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Abstract

An adaptively parallel job is one in which the number of processors which can be used

without waste changes during execution. When allocating processors to multiple adap-

tively parallel jobs, a job scheduler should attempt to be fair-meaning that no job gets

fewer processors than another, unless it demands fewer-and efficient-meaning that the

scheduler does not waste processors on jobs that do not need them. Moreover, the scheduler

should adapt quickly and be implementable in a distributed fashion.

In this thesis, I present and analyze a randomized processor allocation algorithm, the

SRLBA algorithm, which allocates processors to adaptively parallel jobs in a distributed

system of P processors and J jobs. The algorithm consists of rounds of load-balancing steps

in which processor migration may occur. In the case that each job has a demand which is

more than its fair share P/J of the processors, I show that after O(ig P) rounds, the system

is in an almost fair and efficient allocation with high probability.

To analyze the algorithm, I use a two-phase analysis with a potential-function argument.

In Phase 1, I show that after O(lg P) rounds every job has at least a constant fraction of

P/J processors. Then I show that in Phase 2, after an additional O(lg P) rounds, the

system converges to an almost fair and efficient configuration.

Finally, I conclude my thesis with some directions for future work.

Thesis supervisor: Charles E. Leiserson

Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Multiprocessor systems have moved from a rare research tool to a commercially viable

product within the last ten years. Unfortunately, no clear consensus has emerged about

how to schedule jobs on these systems. We believe that any good solution to scheduling

should have the three characteristics. First, the system should adapt as the parallelism

of jobs changes. Second, the system should converge to the desired processor allocation

quickly. Third, the system should be distributed, since it should be easily scalable.

This thesis studies the problem of how to allocate processors to parallel jobs in a dis-

tributed multiprocessor system. In particular, we are concerned with adaptively parallel

jobs: those for which the number of processors which can be used without waste changes

during execution. I shall refer to this maximum number of efficiently usable processors for

a job as the desire of the job. A scheduling algorithm can allocate a job more processors

than it desires, in which case some of the processors will be underutilized. Similarly, a

scheduling algorithm can allocate a job fewer processors than it desires, in which case some

of the job's parallelism will not be exploited.

We call the problem of how to allocate processors to adaptively parallel jobs the adap-

tively parallel processor-allocation problem. As multiprocessor systems become more

common and as the number of processors in them increases, the the adaptively parallel

processor-allocation problem also increases in importance. There is no obvious solution

to this problem in a distributed system. Much research has been done on this prob-

lem [4, 7, 10, 11, 12, 14]. Some results concern static scheduling schemes [12]; others

emphasize specific network topologies [9], such as a mesh; while others [7, 14] study the



performances of different scheduling polices on shared memory multiprocessors. Most ex-

isting research is empirical. In this thesis, we consider the problem theoretically.

The results presented here represent joint work with Drs. Robert Blumofe, Charles

Leiserson, Aravind Shrinivason, and David Zuckerman. We have developed and analyzed a

distributed randomized dynamic processor-allocation algorithm which can bring the system

to a "fair" and "efficient" configuration quickly as jobs enter and leave the system and

change their parallelism.

In the remainder of this chapter, I define the notion of a "macroscheduling system" and

the meaning of "fair" and "efficient" in the context of the processor allocation problem.

Then I briefly describe the SRLBA processor allocation algorithm and the main result of

this paper-the running time of the algorithm.

In the remainder of this paper, we use the notation [n] to denote the set {1, 2,..., n}. To

model the adaptively parallel processor-allocation problem, we define a macroscheduling

system with P processors and J jobs to be a distributed system with a set of processors

[P], and a set of adaptively parallel jobs [J]. At any time, each job j E [J] has a desire

dj. In such a system, we wish to allocate an allotment mj of processors to each job j so

that the resulting allocation is "fair" and "efficient". An allocation which is "fair", but not

necessarily "efficient", might give each job P/J processors, assuming P is a multiple of J.

Whenever a job desires fewer than P/J processors, however this fair allocation is inefficient,

because the excess processors might be put to a more productive use on another job. This

observation leads to an intuitive definition of "efficient". An allocation is efficient if no

job receives more processors than it desires. An allocation is fair if whenever a job receives

fewer processors than it desires, then no other job receives more than one more processor

than this job received. (Exactly equal allotments may be impossible due to integer roundoff.)

We desire processor allocations that are both fair and efficient. An example of a fair and

efficient allocation is illustrated in Figure 1-1.

In a macroscheduling system, the desires of the adaptive parallel jobs may change over

time. A good scheduling algorithm should adapt as quickly as possible to changes. Since

it is difficult to analyze the behavior of a scheduling algorithm in the midst of changing

job desires, our analysis focuses on how rapidly the scheduler adapts to a fair and efficient

allocation, assuming that the jobs' desires do not change during that adaption.

One simple scheme to solve the adaptive processor-allocation problem is equipartition-
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Figure 1-1: An example of the adaptively parallel processor-allocation problem. Each job

j = 1, 2,..., 8 has a desire dj. A fair and efficient allocation mj for these desires is shown.

ing [11, 14]. A centralized scheduler initially allocates one processor to each job. Any jobs

that have reached their desires drop out. The scheduler repeats with the remaining jobs

until either there are no remaining jobs or all processors have been allocated. An allocation

which is produced by equipartitioning is both fair and efficient. Equipartitioning is hard to

implement in a fully distributed fashion, however. It must be rerun whenever a job changes

its desire or a job is created or destroyed.

Our first distributed scheduling algorithm for the adaptively parallel processor-allocation

problem is called the RLB (Randomized Load-Balancing) algorithm. It works roughly as

follows. Each processor periodically pauses its computation and initiates a load-balancing

step with a mate. This mate is another processor chosen uniformly at random, independ-

ently of any other load-balancing step. Suppose that a processor p E [P] working on job k

chooses processor r E [P] working for job j as a mate. If the allotment of job k exceeds the

allotment of job j by 2 or more and job j's allotment is less than its desire, then processor

p migrates to work on job j. Conversely, if the allotment of job j exceeds the allotment of

job k by 2 or more and job k's allotment is less than its desire, then processor r migrates

to work on job k. Otherwise, no processor migration occurs. Figure 1-2 illustrates such a

load-balancing step, in which processor p migrates to work for job j.

Like equipartitioning,the RLB algorithm converges to a fair and efficient processor al-

location. Unlike equipartitioning, however the RLB algorithm does not need centralized



Figure 1-2: A load-balancing step. Circles denote jobs. Rounded rectangles are processors.
This load-balancing step is initiated by processor p which is working for job k. Processor p
chooses a processor r working for job j as its mate. Suppose job j's allotment is less then
its desire, then, since job k's allotment is larger than job j's allotment by more than 2,
processor p migrates to work for job j.

information on all jobs. It only requires that each job maintain its processor allotment. An

empirical study [8] of this algorithm has already been performed. Simulation shows that

this algorithm is efficient and stable when selected migrations are "damped" by allowing

them to proceed only with a certain probability.

Although the structure of the RLB algorithm is suitable for a distributed environment, a

distributed setting introduces several complicating issues. For example, what should happen

when two processors randomly select the same mate? How does one define a job's processor

allotment when several of its processors are attempting to balance loads simultaneously?

