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Abstract

The first total chemical synthesis of a cis-syn furan-side photoproduct between a psoralen
derivative and thymidine is described. The key step in the synthesis was an intramolecular [2+2]
photocycloaddition, which directed the stereochemical course of the reaction to afford a product
equivalent to that formed when a psoralen molecule is allowed to react at a 5'-TpA-3' site in
DNA. A model system consisting of a simple benzofuranyl acid tethered to the 5' hydroxyl of
thymidine showed that it was possible to bias the stereochemical outcome of the photochemical
reaction in favor of the desired cis-syn product. Further refinement of the model system allowed
for the elaboration of a benzofuran-thymidine photoproduct into a cis-syn 2-carboxypsoralen
furan-side thymidine monoadduct. In addition, a facile synthesis of a cis-syn 2-carboxypsoralen-
thymidine furan-side monoadduct was accomplished using a 2'-carboxypsoralen tethered to the
5'-hydroxyl of thymidine.

The site-specific incorporation of a 2-carboxypsoralen-thymidine furan-side monoadduct
into several oligonucleotides was accomplished using phenoxyacetyl protected
phosphoramidites. In > 90% yield, this oligonucleotide formed a crosslink with a
complementary DNA strand by irradiation at 366 nm. The crosslinked duplex was reversible
either with 254 nm light or by heating in aqueous base. The chemically synthesized psoralen
containing oligonucleotides possessed the same crosslinking abilities as those produced by prior
methods, but with the flexibility to place the adduct in any sequence context.

A 2-oxopentamide derivative of the 2-carboxypsoralen-thymidine monoadduct was
synthesized and incorporated into an oligonucleotide. Treatment of these ketone bearing
oligonucleotides with aminooxy 2-phenylindole derivatives formed an oligonucleotide
containing an adduct that bound the estrogen receptor protein specifically. Subsequent
incorporation of the 2-phenylindole psoralen and ketone psoralen containing oligonucleotides
into circular double-stranded DNA plasmids afforded good substrates for nucleotide excision
repair using human whole cell extracts.

Finally, the cis-syn benzofuran-thymidine monoadduct was used to alter the target
selectivity of the DNA damaging agent aflatoxin B, epoxide, a DNA damaging agent formed by
metabolic activation of the liver carcinogen, aflatoxin B1. DNA duplexes were prepared
consisting of a target strand containing multiple potentially reactive guanines and a non-target
strand containing a cis-syn thymidine-benzofuran photoproduct. Aflatoxin B1 epoxide treatment



8

of a DNA duplex containing a cis-syn thymidine-benzofuran photoproduct in the intercalation
site 5' to a specific guanine greatly reduced adduct formation at that site. Using this approach it
was possible to simplify the production of site-specifically modified oligonucleotides containing
AFB, adducts in the sequence context of a p53 mutational hotspot.

Thesis Supervisor: Professor John Essigmann
Title: Professor of Chemistry and Toxicology
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Introduction

Genetic material continuously encounters endogenous and exogenous DNA damaging

agents that make a host of different modifications. These lesions consist of structural damage to

the bases, deoxyribose and phosphate residues. Cells must repair this DNA damage in order to

prevent the occurrence of mutations and lethal events. Although the entire processes from DNA

damage to lethality are far from being completely understood, advances are being made on

several fronts to probe these complicated pathways. Organic chemists have contributed to these

efforts by synthesizing nucleosides damaged by UV and ionizing radiation, chemical

carcinogens, and chemotherapeutic agents.' Subsequent incorporation of these modified

nucleosides at predefined sites in oligonucleotides enables the design of biochemical experiments

that are able to address incisively questions on the events that immediately follow damage to the

genome.

Oligonucleotides containing a single DNA lesion have been utilized to determine the

proteins involved in the four major pathways of DNA repair: base excision repair, nucleotide

excision repair, direct reversal of damage and recombination.2 The effects of DNA lesions on the

replication and transcriptional apparatus have also been examined by using site-specifically

modified oligonucleotides. 3 Synthetic methodology has provided large quantities of site-

specifically modified oligonucleotides, which has allowed the high-resolution structural study of

DNA lesions by x-ray crystallography and NMR spectroscopy. 4 Single-lesion oligonucleotide

substrates have also been utilized to study how DNA damage effects chromatin assembly.5

These structural studies have helped to explain mutagenic properties of a particular type of DNA

damage.6 Likewise, the mutagenic and cytotoxic study of anticancer drugs that work by covalent
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modification of DNA has provided a knowledge base with which one can, in principle, design

new anticancer agents that have diminished mutagenic potential, while preserving the cytotoxic

properties necessary for therapeutic activity.7

The work presented in this dissertation describes the synthesis of oligonucleotides

containing a site-specific psoralen adduct. I also describe some of the biochemical applications

of these oligonucleotides. Chapter 1 reports the first total synthesis of a cis-syn furan-side

psoralen-thymidine monoadduct. Subsequent incorporation of this DNA lesion into

oligonucleotides by solid-phase synthesis is described in Chapter 2. In this Chapter, the photo-

crosslinking abilities of the furan-side psoralen-thymidine adduct is presented. Moreover, the

accessibility to the pyrone-side monoadduct as well as the interstrand crosslink is demonstrated.

In Chapter 3, the psoralen-thymidine monoadduct is derivatized in a first attempt to explore the

possibility of a custom designed DNA damaging agent that can selectively kill cancer cells that

overexpress a specific protein. Chapter 4 examines the unique cis-syn stereochemistry of the

psoralen-thymidine monoadduct and exploits this structural feature to alter the target selectivity

of other DNA damaging agents. To this end, the synthesis of aflatoxin B, adducts in a p53

mutational hotspot, as well other sequence contexts, is described.

In addition to the experiments described in this dissertation, the cis-syn furan-side

psoralen-thymidine monoadduct and its conversion to the intrastrand crosslink has been utilized

for other applications. Many DNA damaging agents form crosslinks and it would be valuable to

have a convenient source of site-specific crosslinks. The conversion of the furan-side

monoadduct into the crosslink affords a ready source of site-specific interstrand crosslinks. The

site-specific psoralen-thymidine adduct is currently being used in ongoing experiments to



Introduction 21

examine the role of the human nucleotide excision repair apparatus role in the removal of

interstrand crosslinks. In addition, the DNA sequence context freedom provided by this

methodology will allow for the full utilization of the cross-linking properties of site-specific

psoralen containing oligonucleotides in hybridization assays as well as triple helix forming

oligonucleotides. Presently, the site-specific psoralen crosslink is being used to ascertain

whether electrospray mass spectrometry can accurately determine an intrastand crosslink's

sequence location within a DNA helix. This methodology would improve the current analytical

tools used to characterize damaged DNA. These current experiments as well as the experiments

described in this dissertation would have been impractical, if not impossible, without the design

and synthesis of a furan-side psoralen-thymidine monoadduct and its a site-specific incorporation

into oligonucleotides.





Chapter 1

Synthesis of a Cis-Syn Furan-Side Psoralen-Thymidine
Monoadduct

Background

The linear isomers of the furocoumarin family known as the psoralens were first

recognized as therapeutic agents by the ancient Egyptians who employed fruit and vegetable

extracts containing these agents for the treatment of vitiligo.8 More recently, psoralens have been

used medicinally for the treatment of psoriasis, eczema, and cutaneous T-cell lymphoma. 9 The

cellular target for the psoralens is believed to be DNA. Cells treated with psoralen and long-

wave UV light form adducts involving the pyrimidines in double-stranded nucleic acids. The

mechanism of the photoreaction between psoralen and a nucleic acid helix involves several steps.

