also shift-invariant, these components, for an arbitrary

3Since the threshold is assumed to be zero, the neural response is a scaled value of strain energy density.



loading, can be obtained as a convolution of impulse response functions and the applied

load function:

ell[n] = h[n]* P[n] (6.3)

e22[n] = g[n] * P[n] (6.4)

el2[n] = f [n] * P[n] (6.5)

The function h[n] represents the ell strain distribution due to an impulse load on the

surface of the finger. Similar meanings hold for g[n] and f[n]. In the above equations, the

'*' symbol represents the convolution operation, the argument [n] is used to denote the

discrete spatial coordinate 4, and P[n] is the load distribution applied on the surface of the

finger. The convolution operation for discrete signals is defined as

ell[n] = E h[i]P[n - i] (6.6)
i--OO

Once ell, e22 and el2 are obtained, strain energy density can be computed. In order to

obtain the functions h[n], g[n] and f[n], a point load was applied to a 2D finite element

model on the surface and the distributions of the three strain components were obtained

at a depth of 760 microns from the surface. Figure 6-5 shows the three impulse response

functions along with their (spatial) frequency responses. It can be seen that h[n] and g[n]

are almost identical except for a difference in sign, which is expected since the material

has been assumed to be nearly incompressible. The functions h[n] and g[n] are found to

be low pass filters whereas f[n] is found to be a bandpass filter.

The systems representation of the tactile system can now be expressed in terms of

a block diagram and is shown in Figure 6-6. This representation also includes a noise

term N(n) which is assumed to occur at the input to the mechanoreceptor (sensor). The

encoding problem is the computation of neural responses, given the surface loads (surface

pressure distribution). This can be easily accomplished by using Equation 6.2. However

the decoding problem, which is the computation of surface pressure distribution from the

4The function h[n] is simply a digitized (sampled) version of the continuous en distribution. In the
computations described here, all the samples are spaced 170 microns apart.
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Figure 6-5: Impulse response functions for ell, e22 and el2 and their (spatial) frequency
responses. For example h[n] is the distribution of ell strain when an impulse load is applied to
the surface of the finger. For the frequency response, only the magnitude is plotted. Note that
ell - e22 because of plane strain assumption and nearly incompressible material.

neural responses, is not trivial, since the overall system is non-linear and hence an inverse

transform cannot be taken. In the remainder of this Chapter, we develop an iterative

method to solve this decoding problem.

6.6 Decoding as an Optimization Problem

We treat the problem of decoding as an optimization problem, where the aim is the find

the best surface load distribution P[n] that optimizes some performance criterion. The

criterion adopted here is the minimization of the square of the error of the output defined

as:
M-1

Error = 1 (Rp[n] - R[n]) 2

n=O

(6.7)

0 1 2

IF(f)l

f[n]h[n]



Fingerpad tissue mechanics

2 2 2
S[n] = G ((P[n]*h[n]) + (P[n]*g[n]) + 0.5(P[n]*f[n]) } + N[n]
R[n] = k(S[n]-So
Encoding Problem : Compute R[n] given P[n]

Decoding Problem: Estimate P[n] given R[n]

Figure 6-6: Block diagram representation using impulse response functions. If the threshold
parameter in the receptor model is neglected, R[n] is a scaled version of S[n] and without loss
of generality we can take S[n] to be the neural response.

where R[n] is the known output, Rp[n] is the output computed from P[n] and M is the

length of the output R[n]. The best P[n] is taken to be the one that minimizes the above

error. Again we reiterate that, since the threshold value in the receptor model is assumed

to be zero, strain energy density can be considered as the neural response (that is we use

R[n] and S[n] interchangeably in Figure 6-6).