Because of these complications, we have chosen to analyze this algorithm in a simpler

model that highlights the behavior of the load-balancing step without introducing the full

complexity of a distributed setting.

One simplifying assumption is that all load-balancing steps occur serially, and that the

allotment of each job involved in such a step is updated promptly. We call this model

the sequential perfect-information model. Under the sequential perfect-information

model, we can view the RLB algorithm as proceeding in a sequence of rounds. Each round

consists of P sequential load-balancing steps, in which each of the P processors has a chance

to initiate a load-balancing step. To analyze the worst-case behavior of the system, we also

introduce an adversary into the model. The adversary, in each step i of the round, having



observed the previous i - 1 steps, chooses a processor not previously chosen in this round

to initiate the ith load balancing step.

We call the variant of the RLB algorithm that operates under the sequential perfect-

information model and under the assumption of the adversary the SRLBA (Sequential

Randomized Load-Balancing with Adversary) algorithm. We define the absolute average

allotment in a macroscheduling system with P processors and J jobs as p = P/J. For

simplicity, we assume that Au is an integer in the remainder of this paper. We show that

with the SRLBA algorithm, if each job has a desire which is more than the absolute average

allotment and each job has at least one processor to start with, then within O(lg P) rounds,

every job has within 1 of P/J processors with high probability. Using the assumption that

the jobs' desires are more than the absolute average allotment is a simplification step of our

analysis. We justify this assumption in Chapter 5. In the remainder of this paper, unless

otherwise stated, we assume that every job has a desire that is more than the absolute

average allotment.

The proof uses a two-phase analysis. Initially, some jobs may have very few processors.

Phase 1 shows that with high probability, after O(lg P) steps, all jobs have at least EP/J

processors, where 0 < e < 1 is a constant. Phase 2 shows that in an additional O(lg P)

rounds, with high probability, every job has within 1 of P/J processors.

In each phase, we use a "potential-function" argument, in which we associate the system

state with a nonnegative real-valued potential function. The potential is 0 if and only if the

system reaches the desired processor allocation of the corresponding phase. We show that

in each phase, the potential goes to 0 within O(lg P) rounds.

The remainder of the thesis is organized as follows. In Chapter 2, I give a formal descrip-

tion of the SRLBA algorithm and present the potential-function argument. In Chapter 3

and Chapter 4, I analyze Phase 1 and 2 of the algorithm using the corresponding potential-

function arguments. Finally, in Chapter 5, I summarize our results, and point to some

future work.



Chapter 2

The SRLBA Algorithm and the

Potential-Function Argument

In the first part of this Chapter, I introduce the notion of "system configurations" to formally

describe the SRLBA algorithm for the adaptive parallel processor allocation problem. In

the second part of this chapter, I present a potential-function argument which is used in

the two-phase analysis of the SRLBA algorithm in Chapter 3 and Chapter 3.

2.1 The SRLBA Algorithm

In this section, I model the macroscheduling system as a series of "configurations". I

introduce the notion of an "almost fair and efficient" configuration. In addition, I describe

the SRLBA algorithm precisely under this model.

The system we consider is a macroscheduling system with P processors and J jobs. In

this system, at any time, each processor is allocated to one and only one job, and it works

exclusively on that job. We say that the job owns the processor. We also say that the

processor belongs to the job. We assume that initially, the allotment of every job is at

least 1.

At any given time, we define the system configuration M to be the mapping

M : [P] - [J] U I,

where M(p) = j if and only if processor p belongs to job j at that time. If processor p does



not belong to any job, then M(p) = i. We define the configuration space Cp,j to be the

set of all legal configurations.

We define the configuration vector V of a configuration M : [P] -* [J], to be the

J-tuple

V = (ml,m2,... ,mJ) ,

where mk = I{p : M(p) = k} I is the allotment of job k. Since there are P jobs, it follows

that EkeJ mk < P. We define a legal configuration to be a configuration in which each

job owns at least one processor. Thus, for a legal configuration, the configuration vector

has no zero entries. In the remainder of this paper, when we talk about a configuration, we

assume that the configuration is legal, unless otherwise noted.

The SRLBA algorithm takes the system through a sequence of configurations by per-

forming rounds of load-balancing steps. More precisely, each round consists P load-balancing

steps. We begin the round with a configuration M(O). A generic round operates as follows.

At the beginning of step i, i E [P], the system is in configuration M( i- 1). The adversary,

having observed the first i - 1 steps of the round, picks a processor p(i) that has not yet

been chosen this round. That is, p(i) 4 p(i) for j E [i - 1]. Processor p(i) then performs

a load-balancing step. The load-balancing step begins with processor p(i) selecting a mate

r(i) E [P] uniformly at random, independently of any other load-balancing steps. The two

processors compare the processor allotments of the two jobs to which they belong. If the

discrepancy in the processor allotments is 2 or more, then either p(i) migrates to r(i)'s

job or r( i) migrates to p(i)'s job, whichever diminishes the discrepancy. At the end of the

load-balancing step, processor allotments of the two jobs involved are updated appropri-

ately to produce configuration M( i). We call this new configuration M( i) the successor of

configuration M (i - 1) . Thus, during the round the adversary and the load-balancing algo-

rithm together determine a trajectory (M( 0 ), M( 1),..., M( P )) of the system through the

configuration space.

And example of a round is illustrated in Figure 2-1, where we have a macroscheduling

system with 9 processors and 3 jobs. We assume that the processor desire of each job is

larger than 9.

In the remaining of the analysis, we assume that the absolute average allotment p is an

integer that is at least 2. Under the assumption that each job has desire larger than p, a
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Figure 2-1: An example of a round in a macroscheduling system with 9 processors and 3

jobs. The rounded squares represent processors. In each load-balancing step, the adversary

chooses a processor (the dark square) to initiate the step. This selected processor randomly

chooses a processor as a mate (the light square). The arrows show the directions of processor

migrations.

fair and efficient configuration is one in which every job has exactly i = P/J processors.

Moreover, for any configuration vector (ml, m 2,..., mJ), we have Ej[J] mj = P.

Although a fair and efficient configuration is desirable, it may take the system a rela-

tively long time to converge to an exact fair and efficient configuration using the SRLBA

algorithm.1 Thus, we introduce the notion of an almost fair and efficient configura-

tion, in which the processor allotment of every job belongs to the set {/ - 1, /, At + 1}. An

almost fair and efficient configuration is a very good approximation to the exact fair and

'Consider the case where all jobs have exactly p processors except 2 jobs, where one of them has p + 1
processors and the other has it - 1 processors. To get to the exact configuration the expected number of
rounds could be O(P) when J = O(P).



efficient configuration.

When there are changes in the system, a good scheduling algorithm should bring the

system to a configuration as close to the fair and efficient configuration as soon as possible.

We demonstrate this property of the SRLBA algorithm by proving the following result. In

a macroscheduling system with P processors and J jobs, if each job has desire larger than

the absolute average allotment, and each job starts with at least 1 processor, then using the

SRLBA algorithm, after O(lgP) rounds, with probability at least 1 - 1/P, the system is in

an almost fair and efficient configuration.

The proof runs roughly as follows. We utilize a two-phase analysis of the algorithm.