The first step is the intercalation between the hydrophobic bases of double-stranded nucleic acids

is also known as the dark reaction. Exposure to long-wave UV light (320-410 nm) results in

either the pyrone or furan double bond of psoralen reacting via [2 + 2] cycloaddition with the

5,6-double bond of a pyrimidine to form an initial monoadduct. After a structural reorganization

that takes approximately 1 [ts, a furan-side adduct can absorb a second photon and react with an

adjacent pyrimidine on the opposite strand forming an interstrand crosslink.'o By contrast,

pyrone-side monoadducts cannot absorb long-wave UV light and therefore do not form

crosslinks. When irradiated in the presence of model oligonucleotides, psoralens show sequence

selectively as evidenced by the 100-fold preference for reaction at 5'-TpA as compared to 5'-ApT

or 5'-TpG sites." All psoralen photoadducts can be reversed by 254 nm light; 12 crosslinks and

furan-side adducts can also be reversed by treatment with base. 13
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Psoralens have been isolated from plants typically from the Leguminosae, Umbelliferae

and Rutaceae families. 14 Examples of some of the naturally occurring psoralens are shown in

Figure 1.1. Synthetic efforts toward the synthesis of psoralens has been formidable with over 60

years of published experience in this area." Isolated psoralens are typically hydrophobic and

require aqueous/organic mixtures in order to solubilize them sufficiently to achieve effective

therapeutic concentrations. 16 In order to improve their medicinal qualities, psoralen derivatives

have been synthesized with the aim of enhancing water solubility and photoreactivity. Toward

Furan Pyrone
Side Side

0-- 0 0

Psoralen
1.1

OMe

O /e 00 0 0
OMe

8-Methoxypsoralen Trioxsalen 5-Methoxypsoralen
(8-MOP) (TMP) (5-MOP)

1.2 1.3 1.4

Figure 1.1. Structures of the naturally occurring psoralens.

this end, the formal psoralen compound 1.1 has been derivatized at every non-quaternary carbon.

Some of the more common synthetic derivatives are 2-carbomethoxypsoralen 1.5, 3-

aminomethyltrioxsalen 1.6 (AMT) and 3-hydroxymethyltrioxsalen (HMT) 1.7 (Fig 1.2).
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Typically, the numbering system of furocoumarins is based on the psoralen nucleus; however,

the Ring Index nomenclature will be used because the numbering system remains constant when

comparing different aromatic ring systems.

HO2C 6
1 9 7

0 a 0

2-Carboxypsoralen

1.5
+ CI-

H3N HOHO

3-Aminomethyltrioxsalen 3-Hydroxymethyltrioxsalen
(AMT) (HMT)

1.6 1.7

Figure 1.2. Structures of some of the common synthetic psoralen dervatives. The
numbering system shown in 2-carboxypsoralen 1.5 is based on the Ring Index
nomenclature and will be used herein.

Hearst and others have put much effort into the isolation and characterization of the

psoralen-DNA adducts.12b, 17 To date, three major monoadducts and one interstrand crosslink

have been characterized. The structures and stereochemistries of the isolated adducts are shown

in Figure 1.3. The monoadducts consist of a psoralen-thymidine cis-syn pyrone-side adduct 1.8

and both diastereomers of a cis-syn furan-side adduct 1.9 and 1.10. The two furan-side adducts

arise from reaction of the psoralen on either the 5' or the 3' face of thymidine. The interstrand

crosslink is comprised of a furan and pyrone cis-syn monoadducts with thymidine. Psoralen
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reaction with cytosines has been reported;18" however, the limited reactivity between psoralen and

cytosine has hampered the structural characterization of these lesions. Presumably they possess

the same regio- and stereochemistry as determined for the thymidine adducts because furan-side

cytidine monoadducts can be converted into crosslinks with subsequent treatment of long-wave

UV light.

0 -0

HII 000
H3C H3C H3 N

HO 0 HO 0 HO

OH OH OH

Cis-syn pyrone-side Cis-syn furan-side Cis-syn furan-side
monoadduct 1.8 monoadduct (3' face) monoadduct (5' face)

1.9 1.10

Figure 1.3. Strutures of the isolated psoralen-thymidine monoadducts.

Synthetic Strategy

Attempts to synthesize any cis-syn psoralen-thymidine adduct in the absence of DNA

have met with modest success. DNA controls the stereochemistry of the photochemical reaction

because the hydrophobic psoralen molecule intercalates between the nucleobases aligning the

reactive double-bonds to afford cis-syn photoproducts. The stereoselectivity of the photoreaction

in DNA is exceptional given that 64 monoadducts are theoretically possible between thymidine

and psoralen; 48 of these adducts, however, do not form apparently because they would contain a

highly strained and sterically hindered trans fusion about the pyrimidine or psoralen rings.
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Elimination of these strained isomers still leaves 8 possible isomers for each monoadduct (Fig.

1.4). Of these isomers, the cis-syn adduct that occurs on the 3' face of the thymidine accounts for

more that 99% of the total furan-side monoadducts. " Psoralen dimerization is another major

synthetic obstacle because psoralen reacts with itself faster than with thymidine or thymine in

water/organic mixtures.' 9 The DNA helix prevents photodimerization by separating the psoralen

molecules between the nucleobases. A successful total synthetic approach would have to

duplicate the control the DNA helix exerts on the psoralen molecule to afford only cis-syn

stereoisomers and to eliminate psoralen photodimerization.

Some previous approaches to mimic the intercalation step involved irradiation of frozen

aqueous solutions or evaporated thin films containing psoralen and thymine.20 The rationale

behind these experiments was that these solid state irradiations would minimize psoralen

photodimerization and allow for the isolation of the desired cis-syn isomer. Unfortunately,

numerous photoproducts, including photodimers of psoralen, were isolated and the desired cis-

syn stereochemical isomer was purified in less than 3% yield. A more promising strategy by

Lhomme and coworkers utilized succinic acid to attach a hydroxypsoralen derivative to the 5'-

hydroxyl of thymidine in an attempt to control stereochemistry and eliminate psoralen

photodimerization. 21 This method completely eliminated psoralen photodimerization and

afforded only one psoralen-thymidine monoadduct 1.12 in 70% yield (Fig. 1.5). Unfortunately,

the product isolated was the pyrone cis-anti isomer and not the desired cis-syn isomer. In

addition, the removal of the succinyl linker was not reported because its removal would result in

ring opening of the psoralen lactone. Closure of this molecule would result in side products due

to the symmetry of the resulting catechol derivative. Furthermore, any attempts to use this
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Figure 1.4. Structures of the eight possible furan-side monoadducts.
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pyrone-side adduct in DNA synthesis would require a non-basic deprotection, which would

involve the synthesis of specialized phosphoramidites for solid-phase oligonucleotide synthesis.

O O

0 NH 0 NH

O o N hu, 300 nm OO O
0 ACH 3CN/H20

SAcOc

O O O OAc

1.11 1.12

Figure 1.5. Synthesis of a cis-anti pyrone-side monoadduct 1.12.