To solve the above non-linear optimization problem, the univariate method (Rao, 1984)

is employed. As the length of P[n] is known beforehand (Length(P[n] = Length(R[n]-

Length(h[n]+l), the problem is to find N numbers that minimize the error in Equation 6.7,

where N = Length(P[n]). Since the vector P[n] has in general length greater than 1, this is

a multidimensional problem. In the univariate method, this is converted to several one-

dimensional problems. The method starts by assuming P[n] to be some arbitrary value for

all the N values of n. Then the first element of P[n] namely P[0] is changed with all other

P[n] held at constant values and for each value of P[0] the error described in Equation 6.7

is evaluated. The P[O] that leads to the minimum error is taken to be the best P[0]. For

example if P[0] can take any of 1000 values, the error function is computed for all the 1000



possible values of P[0] and the one for which the error is minimum is chosen. A similar

procedure is done for the other P[n] - each time only one element of P[n] is changed with

the other elements held constant and a one-dimensional problem is solved. When one

such cycle is completed for all n, the procedure is repeated again till no more reduction

in error can be obtained. The algorithm that describes this procedure is shown in Figure 6-7.

It is to be noted that the univariate method does not rely on gradients. The method is

simple to implement. Theoretically it can be applied to find the minimum of any function

that possesses continuous derivatives. However if the function to be minimized has a

steep valley, the method may not converge. This situation usually arises when the search

space for each of the P[n] is not fine enough. Further details about this method can be

found in Rao (1984). In the next section we demonstrate the univariate method through

an example.

6.7 Example of Optimal Decoding using the Univariate Method

To demonstrate the univariate method we use an input that has a length 2. In this and the

following sections, the input P[n] will be referred to as x[n] and the output R[n] (or S[n])

will be referred to as y[n], which is consistent with the notation used in Signal Processing

literature. We first consider the case when there is no sensor noise, i.e., N[n] is zero. Fig-

ure 6-8 shows an input x[n] = [20 14], and the corresponding output y[n] computed using

the expression in Figure 6-6. The problem at hand is to use only y[n] to compute the input

x[n] which is assumed unknown. The solution can then be checked with the known x[n]

to see if the method worked.

Figure 6-9 shows the error as a function of xO and xl, the two elements of the vector

x[n]. The error is seen to be minimum for x = [20 14]. Figure 6-10 shows the method

in action. The procedure starts by assuming the solution space to be [xO xl] = [10 10]

(arbitrarily chosen). At the end of the first attempt the solution becomes [24 10]. After that

the solution proceeds along a diagonal path till it reaches the correct solution.
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Figure 6-7: Algorithm describing the univariate method.

6.8 Decoding in the Presence of Noise

So far we have considered the case when there is no sensor noise. We now consider the

practical case where some noise is present in the system. The encoding process is essen-

tially a low pass filtering process. Hence decoding, which is an inverse operation, is a

high pass filtering process and hence any noise present in the system will degrade the

decoding process. Thus it becomes interesting to see the effects of noise on the efficiency

of the univariate method.
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Figure 6-8: Input x[n] and the corresponding y[n] chosen to illustrate the working of the univariate
method. The input is chosen to be of length 2 for simplicity.
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Figure 6-9: Error function for the example problem. Panel (a) shows the error as a function of
xO and xl, the two elements of the input vector. Panels (b) and (c) show the projection of the
error function along the two axes. The error is seen to be minimum at x = [20 14] -- shown by
the 'x' mark in (a).
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Figure 6-10: Working of the Univariate method. The left panel shows that the solution converges
to the correct solution x=[20 14]. The right panel shows that what appears as a straight line is
actually a crisscross path in the solution space.

For illustration purpose, we assume that the noise is zero-mean additive and Gaussian

distributed. The output (neural responses) is thus the sum of the ideal output (output as

computed by the convolution expressions) and the noise. The relative strength of the noise

that is added can be varied by varying its variance. Larger variance for the noise leads to

smaller SNR (measured at the output) S. The univariate method was used in decoding for

various values of SNR. Figure 6-11 shows an example for the case when the SNR is about 10

dB. It is seen that in this case the decoding process does not converge to the correct solution.

