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Abstract

Safety is an important issue in the CPI (Chemical Processing Industry) because accidents

can lead to major loss of life and property. More sophisticated control systems and

processes in today's CPI often allow operation at more severe conditions and closer to

safety limits, which is often economically desirable. Multiple layers of protection exist in

today's chemical plants for risk reduction and control. Among them, the layer of logic-

based control systems (or automatic protective systems) provides major protection from

potential hazards and risks. Logic-based control systems drive the plant to a safe

shutdown state automatically when safety critical conditions occur and prevent the plant

from entering a potentially dangerous state. Furthermore, logic-based control systems play

an essential role in sequencing operations such as start-up, shut-down, feedstock

changeover, etc. The safety-critical nature and increasing complexity of typical

applications makes the development of systematic design techniques for logic-based

control systems a critical issue. While procedures for design with respect to safety integrity

are now available, much less attention has been paid to the design and verification of
logic-based control systems with respect to functionality. This thesis therefore develops

rigorous techniques for the functional verification of logic-based control systems with

respect to design specifications.

A formal verification technology known as implicit model checking is developed

that can systematically identify any inconsistency between the functionality of logic-based

control systems and their specifications. The formal verification problem exhibits

combinatorial complexity due to the exponential growth of the discrete state space with

the number of state variables. Implicit model checking completely eliminates this state

explosion in the problem formulation. The logic-based control system is modeled

compactly as an implicit Boolean state space model. This Boolean state space model can



embed implicitly all the details of the functionality exerted by any logic-based control
system without encountering the state explosion problem. The language of temporal logic
is employed to specify formally the correctness properties to be checked against the
model. The verification problem is posed as a Boolean satisfiability problem by combining
the model with specifications. The problem is then transformed into its equivalent 0-1
linear integer programming feasibility problem because it allows efficient solution with
standard integer programming solution algorithms. The efficiency of this approach is
demonstrated through the empirical study of a series of large-scale problems derived from
industrial practice. The implicit model checking technology is applied to three industrial
burner management systems: the MOD5 T" system, the Throx sequence, and a global burner
management system consisting of a series of MOD5 Tm systems. The methodology has

successfully verified a problem containing potentially upwards of 5.7 x 10132 states and

4.8 X 10474 transitions.

In real life, the logic-based control system is coupled with its underlying chemical
process, and its control actions also depend upon dynamic interaction with this process.
Therefore, even if the logic-based control system is fully consistent with its design
specifications, it may still fail to function correctly if this dynamic interaction is not
properly considered in the design of the logic-based control system. A dynamic validation
technique is developed as a tool to identify such potential problems. The dynamic
validation problem is formulated as hybrid discrete/continuous dynamic simulation
problem. The hybrid model is constructed by coupling the model of the logic-based
control system and the model of the physico-chemical process. A solution algorithm is
developed to solve the hybrid simulation problem. In particular, a state event location
algorithm is developed that guarantees the location of all discontinuities in strict time
order with minimal computational efforts. The algorithm supports flexible representation

of state conditions in propositional logic, and completely eliminates discontinuity sticking,
a numerical phenomena that can cause computational inefficiency and simulation failures.

The algorithm has successfully solved a series of test problems from the literature and a

number of chemical engineering problems.
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Chapter 1

Introduction

In the last decade, the chemical processing industries has experienced significant changes

as a result of new safety and environmental regulations, globalization of the world

economy and increasing competition, and more stringent manufacturing constraints. In

particular, the level of material and energy interaction in plants has increased substantially,

which leads to more complex processes, and operation under more severe conditions.

Furthermore, the level of plant automation has increased substantially, especially in plants

operating in the batch mode.

More attention is being paid to safety in the chemical industries than ever before

due to the above trends in the chemical industries, and a number of major accidents in the

last two decades resulting in large loss of lives (Flixborough, 1974; Seveso, 1976; Bhopal,

1984; Chernobyl, 1986). As an illustration of the damage that can be caused by a major

safety event in a chemical process, Figure 1.1 shows an ethylene oxide plant after a fire

and explosion. Safety in chemical plants is concerned with the safety of plant personnel,

plant equipment, and the surrounding community. Safe operation of chemical plants is

essential because: 1) chemical plants process large quantities of material that is toxic,

flammable, and/or explosive, 2) accidental emissions of these materials cause serious

safety and environmental problems, and 3) there can be large losses associated with an

accident in terms of human life and property, material, and energy losses.

Multiple layers of protection are provided in modern chemical plants to maintain

safe operation (AIChE/CCPS, 1993). Figure 1.2 shows the typical protection layers found

in a modern chemical plant in order of expected activation as a hazardous condition is



approached. Multiple protection layers addressing the same event are often necessary to

achieve high levels of certainty that protection will be available when needed (Drake and

Thurston, 1993). Each layer is called an independent protection layer, which is defined as a

system specifically designed to reduce the likelihood or severity of impact of an identified

hazardous event by a large factor (AIChE/CCPS, 1993). The action of each protection

layer must be independent of other protection layers associated with the identified

hazardous event.

Protection begins with the most fundamental elements of process design, i.e., to

design inherently safe processes (Kletz, 1991). For example, many incidents are the result

of leaks of hazardous materials. The most effective way of preventing such incidents is to

use hazardous materials as little as possible, or to substitute them with safer materials. The

hazard is avoided rather than controlled and the design is inherently safe. Kletz (1991)

discusses design practices for inherently safe process. However, even if a process is

designed to promote safe operation according to this design philosophy, potential risks

and hazards still remain in many chemical processing plants. These range from unlikely

events with minor impact to major risks. Additional protective actions must be applied to

control these risks.

The next layer of protection is the Basic Process Control System (BPCS) installed

to regulate normal production functions. The BPCS regulates automatically the heat and

material flows and provides sufficient information for operator supervision of processing

conditions. Although the BPCS functions as a protective layer, its primary purpose is

automatic regulation of the process.

Physical protection such as pressure relief devices and/or dikes provides another

layer of protection. The general trend is toward less reliance on physical protection (where

possible), because activation of the relief system is not preferred in an environmental

sense, and relief collection and disposal systems to prevent direct emissions to atmosphere

are expensive. Furthermore, it may be difficult to install relief devices that are large

enough and operate quickly enough to avoid over-pressuring the equipment if an

explosion occurs in a vessel (Lawley and Kletz, 1975).



Figure 1.1: An ethylene oxide plant after a fire and explosion'

Figure 1.2: Typical protection layers found in modem chemical plants (AIChE/CCPS, 1993)

SFrom What Went Wrong, 3rd Edition, by Trevor Kletz. Copyright 1994 by Gulf Publishing Company. Used with permission.

All rights reserved.
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Figure 1.3: Mechanical interlock to prevent tank overflow

Major protection in modern chemical plants is provided by automatic protective

systems, an intermediate layer of protection between the BPCS and physical protection.

Automatic protective systems assume greater importance when hazards cannot be avoided

by inner protection layers. Typically, an automatic protective system is installed as a

dedicated defense against potential hazards. Each automatic protective system is usually

expected to reduce the likelihood of a particular hazard by a factor of at least 100. This is

achieved by taking automatic action to correct an abnormal plant event which has not

been controlled and/or caused by actions in the previous level of protection (the BPCS

and/or operator intervention), and hence making the operation of physical relief devices

as rare as possible.

1.1 Logic-based Control Systems

Advances in automation technology have led to the growing use of increasingly

sophisticated automatic protective devices on process equipment, especially in power

generation systems, oil and gas production platforms, large rotating machinery, nuclear

and certain chemical reactors, and boilers and furnaces (Frederickson, 1990). Automatic

protective systems range from simple mechanical devices to complex interlock devices.

Figure 1.3 is a simple mechanical interlock, which couples tank level and inlet flow to

prevent tank overflow. Pressure and temperature trips are commonly used in chemical

processing industries. Interlocks are also used to ensure the synchronized operation of

equipment such as in a conveyor system. For large rotating machinery, interlocks are used

- .....~~~. -- " I -- 1 '- ~ -s*-



to control the start-up so as to ensure that all the pre-start conditions are satisfied and that

the correct sequence is followed. Similarly, sophisticated shutdown interlocks are

implemented in chemical reactors to prevent thermal runaway. Complex interlocks known

as burner management systems are implemented in furnace equipment to help ensure safe

operation.

In modern plants, these automatic protective devices are referred to collectively as

safety interlock systems (SISs). The term safety interlock system can refer to many different

definitions and applications. NFPA Standard 85A (NFPA, 1982) defines a safety interlock

as follows:

"A device or group of devices arranged to sense a limit or off-limit

condition or improper sequence of events and to shut down the offending

or related piece of equipment, or to prevent proceeding in an improper

sequence in order to avoid a hazardous condition."

According to this definition, safety interlock systems embed shutdown logic, permissive logic,

and sequences. Shutdown action shuts the plant or part of it down if an out-of-limits or

abnormal condition is detected. Permissive function checks the existence of a prerequisite

for a specific action before it is actually taken. Embedded sequences force the plant or

part of it to be operated according to pre-determined sequences. These multiple

functionalities are embedded in a coupled manner in the SIS, therefore many modern SISs

exhibit considerable complexity (e.g., a burner management system, the safety system for a

toxic and/or exothermic chemical reactor, the interlock system for the top side of an

offshore production platform).

Even though automatic protective systems are commonly referred to as safety

interlock systems, this term is somewhat confusing since, as we have discussed above,

modern automatic protective systems will typically embed other functionalities coupled to

and in addition to shutdown interlock functionality. Therefore, we argue that modern

automatic protective systems are more properly regarded as general logic-based control systems

(LCSs). The term logic-based control systems will be used throughout this thesis.
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Figure 1.4: Batch reactor system
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Figure 1.5: Logic-based control system for batch reactor operation

As an example, consider the batch reactor system (Lees, 1980) in Figure 1.4. A

reactor is charged with chemical A, and then chemical B is fed gradually from a weigh

tank as the reaction proceeds. Adequate mixing and cooling is necessary because of the

exothermic nature of the reaction. Some prerequisites must be satisfied before opening

valve 1 to start the reaction in reactor 1. Valve 3 must be closed and the agitator in

reactor 1 should be working to prevent a lack of mixing. This functionality illustrates the

permissive action of LCSs. During normal operation, shutdown action is required to cut

off the supply of chemical B from the weigh tank if the valve 3 of reactor 2 is opened,



agitator malfunction is detected, or the reactor temperature has risen above a fixed

threshold for more than 5 seconds. Figure 1.5 shows the LCS as a binary logic diagram

(ANSI/ISA, 1981). The LCS installed in this plant protects the plant against equipment

failures, control failures from the BPCS or higher levels, and operator errors. The flowrate

of chemical B and cooling water is controlled by the BPCS and/or an operator by

manipulating valve 2 and valve 4. In the event of BPCS and/or operator failures that issue

incorrect actions to these valves, or plant equipment failures such as an agitator

malfunction, the LCS is activated to protect the plant.

Consider the tank filling process in Figure 1.6, and its LCS represented by a binary

logic diagram in Figure 1.7. The LCS shown is responsible for decisions concerning the

running of the pump (the control element). Input signals to the LCS include hand-

operated control signals (e.g., HS1, HS2, HS7), and signals that indicate threshold

crossings in the system's dynamic state (e.g., LSH3, LSH4, PSL5). The logic of the

control system embeds shutdown logic (e.g., the pump is shut down regardless of the

system state if the suction pressure remains low for more than five seconds), permissive

logic (e.g., the pump cannot be started if the switches HS1 and HS2 are ON

simultaneously), and sequences (e.g., to start filling a tank, open the inlet valve and close

the inlet valve on the other tank, wait until the valves have responded, start the pump).

Note that even in this simple example, multiple functionalities are embedded in a coupled

manner.

Figure 1.8 shows the generic structure of a LCS and its interaction with its

underlying physico-chemical process. The LCS consists of three components, input

module, logic module, and output module. The input module monitors analog and

discrete signals and converts them to logic signals for the logic module. The logic module

determines the action of the LCS by solving the logic and generating output signals.

Finally, the output signals of the LCS are linked to the final control elements by the

output module.



Figure 1.6: Tank filling process
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Figure 1.7: Logic-based control system for tank filling process

Note that the LCS is normally activated by the change in status of discrete input

signals (e.g., Start_filling_tank_A) and/or by the value of analog input signals

(e.g., Tank _Alevel) passing through a critical or pre-determined threshold. An input

interface between the analog input signals and the LCS is necessary because the LCS is a



discrete system. Due to the nature of the input interface between the process and the LCS,

the operation of the LCS is static it continuously monitors selected variables but remains

unoperative until abnormal conditions occur. However, if activated, the LCS imposes

actions to final control elements (e.g., valves), which causes discontinuities in the process

behavior.

Due to the nature of this operation, the LCS can be considered to be a member of

the class of reactive ystems, which are defined as computing systems that continuously react

to their environment at a speed determined by this environment (Halbwachs, 1993). In the

case of the LCS, the environment is the underlying chemical process. Note that reactive

systems should be distinguished from transformational systems (whose inputs are available at

the beginning of the execution and which deliver their outputs when terminating) or

interactive systems (which continuously interact with their environment, but at their own

rate).
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Figure 1.8: Structure of the LCS and its interaction with a chemical process

1.2 Survey of Hazardous Incidents

According to recent data on the primary causes of control system failures in safety-related

applications based on 34 incidents (Bell, 1994) shown in Figure 1.9, many accidents in

chemical processing plants have occurred because appropriate automatic protective



systems were not installed, they were not tested thoroughly, they were modified without

verification, or they were made inoperative when needed.

The worst catastrophe in the history of the chemical industry occurred in Bhopal

on December 3, 1984. A leakage of toxic methyl isocyanate spread beyond the plant

boundary and caused the death over 2,000 people. The direct cause of the accident was

the contamination of an methyl isocyanate storage tank by several tons of water and

chloroform. A runaway reaction occurred, and the methyl isocynate vapor was discharged

to atmosphere. The protective systems, which could have prevented or minimized the

release, were not in full working order. The high temperature alarm on the methyl

isocyanate tank did not operate, as the setpoint had been raised too high. One of the main

lessons of Bhopal is the need to keep protective systems in good working order (Kletz,

1994).

The following sections survey hazardous incidents that have occurred in the

chemical processing industries, whose causes are related to automatic protective systems.

installation
operation 6%15% specification

design
15%
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Figure 1.9: Primary causes of control system failures



1.2.1 Incidents Caused by the Lack of Appropriate

Automatic Protective Systems

This section discusses three examples of accidents that occurred because appropriate

automatic protective systems were not installed. The first example is a failure of furnace

tubes due to overheating. The pump feeding an oil stream to the tubes of a furnace failed.

The operator closed the oil valve and intended to open a steam valve to purge the furnace

tubes. He opened the wrong valve, there was no flow to the furnace, and the tubes were

overheated and collapsed (Kletz, 1994).

The second example is a runaway reaction. A reactor was filled with one reactant,

and an operator started to add another reactant, gradually increasing the flow. The

operator intended to start a flow of cooling water as soon as the temperature started to

rise. The temperature rise was not shown in the recorder even though the temperature

actually rose as indicated by a temperature sensor. A runaway reaction occurred (Kletz,

1994).

Finally, an accident occurred at a plant in which ethylene oxide and aqueous

ammonia were reacted to produce ethanolamine. Some ammonia leaked into the ethylene

oxide storage tank, past a series of check valves. The ammonia reacted with ethylene oxide

in the storage tank. The resulting explosion caused damage and destruction over a wide

area. It is not sufficient to rely on check valves. The pressure drop in the pipeline should

be measured and pressure trips should be installed to close the valve automatically if the

pressure is too low (Troyan and Vine, 1968).

In all three cases, appropriate valve interlocks and/or trips could have prevented

the accidents.

1.2.2 Incidents Caused by Incomplete Automatic Protective

Systems

This section discusses two examples of accidents that occurred because existing automatic

protective systems were not complete and thus failed to provide protective actions when

needed. The first example is an explosion of a furnace. A decrease in fuel oil pressure



caused the burner in an oil-fired furnace to go out, and the flame failure device closed the

solenoid valve in the fuel oil line. When the fuel oil pressure was restored, the operator

ignited the furnace after testing the atmosphere in the furnace. Even though the fuel oil

supply was isolated, an explosion occurred. When the burner went out, the solenoid valve

took a few seconds to close, and during this time some oil entered the furnace. The flash

point of the fuel oil was 650 C, too high for the oil to be detected by the gas detector

(Kletz, 1994). An automatic protective system that forces a mandatory purging step for a

certain period of time before relighting a hot furnace could have prevented the incident.

The second example is a reactor rupture due to uncontrolled reaction. A reactor

was initially charged with a batch of glycerol. The glycerol inside the reactor was circulated

through a heat exchanger that acts as a heater. When the temperature reached 115 0 C,

ethylene oxide is added, and the reaction mixture is cooled by the heat exchanger because

the reaction is exothermic. An automatic protective system prevents the running of the

ethylene oxide pump unless the heat exchanger circulation pump was running, the

reaction mixture temperature is above 115 0C (otherwise, the ethylene oxide would not

react), and the reaction mixture temperature is below 1250 C (otherwise, the reaction is too

fast). Despite the protective system, an explosion occurred. When ethylene oxide addition

was started, the pressure in the reactor rose, which indicates that the ethylene oxide was

not reacting. The operator decided that more heat was required to start the reaction, so he

adjusted the trip setting and allowed the indicated temperature to rise to 2000 C. However,

the pressure did not fall. Later, he found out that he had forgotten to open the valve at the

base of the reactor, and so he opened it. A violent uncontrolled reaction occurred (Kletz,

1994). A high-pressure trip or valve interlock could have prevented the incident.

1.2.3 Incidents Caused by Process Modification without

Rigorous Verification

This section discusses two accidents that occurred in batch reactors because operating

procedures were modified without rigorous verification. In one incident, the

recommended operating procedure was to add a reactant at 450 C over a period of 11/2

hours. However, the operators decided to add it at a lower temperature and then heat the



material in the reactor because the feed heater was not powerful enough to feed the

reactant at this temperature.

In the second incident, a nitration reaction was carried out at low temperature. The

approved operating procedure was to heat the reactor to 900 C, to keep it at this

temperature for 30 minutes, and then to cool it down. After a year of successful operation,

an operator decided to let the batch cool by heat loss to the surroundings as soon as the

temperature reached 90 0C.

In both cases, explosions occurred due to runaway reactions (Kletz, 1994). The

moral of these stories is that any change to a process including operating procedures

should be verified rigorously in order to prevent such accidents.

1.3 Design of Logic-based Control Systems

The previous section clearly illustrates that a rigorous design and verification technology

for automatic protective systems is essential to prevent or reduce accidents. This section

presents the prototypical design procedure for logic-based control systems in detail.

Two types of LCS failure have been identified: random hardware failures and systematic

failures (HSE, 1987). Any implementation of a LCS consists of a large number of linked

electronic and mechanical components. Each component will break down or wear out

after a different length of time randomly. Because of this, it is not possible to predict

exactly when a system will break down due to the failure of any one of its components.

These random hardware failures can be effectively prevented by employing redundancy.

Since failures occur randomly, it is extremely unlikely that redundant systems break down

at the same time. On the other hand, systematic failures always occur under the same set

of conditions. The associated faults will remain hidden until a particular set of conditions

arises and the system breaks down. Unlike random hardware failures, a redundancy is not

effective against systematic failures. The ultimate objective in the design of a LCS is to

eliminate or minimize both these categories of failures. The two key attributes, safety

integrity and functionality, are identified in the design of the LCS to deal with random

hardware failures and systematic failures respectively (AIChE/CCPS, 1993). Figure 1.10

shows a prototypical design procedure for the LCS with respect to these attributes.



Figure 1.10: Prototypical design procedure for logic-based control systems

Table 1.1: Safety integrity level and availability

Safety integrity level Hazardous event sevenrity Target availability
1 minor 0.99
2 serious 0.999
3 extensive 0.999 to 0.9999

Table 1.2: Safety integrity level and LCS configurations

Safety integrity level Recommended LCS configuration
1 Non-redundant: best single path design.
2 Partially redundant: redundant independent paths

for elements with lower availability
3 Totally redundant: redundant, independent paths for total LCS.



A basic set of information is necessary before the design of a LCS, which is

provided by the Process Hazard Analysis (PHA). PHA identifies process risks, estimates

potential consequences, and determines the need for LCSs. If a process to be controlled is

similar to an existing system, experience with currently operating systems can be used for

hazard analysis. Standards and codes of practice may also be used. In addition, a hazard

and operability (HAZOP) study is frequently used to identify hazards (AIChE/CCPS,

1992). In a HAZOP study, an established procedure is followed in which the P&IDs are

systematically analyzed component by component. For each component, a set of

guidewords is used to help identify any process deviations that could lead to a hazard.

Alternatively, failure mode and effect analysis (FMEA) can be used to analyze all the

failure modes of a given item for their effects on other components and the final effect on

process safety (AIChE/CCPS, 1992). Fault trees are logic diagrams that display sequences

of failures of the process leading to top events. Fault tree analysis is useful in identifying

causes of top events and evaluating the frequency of top events as a function of the

magnitude of causes (AIChE/CCPS, 1989). Event trees start with a single event and then

branch into all possible sequences of subsequent failures that might lead to a hazard.

Event tree analysis provides systematic coverage of the time sequence of event

propagation (AIChE/CCPS, 1989).

The outcomes of the PHA provide safety integrity specfications and functional

specdfications. Safety integrity specifications assign an integrity level classification to each

LCS, and provide target reliabiliy and availability for each LCS for the quantitative

verification of the integrity level at a later step. Reliability is the probability that a system

will function correctly under stated conditions for a stated period of time. Reliability is

important to minimize hazards associated with spurious upsets. Availability is the

probability that a system will be able to perform its designated function when required for

use. Availability is important for LCSs that must function on demand to perform a

protective function. Three distinct levels of safety integrity are used in chemical plant

applications. Safety integrity levels are assigned to each potential hazardous event

according to its severity. Table 1.1 shows each safety integrity level, the severity of its

associated hazard, and target availability (AIChE/CCPS, 1993). The integrity level 1 is

assigned to prevent minor equipment damage and insignificant production losses. The

integrity level 2 is assigned to protect against damage to major equipment or substantial



production costs. The integrity level 3 is assigned to the risk involving personnel injury

and a significant environmental release of hazardous materials.

In the next step, the LCS technology and configuration (the way in which all

components including input and output devices of the LCS are arranged and

interconnected) are designed to achieve the specified safety integrity level. A number of

technologies can be selected for implementation of the LCS, including electromechanical

relays, modular solid state logic, programmable electronic system (PES), and hybrid

systems (Rosenof and Ghosh, 1987). The technology selected should be capable of

attaining the required reliability and availability criteria. Then, an acceptable configuration

of the LCS is selected to achieve the target availability and reliability. Typical LCS

configurations include a dual redundant system and a triple-modular redundant system

(Frederickson and Beckman, 1991). Table 1.2 lists recommended system configurations

for each safety integrity level (AIChE/CCPS, 1993).

The next step is safety integrity verification. Verification is the process of

determining whether or not the product of the design process fulfills all the requirements

specified in the previous step. Availability and reliability are evaluated using well

established techniques (AIChE/CCPS, 1989). Reliability block diagrams, diagrammatic

representations of the reliability characteristics of a system, are simple techniques to

approximate the reliability of a system. Markov models are also widely used in analyzing

the reliability of complex systems (AIChE/CCPS, 1989). A model is constructed as a

discrete-state, continuous-time process, and numerical techniques are used to analyze the

model. Availability analysis techniques are similar to those used in reliability analysis,

except that the component/system is allowed to be repaired from a detected failed state

when estimating the availability. The calculated availability and reliability are compared

with target values to verify whether the configuration selected satisfies the specified

integrity level. If not, another configuration should be considered.

Functional specifications define each LCS required for risk reduction and control,

and define its inputs and functional actions to be taken when activated. The next step is

the design of the LCS logic module. The design of the LCS logic is to transform

functional specifications into its equivalent configurable and/or procedural description

depending on the particular implementation technology chosen for the LCS. This

transformation is generally known as logic synthesis in digital circuit design (Devadas et al.,



1994). A digital circuit design starts from a behavioral model of the circuit that describes the

behavioral functionality of the circuit without regard to exact bit-level behavior. The

behavioral models are commonly written in programming languages. As a next step, the

behavioral model is transformed into a RTL (register-transfer level) model that describes the

operation of the circuit as synchronous transfers between functional units such as adders.

Currently, RTL models are written using hardware design languages such as VERILOG

(Thomas and Moorby, 1991) and VHDL (IEEE, 1987). The transformation of a

behavioral model into an RTL model is very difficult in general, and almost all RTL

models are presently generated manually. Finally, the RTL model is automatically

translated into a configurable logic-gate level model, which is then optimized to minimize

the circuit area while satisfying the speed constraints. The LCS logic design step is related

to the mapping of a behavioral model into an RTL model in digital circuit design, which is

performed manually.

Since the mapping of a behavioral description of a LCS into logic design is

extremely difficult in general (Kern, 1990), at present designs tend to be based on informal

information collected from several sources, such as national standards, more detailed

company interpretations of these standards, and process specific documentation. Once the

logic has been designed, formal verification against functional specifications is essential

because the previous design step (transformation of specifications into designs) is not

automatic. For the purposes of unambiguous information flow and communication

throughout the design cycle, the functionality of the LCS logic must be represented and

documented adequately and formally. The role of a formal implementation-independent

representation is pivotal to the rigor of these design steps, particularily because it allows

automation of many tasks, eliminating the possibility of human error when transcribing

information.

Even if the functionality of the LCS is formally verified with respect to its

complete set of specifications, the LCS may fail to provide an appropriate action when

necessary. This can happen because the functionality of the LCS has not been verified

considering its dynamic interaction with the underlying chemical process. In other words,

formal verification of the LCS in isolation is necessary but not sufficient for safe operation

of the overall system. Therefore, as a further step, it is desirable to verify formally the

functionality of the LCS considering its dynamic coupling with the underlying chemical



process. The notion of hybrid discrete/continuous dynamic systems (Barton and Park, 1997) can

be used to formulate this problem. However, only a very limited class of hybrid systems

with respect to model complexity can be verified in a formal manner (Alur et al., 1993;

Kestne et al., 1993). A typical sub-problem in the verification problem is reachability

analysis determining whether or not the system has a sequence of transitions from a given

initial state to a final state. This reachability problem is undeciadable for very restricted

classes of hybrid systems, e.g., constant slope hybrid systems, in which the right hand side

of all differential equations is an integer constant. Note that dynamic models of typical

chemical processes require (at least) the general nonlinear form of differential-algebraic

equations. Therefore, the hybrid system of the LCS and the underlying nonlinear process

cannot be verified formally. However, the performance of the LCS with its underlying

process can be validated. Hybrid discrete/continuous dynamic simulation technologies

can be used to study the overall system response in a set of key upset scenarios identified

by the PHA. The results of such a validation step may identify problems with the original

functional specifications, and thus require revision and redesign of the logic.

After successful verification, the system can then be implemented using particular

hardware or software (in principle automatically, if a formal representation is used). This

final step includes a field test and evaluation of the integrated system to ensure

compliance with the safety, functional, performance, and interface requirements. Testing

of the complete LCS is critical prior to the start-up of the plant and after any

modifications have been made.

1.4 Motivations and Objectives

Much progress on reliable procedures for achieving the desired safety integrity level or

minimizing random hardware failures has been made in recent years, and these are now

well documented in several standards and guidelines (AIChE/CCPS, 1993; HSE, 1987;

IEC, 1995; IEE, 1996). On the other hand, much less attention has been paid to the

design of LCSs with respect to functionality. Most standards and guidelines have neglected

the development of a rigorous design procedure to reduce systematic failures. In addition,

note that most incidents listed in section 1.2 were caused by the lack of rigorous design



with respect to functionality. We believe that the occurrence of such incidents could be

greatly reduced if the original design or design modification could be verified formally

according to the prototypical design procedure in Figure 1.10. In particular, the formal

verification and dynamic validation steps will be able to reduce the occurrence of

systematic failures significantly. Even though the use of formal methods is recommended

for high safety integrity level LCSs (IEE, 1996) and the use of dynamic simulation

technology is recommended to test thoroughly the performance of a LCS including its

interaction with the underlying process prior to its actual use (AIChE/CCPS, 1993), no

techniques are currently available that can verify and validate the functionality of the LCS

correctly and efficiently. The current industrial practice is to rely on qualitative testing

such as checklists and/or walkthroughs (HSE, 1987; IEE, 1996) and/or to use extensive

simulations of the LCS to check the functionality of the LCS against its specifications.

However, qualitative testing cannot replace formal verification step, and verification via

extensive simulations of the LCS becomes an intractable combinatorial task for complex

LCSs. Furthermore, the dynamic validation step is frequently neglected due to the lack of

appropriate tools. Our studies and discussions with industry leaders indicate that there is

currently an urgent demand for the development of such techniques.

The objective of this thesis is to develop a unified framework for the formal

verification of LCSs. In order to accomplish this objective, two main tasks are identified,

which are two major sub-problems in the functional design procedure for the LCS in

Figure 1.10. The first task is to develop a formal methodology that can verify the

functionality of the LCS in isolation against its formal specifications. Due to the coupled

embedding of multiple functionalities in the LCS, the complexity and size of LCS

applications is ever increasing. Therefore, it is important to develop a methodology that

can deal with large-scale, complex, and coupled systems. A formal verification technique

can eliminate any inconsistency between the design and the specification systematically,

and consequently reduce the occurrence of the LCS failures. The second task is to develop

a hybrid discrete/continuous simulation methodology that can validate the performance

of the LCS considering its dynamic interaction with its underlying process. With such a

methodology, the hybrid modeling of the LCS and its underlying process will be facilitated

and the hybrid simulation will be performed correctly and efficiently. Even if the LCS is

completely consistent with its specifications, as proven by formal verification, such



dynamic validation technology is still valuable because it can identify problems in the

original specifications. Furthermore, the development of such a technique will promote

the use of dynamic validation in the overall design procedure.

1.5 Thesis Outline

The thesis is divided into two parts. Each part develops a methodology for the

formulation and solution of one of the two sub-problems involved in the unified

verification framework. The first part addresses the formal verification of the LCS with

respect to its formal specifications. The second part addresses dynamic validation of the

LCS with its underlying process.

In the first part, chapter 2 describes modeling and implementation-independent

representation of the functionality of a LCS, which is the first step to achieve the

objectives of the thesis. Chapter 3 develops a formal verification technology that can

check the LCS against its formal specifications. The methodology developed, known as

implidt model checking, can solve large-scale problems due to a novel model formulation and

solution algorithm. Chapter 4 illustrates the capability of implicit model checking by

solving industrial-scale problems.

In the second part, chapter 5 formulates the dynamic validation problem as a

hybrid discrete/continuous simulation problem and develops solution algorithms. Chapter

6 develops an efficient algorithm for state event location, which is a sub-problem required

to solve the dynamic validation problem.

Finally, chapter 7 presents preliminary studies on combinational logic verification

using implicit model checking, and chapter 8 summarizes the main conclusions derived

from this thesis and identifies directions for future research.



Chapter 2

Modeling of Logic-based Control
Systems as Binary Logic Diagrams

In this chapter, a model is developed to represent the functionality of a LCS. First, the

qualifications for LCS models are discussed considering their area of applications. The

binary logic diagram is adopted as a LCS model. The ambiguity inherent in the

functionality of a LCS represented by a binary logic diagram is identified by drawing

analogies between binary logic diagrams and sequential logic systems. Finally, the problem

of ambiguity in binary logic diagrams is resolved.

2.1 Desirable Properties of Models for Logic-based

Control Systems

This section discusses the desirable properties for a formal representation of the

functionality of a LCS, and compares several models with respect to these properties.

Note that the LCS is a class of discrete event dynamic systems (DEDSs). A DEDS is a

system whose state space is discrete, and whose state evolution is determined by discrete

events or transitions between states. The trajectory of a DEDS is characterized as piecewise

constant states linked by events or state transitions occurring at deterministic or random

instants of time. Systems encountered in the chemical process industries are conveniently

modeled as DEDSs. Examples include discrete manufacturing systems, batch control



systems, and start-up and shutdown systems (Alsop et al., 1996; Felder, 1983; Felder et al.,

1985; Yamalidou et al., 1990). Finite state machines (FSMs), which describe discrete

transitions between a finite set of states explicitly, can be used to model the behavior of a

DEDS. In the case of a LCS, a FSM describes transitions between states encoded by a set

of Boolean variables.
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Figure 2.1: Pump interlock system
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Figure 2.3: Sample trajectory of pump interlock system



As an example, consider the pump interlock system represented by a binary logic

diagram in Figure 2.1. Depending upon the values of input signals Stop and Start, the

pump is running or stopped, and/or the status of the pump is retained. Figure 2.2 is a

finite state machine represented as a state transition graph, which describes transitions

between the two states explicitly. Figure 2.3 is a trajectory of the system for a particular

scenario. The pump is first turned on by pressing the Start button, and keeps running

until the Stop button is pressed. Note that this trajectory can be constructed easily from

the finite state machine in Figure 2.2.

2.1.1 Determinism

A crucial property of any formal representation of LCS functionality is that it be

unambiguous. In particular, an implementation with unpredictable functionality as a

consequence of the use of an ambiguous representation in the design is highly undesirable.

Determinism is the most important property for the LCS considering its safety-critical

applications. A system is said to be deterministic if a given sequence of inputs always

produce the same sequence of outputs. Any sensible functional description of real-time

systems should be obviously deterministic in this sense. There is no reason the designer

should want its system to behave in some unpredictable manner. An example will be

discussed in detail in section 2.4.3.

2.1.2 Implicitness

Any LCS model basically describes a set of states and transitions between them either

explicitly or implicitly. Explicit models enumerate the states and transitions between them

explicitly, e.g., state transition graphs, while implicit models will describe the relationship

between states and transitions without referring to them explicitly, e.g., a system of

Boolean equations (see chapter 3). As an example, for the pump interlock system above,

the state transition graph of Figure 2.2 is an explicit model while the binary logic diagram

of Figure 2.1 is an implicit model. Alternatively, an implicit model in terms of Boolean

equations can be derived from the binary logic diagram as in Eqn (2.1):



Run_ Pump(tk ) <* -Stop(tk ) A (Start(tk )v Run_ Pump(tk-1)) (2.1)

where the signal Run_Pump is regarded as a state variable, and tk_1 and tk represent

previous and current time respectively. Note that the implicit model for the pump

interlock system, the Boolean equation and the binary logic diagram, do not refer to any

particular state or transition explicitly. Instead, they state the strongest invariant property

of each state variable in a closed form. In order to retrieve a particular state and transition,

an additional algorithmic procedure (e.g., logic simulation) should be applied to the

implicit models.

Note again that the LCS is a class of discrete event dynamic systems. Figure 2.4

depicts state spaces for discrete event and continuous dynamic systems. Compared to the

infinite state space of continuous dynamic systems, the state space of discrete event

dynamic systems is finite but combinatorial, i.e., the maximum number of discrete states is

exponential in the number of state variables, although all may not be reachable in a

particular system. This exponential growth of the state space is commonly known as the

state explosion problem. Because of this state explosion problem, it is impossible to include all

states of a LCS of reasonable size in any explicit model. For example, Figure 2.5 shows a

state transition graph of a discrete event dynamic system containing 4 state variables. Note

that there are 16 reachable states. It can be seen that the number of states will increase

exponentially with the problem size or the number of state variables. Consequently, any

explicit model can represent only a subset of all possible states. On the other hand,

implicit models can represent the set of all reachable states and possible transitions in a

compact form regardless of the problem size. For example, the size of the implicit model

in terms of Boolean equations (or the number of logical propositions) increases linearly in

the number of state variables, as will be proved in chapter 3.

The inclusion of all reachable states and possible transitions in the model is

particularly important for the purposes of analysis including simulation and formal

verification because the functionality (or the subset of states) relevant to a particular

situation is never known in advance. In particular, formal verification requires all possible

states and transitions to be checked. In this respect, the implicit formalism is preferred

over the explicit formalism.
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Figure 2.4: State spaces of discrete and continuous dynamic systems

Figure 2.5: State transition graph of a discrete event dynamic system with 4 state variables



2.1.3 Declarativity

The size and complexity of LCS applications is increasing due to the coupled embedding

of multiple functionalities in the LCS. Therefore, it is important to develop a LCS model

suitable for modeling of complex and large-scale application. There are at least two types

of modeling framework: imperative and declarative. Imperative or procedural models

include the notion of control, and thus types of variables, evaluation orders, etc. are

already determined. However, there is neither the notion of control nor that of

sequentiality in declarative models.

Declarative models have several advantages over imperative models for large-scale

modeling. First, the declarative modeling framework allows easy, incremental, and

modular descriptions of systems, while within the imperative modeling framework the

slightest modification to the system specifications may involve a complete modification

and rewriting of the entire model. Second, the reuse of the same model for other

applications is straightforward in the declarative modeling framework. Third, modular and

hierarchical notions are directly supported within the declarative modeling framework.

Fourth, an additional specification in the form of assertions (e.g., for formal verification

purpose) is easy to incorporate within the model. Finally, the only constraints on the

evaluation order arise from the dependencies between variables. As a consequence, any

implementation (hardware independent), be it sequential or highly parallel, can be easily

derived.

As an example, consider the pump interlock system. The binary logic diagram of

Figure 2.1 and the Boolean equation of Eqn (2.1) both correspond to a declarative model.

There is no notion of procedure in these models. These declarative models naturally

support modular and hierarchical modeling as will be demonstrated in section 2.3. For the

pump interlock system, it is reasonable to impose an additional constraint in order to

prevent the input signals Stop and Start from being TRUE simultaneously. Eqn (2.2) is

a modified model of Boolean equations after adding this additional constraint:

Run Pump(t, ) <-+ -Stop(tk )A (Start(tk )v Run Pump(tk,_1)) (2

-(Stop(tk ) A Start(tk))



Program Pump_lnterlock_l
BEGIN

LOAD Stop
Z1 := NOT Stop
LOAD Start
LOAD Run_Pump
Z2:= Start OR Run_Pump
Run_Pump := Z1 AND Z2
STORE Run_Pump

END
(a) procedural model of pump interlock of Eqn (2.1)

Program Pump_Interlock_2
BEGIN

LOAD Stop
Z1 := NOT Stop
LOAD Start
LOAD Run_Pump
IF NOT (Stop AND Start) THEN

Z2 := Start OR Run_Pump
Run_Pump := Z1 AND Z2
STORE Run_Pump

ELSE
Error_Message

END
END
(b) procedural model of pump interlock of Eqn (2.2)

Figure 2.6: Imperative model for pump interlock system

On the other hand, Figure 2.6 (a) and (b) show procedural models for the pump interlock

system before and after adding the additional constraint respectively. Note that the

introduction of the additional constraint requires rewriting of the model even for this

simple example.

2.1.4 Concurrency

The LCS is a reactive system that continuously reacts to the process it is controlling at a

speed determined by the process. This reactive nature of the LCS operation requires

parallel interaction between the LCS and the process so that events can be processed

simultaneously. The nature of this interaction demands concurrency (or parallelism) to be



supported within the LCS model. A purely sequential model will be limited in its

application because of parallel interaction between the LCS and its environment. Note

that the concurrent or sequential property is with respect to expressiveness or

representation of the model and is independent of any execution scheme. The concurrent

model can be efficiently executed in a sequential manner.

For example, concurrency is supported in the binary logic diagram for the pump

interlock in Figure 2.1. Note that there is no restriction on the processing of transitions of

the input signals Stop and Start. On the other hand, the procedural models in Figure

2.6 do not support concurrency, and are represented as a sequence of statements, which

will be executed sequentially.

Table 2.1: Comparison of models for logic-based control systems

Models Determinism Implicitness Declarativity Concurrency
Programming Language Supported Supported Not supported Not supported
Deterministic FSMs Supported Not supported Not supported Not supported
Petri Nets or GRAFCET Not supported Not supported Not supported Supported
Binary Logic Diagrams Not supported Supported Supported Supported
Ladder Logic Diagrams Not supported Supported Supported Suported

2.2 Comparison of Models for Logic-based Control

Systems

Table 2.1 compares various models for LCSs with respect to the properties discussed in

the previous section. Programming languages can be considered as the most flexible

model for LCSs. However, they do not support declarativity and concurrency.

Furthermore, they are not suitable for large-scale programs since they make understanding

of behavior and analysis almost impracticable.

Deterministic finite state machines are efficient in terms of execution, and are well-

known mathematical objects for which analysis techniques are available. However, they do

not support concurrency; they are purely sequential. Furthermore, they are explicit and

imperative. Furthermore, they areflat objects without any hierarchical or parallel structure.



Consequently, they are not suitable to model complex large-scale systems. Writing a finite

state machine with even a small number of states is a difficult and error-prone task.

Petri Nets or GRAFCET naturally support concurrency, but they lack modular

structure. Because of this lack of hierarchy, it is difficult to apply them to large-scale

systems. Even though two extensions of GRAFCET, macrostep and forcing order, offer

interesting possibilities for the structuring and the hierarchicalization of the models

(Lesage and Roussel, 1993), the semantics of these extensions is not well-established yet

(Andre and Peraldi, 1993). They are also imperative and explicit. These formalisms are

commonly used for comparatively small applications, and do not scale up well to large-

scale applications (David, 1993). They often lack determinism. For example, the evolution

rules of GRAFCET are not sufficient to guarantee the unicity of interpretation of a

GRAFCET (Andre and Peraldi, 1993).

Binary logic diagrams (BLDs) (ANSI/ISA, 1981) are currently used to represent the

functionality of the LCS by many companies throughout the chemical industries. A major

advantage of BLDs is that they are not tied to a particular brand of hardware or software,

and their transformation into a particular implementation is straightforward

(AIChE/CCPS, 1993; Fisher, 1989). Furthermore, BLDs support implicitness,

declarativity, and concurrency. However, BLDs may be non-deterministic in some cases.

Note that ladder logic diagrams (Otter, 1988) are equivalent to binary logic

diagrams with respect to the criteria used in Table 2.1. However, the ladder logic diagrams

are tied to the peculiarities of electromechanical relay circuits. For the purposes of this

thesis, binary logic diagrams will be used instead of ladder logic diagrams.

The ambiguous behavior of the BLD is briefly described in the next section and is

corrected by identifying the causes of non-deterministic behavior in subsequent sections.

The notion of revised BLDs will be adopted to represent the functionality of the LCS.

2.3 Binary Logic Diagrams

LCS logic represented as BLDs are interconnections between logic building blocks, which

operate on and produce logic signals. Figure 1.5 shows an example of LCS logic

represented using a BLD. The flow of logic is represented by lines that interconnect logic



blocks. Topologically, the binary logic diagram is a directed graph in which the logic

building blocks and signals are mapped, respectively, into nodes and edges of the graph.

Figure 2.7 shows some basic building blocks of BLDs. These can be classified into three

categories:

* Combinational Logic Element - AND, OR, NOT.

* Memory Element - SRFF (Set-Reset Flip-Flop), T (Toggle Flip-Flop), etc.

* Timing Element - DI (Delay Initiation), DT (Delay Termination), etc.