Based upon the aforementioned discussion, there are several obstacles that must be

addressed in order to synthesize a cis-syn psoralen-thymidine monoadduct. First, psoralen

photodimerization would have to be eliminated. A suitably functionalized benzofuran derivative

was chosen as a psoralen synthon because benzofuran is missing the photochemically more

reactive pyrone ring of psoralen, thereby eliminating the possibility for psoralen dimerization.19'21

Moreover, only furan-side photoproducts can form using a benzofuran derivative. Interestingly,

the furan double bond has been shown to be the more reactive double bond when intercalated in

DNA owing to its juxtaposition to the 5,6 thymidine double in a 5'-TpA site.22 Control of the

stereochemical outcome of the photoreaction to achieve the desired cis-syn isomer would be the

second crucial aspect in the photochemical step. Lhomme et al. demonstrated that

stereochemical control can be achieved by attachment of a psoralen derivative to the 5' hydroxyl

of the sugar of thymidine; however, their flexible succinyl linker allowed for the synthesis of cis-
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anti adducts.21 Leonard and co-workers have utilized a ribose ring to control the stereochemical

outcome of some "abbreviated" dinucleosides of thymidine.23 These researchers synthesized two

thymines held in close proximity by a 2-deoxyribose (Fig. 1.6). Irradiation of 1.13 afforded cis-

syn stereoisomer 1.14 in 88% yield. The success of this approach is evidenced by the

elimination of the anti isomers due to the geometrical restraint imposed by the attachment of both

photoreactive groups to the single deoxyribose moiety. Based on this experimental evidence, a

one carbon ester linkage was chosen in my work, to attach the benzofuran derivative to the 5'-

hydroxyl of thymidine. The intramolecular photochemical reaction between benzofuran and

thymidine double bonds should afford the desired cis-syn isomer. This monoadduct could then

be further elaborated into the desired psoralen-thymidine monoadduct.

O O O

NH HN NH
IN hu, 300 nm

N water

OH OH

1.13 1.14

Figure 1.6. Synthesis of a cis-syn "abbreviated" thymine dimer 1.14. 3

Synthesis of Benzofuran-Thymidine Photoproducts

The retrosynthetic route of a cis-syn 2-carbomethoxypsoralen-thymidine furan-side

adduct 1.15 is shown in Figure 1.7. Removal of the pyrone ring would provide benzofuran

photoproduct 1.16. Photoproduct 1.16 could be formed in a stereospecific manner from a

benzofuranyl acid 1.17 linked to the 5'-hydroxyl of thymidine 1.18.21 Benzofuranyl acid 1.17 is
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Figure 1.7. Retrosynthetic route to cis-syn 2-carbomethoxypsoralen-thymidine
furan-side monoadduct 1.15.

readily obtained from salicylaldehyde 1.19. The key step in the total synthesis would be the

photochemical reaction with benzofuran. The photochemistry of benzofuranyl esters was not

known, and therefore it was necessary to test this strategy in a model system. The primary goal

of the model system was to direct the stereochemical outcome of the photochemical reaction to

obtain the desired cis-syn stereochemistry. The successful application of this model is shown in

Figure 1.8.

Commercially available salicylaldehyde 1.20 was allowed to react with diethyl

bromomalonate to give a benzofuran ester, which was saponified to afford benzofuranyl acid

1.21. Esterification of 1.21 with a 3'-protected thymidine, 1.18, provided photoprecursor 1.22 in

75% yield. Irradiation of an acetone sensitized, argon degassed, dilute (< 2 mM) solution of 1.22
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Figure 1.8. Synthesis of cis-syn benzofuran-thymidine monoadduct 1.24.
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in acetonitrile afforded two diastereomers with a 4:1 ratio in 71% overall yield. Purification of

photoproducts 1.23a and 1.23b by using standard silica gel chromatography with methylene

chloride and methanol as an eluent, transesterified the 9-membered lactone of the major isomer

1.23a to give ring opened photoproduct 1.24 containing a methyl ester. The minor isomer 1.23b,

did not transesterify with methanol and silica gel and could be purified as the lactone using

methanol as the eluent.

NMR was used to determine both the regio- and stereo-chemistry of the isolated

photoproducts 1.24 and 1.23b. The regiochemistry of both photoproducts was determined by

observing the coupling constant between the H6 proton of thymidine and the H3 proton of

benzofuran. Only long range coupling (2 Hz) was observed for both photoproducts, which is

indicative of syn stereochemistry. 24 To determine if the thymidine methyl group were on the

same side of the four membered ring as the H3 and H6 protons, an NOE difference experiment

was performed (Fig. 1.9). Irradiation of the thymidine methyl group of major isomer 1.24 gave a

positive NOE for both ring protons, which confirmed that the major photoproduct possessed the

desired cis-stereochemistry. Irradiation of the thymidine methyl group of minor isomer 1.23b

gave only one positive NOE for the H6 proton of thymidine (Figure 1.9C). Hence, the minor

isomer is the trans-syn isomer. Attempts to crystallize the major photoproduct, to assign on

which face of the thymidine ring the [2 + 2] cycloaddition occurred, have yet to yield a crystal of

X-ray diffraction quality. However, Hearst et al. have shown that the CD spectrum of a 5'-TpA

psoralen adduct has a negative ellipticity from 270 to 360 nm, whereas the 5'-ApT adduct has a

positive ellipticity in the same range. l a It appears that the contribution of the deoxyribose ring

affects the CD spectrum minimally and the two diastereomers behave as enantiomers in the
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Figure 1.9. (Above) Structures of the benzofuran-thymidine photoproducts 1.24 and 1.23b,
where dR = 2'-deoxy-3'-O-acetylribose. (Below, left) Nuclear Overhauser enhancements for
photoproducts 1.24 and 1.23b. (A) difference spectrum between the major isomer 1.24
irradiated at the thymidine methyl resonance (1.78 ppm) and (B). (B) proton NMR
spectrum of the major isomer 1.24 (4.0-5.0 ppm). (C) difference spectrum between the
minor isomer 1.24 irradiated at the thymidine methyl resonance (1.28 ppm) and (D);
(D) proton NMR spectrum of the minor isomer 1.23b (4.0-5.0 ppm). (E) circular dichrosim
spectrum of the major isomer 1.24.
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presence of polarized light. Although the model compound did not contain the full coumarin

ring, it seemed possible to ascertain the facial selectivity of the photoreaction by CD

spectroscopy. The CD spectrum of the major isomer 1.24, shown in Figure 1.9E, has a negative

ellipticity from 260 to 290 nm suggesting the cycloaddition had occurred on the 3' face of

thymidine. The benzofuran-thymidine model system had fulfilled the original goals of directing

the stereochemical outcome of the photoreaction and eliminating photodimerization. In addition,

the propensity of the cis-syn isomer to transesterify with methanol facilitated the rapid

purification of the desired isomer.

Synthesis of a Cis-Syn Furan-Side Psoralen-Thymidine Monoadduct

Having firmly established a methodology to construct a cis-syn photoproduct by using

benzofuran as a psoralen guise, the total synthesis of a psoralen-thymidine adduct was within

reach. Two minor modifications of the model system were necessary to convert it into a

psoralen-thymidine adduct. First, a simple change of a protecting group on the phenolic alcohol

would allow for a mild deprotection when coupled to the nucleoside. The second modification

was to incorporate an aldehyde ortho to the methoxymethyl (MOM) protected phenol. Addition

of a formyl group at this position would allow for a mild conversion of the benzofuran

photoproduct into a psoralen-thymidine adduct. 25 Earlier formylations of 6-alkoxybenzofurans

utilized DMF-POC13 in order to formylate the benzofuran directly. However, these conditions

resulted in primarily 7-formylbenzofurans and afforded little 5-formyl product. 6d Figure 1.10

depicts a two step approach utilizing halogenation followed by a palladium(0) catalyzed

formylation 26 to attain a 5-formylbenzofuran. Treatment of selectively protected 1.2527 with
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Figure 1.10. Synthesis of 5-formyl-6-methoxymethyl-2-benzofuran carboxylic acid 1.29

sodium iodide and chloramine T gave primarily para iodinated 1.26.28 Cyclization of 1.26 to

benzofuran 1.27 was accomplished with diethyl bromomalonate and potassium carbonate. The

desired aldehyde was synthesized using a Stille coupling.26 Palladium(O) coupling with 1.27,

carbon monoxide, and slow addition of tributyltin hydride gave 5-formylbenzofuran 1.28. The

overall two step yield for incorporation of the 5-aldehyde was 53%. Saponification of 1.28

yielded benzofuranyl acid 1.29.29

With the benzofuran portion of the molecule in hand, the next task was to couple it to

thymidine and produce a photoprecursor. The synthesis began with carbodiimide coupling of