Initially, some jobs may have very few processors. We show that with high probability, after

O(lg P) rounds, all jobs have at least EI processors, where 0 < E < 1 is a constant. We

call these O(lg P) rounds Phase 1 of the analysis. We show that in an additional O(lg P)

rounds, with high probability, every job has within 1 of 1p processors. These additional

O(lg P) rounds constitutes Phase 2 of our analysis. In each phase, we associate a non-

negative potential function with the configurations of the system. In Phase 1, the potential

function is 0 if and only if every job has at least eiL processors. In Phase 2, the potential

function is 0 if and only if the system is in an almost fair and efficient configuration. For

both phases, we are able to prove that after O(lgP) rounds, with high probability, the

potential goes to 0.

The proof is presented in three parts. Section 2.2 provides two lemmas concerning

potential functions that will be used to analyze the phases. Chapter 3 analyzes the first

phase, and Chapter 4 analyzes the second phase.

2.2 The Potential Function Arguments

The running-time analysis of the SRLBA algorithm is based on potential functions. The ba-

sic idea is that we associate a real-valued potential function with each system configuration.

When the potential function reaches 0, then a desired configuration has been attained. In

this section, we provide two lemmas that give conditions under which the potential functions

used in the two-phase analysis converge quickly to 0.

For a macroscheduling system with P processors and J jobs, a potential function

4 : Cp,j -* IR is a mapping from the configuration space to the real numbers such that



((M) > 0 for all configurations M E Cp,j. The following lemma shows that if a single load-

balancing step decreases the expected potential of the system configurations by a factor of

1/P, then in one round, we expect the potential to decrease by a constant factor.

Lemma 1 Suppose that the load-balancing steps of a round take a macroscheduling system

with P processors and J jobs through the trajectory (M( 0 ), M1),... , M(P)), and suppose

that for some a > 0, a potential function D : Cp,j --+ R can be shown to satisfy

)(M(i-1)) - E [I(M(i))] _ (a/P),(M (i - 1) )  (2.1)

for i = 1,2,...,P. Then, we have

E [I(M(P))] < e-a (M(O))

Proof: Rewriting Inequality (2.1), we obtain

E [I(M(i))] 5 (1 -a/P)4)(M(i-1))

By linearity of expectation and iterating, we obtain

E [I(M(P))] < I(M(o)) (1 - a(1/P))P

< e-(M(o))

since 1 + x < ex for all x E IR. E

We will show that the potential functions used to analyze the two phases of the load-

balancing algorithm satisfy the property that they are polynomially bounded in the number

P of processors. Moreover, they satisfy a "gap" property: if a potential function is suffi-

ciently small, it is in fact 0. The next lemma shows that if in each round, the expected

decrease in potential is a constant factor, then after O(lg P) rounds, the potential is 0 with

high probability.

Lemma 2 Suppose that T rounds of load balancing take a macroscheduling system with

P processors and J jobs through the trajectory (M(o), M(1),... ,M(T)), where M(O) is the



initial configuration and M( i ) is the configuration at the end of round i for i = 1, 2,..., T.

Let 4 : C --+ R be a potential function that satisfies

(2.2)

where 3 < 1 is a positive constant, and suppose that for any configuration M of the system,

there exist positive constants a and b such that

1. 4(M) < pa,

2. D(M) < 1 /Pb implies (D(M) = 0.

Then, for any 6 > 0, if T > log/ 1p(1/6) + (a + b) logjl/ P, we have E [I(M(T))] = 0 with

probability at least 1 - 6.

Proof: By linearity of expectation and iterating, we obtain

E [0(M(T))]

since 4(M()) < pa and

Markov's inequality

with finite expectation,

Condition 2 we have

< pOT4((O))

plogl/ p(1/6)+logi1 pa+b )(M(0))

= 6P-a-b(M(o))

< 6 P-a-bpa

= 6 p-b

T > log 1p3(1/6) + (a + b) logl/ P.

[5, p. 114] asserts that for any nonnegative random variable X

we have Pr {X 2 t} 5 E [X] /t for all t > 0. Consequently, by

Pr {((M(T) ) > 0 = Pr {((M(T)) > p-b}

< E [.(M(T))] /p-b

___5,

which completes the lemma.

In the following two sections, we will use the potential function argument to help prove

the lower bound on the running time of our algorithm. Our analysis has two phases.

E [O(M(i))] < B(M(i-1)) ,



Initially, some jobs may have very few processors. We show that after the O(lg P) rounds

of Phase 1, with high probability, every job has at least p/8 processors. We show that in

the additional O(lg P) rounds of Phase 2, with high probability, the system is in an almost

fair and efficient configuration. We use different potential functions in the analysis of the

two different phases. Chapter 3 presents Phase 1, and Chapter 4 resents Phase 2.



Chapter 3

Analysis of Phase 1 of the SRLBA

Algorithm

In this chapter, we consider Phase 1 of the SRLBA algorithm for the adaptive processor

allocation problem. We show that, in a macroscheduling system with P processors and

J jobs, if every job has a desire which is more than the absolute average allotment and

each job starts with at least one processor, then under the SRLBA algorithm, with high

probability, within O(lg P) rounds, every jobs has at least Eq processors, where E > 1/8 is

the "Phase-1 constant". We define the Phase-1 constant to be E = F[//8] /t. Although

the definition of E depends on IL, once p is decided, then E is a constant. For 2 < IL < 8, we

have E = 1/p, in which case, Ep = 1. For p > 8, we have 1/8 < E < 1/4 and E is an integer

pL/8.

We call a configuration a desired Phase-1 configuration if every job has at least

Et processors. Since every configuration considered here is a legal configuration in which

each job owns at least one processor, we obtain that, if 2 < I <5 8, every configuration

is automatically a desired Phase-1 configuration. Thus, in the remainder of the section,

we only consider the systems where /t > 8 is an integer. Thus, the corresponding Phase-1

constant E is in the range [1/8, 1/4].

Let M be a configuration of the system in Phase 1. Let V = (ml, m2,..., mj) be the

configuration vector of M, where mi = I{p : M(p) = i}l is the processor allotment of job i.

We define the Phase-1 partition of configuration M to be the following four disjoint sets



of jobs A, B, C, and D:

A = {jE [J] :mj <et-1} ,

B = {j E[J]:mj = eq} ,

C = {jE[J]:mj=p+1} ,

D = {jE[J]:mj>Ep+2}.

We want to associate some potential function with Phase 1, such that the potential

function is 0 if and only if the desired configuration of Phase 1 is achieved. Thus, no jobs in

partition B, C, and D should contribute to the potential, and at the same time, every job

in partition A should contribute positively to the potential. In addition, if a configuration

is far from the desired Phase-1 configuration, the potential of this configuration should be

big. So, if a job j has a small allotment mj, the job should contribute substantially to

the potential. At the same time, this job j may increase its allotment quickly during a

round relative to its allotment before the round. This rapid increase occurs, because a

processor p working for job j is likely to choose a processor working for a job with bigger

allotment as a mate during the load-balancing step initiated by processor p. Thus, every

processor working for job j is likely to recruit another processor to migrate to work for

job j. Therefore, intuitively the allotment mj of job j is likely to double after a round.

This doubling process indicates a good progress towards the desired Phase-1 configuration.