Combinational logic elements establish the logical relationship between input and output

signals, memory elements retain information concerning the previous state of the system,

and timing elements establish temporal relationships between logic signals.

Logical AND

Logical OR

Logical NOT

Set-Reset Flip-Flop

Delay Termination
of Output

Delay Initiation
of Output

A

OR

S

R

DT
t

D
t

Figure 2.7: Basic building blocks of binary logic diagrams



Figure 2.8 : Realization of 2-out-of-3 voting logic

For the purposes of modeling, the identification of a complete set of primitive

elements for each category is essential, so that more complex elements can be defined in

terms of these primitive elements through the introduction of the notion of hierarchical

sub-model decomposition (Elmquist, 1978). This is illustrated in Figure 2.8, which shows

the realization of 2-out-of-3 voting logic in terms of primitive elements. Given this

definition, the 2-out-of-3 voting block may now be considered as a component that may

be inserted in a larger structure. A complete set of primitive elements for combinational

logic is {AND,OR,NOT}. Memory elements are sequential logic systems that can be

implemented by combinational logic elements connected with feedback loops. For timing

elements, ANSI/ISA-S5.2 (1981) proposes various kinds of timing elements.

2.3.1 Non-determinism in Binary Logic Diagrams

Most binary logic diagrams for industrial applications contain feedback logic signals, and

certain binary logic diagrams containing feedback paths represent a class of several

different possible functionalities, rather than a unique predictable functionality, due to the

existence of hazards and races. A major consequence of this fact is that two separate

implementations based on the same binary logic diagram can exhibit different functional

behaviors, neither of which can be guaranteed to conform with the original functional



specifications. For example, the same binary logic diagram can be translated into two

different programmable logic controller (PLC) programs implementing functionalities that

depend on the order in which the logic blocks are solved in each controller (e.g., from left

to right and from top to bottom of the diagram, or vice versa). Current industrial practice

is to implement a convenient functionality (from the point of view of implementation)

selected from the multiple functionalities embedded in a binary logic diagram, and to test

validity against specifications through extensive simulations of the LCS in isolation

(known as factory testing), changing the logic design if necessary. For complex logic-based

control systems, validation via simulation quickly becomes an intractable combinatorial

task because the number of simulations required for complete validation is increasing

exponentially with the problem size or the number of state variables and inputs, and even

for smaller problems appears to be very crude and inefficient if extensive redesign of the

logic becomes necessary. It should further be noted that simulation can only be used for

validation purposes, and does not amount to formal verification. On the other hand, a

binary logic diagram that is guaranteed to be unambiguous obviates the unnecessary

factory testing step in the design cycle, since, potentially, the binary logic diagram can be

used for all modifications to the design, formal verification of the design after each

modification, and then automated implementation from the verified BLD.

In the subsequent sections, the ambiguous behavior of the BLD will be analyzed

by drawing analogies between BLDs and the well documented properties of sequential

logic systems.

U o Combinational 0 Y
. Logic

X X'

Delay

Feedback Paths

Figure 2.9: Huffman model of sequential logic systems



2.4 Sequential Logic Systems

Most BLDs contain feedback logic signals, either because memory blocks contain implicit

feedback signals internally, or because it is still common industrial practice to use explicit

feedback signals to represent memory. These properties make binary logic diagrams

equivalent to sequential logic systems.

Sequential logic systems (Abramovici et al., 1990) are defined as logic systems

whose outputs Y depend both on the present input signals U and the past history of

input signals condensed in state variables X. Sequential logic systems are widely used to

model digital circuits at the logic level. The total state of a sequential logic system is

completely specified by a set of values for inputs and state variables. The properties of

sequential logic systems can be conveniently studied through use of the Huffman model

(Miczo, 1986) depicted in Figure 2.9, which consists of a combinational part and feedback

paths, which pass through delay elements and then act as additional inputs to the

combinational part. The delay elements may be delay inherent in the implementation of

the logic blocks (stray delays) or may be inserted to ensure the proper operation of the

system (inserted delays). If the values of all feedback signals (state variables) are changed at

the same time, the system is called a synchronous sequential logic system. Otherwise, it is called

an asynchronous sequential logic system. A sequential logic system has reached a stable state if

none of the state variables are changing with the primary input held constant. The set of

stable states characterizes the static or long term behavior of the system, while the transient

behavior of the system includes both stable and unstable states of the system. An

asynchronous sequential logic system is said to be operating in a fundamental mode if and

only if the primary inputs are never changed unless the system is in a stable state

(Friedman, 1986). Fundamental mode operation is assumed throughout this thesis, and

this will be justified in chapter 3.

Binary logic diagrams are asynchronous sequential logic systems, i.e., there in

which feedback signal transitions are not synchronized. This property of asynchronicity

arises due to the fact that the binary logic diagram is an implementation-independent

representation, and hence does not contain any information concerning the processing of

transitions in feedback signals, even though a particular implementation may or may not

be synchronized. In order to describe an asynchronous sequential logic system with a



Huffman model, a set of state branches (or feedback paths), which define the secondary

outputs X+ and the state variables X, must be specified. It is necessary that a feasible set

of state branches should have at least one member in every closed path of the circuit

(Unger, 1959). In other words, the primary output Y and secondary output X' can be

expressed as a combinational function of the primary input U and state variable X by

selecting a feasible set of state branches. In general, there are multiple feasible sets of state

branches, with varying numbers of state branches (Unger, 1959). More than one state

branch can be located in the same feedback loop. One possible solution is to find a

minimal set of state branches (or a minimal feedback cut set). However, even the minimal

feedback cut set is not unique for a given circuit (Unger, 1959). In general, each model

derived from a different feasible set of state branches will show different static and

transient behavior due to the existence of hazards and races.

2.4.1 Hazard and Race

A logic system is said to contain a hazard if there exists some possible permutation of

values for stray delays that will produce a spurious pulse or cause the system to enter an

incorrect stable state for an input transition (Friedman, 1986). A hazard represents only a

possibility of malfunction in a worst case. A physical system may not malfunction even

though a hazard exists. Hazards are associated with the configuration or structure of a

system, not with physical systems. There are two types of hazard, transient baZards and

steady-state hazards (Friedman, 1986). A transient hazard is the possibility of the occurrence

of a momentary value on the output opposite to that expected for an input transition. A

logic system is said to contain a steady state hazard if there exists some distribution of

stray delays such that the system may reach an incorrect stable state for an input

transition. In other words, a steady state hazard is the possibility of more than one stable

state for a given input transition, so that the steady state actually reached will be a function

of the delays.

A race is a condition where two or more signals are changing simultaneously in a

circuit (Abramovici et al., 1990). The race may be caused by two or more simultaneous

input signal changes, or it may be the result of a single signal change that traverses two or

more signal paths upon arriving at a fanout point (a logic signal is said to have fanout if it



has more than one destination). Races may or may not affect the behavior of a system. A

critical race exists if the final stable state that the system reaches is a function of either the

order in which the state variables change, or delays in the circuit. A non-critical race does not

affect the behavior of the system. A critical race can be considered to be a steady state

hazard.

2.4.2 Hazard and Race Detection

For a given input transition, a systematic procedure has been proposed to detect a steady

state hazard including critical races (Eichelberger, 1965). This procedure can be applied to

any asynchronous sequential logic system. Only system configuration is necessary to apply

this procedure, and any feasible feedback cut set can be chosen for the purposes of

simulation because the results of the detection procedure do not depend upon the location

and number of the feedback paths. The system is analyzed for a steady state hazard

including a critical race for an input transition U(tk -> U(tk+1). In order to apply this

procedure, the total state of the system at tk, U(tk),X(tk )}, must be known.

Fundamental mode operation is assumed in this procedure. The procedure consists of two

parts. Procedure A determines all the feedback signals that may be changing as a result of

the input transition, and Procedure B determines whether or not these feedback signals

will eventually stabilize in some predetermined state.

Procedure A: Transition from tk to tk+1/2

1. For Vi,if U,(tk) tUi(tk+1),then i(tk1/2) = u else i(tk+/2) = Ui(tk).

2. Evaluate X (tk+1/2), X(tk+1/2) given U(tk+1/2) and X(tk) as the initial value of

X(tk+1/2) until X (tk+12) = X(tk+1/2 )



Procedure B: Transition from tk+1/2 to tk+1

1. Evaluate X+ (tk+12), X(t+,/2) given U(tk+1) and X(tk+1/2) as the initial value of

X(tk+1) until X+(tk+) =X(tk+1).

Theorem:

1. If Xi(tk+1 )=0 or 1 for Vi, then the transition from {U(tk),X(tk)} to U(tk+1)

determines X(tk+l ) uniquely regardless of the distribution of delays.

2. If 3i such that Xi (tk+1) = u, then the transition from {U(tk),X(tk)} to U(tk+l)

cannot determine X(tk+l) uniquely. The state of the system or X(tk+1) cannot be

predicted from the configuration alone due to the existence of steady state hazards or

critical races.

3. For a system with m state variables, at most only 2m simulation passes (m for each

step) are required.

Ternary logic simulation (Abramovici et al., 1990) is used to evaluate state variables during

each procedure. The unknown logic value u is processed together with the binary logic

values by the truth tables shown in Table 2.2. Note that this procedure is a worst-case

analysis. Even though the final value of X, (tk+1) computed is u, a critical race or an

oscillation may not occur for a physical circuit because it depends on the actual delay.

Even though the above procedure that detects a steady state hazard for a single

input transition terminates in polynomial time, a complete test of a sequential logic system

against hazards and races is a combinatorial task since a lower bound on the number of

possible input transitions for a sequential logic system is given by 2 NU ( 2 NU
- 1) where

N, is the number of inputs. This lower bound admits the possibility that an initial set of

inputs corresponds to a memory state, and hence the initial state variables may have

multiple sets of values depending on the past history of the system. The transition from

(U(tk), X(tk)) to (U(tk+l), X(tk+l)) can be excluded from consideration if X(tk+l) can be

uniquely determined by U(tk+1) alone. It is only necessary to apply the hazard and race



detection procedure to those transitions for which X(tk+1) cannot be determined uniquely

by U(tk+l), i.e., memory states of the system. Further, in order to apply the detection

procedure, the total state of the system at tk, (U(tk),X(tk)} must be known (i.e., the

initial state). However, if the input U(tk) cannot determine X(tk) uniquely, then the total

state at tk is unknown. The transitions starting from these memory states are therefore

excluded from consideration. The following complete test algorithm for a sequential logic

system against hazards and races is devised.

Hazard and race detection algorithm:

1. Select an input U(tk) as an initial state and evaluate X(tk) using ternary logic

simulation. If X(tk) is uniquely determined, i.e., Vi, X i(tk )=0 or 1, then go to step 2,

otherwise select another input as an initial state until X(tk) is uniquely determined.

2. Select an input U(tk+1) as a final state and evaluate X(tk+1) using ternary logic

simulation. If X(tk+1) is uniquely determined, then the transition from (U(tk), X(tk))

to (U(tk+l), X(tk+1)) does not cause hazards and races, otherwise apply the detection

procedure (Eichelberger, 1965) to this transition.

3. Repeat step 2 until all input transitions starting from (U(tk), X(tk)) are considered

(i.e., all permutations for U(tk+1 ) : U(tk)).

4. Repeat step 1 through step 3 until all input permutations are considered as an initial

state in step 1 (i.e., all permutations for U(t k )).

Since we exclude initial states that are memory states in step 1, it is important to note that

this procedure can only be used to confirm the existence of a steady-state hazard. It

cannot, for example, be used to prove that a hazard does not exist in a given

configuration.



Table 2.2: Truth tables for ternary logic simulation

AND 0 1 u OR 0 1 u
0 0 0 0 0 0 1 u NOT 0 1 u

1 0 1 u 1 1 1 11 0 u

u 0 u u u u 1 u

2.4.3 Hazard and Race Detection Examples

The previous section has discussed the hazards and races in sequential logic systems. More

specifically, the steady-state hazards are properties of the logic configuration alone, and

admit the possibility of several different responses to a given input transition. Given this

set of possible responses, the specific response exhibited by an implementation of a

configuration will depend on the magnitude and position of delays in the implementation.

In this section we present examples of two BLDs exhibiting steady-state hazards.

2.4.3.1 Set-Reset Flip-Flop

The purpose of this example is to illustrate that different Huffman models resulting from

the same binary logic diagrams (i.e., configuration) can exhibit different functional

behavior for the same input transition. Figure 2.10 shows a standard set-reset flip-flop

(SRFF) constructed by OR and NOT blocks with feedback. The two Huffman models

resulting from two minimal feedback cut sets are shown in Figure 2.11 (each model

amounts to assuming that the largest delay in the system is located in a different position

in the BLD). The two models predict different responses to the input transition

(S,R):(1,1) -- (0,0) as shown in Table 2.3. This is because the configuration for the SRFF

shown in Figure 2.10 contains a critical race condition. Given the configuration alone,

there is no way to determine which of these two responses was the one intended by the

functional specifications.



Figure 2.10: Set-Reset Flip-Flop

, "Q R

Figure 2.11: Two Huffman models of SRFF

Table 2.3: Critical race condition in SRFF

S R Q

Initial State 1 1 0 0
Final State (Figure 2.11a) 0 0 0 1

Final State (Figure 2.11b) 0 0 1 0
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Figure 2.12: Burner control interlock system

Table 2.4: Hazard and race statistics for burner control interlock system

number of input signals lower bound on percentage of input transitions
that change simultaneously that cause steady state hazard and/or critical races

1 0.00 %
2 0.13 %
5 1.60 %

10 13.20 %
15 61.01%



2.4.3.2 Burner Control Interlock System

The purpose of this example is to demonstrate that binary logic diagrams employed in

industry can contain hazard and race conditions. The algorithm presented in section 2.4.2

is applied exhaustively to the burner control interlock configuration shown in Figure 2.12

(Watkins, 1993). Table 2.4 summarizes the results, which show clearly that the binary logic

diagram for the burner interlock system embeds multiple responses for some input

transitions due to the existence of steady state hazards and critical races. It is interesting to

note that hazard and race conditions do not occur for input transitions that involve only

one signal change, which is probably a consequence of exhaustive factory testing and

refinement of this configuration.

2.5 Revised Binary Logic Diagrams

Above, the binary logic diagram is analyzed for the possibility of ambiguous statements of

functional behavior by drawing analogies between BLDs and asynchronous sequential

logic systems. Due to the existence of non-unique feedback cut sets or several possible

Huffmann models, binary logic diagrams exhibits ambiguous responses when the

transition corresponds to a steady-state hazard condition. The consequence of this

observation is that certain BLD configurations represent a class of possible functionalities,

rather than one specific functionality. When implementing a LCS from a BLD, a

somewhat arbitrary choice of one functionality from this class is implicitly made. For

example, given a configuration, the scanning sequence implemented by a specific brand of

PLC will correspond to the choice of one particular feedback cut set. In particular, there

are no guarantees that this arbitrarily selected functionality corresponds to the

functionality originally intended. Clearly, this ambiguity is highly undesirable, especially in

safety-related applications.

Even though the proposed hazard and race detection algorithm can indicate the

existence of ambiguity in BLDs, it cannot be used to prove that no ambiguity exists.

Therefore, additional specifications on BLDs are necessary in order to guarantee that it is

unambiguous declaration of functionality.



Ambiguity in the BLD can be eliminated by forbidding the use of explicit logic

feedback to symbolize memory, and instead requiring the use of memory blocks.

However, the use of memory blocks only allows us to prevent hazard and race conditions

through an a prori analysis of the memory block. For example, the critical race condition

for the SRFF in Figure 2.10 can be excluded by adding the assertion -(S A R) to the

BLD. In other words, in order to avoid the possibility of the transition

(S, R): (1,1) - (0,0) ever occurring, the input signals are forbidden from both being in the

ON position simultaneously. If both input signals to a SRFF block are also inputs to the

overall BLD, this assertion is easily satisfied by the common practice of selector-type

switches that forbid the start and stop positions from being selected simultaneously.

However, if the input signals to a SRFF block are internal signals of the overall BLD, the

above assertion must instead be enforced by design of the logic upstream of the SRFF.

The use of explicit logic feedback is also deprecated in the appendix of the BLD

standard (ANSI/ISA, 1981), where the stated purpose of deprecation is to prevent

memory loss in the event of loss of power supply. The analysis of hazards and races in

BLDs provides strong new evidence to forbid the use of explicit logic feedback. In

addition, any standard should explicitly state the assertion that must be satisfied by the

input signals to each type of memory block.

Another option is to specify feedback paths as additional necessary information.

Then, the BLD will exhibit a unique functional behavior because it contains a unique

feedback cut set. In other words, no BLD is a complete representation of a logic-based

control system without a specification of a feasible set of state branches corresponding to

the intended functionality.

In this thesis, we will adopt the second option. The feedback cut set must be

added to any BLD that contains any explicit feedbacks and that have multiple feedback

cut sets. Then, the revised BLD will embed a unique representation of the functionality of

the LCS.

Note that specifying feedback paths in binary logic diagrams is equivalent to

specifying the evaluation order in ladder logic diagrams. Therefore, ladder logic diagrams

with a specific evaluation order will embed a unique representation of the functionality of

the LCS in a similar fashion.



Instruction List

LD IX123
OR Qx233
ANDN IX124
ANDN IX125
ST QX233

Structured Text

QX233:= (IX123 OR QX233) & NOT IX124 & NOT IX125

Ladder Diagram

DX123 IX124 IX125 QX233

QX233

Function Block

IX123 QX233

IX124
>=1 &

QX233 IX125

Figure 2.13: Examples of secondary languages in IEC Standard 1131

2.6 IEC Standard Programming Languages for

Programmable Controllers

IEC Standard 1151 (IEC, 1993) specifies the syntax and semantics of a unified suite of

programming languages for PLCs (Programmable Logic Controllers). The proposed

language is a hierarchy of languages with the primary language called SFC (Sequential

Function Chart) and four secondary languages. The secondary languages consist of two

textual languages, IL (Instruction List) and ST (Structured Text), and two graphical

languages, LD (Ladder Diagram) and FB (Function Block).



The SFC language provides a means of partitioning a program into a set of steps

and transitions interconnected by direct links. The concept of a step is introduced to

describe the various static behaviors of the system. With each step one or more actions

(outputs) are associated. The concept of a transition is introduced to describe a possible

evolution of the active state from one step to another routed by a directed link. With each

transition a transition condition (input) is associated. The SFC can be combined with any

of the four secondary languages. The secondary languages can be used to represent SFC

elements such as transition conditions and actions.

Figure 2.13 shows the same PLC function represented in each of the four

secondary languages. The instruction list is composed of a sequence of instructions, which

is similar to assembly language used in computers. The structured text is derived from

high-level programming languages. The ladder diagram is practically identical to that used

by most PLCs. The function block is similar to the binary logic diagram. Each of the four

secondary languages has its advantages and limitations.

The two graphical languages allow the use of feedback paths and associated

feedback variables to represent the retentive nature of the system. Therefore, there is a

possibility of non-unique interpretations without an additional specification even though

the standard does not explain this explicitly. The order of evaluation is forced in the

ladder diagram to prevent non-unique interpretations. However, in the function block, the

standard allows the use of feedback paths with or without an explicit specification of

feedback variables. The function block in Figure 2.13 corresponds to the function block

with an explicit specification of feedback variables. The function block without an explicit

specification of feedback variables can lead to the same non-unique interpretations as the

BLD.

2.7 Conclusions

The desirable properties for LCS models are identified. Due to its safety critical

application, the model for the LCS should be deterministic. Implicitness of the model is

essential to capture all the functional behavior of the LCS without suffering from the state

explosion problem. Declarativity is important to model a complex large-scale system in a



systematic and hierarchical manner. Finally, the parallel interaction between the LCS and

its underlying process requires concurrency in the model.

The BLD is selected to represent the model of the LCS, which has been widely

used to document the functionality of the LCS. The BLD supports implicitness,

declarativity, and concurrency. However, certain class of BLDs does not support

determinism. Analyzing the BLDs as sequential logic systems, it is identified that the cause

of the non-deterministic behavior is due to the existence of steady state hazards in the

BLDs. An algorithm is developed to confirm the existence of steady state hazards in the

BLDs. The use of additional specifications to eliminate the ambiguity in this class of BLDs

is advocated. In this thesis, the explicit location of feedback paths is added to the standard

notion of BLDs. The revised BLD is fully deterministic, and embeds a unique

functionality of the LCS.
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Chapter 3

Formal Verification of Logic-based
Control Systems by Implicit Model
Checking

3.1 Introduction

Formal verification is a process of determining rigorously whether the LCS design satisfies

all the functional specifications or not. As an example, consider the tank interlock system

(Victor, 1979) represented as a binary logic diagram shown in Figure 3.1. The filling

operation is aborted by closing on-off valve SV430 if there is a high pressure alarm

(PAH430) or the Stop button is pressed, and can be resumed by pressing the Reset

button. The signal SV430 is identified as a state variable due to the existence of the

feedback path, and the signals PAH43 0, Stop, and Reset are inputs. Figure 3.2 is a state

transition graph for this system. A node represents a particular valuation of state variables,

and the edge represents a transition from one state to another for a particular valuation of

the inputs. One of the requirements for this interlock system design is that the inlet valve

should be closed (SV430 is FALSE) whenever there is a shutdown signal (PAH430 or

Stop) even if the operator presses the Reset button by mistake. Formal verification

requires this specification to be checked for all possible states and transitions.
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Figure 3.1: Tank interlock system with its underlying chemical process
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Figure 3.2: State transition graph for tank interlock system

As a class of discrete event dynamic systems, LCSs exhibit transient behavior

between discrete states by processing a sequence of logic input signals to produce a series

of logical outputs interfaced to control elements in the process. Thus, LCSs can be

described as sequential logic systems, logic systems whose outputs depend upon both current

inputs and the past history of inputs encapsulated in state variables. As discussed in

section 2.1, the state space of sequential logic systems is finite but combinatorial, i.e., the

maximum number of states is exponential in the number of state variables, which causes

the state explosion problem. Formal verification of LCSs requires all reachable states to be

PAH430

Sop

A SV430

Reset M---



checked (either explicitly or implicitly) against the specifications. Hence, state explosion

creates severe problems for formal verification of large-scale systems.

Extensive simulation is the most widely used validation technique in industry. It

simply simulates a LCS for all possible states and input transitions and checks whether the

LCS is consistent with the specifications. As an example, consider the tank interlock

system in Figure 3.1. There are 16 possible state transitions to consider because it has one

state variable and three inputs. Therefore, it is necessary to simulate the binary logic

diagram in Figure 3.1 for all these 16 transitions and to check whether the specification is

satisfied or not. Even though simulation-based methods are relatively straightforward to

implement, they are very costly and limited in the extent to which the complete state space

can be explored. In particular, formal verification requires that a combinatorial number of

states and transitions must be tested by simulation. For example, exhaustive simulation of

a sequential logic system that contains 100 inputs and state variables together will take

about 4 x 1012 years even if we assume that each simulation takes 10-10 seconds. Due to

the combinatorial number of possible states and transitions, simulation cannot be

considered as a viable formal verification technology for the large-scale systems currently

being implemented in industry.

Until now, the most successful verification methods for sequential logic systems

have been based on model checking (Clarke et al., 1986). Model checking is the problem of

determining whether a model of a design satisfies a given abstract specification or not. It

should be noted that it is the model, not the physical implementation of the design, that is

verified; it is always critical to confirm the validity of the assumption upon which the

model is based before applying any model checking technology. Within this framework,

models are described as state transition systems (e.g., state transition graphs) and

specifications are expressed in a propositional temporal logic. Most model checking

algorithms are also based on enumeration of the complete state space for the system.

Enumeration-based model checking is highly automatic because it can find the set of

states where a given specification is true without any user intervention, and the complexity

of the algorithm is linear in the size of the state transition graph and in the length of the

specification formula. However, model checking suffers from an explosion in the size of

the state transition graph for large-scale problems, since the number of nodes in this graph

(states) is exponential in the number of state variables, and the number of edges



(transitions) is exponential in the number of inputs and state variables. A more recent

development that attempts to mitigate this problem is symbolic model checking (Bose and

Fisher, 1989; Burch et al., 1990; Coudert et al., 1990). The basic idea is to manipulate sets

of states and sets of transitions instead of individual states and individual transitions. The

Boolean formulas that symbolize sets of states and sets of transitions are represented by

ordered binary decision diagrams (OBDDs) (Bryant, 1986), which are often much more

compact than explicit representations because they capture some of the regularity in the

state space. While the idea of symbolic model checking and various refinements of the

OBDD-based techniques have greatly increased the size of the problems that can be

verified to over 400 state variables and 10120 states (Burch et al., 1991; Burch et al., 1994),

many practical problems are still too large to be verified, and many much smaller

problems lack this inherent regularity in the state space. It is therefore important to find

techniques to extend the size of the problems that can be verified (Clarke et al., 1993).

Both model checking and symbolic model checking have been applied with success to

several small- to medium-scale verification problems in the chemical industries Jeong et

al., 1995; Moon, 1994; Moon et al., 1992; Probst and Powers, 1994; Probst et al., 1995;

Probst et al., 1997), although these problems probably represent the size limit of current

verification technology.

In this thesis, we present a novel model checking technique we have called implicit

model checking. In particular, implicit model checking can be applied to systems of realistic

sizes encountered in the chemical processing industries. Figure 3.3 shows an overview of

the implicit model checking algorithm. Any formal verification technique raises the

problems of model representation, specification language, and verification method. In our

approach, the model for sequential logic systems is represented implicitly in terms of a

system of Boolean equations, and specifications are expressed in a subset of propositional

branching time temporal logic. Due to the implicit nature of the model representation,

model formulation is not combinatorial, which increases the problem size that can be

formulated dramatically. The formal verification problem is formulated as a Boolean

satisfiability problem by combining the implicit Boolean state space model with

specifications. The Boolean satisfiability problem is then transformed into its equivalent

integer programming feasibility problem. An efficient verification method based on the

implicit enumeration implemented in standard integer programming techniques is



employed to determine automatically if the specifications are satisfied by the model. As a

result, our method does not involve explicit enumeration of the full state space.

Figure 3.3: Overview of implicit model checking algorithm



Table 3.1: Conceptual difference in model checking methods

Category Symbolic Model Checking Implicit Model Checking
Model formulation combinatorial with respect to the polynomial with respect to the

number of state variables number of state variables
Verification algorithm polynomial with respect to the size combinatorial with respect to the size

of the model of the model
Worst case run out of memory and time run out of time

The fact is that formal verification of sequential logic systems is combinatorial, and

any formal verification algorithm will eventually suffer from the state explosion problem.

However, there are major differences between the implicit model checking and the current

approach as shown in Table 3.1. The current approach will run out of memory and time in

worst cases because it suffer from combinatorics in both model formulation and solution

algorithm. However, we confine the combinatorial nature of the problem to the solution

step. Therefore, the implicit model checking will run out of time only in worst cases.

3.2 Mathematical Formulation of Logical

Propositions

3.2.1 Propositional Logic

Propositional logic is two-valued, TRUE or FALSE. A proposition is any propositional logic

expression which contains a set of atomic propositions and a set of connectives. An atomic

proposition or a literal, which corresponds to a statement and/or a variable that can

assume either of two values, is the primitive operand of a propositional logic expression.

The complete set of primitive Boolean operators or connectives is -, A, V} meaning {NOT,

AND, OR} respectively. Other connectives such as -- (IMPLICATION), +-

(EQUIVALENCE), and ® (EXCLUSIVE OR) can be expressed as a combination of



primitive connectives. A proposition describes the relationship between a set of atomic

propositions connected by Boolean operators.

3.2.2 Conjunctive Normal Form

There are many ways of writing down the same logical proposition. For example, it is not

difficult to see that two logical propositions in Eqns (3.1a) and (3.1b) have the same

valuation for all possible combinations.

(-'p Aq) v (pA -q) (3.1a)

(p v q)A (-p v -q) (3.1b)

It is desirable to have a canonical representation for logical propositions. Such a

representation must have the property that two logical propositions are equivalent if and

only if they have isomorphic representations. This property simplifies tasks like checking

equivalence of two proposition and deciding if a given proposition is satisfiable or not.

Conjunctive normalform can represent any logical proposition in a canonical form. A logical

proposition in conjunctive normal form is a conjunction of clauses where each clause is a

disjunction of atomic propositions. A conjunction is a set of logical propositions connected

by the AND operator while a disjunction is a set of logical propositions connected by the OR

operator. An atomic proposition is a logical proposition that does not contain any Boolean

connectives. For example, Eqn (3.1b) is already in its conjunctive normal form. Once Eqn

(3.1a) is converted into its conjunctive normal form, it is straightforward to check the

logical equivalence of Eqn (3.1a) and Eqn (3.1b).

An efficient algorithm exists that can convert any logical propositions into their

conjunctive normal forms (Cavalier et al., 1990). The algorithm used in this thesis is listed

as a PROLOG program in Appendix A.

The computational complexity of a naive algorithm that converts logical

propositions into their conjunctive normal forms can be exponential in the worst case. In

other words, the number of clauses in the conjunctive normal form can be exponential in

the worst case. However, the number of clauses in the conjunctive normal form can be

made linear in the number of atomic propositions or Boolean variables in the original



proposition by introducing a polynomial number of intermediate variables, using an

algorithm such as structure-preserving clause form translation (Boy de la Tour, 1990;

Haihnle, 1993; Plaisted and Greenbaum, 1986). For example, consider the following logical

proposition in Eqn (3.2):

v(Y,ja 0 ) (3.2)
i=1

which can be rewritten as V Y,i-> Yi)), meaning that Yr,i and i do not have the

same valuations for all i. The number of clauses in the conjunctive normal form of the

logical proposition in Eqn (3.2) is 21, i.e., increases exponentially in the number of terms

1 (Boy de la Tour, 1990). Table 3.2 illustrates this exponential growth for up to 1 =3. By

introducing additional intermediate variables Pi, i = 1.. I and rewriting the proposition as

in Eqn (3.3):

P (Yi 0 i), i 1.. 1 (3.3)

the number of clauses in the conjunctive normal form increases linearly in the number of

terms 1. In particular, the conjunctive normal form of the proposition Pi < (Y,,, i)

contains 4 clauses. Therefore, the total number of clauses in the conjunctive normal form

is 41.

Table 3.2: Conjunctive normal form of Eqn (3.2)

1 Conjunctive normal form

1 (Y,, v Y) AY,, v Y,)

2 (Y,,, v Y v Y,2 V Y,) A (Yr, V V _r,l V -1) A

(-Y,,, v -Y V Yr, 2 V Y2)A( IYr , V-YV --Yr, V -tY)

3 (Yr, VY VY,2 VY2 V YYr, 3 VY 3 )(Yr,I V YI V Yr,I V -Y V Yr,3 V Y3) A

(-Y, v Y, .Y v Y,2 v Y2 V Y,3 v Y3)A (-1r,I V -IY1 V -YrI V I v Y3) A

(Y, v Y v Y r,2 2 v -lYr,3 V 3 )V(Y, V r, Y -Y, l1 V -, V -Yr, 3 V 'Y33)A

('Y,,l v -Y v Y, 2 V Y2 Vi'Yr,3 V -iY3) A(-Yr,. V V -i, V Y1 V -'Yr, 3 V -i' 3 )



3.2.3 Transformation of Logical Propositions into

Inequalities

It is well known that any set of logical propositions can be transformed automatically to

an equivalent set of linear inequalities in terms of binary variables (Cavalier et al., 1990). A

set of logical propositions is first converted into their equivalent conjunctive normal

forms. Having converted each logical proposition into its conjunctive normal form, it can

be easily expressed as a set of linear inequalities. To each proposition Pi, a binary variable

p, is assigned, so that the negation of P is given by 1- pi. The logical value of TRUE

corresponds to the binary value of 1 and FALSE corresponds to the binary value of 0. For

the conjunctive normal form to be true, each clause must be true independent of the

others and a clause (P, v -,P2 v...vPN) can be converted automatically into its equivalent

inequalities (PI +1- p2 +..*PN 2 1). Any set of any logical propositions will give rise to

the following set of inequalities by employing this procedure:

Ap 2 a (3.4)

where p e {0,1} N is a set of binary variables corresponding to the propositions, and the

data A, a are respectively an integer matrix and an integer column vector of coefficients,

which correspond to the conjunctive normal form of the set of propositions.

X
TRUE

FALSE

tk-1 k tk+1 time

Figure 3.4: Mapping between discrete and continuous time domains



3.3 Model

3.3.1 Modeling Time

With reference to Figure 1.6, LCSs are passive in the sense that they do not manipulate

control elements in the process unless an external event occurs, which can be a transition in

explicit control signals (e.g., Start_Filling_TankA is pressed) or a predefined

threshold crossing by the continuous state of the process (e.g., Tank A LevelHigh

becomes TRUE). The system will then activate, calculate a transition in the output signals

to the control elements (e.g., Operate_Pump becomes FALSE), and then become

passive until activated again in a similar manner. Subject to this observation, in our model

of the LCS the notion of physical time is replaced by the simpler notion of order among

external events.

Furthermore, comparing the relative input frequencies and the input-output

response times of LCSs to those of chemical processes, it is valid to assume that any LCS

will finish its dynamic response to any external event before any further external event

occurs. More formally, we assume that the LCS operates in a fundamental mode, which

means that input signals are never changed unless the system is in a stable state. The

system has reached a stable (or steady) state if none of the signals are changing given a

fixed set of values for the input signals. Based on this assumption, we only consider stable

states.

Based on these observations, the physical continuous time domain is discretized at

the points of external events or, equivalently, transitions in the input signals. Therefore,

time intervals between events will not necessarily be uniform. Note that this timing

convention will result in the minimum number of discretization points while capturing all

the relevant details, and timing is determined by the operation being performed by the

overall system rather than an irrelevant uniform clock signal. Finally, the timing diagram

of Figure 3.4 represents the convention for mapping between discrete and continuous

time domains. For example, if the variable X experiences a transition from FALSE to

TRUE at time tk, the value of X at tk is taken to be TRUE rather than FALSE.



3.3.2 Implicit Boolean State Space Model

In chapter 2, revised binary logic diagrams that exhibit fully deterministic behavior are

adopted to represent the functionality of the LCS. The mathematical model to be used in

formal verification will be derived from the revised BLD. Note that the mathematical

model can be also derived from any standard representation for the LCS (IEC, 1993) as

long as it conveys the unique functionality of the LCS. It is therefore necessary to

guarantee that any logic design has had any potential ambiguities resolved before applying

implicit model checking.

The key property that distinguishes our modeling framework from previous efforts

in formal verification is the novel notion of implicitness, in the sense that the model

encapsulates only the relevant set of time invariant relationships between state variables,

rather than a partial or full enumeration of the state space. Hence, our model is analogous

to the state space model of a continuous dynamic system. This implicitness leads to a

compact representation of the system dynamics and avoids the problem of state explosion

during model formulation.

As mentioned in chapter 2, LCSs can be described as sequential logic systems

whose current states depend upon both current inputs and the previous state. The

sequential logic system to be verified is modeled mathematically as a deterministic finite

state machine (FSM). The behavior of the FSM is described by a vector of n Boolean

state variables X e {F, T}", a vector of m Boolean inputs U E {F, T}m , and a vector of 1

Boolean outputs YE {F, T}'. Each discrete point in state space is encoded by an

assignment of Boolean values to the vector of state variables. The state transition equation

(Eqn (3.5a)) and output equation (Eqn (3.5b)) for the FSM are given as a system of Boolean

equations:

X k <-> f (Xk-1 Uk) (3.5a)

Yk +4 g(X k k ) (3.5b)

where Xk and Xk- 1 encode the current state and the previous state respectively, Uk and

Yk encode the current input and output respectively, and f: {FT}" X {F, T}'m ({F, T}"



and g: {F, T}" X {F, T}m {F, T} are vectors of logical propositions. The state transition

equation characterizes a transition from one state to another for a particular valuation of

the inputs, and the output equation calculates outputs for the transition. Note that the

FSM described by Eqn (3.5) is completely specified. In other words, the current state Xk

and output Yk are uniquely determined for any pair of (Xkl, u k ). The analogy between

Eqn (3.5) and the familiar differential or difference equation models is evident.

Definition 1: The transition from Xk- 1 to Xk is legalif the transition satisfies the

state transition equation of Eqn (3.5a).

Definition 2 :The state X is a valid state if it is reachable through legal transitions.

Definition 3 :The state X is an initial state if it is unreachable from any other

states but there exist legal transitions from this state.

The initial states represent states that the system enters at the beginning of operation such

as power-up states. Note that initial states must be specified explicitly in order to include

them in the verification because they cannot be reached via any transition.

By definition, any feasible solution that satisfies Eqn (3.5) represents a legal

transition between valid states or from an initial state. Therefore, the Boolean state space

model of Eqn (3.5) contains implicity all possible legal transitions between valid states or

from initial states. Note that the model is compact because it includes only the relevant set

of invariant relationships between variables. However, an additional algorithmic procedure

is necessary to draw out explicit information such as a particular sequence of transitions,

just as numerical solution of ODEs is required to extract a particular trajectory.

As an example, consider the tank interlock system in Figure 3.1. After identifying

the signal SV43 0 as a state variable due to the existence of the feedback path, the state

transition equation is obtained directly from the BLD as:



XIk ( k A U 2 k ) A (3k V Xl -1) (3.6)

where X=[SV430] and U =[PAH430,Stop,Reset]. Note that there is no output

equation in this example. A feasible solution of Eqn (3.6) corresponds to an edge in the

FFT
state transition graph in Figure 3.2. For example, the edge F ---- T represents the

feasible solution Xk-1_, = [F], Xk = [T], Uk = [F ,F, T] of Eqn (3.6). Substituting this

feasible solution into Eqn (3.6), it is not difficult to see that the current state is uniquely

determined by the current input alone. On the other hand, this is not the case for the

FFF FFF
transition T- > T or F FFF . In this case, the current input cannot determine the

current state uniquely. Substituting Uk =[F,F,F] into Eqn (3.6) yields X,k <- X,k-_, .

Therefore, the current state keeps the value of the previous state.

Subject to this observation, the transitions can be categorized into retentive and non-

retentive transitions:

Definition 4 : The transition X k-1  Uk Xk is non-retentive if Xk is uniquely

determined by Uk regardless of Xk- 1. Otherwise, it is retentive. If Uk represents a

retentive transition, at least one element of the state transition equation (Eqn

(3.5a)) becomes Xi, k 4 Xi,k-_ where iE {l,..,n}.

The term retentive is adopted because these transitions retain partial or complete memory

of the previous state of the system.

The objective of our modeling effort is to construct a model that contains

implicitly all possible legal transitions between valid states or from initial states. The

Boolean state space model of Eqn (3.5) satisfies this objective. However, as discussed in

section 3.3.1, we are further only interested in stable states. The original model of Eqn

(3.5) does not satisfy this requirement because it includes both stable and unstable states,

which are defined as follows:



Definition 5 : The state X is a stable state if it is a fixed point of Eqn (3.5a) for

given unchanging inputs U, i.e., X <-4 f(X,U). Otherwise, it is an unstable state.

The stable states correspond to the nodes with self-edges in the state transition

graphs.

As an example, consider an alarm acknowledge system (Moon et al., 1992) represented as

a ladder logic diagram (Otter, 1988) in Figure 3.5. The signals Ack and Horn are identified

as state variables because of the latching of the signals in rung 3 and 4 respectively, and

the signals HiL, HiT, Reset, and PB are inputs. The Boolean state space model can be

obtained directly from Figure 3.5 as:

Xl,k <- -- U3,k A (U4,k V Xlk- 1 )

(3.7)
X 2 ,k <4 1,k-1 A (Uk V U2, k V X2,k-1)

where X=[Ack,Horn] and U=[HiL,HiT,Reset,PB]. Figure 3.6 is a state

transition graph representing all the feasible solutions of Eqn (3.7). The state X = [T, T] is

unstable because there is no valuation of the inputs that makes this state a fixed point of

Eqn (3.7) (i.e., there is no self-edge in the STG). It is therefore necessary to revise the

original Boolean state space model to exclude any unstable states.

The revised implicit Boolean state space model is:

Xk k f(Xk'Uk) (3.8a)

Xik-1 <- f(xk-_LI1) (3.8b)

h(kUk)- ( k ":k-1) (3.8c)

Yk - g(X,, U) (3.8d)

where Eqns (3.8a)-(3.8c) are state transition equations, and the output equations, Eqn

(3.8d), are unchanged. Eqn (3.8a) (or Eqn (3.8b)) restrict the valuations of Xk (or Xk-1,_,)

to stable states by definition. Note that the value of Uk,_, is not limited to any particular

valuation since we want X,_, to represent all possible stable states. Note that non-



retentive transitions are uniquely defined by Eqns (3.8a) and (3.8b). If Uk corresponds to

a retentive transition, then at least one element of Eqn (3.8a) will be Xi,k < Xi,k where

i {l,..,n}, which can be satisfied by any valuation of Xi,k. Therefore, Xk is not

uniquely determined by Eqn (3.8a) and Eqn (3.8b) in this case. An additional constraint is

necessary to determine Xk uniquely for retentive transitions. Eqn (3.8c) determines all

retentive transitions uniquely. The Boolean function h: (F, T} X (F, T} m -> {F, T} is a

vector of logical propositions called retentive functions that define conditions for retentive

transitions. The retentive functions h can be derived from f automatically, and will be

discussed later.

As an example, consider again the alarm acknowledge system in Figure 3.5. The

revised implicit Boolean state space model can be derived from Eqn (3.7) as follows:

X1,k 4--U 3 ,k A (U4,k V ?lk) (3.9a)

X2,k <4 - X ,k VA (U V 2,k) (3.9b)

,k 1 < U 3 ,k- 1 A (U4,k-1 V ,k-1) (3.9c)

U3,k A -U4,k ,k <Xlk-1 (3.9e)

(-~ ,k A -(UI,k V U -'2k 2,k 2 ,,k-I) (3.9f)

Eqns (3.9a)-(3.9d) defines all non-retentive transitions, and Eqns (3.9e) and (3.9f) defines

all retentive transitions. Figure 3.7 is a state transition graph representing all feasible

solutions of Eqns (3.9a)-(3.9d). Note that the unstable state X = [T, T] is excluded.

However, retentive transitions are not uniquely determined. For example, the transition

from k,,1 = [T,F] forced by Uk = [F ,F, T, T] is not unique. Instead, the transition can

be TF Fw ) FF or TF F-4" FT. However, we know that the correct transition is

TF TT ) FF because X = [F,X2,k-1_] by substituting Uk = [F,F,T, T] into Eqn (3.7).

By adding Eqns (3.9e) and (3.9f), all retentive transitions are determined uniquely. Figure

3.8 shows a state transition graph defined by the complete state space model of Eqn (3.9).
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Figure 3.5: Alarm acknowledge system

Figure 3.6: State transition graph for alarm acknowledge system defined by Eqn (3.7)
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Figure 3.7: State transition graph for alarm acknowledge system defined by Eqns (3.9a)-(3.9d)
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Figure 3.8: State transition graph for alarm acknowledge system defined by Eqn (3.9)



Figure 3.9: Finite state machine containing unstable initial states

The Boolean state space model of Eqn (3.8) now embeds implicitly all possible

legal transitions between stable states. However, it does not embed transitions from initial

states if these initial states are not stable. Figure 3.9 illustrates this situation where the state

X = [F,F] corresponds to an unstable initial state. The model of Eqn (3.8) does not

include the transition FF T )TF because Xk-1 in Eqn (3.8) does not include this

unstable state. However, this is not a limitation because the initial states must be specified

explicitly as mentioned earlier.