1.29 with 3'-O-actetylthymidine 1.18 to give esterified 1.30, as shown in Figure 1.11. Removal

of the protecting group using trityl cation afforded phenol 1.31 in 90% yield.30 Efforts to use

HCl/methanol to remove the MOM group led to side products and lower yields. All attempts at
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Figure 1.11. Synthesis of a cis-syn 2-carbomethoxypsoralen furan-side
thymidine monoadduct 1.15.
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photochemistry with aldehyde 1.31 resulted in no reaction presumably owing to fluorescence

quenching by the benzaldehyde moiety. To circumvent this problem, aldehyde 1.31 was

protected by reduction with NaBH4 to the readily oxidizable benzylic alcohol 1.32. A dilute

solution of photoprecursor 1.32 in 20:1 acetonitrile/acetone was irradiated with 300 nm light and

afforded only one diastereomer, which was transesterified with silica gel and methanol to

produce the ring opened photoproduct 1.33 in 58% yield. Selective oxidation of 1.33 with

oxygen in the presence of CuCl and TEMPO afforded aldehyde 1.34.31 Typically harsh, basic

conditions are needed to construct the pyrone ring from ortho formyl phenols.32 Barton and

others have used enediamines or commercially available acetamide acetals to effect this

transformation under relatively mild conditions. 25 Treatment of aldehyde 1.34 with N',N'-

dimethylacetamide dimethylacetal in the presence of 4 A sieves at room temperature gave

coumarin 1.35 in 38% yield. Although the yield for this step is moderate, the chemoselectivity

of the reagent to form a carbon-carbon double bond in the presence of a free primary hydroxyl

and imide is noteworthy. The protected 2-carbomethoxypsoralen-thymidine adduct was

converted into the desired photoproduct 1.15 using DBU in methanol.

Determination of the stereochemistry of photoproduct 1.15 was identical to the model

system. The coupling constant between the H6 thymidine proton and the H3 benzofuran proton

of psoralen was small, 1.7 Hz, confirming the syn regioisomer. Figure 1.12 shows the difference

NOE experiment where irradiation of the thymidine methyl shows an enhancement of both H6

and H3 protons, confirming the stereochemistry as cis. The final stereochemical determination

was whether the 2-carbomethoxypsoralen was situated on the 5' or 3' face of thymidine. The CD

spectrum of the synthesized adduct 1.15, was nearly identical with the CD spectra of an isolated
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Figure 1.12. (Left) Nuclear Overhauser enhancements for the 2-carbomethoxypsoralen-
thymidine furan-side monoadduct 1.15. (A) difference spectrum between sample irradiated
at the thymidine methyl resonance (1.80 ppm) and (B). (B) 4.0-5.0 ppm region of the proton
NMR spectrum. (C) Circular dichroism spectrum of the 2-carbomethoxypsoralen-thymidine
furan-side monoadduct 1.15.

psoralen-thymidine adduct even though the psoralen moieties are slightly different (Fig.

1.12C). la, 17f The synthesized 2-carbomethoxypsoralen-thymidine adduct is the adduct

equivalent to the reaction occurring at a 5'-TpA site in DNA; this is the hundred fold most

prevalent adduct under normal conditions of DNA damage.

There were many key synthetic steps developed for the eventual synthesis of a cis-syn

furan-side psoralen-thymidine monoadduct. Selective iodination of the salicylaldehyde

derivative allowed for the incorporation of an aldehyde at the 5 position via a Stille formylation.

The presence of the nucleosidic bond prevented the use of harsh mineral acids or bases, which

eliminated many standard synthetic methodologies. Therefore, milder synthetic reactions were

employed to maintain this important, labile bond. Using trityl cation for MOM-deprotection as

well as pyrone ring annulation via Barton enediamines were just two of the functional group
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manipulations that were critical in achieving this total synthesis. However, the success of this

total synthesis was ultimately due the utilization of a benzofuran derivative in the key

intramolecular photochemical step. This approach allowed for the sole formation of a cis-syn

furan-side monoadduct without the complications of photodimerization.

A More Efficient Synthesis

The previous "two-stage" synthetic strategy eliminated photodimerization and yielded a

single photoproduct containing a cis-syn geometry. While this approach gave the desired

monoadduct in reasonable yield, it involved many steps with a delicate saturated pyrimidine. A

more direct approach would utilize a full psoralen derivative in lieu of benzofuran; this approach

is more appealing because it shortens the synthetic scheme and eliminates all but one reaction

with a saturated pyrimidine. At the outset, a major concern with using an intact psoralen was

that it could lead to self-dimerization instead of a thymidine-psoralen photoproduct. 19' 21 The

efficiency of the benzofuran-thymidine photochemical reactions suggested that a 2'-ester linkage

might favor the intramolecular reaction between psoralen and thymidine over psoralen

photodimerization. This section explores this highly effective linkage using an intact psoralen

derivative.

The strategy involves linking a 2-carboxypsoralen to the 5'-hydroxyl of thymidine to

control the stereochemistry of the photoreaction. Based on the earlier work with benzofuran-

thymidine photoproducts, a new method was developed for the synthesis of 2'-

carboethoxypsoralen shown in Figure 1.13. Removal of the MOM-protecting group from 1.28

with HCl in ethanol yielded phenol 1.37. Cyclization of compound 1.37 with dimethylacetamide
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dimethyl acetal in the presence of 4 A sieves gave carboethoxypsoralen 1.38 in 65% yield.25

Again, the addition of sieves removed the methanol that is generated in this reaction and greatly

improved the yield. Saponification of 1.38 afforded acid 1.39. The 2-carboxypsoralen was then

attached to a suitably protected thymidine.21 As shown in Figure 1.14, coupling of psoralen 1.39

HC1
OHC EtOH OHC

CO 2Et -O CO 2Et
MOMO O 91% HO)

1.28 1.37

N(Me) 2

(MeO)2 CH3

4 A sieves

65%

NaOH

CO 2H Meo O CO 2Et

00 0 77% 0 0

1.39 1.38

Figure 1.13. Synthesis of 2-carboxypsoralen 1.39.

with thymidine 1.18 yielded photoprecursor 1.40. Attempts to effect the photochemical reaction

by using long wave UV light (366 nm) produced only photodegradation of the starting material,

compound 1.40. However, the use of 300 nm light and acetone as a photosensitizer yielded one

photoproduct, which underwent a transesterification with methanol and silica gel to afford 1.35

in 24% yield. The low yield was presumably due to some photodimerization even though the

reactions were performed at low concentration (1 mM).

The regio- and stereochemistry of photoproduct 1.35 was again assigned by NMR and

CD spectroscopy. The 1D NMR spectra of 1.35 was identical, including the regiochemistry, to
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Figure 1.14. Facile synthesis of a cis-syn 2-carbomethoxypsoralen
furan-side thymidine monoadduct 1.35.

the previously synthesized furan-side adduct. A difference NOE experiment resulted in positive

signals for both protons on the four-membered ring assigning the stereochemistry as cis (Fig.