Thus, for a job j in set A with allotment mj, we would like the term 1/mj to appear in the

potential function. When mj is small, 1/mj is big; when mj gets doubled, 1/mj is halved.

Using this intuition, we define the potential function T of configuration M to be

T(M) = Z(1/mj - l/tE) ,
jEA

where 1/cgt is a normalization factor. Consequently, when mj = Eft, job j's contribution to

the potential is 0. The function T(M) represents the relative discrepancy of M from the de-

sired Phase-1 configuration. In addition, we define the potential function T of configuration

M to be

T(M)= + ( 1-mj+l/2)j,
jGAUB



which represents the absolute discrepancy of M from the desired Phase-1 configuration.

Note that for any configuration M, the functions T(M) and T(M) are nonnegative.

The potential function which we shall use for Phase 1 is the product PT(M) = P(M)T(M)

of the two potential functions. We show that PT(M) = 0 if and only if configuration M

is a desired Phase-1 configuration. And we show that in O(lg P) steps, PT = 0 with high

probability.

Here is the outline of the argument. Consider any round of the algorithm. In each step

of the round, the adversary must choose a processor owned by a job that either belongs to

set AU B of the Phase-1 partition or belongs to set CUD of the Phase-1 partition to initiate

a load-balancing step. We show that if a processor owned by a job that belongs to A U B is

chosen by the adversary, then there is enough expected decrease in T; if a processor owned

by a job that belongs to C U D is chosen by the adversary, then there is enough expected

decrease in T. In either case, we show that the expected decrease of the product of PT is

large enough in each step, so that after a round, we expect PT to decrease by a constant

factor. Then, applying Lemma 2, we obtain that within O(lg P) rounds, PT = 0 with high

probability.

Lemma 3 and Lemma 4 provide some basic properties of the potential functions P and

T.

Lemma 3 Consider a macroscheduling system with P processors. Under the SRLBA al-

gorithm, given any configuration M, the potential function P has the following properties:

(i) if M' is a successor of M, then P(M') < P(M);

(ii) IF(M) P;

(iii) P(M) = 0, if and only if M is a desired configuration of Phase 1;

(iv) if XP(M) < p- 2, we must have P(M) = 0.

Proof: Let e be the Phase-1 constant. Let p = P/J where J is the number of jobs in the

macroscheduling system. We first show part (i). After a load-balancing step, P changes

only when a processor previously working for a job 1 E [J] migrates to work for a different

job k E [J]. According to the different Phase-1 partitions to which job 1 and job k may

belong right before the load-balancing step, we have the following three cases.



* Before the load-balancing step, job 1 and job k both belong to A U B of the Phase-1

partition of M. Let ml and mk be job 1 and k's processor allotment in configuration

M, and m' and m' be job 1 and job k's processor allotment in configuration M'. If

Iml - mkl < 2, then, no migration happens and '(M') = (M). Otherwise, without

loss of generality, we assume that m1 - mk > 2. Thus, T = ml - 1 and m' = mk+ 1.

We obtain

T(M) - W(M') = -_+ - _ l +
(1 1 1 1

mi mk m - 1 m k 1

1 1

mk(mk + 1) mi(mi - 1)

> 0.

The last inequality holds because mrk < m - 1 and mk + 1 < mi, since m1 - nk > 2.

* Before the load-balancing step, job 1 and job j both belongs to the set B U C U D of

the Phase-1 partition of M. In this case, T does not change.

* Before the load-balancing step, job 1 belongs to set CUD of the Phase-1 partition and

job k belongs to set A. In this case, job 1 cannot be in set A of the Phase-1 partition

of the successor configuration M', and thus job 1 contributes 0 to the potential in both

configurations. Job k will have one more processor, and therefore its contribution to

the potential will decrease. Thus T decreases.

In any case, we have proved that I never increases. Thus, part (i) is true.

To prove part (ii), we only need to observe that or any job j E A, we have 1/mj -1/(Ep) <

1. Since l 2> 2, we have J < P. Thus, T(M) _ P for all configurations M.

For part (iii), from the definition of I, we know that T(M) = 0 if and only if A is

empty, which means that a desired configuration of Phase 1 has been achieved.

To show the last property, notice that if IP(M) - 0, then there exists a job j E A. Job

j's contribution to the potential is at least

1/rnj - 1/EL _ 1/(/ - 1)- 1/E

> 1/(EIL) 2



> P- 2

Therefore, If IF(M) < p- 2 , then T(M) = 0. 0

Lemma 4 Consider a macroscheduling system with P processors. Under the SRLBA al-

gorithm, given any configuration M, we have

* (i) 0 T(M) < EP < P;

* (ii) if T(M) < 1/2, then T(M) = 0;

* (iii) if M' is a successor of M, then T(M') < T(M);

* (iv) if M' is a successor of M and T(M) - T(M') > 0, then T(M) - T (M') > 1/2.

Proof: Let E be the Phase-1 constant. Let I = P/J where J is the number of jobs in the

macroscheduling system. Let (ml, m2, ... , mj) be the configuration vector of M. For part

(i), since for all job j E [J], mj > 1, we have

T(M) 5 J(qE - 1/2)

< PE

< P.

For part (ii), we know that if there exists a job j belonging to set A U B, then job j at

least contributes 1/2 to T. Thus, if T(M) < 1/2, it must be 0.

As for parts (iii) and (iv), consider the load-balancing step between configuration M and

its successor M'. If there is no processor migration at all, or if a processor migration takes

place between two jobs that both belong to C U D of the Phase-1 partition of configuration

M, or if a processor migration takes place between two jobs that both belong to set A U B

of the Phase-1 partition of configuration M, then T(M') = T(M).

Another case is to consider is when a migration takes place between a job j belonging

to set A U B of the Phase-1 partition of M and a job k belonging to set D of the Phase-1

partition of configuration M. Since mk ep + 2, after the migration, in the successor

configuration M', job k cannot be in the set A U B. Thus, if job j belongs to set A of the

Phase-1 partition of configuration M, we have T(M') = T(M) - 1; if j belongs to set B of

the Phase-1 partition of configuration M, then T(M (i )) = T(M(i- 1)) - 1/2.



Since no migration happens when a load-balancing step occurs between a job belonging

to set B and a job belonging to set C, the only other case left is when a migration takes

place between a job j belonging to set A of the Phase-1 partition of M and a job k belonging

to set C. After the migration, job j will get one more processor, which will decrease the

potential by 1; job k will be in set B of the Phase-1 partition of the successor configuration

M', and it contributes 1/2 to the potential. In this case, we have T(M') = T(M) - 1/2.

Therefore, in all cases, T(M(-1)) - T(M()) 0, proving part (iii). Moreover, if

T(M (i - 1) ) - T(M(i)) > 0, then T(M(i- )) - T(M(i)) _ 1/2, proving part (iv). E

With the properties of I and T above, we shall show in Lemma 5 and Lemma 6 that

after any given step i E [P], either the expected value of T decreases by a factor of 1/2P

or the expected value of T decreases by a factor of 1/2P.