In order to quantify how successful the decoding process was, we define a normalized

error term:
EN=0 (x[n] - z,[n]) 2

Decoding error = n '1 x[n]2 (6.8)

where x[n] is the actual input (correct solution) and z,[n] is the decoded input (as obtained

through the univariate method). Figure 6-12 shows the error as a function of SNR. As

expected, the error in decoding decreases with increasing SNR. If we accept 10% error to

5The SNR is defined as 101ogl 0( Variance of signal
variance of noise
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Figure 6-11: Decoding in the presence of noise. The left panel shows the output with and
without noise. The noise is zero-mean additive Gaussian noise and the SNR is about 10 dB.
The left panel shows the path taken by the solution space. The 'x' mark indicates the correct
solution. The '+' and 'o' marks indicate the starting and ending points for the solution space. It is
seen that the solution does not converge to the correct solution.

be within the reliability limits, then we can say that the decoding process works for SNR

values above 20 dB. It is also to be noted that since the noise is random, even for the same

SNR, there is some variability in the decoding process. In Figure 6-12 this variation is

shown by the standard deviation. The standard deviation is also seen to decrease with

increasing SNR.

6.9 Summary of Systems Approach

The systems approach described here models the human tactile system in terms of input-

output relationships. The surface pressure is the input and the neural response is the

output. The finger is in general a non-linear and shift-variant system. Using certain as-

sumptions we were able to show that the system could be approximated shift-invariant

but non-linear system. The forward encoding process, namely, the computation of neural

responses is simplified because the individual stresses and strains are linear functions of

the surface loads, and the neural responses can be computed after computing the cartesian

stresses and strains. However, the decoding process is significantly more difficult because

there is no general way to invert the non-linear transformation. The univariate method
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Figure 6-12: Percentage error as a function of SNR: mean values, shown with bars of one
standard deviation from the mean. As SNR decreases both the mean error and the variation in
the error increase. The mean values are also indicated next to each point.

used in optimization studies was proposed to solve the decoding problem and was illus-

trated with an example. The decoding problem is also prone to gross error due to noise.

The analysis showed that decoding is reliable when the noise (assumed to be zero-mean

additive Gaussian) is such that the SNR is greater than 20 dB.

The above results showed that decoding of tactile information is possible even in the

presence of non-linearities. However the problem was quite complex and required several

assumptions. It is quite likely that the human brain uses a simpler mechanism to decode

tactile information. This could be, for example, a simple table look-up. However, even in

that case, it is necessary for the brain to create the look-up table in the first place. Such

a learning, or training process could be the result of a more complicated computational

scheme such as the one discussed in this chapter. Further research in memory acquisi-

tion and learning would help to provide a clearer understanding about the information

processing processes of the brain.



7
Summary and Future Work

7.1 Summary

This thesis was concerned with biomechanical bases of human tactile sensing, their im-

plications to the neural behavior of mechanoreceptors embedded in the skin, and the

development of a systems approach to encoding and decoding of tactile information.

7.1.1 Model development

In order to study the mechanics of contact between the finger and the object, a high

resolution three dimensional finite element model of the primate fingertip was developed.

The material distribution was inhomogeneous, but assumed to be linear elastic. The

model had an element size of about 170 pm on the top surface. The mechanical behavior

of the model was validated by comparing simulation results with data available from

experiments on surface displacements under line loads.

7.1.2 Biomechanical studies

The model was used to simulate biomechanical experiments of indentation of different

shaped objects (rectangular bars, cylinders and sinusoidal step shapes) on the finger. The

surface pressure distributions was obtained for each indentation. The pressure was found

to be highly dependent on the curvature of the object that indented the finger. Based on

the results, a simple model for surface pressure as a function of the local skin displacement

and the curvature of the indentor was developed. Subsurface strain measures at a depth of

760 microns from the surface were also obtained. The results showed that the subsurface

strain measures were low pass filtered versions of the surface pressure, and different strain

measures had different distributions. For example, strain energy density was able to



capture the distribution of surface pressure better than axial stress.