1.15). Determination of the facial selectivity of the photoreaction was ascertained by CD

spectroscopy (Figure 1.15). The CD spectrum of 1.35 was identical to the photoproduct

generated by the earlier method and to an isolated psoralen-thymidine photoproduct. la, 17f

Conclusions

Two total syntheses of a cis-syn furan-side monoadduct between thymidine and a

psoralen derivative have been described. Linking a benzofuranyl acid derivative or a 2-
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carboxypsoralen to the 5' hydroxyl of thymidine was crucial in the control of the regio- and

stereochemistry to give a cis-syn adduct. The key [2+2] cycloaddition occurs with high facial

selectivity giving primarily or only the cis-syn 3' face adduct, which is the most prominent

adduct found upon DNA-psoralen irradiation or a medicinal treatment. One possible synthetic

organic transformation left to explore is the removal of the 2-carboxy group via a radical

decarbonylation to provide the formal psoralen-thymidine adduct. However, the carboxylic acid

group does provide a chemoselective handle that allows for the attachment of reporter groups at

this site and thereby enhances the utility of the 2-carboxypsoralen. Another possible use of these

structurally intriguing molecules is in the area of molecular scaffolding. The cis-syn adduct

provides a molecular architecture where two sets of functional groups can be displayed in the

same direction. This type of orientation is rare with small organic compounds and is usually

observed in large marcomolecules. With known lability of the nucleosidic bond and with the

retainment of the cis-syn geometry shown by Hearst and co-workers, 7e it seems possible to

utilize the deoxyribose backbone to synthesize other cis-syn molecules that could be used to

entertain some molecular recognition and scaffolding experiments.
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Figure 1.15. (Above) Structure of photoproduct 1.35, where R = CO2Me. (Below, left)
Nuclear Overhauser enhancements for photoproduct 1.35. (A) Difference spectrum

between sample irradiated at the thymidine methyl resonance (1.76 ppm) and spectrum B.
(B) 4.0-5.0 ppm region of the proton NMR spectrum. (C) Circular dichroism spectrum of
photoproduct 1.35.
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Synthesis of Oligonucleotides Containing a Site-Specific
Psoralen Adduct

Introduction

Oligonucleotides containing a modified nucleoside at a predefined site have proved to be

valuable tools for understanding the mechanisms of DNA replication, repair and mutagenesis.

Over the last 15 years many synthetic methodologies have been developed to construct

oligonucleotides containing a site-specifically placed damaged nucleoside.' Four major

approaches have been taken (Fig. 2.1): (1) The total synthetic approach that involves the

synthesis of a damaged nucleoside phosphoramidite for its use in a solid-phase oligonucleotide

synthesis. (2) The synthesis of a damaged mononucleotide for its use in an enzymatic synthesis

of an oligonucleotide. (3) A direct treatment approach that involves the treatment of a

unmodified oligonucleotide with a DNA damaging agent followed by purification of a singly-

damaged oligonucleotide. (4) A "convertible" approach that involves the synthesis of

oligonucleotide containing a nucleoside that can be converted into the desired DNA damage

utilizing a reagent that chemoselectively modifies the site-specifically placed base. Each of these

approaches has its advantages and disadvantages depending on the type of DNA damage to be

site-specifically incorporated.

A successful total synthetic strategy is inherently the most powerful approach because

once the methodology is developed the damaged nucleoside can be placed anywhere in any

length oligonucleotide. Moreover, this approach affords enough material for the structural study

of these oligonucleotide by NMR or x-ray crystallography. In addition, a synthetic approach can
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provide access to the minor DNA adducts of a DNA damaging agent that, although low in yield,

can be responsible for a disproportionately large fraction of a DNA damaging agent's biological

consequences.32 One limitation of this approach is that the damaged nucleoside of interest must

be able to withstand the rigors of solid-phase synthesis and deprotection. Instability is

problematic with modified oligonucleotide synthesis because chemical alteration of a natural

nucleoside often increases its lability. Any contamination caused by chemical degradation may

complicate or impede purification of the oligonucleotide rendering it useless for further

biochemical studies. Additionally, site-specifically damaged oligonucleotide that are used for

genetic studies must be of the utmost purity due to the possible enhanced signal a contamination

may cause in these systems.

An alternative method to avoid some of the limitations of solid-phase oligonucleotide

synthesis is to utilize an enzymatic synthesis incorporating the nucleoside adducts as

triphosphates or 3',5' bisphosphates. 33 This approach has the advantage of mild reaction

conditions, but suffers from low yields and it is somewhat constrained by DNA sequence context

limitations.

The direct treatment approach is convenient and affords site-specific substrates to the

synthetically challenged researcher.7' 34 This method has the advantage that it can provide

oligonucleotide containing DNA lesions that are highly labile because the damaged

oligonucleotide does not experience solid-phase oligonucleotide synthesis. lb Until recently,

direct treatment of DNA with crosslinking agents was the only method to construct intrastand

crosslinks in double-stranded DNA.3 5 A clear disadvantage to this approach is that it requires

DNA damaging agents that make predominately one type of adduct. For example, an
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oligonucleotide treated with a simple alkylating agent or an oxidizing reagent would produce a

wide range of DNA adducts and purification of an individual adduct would be impossible.

Another major drawback is that oligonucleotide sequence and length are limited. Typically short

(8-12 nt) oligonucleotide with only one reactive nucleoside for that particular DNA damaging

agent are used in order to minimize HPLC purification problems. These restrictions prevent the

study of these lesions in oligonucleotide that have multiple potential sites of adduction. This is

unfortunate because many of these sites have been shown to be mutational hotspots that occur in

proto-oncogenes and tumor supressor genes; such hotspot sites are thought to play a key role in

neoplastic transformation. Despite these purification hurdles, some adducts have been site-

specifically placed in oligonucleotide containing multiple reactive sites using the direct treatment

approach.34

The fourth, and most recent approach, takes advantage of the chemoselective reaction of

halo-purines and triazolo-pyrimidines with amines and alcohols. 36 An oligonucleotide is

synthesized with a site-specifically placed "convertible" nucleoside. Depending on the protocol

used, the resin-bound or free oligonucleotide can be treated with an amine or alcohol in the

presence or absence protecting groups. This approach combines the DNA sequence

independence of a total synthetic approach with the experimental ease of the direct treatment

approach. This strategy does suffer from some side reactions, which complicates purification

and limits oligonucleotide length. Another drawback is that the current methodology has been

limited to adducts at the N2 of guanine, N6 of adenine, and 0 4 of thymine or uracil.
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Psoralen-DNA Adducts

The synthesis of psoralen monoadducts and crosslinks have been thus far constructed by

the direct treatment method and are limited to oligonucleotide with only one 5'-TA site. 37

Traditionally, Hanovia type lamps and blackray lights were utilized to synthesize psoralen

adducts. This strategy provides reasonable amounts of crosslinked substrates; however, the

separation and purification of the furan- and pyrone-side monoadducts has proved nearly

impossible using denaturing polyacrylamide gel electrophoresis (PAGE) or by HPLC. Recently,

Hearst et al. have synthesized oligonucleotides containing a site-specifically placed furan-side

monoadduct and crosslink utilizing high intensity lasers (Fig. 2.2).38 The photo-chemical

A

Krypton ion laser
emitting at 406.7 nm

Dielectric Mirrors

32 mL 10 cm pathlength
stirred cell

1 cm pathlength
B flow cell

Argon ion laser
emitting at 366 nm

Cylindrical
Lens

Figure 2.2. Schematic diagrams of the optical path during sample irradiation
to form furan-side monoadducts (A) and interstrand crosslinks (B).38
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selectivity of this method arises from the knowledge that psoralen molecules absorb light at

wavelengths up to 410 nm whereas the absorption cutoff for furan-side monoadducts is -395 nm.