Lemma 5 In a macroscheduling system of P processors and J jobs with p > 8, consider

the SRLBA algorithm. If in the load-balancing step right after configuration M is obtained,

the adversary chooses a processor p which works for a job belonging to CUD of the Phase-1

partition of configuration M, then for the successor configuration M', we have E ['(M') ]

T(M)(1 - 1/2P).

Proof: When pt > 8, for the Phase-1 constant E, we have 1/8 < E < 1/4. For any job k in

set A of the Phase-1 partition of M, processor p will choose r which belongs to job k with

probability mk/P, where mk is the allotment for job k; if this happens, processor p migrates

to work for job k, and 1(M') = I'(M) - 1/mk + 1/(mk + 1) = Xi(M) - 1/mk(mk + 1).

Thus, for j E [e/ - 1], if there are nj jobs in set A of the Phase-1 partition of M with j

processors each, then

(M) = nj(1/j - 1/E) ,

j=1

and

T(M) - E [(M')] = jnj/Pj(j + 1)
j=1

= n/P(j + 1).
j=1



Thus,
EP-I

Enj/P(j + 1)
T(M) - E [I(M')] j=1 (3.1)

X(M) ILE-1(M nj(l/j - I/ql)

j=1

What choice of the ni's minimizes the righthand side of Equation (3.1)? Recall that

if al,a2, ... , an and bl, b2 , ... , bn are nonnegative constants, then the minimum value of

(Zj ajxj)/(E bjxj), subject to the condition that the xj's are nonnegative (and that not

all of them are 0), is mini {aj/bj}. If we let xj = nj, aj = 1/P(j + 1) and bj = 1/j - 1/EA,

then the righthand side of Equation (3.1) is at least

min 1/P(j + 1) 1/(j + 1)
min 1  1  = (1/P)min

i 11j - 1/Et 1/ j- 1/ep

Now,

1/(j + 1) _Ej
1/j - 1/e. (j + 1)(E - j)

( 1 1
(1 j +1 E-j

Since 1 - 1/(j + 1) and 1/(E - j) are both increasing functions of j, we conclude that

the minimum occurs at j = 1. Thus, the righthand side of Equation (3.1) is at least

(1/2P)/(1 - 1/Ep) 1/2P. Thus, E [x1(M')] 5 'I(M)(1 - 1/2P). 0

Lemma 6 In a macroscheduling system of P processors and J jobs with p > 8, consider

the SRLBA algorithm. If in the load-balancing step right after configuration M is obtained,

the adversary chooses a processor p which works for a job belonging to set A U B of the

Phase-1 partition of configuration M, then for the successor configuration M', we have

E [T(M')] T(M)(1 - 1/2P).

Proof: If in the load-balancing step, processor p picks a processor which belongs to a job

in set D of the Phase-1 partition of configuration M, then a processor migration will take

place, and T decreases at least by 1/2. Since p > 8, we have E < 1/4. We obtain

Zmk P-(ECp+I)J
kED

> P/2.



Thus, we have

T(M) - E [T(M')] > (1/2) mk/P
kED

> (1/2)(P/2)/P

= 1/4 .

By part (i) of Lemma 4, T(M) < eP < P/4, we obtain

E [T(M')] T(M) - 1/4

< T(M)(1-1 /P)

< T(M)(1 - 1/2P) .

Putting together Lemma 5 and Lemma 6

of T and T.

we have the following lemma about the product

Lemma 7 In a macroscheduling system of P processors and J jobs with p > 8, consider

the SRLBA algorithm. For any given round, if M(o) is the initial configuration of the round

and M( ) is the configuration at the end of the round, then we have

E [TT(M(P))] < e-1/2fT(M(o)).

Proof: For any i E [P], let M( i ) be the configuration at the end of step i. If in step i the

adversary picks a processor p which works for a job in set C U D of the Phase-1 partition

of configuration M( i- 1 ), then since T is nonincreasing, by Lemma 5 we have

E [T(M(i))] E [(I(i())T(i(i-1))]

SE [l(iM())] T(M (i - 1'))

< 4(M(i-1))T(M(i-1))(1 - 1/2P)

_ FT(M(i-1))(1 - 112P).



Similarly, if the adversary picks a processor p which works for a job in partition A U B of

configuration M ( - 1 ) , then since P is nonincreasing, by Lemma 6 we have

E [T(M(i))] E W(M(i))T(M(-'))]

= E [P(M(i-1))] T(M (i - 1))

< (M(i-1))T(M(i-1))(1 - 1/2P)

< PT(M('- 1 ))(1 - 1/2P).

Thus, in any case, we have

X(M(i-1))T(M(i- 1)) - E [P(M(i))T(M(i))] > (1/2P)((M(i-1))T(M(i-1))

Together with Lemma 1, we obtain the desired result.

Lemma 7 shows that in every step of any round, the expected value of PT decreases by

a factor of 1/2P. Together with the lemmas proved in Section 2.2, we obtain the following

corollary.

Lemma 8 In a macroscheduling system of P processors and J jobs, consider the SRLBA

algorithm. Given any positive -y < 1, with probability at least (1 - 'y), every job has at least

e processors after 2 ln(1/y) + 8 In P rounds, where E is the Phase-1 constant.

Proof: If p < 8, we are done. Otherwise, we have A > 8 and 1/8 < e < 1/4. By Lemma 3

and Lemma 4, we know that for any configuration M, we have PT(M) < P 2 . Also, if

9T(M) < P- 2 /2 < p- 2 , then IT(M) = 0. For i E N, let M(i) denote the configuration

after round i, and let M(O) be the initial configuration before the first round. By Lemma 7,

for any i E N, we have E [PT(M(i))] < e- 1/ 2PT(M(i- 1)). Thus, by Lemma 2, after

T = logel/2(1/y) + (2 + 2) logel/2 P

= 21n(1/y) + 8lnP

rounds, with probability at least 1-y, we have PT(M(T)) = 0. Notice that P(M(T))T(M(T)) =

0 if and only if P(M(T)) = 0, which means that each job has at least eA processors. .

In Lemma 8, if we choose y to be 1/Pc, for any constant c, then with probability



(1 - 1/Pc), after 2(c + 4) In P rounds, every job has at least A/8 processors. Therefore with

high probability, after O(lg P) rounds, we obtain the desired Phase-1 configuration.



Chapter 4

Analysis of Phase 2 of the SRLBA

Algorithm

In this chapter, we consider Phase 2 of the SRLBA algorithm. For a macroscheduling

system of P processors and J jobs with Phase-1 constant E, we show that under the SRLBA

algorithm, if every job has a desire which is more than the absolute average allotment tp,

and each job has at least Ep processors, then with high probability, in O(lg P) rounds, the

system is in an almost fair and efficient configuration.

We first establish the potential functions that are used in the analysis of this phase.

We assign a given round to one of two possible cases according to its initial potential. We

analyze each of the two cases. Finally, we conclude that Phase 2 takes O(lg P) rounds.

4.1 The Potential functions for Phase 2

This section introduces the notion of "Phase-2" partition. It then describes the potential

functions used in Phase 2.

In the SRLBA algorithm, once every job has more than qe processors, no job will ever

have less than Ey processors. Henceforth, we assume that, in Phase 2, every job has at least

Ep processors in every configuration we consider, where 1/8 < E < 1/2.