Coupled with an explicit specification of the initial states, the Boolean state space

model of Eqn (3.8) or v(Uk-1 ,Uk Xk- ,k ,Yk) embeds implicitly all possible legal

transitions between stable states or from initial states. Hence, any feasible solution of the

model represents a particular legal transition between stable states or from initial states.

This model forms the basis for our large-scale verification technology. Note that the size

of the model in terms of the number of logical propositions is linear in the number of

state variables and the number of outputs.



3.3.3 Derivation of Memory-retaining Propositions

The retentive functions in Eqn (3.8c) can be derived by examining the conditions under

which the inputs do not determine the state vector uniquely. The transition equation for

i-th state variable X,k is:

(3.10)

First, the transition function fi can be transformed into the form:

Xi,k i' ficl XkUk S(fic2 ( ,U) V Xi,k)

where X is a vector of state variables excluding Xi,k, and the Boolean formulas fi,cl,

fi,c2 are in conjunctive normal form. An algorithm to convert Boolean formulas into

conjunctive normal forms can be used with a distributive law to derive Eqn (3.11)

automatically from Eqn (3.10). It is clear from Eqn (3.11) that Xi,k cannot be determined

uniquely if fi,cl(U k, ) and fi,c2 (Uk, ). Therefore, the memory-retaining constraint

for i-th state variable Xi,k is:

(fi,cl ( k , K ) A fi,c 2 (Uk k ik Xi,k-1 (3.12)

For example, consider the following transition equation for X,:

Xl,k (Ul,k A U2,k ) V ( U3,kA 1,k ) (3.13)

First, the transition function for X1 can be converted into a conjunctive normal form:

,k - (L1,k V U3 ,,) A(U2,k V -1U 3,k) A (Ulk V 1,k) A(U
2 ,k V 1,k ) (3.14)

Factoring the term X1,k on the right hand side of Eqn

corresponding to Eqn (3.11) is obtained as:

(3.11)

(3.14), the expression

Xi,k fi ( k ) k)



XIk + (Ul,k v -U 3,k) A(U2,k V U3,k )A((ulk AU2,k )V 1lk) (3.15)

Finally, the memory-retaining proposition is obtained as:

(UIv -U 3,k A (U2,k V -U 3,k A U,k U2,k) - ( k -> 1,k-1) (3.16)

Note that derivation of memory-retaining propositions has the same computational

complexity as converting Boolean formulas into conjunctive normal form. Even though

the number of clauses in the conjunctive normal form can be exponential in the worst

case, the number of clauses in the conjunctive normal form can be made linear in the

number of Boolean variables in the original proposition as discussed in section 3.2.2.

The complete Boolean state space model for the tank interlock system in Figure

3.1 is obtained from Eqn (3.6) by applying this procedure as:

,k <-> (1UI,k A -iU2,k ) A (u3,k V 1,k)

Xlk-1 < (-UI,k-I A U 2 ,k-1) A (3,k- V X,k-1) (3.17)

(-lUIk A -lU2,k) A -1U 3,k k> <-> 1,k-1)

3.3.4 Modeling Unit Delay Timers

All delay timers are abstracted and modeled as unit delay timers. Abstract logical

relationships between input and output signals are established by stating the minimum set

of relevant properties of delay timers. For example, Figure 3.10 represents the timing

diagram of unit delay-on timers. The abstract logical proposition that represents the

functionality of the unit delay-on timer is:

,k A-X 2,k) V (-lxk- A Xlk A 2,k V (Xl,- A Xk A X 2 ,k) (3.18)

Similarly, Figure 3.11 represents the timing diagram of unit delay-off timers, and the

abstract logical relationship is given by:



xI I  DI X2

I I IX2

time

Figure 3.10: Timing diagram of delay-on timers

X1

time

Figure 3.11: Timing diagram of delay-off timers



(Xl, A X2,k)v(X,,k-1 Ylk A X2,k V(- k-I -X A - 2,k)

From the simulation point of view, this abstraction is obviously a loss of information.

However, from the verification point of view, the modeling of delay timers as unit delay

timers will be adequate because the model checking algorithm explores the entire state

space including the variables representing the abstract behavior of delay timers. If the

specification is satisfied by the model, the model is correct with respect to the

specification regardless of the magnitude of delays in timers because we consider all

possible combinations of the inputs and outputs for the timers. Thus, the model is

verified. If the specification is violated, it is necessary to analyze the problem with more

rigorous delay timer models to reach a conclusion concerning correctness of the logic.

CH 4

Figure 3.12: Network of pipes and valves

3.4 Formal Specification

A typical LCS embeds multiple functionalities coupled with each other, and thus there are

large numbers of correctness properties that must be satisfied by the LCS model. These

properties can be categorized into three classes: shutdown logic, permissive logic, and sequences.

For example, consider the tank filling process of Figure 1.6. The LCS should always issue

an Stop signal to the pump if the level of either tank A or B is higher than its threshold

(3.19)



limit (shutdown logic). Similarly, the pump should not operate if an operator tries to fill

tank A and B simultaneously (permissive logic).

Figure 3.12 shows a network of pipes and valves, which provides a sequence of an

02 stream and then a CH4 stream to the downstream process. Mixing of 02 and CH4 is not

allowed to prevent an explosion. Therefore, the LCS for this process must ensure that the

02 valve and CH4 valve should not be open at the same time (permissive logic).

Furthermore, the LCS must ensure that the N2 valve should be open just after the 02 valve

or CH4 valve is closed (sequence).

Finally, consider the typical LCS implemented for a furnace. If unsafe conditions

occur or a stop signals exist, then the LCS should issue a shutdown signal immediately

regardless of the current state (shutdown logic). If the furnace is in a shutdown state, then

the furnace should stay in the shutdown state or the furnace can move only into the purge

state (sequence). The furnace cannot be ignited unless the furnace has been purged

(permissive logic).

In order to verify the LCS model, it is necessary to represent all of these diverse

properties in a formal manner, which is a formal specification. Note that every individual run

or computation of the LCS yields a sequence of states and associated transitions, and

specifications for the LCS are in general satisfied by some computations, and not satisfied

by some other computations. Temporal logic, a logic of propositions whose truth and falsity

may depend on time, is used to represent specifications because the language of temporal

logic provides operators for reasoning about computations.

3.4.1 Syntax and Semantics

Among different classes of temporal logic, the subset of Computation Tree Logic (CTL)

(Clarke and Emerson, 1981), which is a class of propositional branching-time temporal logic

(Emerson, 1990), will be modified and used for implicit model checking. The computation

tree is constructed by unwinding the state transition graph starting from the starting state,

and the semantics of the formulas in CTL are defined with respect to this computation

tree. Therefore, the valuation of a particular specification formula in CTL depends upon a

model as well as a starting state. For example, Figure 3.13 (a) shows the FSM, and Figure

3.13 (b) and (c) represent the computation trees starting from the state S3 and S4



respectively. The specification checking whether the state [T,F] exists or not is satisfied

in the computation tree in Figure 3.13 (b). However, it is not satisfied in the computation

tree in Figure 3.13 (c).

The dependency of valuation of a specification formula in CTL on a starting state

will be removed in the semantics of the specification formula used in implicit model

checking. Therefore, the semantics of the temporal formulas in the framework of implicit

model checking is defined with respect to the model, and the valuation of a particular

specification formula depends upon a model only, and the verification algorithm will

check the formula for all possible starting states.

S3

(a) FSM in state transition graph

S3

S1 S2 S4

S3 S4 S2

S1 S2 S4

(b) Computation tree starting
from the state S3

S4

S2

S4

(c) Computation tree starting
from the state S4

Figure 3.13: FSM and its computation trees



(a) (b)

(c) (d)

O states at which p does not hold

states at which p holds

current states

Figure 3.14: Semantics of temporal operators (a) VG(p), (b) 3F(p), (c) VN(p), (d) 3N(p)

The temporal formulas are built up from atomic propositions (encoded by inputs,

outputs, or state variables), Boolean connectives {--,A,,v}, and temporal operators

{G:always, F: sometimes, N: next} restricted by quantifiers {V,3} where V (for all) and 3

(there exists) are universal and existential quantifiers respectively. The syntax of the

temporal logic is formally defined as:

* Any atomic proposition is a formula.

* If p,q are formulas, then so are the formulas -p , p A q, and p v q.

* If p is a formula, then so are the formulas VG(p), 3F(p), VN(p), and 3N(p).



The semantics of the temporal formulas can be formally defined with respect to the model

v(Uk- ,Uk k'k-1, , Yk ). The notation X p means that the formula p is TRUE in the

model at state X.

* Xk VG(p) iff p is TRUE at every state including Xk.

* ik 3F(p) iff p is TRUE at some Xk *

* Xik- 1 I VN(p) iff p is TRUE at all Xk such that v(Uk-1,Uk k-1a,k,Yk).

* ki-1 ) 3N(p) iff p is TRUE at some Xk such that v(Uk-1,Uk, Xk-,Xk ,Yk).

Figure 3.14 illustrates the semantics of each temporal operators using an example. The

formula VG(p) (always p) means that the proposition p holds for all states and their

associated transitions in the computation. As an example, consider the tank interlock

system of Figure 3.1. One of the requirements for this interlock system is that the inlet

valve should be closed (SV430 is FALSE) whenever there is a shutdown signal (PAH43 0

or Stop) even if the operator presses the Reset button by mistake. Since this property

should be always satisfied regardless of the current state of the system, it can be specified

formally as VG(UI,k v U2,k - - ,k ). It is not difficult to see from Figure 3.2 that any

transition from any state satisfies the proposition UI,, v U2,k - k -X,,. Therefore, the

formula VG(UI,k v U2,k - -1 ,k ) is TRUE with respect to the model of Eqn (3.17).

The formula 3F(p) (sometimes p) means that there is some state and its

associated transition in the computation at which p holds. Consider the alarm

acknowledge system of Figure 3.5 as an example. If there is an alarm (Horn is TRUE),

then the operator can acknowledge the alarm (Ack is TRUE) and turn it off (Horn is

FALSE) by pressing the PB button. Therefore, we can expect that the signals Ack and

Horn cannot be TRUE at the same time, which can be formally specified as

-,3F(X ^ 2A ). It is easy to see from Figure 3.8 that the proposition ?, A X 2 is not



satisfied, therefore the formula 3F(* 1 A X2 ) (or -3F(_V 1 A X'2 )) is FALSE (or TRUE).

Note that checking the formula A3F(j A X 2) is equivalent to checking the formula

VG , A x2)). In general, the operators VG and 3F are dual: VG(p)= 3F( p).

The formula VN(p) (p at all next time) means that the proposition p holds in

every immediate successor of the current state while 3N(p) (p at some next time) means

that the proposition p holds in some immediate successor of the current state. For

example, consider again the alarm acknowledge system. Note that once there is an alarm

(Horn is TRUE), then either it should stay on or it is turned off (Horn is FALSE) only by

pressing the PB button. This requirement can be formally specified as

VG(2,k - VN(X 2,k v A U4,k))). It is not difficult to see from Figure 3.8 that this

formula is TRUE by checking the transitions from the state X = [F, T]. Note that the

operators VN and 3N are dual: VN(p) = -3N(-p).

Note that the range of properties that can be specified is quite broad and will be

sufficient to specify most intended properties of LCSs (Halbwachs et al., 1989; Jagadeesan

et al., 1995). As an extension, the properties of eventuality and sequences can be specified

in a direct manner.

3.4.2 Eventuality Properties

Eventuality (or liveness) properties state a temporal relationship for which the length of

computation required to resolve a particular specification is not known in advance. Our

implicit Boolean state space model is first-order, and the direct questions that can be

asked are limited to those involving only one time step. However, it is in fact

straightforward to specify eventuality properties because our model includes only stable

states and transitions between them.

For example, consider the FSM in Figure 3.15 (a), where the propositions q0(i)

and qf (X) are satisfied at states S, and S3 respectively. Note that the propositions

q0(R) (or qj (X)) can represent a set of states symbolically. We want to verify whether it



is possible for the system to reach the states qf(X) eventually in some computations from

the states q0(X) by applying the input p(U). In general, it is unknown a priori the length

of computations or the number of transitions to reach the state q (X) from the state

q0 (X). However, our model includes only stable states and transitions between them, and

the number of transitions to reach the state qf (X) is always one if the state qf (i) does

exist. Therefore, the specification can be formulated as 3F(qo(X) A p(U) - 3N(qf ())).

This specification is TRUE in the FSM of Figure 3.15 (a).

qf(X)

p(U)

p(U)

qf(X)

p(U)

p(U)

qf(X)

(b)

Figure 3.15: FSM showing eventuality properties



Similarly, we want to verify whether the system can reach the state qf (X) eventually

in all computations from the state q0(X) by applying the input p(U). The FSM in Figure

3.15b shows the case in which this specification is TRUE. The formal specification can be

formulated as VG(qo(X) A p(U) -+ VN(q, ())).

Note that the starting states are specified in the previous two specifications.

Therefore, the previous two specifications check the eventual reachability from one state

to another state forced by the particular input. More general formula will be one without

starting state specifications qo0(). For example, the formula 3F(p(U) qf,()) asks

whether it is possible for the system to reach the state qf () eventually in some

computations by applying the input p(U) starting from some states.

Similarly, the formula VG(p(U) -- qf (X)) means that the system can reach the

state q( ) eventually in all computations by applying the input p(U) starting from all

states. Note that these formulas should be checked for all possible starting states since no

starting state qo0 () is specified.

3.4.3 Sequences

Sequence controls are extensively used in chemical industries. Sequence controls are

necessary in continuous processes, especially during start-up, shutdown, and changeover

operations, and are mandatory in batch processes even for routine operations. Sequence

controls specify how and in what sequence plant operations are to be carried out, and thus

time-dependent progression of the process in the state space. In modern plants, sequence

control systems do not exist in isolation but instead are closely coupled to safety interlock

systems, and sequence control systems can be regarded as logic-based control systems

because it is common to implement them at the logic level.

State diagrams such as step diagrams, Petri-nets, and Grafcet are commonly used

to specify the functionality of sequence control systems. A process to be controlled is



divided into a number of well-defined successive steps separated by transitions, which are

activated by satisfaction of permissives or transition conditions. During each step,

sequence control turns on or off one or more outputs, waits for the response, then turns

on or off another set of outputs, and so on. State diagrams essentially specify a sequence

of steps and transitions. A sequence is formally defined as a series of state transitions forced

by a series of transition conditions. The general form of sequences of length N is:

0(() PU P ( U) .q N- ( U) ) q ) (3.20)

which means that the system will move to the states q,(X) by applying the inputs pi (U)

at the states qil () for i = 1.. N. Recall that the proposition qi(X) can represent a set of

states symbolically. The role of sequence control is to ensure that the system follow the

sequence specified by state diagrams. Therefore, the sequence of Eqn (3.20) should be

always satisfied. The sequence in Eqn (3.20) can be formally represented as:

VG(A (q- l(X) A p, (U) -> VN(q ())) (3.21)

which means the sequence in Eqn (3.21) is TRUE in all computations. Alternatively, it may

be necessary to find out whether a particular sequence is feasible or not. This requirement

can be formulated as:

3F A -( ) () 4SNbq,(1) (3.22)

which means that the sequence in Eqn (3.22) is TRUE in some computations.

As an example, consider the alarm acknowledge system in Figure 3.5. Consider the

following operating sequence. The system is initially in the state [F,F] where there is no

horn and thus no acknowledgment signal from the operator. Then, the high level and/or

temperature alarm is detected, and the horn is turned on. Once the horn sounds, the

operator presses the push button to turn off the horn and acknowledge the alarm. It is

assumed that the operator does not press the push button and reset button at the same

time. This sequence that should be always satisfied can be formally specified as:



(((-x, 1 A -- 2 1 ) A (u1 v u 2 1) - VN(-XI, 2 A X 2 2 )) A323

((X1,2 A X2,2 ) A u3,2 V U4,2) VN(X 1,3 A -X2, 3))

3.5 Verification Algorithm

The verification problem is formulated as a Boolean satisfiability problem by combining

the implicit Boolean state space model with the specification. Instead of solving the

Boolean satisfiability problem, it is transformed into its equivalent integer programming

feasibility problem. Depending upon the feasibility of the problem, the specification is

proved or disproved with respect to the model.

3.5.1 Boolean Satisfiability Problem

The verification algorithm takes as inputs the model and a specification formula to be

verified. The specification formula is transformed into a form that involves only existential

quantifiers by removing universal quantifiers using VG(p) = 3F(p) and

VN(p)= 3N(-p), and then coupled with the model v(Uk-l,Uk, k-1,k ,Yk) to yield

a Boolean satisfiabiliyproblem (Nemhauser and Wolsey, 1988):

i[Uk-l ,U k , 1k-l ,Xk , Yk

s.t.

v(UkUk ,, 1,' k , Yk) (3.24)

w(Ukk k-1 k k )

where w(Uk _k-1 ,Xk,Y,) are specification constraints that can be derived from the

specification formula by removing all universal quantifiers. Table 3.3 shows a list of

specification formulas and corresponding specification constraints. The Boolean

satisfiability problem will be feasible if there exists any solutions satisfying all the

constraints. Otherwise, it will be infeasible. The original specification formulas can be



formally proved or disproved by determining the satisfiability of the problem. The only

remaining problem is to find out whether the problem in Eqn (3.24) is satisfiable or not,

which will be discussed in section 3.5.5.

Table 3.3: List of specification formulas and constraints

Specification formula w(Uk Xk-1 k , ) Interpretation

VN(p), Xk-1 = X --P(X), k- = Xo The p holds at every next state of X0

3N(p), Xk- = X P(Xk), Xk-1 = X The p holds at some next state of Xo

VG(p) --p(Xk) The p holds always.

3F(p) P(Xk) It is possible that p holds at some states.

3.5.2 Counter-examples and Witnesses

The results of the satisfiability problem should be analyzed differently depending upon the

types of quantifiers by which the formula is preceded. For a formula with a universal

quantifier V, satisfiability means that the formula is FALSE and the valuations that make

the problem satisfiable represent counter-examples, whereas unsatisfiability means that the

formula is TRUE. For a formula with a existential quantifier 3, satisfiability means that the

formula is TRUE and the valuations that make the problem satisfiable represent witnesses,

whereas unsatisfiability means the formula is FALSE. Note that it is not necessary to have

an additional algorithm to construct counter-examples or witnesses since the feasible

solutions of the Boolean satisfiability problem are counter-examples or witnesses

depending upon the formula verified. Furthermore, the solution algorithm presented in

the next section can find all feasible solutions systematically.

For example, the formula VG(-,U 1,k A-,U2, k - l,k) checks whether the valve

will be open if there are no pressure alarm and no Stop signal for the tank interlock

system of Figure 3.1. It is not difficult to see from Figure 3.2 that the formula is FALSE

because the valve will remain closed if it was closed at the previous time step. Therefore,

the solution of Boolean satisfiability problem will be feasible, and the feasible solution



Xk-1 = [F], Xk =[F], U k = [F,F,F] or transition F F will serve as a counter-

example to disprove the original specification formula.

The formula 3F(cl,k A 2 ,k ) checks whether the horn can sound when the alarm

is acknowledged by an operator for the alarm acknowledge system of Figure 3.5. The

formula is FALSE because the state X = [T, T] does not exist in the state transition graph

of Figure 3.8. Therefore, the solution of Boolean satisfiability problem will be infeasible,

hence, there is no witness.

3.5.3 Algorithm for Eventuality Properties

No particular algorithms are required to resolve eventuality properties. The temporal

formulas representing eventuality properties can be added to the model, and the resulting

Boolean satisfiability problem can be solved to resolve the formulas. Table 3.4 shows a list

of specification formulas and corresponding specification constraints for eventuality

properties.

Table 3.4: List of specification formulas and constraints for eventuality properties

Specification formula w(Uk 'k-1 k 9Yk) Interpretation

3F(q0 (X) A p(U) -* 3N(qf ())) (q 0(k-,_,1) A p(U,)) A qf (k,) The state qf (1) can be reached

eventually in some computations
from the state q0(K) by applying

the input p(U).

VG(qo (X) A p(U) > VN(q (R))) (qo(k-1 _) A p(U)) A qf () The state q (X1) can be reached

eventually in all computations
from the state q0(iX) by applying

the input p(U).

F(p(U)- q(X)) p(Uk) A qf (j,) The state qf (X) can be reached

eventually in some computations
by applying the input p(U)
starting from some states

VG(p(U)-4 q( ) p(Uk) A -q (Rk) The state qf( ) can be reached

eventually in all computations by
applying the input p(U) starting
from all states



3.5.4 Algorithm for Sequences

A natural decomposition of the sequence formulas in Eqn (3.21) and Eqn (3.22) can be

exploited to verify the sequence formulas. First, the specification in Eqn (3.21) can be

rewritten as:

VGA (q ((t)) Ap ( ) - q ((t))) (3.25)

Using VG(p) = -3F(p), Eqn (3.25) can be transformed into:

(3.26)

which can be checked by the algorithm:

Verification Algorithm for Sequence in Eqn (3.25):

1. j:= 1.

2. Solve the satisfiability problem:

r (Xkk):= {Xk:V(Uk-1'U k 'Xk ,Xk-l, Yk (qj-l (Xk-l A Pj(Uk - qj (Xk))}

If r (Xk,) 0, then the original formula is not satisfied and the counter-examples will

be a sequence of states qo (X), q1 (X), ... , qj (X), r (X). Otherwise, go to step 3.

3. If j = N, then the original formula is satisfied. Otherwise, j:= j + 1 and go to step 2.

Similarly, the specification in Eqn (3.22) can be rewritten as:

F(A (q (X(tj)) A pi U(t,)) -* qj ((t)))

and can be checked by the algorithm:

(3.27)

---3F V- qi_I (Xti-1)) ̂  p, (U(t)--+ q (Xt;)))



Verification Algorithm for Sequence in Eqn (3.27):

1. j:= l.

2. Solve the satisfiability problem:

r (Xk):= Xk:V(Uk ,xk k-1* Yk j-1 (i-1) j P(Uk) -- qj (k)}

If r j (:ik) = 0, then the original formula is not satisfied. Otherwise, go to step 3.

3. If j = N, then the original formula is satisfied, and the witnesses will be a sequence of

states {qo0(),q 1 (), ... ,qNI qN(x)}. Otherwise, j:= j + 1 and go to step 2.

Note that the above two algorithms will terminate in N or less steps, and the number of

satisfiability problems to be solved is bounded by N.

3.5.5 Integer Programming Feasibility Problem

The final key step in our approach is that we exploit the equivalence between a Boolean

satisfiability problem and a linear 0-1 integer programming (IP) feasibility problem

(Cavalier et al., 1990) to perform the actual verification automatically and efficiently. Even

though the two problems are known to be NP-complete, the advantages of solving the

satisfiability problem as the quantitative IP feasibility problem have been demonstrated

(Hooker, 1988). Most importantly, the IP feasibility problem derived from a satisfiability

problem can be resolved by just solving the relaxed version of the problem in close to

90% of the cases (Hooker, 1988).

The Boolean satisfiability problem can be transformed automatically to an IP

feasibility problem by transforming the set of propositions in the satisfiability problem

into a set of linear inequalities in terms of binary variables using the procedure in

section 3.2. The satisfiability problem (Eqn (3.24)) can be transformed into:

3[Uk-1,Uk ,k-1 Xk , Yk ]

s. t. (3.28)

A.uk-1 ,uk, k-1 _ ,k,yk >k a



where A, a are respectively an integer matrix and an integer column vector of

coefficients, and uk-_l,,k (0,1} m , k ,Xk e (0,1}n , yk e {0,1} are vectors of binary

variables corresponding to Uk-1 _ Uk~ Xk-1 Xk , and Yk respectively. Standard

algorithms such as branch and bound can be used to solve the IP feasibility problem.

The IP feasibility problem in Eqn (3.28) is actually formulated and solved as an IP

optimization problem. By introducing artificial variables, the optimization problem can be

obtained as:

Nc

min Is,
j=1

s.t. (3.29)

A.[uk-_1,u I k- 1, X y k k +sa

where s e NNc is a vector of integer variables and N c is the number of inequalities in the

IP feasibility problem. The zero optimal objective function indicates that the IP feasibility

problem is feasible. If the optimal objective function is greater than zero, then the

problem is infeasible. This formulation is not practical for large problems because a large

number of artificial variables should be introduced. In order to eliminate this potential

problem, in this thesis, artificial variables are introduced only for the inequalities resulting

from the specification formula. Note that the number of inequalities derived from the

specification formula is very small. Therefore, the introduction of artificial variables will

not cause any numerical inefficiency.

If the IP feasibility problem is feasible, then all the feasible solutions can be found

automatically as follows:

1. Determine a feasible solution to the current IP feasibility problem.

2. If no feasible solution, terminate.

3. Add a cut set corresponding to the current feasible solution to the current IP

feasibility problem.

4. Return to step 1.



In order to exclude a feasible solution, z:= [uk-_,u ,k , k-1 k,Yk ], the integer cut set to be

added is:

(1- z)+ z 1 (3.30)
j=1 zj =0

Note that transformation of the Boolean satisfiability problem into its equivalent IP

feasibility problem has the same computational complexity as converting Boolean

formulas into conjunctive normal forms, and that any propositions in the Boolean

satisfiability problem can be converted efficiently into conjunctive normal forms

containing a number of clauses polynomial in the number of Boolean variables as

discussed in section 3.2.

3.5.6 Illustrative Example

Each step in the verification algorithm will be illustrated with the tank interlock system in

Figure 3.1. The specification to be verified is that the inlet valve should be closed (SV4 30

is FALSE) whenever there is a shutdown signal (PAH430 or Stop) even if the operator

presses the Reset button by mistake, which can be formally specified as:

VG(Ul,k V -1k1, k ) (3.31)

The Boolean satisfiability problem is formulated by combining the model (Eqn (3.17))

with the specification constraint from Table 3.3.

3[Ul,k-1' U2,k-i' U3,k-1' U1,k ' 2,k ' U3,k ' l,k-l 9 l,k

s. t.

1,k (-Ul,k A l2,k ) A (U3,k V l,k(332)

X1,k-1 -> (U,k-1 A 2,k-1 )A (u3,k-1 V l,k-) (3.32)

( Ul,k A -U 2,k) A -U3,k - 1 (l,k <- 91,k-1)

vU,k V )2,k 1,k



which, if infeasible, verifies the original proposition (i.e., no state violating the original

proposition exists), whereas if feasible, proves the violation of the original proposition and

yields a set of feasible solutions corresponding to states and transitions that act as counter-

examples.

Next, the Boolean satisfiability problem (Eqn (3.32)) needs to be transformed into

the IP feasibility problem. The conjunctive normal form of each proposition in Eqn (3.32)

is:

(-Ul,k V ,k) A (-'U2,k V Ik) AU,k V U2,k V U3,k V x,k)

( ,k-I, V -X 1 ) A (-1 U2,k- V ,k-1) A ,k- V U2,k- V -U3,k-1 V ,k-1 3

( 1,k V U 2 ,k ) 1k

which can be transformed into the IP feasibility problem:

3[Ul,k-1 U2,k-, U3,k-1 U1,k U2,k , U3,k 1, Ik-1 ,k

S. t.

1- ul,k + 1,k

1- u2,k + l1- xl k >1

u l,k + U2,k +1 - U3,k + 1,5A > 1

1 -u _1 + 1,k-1 1 (3.34)(3.34)
1 - u2,k-1 Xk- > 

1

U1,k- 1 + U2,k- 1 + 1 - u3,k- 1 + lk-1 
- 1

U1,k + U2,k + U3,k + 1 -,k + Xl,k- 1

ul,k + 2,k + 3, + ,k +1 X,k-1

Ul,k + U2, k  1

Xlk > 1

It took 0.02 seconds to solve this IP feasibility problem using GAMS/OSL on an

HP9 000 /735. The problem is infeasible, which means that the original specification

(Eqn (3.31)) is satisfied by the model (Eqn (3.17)), and the tank interlock has been verified

formally with respect to this constraint.
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Set
Alarm

Reset

Figure 3.16: Simple memory interlock system

Table 3.5: Specifications for simple memory interlock system

No. Formal specification Meaning

1 VG(Set -- Alarm) Set signal should override Reset signal.
2 VG(-Set A Reset -- -Alarm) Alarm signal is turned off by the Reset signal

if there is no Set signal.
3 VG(-,Set A -Reset A Alarm -- VN(Alarm)) Alarm signal is retained.

3.6 Examples

In this section, the capability of implicit model checking to identify an error in the LCS

design is demonstrated using a small example. Then, results of small examples including

literature problems are presented.

3.6.1 Design Modification Example

Figure 3.16 is a simple memory retaining interlock design represented as a binary logic

diagram. Whenever there is a set signal, the alarm should be on and be retained thereafter

until the reset signal turns off the alarm. From this informal specification, we can derive

three formal specifications in Table 3.5. The implicit Boolean state space model of Eqn

(3.34) is derived from the binary logic diagram in Figure 3.16.
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XA -4 -Ul,k V(-U2,k A 1,k)

l,k- 1 <- 1 V (-u2,k- A 1k-1) (3.35)

UIk A -1U 2 ,k ,k ,k-1

where U = [Set,Reset] and X = [Alarm]. The first specification is tested against the

model in Eqn (3.35) by implicit model checking. The IP feasibility problem is formulated

and then is solved by GAMS/OSL, which took 0.34 seconds on an HP9 00 0/73 5. The IP

feasibility problem is feasible, and the algorithm generates two counter-examples:

U = [T,F], X = [F] and U = [T, T], X = [F]. The counter-examples clearly show that the

specification is not satisfied because the value of Alarm is FALSE even though the value

of Set is TRUE. Substituting the values of variables from the counter-examples to the

model or the binary logic diagram in Figure 3.16, it is not difficult to find out that the NOT

element preceding the OR element should be removed. The model of Eqn (3.36) is derived

from the modified design.

X1,A <-> UI,k V (-u2,k A 91,k)

X1,k-1 U 1, v(-2k- X-1) (3.36)

U ,k 2,k ,k > 1,k-1)

All the three specifications in Table 3.5 are verified against the revised model, and all the

IP problems are infeasible, meaning that all specifications are satisfied by the model.

3.6.2 Small Example Problems

The results of applying implicit model checking to small examples including literature

problems are summarized in Tables 3.6-3.8. All the specifications are satisfied by the

model as in the literature.
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Table 3.6: Tank interlock system (Victor, 1979)

Formal Specification Informal Specification CPU time'

VG((U, v U 2 ) - ) Shutdown signals override reset signal. 0.020

VG((-U, A - - U 2  ) A U X,) Valve is open by pressing Reset button if there are no 0.010
shutdown signals.

1CPU time in seconds using GAMS / OSL on HP9 0 0 0 / 7 3 5

Table 3.7: Alarm acknowledge system (Moon et al., 1992)

Formal Specification Informal Specification CPU time'

VG((U 1 v U 2 )A -XI - X 2 ) The horn sounds whenever high level or high 0.010
temperature is detected and the system is not
acknowledged.

VG(X 2 --> VN(X 2 v (-X2 A U,4)) After the horn sounds, either it stays on or it is 0.010
turned off only if the push button is pressed.

VG(U,4 -> (X, A X2) )  
Once the operator presses the push button, the 0.020
system is acknowledged and the horn goes off.

1CPU time in seconds using GAMS/OSL on HP9 0 0 0 / 7 3 5

Table 3.8: Furnace system (Probst et al., 1995)

Formal Specification Informal Specification CPU time1

G( (-mgssov 1_ z A -mgssov2_ z All gas valves should be closed when 0.25
VGestop ->A -pgssov1_ zA -pgssov2_ z estop is pressed.

S -igmgssovl_ z A -mgssov2_ z All gas valves should be closed if there 0.22
VG-otr ->A pgssov1_ Z A pgssov2_ z) is an over-temperature condition.

VGwdr (-imgssov_ z A -mgssov2_ z All gas valves should be closed if there 0.17
G wdr -- > pgssov 1_ Z A -pgssov2_ Z)) is a PLC malfunction.

1CPU time in seconds using GAMS / OSL on HP9 0 0 0 / 7 3 5

3.7 Conclusions

A formal verification methodology termed as implicit model checking has been developed

that can be applied to large-scale sequential logic systems without encountering the state

explosion problem. The key new result that facilitates this is the development of a novel

implicit representation for sequential logic systems. In addition, significant computational
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benefits arise from solving the verification problem in the domain of binary variables

rather than in the domain of Boolean variables.

Sequential logic systems are represented implicitly by a Boolean state space model

that embeds all possible states and transitions in a compact closed form. Specifications are

represented in a subset of temporal logic, which can formulate properties of interest for

the LCS including shutdown logic, permissive logic, and sequences. Combining the model

with specifications, the verification problem is formulated as Boolean satisfiability

problem, which in turn is transformed into its equivalent integer programming (IP)

feasibility problem. The IP feasibility problem is solved using a standard branch and

bound algorithm, whose solution determines whether the specification is satisfied or not,

yielding counter-examples or witnesses as necessary.

In principle, the verification problem is combinatorial. The key feature of our

approach is to confine the combinatorial nature of the problem to the solution of the IP

feasibility problem, which implies that 1) model formulation is not combinatorial at all,

and 2) the whole verification problem can be solved efficiently if we can solve the

resulting IP feasibility problems efficiently because all the intermediate steps involved can

be automated and performed efficiently in polynomial time. Empirical studies presented in

the next chapter indicate that the IP feasibility problem can be solved very efficiently in

polynomial time using a standard branch and bound algorithm even though the IP

feasibility problem is combinatorial in the worst case. This high efficiency in terms of

computational cost is due to the fact that the implicit enumeration conducted by a branch

and bound algorithm based an information from partial relaxations of the IP feasibility

problem is dramatically more efficient and tractable than enumeration-based verification

techniques.
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Chapter 4

Burner Management System Case
Studies

The implicit model checking technology developed in chapter 3 is applied to two

industrial-scale burner management systems in order to verify their functionalities

formally. In order to test the performance of our algorithm, empirical studies are

conducted by applying the algorithm to a series of problems of increasing size.

4.1 Mod5 Burner Management System

Fired heating equipment (e.g., boilers, furnaces, superheaters, etc.) is strictly regulated by

governmental regulations because even minor incidents involving this type of equipment

can have significant consequences in terms of safety. In order to operate this type of

equipment while maintaining safety, very complex burner management systems are installed.

For example, North American Guidelines for Application of MOD5TM Burner Management (Dow

Chemical Company, 1994) provides a basic burner management system for single-burner

fuel-gas fired equipment as shown in Figure 4.1. The heater generates steam or heats fluids

by burning a mixture of combustion air and fuel gas. In general, burner management

systems include regulatory control systems (e.g., combustion control) in addition to logic-

based control systems. The combustion control part of the guidelines will be excluded in

the case study. The logic-based control systems in the guidelines are verified employing

the implicit model checking technology.
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Pilot Gas Fuel Gas

Figure 4.1: Single-burner fuel-gas fired equipment

4.1.1 Implicit Boolean State Space Model

The guidelines contain 9 shutdown interlocks, an operation sequence involving 10 steps,

and 7 related output and abort logics coupled together. Examples of each are shown in the

binary logic diagrams of Figure 4.2. Note that they are not independent since they are

coupled by sharing variables together. The original LCS logic in the guidelines is coded in

DOWTRANTM (a proprietary procedural control language). The set of Boolean equations are

extracted from this code. Table 4.1 shows the problem size. The implicit Boolean state

space model derived and variables used in the model are listed in Appendix B.

Table 4.1: Statistics on problem size for MOD5 T

Category Number
No. of Propositions 271
No. of Inputs 65
No. of State Variables 44
No. of Outputs 20
No. of Inequalities in IP feasibility problem 1100
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AIM(109) O
AI(109,50) LT AP(1909,3,50)

AI(119,50) LT AP(1909) Set(109A :
AIM(119) 109 )

Step(109)
Step(110) OR A

Step(108)

03) R A  Feedback : DC(2109), ALM(109)

DC(2109)

SHDN(109) : Low Low Fuel Gas Pressure Alarm

DT
Step(106) (1999,900,1)

DI(141)

DC(2999) D1(151) OR Return(105)

102)- AC(2) LE NSDN
103) AP(1998,-0.1,4)
111) AI(101) GE - Step(112) DT

112) AP(2000,75,100) NSDN A (19642,1)
113) A 0) 1(243),
101) 01(106)- DI(143)
102)-O- DI(162) 1(155) A
103) Step(105) OR DI(255)
111) Step(112). ] I

-
112)--O D1(141) - (1925,300,1)

DI(151) A Term (105)
DIM(106)
AIM(101) - STEP(105)-AIM(101)
DIM(162)
DIM(141) - NSDN-
DIM(151)

STEP(105) : Purge Step

Step(108) 01(161
DI(153) A
DI(154)

Step(109) OR DC(102)
Step(b10) DC(101)

ALM(109)
ALM(110)- DO(102)
ALM(111)
ALM(112)
ALM(113) OR DC(2997)
ALM(117) -OR
ALM(118) DA(184)

ALM(119)- Step(103)

ALM(120) - Step(104) -
Step(105) - r

Feedback : DC(102) Step(106) -
Step(107)
Step(112)

DO(102): F1 Main Upstream EBV

Figure 4.2: Sample logic of MOD5 TM burner management system
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4.1.2 Specifications

The requirements or specifications for the MOD5 M burner management system are listed

informally as comments in the DOWTRAN code. The following representative

specifications are extracted from the comments and are represented formally in terms of

temporal logic.

Specification No. 1

* Formal specification: VG(SET(i) A u47 -- ALM(i)) for Vi

* Description : Shutdown signals should override set signals.

Specification No. 2

* Formal specification: VG(-1 u47 A -SET(i) A ALM(i) - VN(ALM(i))) for Vi

* Description : Once set signals become ON, shutdown alarm signals should remain ON

even though set signals become OFF afterward until the alarm is acknowledged by the

operator.

Specification No. 3

* Formal specification: VG(-,(xsl v xs2) A u53 A u55 -- x3)

* Description : The process is not in step 103 or 104. If air flow measurement is below

AP(1911) and blower motor amps are below AP(1910), then the shutdown ALM(111)

should sound.

Specification No. 4

* Formal specification: VG(((-ul9 A -u28) v (-u24 A -u29)) A (xs5v...vxslO) -- x5)

* Description : The process is in step 107, 108, 109, 110, 111, or 112. If either MOD5 TM

emergency stop switches or field emergency stop switches are activated, then

shutdown ALM(113) should sound.
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Process Wait
STEP(1 04)

DM(11)=TRUE, DK(11)=TRUE
Failsafe conditions exist

DM(11)=TRUE
DK(11)=FALSE

Any
shutdown

alarm

Shutdown
flag cleared
for two seconds

Figure 4.3: Step diagram of operating sequences in MOD5T burner management system
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Figure 4.3 shows the step diagram for the operating sequences in MOD5 T burner

management system. The step diagram embeds three categories of operating sequences:

normal operating sequences, shutdown operating sequences, and secondary operating

sequences. These sequences in this diagram can be formally specified in temporal logic as

follows.

Normal operating sequences

((xsi AP p- VN(xs2)) A (xs2 A p 2 - VN(xs3)) A (xs3 A p 3 - VN(xs4))

VG[A (xs4 A P4  N(xs5))A (xs5 A p , - VN(xs6)) A (xs6 A p6 VN(xs7))

A (xs7 A P 7 -+ VN(xs8)) A (xs8 A p, - VN(xs9)) A (xs9 A p, - VN(xslO)))

where p, <-> u45 A u46

p2 <- z22 A- ul7 A -u20 A u45 A u46 A u47 A z20

p3 <- to01 u47 A z20

p4 <- to6 A u45 A u46 A u47 A z20

p5 <-+ to8 A u22 A u23 A u45 A u46

P6 <- to8

P7, <- to7

p8 
, -> -,u45 A u46

p, +- u48 A -,u45 A u46

Shutdown operating sequences

VG((xs5 v xs6v xs7 v xs8 v xs9) A z21 -- VN(xsl0))

Secondary operating sequences

VG(xs2 A -nu45 A u46 -- VN(xsl))

VG(xs4 A to4 A -u45 A u46 - VN(xs2))

VG(xs4 A (u17 v u20 v --z22 v -u47) -- VN(xs3))

VG(xslO A to5 -- VN(xs3))

VG(xs9 A u45 A u46 - VN(xs7))
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Table 4.2: Verification results and computational statistics for MOD5TM

Specification Feasibility No. of nodes explored CPU time (s)
No. 1 infeasible 50 3.741
No. 2 infeasible 35 2.551
No. 3 infeasible 66 4.161
No. 4 infeasible 0 0.921
Normal sequences infeasible 82 3.262
Shutdown sequences infeasible 34 0.662
Secondary sequences infeasible 38 1.762

1CPU time using GAMS
2CPU time using GAMS

/OSL on HP9000 /735
/CPLEX on HP9000/J200

Table 4.3: Statistics on problem size for Throx sequence

Category Number

No. of Propositions 775
No. of Inputs 392
No. of State Variables 97
No. of Outputs 85
No. of Inequalities in the IP feasibility problem 4459

4.1.3 Results

The verification problem is formulated as a Boolean satisfiability problem by combining

the implicit Boolean state space model with each specification. All the logical propositions

in the Boolean satisfiability problem are automatically transformed to their equivalent

inequality constraints by the algorithm in Appendix A. The resulting integer programming

feasibility problem is solved by standard branch and bound codes in GAMS (Brooke et al.,

1992). The linear programming sub-problems during branch and bound search are solved

by the primal simplex method. Table 4.2 shows verification results with computational

statistics. Note that the IP feasibility problems were resolved without much computational

effort, especially, the number of nodes visited during branch and bound search is

extremely small. All IP feasibility problems are infeasible, which means that all the

specifications are satisfied by the model. Therefore, the logic design is formally verified

with respect to the specifications tested.
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4.2 Throx Sequence in MDI Plant

The Throx sequence is a burner management system implemented in an MDI plant. It

consists of five sequences, SEQ (30), SEQ (31), SEQ (32), SEQ (34), and SEQ (36)

programmed in DOWTRANT". Each sequence contains shutdown interlocks, an operation

sequence involving multiple steps, and related output and abort logics. The sequence

SEQ (36) is only considered in this case study because it is the largest system with respect

to the number of logical propositions and the number of variables.

4.2.1 Implicit Boolean State Space Model

The sequence SEQ (36) contains 56 shutdown interlocks, an operation sequence

involving 13 steps, and related output and abort logics coupled together. Table 4.3 shows

the problem size. The implicit Boolean state space model derived from the DOWTRANTM

code and the variables used in the model are listed in Appendix C.