Therefore, irradiation at wavelengths greater than 395 nm would allow for the isolation of furan-

side monoadducts without the conversion to crosslinks. The employment of a high-intensity

monochromatic light source is necessary because the absorption coefficient of psoralen at

wavelengths greater than 400 nm is only -1-20 (mol -', cm-'). This exotic methodology can

provide large quantities of psoralen monoadducts; however, it is limited by sequence context

because the target oligonucleotide can only contain one thymine base. It was this lack of

oligonucleotide sequence freedom that prompted the total synthesis of a furan-side psoralen-

thymidine monoadduct described in Chapter 1. Moreover, a total synthetic procedure allowing

for the preparation of psoralen adducts in any sequence context is more desirable because recent

studies show that context plays an important role in the replicative bypass, mutagenic, and

genotoxic effect of DNA-damaging agents.6

NMR Solution Structure of a Psoralen Containing Oligonucleotide

The 3-dimensional structural determinations of a psoralen containing oligonucleotide

have come under some recent scrutiny. The first NMR-derived model of a DNA duplex

crosslinked with AMT provided the first evidence that the psoralen moiety was indeed

intercalated within the DNA helix because of the standard sequential connectivities in an

unmodified oligonucleotide were interrupted by the psoralen lesion (Fig. 2.3). 3 9 Distance

geometry methods proposed that the 3D structure of the psoralen cross-linked helix contained a
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Figure 2.3. (Left) NMR-derived model for a DNA duplex crosslinked with AMT.39

The methyl groups involved in the photolesion and the amino group of AMT are indicated
by circles. (Right) NMR solution structure for the HMT interstrand crosslink. 22 The HMT
is filled in with black.

large kink (56°) in the phosphate backbone at the site of damage. In addition, the structure shows

an asymmetry in the base-pairing stability adjacent to the crosslink, which is also detected by the

temperature dependancies of the imino resonances. Recently, the NMR structure of both the

monoadduct and the crosslink between HMT and DNA has been reported (Fig. 2.3).22 Wemmer

and co-workers show that this psoralen derivative is intercalated into the helix with the local

DNA structure distorted, but returning to B-form DNA within three base pairs. However, no

significant bend is seen in the helix with the monoadduct or the crosslink involving HMT. It
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seems unlikely subtle difference of a primary amine (AMT) to a primary hydroxyl (HMT) could

affect the DNA helix so dramatically. The discrepancy between the two NMR solution

structures has been attributed to technical errors in the first structural determination suggesting

that the latter structure is more representative of the structure of psoralen-DNA adducts.22

Regardless of which structure best represents a psoralentated oligonucleotide, the psoralen

moiety is intercalated between the bases of the DNA and it significantly alters the overall

structure of the helical DNA.

Repair of Psoralen Adducts

Due to the diverse types of chemical damage that can occur to DNA, cells have evolved a

number of mechanisms to repair modified nucleosides. It is generally accepted that the

structurally distorting psoralen adducts are substrates for the nucleotide excision repair (NER)

pathway in both prokaryotes and eukaryotes.4 0 In addition, recombination may also play a role in

psoralen crosslink repair.41 The NER pathway repairs bulky lesions by excising a small patch

(13-32 nt) of DNA surrounding the lesion. DNA polymerase and ligase are used to complete the

repair process. Oligonucleotides containing a site-specific psoralen crosslink have been used to

determine NER's role in removal of intrastrand crosslinks. In Escherichia coli (E. coli), the

UvrBC proteins first incise the DNA on the furan-side of the crosslink.42 a If the lesion was not

an interstrand crosslink, the gap would be filled in using DNA polymerase; however, the

presence of the pyrone-side adduct in the template strand poses a block to DNA synthesis and a

possible mutagenic site. Therefore, an error-free repair mechanism has been proposed from in

vitro recombination experiments using the E. coli. RecA protein (Fig. 2.4).41 One concern with
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Figure 2.4. The E. coli error-free repair of a psoralen crosslink suggested by in vitro
experiments with site-specifically modified oligonucleotides. 41
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this mechanism is that the gap required for recombination must be at least 12-13 nucleotides

larger than the oligonucleotide gap made by UvrABC. The wider gap has been postulated to

arise from the 5'- 3' exonuclease activity of DNA polymerase I.42 While the furan-side of the

crosslink is incised first by UvrABC of E. coli, the pyrone-side of the crosslink is excised first

using HeLa cell extracts.43 In fact, it has been recently reported that DNA sequence context

effects whether the furan or pyrone-side of a crosslink is repaired first by UvrABC.44 In addition,

Wood et al. have discovered the efficiency of human NER repair of psoralen furan-side

monoadducts is affected by DNA sequence context as well. 43 The differences between

eukaryotic and prokaryotic NER of psoralen adducts is common. In vitro studies show that the

UvrABC proteins from E. coli repair the furan-side monoadduct more efficiently than the

crosslink."8 However, human cell extracts from HeLa cell lines repair the crosslink better than

the furan-side monoadduct."1 Psoralen adducts have also been utilized to study transcription

coupled repair in CHO cells. 45 Hanawalt and co-workers have shown that psoralen crosslinks in

transcribed strands are removed much more efficiently than in non-transcribed strands.

Monoadduct repair, in contrast, is not influenced by adduct location in the genome. The ability to

place a psoralen crosslink in double-stranded DNA without regard for sequence context should

help clarify how cells process psoralen-DNA adducts.

Mutagenicity and Cytotoxicity of Psoralen Adducts

DNA damage that goes unrepaired can give rise to mutations during replication and

eventually cause cell death. Psoralen-DNA crosslinks are an absolute block to DNA synthesis in

vitro.46 On the other hand, furan-side monoadducts have been shown to be bypassed during
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replication on average 11% of the time with more replication errors occurring on the lagging-

strand.47 Crosslinks are considered to be both more mutagenic and lethal; however, the

genotoxic differences have been correlated to species rather than the adduct type.48 The

mutational spectrum of HMT in the lac promoter region of M1 3mp 10 phage DNA contains

predominately T-G transversions and one-base deletions in runs of T and C.49 A site-specific

mutagenic approach utilizing the furan-side monoadduct and the crosslink has also confirmed

that the major base mutation is a T-G.5O In addition, this site-specific approach revealed that all

deletions occur at the site of the psoralen adduct. In fact, all of the deletion mutants have been

attributed solely to psoralen crosslinks.5" Using 8-methoxypsoralen in E. coli NER deficient

cells, all mutations are base substitutions, which were attributed to psoralen monoadducts

because, without NER, crosslinks are lethal. In NER proficient cells, one-base deletions are also

observed and have been postulated to occur during replication past the three-stranded psoralen

lesion with DNA polymerase (Fig. 2.4). With the importance of sequence context has on

mutagenesis and replicative bypass of many lesions,6 a furan-side psoralen-thymidine

phosphoramidite will be useful to help determine the effects of sequence context plays on these

biological endpoints.