Let M be a configuration of the system in Phase 2. Let (ml, m2,..., mJ) be the con-

figuration vector of M, where mi = I {p : M(p) = i} I > EA is the processor allotment of job

i. We define the Phase-2 partition of configuration M to be the following disjoint sets of



A = {je[J]

B = {j E [J]

C = {j [J]

D = {jE[J]

E = {j E [J]

: mi < - 1} ,

: mj = p - 1} ,

: m = 1 } ,

:mj > + 1} .

We define Aj = Imj - ttl to be the discrepancy of

define the potential functions A and A to be

job j. Given the configuration M, we

A (M) = (Aj- 1)
jEAUE

A(M) = Z Aj
jE[J]

Both A and A are potential functions, as they are both nonnegative. Moreover, they both

are nonincreasing, have an upper bound P, and if they are not zero, they must be at least

1. The potential function A(M) represents the discrepancy of M from the almost fair and

efficient configuration, whereas A(M) represents the discrepancy of M from the absolute

fair and efficient configuration. To simplify our notation, for any configuration M, we define

AA(M) = A(M)A(M),

which is also a potential function. Moreover, AA(M) = 0 if and only if the system is in an

almost fair and efficient configuration.

In this section, we shall show that during Phase 2, after each round, the expected

decrease in the potential AA(M) is at least a constant fraction of what it was before entering

the round. Then, using the potential-function argument established in Section 2.2, we show

with high probability that after O(lg n) rounds, AX(M) = 0.

To further simplify the notation, we define AA and AE to be

AA(M) = (jEA - 1)iEA

jobs:



AE(M) = (Ag- 1)
jEE

We have AA(M) + AE(M) = A(M). The function AA(M) represents the number of proces-

sors wanted by those jobs whose allotments are fewer than L - 1, whereas AE(M) represents

the extra processors to be taken from those jobs whose allotments are more than It + 1.

Intuitively, if XA(M) is much larger than -E(M), then many jobs in the system have ex-

actly p + 1 processors; conversely, if -E(M) is much larger than XA(M), then many jobs

in the system have exactly p - 1 processors. If both AA(M) and AE(M) are 0, then the

configuration M is an almost fair and efficient configuration.

Consider any round. If R is the initial configuration of the round, then at least one of

the following two cases is true:

(a) AE(R) _ A(R)/2,

(b) AA(R) > A(R)/2.

In the follow two subsections, we shall prove that in either of the two cases, the expected

value of AA decreases by a constant fraction after a round of load-balancing steps.

4.2 Case (a)

In this section, we shall prove that if AE(R) A(R)/2 for a configuration R at the beginning

of a round, then at the end of the round, the expected decrease in AA is at least a constant

fraction of AA(R). The proof involves a sequence of four lemmas, in the last of which we

derive the desired result.

Given any configuration M during Phase 2, the following lemma gives a lower bound

on the number of processors working for jobs in set A U B of the Phase-2 partition.

Lemma 9 In a macroscheduling system with P processors and J jobs, during Phase 2 of

the SRLBA algorithm, for any configuration M with configuration vector (ml, m 2,... , mj),

we have

Z 3 > A(M)
mEAUB 2(1 - E)

jEAUB



Proof: Since for any job j E A U B, we have Eq < mj < t, it follows that

Aj = -mj

< (1 - 1)p ,

and hence, mjl/j > e/(1 - e). Thus, since ZJEAUB Aj = A/2, we have

mj _ E Aj
JEAUB ) JEAUB

= A.
2(1 -e)

Given any configuration M of phase 2, the following lemma shows that if the contribution

to the potential A from jobs in partition E is sufficiently large, then the expected potential

of M's successor M' decreases by a factor of at least 1/7P.

Lemma 10 In a macroscheduling system with P processors and J jobs, during Phase 2

of the SRLBA algorithm, consider a round whose initial configuration M(o) satisfies the

condition AE(M()) 2 X(M(o))/2. Let M be any configuration of this round, and M' be a

successor of M. If AE(M) > (1/7)A(M(o)), then

E [AX(M')] 5 (1 - 1/7P)AA(M).

Proof: Let (ml,m 2 ,... ,m) be the configuration vector of M. For job j E [P], let Aj

be the discrepancy of job j in configuration M. Suppose in the load-balancing step after

configuration M, the adversary picks up a processor p that belongs to job k. We have two

cases.

* In the first case, job k belongs to A U B U C of the Phase-2 partition of configuration

M. We call the load-balancing step a success if processor p proposes to a processor

r which works for a job in E of the Phase-2 partition of M. If the load-balancing

step is a success, we have A(M) - A(M') > 1, and AA(M) - AA(M') > A(M). The



probability of a success is at least

mj/P > E(A - 1)P
jEE jEE

= AE(M)/P

> (1/7P)X(M(o))

> (1/7P)A(M)

since i is nonincreasing. Thus,

AA(M) - E [A(M')]> ((1/7P)X(M)) A(M)

= (1/7P)AA(M).

* In the second case, job k belongs to DUE of the Phase-2 partition of configuration M.

In this case, we call the load-balancing step a success if processor p chooses processor

r E A U B of the Phase-2 partition of M. If the load-balancing step is a success, we

have A(M) - A(M') = 2, and AA(M) - AA(M') _ 2A(M). Since in Phase 2, every

job has at least eq processors, by Lemma 9, we have

M. > )A(M)
jCAuB - 2(1 - e)

Since, out of the P total processors, there are at least (E/2(1 - E))A(M) processors

in A U B, the probability of a success is at least (e/2(1 - E))A(M)/P. Therefore, the

expected decrease in AA is

AA(M)- E [AA(M')] > - - AX(M)/P- 1-e

When 1/8 < E < 1/2, we have min {E/(1 - E), 1/7} = 1/7, which completes the proof. m

In a given round, let M(O) be the initial configuration, and for any i E [P], let M( i ) be

the configuration after step i of the round. For each i E {0, 1,..., P - 1}, define the events

X( i) and Y(i) as follows:

X (i ) = {XE(M (i )) AX(M(o))/7 and AA(M( i - 1)) > AX(M(o))/2 ,



y(i) = {XE(M(i))< XA(M(0 ))/7 or AA(M(i - 1)) < AA(M(o))/2} .

By definition Pr X(i)} + Pr Y(i)} = 1, for every step i = 0,1,..., P - 1. The following

lemma shows the relationship between the expected decrease of AA and the events X( i )'s,

for i = 0, 1,...,P- 1.