4.2.2 Specifications

The requirements for the sequence SEQ(36) are partially listed as comments in the

DOWTRAN m codes. Although it is very difficult to derive or formulate specifications to be

tested due to insufficient explanation of the codes, 22 specifications are derived from the

comments in the codes. Note that we do not try to derive specifications based on incorrect

assumptions.

4.2.3 Results

Several possible implementation or coding errors were found while deriving logical

propositions from the codes, and are listed in Table 4.5 (i.e., the code is clearly

inconsistent with the comments). These errors would have been found by the implicit

model checking algorithm as well as by a careful study of the code, so it is unfair to

attribute them to our method.
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Table 4.4 : Specification list for Throx sequence

No. Formal specification Description in the comments

1 VG(SHDN(333) -- STEP(363) A -00DO(372) ALM(333) jumps into STEP(363) and
takes DO(372) away.

2 VG(WARN(336) -+ DA(338)) This alarm prevents the system to ignite
the main burner.

3 VG(SHDN(337) - STEP(363)) Program jumps to the shutdown step.

4 VG(WARN(339) - DA(338)) Process of ignition will be aborted

5 VG(STEP(354) A WARN(344) -- VN(STEP(354))) STEP(354) cannot be left when
WARN(344) goes on.

6 VG(WARN(346) STEP(354)) Program should jump back to STEP(354).

7 VG(WARN(347) - DA(338)) Avoids further ignitions.

8 VG(STEP(355) A WARN(348) - VN(STEP(354))) In STEP(355), jumps back to STEP(354).

9 VG(STEP(355) A WARN(364) - VN(STEP(354))) In STEP(355), jumps back to STEP(354).

10 VG(WARN(377) -+ STEP(363)) Jump into the shutdown step.

11 VG(STEP(358) A ALM(378) -+ VX(STEP(363))) There is a shutdown if in STEP(358)
ALM(378) is activated.

12 VG(WARN(380) - ALM(392) A STEP(363)) WARN(380) causes ALM(392).

13 VG(WARN(381) - STEP(357)) If WARN(381), then jump into
STEP(357).

14 VG(WARN(383) STEP(357) ) If WARN(383), then jump into
STEP(357).

15 VG(WARN(384) - STEP(357) A ALM(336)) If WARN(384), then jump into
STEP(357) and release of ALM(336).

16 VG(WARN(387) ALM(338) ) WARN(387) activates the residue
shutdown ALM(338).

17 VG(WARN(388) -+ ALM(338)) WARN(388) activates the residue
shutdown ALM(338).

18 VG(WARN(389) -+ STEP(357) A ALM(336)) WARN(389) activates main burner
shutdown ALM(336) and jumps into
STEP(357).

19 VG(WARN(390) - ALM(338)) ALM(390) activates the residue shutdown.

20 VG(STEP(356) v STEP(357) -* ALM(334)) If STEP(356) or STEP(357), then
ALM(334).

21 VG(ALM(393) -- ALM(389)) If ALM(393), then ALM(389).

22 VG(ALM(394) -- STEP(357)) If ALM(394), then jump into STEP(357).
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Table 4.5: Possible implementation errors in Throx sequence

Place Original Code Corrected Code
WARN(336) WARN(336) IF [AC(1777) GT WARN(336) IF [AC(1777) GT

AC(1776) AND AC(1777) ZERO AND AC(1777) LE
LE AC(1776)] ... AC(1776)] ...

WARN(367) DC(1286) IF AC(343) LT DC(1286) IF AC(343) LT
AP(1014) OR [DC(1003) AP(1014) OR [DC(1286)
AND AC(343) LT AND AC(343) LT
AC(1015)] ... AC(1015)] ...

WARN(367) DC(1004) IF AC(334) LT DC(1004) IF AC(334) LT
AP(1177) OR [DC(1003) AP(1177) OR [DC(1004)
AND AC(334) LT AND AC(334) LT
AC(1196)] ... AC(1196)] ...

WARN(367) DC(1287) IF AC(344) LT DC(1287) IF AC(344) LT
AP(1177) OR [DC(1003) AP(1177) OR [DC(1287)
AND AC(344) LT AND AC(344) LT
AC(1196)] ... AC(1196)] ...

WARN(387) DC(1303) IF [AC(333) GT DC(1303) IF [AC(333) GT
AP(1366,860,2000) OR AP(1366,860,2000) OR
AC(343) GT AP(1366)] AC(343) GT AP(1366)]
AND [AC(334) GT AND [AC(334) GT
AP(1367,860,2000) OR AP(1367,860,2000) OR
AC(344) GT AP(1367)] AC(344) GT AP(1367)]
AND STEP(359) OR AND [STEP(359) OR
[STEP(360) OR STEP(361) STEP(360) OR STEP(361)
OR STEP(362)] OR STEP(362)]

DO(335) and DO(335) IF STEP(358) OR Since DO(335) and DO(336) are digital
DO(336) STEP (359) OR STEP (360) outputs for main-gas block valve 1 and

OR STEP (361) OR main-gas block valve 2 respectably, logic
STEP(362) AND DC(2453) representing DO(335) and DO(336)
AND # [ALM (378) OR should be different. However, they are
ALM(336) ] AND DI (321) identical in the codes.

DO(336) IF STEP(358) OR
STEP(359) OR STEP(360)
OR STEP(361) OR
STEP(362) AND DC(2453)
AND #[ALM(378) OR
ALM(336)] AND DI(321)
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Table 4.6: Verification results and computational statistics for Throx sequence

Spec. No. Feasibility No. of nodes explored CPU time' (s)
1 feasible 11 3.23
2 infeasible 10 3.47
3 feasible 155 19.41
4 infeasible 34 5.54
5 infeasible 6 3.01
6 feasible 33 6.55
7 infeasible 23 5.58
8 infeasible 9 3.15
9 infeasible 29 5.28
10 feasible 370 30.4
11 infeasible 6 2.69
12 infeasible 10 4.22
13 feasible 21 4.08
14 feasible 10 2.76
15 feasible 14 3.29
16 feasible 2 2.60
17 feasible 26 3.91
18 feasible 3 2.04
19 feasible 2 2.43
20 infeasible 3 2.50
21 feasible 19 3.54
22 feasible 4 2.40

'CPU time using GAMS/CPLEX on HP9 000 /J2 0 0

The verification problem is formulated as a Boolean satisfiability problem by combining

the implicit Boolean state space model with each specification. All the logical propositions

in the Boolean satisfiability problem are automatically transformed to their equivalent

inequality constraints by the algorithm in Appendix A. The resulting integer programming

feasibility problem is solved by standard branch and bound codes in GAMS (Brooke et al.,

1992). The linear programming sub-problems during the branch and bound search are

solved by the primal simplex method. Table 4.6 shows verification results with

computational statistics. Note that all the IP feasibility problems were resolved in less than

a minute in terms of CPU time, and the number of nodes visited during the branch and

bound search is very small.

Some IP problems are infeasible, which means that the specifications are satisfied

by the model. However, some IP problems are feasible, which means that the model is
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inconsistent with the specifications. There can be two explanations in this case. First, the

specification may be formulated incorrectly. This is possible because we do not have

complete knowledge about this Throx sequence. However, note that all the specifications

in Table 4.4 are almost direct translations of comments in the codes. Second, the

specification is not satisfied by the model. In other words, the comments in the codes are

not consistent with the functionality implemented by the code. Again, this may indicate an

error with the code or the comment. At this point, we do not have enough information to

determine the causes of feasibility of some IP problems. If the IP problem is feasible, each

feasible solution can be used as a counter-example to find errors in the design. Literally, a

feasible solution of IP problem is a set of variables and their values violating the original

specification tested. This information combined with the model should help users to find

causes of feasibility of the IP problem.

4.3 Empirical Complexity of the Algorithm

Any formal verification method will ultimately be limited by the combinatorial nature of

the problem. Therefore, the best way to prove the value of any approach is to apply it to a

series of problems of increasing size. In order to obtain empirical results on the

performance of our approach, we formulate a global burner management system by

combining a number of single MOD5 TM burner management systems in parallel and by

adding a global shutdown logic as shown in Figure 4.4. Then, the global model is tested

against five specifications listed in Table 4.7 by increasing the number of single burners

from 1 to 10.

All the integer programming feasibility problems are solved by standard branch

and bound codes in GAMS/OSL (Brooke et al., 1992). The linear programming sub-

problems during branch and bound search are solved by the primal simplex method. All

the IP problems tested are infeasible, meaning that all the specifications tested are satisfied

by the model.

Table 4.8 and Figure 4.5 show model statistics. Note that the problem size in

terms of the number of constraints and total number of variables is increasing linearly

with the number of state variables, which demonstrates that the size of the model that can
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be constructed is not limited by the amount of computer memory available due to its

implicitness. Therefore, very large-scale verification problems can be formulated in our

approach, which is impossible in explicit enumeration-based model checking.

Bumer 1

Stop Shutdown

Reset A Bumer2 ---

Bumer N-

Figure 4.4: Global burner management system

Table 4.7: Specification list for global burner management system

No. Informal specification Formal specification
1 STOP signal should bring all burners in VG(STOP A RESET - STEP, (112)A...ASTEP (112))

safe shutdown states, and should
overrides RESET signal.

2 Once STOP signal becomes ON, VG(-,STOP A SHUTDOWN -> VN(SHUTDOWN))
shutdown signal should remain ON even
though STOP signal becomes OFF.

3 Upon receiving STOP signal, outputs of VG(STOP - -,(DO (103)v...vDO (103)))all main fuel downstream block valves
should be aborted.

4 Upon receiving STOP signal, outputs of VG(STOP -(DO 1 (1 12)v...vDO, (112)))all pilot gas upstream block valves
should be aborted.

5 Upon receiving STOP signal, outputs of VG(STOP -- n (DO1 (114)v...vDO, (114)))all burner electronic ignitors should be
aborted.
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Table 4.8: Model statistics for global burner management system

Unit n m Total Constraints States Transitions
1 45 67 169 1116 3.5 x 1013 5.2 x 1033

2 89 132 335 2220 6.2 x 1026  3.4 x 106
4 177 262 667 4428 1.9 x 10 3  1.4 x 10132

6 265 392 999 6636 5.9 X 1019  6.0 x 10197

8 353 522 1331 8844 1.8 x 10106 2.5 x 1026 3

10 441 652 1663 11052 5.7 x 10132  4.8 x 10474

Unit : the number of single burners in the global burner management system
n : the number of state variables
m : the number of inputs
Total: the total number of variables (inputs, outputs, state variables, internal variables)
Constraints : the number of inequality constraints generated
States : the upper bound on the number of possible states
Transitions : the upper bound on the number of possible transitions

12000

100001

8000 -

6000 -

4000 -

2000-

0

0 100 200 300 400 500

Number of State Variables

- Total Number of Variables -3--Number of Constraints

Figure 4.5: Problem size with respect to the number of state variables.
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Table 4.9: Verification results for global burner management system

Specification 1 Specification 2 Specification 3 Specification 4 Specification 5
n Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU

45 0 1.56 10 2.46 0 2.45 0 2.67 0 1.64
89 0 7.72 6 5.25 21 11.46 0 8.22 21 8.63

177 41 38.48 21 32.45 41 43.21 41 35.60 21 24.47
265 61 67.81 41 66.06 61 62.19 41 73.38 41 70.46
353 61 122.34 61 146.31 61 138.92 81 101.73 81 163.58
441 141 296.44 84 211.51 241 447.40 81 211.83 81 235.60

n : the number of state variables
Nodes : the number of binary nodes visited during branch and bound search
CPU : CPU times in seconds using GAMS / OSL on HP9 0 0 0 /7 3 5
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Figure 4.6: Verification time with respect to problem size
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Table 4.9 shows the verification performance in terms of the number of state

variables. First of all, the largest verification problem has 441 state variables and 652

inputs, resulting in the possibility of more than 10132 states and 10474 transitions.

Verification took from 3.5 to 7.5 minutes of CPU time depending upon the specifications

tested. Note that the IP feasibility problem was resolved by just solving the relaxed linear

programming problem in several cases, and in other cases, the number of nodes visited

during branch and bound search for IP solution is very small. Figure 4.6 shows how the

verification time depends on the problem size in terms of the number of state variables on

log-log scale. On a log-log scale plot, the polynomially growing function y = x" appears as

a straight line with a slope n. Note that in all cases, the verification time is growing

roughly quadratically (i.e., n = 2) with respect to the number of state variables.

4.4 Identification of Defects

The purpose of this section is to demonstrate that the implicit model checking can be

used to identify design defects in the LCS logic for large-scale problems. The single

MOD5 m burner management system is used as an example. First, a known bug is

deliberately introduced into the burner system, and a relevant specification is tested to

identify the bug inserted. Second, a set of random bugs are introduced into the burner

system, and the implicit model checking is applied to detect these bugs.

The MOD5 T burner management system contains 7 output and abort logics

coupled together. One of the specifications that should be satisfied is:

VG(-z, A 1 7 , - X1 3  7Y6) (4.1)

which means that the abort outputs DO (103) and DO (114) must be turned off if

DC (101) (main vent ebv) and DC (111) (pilot vent ebv) are both open. Note that in

order to verify this specification, all abort logics are required together with related

shutdown interlocks and sequence logics. The specification is formally proved against the

original model. It takes 0.33 seconds using GAMS /CPLEX on HP9 0 0 0 /J2 0 0 to solve the
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IP feasibility problem. The original model is then corrupted by introducing a bug into the

following two propositions in the abort logics:

(x13 <-> (z16 & -z3)).
(y6 <-> (z19 & -z13)).

Each negation is removed and each conjunction is replaced by disjunction. The

specification in Eqn (4.1) is tested against the corrupted model. The IP feasibility problem

is feasible, meaning that the specification is violated in the corrupted model. It takes 0.43

seconds using GAMS/CPLEX on HP9000 /J200. The counter-example generated is

[x13,y6, z3, z3, z5, z6, z7, zl9]=[T,T,T,T,F,F,F,F], which clearly

shows that the abort outputs DO(103) and DO(114) are turned on even though

DC (101) and DC (111) are both open.

As a second example, a set of random bugs are introduced into the burner system,

and the implicit model checking is applied to this randomly corrupted model. The 10

propositions are randomly chosen from the model in Appendix B:

(z23 <-> ((u4 # u60) & (u6 # u61) & (x12 # z32))).
(z25 <-> ((ul#u53)&(u5#u55)& -xsl & -xs2)).
(x5 <-> ((z27 & -x5p) # (-u47 & x5p))).

(z35 <-> (xs6#xs7#xs8#xs9)).
(z30 <-> ((u7#u64)&(u9#u65))).
(zl <-> (-z15 # z21 # z36)).
(z16 <-> (x10O & -z21)).
(z17 <-> ((xs5#(xs6&u52)) & -z21)).
(y5 <-> (xll & -z9)).
(zll <-> (-z18 # z21 # z37)).

which are then corrupted as:

(z23 <-> ((u4 & u60) & (u6 # u61) & (x12 # z32))).
(z25 <-> ((ul#u53)#(u5#u55)# -xsl # -xs2)).
(x5 <-> ((z27 & x5p) # (-u47 & x5p))).

(z35 <-> (xs6&xs7&xs8&xs9)).
(z30 <-> ((u7&u64)&(u9#u65))).
(zl <-> (-z15 & z21 & z36)).
(z16 <-> (x10O # -z21)).
(z17 <-> ((xs5#(xs6&u52)) & z21)).
(y5 <-> (xll & z9)).
(z11 <-> (zl18 # z21 # z37)).

Note that in order to find a particular bug in a LCS design, the model should be tested

against a relevant set of specifications, which are not known in advance. Therefore, all the

specifications in section 4.1.2 including Eqn (4.1) are tested against the corrupted model.

The IP feasibility problem is solved for each specification. However, only one
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specification (the specification No. 4 in section 4.1.2) was able to identify a bug

introduced in the 3rd proposition. The IP feasibility problem was feasible, and the counter-

example is [u19,u24,u2 8, u29, z27,x5 ] = [F, F,F,F,T, F ], which shows that the

alarm ALM (115) (or x5) does not sound even though the set signal SET (115) (or

z27) is turned on by the activation of emergency stop switches. It takes 0.49 seconds

using GAMS/CPLEX on HP9000/J200. All the other specifications are satisfied by the

corrupted model, thus fail to identify any bug. This example clearly illustrates that a

complete set of specifications should be tested against the model in order to identify all

defects in the LCS design.

4.5 Conclusions

It has been demonstrated that formal verification of large-scale industrial logic-based

control systems can be conducted efficiently without encountering the state explosion

problem. The implicit model checking technology is applied to two burner management

systems, MOD5 TM and the Throx sequence. Properties of interest are formally specified in

temporal logic, and are formally checked against the Boolean state space model. For the

Throx sequence, some of the specifications are found to be inconsistent with the model.

A series of burner management systems that combine a number of a single burner

management system in parallel is solved by the implicit model checking algorithm to

explore the empirical complexity of the algorithm. The problem size in terms of the

number of inequalities increases linearly with respect to the number of state variables. It

has been shown empirically that the solution time increases quadratically with respect to

the number of state variables. This high efficiency in terms of computational cost is

because the IP feasibility problem was solved by just solving the relaxed linear

programming problem in many cases, and in other cases, the number of nodes visited

during branch and bound search for IP solution is very small due to the very efficient

implicit enumeration conducted by branch and bound algorithms.
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Chapter 5

Dynamic Validation of Logic-based
Control Systems using Hybrid
Discrete/Continuous Simulation

5.1 Introduction

The functionality of a LCS can be verified against formal specifications by employing the

implicit model checking technology introduced in chapter 3. Even if the functionality of a

LCS is fully consistent with a complete set of specifications, the LCS may fail to provide

an appropriate action when called upon. This situation arises because the functionality of

the LCS considering its dynamic coupling with the underlying chemical process has not

been verified. In other words, formal verification of the LCS in isolation is a necessary but

not sufficient condition for verification of the coupled system (plant and LCS).

The notion of hybrid discrete/continuous dynamic systems (that will be defined in the

next section) can be used to formulate the problem of verifying the coupled plant and

LCS. However, only a very limited class of hybrid dynamic systems (with respect to model

complexity) can be verified in a formal manner. A typical sub-problem in the verification

problem is reachability analysis - given a final state, determine whether or not the hybrid

system has a sequence of computation terminating at that final state from a given initial

state. This reachability problem has already been shown to be undecidable for very
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restricted classes of hybrid systems, e.g., constant slope hybrid systems, in which the right

hand side of all differential equations is an integer constant (Alur et al., 1993; Kestne et al.,

1993).

The hybrid system composed of the LCS and the underlying nonlinear chemical

process cannot be verified because no formal analytical tools will become available.

However, it is essential at least to validate the performance of the hybrid system via

simulation even though it does not amount to formal verification (Lygeros et al., 1994). In

particular, hybrid discrete/continuous simulation technology can be used to study the

overall system response in a set of critical abnormal scenarios identified by a process

hazard analysis, and allows extensive system checkout to be done prior to plant start-up.

The results of this validation may be used to amend the LCS design by identifying

problems with the original specifications. For example, in the pre-commissioning of the

THORP nuclear fuel reprocessing plant in Cumbria, UK, a dynamic plant model including

details of control systems was built in order to facilitate the early testing of the control

systems, which were critical for the safety of the plant, consequently eliminating hundreds

of bugs even before the software was implemented on plant (Evans and Wylie, 1990).

Even though it has been recognized that the role of dynamic validation is critical

to identify any potential defects in the LCS, it is often left out in practice because current

dynamic simulation tools are not suitable for dynamic validation of the LCS, and it is a

very costly and time consuming task to develop plant models that include details of the

LCS from scratch using a programming language. For example, the general-purpose

dynamic simulation packages (e.g., DIVA (Holl et al., 1988), DYNSIM (Gani et al., 1992),

POLYRED (Ray, 1993), SpeedUp (AspenTech, 1993), etc.) are mainly concerned with

modeling physico-chemical systems, and do not provide facilities for effective modeling of

complex discrete systems (Pantelides and Barton, 1993). Recent work on general-purpose

dynamic simulation technology (gPROMS (Barton and Pantelides, 1993) and ABACUSS

(Allgor et al., 1996)) combines models of physico-chemical phenomena (possibly

discontinuous) with the systematic modeling of sequences of control actions (Barton and

Pantelides, 1994), although it does not yet include models of the LCS. Some simulation

packages have the capability to model logic systems in addition to the physico-chemical

system (CADAS (Eikaas, 1990), PROTISS (Goldfarb et al., 1993), TRAINER (Morton,

1992)). However, these tools appear to have drawbacks. Models of the LCS are usually
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solved in an ad hoc manner such as the sequential modular approach (Goldfarb et al.,

1993; Morton, 1992).

In this chapter, dynamic validation of the LCS is formulated as a hybrid

discrete/continuous simulation problem, and an efficient solution algorithm for

simultaneous dynamic simulation of the LCS and the physico-chemical phenomena will be

developed. This technology will provide significant advances in the efficiency of model

construction efforts and accuracy of model solution.

5.2 Mixed-mode Simulation of Integrated Circuits

Circuit simulation is used routinely in the design of integrated circuits (ICs) to validate

circuit correctness. Circuits can be simulated at the electrical level or at the logic level

depending upon the level of abstraction required. In electrical simulation, a circuit is

represented as a system of nonlinear, first-order, ordinary differential equations, which

model the dynamic characteristics of the circuit for a set of applied input signals and initial

conditions. In logic simulation, the circuit is abstracted as a network of logic gates, and the

functionality of the circuit is represented by discrete logic states determined by simple

Boolean operations. Logic simulation is typically 100 to 1000 times faster than the most

efficient forms of electrical simulation.

There are many cases for which one level of simulation is not sufficient for the

analysis of a circuit design. For example, complex VLSI circuits usually include both

analog and digital components in a single chip, and the integration of analog/digital

systems on a single chip is ever increasing. Typical examples include voltage regulators,

speech recognition circuits, and power up/down sense circuits. Logic simulators cannot

model analog circuits, and it is too expensive to simulate the entire mixed analog/digital

circuit at the electrical level. In this case, a new modeling and simulation technique is

required that allows different portions of the circuit to be described and simulated at

different levels of abstraction. The problem of modeling and simulation of a mixed

analog/digital circuit is known as mixed-mode simulation (Saleh et al., 1994). Mixed-mode

simulation has been popular, and a large number of simulators (e.g., Attsim, iSPLICE3,

Saber, VHDeLDO) have been developed over the last few years.

125



There are a number of issues inherent in the mixed-mode simulation problem. For

example, accurate mixed-mode simulation requires a consistent representation of the

circuit signals over two different simulation levels. In the logic level, the signal is

represented as bits or logic values. On the other hand, electrical simulation uses real

numbers to represent values of voltage and current. These different signal types should be

mapped to each other correctly at the interface. Second, time is usually represented as a

real number in electrical simulation and as an integer in logic simulation. This discrepancy

between different representations of time must be resolved. Furthermore, time-step

synchronization between the electrical and logic simulators is important in determining the

accuracy and speed of mixed-mode simulation.

Mixed-mode simulation of circuit is mathematically similar to hybrid

discrete/continuous simulation of a LCS and its chemical process. Two physically

different systems give rise to similar mathematical problems: a combined simulation

problem involving simultaneous solution of a differential equation based model and a

logic based model. However, there are important differences between the two problems.

First, the differential equation models are different: dynamic models of typical chemical

processes require the general nonlinear form of differential-algebraic equations, whereas

ordinary differential equations are typically used to model dynamic behavior of circuits

(Saleh et al., 1994). Second, circuit simulation even at the logic level requires detailed

timing information because the two circuit models at the electrical and logic level

effectively describe the same physical system at different levels of abstraction and the time

delays of the model at the logic level are of similar order to the time constants of the

analog dynamics. However, as we argue in this thesis, a model of the LCS does not require

detailed timing information. Finally, the nature of mixed-mode simulation demands an

interface between the two different types of model. Again, the difference between the

physical systems alters the nature of this interface.
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5.3 Hybrid Discrete/Continuous Systems

5.3.1 Definitions

There are many examples in the chemical processing industries in which discrete

phenomena superimposed on the more familiar continuous system dynamics make a

significant contribution to the overall system response. In these situations, the behavior of

a typical chemical plant is probably more correctly viewed as that arising from a series of

coupled and interacting discrete and continuous subsystems. In particular, the strong

coupling of these two facets of process behavior in many problems of practical interest

demands the development of analytical technologies that can address discrete and

continuous behavior appropriately and simultaneously.

The process transients in the chemical processing industries are fundamentally of

hybrid nature. While continuous behavior arises in a familiar manner from phenomena

such as mass, energy, and momentum conservation, it is useful to classify discrete

behavior into two broad categories (Barton and Pantelides, 1994): physico-chemical or

autonomous discontinuities, and discrete controls and/or disturbances. Physico-chemical

discontinuities arise as an integral part of the physical behavior of most systems, especially

if system behavior is studied over a large enough region of state space. Numerous

examples include phase changes, flow reversals, shocks and transitions (e.g., laminar to

turbulent), discontinuities in equipment geometry, internal features of vessels (e.g., weirs),

etc.. In all of these cases, discrete phenomena occur purely as a consequence of the system

moving through state space. On the other hand, discrete controls and/or disturbances are

most frequently encountered in the study of process operations. Examples include digital

regulatory control, the use of hybrid controllers to regulate highly nonlinear continuous

dynamics (Friedrich and Perne, 1995; Rovaglio et al., 1995), process upsets and the action

of automatic protective devices, and planned operational changes such as start-up, shut-

down and feedstock changeovers. Further, there are whole classes of processes such as

batch, semi-continuous and periodic processes that rely on discrete control actions to

implement normal operation.
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Depending upon a particular application, various classes of hybrid systems can

arise with respect to the configuration and types of interaction between continuous and

discrete sub-systems. However, at the lowest level hybrid systems are defined as discrete and

continuous sub-systems inherently coupled and interacting with each other (Grossman et

al., 1993; Nerode and Kohn, 1994). For the purpose of this thesis, we employ the notion

of hybrid systems focused on transitions between continuous sub-systems. Figure 5.1

depicts this notion of hybrid systems, where each node represents a continuous sub-

system and each arc represents a transition between continuous sub-systems. Transitions

can be controlled by discrete sub-systems or autonomous. It is usually assumed that these

transitions are instantaneous, and the instant at which these transitions occur is called the

transition time, which is in general not known a priori and is defined implicitly by transition

conditions. The satisfaction of transition conditions is known as events in the dynamic

simulation problem. The time or location of events can be defined explicitly (time events) or

implicitly (state events).

With this notion of hybrid systems, hybrid systems experience a repeated sequence

of two steps: a continuous state transformation and a discontinuous state transformation where a

state is a point on the trajectory determined by the current continuous sub-system as

shown in Figure 5.2. During a continuous state transformation, the current continuous

sub-system is evolving over time continuously according to the set of governing equations.

At transition times, a discontinuous state transformation occurs autonomously or by

control actions exerted by discrete sub-systems. Discontinuous state transformations can

be simple parameter settings or changes in the functional form of the continuous system,

including dimensional change of the state space. Discontinuous state transformations

result in a new current continuous sub-system, and continuous state transformation is

resumed. In summary, a discontinuous state transformation changes the mode of hybrid

system (active continuous sub-system at a given time).

Discontinuous state transformations or mode changes are hybrid phenomena that

can occur in the class of hybrid systems we have defined. The hybrid system changes its

mode based on the partition of the state space (not necessarily disjoint), which is

determined by the inherent dynamics of the embedded continuous systems (for

autonomous transitions) and/or by the interface between the continuous sub-systems and

input symbols of discrete sub-systems (for controlled transitions). In either case, we know
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that events occur, which is the satisfaction of the corresponding transition conditions at

the boundaries of the partition. For controlled transitions, output symbols of the discrete

sub-systems are associated with modes of the hybrid system.

5.3.2 Hybrid Simulation Example - Tank Filling Operation

In order to illustrate hybrid system simulation of the LCS and the chemical process,

consider the tank filling operation in chapter 1. Figure 1.6 is a flowsheet that consists of

two tanks and a feed pump, and Figure 1.7 is a logic-based control system for this tank

filling operation represented as a binary logic diagram. Fluid is pumped into either tank A

or B. HS1 and HS2 are switches to start or stop the filling operation for tanks A and B

respectively. The START (or STOP) position of switches HS1 and HS2 causes the control

valves HV1 and HV2 to open (or close) respectively. In order to operate the pump, all the

following conditions must be satisfied:

* Only one of two switches HS1 and HS2 is in the START position.

* The tank levels must be below a given value, LHigh, as indicated by level switches

LSH3 and LSH4.

* The pump suction pressure must be above a given value, as indicated by pressure

switch PSL5.

* The pump is in the ON position.

The operation is stopped if any of the following conditions occur:

* While pumping into a tank, its control valve leaves the fully-open position, or the

valve of the other tank leaves its fully-closed position.

* The tank selected for filling becomes full, i.e., LA 2 LHigh (or LB 2 LHigh) where

LA (or LB) is the level in tank A (or B).

* The pump suction pressure is continuously low for 5 seconds.

* The operation is stopped manually by HS1, HS2, or HS7.
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Table 5.1: Events during simulation of tank filling operation

Time Event
0 Tank A and B are partially filled initially.
tl Start_f illing_tank_A is pressed.
t2  Tank A level high becomes TRUE.
t3  Start_filling_tank_B is pressed.

t4 Stop_filling_tank_B is pressed.

LHigh

a,

r-

I-

0

0 tl t2 t3 t4 Time

Figure 5.3: Simulation of tank filling operation

Consider the filling operation according to a particular scenario in Table 5.1. Initially, tank

A and B are partially filled. At time t,, the signal Start_filling_tank_A becomes

TRUE by turning on the switch HS1, and all the other conditions to operate the pump are

satisfied. Then, the inlet valve for tank A will be open and the signal Operate pump is

sent to the pump from the LCS by solving the permissive LCS logic. Once the pump is

running, a continuous state transformation will immediately follow, and time will advance

as the level rises. At time t 2 , the level of tank A will exceed the limit, LHigh, which sends a

signal Tank A level high to the LCS. This signal activates a shutdown LCS logic,
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which in turn sends a signal Stop_pump to the pump, and the filling operation for

tank A is stopped. This marks a transition time. Note that this transition is defined

implicitly by a condition LA _ LHigh (state events), and the actual time can only be

determined by playing out a particular scenario. This triggers a discontinuous state

transformation: the current continuous sub-system is switched to a mode in which the

pressure drop across the pump is set to zero. Following this transition, the system

experiences a continuous state transformation in this new mode (steady state) until the

switch HS2 is turned on by the operator at time t3 . Then, the inlet valve for tank B will be

open and the signal Operate_pump is sent to the pump again. This marks another

transition time. Note that this transition is explicitly defined (time events). Following this

discontinuous state transformation, the system reverts to another continuous state

transformation and the level of tank B rises until the operator turns off the switch HS2 at

time t4 . Figure 5.3 depicts the simulation result according to this particular filling

operation. It is assumed in this plot that the opening and closing of valves are

instantaneous. It should be noted that this sequence of continuous and discontinuous state

transformations experienced by a hybrid system is a function of the specific scenario. In

general, there may be a very large number of possible sequences a system may experience.

sict IModel of Logic-based
Discrete Inputs Control System

Analog Input Output
Interface Interface

r(xi,y,y,u,t)

Model of Physico-

xx, y, Chemical System u,t

Figure 5.4: Hybrid models of the LCS and the process
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5.4 Mathematical Formulation

There are two main tasks in the study of hybrid simulation problem: model construction

and solution algorithm. The model construction or mathematical formulation will be

addressed in this section, and the solution algorithm will be developed in the next section.

The task of hybrid model construction requires three sub-tasks: modeling of

continuous sub-system, modeling of discrete sub-system, and interface between two

distinct models. Figure 5.4 shows the abstract relationship between models of the LCS and

the physico-chemical system with input/output interfaces.

5.4.1 Model for Physico-Chemical Systems

The time dependent behavior of the lumped parameter physico-chemical system can be

effectively modeled in terms of differential-algebraic equations (DAEs). Continuous state

transformation or evolution of each mode can be described by an initial value problem,

and the series of continuous state transformations can be modeled as a sequence of initial

value problems interspersed by events that may cause some form of discrete change to the

current initial value problem (Barton and Pantelides, 1994). As a consequence, the time

interval of interest [t(o), t ( )] is partitioned into NCD continuous sub-intervals

[t(k-1),t(k)), Vk = 1..NCD. The initial time t(0) is given, whereas the sub-interval

boundaries, t(k), Vk = 1..NCD, may be specified explicitly or determined implicitly

during the course of a simulation. The hybrid simulation problem can therefore be defined

as:

f(k)(X(k),~~ k), y (k) U( k),t) = 1 t ,(2 /Y ~ t E t(k1) t(k)), Vk = 1..NCD (5.1)

U(k) = U(k)() J

where f ) :R "(k) x R X x R x R [R(k)() , and x( , X e R

(k) R m k) (k) (k) . The unknowns x and y are usually referred to as they e)R" , u e R . The unknowns x and y are usually referred to as the
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differential variables and algebraic variables respectively, and u are the known system

inputs. The following condition is assumed:

Rank f(k) ] = n'
k) +m ' ), [t(k),t(k)), Vk = 1..NCD (5.2)

This is a sufficient condition for Eqn (5.1) to have a differential index equal to or less than

unity. The differential index of Eqn (5.1) is defined as the minimum number of times that

all or part of it must be differentiated with respect to time in order to define x and jr

uniquely as functions of x, y, u (and its time derivatives), and t (Brenan et al., 1989).

5.4.2 Model for Logic-based Control Systems

The revised BLD in chapter 2 will be used as a model for the LCS. As discussed in chapter

2, the revised BLD is deterministic, i.e., it embeds a unique functionality for the LCS.

Furthermore, it supports implicitness, declarativity, and concurrency, which are essential

for modeling of large-scale systems.

Alternatively, the Boolean state space model of Eqn (3.5) can be derived from the

revised BLD. Furthermore, the set of logical propositions in the Boolean state space

model can be transformed into their inequalities in terms of binary variables as shown in

section 3.2.

5.4.3 Input and Output Interfaces

5.4.3.1 Input Interface

The LCS is only activated by a change in status of discrete input signals (e.g.,

Start_filling_tank_A) and/or by state events, which are triggered by transition

conditions or state conditions. Events usually occur when the value of analog input signals

(e.g., the level of tank) passes through a pre-determined threshold. No special interface

between a discrete input signal and the corresponding logic signal is necessary because the

discrete input is usually a two-valued variable (e.g., Motor_is_running or
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Motor_is_stopped). On the other hand, an interface between the analog input signals

and the LCS is essential to establish the mathematical relationship between two different

models, specifically, a mathematical linkage between a state condition in the physico-

chemical system and its corresponding Boolean input signal in the LCS.

Although a simple high-low comparator is a commonly used input interface, the

more general input interface that can deal with a combination of input variables or

multivariable equations is necessary (Bradbury et al., 1989; Smith, 1991). A general form

for the state condition is a logical proposition Pi, which asserts a relationship between a

set of atomic propositions Qj,, j = 1.. Ni where Ni is the number of atomic propositions

(or relational expressions) in Pi. Each atomic proposition Qij represents a corresponding

relational expression rij of the general form:

ri(x,x,y,y,u,t) >0, Vj = 1..N i  (5.3)

which asserts the following proposition:

Qij a, (rij 0), Vtj = 1.. N (5.4)

The input interface between a state condition Pi and the corresponding logic signal Zin

asserts the following logical proposition:

Zi" <-_4 p, Vi = 1.. Ni, (5.5)

where Ni is the number of state conditions. In summary, the input interface asserts the

following set of logical propositions:

Pi Pi (Qi Q1i2 Qi Vi = 1.. N, (5.6)

Q, - (rij 0), Vj = L..N
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By employing the formal procedure described in section 3.2, Eqn (5.6) can be converted

into a set of inequalities:

D,q, +biz" 2> d, , Vi = 1..Ni, (5.7)

where qi E(0,1}N '  is a vector of binary variables qij corresponding to each atomic
proposition Qij, and zi" e (0,1} is a binary variable corresponding to a logic signal Z i ,

and D i is a matrix of integer coefficients and b,, d i are column vectors of integer

coefficients. The remaining task is to establish a relationship between each relational

expression ri and its corresponding atomic proposition Qij. The set of propositions (Eqn

(5.4)) can be transformed into equivalent inequality constraints as follows:

L. (1 - q) - r Uijqij - eij, Vj = 1..N, (5.8)

where L/j, U, are the lower and upper bounds on the value of rij, and e is a small

positive tolerance. In general, this transformation is not unique, and it is difficult to derive

rigorous upper and lower bounds on the value of a general nonlinear function in many

variables. However, it is observed that most relational expressions in state conditions are

linear and do not involve many variables. Furthermore, upper and lower bounds of a

nonlinear function can be obtained relatively efficiently by evaluating an enclosure of the

function using interval arithmetic as discussed in section 6.4.2.2. In summary, the state

condition and its corresponding input logic signal establishes the following mathematical

relationship:

Dq, + bizn > d

L,(1- q,) r, Uq, -e i = 1.. Nin (5.9)

where ri =[ ri 2,...,r iN T , ei = ei,ei2,...,eiN , 1= [1,1,...,1 , and L i , U i are

diagonal matrices whose diagonal components are L and U 1, Vi = 1.. N i respectively.
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In the tank filling operation example, an analog interface is required between a

state condition LA 2 LHigh (or LB LHigh) and a logic input signal

Tank A levelhigh (or Tank B level_high). Eqn (5.10) shows this

mathematical linkage:

Tank_ A_ level_ high + (LA - LHigh 0) (5.10)
L(1- z" ) < LA - LHigh Uzi" - e

where z" is a binary variable corresponding to Tank A level high.

5.4.3.2 Output Interface

The output signals from the LCS can be linked to the physico-chemical system in a similar

manner. It is also assumed that output signals are two-valued variables. The output signals

from the LCS impose discrete actions on the physico-chemical system, which is realized

mathematically by inserting an equation according to the value of the logic signal. In

general, the conditional relationship can be established between the logic output signal

Z ° "' and its corresponding equality hT or hi as follows:

h(x,,y,u,t)=O : Z"ou
(5.11)

hiF (x, , y, u, t) = : -- Z °io

This conditional relationship can be transformed into one equality that involves integer

and continuous variables as follows:

hiT (x, , y,u,t)z 'u + hiF (x, , y,u, t)(l - z ) = 0 (5.12)

where z° "' is a binary variable corresponding to the logic signal Z "'. This transformation

is also not unique, and the binary variables do not appear linearly in this formulation. An

alternative inequality formulation is:
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(5.13)

where LT, LiF , UiT, and Uf are lower and upper bounds on the corresponding function.

The Nou, logic output signals establish a set of inequalities as follows:

LT(1 - zO"')  h (x,t, , yu, t)< UT(1
- z 'ou)

(5.14)
LFzout < hF(x,x,y,u,t) _ UFzo

ut

where LT, L F, UT, UF are diagonal matrices whose

Lj, L, U, U,F, Vi = 1.. Nou respectively.

In the tank filling operation example, a logic output

Stop_pump) selects an appropriate equation according to its

Ppump = P + AP

Ppump = P

diagonal components are

signal Operate_pump (or

value as follows:

: Operate_ pump

- Operate_ pump(-- Stop_ pump)
(5.15)

which can be transformed into an equality (Eqn (5.16)) or inequalities (Eqn (5.17)).

(Ppump, - Po - AP)zt + ( Pp, - Po)(- zout)

L(1- z"u ) Ppp - AP5 UT(1-zout)

LFout <ump - Po UFZout

(5.16)

(5.17)

where zo"' is a binary variable corresponding to Operatepump.
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5.5 Solution Algorithms

5.5.1 Solution of Hybrid Simulation Problem without LCSs

As shown in section 5.4.1, the hybrid simulation problem without LCSs is formulated as a

sequence of initial value problems described by DAEs. Each initial value problem is

solved in its corresponding continuous sub-interval of time (whose boundaries are

determined by events). There are three-sub-problems for the solution of Eqn (5.1). First,

the condition of the system at the beginning of each sub-interval must be determined

(initialization and reinitialiZation), secondly the system behavior over the sub-interval must

be calculated (numerical integration of DAEs), and finally the precise end point of the sub-

interval must be located (state event location).

5.5.1.1 Initialization and Reinitialization

Before simulation can begin, a set of consistent initial values for the describing variables at

the beginning of the first sub-interval must be determined (initialization). This problem is

extremely difficult because a consistent set of equations f 0) = 0 and initial values for the

unknowns x(), 0(), and y(l) at t(O) must be determined simultaneously. In order to

calculate initial values for the unknowns, n(i) additional relationships, known as the initial

condition specification, are necessary, which can be expressed in general as a set of

equations of the form:

cl'x (l (t(o,), (t('o),y)(t' o)),u M' )(t' o) , t°) 0 (5.18)

At present, the initialization problem can be solved in an ad hoc manner by using the

current values of the unknowns to update the set of equations employed at the end of

each Newton step (Barton, 1992), or by the more sophisticated algorithms that have been

reported (Bullard and Biegler, 1993; Zaher and Westerberg, 1991).
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The problem of determining consistent initial values for the variables at the

beginning of sub-intervals [t(k-1) ,t(k)), Vk = 2..NCD (reinitiali.ation) is slightly different

from that of the first sub-interval. If the set of differential variables appearing in the

describing equations remains unchanged across a sub-interval boundary, it is normal

practice to assume that the values of these variables are continuous across the boundary:

x(k-1) (t(k-1)) = X(k) (t(k-1)) (5.19)

Briill and Pallaske (1992) derive the sufficient condition for the satisfaction of Eqn (5.19)

for a linear implicit DAEs. In general, a set of consistent initial values for the describing

variables at time t(k-1) can be determined from the simultaneous solution of:

f(k) (X(k) (t(k-1) X(k) (t(k-1) y,(k) (t(k-1) U(k) (t(k-1) )t(k-1))= 0

u(k) = u(k)(t(k-1))

c(k) X(k-1) (t(k- 1) )X k-1)(t (k-1) ) (k-1)t (k-1) uk-1)(t (k-1) (5.20)

x(k) (t(k-1) X(k) (t(k-1) (k) (t(k-1 ) u(k) (t(k-1)), t(k-1)) = 0

where c(k) = 0 is a general form of the n(k) additional initial condition specification for

the reinitialization problem and f(k) can change during this calculation.

5.5.1.2 Numerical Integration of DAEs

The majority of codes available for the solution of the initial value problems composed of

DAEs are based on the multi-step Backward Differential Formula (BDF) method (Gear,

1971). Brenan et al. (1989) review some techniques based on the BDF method to solve DAEs.

5.5.1.3 State Event Location

The end of each continuous sub-interval is marked by the occurrence of a time event or state

event. Since time events occur at a predetermined time, their detection and processing is

relatively uncomplicated. On the other hand, the time of occurrence of state events is never
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known in advance because it is dependent on the system fulfilling transition conditions or state

conditions. Instead, the numerical solution of the equations in a sub-interval must be advanced

speculatively until the state condition becomes satisfied. The state event location problem will

be discussed in detail in chapter 6.