Biochemical Applications of Site-Specifically Psoralenated Oligonucleotides

In spite of the arduous methods used to generate oligonucleotide containing site-

specifically placed psoralen adducts, a substantial amount of biochemical work has been done

utilizing oligonucleotide containing furan-side monoadducts. Furan-side psoralen-thymidine

monoadducts can be used as hybridization probes that can covalently attach to the target
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sequence by long-wave UV light. Hearst et al. have utilized psoralen photo-crosslinking

oligonucleotide to identify unique sequences in the human genome, to enhance Southern blotting

signal and to probe how secondary structure affects hybridization kinetics and equilibria.52 The

sequence context constraints imposed by the current methodologies to synthesize oligonucleotide

containing site-specific furan-side monoadducts has minimized the general utility of these cross-

linking probes. Site-specifically placed psoralen monoadducts have also been used to probe

DNA-protein contacts. 53 Sastry et al. have utilized psoralen-protein photochemistry to crosslink

proteins to DNA. Using an oligonucleotide containing a furan-side psoralen monoadduct, single-

stranded DNA binding proteins such as T7 RNA polymerase, T4 gp32 and the E. coli proteins

RecA and UvrB have been cross-linked to an oligonucleotide containing a furan-side

monoadduct. This methodology has the added benefit that it uses long-wave UV light that is

outside of the absorption maximum of DNA and most proteins. In theory, oligonucleotide

containing a furan-side monoadduct could be used to probe any DNA-protein interaction where

the DNA double helix is unwound by DNA tracking proteins. RNA-protein interactions could

also be probed in this manner; however, the ability to generate experimental quantities of furan-

side monoadducts in RNA has not been possible using any of the previously described

techniques. Oligonucleotide containing site-specifically placed psoralen adducts have been used

to arrest transcription and to generate a model for the ternary elongation complex between E. coli

RNA polymerase, the DNA template, and the nascent RNA (Fig. 2.5). 54 A furan-side psoralen-

thymidine phosphoramidite may increase the appeal of these crosslinkable substrates to probe

DNA-protein interactions.
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Figure 2.5. A model for the E. coli RNA polymerase transcription elongation complex. 54

The horizontal arrow indicates the direction of RNA synthesis. The curved arrows
indicate the unwinding and rewinding of the DNA and DNA-RNA helix by the polymerase.
The filled triangles denote the hypothetical unwindase and rewindase centers of the
enzyme. The open triangle denotes the catalytic site of the polymerase, which is very
close to the leading unwindase site. The thick, vertical bar indicates the site of the psoralen
crosslink that was used to arrest RNA transcription. The footprint of the polymerase on
the DNA is indicated by the length of the two lobes of the enzyme relative to the turns of
the DNA helix.

Site-Specific Synthesis of an Oligonucleotide Containing a Furan-Side Psoralen

Monoadduct

Synthesis of the furan-side monoadduct was chosen for two reasons. First, the furan-side

adduct contains an intact coumarin chromophore, which posses the aforementioned photocross-

linking capabilities when irradiated with long wave UV light.12 Second, the furan-side adduct

could survive some basic deprotection conditions used in solid-phase DNA synthesis, whereas

the unsaturated lactone of the pyrone-side monoadduct is known to transesterify readily in the

presence of mild aqueous base. 13 It is also known that furan-side monoadducts can be reversed

by treatment with strong base at elevated temperatures; 13 this consideration therefore prompted a

stability study analysis on nucleoside 2.1 (Fig. 2.6).
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Table 2.1. Comparison of the protecting groups and deprotection conditions
for DNA synthesis.

Protecting Group Structure(s) Commercially Deprotection Conditions
Available

Standard
{isobutyryl and benzoyl}

PAC
{phenoxyacetyl}

O

NHR

0

NHR

0

o NHR

v

V

NH3, 18 hr, 55 C.

NH3, 2 hr, rt.
0.1 M NaOH, 6 hr, rt.
10% DBU in EtOH, 24 hr, rt.

AMB
{2-(acetoxymethyl)benzoyl}

AcO 0

1 NHR
50 mM KCO3 in MeOH, 12 hr, rt.

Pd(0), pH 5.5, 1 h, 550 C.

Phenylacetyl
[ 0- NHR Penicillin G acylase, pH 7.0, 2 h, rt.

Unless otherwise stated, deprotection reactions are peformed in water. rt, room temperature.

Alloc
{allyloxy}

0

O- NHR
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Figure 2.6. Structure of 2-carboxy- 2.1 and 2-carbomethoxypsoralen 1.

Nucleoside 2.1 was found to be stable for at least 30 min to every step in the DNA

synthesis cycle shown in Figure 2.7. The last stability study to be performed was the

deprotection step. Table 2.1 contains some of the protecting groups developed for the solid-

phase synthesis of oligonucleotide. Oligonucleotide synthesized using standard

phosphoramidites require treatment with concentrated aqueous ammonia at elevated

temperatures. Ammonolysis of the lactone ring of 2.1 prevented the use of standard

phosphoramidites. Therefore, nucleoside 2.1 was treated with deprotection conditions that have

been reported to remove PAC or AMB protected oligonucleotide. 19' 36c, d Sodium hydroxide

treatment of 2.1 led to significant degradation; however, nucleoside 2.1 remained intact when

treated with either 10% DBU in ethanol for 24 h at room temperature or the conditions required

for AMB protecting group removal (Fig. 2.8).

Another issue was the observation that nucleoside 1.15 slowly hydrolyzes to the

carboxylic acid derivative 2.1 when stored in neutral aqueous solutions. This hydrolysis did not

affect the photo-crosslinking capabilities of the psoralen-thymidine monoadduct, but for

purification purposes it was convenient to have a homogenous oligonucleotide. Therefore,
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0.1M NaOH 6 hr

6 10 Time 20 30

Figure 2.8. HPLC traces (330 nm) of the stability studies performed on
nucleoside 2.1. All reactions were performed at room temperature.

reaction conditions were developed to saponify the alkyl ester without destroying the coumarin

ring and the photo-crosslinking ability of the monoadduct. Treatment of 2.1 with a 10 mM

sodium carbonate solution at pH 9 for 12 h led to greater than 95% conversion to 1.15 alleviating

purification problems.

The synthesis of the suitably protected psoralen-thymine phosphoramidite is shown in

Figure 2.9. Protection of the 5' hydroxyl of 1.35 with DMT-Cl in the presence of silver nitrate

led to rapid conversion to 2.2.55 Removal of the 3'-acetate with 5% DBU in freshly distilled

methanol afforded 2.3. Phosphitylation using standard conditions gave phosphoramidite 2.4.

To demonstrate the flexibility of a site-specific approach, a prototypical human TATA

box sequence was chosen to incorporate 2.1. Runs of TA sequences are known to be mutational

hotspots for psoralen56 and it is possible that the therapeutic efficacy of psoralen might be due in

part to the inability of transcriptional complexes to bind to modified TATA boxes. The modified
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Figure 2.9. Synthesis of 2-carbomethoxypsoralen-thymidine phosphoramidite 2.4

oligodeoxynucleotide 5'-AGCTA2.1AAAAGGT-3' 2.5 was synthesized on a 1 [Imol scale by

using an automated DNA synthesizer. The coupling time for phosphoramidite 2.4 was extended

to 15 min affording coupling yields of 90% based on DMT cation release. For unmodified

phosphoramidites, yields are typically higher; the lower yield is presumably due to the increased

bulk of the psoralen-thymidine phosphoramidite. The solid support was treated with 1 mL of

10% DBU in anhydrous ethanol in the presence of cetyltrimethyl ammonium bromide, which

aided solubility. 57 After 24 h at room temperature, the deprotection solution was neutralized with

1.35
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aqueous acetic acid and the salts were removed by using a Na+ exchange column. The crude

oligonucleotide was treated with 100 mM sodium carbonate (pH 9.0) solution for 12 h to

saponify the alkyl ester into the carboxylic acid. Neutralization followed by purification by

reversed phase HPLC afforded oligonucleotide 2.5.

The integrity of oligonucleotide 2.5 was established by enzymatic digestion and

electrospray mass spectrometry. Enzymatic digestion and HPLC analysis of 2.5 yielded

nucleoside ratios which were within experimental error of the theoretical composition of

oligonucleotide 2.5 (Fig. 2.10). The peak corresponding to the modified nucleoside had identical

o
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Figure 2.10. HPLC profile of enzymatically digested 2.5. Chromatograph A shows the
corresponding nucleosides observed at 260 nm and the numbers represent the calculated
peak ratio areas. Peak identities were determined by nucleoside standards.
Chromatograph B shows the absorbance at 330 nm displaying only one peak
corresponding to the psoralen-thymidine nucleoside 2.1. Inset: UV spectrum of peak
2.1, which identical to the characteristic UV profile of a synthesized standard 2.1.
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HPLC retention characteristics and UV spectrum as the synthesized standard 2.1. Electrospray

ionization mass spectrometry of 2.5 revealed the presence of ions at m/z 1058.05, 846.5, 705.2

corresponding to 4-, 5-, 6- ions, respectively. The determined molecular weight was 4236.9,

which agreed well with the calculated molecular weight of 4236.7.