Lemma 11 In a macroscheduling system of P processors and J jobs, consider a round of

Phase 2 under the SRLBA algorithm. Suppose M( 0 ), the initial configuration of the round,

satisfies the condition AE(M( 0)) > A(M(o))/2. For i E [P], let M( i) be the configuration

after step i. Then, we have

E [AX(M(i))] _ E [AX(M(i-1))] - Pr {X(i- ') } AX(M(o))/(14P),

and
P-1

E [AX( ))] A(M(0 )) (I - ( Pr{X(i1)}) /14P

Proof: In the beginning of step i, if the event X (i - 1) is true, that is, XE(M (i - 1)) >

X(M(o))/7 and AA(M (i - 1)) > AA(M(o))/2, then by Lemma 10, the following must hold:

E [AA(M (i-1)) - AA(M(i))] (1/7P)AA(M(i - 1))

(1/14P)AA(M(o))

which is equivalent to

E [AX(M(i))] < E [AX(M(i-))] - (1/14P)AX(M(o))

Otherwise, the event X( i - 1) is not true. In this case, using the fact that the potential

function AA is nonincreasing, we have E [AX(M(i))] _ E [AX(M(o))]. Thus, in general, we

have

S[AX(M(i))] Pr {X( i - 1) E [AX(M(i-)] - (1/14P)AX(M(o)))

+ (1 - Pr {X( i- 1) })E [AX(M(i-1))]

= E [AX(M(i-1))] - Pr {X( i - 1)} AA(M(o))/(14P)



By induction, we obtain

S[AX(M(p))] 5 AX(M( 0 )) ( - PrX(1) /(14P)

The next lemma proves that, given any configuration R in the beginning of a round,

if XE(R) A(R), then at the end of the round, the expected decrease in AA is at least a

constant fraction of AA(R).

Lemma 12 In a macroscheduling system with P processors and J jobs, consider a round

of Phase 2 under the SRLBA algorithm. Suppose AE(R) A(R)/2, where R is the initial

configuration of the round. If R' is a configuration at the end of the round, then

E [AX(R')] 5 (27/28)AX(R).

Proof: In the beginning of the round, we have AE(R) AX(R)/2. If at the end of the

round the event Y(P) is true, then either AA(R') AA(R)/2 or AE(R') < A(R)/7. If

AE(R') < A(R)/7, then the decrease in A is at least

(1/2)A(R) - (1/7)A(R) = (5/14)A(R) .

Thus, AA(R') -AA(R). Otherwise, AA(R') < AA(R)/2. In either case we have

9
AA(R') _ -AA(R)

since max {9/14, 1/2} = 9/14. If the event y(P) is not true , since the potential function

AA is nonincreasing, we have AA(R') _ AA. So, when Pr {Y(P) > e, we have

E [AX(R')] (1- Pr {Y(P)})AX(R) + Pr Y(P)} 9 AA(R)

- AA(R) - Pr {y(P)} 54AX(R)

< AX(R) - 5eAX(R)
14



5 AX(R)

Now consider the case where Pr Y(P) < e. Since AE, A, and A are nonincreasing, we have

Pr Y(i-1)} Pr Y(i)} for all i E [P]. Because Pr Y(P)} < E, we have Pr Y(i-1)} <

for all iE [P]. Since Vi E [P], Pr {X(i- 1) + Pr y(i-1) = 1, we obtain zP-1 Pr X(i) >

(1 - e)P. Using this and Lemma 11, we have

E [AA(R') < 1 - (1 - 6)P AX(R)

< 13+ AX(R).
- 14

Since the Phase-1 constant E satisfies the condition 1/8 < E < 1/2, we have

max {(13 + E)/14, (1 - 5E/14)} < 27/28

It follows that

EAX(R')] 27 AX(R)

4.3 Case (b)

In this subsection, we shall prove that, for a configuration R at the beginning of a round,

if AA(R) > A(R)/2 , then at the end of the round, the expected decrease in AA is at least

a constant fraction of AA(R). The proof involves a sequence of four lemmas, in the last of

which we derive the desired result.

Given any configuration M of phase 2, the following lemma gives a lower bound on the

number of processors working for jobs in the partition A U B in terms if AA(M)

Lemma 13 In a macroscheduling system with P processors and J jobs, during Phase 2 of

the SRLBA algorithm, for any configuration M with the configuration vector (ml, m 2 ,..., m ),

we have

mj > AA(M).
jEA



Proof: Since for any job j E A, we have mj > ejL, it follows that

Aj - 1 < Aj

p - mj

and hence, mj/(Aj - 1) E/(1 - E). Thus, we have

Zmj > (1 - Z( 1)
JEA ( JEA

- AA(M) .
1-E

Given any configuration M during phase 2, the following lemma shows that if the con-

tribution to the potential X from jobs in partition A is sufficiently big, then the expected

potential of M's successor M' decreases by a factor of at least 1/28P.

Lemma 14 In a macroscheduling system with P processors and J jobs, during Phase 2

of the SRLBA algorithm, consider a round whose initial configuration M(o) satisfies the

condition XA(M(O)) AX(M(o))/2. Let M be any configuration of this round, and M' be a

successor of M. If AA(M) > A(M(o))/4, then

E [AX(M')] < (1- 1/28P)AX(M).

Proof: Let (m 1,m 2 ,..., mp) be the configuration vector of M. For job j E [P], let Aj

be the discrepancy of job j in configuration M. Suppose that during the load-balancing

step following configuration M, the adversary chooses a processor p belonging to job k to

initiate the load-balancing step. We have two cases.

* In the first case, job k E C U D U E of the Phase-2 partition of configuration M. We

call the load-balancing step a success if p proposes to processor r which works for a

job in A of the Phase-2 partition of M. If the load-balancing step is a success, we



have

A(M) - A(M') > 1

and

AA(M) - AA(M') A(M) .

By Lemma 13 the probability of a success is at least

Smj/P
jEA

> AA(M)/P
1--E

4(1- e)

4(1- E)

Thus,

E [AX(M)] - AA(M') _ 4(1 -) AA(M)/P .

* In the second case, job k E A U B of the Phase-2 partition of configuration M. In this

case, we call the load-balancing step a success if p proposes to a processor r working

for a job in C U D U E of the Phase-2 partition of M. If the load-balancing step is a

success, we have

A(M) - A(M') = 2

and

AA(M) - AA(M') 2(M) .

Since

jECUDUE

= A(M)/2

the probability of a success

AA is

is at least A(M)/2P. Therefore, the expected decrease in

AA(M) - E [AA(M')] AX(M)/P.

Since the Phase-1 constant E satisfies 1/8 < E < 1/2, we obtain min {E/4(1 - E), 1} > 1/28.

E
jECUDUE



Thus, we complete the proof.

In a given round, let M (O ) be the initial configuration, and for any i E [P], let M (i) be

the configuration after step i of the round. For each i E {0, 1,..., P - 1}, define the events

X(i) and Y(i) to be

X (i) = {AA(M( i )) > X(M(o))/4 and AAX(M(')) > AA(M(O))/2 ,

y(i) = {-A(M(i)) < X(M(O))/4 or AA(M( i )) AA(M(o))/2}.

By definition Pr X(i)} ± Pr Y(i)} = 1, for every step i = 0, 1,...,P- 1. The follow

lemma shows the relationship between the expected decrease of AA and the events X( i) 's,

for i= 0,1,...,P-1.

Lemma 15 In a macroscheduling system of P processors and J jobs, consider a round of

Phase 2 under the SRLBA algorithm. Suppose M(O), the initial configuration of the round,

satisfies the condition AA(M(0 )) A(M(o))/2. For i E [P], if M( i) is the configuration after

step i, then we have

E [AA(M(i))] _ E [AX(M(i-1))]- Pr X(i - 1)} AX(M(o))/56P,

and

E [AX(M(P))] 5 AX(M(o)) 1 - (:Pr X(i-1) /56P)

Proof: Similar to the proof of Lemma 11. "

The next lemma proves that, given any configuration R in the beginning of a round,

if XA(R) A(R), then at the end of the round, the expected decrease of AA is at least a

constant fraction of AA(R).