5.5.2 Solution of Hybrid Simulation Problem with LCSs

The solution algorithm for hybrid simulation of the LCS and the physico-chemical system

will be built on the mathematical formulation presented in section 5.5.1, which does not

include the model of the LCS.

t(k-1) t(k)

Sf(k) (X(k) (k) (k) U(k), t)= 0

u(k) = U(k)(t)

t(k+1) t(NCD)

t. State Event Location &
Reinitialization

Integration of DAEs

Initialization

Figure 5.5: Solution of hybrid simulation problem
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As mentioned in section 5.4.3.1, the LCS is only activated by a change in status of

discrete input signals and/or by state events. In other words, the logic output signals of

the LCS can only change as a consequence of a transition in the discrete inputs and/or

state events. With the assumption of an instantaneous response of the LCS logic to

changes in the status of its inputs (see section 3.3.1), the output from the LCS will impose

control actions to the process immediately, which causes discrete changes to the

functional form of physico-chemical model and mathematically gives rise to a new initial

value problem. In summary, the LCS only changes its output as a consequence of an event

(a discrete input signal transition and/or a state event), and only impacts the way in which

the initial condition of the physico-chemical model is determined at the beginning of each

sub-interval. Inside each sub-interval, the output of the LCS does not change and

consequently does not affect the physico-chemical system. Figure 5.5 illustrates the

solution of a hybrid simulation problem that is complicated by the addition of the model

of the LCS. It is clear from this discussion that the initialization and reinitialization

problems are changed by addition of models of the LCS, but the other sub-problems are

not altered. Even though the nature of state event location problem is not altered, the

accurate and efficient location of state events is essential to solve the hybrid simulation

problem involving the model of the LCS because the LCS is activated by state events. The

new state event location algorithm along with new initialization and reinitialization

problems will be addressed in the following sections.

5.5.3 State Event Location Problem

An efficient state event location algorithm for initial value problems in differential-

algebraic equations is developed in chapter 6. The algorithm supports flexible

representation of state conditions in propositional logic, and guarantees the location of all

state events in strict time order. The algorithm consists of two phases: 1) event detection

and 2) consistent event location. In the event detection phase, the entire integration step is

searched for the state event by solving the interpolation polynomials for the discontinuity

functions generated by the BDF method. An efficient hierarchical polynomial root-finding

procedure based upon interval arithmetic guarantees detection of the state event even if

multiple state condition transitions exist in an integration step, in which case many
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existing algorithms may fail. As a second phase of the algorithm, a consistent event

location calculation is developed that accurately locates the state event detected earlier

while completely eliminating incorrect reactivation of the same state event immediately

after the consistent initialization calculation that may follow. This numerical phenomenon

has not been explained before and is termed discontinuity sticking.

5.5.4 Reinitialization Problem

The reinitialization calculation determines consistent initial values for the unknown

variables at the beginning of each sub-interval except the first one. The inclusion of the

LCS model affects the reinitialization problem in the following manner. As shown in

Figure 5.5, the end of each sub-interval is marked by a state and/or time event, which may

activate the LCS by a transition in its input signals, and the LCS determines new output

signals by solving its logic, which then impose control actions by replacing a subset of

equations according to the value of the logic outputs. The modified reinitialization

problem requires the following calculation sequence:

Reinitialization Calculation Sequence:

1. Calculate new logic input signals by solving a set of logical propositions (Eqn (5.6)) or

a set of inequality constraints (Eqn (5.9)).

2. Solve the LCS logic to determine the new logic outputs. The inputs to the physico-

chemical system are now completely specified by the new logic outputs of the LCS

that partially determine the set of describing equations for the next sub-interval.

3. Solve the set of equations determined in the previous step to find the consistent initial

values for the describing variables.

Comparing the modified reinitialization problem with the original reinitialization problem

for the physico-chemical system (step 3), the additional calculations required are steps 1

and 2. Even though step 1 can be formulated as a Boolean satisfiability problem (Eqn

(5.6)) or an integer programming feasibility problem (Eqn (5.9)), the solution of step 1 will

not be complicated. Because the values of all relational expressions rj are already
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available at the end of the previous sub-interval, the value of each Q,j (or qi,) is obtained

by simple comparison. After having all values of Q,j, it is straightforward to calculate the

values of IP or Zi from the given logical propositions. The solution of step 2 is rather

complicated, an algorithm for which will be discussed in detail next.

5.5.4.1 Solution of the LCS logic

The solution of the LCS logic is basically equivalent to sequential logic simulation. The

sequential modular approach to process flowsheeting is currently adapted to solve LCS logic

(Goldfarb et al., 1993; Morton, 1992), which converts a sequential logic system

represented as binary logic diagrams into a pseudo-combinational logic system by tearing

an arbitrary set of feedback paths, and simulates the corresponding pseudo-combinational

logic system. In order to simulate the pseudo-combinational logic system, all input values

must be known including the values for the torn feedback signals. The current approach is

to guess the value of feedback signals and simulation is repeated until all feedback signals

are converged to one of the two states. This approach is wrong with respect to two

aspects. First, the consequences of choosing an arbitrary feedback tear set is not

appreciated in practice. As discussed in chapter 2, choosing a feedback tear set

corresponds to selecting a specific Huffman model and different Huffman models will

behave differently due to the presence of hazards and races. This problem can be

amended by using revised binary logic diagrams, which have a unique feedback tear set

(see chapter 2). Second, the feedback signal can be indeterminate when input

combinations represent retentive transitions (see section 3.3.2). In this case, the solution

will depend on the initial guesses for the feedback signals in the sequential modular

approach. Because of this, the previous values of feedback signals should be assigned

rather than an arbitrary initial guess, since the current state of the sequential logic system

is a function of the current input and the previous state of the system.

Given a unique Huffman model derived from the revised binary logic diagram, the

sequential logic simulation can be performed correctly and extremely efficiently. This

problem is equivalent to solving Eqn (3.5) or Eqn (5.21) using the notation of this

chapter.
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z state 4f (Z tate 7 in

(5.21)
7 out <- , state in )

Remember that Boolean state space model of Eqn (5.21) can be derived from any

standard representation as discussed in chapter 3. Even though Eqn (5.21) is formulated

as Boolean satisfiability problem, its solution is straightforward because we need to

calculate Zste and Zout given Zin and Zstate Note that we are interested in the static

behavior of the LCS as discussed in sections 3.3.2 and 5.4.2, therefore we need to repeat

solving Eqn (5.21) until all state variables reach the stable state. The following algorithm

calculates the current stable state Zstte and outputs Zo'U given inputs Z" and previous

stable state Zs a

Sequential logic simulation algorithm:

1. Calculate Z' tate by Z7"sta te:= f (Z7"" Z in  given s ta and Z'.

2. If Zstae , then state:= Zstate and go to step 3. Otherwise, Z state._ Zstate and go

to step 1.

3. Calculate Zo"' by Zo t := g(Zstate Z in )

Note that the number of combinational logic simulations required (solving step 1) is

bounded by the number of state variables as shown in section 2.4.2. Step 1 can be solved

extremely efficiently using standard logic simulation algorithms such as compiler driven

simulation (Abramovici et al., 1990). The first step in compiler drive simulation is leveliging

(see chapter 7), which basically determines the computation sequence for each logic signal.

For example, the value of level of Z' and Z are zero, and the outputs Z""' have the

highest value of level. If the logic elements are simulated in the order determined by

levelizing, the output of each element can be determined properly. After levelizing, the

compiler-drive simulation translates the description of the logic system into a

programming code. Simulation of the logic system is performed by executing the compiler

code.
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Instead of solving the original problem, the topology of the binary logic diagram

can be exploited to derive a calculation sequence in which a series of smaller sub-

problems that contain feedback loops are solved rather than the larger original problem.

The calculation sequence between sub-problems is unidirectional because there is no

feedback loop between them, and can be easily obtained by applying well established

algorithms that identify the strongly connected components of a directed graph (Tarjan,

1972). For example, consider the LCS of tank filling operation in Figure 1.7. Because there

are no external feedback loops, the only sub-problem (sequential logic simulation

problem) is to solve a SRFF.

Finally, timing elements in the binary logic diagrams can be handled directly by

scheduling time events on the output of timing elements.

5.5.5 Initialization Problem

The initialization problem is slightly different from the reinitialization problem because a

set of describing equations and a set of consistent initial values for the describing variables

must be determined simultaneously. This problem for the physico-chemical system alone

is extremely difficult (Bullard and Biegler, 1993; Zaher and Westerberg, 1991). The

difficulty of the initialization calculation is further complicated by the addition of the LCS.

The solution of the initial set of equations determines the initial status of the logic

inputs via the state conditions, and then the initial status of the logic outputs is calculated

by solving the LCS logic, which in turn dictates the initial set of describing equations for

the first sub-interval. Therefore, simultaneous solution is required. The fact that a set of

logical propositions can be transformed into an equivalent set of inequality constraints can

be exploited to formulate the initialization problem mathematically. A complete

formulation for an initialization calculation at t(O) can be obtained by appending 1) the

inequality constraints (or equality constraints) derived from the output interface (Eqn

(5.22b)), 2) the inequality constraints derived from the input interface (Eqn (5.22c)), and

3) the inequality constraints derived from the LCS logic (Eqn (5.22d)), to the set of

equality constraints that define the sufficient conditions for a set of consistent initial

values in the physico-chemical system (Eqn (5.22a)):
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f((X 0) t(O)), io)(t(o)), YO WO)t),u()O) 0

(1) = ()( t(o)) (5.22a)

cO1) (xO (t(O)), i) (t()), y() (t(O)), u) (t(o), t (o) = 0

L (1- zO"') < h (X() (t (O) ) t o(l) (t(O) ) )), ) (t(o)), t(o)) U (1- zout

LFzoU ' < h F (x(l)((O)) i() 0) toY( u (t(O) ) U(1) ((),tO)) < U Fzou

Diq, (t(O) ) + bi.zn" (t(o) )  di,

L, (1- q, (t(o))) 5 r, (x(1)(t (°)), 1) (t(°) ) () (t(°)),U1)(t(°)), t(o)) U,q, (t(0))- e (5.22c)

Vi = 1..Nin

Az(t(o)) _ a
(5.22d)

zstate (t(O) Zstate

where zin, zo"ut c z are binary variables representing the input and output signals of the

LCS, and zsate is the initial condition for the state variables. The f 1) c f (1), hT, hF are

the subset of the original set of equations, f(1), that describes the first sub-interval and a

set of equations dictated by the output logic signals respectively. This formulation is a set

of nonlinear equality and inequality constraints in terms of a mixed set of continuous and

binary variables, and therefore requires solution of a MINLP (Mixed Integer Nonlinear

Programming) feasibility problem, which calculates consistent initial values for the set of

unknowns {x(t(O)), i(t(o)), y(t(O)), z(t() )) .

At present, the initialization problem can be solved by an ad hoc decomposition

strategy. This is based on the observation that given a complete (but not necessarily

consistent) set of values for the binary variables, Eqn (5.22) reduces to a fully determined
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set of nonlinear equations in the continuous variables (continuous sub-problem). Similarly,

given a complete set of values for the continuous variables, Eqn (5.22) reduces to a set of

linear inequality constraints in the binary variables although the coefficients will no longer

be entirely integer (binary sub-problem). The continuous sub-problem is equivalent to the

initialization problem without the addition of the LCS model, and the binary sub-problem

is an integer programming feasibility problem, which has been used to solve formal

verification problem efficiently in chapter 3. Therefore, a suitable iteration scheme that

employs these two sub-problems can be used to search for a feasible solution to the

complete set of constraints.

A general purpose simulator must be able to execute a simulation experiment from

arbitrary initial conditions although steady state or cold and empty are most frequently

encountered in industrial applications. In the above formulation, arbitrary initial

conditions for the physico-chemical system as well as the LCS may be specified for the

purpose of simulation experiments. However, the two initial conditions must be consistent

with each other in order to perform initialization successfully, i.e., the initial condition for

the LCS, zsa"(t(o))= z e, must be consistent with the initial condition for the physico-

chemical system, c' ) (x(') (t(o) )') (t()) ,y() (t() )),u) (t(o) ),to)) = 0. The consistency

between two initial conditions can be checked during the solution of Eqn (22). The values

of LCS inputs are determined by the input interface from the values of the continuous

variables determined from the initial condition for the physico-chemical system.

Therefore, the inconsistency between the LCS inputs and the initial condition for the LCS

will appear as infeasibility in the binary sub-problem.

5.6 Conclusions

Dynamic validation of the LCS is formulated as a hybrid discrete/continuous dynamic

simulation problem. Two major tasks are accomplished to solve the problem. First, the

hybrid model is constructed by combining the model of the LCS and the model of the

physico-chemical process. The LCS is modeled as a revised binary logic diagram that

supports determinism, implicitness, declarativity, and concurrency, while the physico-
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chemical process is modeled as well-established differential-algebraic equations. Due to

the difference between the two models, rigorous input/output interfaces are developed.

Second, an efficient solution algorithm for hybrid dynamic simulation problem is

developed. Due to the nature of interaction between the two sub-systems, initialization

and reinitialization problems are further complicated compared to those for hybrid

dynamic simulation problem without the LCS. Solution algorithms for both sub-problems

are developed.

149



150



Chapter 6

State Event Location in Hybrid
Discrete/Continuous Simulation

6.1 Introduction

In chapter 5, the notion of hybrid discrete/continuous systems is adopted to formulate the

dynamic validation problem of the LCS with its underlying physico-chemical process.

Hybrid systems are defined as discrete and continuous sub-systems inherently coupled and

interacting with each other. Hybrid systems experience a series of continuous and discrete

state transformations. Continuous state transformations are trajectories in the state space

driven by the active continuous sub-system, and discrete state transformations are caused

by transitions between continuous sub-systems. Transitions can be autonomous and/or

controlled by discrete sub-systems. The occurrence of these transitions is known as an

event, and its location in time is defined explicitly (time events) or implicitly by transition

or state conditions (state events). The efficient location of events in strict time order is

essential to the correct solution of the hybrid discrete/continuous simulation problem

because numerous events occur in the course of a hybrid simulation, and missing or

incorrect location of events leads to incorrect simulation results. In fact, failure to locate

events correctly can cause drastic changes to the qualitative dynamic behavior. The

detection and location of time events is straightforward because they occur at a pre-

determined time. However, the location of state events is never known in advance because
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they are determined by state conditions whose value cannot be known in advance, but

must be determined from numerical solution of the differential equations.

This chapter presents an efficient algorithm for detecting and locating state events

tailored to the needs of hybrid discrete/continuous simulation with differential-algebraic

equation (DAE) models. As described in section 5.4.1, the series of continuous state

transformations can be modeled as a sequence of initial value problems interspersed by

events. As a consequence, the time interval of interest [t(o) ,tf)) is partitioned into NCD

continuous sub-intervals [t(k-1),t (k)) Vk = 1.. NCD. The simulation problem can

therefore be defined as:

f(k)(X'k)X(k) ,(k),(k) t) = 01
(X) u (t) ~t e [t(k1), (k)) Vk = 1.. NCD (6.1)

where f(k) :Rn"() x Rn(k) R"(k) x R'(k) xR i-R n" ) +m k) , and x(k) e R"(k) X(k) e Rn(k)

S(k) E , (k) (k) e R(k). The unknowns x and y are usually referred to as the

differential and algebraic variables respectively, and u are the known system inputs. The

following condition is assumed in this chapter:

Rank fk)] = (k) (k) t (k-1) (k) Vk = 1..NCD (6.2)

This is a sufficient condition for Eqn (6.1) to have a diferential index (Brenan et al., 1989)

equal to or less than unity. The initial time t(O) is given, and the end of each sub-interval is

marked by the occurrence of an event. Since the time of occurrence of state events is

never known in advance, the numerical solution of each initial value problem must be

advanced speculatively until the state condition becomes satisfied. The state event location

algorithm is implemented in conjunction with the BDF (Backward Difference Formula)

method (Gear, 1971) because it is the most widely used approach for the solution of

DAEs (Brenan et al., 1989). However, the basic idea applies to any linear multi-step

integration method. The next section discusses the desired properties of a state event

location algorithm employed by a general-purpose simulation package. This is followed by
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a review of existing algorithms, a description of the algorithm, and the chapter concludes

with results and discussion.

6.2 Qualifications for State Event Location

Algorithm

6.2.1 Correct Event Detection and Location

A fundamental requirement for state event location algorithms is to guarantee detection

and location of all state events in strict time order because the discontinuities resulting

from the occurrence of a state event can radically change the future evolution of the

overall system behavior. A state event is defined as the earliest transition of a pending state

condition in an integration step. If multiple state condition transitions exist in an

integration step, the earliest transition must be detected and its time of occurrence must

be located accurately.

6.2.2 Representation of State Conditions

Even though simple relational expressions are commonly used to express state conditions,

a more general form of state conditions is preferred for more flexible problem

formulation and wider application. For example, consider the rectifier circuit (Carver,

1978) shown in Figure 6.1. Depending on the values of voltage and current, diode D1,

diode D2, or both are conductive. The condition for both Di and D 2 to be conductive

requires the logical proposition:

( 1 > 0) v (v > v3)) A((i 2 > O)v(v 2 >V 3)) (6.3)

Consider also the steam trap shown in Figure 6.2 employed to allow only a liquid phase to

flow. The steam trap valve is only open if the liquid level H is greater than the minimum
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level HMIN and there is a positive pressure difference across the valve, which can be

expressed as:

(H 2 HM,) A (AP 0) (6.4)

Finally, consider the temperature-composition diagram for a binary system of partially

miscible liquids at constant pressure as shown in Figure 6.3. The system can exist as a

single phase, two phases, or even three phases depending upon the temperature and/or

total composition. The condition for the system to exist as a single vapor phase can be

expressed as:

((T  T de" (z)) A (ZA ! Z~v (T Tdew(ZA)) A (ZA ZA)) (6.5)

where T~ (ZA), Tv (ZA) are dew point temperatures for systems LAV and

LV respectively, ZA is the total mole fraction of a species A, and ZA is the total mole

fraction of a species A at the eutectic point.

The three examples clearly illustrate the need for a more general formulation of

state conditions. Classical propositional logic is well suited for the representation of state

conditions because it can represent conjunctions and/or disjunctions of relational

expressions effectively. Note that in general, the function on either side of a relational

operator may be nonlinear (e.g., the dew point temperatures).

D1 V3 I312 D2

R1L1 R R3L3 R2L2

Figure 6.1: Rectifier circuit (Carver, 1978)
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Steam -

Drain Pocket
Steam Trap

.Condensate

Figure 6.2: Steam trap

Constant Pressure

A

Total mole fraction ZA

Figure 6.3: VLLE diagram of binary partially miscible system
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6.2.3 Discontinuity Locking

The location of state events that lead to discontinuities is equivalent to integration over

discontinuities. If an integration step is attempted across a discontinuity, this normally

results in repeated step failures and a significant reduction of the integration step size

(Cellier, 1979; Hay and Griffin, 1979). One way to avoid this problem is to lock the system

of equations for each sub-interval. During the step, the system of equations cannot change

even if one or more state conditions are satisfied. Instead, the state conditions are

examined at the end of each step, and if any of them are satisfied, the exact time of

occurrence is then located. This approach has been demonstrated to be both efficient and

correct (Cellier, 1979) provided that the system of equations employed before the state

event is mathematically well behaved in a small interval following the state event (even if

the solution is not physically meaningful). The main advantage of this approach is that the

solution trajectories are C' functions over the whole step. This eliminates the difficulties

of integration over discontinuities, and also provides the means for efficient interpolation

procedures for location of the state event. Discontinuity locking has already been

implemented in many algorithms (Birta et al., 1985; Carver, 1978; Joglekar and Reklaitis.,

1984; Pantelides, 1988).

Before Initialization

0 1
tk 5 tk+1

After Initialization

Figure 6.4: Illustration of discontinuity sticking
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6.2.4 Discontinuity Sticking and Consistent Event Location

State event location requires the evaluation of state conditions over the entire integration

interval. This is typically done by interpolating the unknowns (differential and algebraic

variables) required to evaluate state conditions. After location of the state event, a

consistent initialization calculation is required to restart the integration in the new sub-

interval. This calculation is usually based on the assumption of continuity of the

differential variables (Brill and Pallaske, 1992). Given values for the differential variables,

the new system of DAEs is solved to find consistent initial values for the algebraic

variables and the time derivatives of the differential variables. If the state event does not

occur at mesh points and it has been located by interpolation, the converged initialization

calculation may indicate that the state event detected has actually not quite been triggered.

This situation occurs because the BDF method (Gear, 1971) provides no guarantees for

the consistency of differential and algebraic variables between mesh points although it

ensures that the values of the algebraic variables, differential variables, and their time

derivatives are consistent at mesh points (within the convergence tolerance of the

corrector iteration).

Figure 6.4 illustrates this numerical phenomenon. The state event resulting from a

state condition:

g(x,y,t) > 0 (6.6)

is detected in the integration step [tk,t,k+1]. The state event time, t*, can be determined

by solving:

g(xP(t*),yP(t*),t) = a (6.7)

where xP(t), yP(t) are interpolation formulae (usually polynomials in t) for differential

and algebraic variables respectively provided by the BDF method. The small positive

constant a is an error band employed to ensure that g(xP(t*),yP(t*),t*) >O at t* found

by a root-finding procedure (Birta et al., 1985; Hay and Griffin, 1979). A consistent
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initialization calculation with the assumption of x(t*)= xP(t*) is then performed at t* to

find consistent values for algebraic variables y(t*) which are different from yP(t*) if t*

is not a mesh point:

yP(t*) y(t*) if t* tk,tk+1 (6.8)

Consequently, at the computed state event time, t*:

g(xP(t*),yP(t*),t*) g(xP(t'),y(t*),t*) (6.9)

Contrary to what one might expect, the value of the state condition can be less than zero

after the initialization calculation (g(x(t*),y(t*),t*) < ) as shown in Figure 6.4. If this is

the case, then the same state event is detected again immediately in the new sub-interval.

We term this numerical phenomenon discontinuity sticking. Our experience with several

DAE-based simulators indicates that discontinuity sticking is not a rare phenomenon; it

frequently causes computational inefficiency and sometimes unnecessary simulation

failures. However, this problem and its causes have not been recognized in the design of

existing algorithms. The algorithm described in this paper eliminates discontinuity sticking

completely.

Discontinuity sticking is an inherent problem in the simulation of DAE-based

models. However, the same phenomenon may occur during the solution of initial value

problems in ordinary differential equations (ODEs) even though it is not observed in

general because a consistent initialization calculation is unnecessary after the location of a

discontinuity in the simulation of ODE-based models. For example, consider the solution

of the ODEs (Eqn (6.10a)) with a state condition (Eqn (6.10b)):

x= f(x,t), x(0)= x0  (6.10a)

g(x,t)> 0 (6.10b)

The interpolation formula for g(x,t) is required to detect and locate the state event. One

approach to construct this interpolation formula using an ODE solver is to integrate the

following system of augmented ODEs (Carver, 1978):
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x = f(x, t), x(O)= x0

= g(x,i,t), z0 = g(x 0,0) (6.11)

where z is an additional differentiable variable introduced for g(x,t). Suppose that the

state condition is satisfied in the integration step [tk,,tk+1 ] , then the state event time t

can be found by solving:

zP(t*)= a (6.12)

where zP(t) is an interpolation formula for g(x,t) provided by the integration routine.

An appropriate set of initial conditions for x and z to restart integration following the

state event is {xP(t*),g(xP(t*),t*)} rather than {XP(t*),zP(t*)}. However,

ZP(t*) g(xP(t*),t*) even though z(O)= g(x(O),O). Therefore, simulation of Eqn (6.11)

can lead to discontinuity sticking problems.

6.3 Literature Review

Most modern approaches to state event location employ the discontinuity locking

mechanism and discontinuity functions. The system of discontinuity functions (or variables)

z(t)= g(x,i,y,u,t) is constructed from the relational expressions in the pending state

conditions (expressed in general as logical propositions) so that one of their zeros

correspond to the state event time. A major difference amongst the various algorithms

reported in the literature is the manner in which the interpolation formulae for

discontinuity functions zP(t) are generated and the state event time is located in the

integration interval [tk ,tk+ 1 ].

Carver (1978) constructs zP(t) from an auxiliary system of differential equations

(obtained from differentiation of the discontinuity functions with respect to time)

appended to the original system of ODEs, and integrating the augmented system of

ODEs. The signs of z P (t k ), z (tk+, ), ' (tk), z' (tk+1) are employed to detect state events
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and, if detected, the state event time is located by solving one of the z' (t) = 0 detected to

cross zero.

Hay and Griffin (1979), Ellison (1981), Joglekar and Reklaitis (1984), and Preston

and Berzins (1991) detect the state event by checking the signs of z(tk) and z(tk+l). Hay

and Griffin (1979) locate the state event time by successive integration with reduced step

size combined with linear and quadratic interpolation. Ellison (1981) proposes a location

algorithm based on Hermite interpolation. Joglekar and Reklaitis (1984) restrict themselves

to linear discontinuity functions, construct zP(t) from xP(t) and yP(t), and locate the

state event time by solving one of zP (t)= 0 using a Newton iteration scheme. Preston

and Berzins (1991) propose a location algorithm specific to a particular class of problems,

which basically marches up to the discontinuity with successive integration combined with

several interpolation formulae.

Birta et al. (1985) approximate z(t) by cubic polynomials, tabulate the various

possible configurations of a cubic polynomial to detect a state event, and locate the state

event by Regula-Falsi and Newton iteration schemes.

Shampine et al. (1987) also consider linear discontinuity functions of the form,

g = x(t)+ P or .(t) where 1 is a constant, and construct zP(t) algebraically from

xP(t). A Sturm sequence is generated to determine the number of zeroes for zP(t)= 0,

and the state event time is located using a bisection algorithm and the Sturm sequence.

Rather than employing discontinuity functions, Pantelides (1988) uses the state

conditions directly. The state event is detected by comparing the logical values of state

conditions at tk and tk+1, and if detected, the time of occurrence is located by a bisection

algorithm with interpolation formulae x P (t) and yP (t).

Although the use of discontinuity functions has been the most common method

for handling state events, Gear and Osterby (1984) deal with the problem in a direct

manner by examining the behavior of the local truncation error and its estimate in the

region of the discontinuity.

None of the existing algorithms satisfy all the requirements for a state event

location algorithm outlined in the previous section. First, only Shampine et al. (1987) can

guarantee the location of the earliest state condition transition when there are multiple state
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condition transitions caused by the multiple zero crossings of a discontinuity function in

an integration step. Second, state conditions in classical propositional logic are not

supported in most algorithms except Pantelides (1988). Finally, there are no provisions for

the discontinuity sticking problem in DAE-based algorithms (Joglekar and Reklaitis., 1984;

Pantelides, 1988; Preston and Berzins, 1991).

6.4 State Event Location Algorithm

A new algorithm for the detection and location of state events in simulation of DAE

models is presented. The algorithm supports flexible representation of state conditions in

classical propositional logic, and all state events are guaranteed to be detected and processed

in strict time order. The algorithm consists of two phases: 1) event detection, and 2)

consistent event location. These are presented in the subsections.

6.4.1 Representation of State Conditions

As discussed in section 6.2.2, state conditions are represented by logical propositions that

contain members of a complete set of connectives (e.g., {NOT,OR, AND}) and a set of

atomic propositions (relational expressions), which can be expressed in Backus-Naurform

as:

(Rel Exp) ::= (Exp)(Rel_ Op) (Exp) (6.13)

where a valid (Rel_ Op) is one out of {>,<,>,5} and (Exp) is any valid real expression.

Therefore, the state condition can be represented as:

L(t)= P(r(x,i, y, jr, u, t)) (6.14)

where P is a logical proposition between a set of relational expressions r, and L is the

corresponding Boolean function. A set of relational expressions can also be rearranged as:
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g(x,x,y, Y,u,t) 0

z(t) = g(x,,y,yj,u,t)

(6.15a)

(6.15b)

where g is a set of discontinuity functions and z are the corresponding discontinuity

variables.

Figure 6.5: Event detection algorithm
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DetectEvent ( tk , k+1
BEGIN

Initialize L, g , td
FOR i := 1 TO Nsc

FOR j := 1 TO N i

FindRoot(Z t) , Root, N tk k+1

FOR k := 1 TO N root

IF StateConditionChange (L i ,Root [k] ) AND Root [k] < td THEN
S* *

L:=L,; g := gij; td:=Root [k]

ENDIF
END

END
END

END

FindRoot (z t), Root, Nroot k k+)
BEGIN

Root := t : zP(t)=0, tk :--t-tk+1

N :I Root
END

StateConditionChange (L , t )
BEGIN

RETURN y(L,t)=1
END



6.4.2 Event Detection Phase

The event detection phase determines whether or not any Boolean state condition

Li , i = 1..Ns changes its value within the current integration interval [tk ,tk+1 ] and, if it

does, finds the limiting state condition L* that changes its value first, and therefore triggers

the state event. The limiting state condition L* is defined along with the state event time

td as follows:

L* ={L,:(Li,t*)=1, 1 i <Ns} (6.16a)

t = mint : y'(Li,t) = 1, 1 <i5 Ns, tk k+1  (6.16b)

where y e (0,1} is a function defined for a Boolean function L as:

Lt) = if L changes its value at t
y(L,)= otherwise (6.17)

The transition of a state condition L can be determined by monitoring values of its

constituent relational expressions. Each relational expression changes its value whenever

its corresponding discontinuity function crosses zero. Therefore, an event detection

algorithm requires finding zero crossings of the discontinuity functions, and determination

of t; and L* at these zero crossings. Figure 6.5 shows the event detection algorithm. The

limiting discontinuity function g* is one of the discontinuity functions in L*, and one of

its zero crossings actually determines t and L*. Note that the state event time t found

in this phase is only an initial guess for the consistent event location phase, in which the

consistent state event time t* will be calculated. The detection algorithm can be made

more efficient by first finding the earliest zero crossing of each discontinuity function and

checking whether the state condition changes at these zero crossings. However, it is very

rare for a discontinuity function to have multiple zero crossings in an integration interval.

In general, there can be more than one L* and g* in an integration step. However,

it is assumed that they will be isolated relative to machine accuracy. Furthermore, the
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root-finding procedure based on interval arithmetic is able to separate multiple instances

of L and g* to within machine accuracy.

The performance of the event detection algorithm depends on finding zero

crossings of the discontinuity functions, which is based on the interpolation formulae for

the discontinuity functions z'(t). Therefore, the degree of approximation of zP(t) to

z(t) is critical for the performance of the event detection algorithm (as will be

demonstrated later). Construction of zP(t) will be discussed next followed by a rigorous

and efficient algorithm to find zero crossings of zP(t).

6.4.2.1 Interpolation Formulae for Discontinuity Functions

The BDF method provides interpolation polynomials xP(t) and yP(t) for differential and

algebraic variables respectively for each integration interval [tk,t k+1]. Errors in xP(t) and

yP(t) are controlled even though xP(t) and yP(t) do not automatically satisfy algebraic

relations of the DAEs between mesh points. Interpolation polynomials zP(t) for the

discontinuity functions should be constructed that are as accurate as xP(t) and yP(t).

Also, this should be computationally efficient because the construction of zP(t) is

required at every integration step. This can be achieved by appending a set of

discontinuity functions (Eqn (6.15b)) to the original set of DAEs (Eqn (6.1)) and

integrating an augmented system of equations of the form:

f(x,, y,u, t) = 0

u = u(t) (6.18)

z(t) = g(x,x, ,y y, u,t)

Note that it is not necessary to differentiate the discontinuity functions (Carver, 1978).

Then, the BDF method automatically provides zP(t) that are as accurate as xP(t) and

yP(t) at each integration step because the mesh points are chosen considering all the

equations including the discontinuity functions. This approach increases the system of

equations to be integrated by the number of discontinuity functions. However, the
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dominant cost of integrating a system of DAEs is that of computing and factoring an

iteration matrix (Brenan et al., 1989). Figure 6.6 shows the incidence form of the iteration

matrix for the augmented system of equations, and clearly the size of the matrix that

should be factored does not change by adding the additional equations because z(t) only

appear in z(t) = g(x, , y, y,u, t). Therefore, the computational cost increase per

integration step related to appending the discontinuity functions is insignificant. However,

integration of the augmented system (Eqn (6.18)) may require more integration steps than

that of the original system (Eqn (6.1)) because the functional properties of the

discontinuity functions (Eqn (6.15b)) may limit the step size of the augmented system.

If the discontinuity functions involve the time derivatives of the algebraic variables

j , the index of the augmented system is raised to 2. Hence, in this case the augmented

system should be integrated by an algorithm appropriate for an index 2 problem in the

semi-explicit form (Brenan et al., 1989; Gritsis et al., 1988).

x y z

f () = 0 .. xi 0

z = g() x x I

Figure 6.6: Iteration matrix of the augmented system of equations

6.4.2.2 Zero Crossings of Discontinuity Functions

Zero crossings of each discontinuity function can be found by solving an interpolation

polynomial zP(t) in [tk,tk+1]. The interpolation polynomial provided by the BDF method

takes the form:

q hn tz e)tk+) t-k+ n
zf (t) = n (6k+9

n=O hext
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where hnex, is the next suggested step length and q is the current order of integration. The

introduction of scaled time s bounded by 0 and 1 in the current integration interval

[tk tk+1] simplifies the numerical computation involved with the root-finding procedure.

The polynomial (Eqn (6.19)) rescaled by the current step length h is:

z -(S(tk))s = CSn (6.20)
n=0 n! n=0

where s = (tk+1- t)/h. Thus, we need to find roots of zi(s) = 0 in [0,1].

Interval arithmetic (Neumaier, 1990) is applied for rigorous root-finding. The

root-finding procedure consists of two steps: 1) a root exclusion test, and 2) Newton's

method with recursive interval bisection (Moore, 1979). The exclusion test identifies most

of the polynomials that have no roots in [0,1]. The exclusion test is based on the

enclosure of z(s), which contains the range of values of z i(s) in [0,1]. There are no

roots of zP(s) = 0 in [0,1] if zero is not contained in this enclosure. Even though there

are a variety of ways to evaluate an enclosure of a real function with interval arithmetic,

depending on the quality of the enclosure and computational costs (Neumaier, 1990), we

employed the most efficient way to evaluate an enclosure of a polynomial as shown in

Eqn (6.21):

q q

z ([0,1]):= ~ [0,1] n =J Cn[0,1] (6.21)
n=O n=O

where zp([0,1]) is an enclosure of a polynomial zi(s) in the range of [0,1]. Note that the

evaluation of z ([0,1]) requires only q additions. Furthermore, as will be demonstrated

later, the exclusion test is extremely successful because it can identify most of the

polynomials that have no roots in [0,i]. The use of this exclusion test greatly enhances the

overall efficiency of the root-finding procedure because it is expected that there will be no

roots at all in most integration steps.
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Due to the nature of the exclusion test, a polynomial not eliminated by this test

may or may not have roots in [0,1]. Newton's method with recursive interval bisection

determines whether or not this polynomial has roots in [0,1], and finds its roots if it does.

The intervals that enclose the roots are searched by existence and nonexistence tests with

recursive interval bisection. Once this interval is found, the root can be determined by

Newton iteration method. Existence and nonexistence tests are based on the Krawcyk

operator (Moore, 1977):

z (rm(s)) , (s)
K (s): = m(s) - ' + 1 ))(s -r(s)) (6.22)

mi (s)) mg (s)

where s is an interval of scaled time s, z (s) is an interval extension of zj(s), and m( )

is a midpoint operator to an interval. If K(s)ns = 0, then zip(s) contains no zero

in s (nonexistence test). On the other hand, if K(s) g int(s), then z (s) contains a unique

zero in s (existence test), which can be found by a simplified Newton method (Eqn (6.23))

from any initial guess in s:

s(k+1) .= (k) -z ( (k) )/im( P)) (6.23)

If K(s)fs A 0 and K(s) < int(s) where int(s) is interior of an interval s, then the

interval s is bisected and the existence and nonexistence tests are applied to the bisected

intervals recursively. Note that the Krawcyk operator and the Hansen operator (Hansen

and Sengupta., 1981) give the same existence and nonexistence tests for a single equation.

While the nonexistence test excludes an interval that has no zeros, the existence

test identifies an interval enclosing a unique zero. There is a case in which the existence

test fails. The existence test cannot identify an interval enclosing a zero of multiplicity

greater than one because an interval extension of the Jacobian of the polynomial is not

regular (Neumaier, 1990). In other words, the root-finding procedure can only find simple

zeros of the polynomial. However, this limitation does not cause problems in this

particular application because it is extremely rare that the polynomial produced by the

BDF method has a zero of multiplicity greater than one.
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Eg -

0

Figure 6.7: Selection of discontinuity tolerance Eg

6.4.3 Consistent Event Location Phase

The second phase of the algorithm is consistent event location, which determines the

consistent state event time tI at which consistency between the differential and algebraic

variables is retained, and consequently eliminates discontinuity sticking problems. The

consistent event location problem can be formulated as a system of nonlinear equations:

f(x,,y,u,t;) = 0 (6.24a)

u= u(t;) (6.24b)

x = xP(t;) (6.24c)

g*(x,i,y,u,t;) =+e (6.24d)
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where eg (which will be called the discontinuity tolerance) is a small positive tolerance. The

sign on Eg is determined by the direction of the zero crossing of g*. An extra Eqn

(6.24d) is introduced to determine the additional unknown t . Note that the discontinuity

function g* does not involve the time derivative of the algebraic variables y in this

formulation. A Newton iteration requires only from zero to two iterations to solve this

system of equations because extremely good initial guesses for the unknowns are available

from the detection phase. An alternative formulation of the consistent event location

problem is:

f(x,,y,u,t) =0 
(6.25a)

u = u(t) (6.25b)

a=ox/(t; - tk)+XaiX(tk+ i  t - tk) (6.25c)
i=1

y = oy/(t - tk) + k+li t;-t,) (6.25d)

g*(x,i,y,y,u, t)= +E (6.25e)

where a, i =0..q, are coefficients of the BDF method. Eqn (6.25) is effectively a

corrector iteration of the BDF method with an unknown step size tI - tk. The step size

or the consistent event time t; is simultaneously determined with other unknowns. Eqns

(6.25b), (6.25c), and (6.25d) can be used to eliminate u, x, and y from Eqns (6.25a) and

(6.25e), and the augmented Jacobian matrix of the reduced system of equations is:

[ f df di df i df df di df du
dx di dx dy dt dixdt du dt

g* dg* di dg' g* dy d g g* di d g* g u (.26)

dx di dx dy dy dy d t di dt dyjr dt du dt

It is unnecessary to evaluate and factor the whole Jacobian matrix J. The leading

principal sub-matrix Jn+m of order n + m of J is equivalent to the Jacobian matrix Jc of

the corrector iteration of the BDF method, and Jn+m(t), t [tk ,,t,k+1], can be
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approximated effectively by J, (tk+1 ), the Jacobian matrix used in the corrector iteration at

tk+1, which is already available in a factored form. We only need to evaluate the last

column and row of J and to perform elimination operations on the last column and row

of J in order to factor the Jacobian matrix J. Therefore, solution of Eqn (6.25) requires

less computational effort compared to Eqn (6.24).

This additional calculation should determine the consistent state event time t* as

close as possible to the true event time t , at which the zero crossing actually occurs,

while eliminating discontinuity sticking problems. This objective can be accomplished by

selecting the discontinuity tolerance E, correctly as shown in Figure 6.7. The discontinuity

tolerance is determined from state event tolerance S and the slope of the discontinuity

function g* as follows:

Eg: =IgIL
(6.27)

Eg EraEn mx

The discontinuity function g* is assumed to be linear in the small interval [t*,t + ].

Note that the discontinuity tolerance is bounded by e" and e" . While the upper
g g

bound egX is necessary to prevent the value of g* at tt from being too far from zero,

the lower bound en"n is necessary to prevent the discontinuity sticking problem. Even

though Egx can be assigned by the user, ng is determined as follows:

e m" := 2E (6.28)

where e is the numerical tolerance of the equation solver employed in the consistent

event location calculation and initialization calculation. This relationship is necessary

because the consistent state event time tt can be converged to any value in the interval

shown in Figure 6.7 and the initialization calculation is performed at this converged event

time. In summary, consistent event location determines the consistent state event time tt,
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which is guaranteed to be within the bound specified in Eqn (6.29) while eliminating the

discontinuity sticking problem completely with minimal computational cost.

t, E [t: ,t + ] if I gl '| > emin (6.29)
t, E [t:,t + A] if -1g*L 55E., where A (6.2

After the consistent event location phase, it is necessary to check whether there exists any

other state condition LC such that y(L* ,t)= 1 where L** L*. This can be done

efficiently using the converged results from the consistent event location calculation

(basically repetition of the event detection phase). If there exists such L**, then the

consistent event location problem (Eqn (6.25)) is solved again using a new limiting

discontinuity function g**, which is one of discontinuity functions in L*. A finite

number of state conditions ensures termination of this algorithm in finite time. However,

this phenomenon is very rare as will be demonstrated later.

6.5 Performance of Algorithm

The proposed algorithm has been implemented in the combined discrete/continuous

modeling environment ABACUSS 1 and is applied to a series of test problems from the

literature (Birta et al., 1985; Carver, 1978) and some chemical engineering problems to

demonstrate its correctness and efficiency. We have also implemented and tested the

bisection algorithm (Pantelides, 1988). The latter algorithm is valuable by way of

comparison because it is currently employed by widely used DAE-based simulators (e.g.,

gPROMS (Barton and Pantelides, 1993) and SpeedUp (AspenTech, 1993)), and, if events

are located correctly, represents the minimal computational cost associated with state

event handling.

Table 6.6 shows an overview of the problems tested with respect to problem size

and computational measures. Regarding representation of state conditions, one literature

problem (Example 3 of Carver (1978)) and all the chemical engineering problems require

1 ABACUSS (Advanced Batch and Continuous Unsteady-State Simulator) process modeling software, a derivative work of
gPROMS software, © 1992 by Imperial College of Science, Technology, and Medicine.
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state conditions expressed in terms of logical propositions rather than simple relational

expressions.

6.5.1 Event Detection

Some of the earlier algorithms frequently fail to detect and locate the state event when

there are multiple state condition transitions in an integration step. There can be two

situations in which the state condition experiences multiple transitions. The first case is

when one of its constituent discontinuity functions has multiple zero crossings in the

integration step. For example, the state condition in Eqn (6.4) will change its value two

times if H - HMN = 0 has two roots and AP 2 0 in the integration interval. It is critical

to find the first root of H - HM = 0 in this case. Even though this potential problem

has been recognized (Birta et al., 1985; Carver, 1978; Shampine et al., 1987), only the

Sturm sequence algorithm of Shampine et al. (1987) and our algorithm guarantee the

detection of the state event in such a case. However, although it is possible to create

simple example problems that have multiple zero crossings in an integration step, in our

experience this phenomenon is extremely rare in the large-scale problems typically

encountered in engineering applications. This is because it is extremely unlikely for a linear

multi-step integration method to generate an integration step with a stationary point in its

interpolation polynomials.

On the other hand, a state condition expressed as a logical proposition containing

a conjunction can frequently experience multiple transitions in an integration step even if

its constituent discontinuity functions cross zero only once (Angulo and Torkzadeh.,

1988). The bisection algorithm fails to detect and locate the earliest transition in this case.