7.1.3 Neurophysiological studies

The model was also used to simulate neurophysiological experiments, for which neural

responses of afferent nerve fibers when the shaped objects are indented onto the finger were

available. The spatial response profile obtained through simulations (SSRP) was compared

with available experimental spatial response profiles for three sinusoidal step shapes and

two rectangular bars. The comparison was done for 18 different stress-strain measures (3

normal stresses, 3 principal stresses, 3 normal strains, 3 shear strains, 3 principal strains,

and 3 invariants). The results showed that three measures, namely maximum compressive

strain, maximum tensile strain, and strain energy density were likely candidates for the

relevant stimulus for SA-I afferent nerve fibers innervating the finger. Among these, strain

energy density is a better candidate as it is a scalar and the mechanoreceptors need not be

oriented in any specific direction to encode the relevant stimulus.

7.1.4 Systems approach

The thesis also developed the idea of a systems approach to human tactile sensing. The

distribution of loads on the surface of the finger can be considered as the input and the

corresponding neural responses from a population of mechanoreceptors can be considered

as the output. The encoding process, i.e., the computation of the neural responses given

the surface loads is trivial as the relevant stimulus can be computed after the cartesian

stress-strain components are computed. The individual stresses and strains being linear

measures (under certain assumptions detailed in Chapter 6) can be computed as a simple

convolution of the surface loads and respective impulse response functions. However,

decoding, which is the inverse process of computing the surface loads given the neural

responses, is a non-trivial process as the non-linear transformation cannot be generally

inverted. The decoding process was solved as an optimal estimation problem using the

univariate method. The decoding process was estimated to be reliable for SNR greater

than 20 dB, where the noise (assumed to be zero-mean additive Gaussian noise) is added

to the neural responses.



7.2 Future Work

There are two main approaches which the author feels would aid studies in human tactile

sensing. The first approach is modeling the behavior of the tactile system. The current

study was limited to study of shape coding under static conditions, by the SA-I afferents.

Dynamic tactile sensing is more involved in that the surface pressure distributions are both

space and time dependent, the material properties are viscoelastic, and the receptors also

have their own dynamics. The systems approach can be extended to include the dynamic

effects and other receptors. The current work dealt mainly with convex shapes. The work

can be extended to study the contact mechanics of indentation of concave rigid objects.

The decoding operation was demonstrated only for an example. In order to demonstrate

the full potential, the decoding process should be demonstrated using surface pressure

distribution with shaped objects. Once the pressure distributions are decoded from the

neural responses, the shape of the object (i.e. its curvature) can be obtained. The use of

more robust decoding strategies such as genetic algorithms could also be investigated.

The shape of an object is only one of the attributes of the object that is coded by the

neural responses. Other attributes include the object's compliance, and texture. The work

can be extended to such studies wherein a relationship between the object's attribute and

surface pressure would need to be evaluated (similar to Equation 4.1, Section 4.5.1). Such

studies may require the incorporation of finger ridge mechanics.

The second approach is the understanding of the physical basis of touch. This approach

is quite distinct from the modeling approach and in fact, can be argued to be the inverse.

In modeling, one does experiments or simulations and tries to develop mathematical

relationships between the observed quantities. In tactile sensing this has been mostly

a "black-box" approach. However in the physical approach, one strives to understand

why the black-box is behaving the way it is. For example consider the following state-

ment regarding information processing in the visual system: "The rods and cones in the

retina do not directly transduce the light stimuli into action potentials - they produce only

graded potentials, which are then utilized by a set of intermediate cells to generate action



potentials" (adapted from Weiss (1996)). Such statements do not include mathematical

relationships, but provide a fundamental understanding about the visual system. The

physical approach uses data from experiments or simulations to see if a physical process

can be explained without resorting to mathematical relationships. Such studies are likely

to enhance our knowledge about not only the tactile system, but also take us closer to a

more complete understanding of the human brain, the most complex system in the known

universe.
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