Lemma 16 In a macroscheduling system with P processors and J jobs, consider a round

of Phase 2 under the SRLBA algorithm. Suppose AA(R) > A(R)/2, where R is the initial

configuration of the round. If R' is a configuration at the end of the round, then

1] -
[AX(R')] AA(R).



Proof: In the beginning of the round, we have AA(R) _ A(R)/2. If at the end of the

round the event Y(P) is true, then either AA(R') _ AA(R)/2 or AA(R') < A(R)/4. If

AA(R') _ A(R)/4, then the decrease in A is at least A(R)/4, and hence,

AA(R') < AA(R)/4.

Since max {1/2, 1/4} = 1/2, we have

AA(R') AA(R)/2.

If the event Y(P) is not true , since the potential function AA is nonincreasing, we have

AA(R') 5 AA(R). So, if Pr {Y(P) > E, we have

E AX(R')] (1 - Pr Y(P) )AA(R) + Pr {Y(P)} AA(R)/2

= AA(R) - Pr {Y(P)} AA(R)/2

_ (1 - E/2) AA(R) .

Now consider the case where Pr {Y(P) < E. Since XE, X and A are nonincreasing, we have

Y(i-l) < y(i) for all i E [P]. Since Y(P) < e, we have Y(i-1) < E for all i E [P]. Since

Vi E [P], X( i - 1) + y(i-l) = 1, we have

P-1E z(i) > (1 - E)P.

Using this and Lemma 15, we obtain

E[A (R')] (1 (1 -)P AA(R)

55+ -
< 55+ AA(R).
- 56

Since the Phase 1 constant e satisfies the condition 1/8 < E < 1/2, we obtain

max {(55 + e)/56, (1 - e/2)} < 111/112 ,



and thus, in either case, we have

E [AX(R')] (111/112)AA(R)

4.4 Combined analysis of cases (a) and (b)

Combine Lemma 12 and Lemma 16, we obtain the following lemma for Phase 2.

Lemma 17 In a macroscheduling system of P processors and J jobs, under the SRLBA

algorithm, once all jobs have no less than efL processors, with probability at lest 1 - 6, it

takes (ln(112/111))-l (ln(1/y) + 2 In P) rounds for the system to converge to an almost fair

and efficient configuration.

Proof: For i E N, let R( i) denote the configuration of the system after round i, and let

R(o) denote the initial configuration of the system. Since 111/112 > 27/28, by Lemma 12

and Lemma 16, we obtain

E [AX(R(i))] _< (111/112)AX(R(i-1))

Also, for any configuration R, we have AA(R) < P 2 . And if AA(R) < 1 = PO, then

AA(R) = 0. By Lemma 2, after

T = log 112 / 111 (1/y) + (2 + 0) log 112 / 11 1 P

= ( 2In ' (In(1/y) + 2 In P)
112

rounds, with probability at least 1 - 7, we have AA = 0, which implies that the system

converges to an almost fair and efficient configuration. M



Chapter 5

Conclusion and Future Work

In this Chapter I conclude my thesis with the main result of the analysis of the SRLBA

algorithm. I briefly describe the result when some of the jobs desires are smaller than

the absolute average allotment. Then, I discuss some directions for future work under the

imperfect information model. Finally, I briefly describe a system implementation of the

adaptive processor allocator for the multithreaded language Cilk[1, 2, 6, 13].

Theorem 18 In a macroscheduling system of P processors and J jobs, if each job has

a desire which is more than the absolute average allotment P/J, then given any initial

configuration, under the SRLBA algorithm, the system arrives at an almost fair and efficient

configuration after O(lg P) rounds with probability at least 1 - 1/P.

Proof: Combine Lemma 8 and Lemma 17. N

Theorem 18 uses an simplifying assumption that each job has a desire which is more

than the absolute average allotment of the macroscheduling system. Although this assump-

tion may not hold in a real system, the method we used to prove the theorem under this

assumption is still applicable to situations where some jobs have smaller desires than the

absolute average allotment. I have a sketch of an analysis of the SRLBA algorithm without

this simplifying assumption which, at this time, is not ready for publication. The analysis

employs the same potential function arguments with two phases, except that the second

phase is more complicated than without the simplifying assumption. The result is as follows.

Consider a macroscheduling system with P processors. Let Q be the maximum total

number of processors which work for jobs whose desires are more than their allotment in any



fair and efficient configuration of the system. Then with probability at least 1 - 1/P, within

O(P Ig P/Q) rounds, the system converges to the almost fair and efficient configuration.

Moreover, if Q is a constant fraction of P, we obtain that within O(lg P) rounds, the

system is in a fair and efficient configuration with high probability.

Another important direction of work is to extend our analysis to a system with imperfect

information. In the sequential perfect-information model, we assume that the load-balancing

steps occur in serial and that for each processor, information on job allotment is updated

promptly. In a real distributed system, however, it is very hard to serialize the load-

balancing steps and update the information of a job's allotment quickly.

Some related work has been done by Robert Blumofe and David Zuckerman on a case of

the parallel imperfect information model [3]. They consider a system of P processors with

two parallel jobs both with infinite processor desires. Their algorithm proceeds in rounds,

each of which consists P parallel load-balancing steps. A load-balancing step is modified

so that the processor working on the job with larger allotment migrates to work on the job

with smaller allotment with a certain "damping probability". This damping probability

depends on the allotments of the two jobs. They show that if the allotments of the jobs are

updated at the end of every round, the two-job system converges to the fair and efficient

configuration after O(lg P) rounds, where P is the number of processors.

Our analysis of the SRLBA algorithm, together with the two-job imperfect information

analysis, form a first step in the analysis of the more general and difficult processor allocation

problem. We hope that our analysis or the methods employed therein may provide some

insight into a general and practically implementable solution to the adaptively parallel

processor allocation problem.

I have implemented an adaptive processor allocator for the multithreaded language

Cilk [1, 2, 6, 13] base on the work presented in this thesis. We call this processor allocator

the Cilk Macroscheduler, in contrast to the Cilk runtime system internal scheduler, the

microscheduler. Traditionally, in order to run a Cilk program, the user must specify the

number of processes that the program uses. With the Macroscheduler, the system allocates

processors to concurrently running Cilk jobs in a fair and efficient fashion. As the current

version of Cilk runs on an SMP (symmetric multiprocessor), this Macroscheduler is able to

use a centralized algorithm instead of a distributed one.



One crucial part of the implementation the manner in which the Macroscheduler obtains

the processor desire of user programs. The Macroscheduler gets this information through

the interaction with the Cilk microscheduler. In a Cilk job, processors that are idle attempt

to "steal" work from other processors. If the allotment of a job is more than its desire, then

its processors spend a large portion of the total running time stealing. If the allotment is

much less than the desire, then they will not spend much time stealing. Thus, we can use

the steal information provided by the microscheduler to estimate a job's desire. We have

both theoretical and empirical results to support this heuristic. This idea of using steal

information to estimate the parallelism is based on an idea due to Charles Leiserson and

Robert Blumofe. Charles Leiserson and I are currently preparing a separate paper about

the Cilk Macroscheduler for publication.
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