For example, consider the circuit example (Birta et al., 1985; Carver, 1978). Figure 6.8 and

Figure 6.9 show solution profiles produced by the bisection algorithm and our algorithm

respectively. There are 10 state events in this problem (Birta et al., 1985) as can be seen in

Figure 6.9. However, the bisection algorithm detected only the first state event, which

results in completely incorrect solution profiles as can be seen in Figure 6.8. The bisection

algorithm failed to detect 9 state events because it detects a state event by checking the

transition of a state condition only at mesh points. For example, consider the failure to

detect the second state event. The state condition that triggers the second state event is:
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('I 0) V (V2 V3)) A = 0) A (vi 3)) (6.30)

and the discontinuity function that actually triggers the state event is i1 = 0 2 (Birta et al.,

1985). Table 6.1 shows integration steps taken by the bisection algorithm around the

second state event. It is clear that the state condition of Eqn (6.30) is satisfied in the

interval [0.0066444,0.0066974] even though it is not at the mesh points. In this case, the

time period in which the state condition is satisfied is completely enclosed by the

integration step, and the bisection algorithm failed to detect the event because the state

condition does not change its value at the mesh points. The bisection algorithm failed to

detect the remaining 8 state events for the same reason. The same error has also been

observed in the Weir simulation problem.

In general, any algorithm that detects a state event by monitoring the transition of

the state condition only at mesh points fails to detect and locate the state event when the

state condition experiences multiple transitions in the integration step. To be more

specific, it fails to detect the state event when the state condition changes its value an even

number of times, and it does not guarantee location of the earliest transition when the

state condition changes its value an odd (greater than one) number of times.

Unlike the bisection algorithm, our detection algorithm detected and located all

the state events correctly. In fact, our algorithm guarantees the detection and location of the

state event even if the state condition experiences multiple transitions in the integration

step because our algorithm rigorously searches for the state event in the whole integration

step using interval arithmetic.

Table 6.1: Integration steps taken by the bisection algorithm for Example 3 (Carver, 1978)

Time i1  i 2  V1 V2  V3

0.0063996 0.308957 0.747689 -42.5670 42.5670 0.0000
0.0065915 0.087537 0.959023 -47.9400 47.9400 0.0000
0.0066444 0.022226 1.021566 -49.3937 49.3937 0.0000
0.0066974 -0.044848 1.085879 -50.8336 50.8336 0.0000
0.0067504 -0.113660 1.151938 -52.2593 52.2593 0.0000

2Note that i1 = 0 is formulated as ABS(i,) 5 Tol in ABACUSS where Tol/is a small numerical tolerance.
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Figure 6.10: Solution of Example 1 (Carver, 1978) by the bisection algorithm
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Figure 6.11: Solution of Example 1 (Carver, 1978) by the new algorithm
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Table 6.2: Integration steps taken by the bisection algorithm for Example 1 (Carver, 1978)

Time, t sin(4nt) Y
0.0000000 0.000E+00 0.100000
0.0000062 7.791E-05 0.100000
0.0031680 3.980E-02 0.100032
0.0063310 7.947E-02 0.100063
0.2500020 -2.136E-05 0.102566
0.2531640 -3.975E-02 0.102566
0.9000000 -9.511E-01 0.102566

6.5.2 Interpolation Formulae for Discontinuity Functions

The detection and location phases of most algorithms rely on the interpolation formulae

for the discontinuity functions zP(t). However, the importance of the accuracy of zP(t)

has often been overlooked. In fact, interpolation formulae zP(t) that are accurate over the

entire integration step are essential to detect and locate the state event correctly (Shampine

et al., 1987). For example, consider Example 1 (Carver, 1978) consisting of one

differential equation:

x2 sin(4 ) > 0 (0) 0,0.9
, in(4t) 0 x(0) = 0.1, t E [0,0.9] (6.31)

There are three state events, which occur at t =0.25, 0.50, 0.75 according to the analytical

solution. Figure 6.10 and Figure 6.11 show the solutions obtained by the bisection

algorithm and our algorithm respectively. Table 6.2 shows the integration steps taken by

the bisection algorithm. Clearly, the bisection algorithm skips over the last two events,

whose time of occurrences are completely enclosed in the last integration step. This

happens because the integration steps taken by the bisection algorithm are far from being

appropriate to provide an accurate approximation for the discontinuity function sin(4rt)

by linear interpolation. In general, any algorithm will fail to detect the state events if it

takes integration steps inappropriate for the discontinuity function sin(4at) and

constructs the interpolation formula using the data of sin(4nt) at mesh points.
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This example illustrates that interpolation formulae zP(t) that are accurate over

the entire integration step are critical to detect and locate the state event correctly. Our

algorithm guarantees the construction of zP(t) as accurate as xP(t) and yP(t) by forcing

the BDF method to select the integration step sizes appropriate to z(t), x(t), and y(t).

Table 6.3: Number of discontinuity stickings

Simulation Bisection New
problems aorithm algorithm

FlashDrum 1 0
PilotPlant 3 0
BatchDistillation 8 0

Table 6.4: Numerical tolerances for consistent event location

Numerical tolerances Values
Tolerance for an equation solver E 1.0 x 10-6

Lower bound on discontinuity tolerance EBn'" 2.0 x 10-

Upper bound on discontinuity tolerance e x  1.0 x 10- 4

State event tolerance 8 1.0 x 10-4

Figure 6.12: ABACUSS output of PilotPlant simulation problem solved by the bisection algorithm
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Integrating from 6237.8032240 to 6270.9173360
Integrating from 6270.9173360 to 6304.0314480
IF condition PLANT.CALANDRIA.DELTA_T > 40 no longer satisfied
Performing Reinitialisation calculation at time: 6304.0011311
IF condition PLANT.CALANDRIA.DELTA_T > 40 satisfied
Reinitialisation calculation completed.

Integrating from 6304.0011311 to 6304.0042934
IF condition PLANT.CALANDRIA.DELTA_T > 40 no longer satisfied
Performing Reinitialisation calculation at time: 6304.0011867
Reinitialisation calculation completed.

Integrating from 6304.0011867 to 6304.0043490
Integrating from 6304.0043490 to 6304.0075113



6.5.3 Discontinuity Sticking Problem

Table 6.3 shows the number of discontinuity stickings for three of the test problems. Note

that the bisection algorithm suffers from a number of discontinuity stickings. Figure 6.12

is a portion of the ABACUSS output script for the PilotPlant simulation problem, which

shows one instance of discontinuity sticking. On the other hand, the consistent event

location calculation completely eliminates discontinuity stickings. Table 6.4 lists

satisfactory values of numerical tolerances used in the consistent event location

calculation.

Regarding the activation of a different state condition after the consistent event

location, it does not occur in any of the problems tested.

Table 6.5: Performance of exclusion test

Simulation problems Solved NoRoot Excluded
Examplel (Carver, 1978) 255 248 248
Example2 (Carver, 1978) 217 210 209
Example3 (Carver, 1978) 1694 1664 1644
Examplel (Birta et al., 1985) 66 64 64
Example2 (Birta et al., 1985) 308 290 287
BouncingBall 46 39 39
OverflowTank 280 276 276
SafetyValve 88 83 83
Weir 370 369 367
FlashDrum 2449 2439 2439
PilotPlant 23965 23948 23946
BatchDistillation 49802 49788 49782
Solved: the number of polynomials solved excluding zero-order and linear polynomials
NoRoot : the number of polynomials that have no roots
Excluded: the number of polynomials excluded by the exclusion test as having no roots

6.5.4 Computational Efficiency

Computational efficiency of the algorithm can be evaluated by considering the

computational costs associated with three calculations: root-finding, consistent event
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location, and integration of the augmented system of DAEs. Each subject will be

discussed.

As shown in Table 6.5, it is necessary to solve a large number of polynomials

during the simulation experiment. Note that the polynomials have no roots at all in most

cases (99.85%). Therefore, it is important to exclude those polynomials as efficiently as

possible. Table 6.5 shows performance of the exclusion test we employed, and it excluded

99.96% of polynomials that have no roots.

Recursive interval bisection with existence and nonexistence tests requires a series

of evaluations of the Krawcyk operator. Even though interval arithmetic generally requires

more computational effort than real arithmetic, evaluation of the Krawcyk operator

requires only one interval extension of the Jacobian of a polynomial and one polynomial

evaluation, which are efficiently computed by the Horner scheme. Regardless of the

computational cost related with evaluating the Krawcyk operator, the overall efficiency of

the root-finding procedure is dominated by the efficiency of the exclusion test because

most polynomials have no roots at all.

Comparing our root-finding algorithm with the Sturm sequence algorithm of

(Shampine et al., 1987) that can be used as an exact exclusion test, both algorithms

guarantee that all roots in an integration interval will be found. However, the latter is

computationally expensive. In order to perform an exclusion test by Sturm sequence for a

q -th order polynomial, it is necessary to construct a Sturm sequence, which requires

(q + 1)(q - 2)/2 multiplications, and to evaluate 2q polynomials, while our exclusion test

requires only q additions.

Additional computational effort required for the consistent event location

calculation is insignificant because it converges within zero to two iterations due to

extremely good initial guesses for the unknowns, and it is unnecessary to evaluate and

factor the whole Jacobian matrix for this calculation. Furthermore, consistent event

location completely eliminates discontinuity stickings that cause computational

inefficiency primarily due to additional Jacobian factorizations in the unnecessary

consistent initialization calculations and unnecessary restarts of the numerical integration.
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Table 6.6: Comparison of computational cost associated with integration

Problem size Bisection algorithm New algorithm New algorithm
(g attached) (g not attached)

Simulation problems NEgn NDis NStep NRes NJac NStep NRes NJac NStep NRes NJac
Examplel (Carver, 1978) 2 1 Fail Fail Fail 312 1250 167 Fail Fail Fail
Example2 (Carver, 1978) 2 2 154 281 34 161 321 37 267 267 31
Example3 (Carver, 1978) 6 10 Fail Fail Fail 275 990 104 245 802 83
Examplel (Birta et al., 1985) 3 1 101 167 14 115 194 17 111 181 17

Example2 (Birta et al., 1985) 2 2 345 514 52 370 702 68 337 499 49
BouncingBall 4 2 35 39 20 74 95 34 35 38 20
OverflowTank 4 4 113 192 24 110 194 24 108 185 23
SafetyValve 3 2 122 218 32 133 257 38 121 204 32
Weir 5 3 Fail Fail Fail 165 488 48 Fail Fail Fail
FlashDrum 54 15 414 1058 137 451 1159 154 418 1044 143
PilotPlant 113 35 1558 2966 432 1642 3222 422 1413 2697 389
BatchDistillation 462 124 438 995 124 415 931 111 416 916 110

NEqn : the number of equations
NDis : the number of discontinuity functions
NStep : the number of integration steps taken
NRes : the number of residual evaluations
NJac : the number of jacobian evaluations
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Table 6.6 shows the effect on computational cost of appending the discontinuity

functions to the system of DAEs and integrating the augmented system. Compared with

the bisection algorithm, our algorithm required more integration steps for the problems

tested except the BatchDistillation problem. Note that our algorithm required less

integration steps for the BatchDistillation problem, which has numerous discontinuity

stickings, because it eliminated the unnecessary integration restarts completely. However,

the issue of computational efficiency is irrelevant because the bisection algorithm fails as

demonstrated earlier whereas our algorithm detected and located all the state events

correctly. For the purposes of experimentation, we tested our algorithm without inserting

the discontinuity functions in the error control mechanism. Therefore, the accuracy of the

interpolation polynomials for the discontinuity functions is not guaranteed. Table 6.6

shows the result. In terms of computational cost, this approach compares very favorably

with the bisection algorithm. However, it also fails for the same reason on two problems.

Hence, it is not recommended.

6.6 Conclusions

Mathematical models of physical systems frequently contain discontinuities (Grossman et

al., 1993) and accurate simulation of these models requires exact location of these

discontinuities or state events. An integrated state event location algorithm for initial value

problems in differential-algebraic equations has been presented. The algorithm is designed

to be used in modern general-purpose simulation tools, it supports flexible representation

of state conditions using propositional logic, and guarantees the efficient location of all

state events in strict time order.

The state event location algorithm consists of two phases: 1) event detection, and

2) consistent event location. The event detection identifies the state condition and its

constituent discontinuity function that triggers the state event. Interpolation polynomials

for the discontinuity functions are solved directly to find the earliest transition of the state

condition in the integration interval. The polynomials are solved by a hierarchical

root-finding procedure based on interval arithmetic, which consists of an exclusion test

and Newton's method with recursive interval bisection. Interpolation polynomials as
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accurate as those of model variables are generated automatically by the BDF method. A

consistent event location calculation is developed to accurately locate the time occurrence

of the state event detected earlier while completely eliminating discontinuity sticking,

which is a term coined to describe the numerical phenomenon of incorrect reactivation of

the same state event immediately after the initialization calculation that will follow.

Results from various test problems have been presented to demonstrate the

guaranteed performance of the algorithm. The event detection phase detected all state

events correctly even if the state condition experiences multiple transitions in an

integration step. The overall efficiency of the event detection phase is enhanced by the

extremely efficient exclusion test employed to fully exploit the fact that there are no roots

at all in most integration steps. Consistent event location determines the state event time

accurately and eliminates all discontinuity sticking with minimal computational cost.
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Chapter 7

Preliminary Study of Combinational
Logic System Verification

7.1 Introduction

A VLSI (Very Large Scale Integrated) circuit is an integral part of any modern electronic

system. The design of such circuits is a complicated and time consuming process, and thus

there are many sources of error that can produce an incorrectly functioning circuit. A

human designer or an automatic design tool makes an error, and consequently produces

an incorrectly functioning circuit. Design errors might also be introduced due to the

misuse of an automatic design tool. Design verification is the process of determining

whether the designed circuit is the same as what was specified. In particular, logic

verification is the process of verifying the equivalence of two circuits at the logic level,

usually the optimized and the unoptimized circuits. This design verification step is

essential because it is extremely expensive and time consuming to fix errors found in the

fabrication process. With the advances in integrated circuit technology, the number of

devices that can be put on a chip has increased rapidly. This has greatly increased the

complexity of the circuit design and verification process. Design verification has relied

mostly on simulation, though formal methods are emerging. However, validation via

simulation is still used in practice for circuits that cannot be verified by formal methods,
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for example, arithmetic circuits (e.g., multipliers) and large-scale sequential circuits.

Therefore, it is necessary to find new techniques to verify large and complex circuits.

The implicit model checking technology developed in chapter 3 is applied to

formal verification of combinational circuits at the logic level. The problem is formulated

as a Boolean equivalence checking problem and is then solved as an integer programming

feasibility problem. A general priority setting strategy for the IP feasibility problem is

developed. The proposed methodology is demonstrated by verifying a 2-bit multipler.

Then, the methodology is applied to verify a 16-bit multipler.

7.2 Problem Formulation as Boolean Equivalence

Checking Problem

Unlike sequential logic systems, the outputs of combinational logic systems only depend

upon the current inputs as shown in Figure 7.1. Combinational logic systems are widely

used to model digital circuits at the logic level, especially arithmetic logic functions.

Formal verification of combinational logic systems is rather different from that of

sequential logic systems where the description or model of the system is checked against a

set of specifications. In combinational logic system verification, the model of the system is

checked against a reference model or another representation of the same system.

Therefore, formal verification of combinational logic systems is usually formulated as a

decision problem in which, given two different descriptions of a combinational logic

system, the question is whether the two descriptions have the same functionality.

Consider a combinational logic system in Eqn (7.1) computing a vector of 1

Boolean outputs Y E {F, T}t given a vector of m Boolean inputs U e {F, T}m:

Y -> f(U) (7.1)

where f: {F, T}m - {F, T} is a vector of logical propositions. The reference model can be

represented similarly by a set of Boolean functions in Eqn (7.2):

Yr <- f,(U) (7.2)
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where fr: F,T}m H-> F,T}' is a vector of logical propositions, and Yr e(F, T} is a

vector of outputs calculated by the reference model given the same inputs U. The formal

verification problem is then formulated as a Boolean equivalence checking problem that

determines whether the two combinational logic systems implementing the equivalent

functionality produce equivalent outputs for all possible valuations of inputs, as illustrated

in Figure 7.2. In order to show that two implementations are not equivalent, it is sufficient

to find an input combination that asserts different outputs when applied to the two

systems. If no such input combination exists, the systems are formally proved to be

equivalent.

Combinational
Logic

Figure 7.1: Combinational logic system

reference model Yr

r f (U)

U- Y. <+ Y

::::Y,

Figure 7.2: Formal verification of combinational logic systems
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The formal verification problem for combinational logic systems can thus be

formulated mathematically as a Boolean satisfiability problem:

3[U, Y, Y]

Y, < f r(U)

Y < f(U) (7.3)
1

v (y,., & )
i=1

where the symbol ® represents an exclusive OR function. The last constraint in Eqn (7.3)

1

can be replaced by V-,(Yri + Y)), which becomes TRUE if and only if Yr,i and Y

possess different valuations for the same inputs. If the problem in Eqn (7.3) is

unsatisfiable, then the original model is formally verified against the reference model. On

the other hand, the existence of any satisfiable solutions means inconsistency between the

two models, and feasible valuations correspond to errors in the original model against the

reference model.

In general, the Boolean satisfiability problem in Eqn (7.3) is very difficult to solve

due to the combinatorial number of inputs to consider. Instead of solving the problem in

Eqn (7.3), the Boolean satisfiability problem is transformed into its equivalent integer

programming feasibility problem, and it is solved in the domain of binary variables.

7.3 Branch and Bound Priority Setting for

Verification of Combinational Logic Systems

The IP feasibility problem is solved by a standard branch and bound search. It is well

known that proper branch and bound priority setting for binary variables can significantly

reduce the computational efforts required to solve IP problems because it will dramatically

reduce the number of nodes explored during branch and bound search required to find a

solution. In minimization problem, branch and bound search uses lower bounds on the

objective function to avoid exploring certain parts of the set of feasible integer solutions.

The original problem is partitioned into a tree of finite sub-problems (the branching part
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of the algorithm), and each sub-problem is solved separately for its lower bound. In the

course of the algorithm, an upper bound on the objective function is maintained. If the

lower bound corresponding to a particular sub-problem is greater than the current upper

bound, then this sub-problem and all the sub-problems originated from this sub-problem

need not to considered further (the bounding part of the algorithm). Different priority

setting for binary variables leads to different tree of sub-problems, and consequently

shows different performance in terms of the number of sub-problems (or nodes) required

to solve in order to find an optimum solution.

The formal verification of combinational logic systems or Boolean equivalence

checking problem requires complete enumeration of the input space. Therefore, setting

priorities correctly is essential to solve the problem. Due to the topological characteristics

of a combinational logic system, we can determine priorities for all variables systematically

by levelizing the system. The combinational logic systems are directed acyclic graphs, where

nodes and edges correspond to logic elements and logic signals or variables respectively.

The level, which is an integer number, is assigned to each logic signal or edge according to

the depth of the edge from the input nodes. By definition, the level of each input node is

set to zero, and the outputs will have the highest value of level. The entire system can be

systematically levelized by applying the formula in Eqn (7.4) recursively to each logic

element or node:

level of outgoing edge := max(level of incoming edges)+ 1 (7.4)

For example, consider a simple combinational logic system levelized according to this

formula in Figure 7.3, where the level of the output signal Y1 is 3. An efficient algorithm is

listed as a Modula-2 program in Appendix D. The algorithm requires only 1 depth first

searches where 1 is the number of outputs in the combinational logic system.

Once the value of level for each variable is determined, it is straightforward to

determine priorities for variables. Variables of low level have higher priorities than

variables of high level. In combinational logic systems, all the other variables including

outputs are uniquely determined once the inputs are determined. Therefore, the inputs

have the highest priority and should be explored first in branch and bound search. This

strategy is based on the natural computational sequence for combinational logic systems.
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U2 0 OR Y1

0 A

U3

Figure 7.3: Levelized combinational logic system

7.4 Verification of a 2-bit multiplier

Consider the verification of a 2-bit multipler as an example. Figure 7.4 shows a 2-bit

multiplier implemented by adder modules while Figure 7.5 shows a reference model for

the 2-bit multipler. The 2-bit multiplier is designed to compute the output according to

the formula:

[Y 4 Y 3Y 2 Y1] 2 =U 4 U 3 ] 2 X [u 2 1] 2  
(7.5)

where u, and yi are binary variables corresponding to Boolean variables U i and Y

respectively, and the subscript 2 denotes the binary number system. The set of logical

propositions can be derived as following:

Y, <-+ U ^ AU 3

Yr, 2 + (U 2 AU 3 ) (U1 AU 4 ) (76)

Yr,3 k"r,I* l , U2 A U 4

Yr, 4 <- Yr~ A U 2 U 4
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U4 U3 U2 U1

Figure 7.4: Modular implementation of 2-bit multiplier

U4 U3 U2 U1

191

Yrl

Yr2

Yr3

Yr4

Figure 7.5: Gate-level implementation of 2-bit multiplier



Y - U, A U3 Z6 <4 U 2 A U 4

Z, < U2 A UZ7
Z2 <- U, AU 4  Z8 +>Z4

Zz30  z, (Z0 ) (7.7)

Z 5 z, Z 3 (Z, Z 2 ) Z9 . (Z 6 A Z 7 ) V ((Z 6 0 Z 7 ) A Z 8 )

Z4 +4 (Z A Z 2 ) V ((Z Z 2 )Z 3 ) Y3 <
- 

Zo

Y2 <_ Z5 Y4<-> Z9

where Eqn (7.6) and Eqn (7.7) are derived from Figure 7.5 and Figure 7.4 respectively.

Note that the adder module asserts the following logical propositions:

S -> C, (A 0 B)

Co,t - (AAB) v ((A 0 B) A C,) (7.8)

The verification problem is formulated as a Boolean satisfiability problem by combining

the set of logical propositions from each model (Eqn (7.6) and Eqn (7.7)) with the

constraint:

(Y, I Y)v (,, 2 Y 2 ) V (r3 3) V (Yr,4  4 (7.9)

The Boolean satisfiability problem is transformed into its equivalent integer programming

feasibility problem by employing the procedure in section 3.2. The IP feasibility problem

is solved by the branch and bound code in GAMS/CPLEX (Brooke et al., 1992). The LP

sub-problems during branch and bound search are solved by the dual simplex method. It

takes 0.08 seconds to solve this IP feasibility problem involving 22 binary variables and 88

inequalities on HP9 000/ J2 00. A total of 28 nodes are explored during the branch and

bound search. The IP feasibility problem is infeasible, which proves formally that the

original model (Eqn (7.7)) is logically equivalent to the reference model (Eqn (7.6)).

Due to the small size of the problem in terms of the number of variables, the

reduction in computational efforts by setting priorities to variables according their values

of level is not noticeable.
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Table 7.1: Problem size of C6288 and C6288NR

Category C6288 C6288NR
No. of Propositions 2416 2399
No. of Inputs 32 32
No. of Outputs 32 32
No. of Intermediates 2384 2367
No. of Inequalities 7216 7147

7.5 Verification of a 16-bit multiplier

Symbolic model checking technology based on OBDDs (Bryant, 1986) has been

successfully used for verifying combinational logic systems (Fujita et al., 1988; Malik et al.,

1988). However, there are classes of combinational logic systems that cannot be verified

by the symbolic model checking technique because the size of OBDDs representing the

system is too large to be practical even though the system can be represented by Boolean

expressions of reasonable size. For example, the combinational logic systems describing

integer multiplication have OBDDs that grow exponentially in the number of inputs

(Bryant, 1986).

In this case study, the implicit model checking methodology is applied to verify the

16-bit multiplier, C6288 circuit from the ISCAS85 benchmarks (Brglez and Fujiwara,

1985). The multiplier is an importance class of circuits that cannot be verified efficiently

with the standard OBDD-based verification method because multiplication cannot be

represented compactly with OBDDs. Note that this is the only ISCAS85 benchmark

circuit that could not be verified by the symbolic model checking based on OBDD

representation (Fujita et al., 1988; Malik et al., 1988).

The ISCAS85 benchmark has two 16-bit multipliers, the original circuit C6288 and

the optimized circuit C6288NR. The two combinational logic systems are checked for

Boolean equivalence. Table 7.1 shows the problem size for C6288 and C6288NR circuits.

The Boolean satisfiability problem can be formulated by combining logical propositions

from each model with the constraint:
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32

V )z, 0 Y (7.10)
i=1

The proposition in Eqn (7.10) will result in 232 disjunctions when it is converted into the

conjunctive normal form (see section 3.2.2). In order to avoid this situation, the constraint

in Eqn (7.10) is changed into the following form by introducing additional 32 Boolean

variables, Pi for i = 1..32:

i <- (Yr,i ), i= 1..32 (7.11)

Then, the Boolean satisfiability problem is formulated as an optimization problem:

32

max p,
i=l

s. t. (7.12)

q(u,y, z,p)

where q(u,y,z,p) is a set of inequalities derived from each logical proposition in the

Boolean satisfiability problem including the propositions in Eqn (7.11), and u, y, z

(intermediate variables), and p are vectors of binary variables corresponding to their

Boolean variables U, Y, Z, and P. If the optimum solution found is zero, then the

original Boolean satisfiability problem is infeasible. Otherwise, the satisfiability problem is

feasible.

The priorities for all the variables are assigned automatically by applying the

program in Appendix D. Note that the IP feasibility problem is very large with respect to

the number of variables and constraints; it contains 4,847 binary variables and more than

14,363 inequalities. We applied the branch and bound code in GAMS/CPLEX (Brooke et

al., 1992) to the IP feasibility problem with LP sub-problems solved by the dual simplex

method. This approach failed to find a solution because the branch and bound search was

not able to explore sufficient number of nodes to find a solution. Due to the large

problem size and the strong coupling of variables in the problem, it is expected to find a

solution only after exploring a large number of nodes. However, the branch and bound
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code was only able to explore approximately 2,000 nodes per day, which means that it is

extremely expensive to explore each node or solve each LP sub-problem. By analyzing the

LP sub-problems, we identified that they are massively degenerate. In the simplex method,

the basic solution of a LP problem is said to be degenerate if the number of active

constraints are greater than the number of variables. Note that the performance of the

simplex method is very sensitive to the presence of degeneracy because the number of

simplex iterations (or the number of extreme points on the boundary of the feasible set)

required to find an optimum solution increases substantially with the presence of

degeneracy (Bertsimas and Tsitsiklis, 1997). This massive degeneracy causes the poor

performance of the simplex method and then the branch and bound search. We tried

variants of simplex method with perturbation, but failed to improve the performance of

the simplex method for this problem.

It is well known that interior point algorithms are much less sensitive to the

presence of degeneracy in LP problems because interior point algorithms find a solution

in the interior of the feasible set, not on the boundary of the feasible set (Bertsimas and

Tsitsiklis, 1997). Furthermore, certain large and sparse problems are solved faster using

interior point algorithms (Bertsimas and Tsitsiklis, 1997). Interior point algorithms will be

well suited to solve our LP sub-problems because they are large, sparse, and highly

degenerate. The branch and bound code is again applied to the IP feasibility problem with

LP sub-problems solved by interior point algorithms. The cost of exploring each node or

solving each LP sub-problem is significantly reduced. The branch and bound code

explored approximately more than 20,000 nodes per day, which is an order of magnitude

performance increase. However, it still was unable to find a solution after exploring more

than 500,000 nodes. This is not unexpected because this instance of this IP feasibility

problem is difficult to solve due to strong coupling of variables and large problem size. In

fact, IP feasibility problems are known to be NP-complete in worst cases. It has been

observed that most of the LP sub-problems have zero or very close to zero as their

optimal objective functions. This means that the implicit enumeration performed by the

branch and bound search is not effective compared to explicit enumeration.

In order to confirm that the verification problem of C6288 circuit has an

exponential computational complexity, the original problem is decomposed into 32 sub-

problems by exploiting the structure of the constraint in Eqn (7.10), and each sub-
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problem is solved in series. Note that the constraint in Eqn (7.10) is a disjunction of 32

propositions. Therefore, 32 propositions (or 32 output bits) can be checked separately for

their equivalence. Therefore, each sub-problem is formulated by combining the set of

logical propositions from each circuit with the constraint:

(Yri ® ) (7.13)

for i = 1..32. If all 32 sub-problems are infeasible, then the original problem is infeasible,

which verifies the logical equivalence of two circuits. If there exist any feasible sub-

problems, then the original problem is feasible, which provides a counter-example to

logical equivalence of two circuits. The branch and bound code in GAMS/CPLEX (Brooke

et al., 1992) on HP9000/J200 is applied to the first five sub-problems. Table 7.2 shows

the verification results. It has been observed that setting priorities is essential to solve the

problem because it failed to find a solution even for the first sub-problem without setting

priorities. All sub-problems solved are infeasible. However, there are significant increases

in the computational costs as the output-bit is increased. Figure 7.6 plots the number of

nodes explored (in logarithmic scale) versus the output-bit of the multiplier verified. The

number of nodes explored are increasing exponentially in the number of the output-bit.

Figure 7.7 plots the CPU time (in logarithmic scale) versus the output-bit. The CPU time

increase is also exponential. From the plot in Figure 7.6, we can extrapolate the number of

nodes required to solve the whole problem, which is about 5.9x1020. Note that the

number of exhaustive simulations required to solve the problem is about 8.6 X10 9 . Even

though the number of nodes cannot be compared directly with the number of simulations,

this comparison shows the inferior performance of the implicit enumeration performed by

the branch and bound search.

Table 7.2: Verification results and computational statistics for each sub-problem

Sub-problem No. Feasibility Nodes explored CPU time (m)
1 infeasible 4 1.46
2 infeasible 22 8.49
3 infeasible 80 30.69
4 infeasible 400 158.76
5 infeasible 1578 528.72

196



10000

1000

100-

10

0 2 4 6

Output bit

Figure 7.6: The number of nodes explored with respect to output-bit

1000

100 +

10 +

--I [

0 2 4
Output bit

Figure 7.7: CPU time with respect to output-bit

197

___



7.6 Conclusions

The implicit model checking technology is applied to formal verification of combinational

logic systems. The Boolean satisfiability problem checks the Boolean equivalence between

the system in question and the reference system by comparing the outputs for all possible

input combinations. The Boolean satisfiability problem is then transformed into its

equivalent integer programming feasibility problem to solve it in the domain of binary

variables. The 2-bit multiplier is used to illustrate this approach, which has been

successfully verified against its reference model.

In order to reduce the computational efforts required to solve the IP feasibility

problem, priorities for variables should be set properly. A general priority setting strategy

for combinational logic systems is developed, which is based on the value of level of each

signal. The 16-bit multiplier case study demonstrated that this priority setting strategy is

very effective.

The proposed methodology for combinational logic systems is applied to the

C6288 16-bit multiplier from the ISCAS85 benchmarks. Unlike extremely huge OBDDs

used in the symbolic model checking, the implicit model checking provides a reasonably

sized model for the C6288 circuit. Due to the massive degeneracy of the LP sub-

problems, the branch and bound search with simplex method for LP sub-problems failed

to solve the problem. In order to circumvent this difficulty, an interior point algorithm is

used to solve each LP sub-problem during branch and bound search. Even though this

reduces the cost of solving each LP sub-problem significantly, it still failed to find a

solution. This is primarily due to the inferior performance of implicit enumeration by the

branch and bound search. In order to identify the inherent complexity of this problem,

the original problem is decomposed into 32 sub-problems. The solution of the first five

sub-problems shows that the formal verification of C6288 circuit has exponential

complexity.

In summary, the proposed methodology for verification of combinational logic

systems failed to verify the 16-bit multiplier like OBDD based-verification method. Other

solution algorithms such as cutting plane algorithms could be applied to solve the

problem. However, any integer programming algorithms will not be effective unless the

nature of multiplication is embedded in the problem formulation, which is impossible in
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the bit-level formulation (Bertsimas, 1997). Alternatively, semi-definite programming

approaches (Adams and Sherali, 1986) can be used to tighten the gap in the LP

relaxations. However, they will not be practical on large-scale problems (Bertsimas, 1997).
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This thesis has argued that logic-based control systems play an essential role in safety-

related and sequence applications, and that the demand for systematic formal approaches

to correct design of the LCS is ever increasing due to the growing complexity of LCS

applications. However, little attention has been paid to the rigorous design and verification

of LCSs with respect to functionality despite the fact that there is an urgent demand for

the development of such tools. In order to meet this demand, this thesis has prototyped a

unified framework for rigorous verification and validation of LCSs. In particular, this

thesis has delivered two major technical contributions towards realization of this goal.

First, a formal methodology has been developed that can verify the functionality of a

complex large-scale LCS with respect to its formal specifications. Second, a rigorous

simulation technology has been developed that can validate the overall performance of the

LCS considering its dynamic interaction with its underlying physico-chemical process.

As a first step toward these objectives, the binary logic diagram is selected to

represent the implementation-independent functionality of the LCS. The binary logic

diagram supports declarativity, implicitness, and concurrency, which are all essential to

represent the functionality of a complex large-scale LCS without suffering from the state

explosion problem and while maintaining the reactive feature of the LCS. However, it has
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been recognized that a certain class of BLDs is not deterministic, which is extremely

undesirable considering its area of safety-related applications. Analyzing BLDs as

sequential logic systems, it has been identified that the BLDs exhibit non-determinisitic

behavior when there exist steady state hazards, which are caused by non-unique feedback

cut sets in the BLDs. In order to eliminate this ambiguity, an explicit declaration of the

location of feedback cut sets is added to the standard BLDs, which makes the revised

BLD completely deterministic.

8.1.1 Formal Verification of Logic-based Control Systems

The implicit model checking technique has been developed that can formally verify large-

scale LCSs with respect to their specifications. The functionality of LCSs is abstracted as a

sequential logic system, which is in turn represented using an implicit Boolean state space

model that can be automatically derived from the revised BLD (or, in fact, any standard

representation such as ladder logic, programming languages, etc.). The implicit Boolean

state space model encapsulates only the relevant set of time invariant relationships

between variables rather than a partial or full enumeration of the state space that is liable

to increasing number of system states. Therefore, our model embeds all possible states

and transitions in a compact closed form. This notion of implicitness in the model

formulation is the key property that distinguishes our methodology from previous efforts.

The language of temporal logic is adopted to specify formally correctness properties for

the LCS, including shutdown logic, permissive logic, and sequences. In order to verify

these specifications against the model, the Boolean satisfiability problem is formulated by

combining the model with specifications. Instead of solving the Boolean satisfiability

problem in the domain of Boolean variables, the problem is transformed into its

equivalent integer programming feasibility problem, which is then solved by standard

branch and bound techniques. The original specification can be proved or disproved

depending upon the feasibility of the problem, yielding counter-examples or witnesses as

necessary. If the specification is violated against the model, then the model or the design

must be modified so that the specification is satisfied. Even though the implicit model

checking technique can identify systematically any inconsistency between the model and

specifications, users are currently responsible for modifying the design.
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In principle, formal verification of the LCS is a combinatorial problem, and any

formal verification method will suffer from this combinatorial nature of the problem. The

major contribution of our approach compared to other approaches is to confine the

combinatorial nature of the problem to the solution of the IP feasibility problem, whereas

in other approaches model formulation is also combinatorial. Further, all the intermediate

steps, including model formulation, in our approach can be performed efficiently in

polynomial time. This implies that the entire verification problem can be solved efficiently

if we can solve the IP feasibility problem efficiently.

The proposed implicit model checking methodology has been successfully applied

to two industrial-scale burner management systems, MOD5 Tm and Throx sequence. In order

to test the empirical complexity of our model checking technique, a series of burner

management systems of increasing size that combine a number of a single burner

management system have been solved. The problem size in terms of the number of

inequalities in the IP feasibility problem increases linearly with respect to the number of

state variables. It has been shown empirically that the solution time required for the

branch and bound search increases quadratically with respect to the number of state

variables. Even though the IP feasibility problem is combinatorial in the worst case, our

empirical studies indicate that the IP feasibility problem arising from typical industrial

applications can be solved very efficiently in polynomial time due to extremely efficient

implicit enumeration conducted by branch and bound search.

8.1.2 Dynamic Validation of Logic-based Control Systems

Even if the functionality of the LCS is fully consistent with its complete set of

specifications, the LCS may fail to provide a corrective action when necessary and/or may

not respond quickly enough, because the LCS does not exist in isolation, instead being

coupled dynamically with its underlying physico-chemical process. In order to resolve this

potential problem, a dynamic validation technique has been developed based on hybrid

discrete/continuous simulation. In particular, the validation of the LCS is formulated as

the hybrid discrete/continuous dynamic simulation problem. The hybrid model is

constructed by combining the model of the LCS and the model of the physico-chemical

process. The LCS is modeled using the revised binary logic diagrams, and the physico-
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chemical process is modeled as a system of differential-algebraic equations. Rigorous

input/output interfaces have been developed between the two different models. An

efficient algorithm has been developed to solve the resulting hybrid model. Due to the

passive nature of the LCS and its relatively fast response time, initialization and

reinitialization problems are further complicated compared to those for hybrid dynamic

simulation problems without the LCS. Solution algorithms for both sub-problems are

addressed.

The location of state events or implicit discontinuities is an important sub-problem

in the solution of hybrid discrete/continuous dynamic simulation problems. All the state

events must be located efficiently in strict time order because numerous state events occur

in the course of hybrid simulation, and missing events can radically change the future

evolution of the overall system behavior. An efficient state event location algorithm has

been developed for initial value problems in differential-algebraic equations. The

algorithm supports flexible representation of state conditions in propositional logic, and

guarantees the location of all state events in strict time order. The algorithm consists of

two phases: 1) event detection and 2) consistent event location. In the event detection

phase, the entire integration step is searched for the state event by solving the

interpolation polynomials for the discontinuity functions generated by the BDF method.

An efficient hierarchical polynomial root-finding procedure based upon interval arithmetic

guarantees detection of the state event even if multiple state condition transitions exist in

an integration step, in which case many existing algorithms may fail. In the second phase

of the algorithm, a consistent event location calculation is developed that accurately

locates the state event detected earlier while completely eliminating discontinuity sticking

or incorrect reactivation of the same state event immediately after the consistent

initialization calculation that may follow. The guaranteed performance of the algorithm

has been illustrated by solving a set of test problems. All the state events are correctly

detected even if the state condition experiences multiple transitions in an integration step.

The event detection phase is efficient due to an extremely efficient exclusion test

employed in the hierarchical polynomial root-finding procedure. Consistent event location

determines the state event time accurately and eliminates all discontinuity sticking with

minimal computational effort.
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8.2 Recommendations for Future Research

8.2.1 Systematic Design Modification

Implicit model checking can find inconsistency between the specification and the model

systematically. The ultimate goal of formal verification, including implicit model checking,

is to identify and fix any bugs in the design. When formal verification finds no

inconsistency between the specification and the model, there is no further work required.

However, if it detects violation of the specification in the model, then the model or the

design must be modified to resolve this inconsistency'. Even though the verification

algorithm provides counter-examples to assist in this design modification process, there is

currently no systematic way to incorporate the design change so that the same

specification need not to be verified again. Instead, users need to modify the design based

on the verification results, and to reverify the modified design against the same

specification. Therefore, it is necessary to address the problem of systematic design

modification based on defects found in the formal verification step.

The first step toward this goal will be to identify a subsystem that causes this

inconsistency in order to reduce the search space. This idea is practicable because it is very

rare that a single specification relates to all the properties of the system. Instead, the

specification usually checks a subset of the properties of the system. It is likely that there

exist non-unique subsystems that cause the inconsistency. In this case, the smallest system

in terms of the number of logical propositions or inequality constraints can be found by

formulating the problem as an optimization problem.

The existence of defects in the design can be found in some cases without

verifying the model against the specifications. The model can be inconsistent by itself.

Inconsistency in the model can be found by solving the problem:

1 Here the specification is assumed to be correct.
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3[Uk-1'U k ,Xlk-l'k Yk]

s.t. (8.1)

v(Uk,,Uk, kk-,I X1 , Y)

which is a Boolean satisfiability problem including only the model without any

specification. For any model to function properly, the model should include a set of stable

states and associated transitions. The unsatisfiability of the problem in Eqn (8.1) indicates

that the model does not embed any stable states, and that the model is self-inconsistent.

There can be several causes for this inconsistency. It can come from poor designs or from

simple errors introduced while formulating problem. As an example, consider the model

for the tank interlock of Figure 3.1 represented as a set of inequalities in Eqn (8.2):

1- u,k + 1- Xk >

1- u2,k +1 X1,k I10

l,k + 2,k + - 3,k +X1,k 1

1- Ul,k- +1 1-l,k- 1 (8.2)
1- U2,k-1 1,k-1 I

Ulk- 1 + U2 ,k-I + 1- U3,k- I + Xlk- > 1

U, k + U2,k + U3,k + 1- X1 ,k + Xl,k-I 1

Ul,k + U2,k + U3,k + Xl,k + 1 - ,k- 1

where there is an error in the 2nd inequality. The right hand side of the 2nd equality should

be 1 instead of 10. This kind of error can be introduced if the problem is formulated

manually or if an automatic translation tool has bugs. The IP feasibility problem of Eqn

(8.2) is infeasible before adding any constraint from a specification. Even though it is easy

to find the source of inconsistency in this small example, it is not straightforward to find it

for large problems.

After discovering the inconsistency of a model, the next task is to find the causes

of inconsistency or to isolate the subsystem (a set of logical propositions) that may cause

the problem. As usual, the Boolean satisfiability problem in Eqn (8.1) will be solved as an

IP feasibility problem. Therefore, it is necessary to find the set of inequalities that are

responsible for infeasibility of the IP problem. The optimization problem in Eqn (8.3) can

be used to identify these inequalities:
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Nc

min Cs
j=1

s.t. (8.3)

A"[uk- ,Uk,Xk-1,X,yk] +s!a

where s e NNc is a vector of integer variables, A, a are respectively an integer matrix and

an integer column vector of coefficients, and Uk-_1 ,Uk E {0,1}, k-1 Xk {0,1}",

Yk E {O,1} are vectors of binary variables. A zero optimal objective function indicates

that the problem is feasible. If the optimal objective function is greater than zero, then the

problem is infeasible and the sub-system causing inconsistency in the model is a set of

constraints with non-zero artificial variables s. Even though the set of inequality

constraints causing inconsistency in the model can be identified systematically, this

formulation is not practical for large problems because such problems involve a large

number of inequality constraints and the artificial variable should be introduced for each

inequality constraint. It is necessary to develop another formulation that can be applied to

large-scale problems. This pre-processing step checking inconsistency of the model should

precede verifying specifications against the model.

8.2.2 Systematic Formulation of Correct Specifications

Any formal verification algorithm verifies the model of the LCS against the specifications.

Therefore, the guarantee of the verification results is with respect to the specifications.

Furthermore, the set of specifications must be complete in order to verify the entire

functionality of the model. It has been reported (Burch et al., 1994), and also observed in

the work leading to this thesis, that the formulation of specifications takes most of the

human effort in solving the verification problem. Currently, it is entirely the responsibility

of users to formulate correct specifications. This is partially due to the current design

practice, where the LCS design comes from previously employed designs or is based on

informal information collected from several sources rather than coming from a set of

formal specifications. Even though the importance of correct specification formulations

has been recognized (Clarke et al., 1993), this problem has not been considered seriously
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so far. For the formal verification technique to be more useful, the development of

computer-aided tools is necessary that can help users to formulate the specifications

correctly. For example, the systematic derivation of global specification inferred from a set

of local specifications is necessary.

8.2.3 Automatic Design of the LCS

The ultimate goal in the LCS design process is to generate LCS logic automatically and

systematically from the set of specifications, thus eliminating the need for the formal

verification step. As a dual form of the formal verification problem, automatic design of

the LCS from its specifications is a generic transformation problem from one type of

representation into another type of representation. This transformation is extremely

difficult, and the nature of this transformation problem can be quite different depending

upon the types of representations chosen for specification and design. For LCSs, the

common choice for specifications will be a set of rules and the desirable choice for design

will be any configurable representation such as binary logic diagrams. In general, the

specification includes less variables than the design because a set of auxiliary variables is

introduced during the design process. Therefore, automatic transformation should provide

a systematic way to add additional variables as necessary, the number of which should be

minimized. Furthermore, the automatic transformation through intermediate canonical

representations will be helpful to decompose the original problem.

8.2.4 Development of Software Tool

For implicit model checking to be used in many applications, it is necessary to develop an

integrated software tool implementing implicit model checking because it requires a lot of

human efforts to verify even small size applications manually even though some of

intermediate steps (e.g., conjunctive normal form translation) are automated.

Within the integrated software tool, implicit model checking should take as inputs

any standard representation of a LCS design and a specification, and prove or disprove the

specification automatically. The software tool should automatically derive the implicit

Boolean state space model from any standard representation after checking that the
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representation is deterministic. The Boolean satisfiability problem should be formulated

by combining the model with a specification, and then should be translated automatically

into the IP feasibility problem. After solving the IP feasibility problem, the software tool

should provide an effective user interface for the analysis of the verification results.

8.2.5 Digital Circuit Verification

LCSs and digital circuits at the logic level can be described by the common framework of

Boolean equations. Therefore, implicit model checking can be applied to digital circuit

verification. In chapter 7, a preliminary study has been performed to find out the potential

applications of implicit model checking in digital circuit verification. However, it was

unable to verify a 16-bit multiplier circuit. There are many digital circuits including

multipliers that cannot be verified by existing techniques.

In order to verify all these difficult digital circuits, it is essential to analyze the

characteristic of the Boolean space embedded in the system of interest. For example,

symbolic model checking is able to verify certain classes of digital circuits because it

exploits the regularity of the state space characterized by this class of circuits.

The formal verification problem is extremely difficult, and it is unlikely that there

exists a universal algorithm that can solve all classes of problems. Therefore, it is necessary

to develop tailored algorithms for each class of problem rather than applying one

algorithm to all classes of problems.
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Appendix A

Transformation of Logical
Propositions into Conjunctive
Normal Form

A.1 Program Usage

The code listed in section A.2 transforms any logical propositions into their conjunctive

normal forms. Note that the logical proposition in conjunctive normal form is a

conjunction of clauses where each clause is a disjunction of atomic propositions. A

conjunction is a set of logical propositions connected by the AND operator while a

disjunction is a set of logical propositions connected by the OR operator. An atomic

proposition is a logical proposition that does not contain any Boolean connectives.

The set of valid Boolean connectives are {- (NOT), & (AND), # (OR), $ (XOR), ->

(IMPLICATION), <-> (EQUIVALENCE)}. The program can be run in an interactive

mode or in a batch mode. In the interactive mode, the program can transform a single

logical proposition into its conjunctive normal form. For example, the proposition,

y<->ul#u2, can be converted into its conjunctive normal form as:

?- [cnf] .
Consulting. . . .cnf .pl

yes
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?- translate (yl <-> ul # u2).
-yl#ul#u2
-ul#yl
-u2#yl

yes
I ?-

In the batch mode, the program can transform a set of logical propositions into their

conjunctive normal forms. The following are sample input and output files with program

script:

input file "logic.in":

(yl <-> ul # u2).
(y2 <-> ul & u3).

program script:

?- [cnf].
Consulting. . . .cnf.pl

yes
I ?- run.

yes
S?-

output file "logic.out":

/* Original Proposition : yl<->ul#u2 */

-yl#ul#u2
-ul#yl
-u2#yl

/* Original Proposition : y2<->ul&u3 */

-y2#ul
-y2#u3
(-ul# -u3)#y2

A.2 Program Listing

/ *===--------------------------------------------------------------------------------------

Purpose : Transform any logical propositions into their CNFs
File : cnf.pl
Language : PROLOG
Author : Taeshin Park
Date : May, 1996

-----==========================================*/
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% NOT
:- op(100,fy,-).
% AND
:- op(ll0,xfy,&).
% OR
:- op(120,xfy,#).
% XOR
:- op(125,xfy,$).
% IMPLICATION
:- op(130,xfy,->).
% EQUIVALENCE
:- op(140,xfy,<->).

run :-
see('logic.in'),
tell('logic.out'),
iterate.

iterate :-
read(Clause),
process(Clause).

process(Clause) :-
Clause=end_of_file;
write('/* Original Proposition : '),
write(Clause), write(' */'), nl, nl,
translate(Clause),
nl,
iterate.

translate(Clausel & Clause2) :- !
translate(Clausel),
translate (Clause2).

translate(Clause) :-
transform(Clause,NewClause), !,
translate (NewClause).

translate(end_of_file) :-

translate(Clause) :-
check_tautology(Clause);
simplify_clause(Clause).

check_tautology(Clause) :-
assert(Clause),
literal_exist(X,Clause),
literal_exist(-X,Clause),
write('$Tautology : '),
write(Clause),
nl.

simplify_clause(Clause) :-
assert(Clause),
reduce_clause(X,Clause,ReducedClause),
literal_exist(X,ReducedClause),
simplify_clause(ReducedClause);
write_clause(Clause), nl.

% write_inequality(Clause).
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writeinequality(Clause) -
write('EQ!.. '),
write(Clause),
write(' =G= 1;'),
nl.

write_clause(Clause) :-
write(Clause),
nl.

literal_exist(X,X).
literal_exist(X,Y) :-

reduce_clause(X,Y,_).

reduce_clause(X,X#Y,Y).
reduce_clause(X,Y#X,Y).
reduce_clause(X,Y#Z,Y#Zl) :-

reduce_clause(X,Z,Z1).
reduce_clause(X,Y#Z,Yl#Z) :-

reduce_clause(X,Y,Y1).

% Transformation rules for propositional formulas

transform(-(-X),X) :- !
transform(X <-> Y,(X->Y)&(Y->X)) :-
transform(X -> Y,-X # Y) :- !
transform(X $ Y, (X & -Y)#(-X & Y)) :- !
transform(-(X & Y), -X # -Y) :-
transform(-(X # Y), -X & -Y) :-
transform(X&Y#Z, (X#Z)&(Y#Z)) :-
transform(X#Y&Z, (X#Y)&(X#Z)) :-
transform(X#Y,Xl#Y) :-

transform(X,Xl), !
transform(X#Y,X#Yl) :-

transform(Y,Yl),
transform(-X,-Xl) :-

transform(X,Xl).
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Appendix B

Mod5 Burner Management System

The implicit Boolean state space model derived from the burner management system is

listed here with the list of variables. Note that equations for Xk-I - f(Xk-, Uk-,) is not

included here because they are same as those for Xk - f(Xk,Uk). Note that the logical

connectives {NOT, AND, OR} are denoted by {-, &, #} respectively.

Equations for X f(Xkk,U) and Yk g(Xk,,U,):

(x12 <-> (xs6 & (x13 # x12))).
(z23 <-> ((u4 # u60) & (u6 # u61) & (x12 # z32))).
(z32 <-> (xs7 # xs8 # xs9)).
(xl <-> ((z23 & -xl) # (-u47 & xl))).
(ti2 <-> (xs5 & (x14 # ti2))).
((-ti2 & -to2)#(-ti2_p & ti2 & -to2)#(ti2_p & ti2 & to2)).
(ti3 <-> (xs6 & (x13 # ti3))).
((-ti3 & -to3)#(-ti3_p & ti3 & -to3)#(ti3_p & ti3 & to3)).
(z24 <->((to2&(-u17#u36))#(to3&(-u17#-u20#u36#u39))

#(((-ul7#u36)&(-u20#u39))&z32))).
(x2 <-> ((z24 & -x2) # (-u47 & x2))).
(z25 <-> ((ul#u53)&(u5#u55)& -xsl & -xs2)).
(x3 <-> ((z25 & -x3) # (-u47 & x3))).
(z26 <-> (((-u18 & -u37)#(-u21&-u40)#((ul8#u21)&u54)#(u37&u40)

#((u37#u40)&u2))& -xsl & -xs2)).
(x4 <-> ((z26 & -x4) # (-u47 & x4))).
(z27 <-> (z33&z34)).
(z33 <-> (((-u19#u38)&(-u28#u43))#((-u24#u41)&(-u29#u44)))).
(z34 <-> (xs5#xs6#xs7#xs8#xs9#xslO)).
(x5 <-> ((z27 & -x5) # (-u47 & x5))).
(z28 <-> (z35&(u4#u62)&(u6#u63))).
(z35 <-> (xs6#xs7#xs8#xs9)).
(x6 <-> ((z28 & -x6) # (-u47 & x6))).
(z29 <-> (((u62&u61)#(u60&u63))& -u4 & -u6 & -xsl)).
(x7 <-> ((z29 & -x7) # (-u47 & x7))).
(z30 <-> ((u7#u64)&(u9#u65))).
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(x8 <-> ((z30 & -x8) # (-u47 & x8))).
(z31 <-> ((u3#u56)&(u8#u50))).
(x9 <-> ((z31 & -x9) # (-u47 & x9))).
(yl <-> (((u19 & -u28)#(-u19 & u28))#((u24 & -u29)#(-u24 & u29)))).
(y7 <-> (xsl_p & u45 & u46)).
(y7 -> xs2).
((xsl_p & -y7) -> xsl).
(y16 <-> (xs2_p & -u45 & u46)).
(y16 -> xsl).
((xs2_p & -y16) -> xs2).
(z20 <-> (u28 & u19 & u24 & u29)).
(z22 <-> (ulO&ull&ul2&ul4&ul5&ul6& -u30 & -u31 & -u32 & -u34 & -u35)).
(y8 <-> (z22 & z20 & -u17 & -u20 & u45 & u46 & u47 & xs2_p)).
(y8 -> xs3).
(xs2_p & -y8 -> xs2).
(y17 <-> (to4 & -u45 & u46)).
(ti4 <-> (xs4_p & u47)).
((-ti4 & -to4)#(-ti4_p & ti4 & -to4)#(ti4 p & ti4 & to4)).
(y17 -> xs2).
(xs4_p & -y17 -> xs4).
((-til & -tol)#(-til_p & til & -tol)#(tilp & til & tol)).
(til <-> ((xs 3_p#xslO_p)&ul3&u57&u26&u49&z22

& -ul7& -u20& -u33& -ul& -u42& -u36& -u39)).
(y9 <-> (tol & xs3_p & u47 & z20)).
(y9 -> xs4).
(xs3_p & -y9 -> xs3).

(y18 <-> (((u17#u20# -z22# -u47)&xs4_p)#to5#to9)).
(ti5 <-> (xslO_p & u47 & z20)).
(ti9 <-> xs4_p).
((-ti5 & -to5)#(-ti5_p & ti5 & -to5)#(ti5_p & ti5 & to5)).
((-ti9 & -to9)#(-ti9_p & ti9 & -to9)#(ti9_p & ti9 & to9)).
(y18 -> xs3).
(xs4_p & -y18 -> xs4).
(xslO_p & -y18 -> xslO).
(ylO <-> (to6 & u45 & u46 & u47 & z20)).
(ti6 <-> (xs4_p&u23)).
((-ti6 & -to6)#(-ti6_p & ti6 & -to6)#(ti6p & ti6 & to6)).
(ylO -> xs5).
(xs4_p & -ylO -> xs4).
(yll <-> (tolO & u22 & u23 & u45 & u46)).
(tilO <-> (xs5_p & u17)).
((-tilO & -tolO)#(-tilO_p & tilO & -tolO)#(tilO_p & tilO & tolO)).
(yll -> xs6).
(xs5_p & -yll -> xs5).
(y12 <-> to8).
(ti8 <-> (u17 & u20 & xs6_p)).
((-ti8 & -to8)#(-ti8p & ti8 & -to8)#(ti8_p & ti8 & to8)).
(y12 -> xs7).
(xs6_p & -y1 2 -> xs6).
(y13 <-> (to7 & xs7_p)).
(ti7 <-> (u58 # u59)).
((-ti7 & -to7)#(-ti7_p & ti7 & -to7)#(ti7_p & ti7 & to7)).
(y13 -> xs8).
(xs7_p & -y13 -> xs7).
(y19 <-> (xs9_p & u45 & u46)).
(y19 -> xs7).
(xs9_p & -y1 9 -> xs9).
(y14 <-> (-u45 & u46 & xs8 p)).
(y14 -> xs9).
(xs8_p & -y14 -> xs8).
(y15 <-> (xs9_p & u48 & -u45 & u46)).
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(y15 -> xslO).
(xs9 p & -y15 -> xs9).
(z21 <-> (xl # x2 # x3 # x4 # x5 # x6 # x7 # x8 # x9)).
(y20 <-> ((xs5_p # xs6_p # xs7_p # xs8_p # xs9_p) & z21)).
(y20 -> xslO).
(xs5 p & -y20 -> xs5).
(xs6 p & -y20 -> xs6).
(xs7_p & -y20 -> xs7).
(xs8_p & -y20 -> xs8).
(xs9p & -y20 -> xs9).
(z15 <-> (((xs6&u22&u23)#xs7#xs8#xs9) & -z21)).
(zl <-> (-z15 # z21 # z36)).
(z36 <-> xsl#xs2#xs3#xs4#xs5#xslO).
(z2 <-> zl).
(y2 <-> (z15 & -zl)).
(xlO <-> ((xlO # u25) & z15 & -z21)).
(z5 <-> (-xlO # z21 # z36)).
(z6 <-> z5).
(y3 <-> (xlO & -z5)).
(z16 <-> (xlO & -z21)).
(z3 <-> (-z16 # z21 # z36)).
(z4 <-> z3).
(x13 <-> (z16 & -z3)).
(z17 <-> ((xs5#(xs6&u52)) & -z21)).
(z7 <-> -z17 # z21 # z37)).
(z37 <-> (xsl#xs2#xs3#xs4#xs7#xs8#xs9#xslO)).
(z8 <-> z7).
(y4 <-> (z17 & -z7)).
(xll <-> ((xll # u27) & z17 & -z21)).
(z9 <-> (-xll # z21 # z37)).
(zlO <-> z9).
(y5 <-> (xll & -z9)).
(z18 <-> (xll & -z21)).
(zll <-> (-z18 # z21 # z37)).
(z12 <-> zll).
(x14 <-> (z18 & -zll)).
(z19 <-> (xs5 & z18 & u51 & -z21)).
(z13 <-> (-z19 # z21 # z37 # xs6)).
(z14 <-> z13).
(y6 <-> (zl19 & -z13)).

Equations for h(XkU,)-> (X, <- k k-1_):

((xs6 & -x13) -> (x12 <-> x12_p)).
((z23 & u47) -> (xl <-> -xl_p)).
((-z23 & -u47) -> (xl <-> xl_p)).
((xs5 & -x14) -> (ti2 <-> ti2_p)).
((xs6 & -x13) -> (ti3 <-> ti3_p)).
((z24 & u47) -> (x2 <-> -x2_p)).
((-z24 & -u47) -> (x2 <-> x2_p)).
((z25 & u47) -> (x3 <-> -x3_p)).
((-z25 & -u47) -> (x3 <-> x3_p)).
((z26 & u47) -> (x4 <-> -x4_p)).
((-z26 & -u47) -> (x4 <-> x4_p)).
((z27 & u47) -> (x5 <-> -x5_p)).
((-z27 & -u47) -> (x5 <-> x5_p)).
((z28 & u47) -> (x6 <-> -x6_p)).
((-z28 & -u47) -> (x6 <-> x6_p)).
((z29 & u47) -> (x7 <-> -x7_p)).
((-~z29 & -u47) -> (x7 <-> x7_p)).
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((z30 & u47) -> (x8 <-> -x8_p)).
((-z30 & -u47) -> (x8 <-> x8_p)).
((z31 & u47) -> (x9 <-> -x9_p)).
((-z31 & -u47) -> (x9 <-> x9_p)) .
((-u25 & z15 & -z21) -> (x10 <-> x10_p)).
((-u27 & z17 & -z21) -> (xll <-> xll_p)).

Variable List:

Variables used in the Boolean state space model are listed in Tables B.1-B.4.

Table B.1: Inputs for MOD5TM

Variables Meaning
ul combustion air flow in manual
u2 boiler level in manual
u3 steam pressure
u4 main fuel gas pressure to burner in manual
u5 combustion air blower motor amps in manual
u6 main fuel gas pressure to burner in manual
u7 stack temperature in manual
u8 steam temperature in manual
u9 stack temperature in manual

ul0 main fuel gas vent emv TRUE if open
ull upstream main fuel gas ebv TRUE if closed
u12 downstream main fuel gas ebv TRUE if closed
u13 TRUE if blower motor is running is a fail-on motor
u14 pilot gas vent ebv TRUE if open
u15 upstream pilot gas ebv TRUE if closed
u16 downstream pilot gas ebv TRUE if closed
u17 TRUE if pilot or main showing flame
u18 low low boiler level TRUE if not low low
u19 Mod5 emergency stop switch TRUE
u20 TRUE if main showing flame
u21 low low boiler level TRUE if not low low
u22 main fuel control valve in light off position
u23 air dampers in light off position
u24 field emergency stop switch TRUE
u25 main vent ebv showing closed
u26 air damper in purge position
u27 pilot vent ebv showing closed
u28 Mod5 emergency stop switch TRUE
u29 field emergency stop switch TRUE
u30 DIM(101)
u31 DIM(102)
u32 DIM(103)
u33 DIM(106)
u34 DIM(111)
u35 DIM(112)
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u36 DIM(141)
u37 DIM(142)
u38 DIM(143)
u39 DIM(151)
u40 DIM(152)
u41 DIM(155)
u42 DIM(162)
u43 DIM(243)
u44 DIM(255)
u45 DK(11), permissive switch for step terminations
u46 DM(11), permissive switch for step terminations
u47 nsdn
u48 plant specific logic for cooldown step
u49 AC(2) LE AP(1998,-0.1,4)
u50 AC(1920) GT AP(1920)
u51 AC(1907) LT AP(1927,10,32767)
u52 AC(1908) LT AP(1928,10,32767)
u53 AI(101,300) LT AP(1911,50,300)
u54 AI(102,100) LT AP(1902,2,100)
u55 AI(111,75) LT AP(1910,7.5,75)
u56 AI(102,600) GT AP(1920,500,600)
u57 AI(101) GE AP(2000,75,100)
u58 AI(262) GE AP(1996)
u59 AI(272) GE AP(1996)
u60 AI(109,50) LT AP(1909,3,50)
u61 AI(119) LT AP(1909)
u62 AI(109) GT AP(1917,30,50)
u63 AI(l 119) GT AP(1917)
u64 AI(121,1000) GT AP(1919,700,1000)
u65 AI(131) GT AP(1919)

Table B.2: Outputs for MOD5 T

Variables Meaning
yl emergency stop switch disagreement
y2 main vent
y3 main upstream ebv
y4 pilot vent
y5 pilot upstream ebv
y6 ignition electrode
y7 leave maintenance wait
y8 leave process wait
y9 leave purge

yl0 leave purge complete
yl11 leave light pilot
y12 leave main lightoff
y13 leave warmup
yl14 leave run
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y15 leave cooldown
yl16 return to STEP(103)
yl17 return to STEP(104)
yl18 return to STEP(105)
y19 return to STEP(109)
y2 0 jump to STEP(112)

Table B.3: State variables for MOD5 TM

Variables Meaning
xl ALM(109), low low fuel gas pressure
x2 ALM(110), loss of flame
x3 ALM(111), low low combustion air
x4 ALM(112), low low boiler level
x5 ALM(113), emergency stop
x6 ALM(117), high high fuel gas pressure
x7 ALM(118), high/low fuel gas pressure
x8 ALM(119), high high stack temperature
x9 ALM(120), high high steam pressure

x10 main upstream ebv open
xl pilot upstream ebv open
x12 TRUE when main fg downstream block first opens
x13 main fuel gas downstream ebv
x14 pilot downstream ebv
xsl STEP(103), maintenance wait
xs2 STEP(104), process wait
xs3 STEP(105), purge
xs4 STEP(106), purge complete
xs5 STEP(107), light pilot
xs6 STEP(108), main lightoff
xs7 STEP(109), warmup
xs8 STEP(110), run
xs9 STEP(111), cooldown
xslO STEP(112), shutdown
til input to purge timer
tol output from purge timer
ti2 input to timer for seeing pilot flame in STEP(107)
to2 output from timer for seeing pilot flame in STEP(107)
ti3 input to timer for seeing main flame in STEP(108)
to3 output from timer for seeing main flame in STEP(108)
ti4 input to timer in STEP(104)
to4 output from timer in STEP(104)
ti5 input to timer in STEP(105)
to5 output from timer in STEP(105)
ti6 input to timer in STEP(106)
to6 output from timer in STEP(106)
ti7 input to timer for terminating STEP(109)
to7 output from timer for terminating STEP(109)
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ti8 input to timer for terminating STEP(108)
to8 output from timer for terminating STEP(108)
ti9 input to timer for purge complete step
to9 output from timer for purge complete step
tilO input to timer in STEP(107)
tolO output from timer in STEP(107)

Table B.4: Intermediate variables for MOD5 T

Variables Meaning

zl abort for main fuel vent
z2 parallel abort for main fuel vent
z3 abort for main fuel downstream block
z4 parallel abort for main fuel downstream block
z5 abort for main fuel upstream block
z6 parallel abort for main fuel upstream block
z7 abort for pilot vent
z8 parallel abort for pilot vent
z9 abort for pilot upstream block
z10 parallel abort for pilot upstream block
z11 abort for pilot downstream block
z12 parallel abort for pilot downstream block
z13 abort for ignition electrode
z14 parallel abort for ignition electrode
z15 main vent ebv close
z16 main downstream ebv open
z17 pilot vent ebv close
z18 pilot downstream ebv open
z19 pilot ignition electrode
z20 TRUE if emergency stop switches in run
z21 TRUE whenever a shutdown alarm is TRUE
z22 TRUE if all fuel valves are in their failsafe state
z23 SET(109), low low fuel gas pressure
z24 SET(110), loss of flame
z25 SET(111), low low combustion air
z26 SET(112), low low boiler level
z27 SET(113), emergency stop
z28 SET(117), high high fuel gas pressure
z29 SET(118), high/low fuel gas pressure
z30 SET(119), high high stack temperature
z31 SET(120), high high steam pressure
z32 intermediate variables introduced
z33 intermediate variables introduced
z34 intermediate variables introduced
z35 intermediate variables introduced
z36 intermediate variables introduced
z37 intermediate variables introduced
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Appendix C

Throx Sequence in MDI Plant

The implicit Boolean state space model derived from the SEQ (36) in the Throx

sequence is listed here with the list of variables. Note that equations for

Xk- - f(Xk- _,,U_,) is not included here because they are same as those for

Xk k f(Xk ,Uk). Note that the logical connectives {NOT, AND, OR} are denoted by

{-, &, #} respectively.

Equations for X <> f(Xk ,U k ) and Yk +- g(x k ,Uk):

(z75 <-> u46 # u47).
(z76 <-> u48 # u49).
(z77 <-> u50 # u51).
(z48 <-> u23 # u24).
(z49 <-> u25 # u26).
(z50 <-> u27 # u28).
(z51 <-> u29 # u30).
(z52 <-> u31 # u32).
(z53 <-> u33 # u34).
(z54 <-> u35 # u36).
(z55 <-> u37 # u38).
(z69 <-> u40 # u41).
(z70 <-> u42 # u43).
(z71 <-> u44 # u45).
(z78 <-> u52 # u53).
(z112 <-> u57 # u58).
(z113 <-> u59 # u60).
(z126 <-> xs29#xs30#xs31#xs32#xs33#xs34#xs35).
(z23 <-> (-x29 & -x7 & z67) & z126).
(z10 <-> z23 & u328).
(z24 <-> u206 & -z25).
(z25 <-> u206).
(z7 <-> xs29 & -z8).
(z8 <-> xs29).
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(z26 <-> zlO & u95 & u94).
(y60 <-> -y64 # x2#x4#x30#x5#x17).
(z109 <-> ((u344 & -u116) # -z68) & xs31).
(zll <-> x7 & xs29 & -z1lO).
(z110 <-> x7 & xs29).
(z144 <-> (u346 & xs29 & -u99) # ( -z67 & (xs30#xs29))).
(xl <-> z144 # z109 # (xl & -u147)).
(z127 <-> xs31#xs32#xs33#xs34#xs35).
(z128 <-> xs32#xs33#xs34#xs35).
(z129 <-> xs29#xs30#xs31).
(z142 <-> (x17 & -xs30) # (x17 & x29 & zl127)).
(z143 <-> (x29 & z129) # (-z67 & -z68 & zl128)).
(x2 <-> z142 # z143 # (x2 & -u210 & -u148)).
(yl <-> -u113 ).
(z162 <-> x16#x18#x20#x21#x22#x23#x24#x27#x31#z58#u4#u412# -z61).
(x3 <-> (z162 & z127) # (x3 & -u149)).
(z145 <-> (x3 & -xs30) # (x3 & xs31) # (x3 & x29 & zl126)).
(x4 <-> z145 # (x4 & -u210 & -ul50)).
(z163 <-> y20#x25#x26#x28# -z74).
(x5 <-> (zl163 & y64) # (x5 & -ul51)).
(x52 <-> (u238 # (x52 & u237)) & zl128).
(y2 <-> (u99 & -z126) # (ull16 & -zl27) # x52).
(x53 <-> (u337 # (x53 & u336)) & -(xs24#xs25#xs26#xs36)).
(y3 <-> x53).
(x33 <-> (u219 # (x33 & u218)) ).
(y4 <-> x33 & xs28 & -u55 ).
(x79 <-> (u244 # (x79 & u243)) ).
(x56 <-> (u268 # (x56 & u267)) ).
(x54 <-> (u242 # (x54 & u240))).
(x55 <-> (u265 # (x55 & u263)) ).
(y5 <-> x54 # x55 # x56 # x79 ).
(y6 <-> (-u80 & -xs24) ).
(x60 <-> (u227 # (x60 & u226))).
(x61 <-> ((u230 # (x61 & u228)) & y67)).
(y7 <-> ((x60 # x61) & y67) ).
(x6 <-> (xs28 & -(x84 # u55) & u411) # (x6 & -u152)).
(x7 <-> (u343 & (xs29# xs32# xs33# xs34 # xs35)) # (x7 & -ull12)).
(z130 <-> xsl#xs2#xs3).
(z131 <-> xs5#xs6#xs7).
(z132 <-> xs8#xs9#xsll).
(z133 <-> xsl2#xsl3#xsl5).
(z134 <-> xs20#xs21#xs23).
(z135 <-> xsl6#xsl7#xsl9).
(z30 <-> xs37 & z130 & z131 & z132 & zl133 & z134 & z135).
(z136 <-> xs25#xs26#xs27#xs28).
(z137 <-> z136#xs29#xs3O#xs3l#xs3 2).
(z17 <-> ((u94&u95&u96&u97&zl36)#(u96&u97&(xs29#xs30)))&

ul05&ulO 4&ulO 3 &ulO 2&ulOl&ulOO&u109&u107&u79&u89&u90&u91&u92&u67
&u 6 8&u 6 5&u 6 6&u6 3 &u6 4&u 69 &u70&u71&u72&u73&u74&u75&u76 & z137).

(z123 <-> -(y7#y9#x8#ylO#xll# yl2#x12#x13#x14#y21#y22#x16#u3#u4)).
(z138 <-> xs26#xs27#xs28#xs29#xs30#xs31).
(y8 <-> ((-z30 # -z123 # u93) & zl138) # ( -z17&(xs26#xs27#xs28#xs30))).
(x34 <-> (u221 # (x34 & u220))).
(y9 <-> (x34 & u201) # (-ul08 & u201)).
(z139 <-> xs24#xs25#xs26).
(z146 <-> (-ull4 & -z139) # (-u115 & -zl39)).
(x8 <-> ((u224 # (x8 & u223)) & u201) # zl146).
(x9 <-> ((u235 # (x9 & u234)) & z127) ).
(xlO <-> (u232 # (xlO & u231)) ).
(x42 <-> (u317 # (x42 & u316)) ).
(x43 <-> (u319 # (x43 & u318) & -u207) ).
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(z31 <-> -u126 ).
(z164 <-> x42#x43#u15#u16#u17#z31#u413).
(ylO <-> z164 & -xs24 & -u207).
(x48 <-> ((u332) # (x48 & (u331)))).

(x49 <-> ((u330) # (x49 & (u329))) ).
(yll <-> (x48 # x49) & -(xs24#xs25#xs26#xs27#xs28#xs36)).
(xll <-> ((u326 # (xll & u324)) & u122 & -u125)).
(z28 <-> (u347 & u200) ).
(x50 <-> ((u212 # (x50 & u211)) & u200) ).
(x51 <-> ((u214 # (x51 & u213)) & u200) ).
(z29 <-> (u200 $ -u81)).
(y12 <-> (z28#x50#x51#x29) & -xs24).
(x57 <-> (u216 # (x57 & u215)) & -xs24).
(x58 <-> (u260 # (x58 & u259)) & (u408)).
(y13 <-> x57 # x58 # -u61).
(x12 <-> (u248 # (x12 & u246) # -ull17) ).
(x13 <-> (u251 # (x13 & u250) # -u118 # -u120) & -z139).
(x14 <-> (u262 # (x14 & u261)) ).
(x64 <-> u254 # (x64 & (xs26#xs27#xs28#xs29 #xs30#xs31#xs32))

# xs33 #xs34 # xs35).
(x62 <-> (u254 # (x62 & u253) # -u119) ).
(x63 <-> (u258 # (x63 & u256)) & x64).
(y14 <-> x62 # x63).
(x65 <-> (u241 # (x65 & u239)) ).
(x66 <-> (u266 # (x66 & u264)) ).
(z147 <-> (x65 & x66) # ((ull # u7) & x65) # ((ulO # u6) & x66
(x15 <-> z147 # (x15 & -u153)).
(x35 <-> (u249 # (x35 & u247)) ).
(y15 <-> ((-ull17 & x35 & -u137 & -z52)#(-ul17 & z52)#(x35 & u
(x67 <-> (u287 # (x67 & u286))).
(x69 <-> (u288 # (x69 & xs32))).
(x68 <-> ((u291 # (x68 & u289)) & (x69 # xs33 # xs34 # xs35)
(y16 <-> (x67 # x68) & -xs24).
(x70 <-> (u273 & u296 & u280 & u305) # (x70 & xs32)).

((u275 # (x36 &
((u298 # (x71 &
((u283 # (x37 &
((u307 # (x72 &
x36 # x71 # x37
(u270 # u293 #
(u284 # u302 #
(x38 # x39) & -

u274) )
u297) )
u281))
u306))
# x72)

(x38 &
(x39 &
(xs24 #

(u311 & u370 & u396) #
((u315 # (x73 & u314))
((u394 # (x75 & u393))
((u402 # (x78 & u401))

)).

.137)

) ).

(x70#y64)))
(x70#y64)))
(x70#y64)))
(x70#y64)))

(u269 # u292))
(u282 # u301))
xs25)).
(x74 & xs32))
& (x74#y64))
& (x74#y64)))
& (x74# y 6 4 ))

(u312 # (x44 & u310)) ).
(u390 # (x45 & u380)) ).
(u398 # (x46 & u397)) ).
(x44 # x45 # x46 # x73 # x75 # x78) & -xs24).
(u325 # (x47 & u323)) ).
x47 & u122 & -u125 & -u21).
(u342 # (x40 & u341)) ).
(u322 # (x41 & u321))).
(x40 # x41) & -(xs24 # xs25)).
((-ullO # -u84) & -(xs24 # xs25))).
(z46 & -z139) # (x16 & -u154)).
((-u116 # -z68) & z128) # (-z68 & xs31) ).
z148 # (x17 & -u155)).
(z60 & y 6 5 & -(xs24 # xs25)) ).
z149 # (x18 & -u156)).
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(x36 <->
(x71 <->
(x37 <->
(x72 <->
(y17 <->
(x38 <->
(x39 <->
(y18 <->
(x74 <->
(x73 <->
(x75 <->
(x78 <->
(x44 <->
(x45 <->
(x46 <->
(y 1 9 <->
(x47 <->
(y 2 0 <->
(x40 <->
(x41 <->
(y21 <->
(y22 <->
(x16 <->
(z148 <->
(x17 <->
(z149 <->
(x18 <->

)).

.



(z150 <-> (z124 & -y83 & -(xs24#xs25)) ).
(x19 <-> z150 # (x19 & -u157)).
(z9 <-> u354 & -z75).
(z32 <-> -u108 # u133).
(z27 <-> u222 # z76).
(z33 <-> u233 # z77).
(z6 <-> xs31 # xs32 # xs33 # xs34 # xs35).
(zl <-> z32 & z27 & z6).
(z2 <-> z27 & z33 & z6).
(z3 <-> z32 & z33 & z6).
(z4 <-> u98 & u205 & z6).
(z5 <-> z9 & y67).
(x20 <-> (zl#z2#z3#z4#z5) # (x20 & -u158)).
(z34 <-> ((-u114 & u201) # u136) ).
(z35 <-> ((u225 # z76) & u201) ).
(z36 <-> ((u236 # z77) & u204 & u205 & u409)).
(z151 <-> (((z34 & z35) # (z35 & z36) # (z34 & z36)) & z127) ).
(x21 <-> z151 # (x21 & -u159)).
(z152 <-> (z57 & -(xs24 # xs25 # xs26)) ).
(x22 <-> z152 # (x22 & -u160)).
(x23 <-> z56 # (x23 & -u161)).
(x24 <-> z59 # (x24 & -u162)).
(x82 <-> (u359 # (x82 & u358))).
(x81 <-> (u364 # (x81 & u363))).
(x80 <-> (u362 # (x80 & u361))).
(z43 <-> u365 ).
(z41 <-> u368 ).
(z42 <-> u369 ).
(y23 <-> ((x82 # x80 # x81 # z43 # z41 # z42) & y64) ).
(z38 <-> ((u271 # u294) & (u278 # u303) & xs32) # xs33 # xs34 # xs35).
(zll <-> (u276 & z38)).
(z12 <-> (u299 & z38)).
(z13 <-> (u285 & z38)).
(z37 <-> (u308 & z38)).
(x25 <-> (zll#z12#z13#z37) # (x25 & -u163)).
(z14 <-> u272).
(z15 <-> u295).
(z16 <-> u279).
(z39 <-> u304).
(x26 <-> (z14#z15#z16#z39) # (x26 & -u164)).
(x27 <-> z120 # (x27 & -u165)).
(z40 <-> ((u313 # u391 # u399) & xs32) # xs33 # xs34 # xs35).
(x28 <-> (z73 & z40) # (x28 & -u166)).
(z140 <-> (-z67 & x59 & z129) # ((-z67 # (-u99 & -x76)) & z128) ).
(z141 <-> (u202 & u203 & -u115) # (u202 & u203 & -u87) ).
(x59 <-> (u99 & (xs29#xs30)) # (x59 & (xs29#xs30))).
(x76 <-> (z128 & u112) # (x76 & (z128 & -u99))).
(x29 <-> z140 # z141 # (x29 & -u112 & z128) # (x29 & -u167 & xs36)).
(z153 <-> u5 # x19 # (-ullO & -z62) # -xs37 # (z9 & -(xs24#xs25)) #
(-u113 & (xs30#xs31#xs32#xs33#xs34#xs35)) ).
(x30 <-> z153 # (x30 & -u210 & -u168)).
(x31 <-> (z72 & -(xs24#xs25)) # (x31 & -u169)).
(x32 <-> z58 # (x32 & -u170)).
(z122 <-> xl # x2 # x4 # x30 # x29).
(z121 <-> x3 # x4 # x30 # x17).
(z44 <-> (-ullO & -u84 & -u134 & -ul30)#(-ullO & u130)#(-u84 &u134)).
(z45 <-> (-ulll & -u85 & -u135 & -ul31)#(-ulll & u131)#(-u85 & u135)).
(z79 <-> (u327 & -y83) # z78).
(z80 <-> (u320 & -y83) # z50).
(z81 <-> (-u121 & -y83) # u142).
(z124 <-> (z79 & z80) # (z80 & z81) # (z79 & z81)).
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(z47 <-> -z44 & -z45 & -z124 & y77).

(z56 <-> u356 & -z51).
(z85 <-> (-u118 # u138) # u82).
(z86 <-> (-u120 # u140) # u83).

(z87 <-> (u355 # z52) ).
(z57 <-> (z85 & z86) # (z85 & z87) # (z86 & z87)).
(z58 <-> u360 & -z53).

(z59 <-> ((u255# -ull9)& -u139& -z55)#(u255&u139)
#(-u119&z55)#(u139&z55) ).

(z88 <-> (u81 # u129) ).
(z89 <-> u351 # z54).

(z90 <-> u348 # u141).
(z60 <-> (z88 & z89) # (z88 & z90) # (z89 & z90)).
(z82 <-> u352 # z48).

(z83 <-> u353 # z49).

(z84 <-> (-u106 # u132) ).
(z46 <-> (z82 & z83) # (z82 & z84) # (z83 & z84)).
(z72 <-> (u357 & u349) # (u357 & z70) # (u349 & z69)).
(z117 <-> u366 # z71).
(z118 <-> u392 # z112 # u127 # -u123).

(z119 <-> u400 # z113 # u128 # -u124).
(z120 <-> ((z117 & z118) # (z118 & z119) # (z117 & z119))).
(z61 <-> -z56 & -z57 & -z58 & -z59 & -z60 & -z46 & -z72 & -z120).
(z62 <-> z47 & z61).
(z64 <-> u75 & u76 & u73 & u74 & u71 & u72 & u69 & u70 & u63 & u64

& u65 & u66 & u67 & u68 & u89 & u90 & u91 & u92).
(z65 <-> u107 & u79 & u77 & u78).
(z63 <-> z64 & z65).
(z91 <-> z63 & z62).

(z66 <-> u350 & -z54).
(z125 <-> z66 # u55).

(z93 <-> -u99 & u95).

(z94 <-> u55 & u412 ).

(z92 <-> z93 # z94).
(y62 <-> x83 & -zlOl).

(zlOl <-> x83).
(z108 <-> u112 ).

(z153 <-> (z91 & u97 & -u116 & z92 & z108) ).
(x83 <-> z153 # (x83 & z91 & u97 & -ul16 & z92 & u345)).
(z96 <-> u345).

(z97 <-> z125 & z96).

(z98 <-> u99 # u116).

(z99 <-> z98 & u55).
(zlO0 <-> z99 # z97).

(z154 <-> (z47 & zlO0 & z108) ).

(x84 <-> z154 # (x84 & zlO0 & z47)).
(z106 <-> u412 # u99).
(z107 <-> -u115 ).

(z67 <-> u55 & z106 & -z107).

(z102 <-> u56 & u99 & z63).

(z103 <-> z102 # u116).
(z104 <-> -u108 ).
(z105 <-> -u114 ).

(z68 <-> z103 & -z104 & -z105 & u55 & z61).
(z114 <-> u367 # z71).
(z115 <-> u395 # z112).

(z116 <-> u403 # z113).
(z73 <-> ((z114 & z115) # (z114 & z116) # (z115 & z116)) ).
(z74 <-> -z73 & u116 & u55 & z61).
(z155 <-> -u8 # u9 # -z74 # xsl # xs2 # xs4).
(y27 <-> -u171 # z155).
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(y28 <-> -u172 # z155).
(y26 <-> (-u173 # -u64 # -u63) & -xsl ).
(y24 <-> -u174 # z155).
(y25 <-> -u175 # z155).
(y29 <-> (-u176 # -u65 # -u66) & -xsl ).
(y30 <-> -u177 # z155).
(y31 <-> -u178 # z155).
(y32 <-> (-u179 # -u67 # -u68) & -xsl ).
(y33 <-> -u180 # z155).
(y34 <-> -u181 # z155).
(y35 <-> (-u182 # -u69 # -u70) & -xsl ).
(y36 <-> -u183 # z155).
(y37 <-> -u184 # z155).
(y38 <-> (-u185 # -u71 # -u72) & -xsl ).
(y39 <-> -u186 # z155).
(y40 <-> -u187 # z155).
(y41 <-> (-u188 # -u73 # -u74) & -xsl ).
(y42 <-> -u189 # z155).
(y43 <-> -u190 # z155).
(y44 <-> (-u191 # -u75 # -u76) & -xsl).
(y58 <-> -y75 # -z26 # x29 # z122 # z121 # -z67 # xs25 # xs26

# xs27 # xs28 # xs30 # xs36).
(y52 <-> (-y70 # z122 # -~z67 # xs25 # xs26 # xs27 # xs28 # xs36)

& (u95 & u94)).
(y54 <-> -y68 # z122 # -z67 # xs25 # xs26 # xs27 # xs28 # xs36).
(y53 <-> -y69 # z122 # -z67 # xs25 # xs26 # xs27 # xs28 # xs36).
(y55 <-> (-y73 # z121 # -z68 # xs25#xs26#xs27#xs28#xs29#xs30#xs36)

& u97 & u96).
(y57 <-> -y71 # z121 # -z68 # xs25#xs26#xs27#xs28#xs29#xs30#xs36).
(y56 <-> -y72 # z121 # -z68 # xs25#xs26#xs27#xs28#xs29#xs30#xs36).
(y59 <-> -u199 # ul # -z74 # xs9 # xsll).
(y51 <-> -u192 # ul # -z74 # xs9 # xsll).
(y46 <-> -u193 # u2 # -z74 # xsl3 # xsl4 # xsl5).
(y47 <-> -u194 # u2 # -z74 # xsl3 # xsl4 # xsl5).
(y45 <-> (-u195 # -u89 # -u90) & -xsl2).
(y49 <-> -u196 # u2 # -z74 # xsl3 # xsl4 # xsl5).
(y50 <-> -u197 # u2 # -z74 # xsl3 # xsl4 # xsl5).
(y48 <-> (-u198 # -u91 # -u92) & -xsl2).
(xs24 <-> u146 & u404 & xs25 & u290).
(xs25 <-> (u146 & u405 & xs24)#(u146&u405&xs27&u334&u335&u257)).
(xs26 <-> u146 & u406 & xs25 & -y13 & -x12).
(z156 <-> ((y8 # x6 # (-x84 & -u55)) & xs28) # (y8 & xs29)).
(xs27 <-> (u245 & -x12 & xs26) # z156 # (u146 & u407 & u210 & xs36)).
(xs28 <-> -y8 & x84 & xs27).
(z18 <-> u55 & xs28).
(z19 <-> u338 & -y3).
(z20 <-> (x84 & u55) # z67).
(z21 <-> -y8 & z18 & z19 & z20).
(y61 <-> z21 & -z22).
(z22 <-> z21).

(xs29 <-> z21 & xs28).
(xs30 <-> (u99 & xs29) # ((x3 # x17) & z128)).
(x77 <-> (xs29 # x77) & -xs31).
(z157 <-> (-x77 & -(x3 # x17 # y8) & u410 & u112 & xs30)).
(xs31 <-> z157 # (u410 & -y8 & x77 & xs30 & -u145)).
(xs32 <-> u205 & xs31).
(z158 <-> ((((u13 # -u20) & -xsl8) # (u19 & -xslO) # x5 # (-u208 & -xsl8)

# (-u209 & -xslO)) & xs34)).
(xs33 <-> (u277 & u300 & u333 & u309 & u252 & xs32)

# z158 # (u14 & xs35)).
(xs34 <-> (u12 # u18) & xs33).
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(xs35 <-> u62 & xs33 & u143 & xs22).
(y85 <-> xs26 # xs27 # xs28 # xs29 # xs30 # xs31 # xs32 # xs33

# xs34 # xs35).
(y85 -> xs36).
(y63 <-> u113 # (-u113 & xs36)).
(y75 <-> (xs29 # xs32 # xs33 # xs34 # xs35) & z26).
(y70 <-> (xs29 # xs30 # xs31 # xs32 # xs33 # xs34 # xs35) & zl
(y68 <-> ((z126 & zlO) # (-u94 # -u95)) & u87).
(y69 <-> z126 & zlO & u87).
(y67 <-> -xs24 & -z9 & u210 & -xs36 & u144 & (u229)).
(y84 <-> u144).
(y73 <-> (z127 & z68 & -(x17 # x3)) # (-u96 # -u97)).
(y71 <-> (z127 & z68 & -(x17 # x3)) & u86).
(y72 <-> (z127 & z68 & -(x17 # x3)) & u86).
(y74 <-> -(xs24#xs25)).
(y65 <-> -(xs24#xs25) & -u5 & -x18).
(y66 <-> y65 & (xs33#xs34#xs35#xs36) &

(-u187 & u74 & -u172 & u64 & -u175 & u66)).
(y64 <-> xs33#xs34#xs35 ).
(y83 <-> -(-(xs24 # xs25) & -u5 & -x19)).
(y76 <-> xs27 & u217 & ulll & z62 & z66).
(z161 <-> ulll & u85 & -y8 & xs27).
(z159 <-> z161 # (z91 & -y8 & xs27) # ((x84 # u55) & -y8 & xs2
(z160 <-> (z67 & -y 8 & -xl & (xs29 # xs30)) # ((z67 # z68) & z6
(y77 <-> (z159 # z160) & u210).
(y79 <-> xs28 & u217).
(y80 <-> u412 & zlO).
(y81 <-> u99 & y69 & y68).
(y82 <-> u116 & y72 & y 71).
(y78 <-> -ullO & -u84).

0).

8)).
)).

Equations for h(Xk ,Uk)- (k <-> Xk1_):

((z144#z109# -u147)& -(z144#z109) -> (xl<->xl_p)).
((z142#z143# -u210)&(z142#z143# -u148)& -(z142#z143) -> (x2<->x2_p)).
((z162# -u149)&(z127# -u149)& -(z162&z127) -> (x3<->x3_p)).
((z145# -u210)&(z145# -ul50)& -z145 -> (x4<->x4_p)).
((z163# -u151)&(y64# -ul51)& -(z163&y64) -> (x5<->x5_p)).
((xs28# -u152)&(-x84# -u152)&(-u55# -u152)&

(u411# -u152)& -(xs28& -x84& -u55&u411) -> (x6<->x6_p)).
((u343# -u112)&(xs29#xs32#xs33#xs34#xs35# -ull2)&

-(u343&(xs29#xs32#xs33#xs34#xs35)) -> (x7<->x7_p)).
((u221#u220)& -u221 -> (x34<->x34_p)).
((u224#u223#z146)&(u201#z146)& -(u224#z146) -> (x8<->x8_p)).
((u235#u234)&z127& -u235 -> (x9<->x9_p)).
((u232#u231)& -u232 -> (xlO<->xlO_p)).
((u326#u324)&u122& -u125& -u326 -> (xll<->xll_p)).
((u248#u246# -ull7)& -(u248# -u117) -> (x12<->x12_p)).
((u251#u250# -u118# -ul20)& -z139& -(u251# -u118# -u120)

-> (x13<->x13_p)).
((u262#u261)& -u262 -> (x14<->x14_p)).
((z147# -u153)& -z147 -> (x15<->x15_p)).
((z46# -u154)&(-z139# -u154)& -(-z139&z46) -> (x16<->x16_p)).
((z148# -u155)& -z148 -> (x17<->xl7_p)).
((z149# -u156)& -z149 -> (x18<->xl8_p)).
((z150# -u157)& -z150 -> (x19<->x19_p)).
((zl#z2#z3#z4#z5# -u158)& -(zl#z2#z3#z4#z5) -> (x20<->x20_p)).
((z151 # -u159) & -z151 -> (x21<->x21_p)).
((z152# -ul60)& -z152 -> (x22<->x22_p)).
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((z56# -ul61)& -z56 -> (x23<->x23_p)).
((z59# -u162)& -z59 -> (x24<->x24_p)).
((zll#z12#z13#z37# -u163)& -(zll#z12#z13#z37) -> (x25<->x25_p)).
((z14#z15#z16#z39# -u164)& -(z14#z15#z16#z39) -> (x26<->x26_p)).
((z120# -u165)& -z120 -> (x27<->x27_p)).
((z73# -u166)&(z40# -u166)& -(z40&z73) -> (x28<->x28_p)).
((z140#z141# -u112# -u167)&(z140#z141# -u112#xs36)&

(z140#z141#z128# -u167)&(z140#z141#z128#xs36)&
-((z140#z141# -ul112)&(z140#z141#xs36)&(z140#z141# -u167)

&(z140#z141)&(z140#z141#z128)) -> (x29<->x29_p)).
((z153# -u210)&(z153# -u168)& -z153 -> (x30<->x30_p)).
((z72# -u169)&(-xs24# -u169)&(-xs25# -u169)& -(-xs25& -xs24&z72)

-> (x31<->x31_p)).
((z58# -ul70)& -z58 -> (x32<->x32_p)).
((u219#u218)& -u219 -> (x33<->x33_p)).
((u221 # u220) & -u221 -> (x34<->x34_p)).
((u249#u247)& -u249 -> (x35<->x35_p)).
((u275#u274)&(x70#y64)& -u275 -> (x36<->x36_p)).
((u283#u281)&(x70#y64)& -u283 -> (x37<->x37_p)).
((u270#u293#u269#u292)& -(u270#u293) -> (x38<->x38_p)).
((u284#u302#u282#u301)& -(u284#u302) -> (x39<->x39_p)).
((u342#u341)& -u342 -> (x40<->x40_p)).
((u322#u321)& -u322 -> (x41<->x41_p)).
((u317#u316)& -u317 -> (x42<->x42_p)).
((u319#u318)& -u207& -u319 -> (x43<->x43_p)).
((u312#u310)& -u312 -> (x44<->x44_p)).
((u390#u380)& -u390 -> (x45<->x45_p)).
((u398#u397)& -u398 -> (x46<->x46_p)).
((u325#u323)& -u325 -> (x47<->x47_p)).
((u332#u331)& -u332 -> (x48<->x48_p)).
((u330#u329)& -u330 -> (x49<->x49_p)).
((u212#u211)&u200& -u212 -> (x50<->x50_p)).
((u214#u213)&u200& -u214 -> (x51<->x51_p)).
((u238#u237)&z128& -u238 -> (x52<->x52_p)).
((u337#u336)& -xs24 & -xs25 & -xs26 & -xs36 & -u337 -> (x53<->x53_p)).
((u242#u240)& -u242 -> (x54<->x54_p)).
((u265#u263)& -u265 -> (x55<->x55_p)).
((u268#u267)& -u268 -> (x56<->x56_p)).
((u216#u215)& -xs24& -u216 -> (x57<->x57_p)).
((u260#u259)&u408& -u260 -> (x58<->x58_p)).
((u99#xs29#xs30)&(xs29#xs3O)& -((xs29#xs30)&u99) -> (x59<->x59_p)).
((u227#u226)& -u227 -> (x60<->x60_p)).
((u230#u228)&y67& -u230 -> (x61<->x61_p)).
((u254#u253# -ull9)& -(u254# -u119) -> (x62<->x62_p)).
((u258#u256)&x64& -u258 -> (x63<->x63_p)).
((u254#xs26#xs27#xs28#xs29#xs30#xs31#xs32#xs33#xs34#xs35)&

-(u254#xs33#xs34#xs35) -> (x64<->x64_p)).
((u241#u239)& -u241 -> (x65<->x65_p)).
((u266#u264)& -u266 -> (x66<->x66_p)).
((u287#u286)& -u287 -> (x67<->x67_p)).
((u291#u289)&(x69#xs33#xs34#xs35)& -u291 -> (x68<->x68_p)).
((u288#xs32)& -u288 -> (x69<->x69_p)).
((u273#xs32)&(u296#xs32)&(u280#xs32)&(u305#xs32)& -(u305&u280&u296&u273)

-> (x70<->x70_p)).
((u298#u297)&(x70#y64)& -u298 -> (x71<->x71_p)).
((u307#u306)&(x70#y64)& -u307 -> (x72<->x72_p)).
((u315#u314)&(x74#y64)& -u315 -> (x73<->x73_p)).
((u311#xs32)&(u396#xs32)&(u370#xs32)& -(u396&u370&u311)

-> (x74<->x74_p)).
((u394#u393)&(x74#y64)& -u394 -> (x75<->x75_p)).
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(z128&(z128# -u99)&(u112#z128)&(u112# -u99)& -(u112&z128)
-> (x76<->x76_p)) .

(-xs31 & -xs29 -> (x77<->x77_p)).
((u402#u401)&(x74#y64)& -u402 -> (x78<->x78_p)).
((u244#u243)& -u244 -> (x79<->x79_p)).
((u362#u361)& -u362 -> (x80<->x80_p)).
((u364#u363)& -u364 -> (x81<->x81_p)).
((u359#u358)& -u359 -> (x82<->x82_p)).
((z153#z91)&(z153#u97)&(z153# -u116)&(z153#z92)&(z153#u345)& -z153

-> (x83<->x83 p)).
((z154#zOO)&(z154#z47)& -z154 -> (x84<->x84_p)).

Variable List:

Variables used in the Boolean state space model are listed in Tables C.1-C.3.

Table C.1: Inputs for Throx sequence

Variable Meaning Variable Meaning
ul ALM(303) u2 ALM(324)
u3 ALM(425) u4 ALM(432)
u5 ALM(445) u6 AIM(324)
u7 AIM(329) u8 DC(687)
u9 DC(688) ul0 DC(1042)
ull DC(1060) u12 DC(1113)
u13 DC(1185) u14 DC(1223)
u15 DC(1252) u16 DC(1253)
u17 DC(1254) u18 DC(1308)
u19 DC(1309) u20 DC(1330)
u21 DC(2092) u22 DC(2402)
u23 DC(2406) u24 DC(2408)
u25 DC(2409) u26 DC(2411)
u27 DC(2412) u28 DC(2414)
u29 DC(2415) u30 DC(2417)
u31 DC(2418) u32 DC(2420)
u33 DC(2421) u34 DC(2423)
u35 DC(2425) u36 DC(2427)
u37 DC(2428) u38 DC(2430)
u39 DC(2444), rinsing is running u40 DC(2455)
u41 DC(2457) u42 DC(2458)
u43 DC(2460) u44 DC(2461)
u45 DC(2463) u46 DC(2467)
u47 DC(2469) u48 DC(2470)
u49 DC(2472) u50 DC(2473)
u51 DC(2475) u52 DC(2477)
u53 DC(2479) u54 DC(2493)
u55 DC(2494), rinse ended u56 DC(2509)
u57 DC(2521) u58 DC(2523)
u59 DC(2524) u60 DC(2525)
u61 DC(2650) u62 DC(2905)
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u63 DI(201) u64 DI(202)
u65 DI(223) u66 DI(224)
u67 DI(226) u68 DI(227)
u69 DI(229) u70 DI(230)
u71 DI(242) u72 DI(243)
u73 DI(245) u74 DI(246)
u75 DI(248) u76 DI(249)
u77 DI(302) u78 DI(303)
u79 DI(304) u80 DI(307)
u81 DI(308) u82 DI(315)
u83 DI(316) u84 DI(318)
u85 DI(319) u86 DI(321)
u87 DI(322) u88
u89 DI(324) u90 DI(325)
u91 DI(327) u92 DI(328)
u93 DI(331) u94 DI(332)
u95 DI(333) u96 DI(335)
u97 DI(336) u9 8 DI(337)
u99 DI(340) ul100 DI(342)
ul01 DI(343) u102 DI(344)
u103 DI(345) u104 DI(346)
u105 DI(347) u106 DI(348)
u107 DI(349) u108 DI(361)
u109 DI(364) u110 DI(374), emergency shutdown switch
u111 DI(376), start button pressed u112 DI(377), start button pressed
u113 DI(380) u114 DI(381), low natural gas pressure
u115 DI(382) u116 DI(384), main flame on
u117 DI(386) u118 DI(387)
u119 DI(388) u120 DI(391)
u121 DI(401), blower break down u122 DI(423)
u123 DI(426) u124 DI(430)
u125 DI(433) u126 DI(435)
u127 DI(464), blower break down u128 DI(465), speed low
u129 DIM(308) u130 DIM(318)
u131 DIM(319) u132 DIM(348)
u133 DIM(361) u134 DIM(374)
u135 DIM(376) u136 DIM(381)
u137 DIM(386) u138 DIM(387)
u139 DIM(388) u140 DIM(391)
u141 DIM(396) u142 DIM(401)
u143 DK(34) u144 DK(329)
u145 DK(360) u146 DM(36)
u147 DM(333) u148 DM(334), reset SHDN(334)
u149 DM(336) u150 DM(337)
u151 DM(338) u152 DM(346), reset ALM(346)
u153 DM(364) u154 DM(377)
u155 DM(378), reset WARN(378) u156 DM(379), reset WARN(379)
u157 DM(380) u158 DM(381)
u159 DM(382) ul60 DM(383)
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ul61 DM(384) u162 DM(385)
u163 DM(387) u164 DM(388)
u165 DM(389) u166 DM(390)
u167 DM(391) u168 DM(392)
u169 DM(393) u170 DM(394)
u171 DO(201) u172 DO(202)
u173 DO(222) u174 DO(223)
u175 DO(224) u176 DO(225)
u177 DO(226) u178 DO(227)
u179 DO(228) u180 DO(229)
u181 DO(230) u182 DO(241)
u183 DO(242) u184 DO(243)
u185 DO(244) u186 DO(245)
u187 DO(246) u188 DO(247)
u189 DO(248) u190 DO(249)
u191 DO(250) u192 DO(304)
u193 DO(324) u194 DO(325)
u195 DO(326) u196 DO(327)
u197 DO(328) u198 DO(329)
u199 DO(349) u200 DOT(308)
u201 DOT(331) u202 DOT(332)
u203 DOT(333) u204 DOT(335)
u205 DOT(336) u206 DOT(339)
u207 DOT(401) u208 NSDN(30)
u209 NSDN(32) u210 NSDN(36)
u211 AC(301) GT AC(1301) u212 AC(301) GT AP(1335)
u213 AC(301) LT AC(1302) u214 AC(301) LT AP(1336)
u215 AC(302) LT AC(1007) u216 AC(302) LT AP(1008)
u217 AC(311) GT AP(1028,10000,15000) u218 AC(311) LT AC(1001)
u219 AC(311) LT AP(1877) u220 AC(314) GT AC(1004)
u221 AC(314) GT AP(1005) u222 AC(314) GT AP(1853,3,5)
u223 AC(314) LT AC(1005) u224 AC(314) LT AP(1006)
u225 AC(314) LT AP(1808,1.09,5) u226 AC(319) GT AC(1003)
u227 AC(319) GT AP(1004) u228 AC(319) LT AC(1319)
u229 AC(319) LT AP(1327,16,21) u230 AC(319) LT AP(1356)
u231 AC(320) GT AC(1294) u232 AC(320) GT AP(1329)
u233 AC(320) GT AP(1854,750,1000) u234 AC(320) LT AC(1006)
u235 AC(320) LT AP(1007) u236 AC(320) LT AP(1809,40,1000)
u237 AC(322) LT AC(1307) u238 AC(322) LT AP(1347)
u239 AC(324) GT AC(1012) u240 AC(324) GT AC(1313)
u241 AC(324) GT AP(1013) u242 AC(324) GT AP(1349)
u243 AC(324) LT AC(1315) u244 AC(324) LT AP(1351)
u245 AC(325) GE AC(999) u246 AC(325) GT AC(1008)
u247 AC(325) GT AC(1013) u248 AC(325) GT AP(1009)
u249 AC(325) GT AP(1026) u250 AC(325) LT AC(1009)
u251 AC(325) LT AP(1010) u252 AC(326) GE AP(1032,12,21)
u253 AC(326) GT AC(1011) u254 AC(326) GT AP(1012)
u255 AC(326) GT 19,21 u256 AC(326) LT AC(1321)
u257 AC(326) LT AP(636,1.1,21) u258 AC(326) LT AP(1357)
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u259 AC(327) LT AC(1317) u260 AC(327) LT AP(1353)
u261 AC(328) GT AC(1010) u262 AC(328) GT AP(1011)
u263 AC(329) GT AC(1314) u264 AC(329) GT AC(1322)
u265 AC(329) GT AP(1350) u266 AC(329) GT AP(1358)
u267 AC(329) LT AC(1316) u268 AC(329) LT AP(1352)
u269 AC(333) GT AC(1016) u270 AC(333) GT AP(1015)
u271 AC(333) GT AP(1366,860,2000) u272 AC(333) GT AP(1818,1600,2000)
u273 AC(333) GT '1200,2000' u274 AC(333) LT AC(1015)
u275 AC(333) LT AP(1014) u276 AC(333) LT AP(1816,870,2000)
u277 AC(334) GE AP(1030,1000,2000) u278 AC(334) GT AP(1367,860,2000)
u279 AC(334) GT AP(1819,1350,2000) u280 AC(334) GT '950,2000'
u281 AC(334) LT AC(1196) u282 AC(334) GT AC(1325)
u283 AC(334) LT AP(1177) u284 AC(334) GT AP(1361)
u285 AC(334) LT AP(1817,870,2000) u286 AC(335) GT AC(1028)
u287 AC(335) GT AP(1025) u288 AC(335) GT AP(1370,760,2000)
u289 AC(335) LT AC(1323) u290 AC(335) LT AP(1346,200,2000)
u291 AC(335) LT AP(1359) u292 AC(343) GT AC(1016)
u293 AC(343) GT AP(1015) u294 AC(343) GT AP(1366)
u295 AC(343) GT AP(1818) u296 AC(343) GT '1200,2000'
u297 AC(343) LT AC(1015) u298 AC(343) LT AP(1014)
u299 AC(343) LT AP(1816) u300 AC(344) GE AP(1030)
u301 AC(344) GT AC(1325) u302 AC(344) GT AP(1361)
u303 AC(344) GT AP(1367) u304 AC(344) GT AP(1819)
u305 AC(344) GT '950,2000' u306 AC(344) LT AC(1196)
u307 AC(344) LT AP(1177) u308 AC(344) LT AP(1817)
u309 AC(360) GE AP(1031,200,400) u310 AC(360) GT AC(1017)
u311 AC(360) GT AC(1327) u312 AC(360) GT AP(1016)
u313 AC(360) GT AP(1372,195,400) u314 AC(360) LT AC(1327)
u315 AC(360) LT AP(979) u316 AC(418) GT AC(1085)
u317 AC(418) GT AP(1076) u318 AC(418) LT AC(1086)
u319 AC(418) LT AP(1077) u320 AC(418) LT 10,300
u321 AC(422) LT AC(1328) u322 AC(422) LT AP(1364)
u323 AC(423) GT AC(1018) u324 AC(423) GT AC(1296)
u325 AC(423) GT AP(1017) u326 AC(423) GT AP(1332)
u327 AC(436) LT 100,2000 u328 AC(971) GE AP(956,15,32767)
u329 AC(973) GT AC(1295) u330 AC(973) GT AP(1331)
u331 AC(974) GT AC(1295) u332 AC(974) GT AP(1331)
u333 AC(1273) GE AP(1399,1250,2000) u334 AC(1273) LT AP(634,700,2000)
u335 AC(1274) LT AP(634) u336 AC(1278) LT AC(1000)
u337 AC(1278) LT AP(1000) u338 AC(1278) LE AC(998)
u341 AC(1817) LTAC(1019) u342 AC(1817) LT AP(1018)
u343 AC(1832) GE AP(1964,4,32767) u344 AC(1922) EQ ZERO
u345 AC(1955) GT ZERO u346 AC(1957) GE AP(1875,2,32767)
u347 AC(1986) LT AP(1334,500,3000) u348 AC(1986) LT 300,3000
u349 AI(306) LT 2,10 u350 AI(311) GE 10000,15000
u351 AI(311) LT 1500,15000 u352 AI(315) LT 30,712
u353 AI(316) LT 1.07,2 u354 AI(319) GT AP(1943,19,21)
u355 AI(325) LT AP(1985,55,100) u356 AI(328) GT 13.5,14.2
u357 AI(331) LT 2,10 u358 AI(355) GT AC(980)
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u359 AI(355) GT AP(964) u360 AI(335) GT 1100,1200
u361 AI(355) LT AC(979) u362 AI(355) LT AP(963)
u363 AI(356) GT AC(980) u364 AI(356) GT AP(964)
u365 AI(356) LT AP(966,100,400) u366 AI(360) GT 300,400
u367 AI(360) LT 180,400 u368 AI(371) LT AP(967,100,400)
u369 AI(372) LT AP(968,100,400) u370 AI(437) GT AC(746)
u380 AI(437) GT AC(747) u390 AI(437) GT AP(707)
u391 AI(437) GT AP(708,195,1050) u392 AI(437) GT 300,1050
u393 AI(437) LT AC(746) u394 AI(437) LT AP(709)
u395 AI(437) LT 180,1050 u396 AI(447) GT AC(746)
u397 AI(447) GT AC(747) u398 AI(447) GT AP(707)
u399 AI(447) GT AP(708) u400 AI(447) GT 300,1050
u401 AI(447) LT AC(746) u402 AI(447) LT AP(709)
u403 AI(447) LT 180,1050 u404 AK(36,0,32767) EQ 351,32767
u405 AK(36) EQ 352,32767 u406 AK(36) EQ 353,32767
u407 AK(36) EQ 354,32767 u408 AOT(354) LT AP(1354,50,110)
u409 AOT(359) GT '27,110' u410 AOT(359) GE AP(802)
u411 STIME(36) GT AP(837,500,32767) u412 DC(2499)
u413 DC(1073)

Table C.2: Outputs for Throx sequence

Variables Meaning

yl ALM(335), critical instrument not ok

y2 ALM(339), insufficient flame or low intensity
y3 ALM(340), low air flow
y4 ALM(341)
y5 ALM(342), burner chamber pressure high/low
y6 ALM(343), major disturbance
y7 ALM(344)
y8 ALM(348)
y9 ALM(349)
yl0 ALM(353), PB-521 speed, vibration, temperature problems
yll ALM(355), energy input high, Max power 8800 KW
y1 2  ALM(358), PB-520 Supercharger problem
y1 3  ALM(359), condensation supply problem or failure
y14 ALM(363), steam flow high/low
y15 ALM(365), condensate level in boiler very high
y1 6  ALM(366), Turning chamber temperature high/low
y17 ALM(367), burner temperature low
y1 8  ALM(368), burner temperature high
y19 ALM(369), smoke gas temperature high/low
y2O ALM(370), CO concentration in smoke gas high
y2 1 ALM(371), low 02 concentration in smoky gas, page 48
y22 ALM(375), emergency shutdown prealarm
y2 3 ALM(386), PFTB-521 outer wall temperature high high or low
y2 4 DA(201), PD-514 vent 1 block valve
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y2 5 DA(202), PD-514 vent 2 block valve
y26 DA(203), PD-512 nitrogen valve
y27 DA(204), PD-512 vent 1 block valve
y28 DA(205), PD-512 vent 2 block valve
y2 9 DA(206), PD-514 vent nitrogen bleed valve
y30 DA(207), PDY-358 vent 1 block valve
y3 1 DA(208), PDY-358 vent 2 block valve
y32 DA(209), PDY-358 vent nitrogen valve

y33 DA(210), Anilin vent 1 block valve
y34 DA(211), Anilin vent 2 block valve
y35  DA(212), Anilin vent nitrogen valve
y36 DA(213), Acid amin vent 1 block valve
y37 DA(214), Acid amin vent 2 block valve
y38 DA(215), Acid amin vent nitrogen valve
y39 DA(216), MCB vent 1 block valve
y40 DA(217), MCB vent 2 block valve
y41 DA(218), MCB vent nitrogen valve
y42  DA(219), Formalin vent 1 block valve
y43 DA(220), Formalin vent 2 block valve
y44 DA(240), Formalin vent nitrogen valve
y45 DA(321), PT-541 vent nitrogen bleed valve
y46 DA(322), PT-541 vent 1 block valve
y47 DA(323), PT-541 vent 2 block valve
y48 DA(324), PE-323 vent nitrogen bleed valve
y49 DA(325), PE-323 vent 1 block valve
yS0 DA(326), PE-323 vent 2 block valve
y51 DA(331), Liquid residue burning 2 valve
y52 DA(332), Pilot gas ventilation
y53 DA(333), Pilot gas 2 valve
y54 DA(334), Pilot gas 1 valve
y55 DA(335), Main gas ventilation
y56 DA(336), Main gas 2 valve
y57 DA(337), Main gas 1 valve
y58 DA(338), Abort ignition
y59 DA(339), Liquid residue burning 1 valve
y6 0 DC(1116)
y6 1 DC(1121)
y62 DC(2507)
y63 DO(301), critical instrument reset
y6 4 DO(306), computer activation
y65 DO(308), air blower PB-520
y66 DO(310)
y67 DO(331), natural gas block valve in the limit
y68 DO(332), pilot gas blockvalve 1
y69 DO(333), pilot gas blockvalve 2
y70 DO(334), pilot gas bleed
y71 DO(335), main-gas block valve 1
y72 DO(336), main-gas block valve 2
y73 DO(337), main gas bleed valve
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y74 DO(338), combustion air block valve
y75 DO(339)
y76 DO(371), rinse ready
y77 DO(372), Mov-V hardware ok
y78 DO(373), emergency shutdown
y79 DO(374), Rinse running
y80 DO(375), Ignition running
y81 DO(376), Burner ignition running
y82 DO(377), Main burner running
y83 DO(401)
y84 LAO(379)
y8 5  JSTEP(363), PFTB-521 Shutdown

Table C.3: State variables for Throx sequence

Variables Meaning

xl ALM(333), ignition stopped
x2 ALM(334), mainflame and pilotflame failed
x3 ALM(336), shutdown except pilot-burner
x4 ALM(337), illegal process conditions
x5 ALM(338), residue shutdown
x6 ALM(346), Rinse time problem
x7 ALM(347), Pilot flame ignition problem
x8 ALM(350), natural gas pressure low
x9 ALM(351), natural gas flow low
x10 ALM(352), natural gas flow high
xl ALM(356), high CO concentration in the outlet
x12 ALM(360), condensate level in boiler high
x13 ALM(361), condensate level in boiler low
x14 ALM(362), steam flow high
x15 ALM(364), burner chamber pressure very high
x16 ALM(377), instrument air pressure very low
x17 ALM(378), main flame off
x18 ALM(379), PB-520 trip
x19 ALM(380), PB-521 smoke gas blower trip
x20 ALM(381), natural gas pressure/flow very high
x21 ALM(382), natural gas pressure/flow very low
x22 ALM(383), condensate level in boiler very low
x23 ALM(384), steam flow very high
x24 ALM(385), steam pressure very high
x25 ALM(387), burning temperature very low
x26 ALM(388), burning temperature very high
x27 ALM(389), smoke gas temperature very high
x28 ALM(390), smoke gas temperature very low
x29 ALM(391), Pilot-burner off
x30 ALM(392), process shutdown
x31 ALM(393), 02 concentration in smoke gas very low
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x32 ALM(394), turn chamber temperature too high
x33 DC(1000)
x34 DC(1001)
x35 DC(1002)
x36 DC(1003)
x37 DC(1004)
x38 DC(1005)
x39 DC(1006)
x40 DC(1007)
x41 DC(1008)
x42 DC(1149)
x43 DC(1150)
x44 DC(1210)
x45 DC(1211)
x46 DC(1212)
x47 DC(1213)
x48 DC(1240)
x49 DC(1241)
x50 DC(1246)
x51 DC(1247)
x52 DC(1259)
x53 DC(1261)
x54 DC(1265)
x55 DC(1266)
x56 DC(1268)
x57 DC(1269)
x58 DC(1270)
x59 DC(1271)
x60 DC(1273)
x61 DC(1274)
x62 DC(1277)
x63 DC(1278)
x64 DC(1279)
x65 DC(1280)
x66 DC(1281)
x67 DC(1282)
x68 DC(1283)
x69 DC(1284)
x70 DC(1285)
x71 DC(1286)
x72 DC(1287)
x73 DC(1288)
x74 DC(1289)
x75 DC(1290)
x76 DC(1307)
x77 DC(1313)
x78 DC(1365)
x79 DC(1367)
x80 DC(1380)
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x81 DC(1381)
x82 DC(1390)
x83 DC(2495)
x84 DC(2506), hardware release
xs24 STEP(351), Maintenance wait step PFTB-521
xs25 STEP(352), Process wait step PFTB-521
xs26 STEP(353), Boiler fill-up
xs27 STEP(354), operation condition check
xs28 STEP(355), Air rinse
xs29 STEP(356), Pilot-flame ignition
xs30 STEP(357), Only pilot-burner in operation
xs31 STEP(358), Main-flame ignition
xs32 STEP(359), Heat-up
xs33 STEP(360), Natural gas and vent gas burning
xs34 STEP(361), Liquid burning
xs35 STEP(362), Containment air burning
xs36 STEP(363), PFTB-521 Shutdown
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Appendix D

Computation of Level of Variables
in Combinational Logic Systems

The following program written in Modula-2 compute the level of signals or variables in

combinational logic systems by depth first search.

MODULE Levelize ;
(*======================================*)
(* Purpose : Compute level of signals in combinational circuit *)
(* File : Levelize.mod *)
(* Language : Modula 2 *)
(* Author : Taeshin Park *)
(* Date : March 20, 1997 *)
(*=======================================*)
(* Input File Format for circuit with N output signals:

N
OutputNodeLabel_l1

OutputNodeLabel_N
NoChild ParentNodeLabel LabelofChildNodel LabelofChildNode2 ...

0
Example :
2
12
13
2723
2845
1 9 6
2 10 7 8
2 11 8 9
2 12 1 10
2 13 9 11
0
Note : There should be no blank spaces at the end of each line.==== === === === === === === === ==== === === === === === === === *)
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IMPORT ALLOCATE,
DEALLOCATE ;

IMPORT WriteCard,
WriteString,
WriteLn,
ReadCard,
OpenInput,
CloseInput,
OpenOutput,
CloseOutput;

CONST
MaxOutputs = 50 ;
MaxEqns = 5000

MaxChildren = 50 ;

TYPE
PointerToNodeList = POINTER TO NodeList ;
PointerToNode = POINTER TO Node ;
NodeList = RECORD

Node : PointerToNode ;
Next :

END ;
Node = RECORD

Left
Right
Balance
Label
Level
Leveled
Visited
ChildList

PointerToNodeList ;

: PointerToNode ;
: PointerToNode ;
: INTEGER[-1..1]
: CARDINAL ;
: CARDINAL ;
: BOOLEAN ; (* Level is calculated *)
: BOOLEAN ; (* Node is visited *)
: PointerToNodeList ;

END ;
CardArray = ARRAY[1..MaxChildren] OF CARDINAL ;
Input = RECORD

NodeLabel : CARDINAL ; (* output variable *)
Incident : CardArray; (* a list of inputs *)

END ;

PROCEDURE InitialiseNodeTree(VAR Tree : PointerToNode) ;
(* Initialises a new tree of Nodes. *)
BEGIN
Tree := NIL

END InitialiseNodeTree ;

PROCEDURE LocateNodeTreeEntry(VAR Tree : PointerToNode ;
NewLabel : CARDINAL ;
Create : BOOLEAN
VAR Found : BOOLEAN ) : PointerToNode ;

(* LocateNodeTreeEntry searches the binary tree Tree for an entry
of NewLabel. Found will return TRUE is this search is successful.
If the search is not succuessful and Create is TRUE, a new entry
will be made. *)
VAR

HeightIncrease : BOOLEAN
P1, P2, Node : PointerToNode ;

PROCEDURE LocateEntry(VAR Tree : PointerToNode) : PointerToNode ;
BEGIN

IF Tree = NIL THEN
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IF Create THEN
(* Add new entry to the tree. *)
NEW(Tree) ;
HeightIncrease := TRUE
WITH Tree^ DO

Left := NIL
Right := NIL
Label := NewLabel ;
Level := 0;
Leveled := FALSE
Visited := FALSE
ChildList := NIL
Balance := 0

END (*with*)
END (*if*) ;
Found := FALSE
RETURN Tree

ELSE
(* Continue searching for the correct position of the new node. *)

IF NewLabel < Tree^.Label THEN
(* The Label of the new node is less than the present node,

search the left branch of the tree. *)
Node := LocateEntry(Tree^.Left) ;
IF HeightIncrease THEN

(* left branch has grown. *)
CASE Tree^.Balance OF

1 : Tree^.Balance := 0
HeightIncrease := FALSE

0 : Tree^.Balance -1
-1 : (* Rebalance tree. *)

P1 := Tree^.Left
IF P1^.Balance = -1 THEN

(* single LL rotation. *)
Tree^.Left := P1^.Right ;
Pl^.Right := Tree
Tree^.Balance := 0
Tree := P1

ELSE
(* double LR rotation. *)
P2 := P1^.Right ;
Pl^.Right := P2^.Left
P2^.Left := P1

Tree^.Left := P2^.Right ;
P2^.Right := Tree
IF P2^.Balance = -1 THEN
Tree^.Balance := 1

ELSE
Tree^.Balance := 0

END (*if*)
IF P2^.Balance = 1 THEN

Pl^.Balance := -1
ELSE

Pl^.Balance := 0
END (*if*)
Tree := P2

END (*if*)
Tree^.Balance := 0
HeightIncrease := FALSE

END (*case*)
END (*if*)
RETURN Node ;
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ELSIF NewLabel > Tree^.Label THEN
(* The Label of the new node is greater than the present node,

search the right branch of the tree. *)
Node := LocateEntry(Tree^.Right)
IF HeightIncrease THEN

(* right branch has grown *)
CASE Tree^.Balance OF

-1 : Tree^.Balance := 0
HeightIncrease := FALSE

0 : Tree^.Balance := 1
1 : (* Rebalance tree. *)

P1 := Tree^.Right
IF Pl^.Balance = 1 THEN

(* single RR rotation. *)
Tree^.Right := P1^.Left ;
P1^.Left := Tree
Tree^.Balance := 0
Tree := P1

ELSE
(* double RL rotation. *)
P2 := P1^.Left
Pl^.Left := P2^.Right ;
P2^.Right := P1
Tree^.Right := P2^.Left
P2^.Left := Tree ;
IF P2^.Balance = 1 THEN
Tree^.Balance := -1

ELSE
Tree^.Balance := 0

END (*if*)
IF P2^.Balance = -1 THEN
P1^.Balance := 1

ELSE
P1^.Balance := 0

END (*if*)
Tree := P2

END (*if*)
Tree^.Balance := 0
HeightIncrease := FALSE

END (*case*)
END (*if*)
RETURN Node

ELSE
(* Congratulations, you have found the node. *)
Found := TRUE ;
RETURN Tree

END (*if*)
END (*if*)

END LocateEntry ;

BEGIN
(* LocateVertexTreeEntry *)
HeightIncrease := FALSE ;
RETURN LocateEntry(Tree)

END LocateNodeTreeEntry ;

PROCEDURE PushChild(VAR CurrentNode : PointerToNode ;
Child : PointerToNode ) ;

(* pushes Child onto the adjacency list of CurrentNode. FIFO list. *)
VAR
Dummy : PointerToNodeList ;
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BEGIN
NEW (Dummy)
WITH Dummy^ DO

Node := Child

Next := CurrentNode^.ChildList ;
END (*with*) ;
CurrentNode^.ChildList := Dummy

END PushChild ;

PROCEDURE PrintChild(Node : PointerToNode)
(* recursively print child list information. *)
VAR

Dummy : PointerToNodeList
BEGIN

WITH Node^ DO
IF NOT Visited THEN
Visited := TRUE;
WriteString("Node: ")
IF Label > 20000 THEN (* input *)

WriteString("u");
WriteCard(Label-20000,0);

ELSIF Label > 10000 THEN (* output *)
WriteString("y");
WriteCard(Label-10000,0);

ELSE (* intermediate *)
WriteString("z");
WriteCard(Label,0);

END;
WriteString(" Level: ")
WriteCard(Level,0) ;
WriteString(" Child List:")
Dummy := ChildList ;
WHILE Dummy <> NIL DO
WriteString(" ")
WITH DummyA DO

IF Node^.Label > 20000 THEN (* input *)
WriteString("u");
WriteCard(Node^.Label-20000,0);

ELSIF Node^.Label > 10000 THEN (* output *)

WriteString("y");
WriteCard(Node^.Label-10000,0);

ELSE (* intermediate *)
WriteString("z");
WriteCard(Node^.Label,0);

END;
END (*with*)
Dummy := Dummy^.Next

END (*while*)
WriteLn ;
Dummy := ChildList
WHILE Dummy <> NIL DO

PrintChild(Dummy^.Node)
Dummy := Dummy^.Next ;

END (*while*)
END; (*if *)
END (*with*)

END PrintChild ;

PROCEDURE LevelIs(Node : PointerToNode) : CARDINAL;
VAR

Dummy : PointerToNodeList;
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Value : CARDINAL;
BEGIN
WITH Node" DO
IF Leveled THEN
RETURN Level;

ELSE
Leveled := TRUE;
IF ChildList=NIL THEN
Level := 0;
RETURN Level;

ELSE
Dummy := ChildList ;
Value := LevelIs(Dummy^.Node);
WHILE Dummy <> NIL DO

IF Value<LevelIs(Dummy^.Node) THEN
Value := LevelIs(Dummy^.Node);

END;
Dummy := Dummy^.Next;

END (*while*);
Level := Value+1;
RETURN Level;

END; (*if*)
END; (*if*)
END ; (*with*)

END LevelIs;

PROCEDURE PrintDependency(Node : PointerToNode)
VAR

Dummy : PointerToNodeList ;
BEGIN
WITH Node^ DO
IF NOT Visited THEN
Visited := TRUE;
IF Label > 20000 THEN (* input *)

WriteString("u.prior(IU)$(ord(IU) EQ ");
WriteCard(Label-20000,0);

ELSIF Label > 10000 THEN (* output *)
WriteString("ynr.prior(IY)$(ord(IY) EQ ");
WriteCard(Label-10000,0);

ELSE (* intermediate *)
WriteString("znr.prior(IZNR)$(ord(IZNR) EQ ");
WriteCard(Label,0);

END;
WriteString(") = ");
IF Label>20000 THEN

WriteString('0.0001');
ELSIF Level>=100 THEN

WriteString('0.');
WriteCard(Level,0);

ELSIF Level>=10 THEN
WriteString('0.0');
WriteCard(Level,0);

ELSE
WriteString('0.00');
WriteCard(Level,0);

END;
WriteString(" ; "); WriteLn;
Dummy := ChildList ;
WHILE (Dummy <> NIL) DO

PrintDependency(Dummy^.Node)
Dummy := Dummy^.Next ;
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END (*while*)
END (*if*) ;
END (*with*)

END PrintDependency ;

PROCEDURE ReadAdjacency(VAR NoEqns : CARDINAL;
VAR NoOutputs : CARDINAL);

VAR
I, NoChildren, Number : CARDINAL;

BEGIN
ReadCard(NoOutputs);
FOR I := 1 TO NoOutputs DO

ReadCard(Number);
OutputNode[I] := Number ;

END;
NoEqns := 0;
ReadCard(NoChildren);
WHILE NoChildren <> 0 DO

ReadCard(Number);
INC(NoEqns);
InputData[NoEqns].NodeLabel := Number;
FOR I := 1 TO NoChildren DO

ReadCard(Number);
InputData[NoEqns].Incident[I] := Number;

END; (* for *)
ReadCard(NoChildren);

END; (* while *)
END ReadAdjacency;

VAR
Found : BOOLEAN ;

InputData : ARRAY[1..MaxEqns] OF Input ;
OutputNode : ARRAY[l..MaxOutputs] OF CARDINAL;
I,J,NoInputs,NoEqns,NoOutputs : CARDINAL ;
Nodes,CurrentNode,IncidentNode : PointerToNode ;

BEGIN
InitialiseNodeTree(Nodes)
FOR I := 1 TO MaxEqns DO

InputData[I].NodeLabel := 0;
FOR J := 1 TO MaxChildren DO

InputData[I].Incident[J] := 0;
END;

END;

OpenInput("");

OpenOutput("");

WriteLn; WriteString("Reading inputs ... ");
ReadAdjacency(NoEqns,NoOutputs);
WriteString("DONE"); WriteLn;

(* read the input data, constructing the graph as we go. *)
WriteString('Constructing graph ... ');

NoInputs := 0 ;
FOR I := 1 TO NoEqns DO

(* create the entry for this node if it doesn't already exist. *)
CurrentNode :=

LocateNodeTreeEntry(Nodes,InputData[I].NodeLabel,TRUE,Found)
(* update the adjacency list of all the incident nodes *)
J := 1 ;
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WHILE InputData[I].Incident[J] > 0 DO
IncidentNode :=

LocateNodeTreeEntry(Nodes,InputData[I].Incident[J],TRUE,Found)
PushChild(CurrentNode,IncidentNode);
INC(J) ;

END (*while*)
END (*for*) ;
WriteString('DONE'); WriteLn;

FOR I := 1 TO NoOutputs DO
WriteLn; WriteString('Level of Output Node : ');
WriteCard(OutputNode[I],0);
WriteString(' = ');
WriteCard(LevelIs(LocateNodeTreeEntry(Nodes , OutputNode[I],

TRUE,Found)),0);
WriteLn;

END;

FOR I := 1 TO NoOutputs DO
WriteLn; WriteString('Dependency List of Output Node : ');
WriteCard(OutputNode[I],0); WriteLn; WriteLn;
PrintDependency(LocateNodeTreeEntry(Nodes,OutputNode[I],TRUE,Found));
WriteLn;

END;
END Levelize.
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