One of the valuable applications of psoralen containing oligonucleotide is their ability to

crosslink to a hybridized strand. 12 Figure 2.11 shows a photo-crosslinking experiments of

oligonucleotide 2.5 with its complementary strand 2.6. By 32P-phosphate labeling the 5'-

hydroxyl of only one of the two DNA stands in each experiment, the reactions of the two DNA

stands can be independently analyzed by denaturing gel electrophoresis. Oligonucleotide 2.5

was labeled in lanes 2-7. Oligonucleotide 2.6 was labeled in lanes 8-13. The presence of the

psoralen derivative caused oligonucleotide 2.5 to migrate slower than its unmodified counterpart

2.7 (lane 1 vs. 2). Irradiation of the duplex with 366 nm light (9.0 J/m2) afforded the slower

moving interstrand crosslink in 5 min (lanes 4 and 10). A well known chemical property of

psoralen-DNA crosslinks is their reversibility with 254 nm light'2 or their asymmetric conversion

to the pyrone-side adduct by heating in the presence of base.1 3 Treatment of the crosslinked

duplex with 254 nm light (16.7 J/m2) for 20 min resulted in photoreversion to the monoadduct

(lanes 5 and 11) and eventually complete or near complete reversal to the unmodified strand

(lanes 6 and 12). Base catalyzed reversal results in conversion of the interstrand crosslink into a

pyrone-side adduct, essentially transferring the original psoralen furan-side monoadduct in 2.5 to

the complementary strand 2.6. Treatment of a crosslinked duplex with 0.1 M NaOH at 90 oC for

30 min efficiently reversed the crosslink affording unmodified oligonucleotide (lane 7) and

primarily a pyrone-side monoadduct (lane 13).13 The crosslinking and photoreversion with a
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2.5 5'-AGCTA2.1AAAAGGT-3'
2.6 3'- TCG AT A©T T T C CA-5'

Time (min)

Crosslink --

Monoadduct -
Unmodified -- o
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366 nm nm
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254
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[ 32 P]-2.5 [ 32P]-2.6

Figure 2.11. Photoreactions of the furan-side monoadduct containing oligonucleotide
and the photoreversion and base catalyzed reversal (BCR) of the crosslinked duplex.
The photoreactive thymidine in oligonucleotide 2.6 is encircled. Oligonucleotide 2.5
and the complementary strand 2.6 were 5' phosphate labeled with 32P in lanes 2-7 and
lanes 8-13, respectively: (Lane 1) Unmodified control oligonucleotide 2.7 labeled
with 32P at the 5' terminus. (Lanes 2-4 & 8-10) Irradiation with 366 nm light. (Lanes
5-6 & 11-12) Photoreversal of the crosslink with 254 nm light. (Lane 7 & 13) Base
catalyzed reversal of crosslink.

strong intensity lamp was so effective that a low-wattage UV lamp was used to effect the same

transformations (Fig. 2.12). Irradiation with a hand-held 4 Watt long wave UV lamp afforded

the crosslink in 84% yield in 90 min and a hand-held 254 nm lamp caused near complete reversal

in 2 h. These experiments demonstrated that the synthesized psoralen oligonucleotide posses the

useful hybridization/crosslinking/reversal properties of psoralen containing oligonucleotide

generated by traditional methods.

C-
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Figure 2.12 Photoreactions of the furan-side monoadduct containing oligonucleotide
2.5 and photoreversal of the crosslinked duplex using a hand held UV lamp.
Oligonucleotide 2.5 was 5' phosphate labeled with 32P at the 5' terminus in each lane.

Conclusions

The successful site-specific incorporation of a cis-syn furan-side psoralen-thymidine

monoadduct into oligonucleotide will enable the study of this therapeutic agent in DNA sequence

contexts that contain multiple sites of reactivity. Such sites are known to be biologically

important and, with this methodology, it will now be possible to design experiments to probe the

details of how sequence context influences biological endpoints. In addition, this synthetic

approach makes it feasible to utilize the valuable crosslinking properties of DNA and RNA

oligonucleotide containing furan-side monoadducts in hybridization assays and other

experiments where site-specific crosslinking is desired. In Chapter 3, the well-defined psoralen-

thymidine monoadduct is derivatized with the goal of designing DNA damage that can

selectively kill cancer cells overexpressing a tumor specific protein.
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Nucleotide Excision Repair of Psoralen-Thymidine Adducts

Introduction

The development of new cancer therapies is an urgent challenge for medicinal chemists.

Several approaches to cancer treatment have been investigated over the last few decades, with the

development of DNA-binding drugs at the forefront. Cisplatin (cis-DDP) is among the most

effective anticancer drugs in clinical use." Cisplatin reacts with DNA to form adducts with

specific nucleotide pairs. 59 Work from this lab in collaboration with the Lippard lab has

demonstrated that the chemotherapeutically effective DNA adducts formed by cis-DDP are

recognized by HMG box proteins.60 These proteins are thought to block the repair enzymes

required for adduct removal and hence cell survival.61 These observations suggested a general

mechanism for the design of anticancer drugs that act similarly to cis-DDP.62 Bifunctional

compounds that covalently modify DNA and bind tumor expressed or overexpressed proteins

could block the repair enzymes that are essential for cell viability (Fig. 3.1). The DNA lesions

formed by the bifunctional drug would be toxic in cells that possessed the overexpressed protein,

whereas cells without the protein would survive because the DNA damage would be accessible

to the repair enzymes and removed. If this repair blocking mechanism proves to be a viable

method for targeting specific cell types, its generality could be applied to many forms of cancer.

Many breast and ovarian tumors overexpress the estrogen receptor (ER) at high levels.6 3 The ER

and its known ligand binding domain provide a handle to eradicate these cancer cells

selectively.64 Already the Essigmann group has synthesized bifunctional compounds that contain
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Figure 3.1. The design of anticancer drugs that block DNA repair selectively
in cancer cells. The tumor expressed or overexpressed proteins in the cancer
cell block the repair enzymes from removing the DNA lesions whereas the
lesions in the non-cancerous cell are readily repaired.

a DNA damaging agent, a nitrogen mustard, attached to several different ER binding ligands.62

These DNA damaging agents exhibited selective toxicity in ER+ cell lines compared with ER-

cell lines; however, it was not possible to determine definitively if the cause of selectivity were

due to the ER blocking DNA repair because a cell-based assay was used.62

A cell-free assay that allows for the visualization of DNA repair would be better suited to

test the repair blocking mechanism directly. In fact, all of the repair blocking experiments

performed with cisplatin have been observed in vitro using a cell-free nucleotide excision repair

(NER) assay developed by Richard Wood and co-workers, or by a derivative of that assay.40d, 61

In order to test the repair blocking mechanism using a cell-free assay, a lesion that can be

repaired by NER would have to be site-specifically incorporated into a DNA plasmid. To date,



Nucleotide Excision Repair ofPsoralen-Thymidine Adducts 69

DNA damaging agents such as cis-DDP, trans-DDP, N-acetoxy-2-acetyl-2-aminofluorene

(AAF), thymidine dimers, (6-4) photoproducts, psoralen and benzo[a]pyrene have been shown to

be repaired by human NER in cell-free systems.65 Of these adducts, psoralen and cisplatin were

the two logical choices for the DNA lesion because both compounds are considered drugs.

Psoralen was chosen as the DNA damaging agent because any in vitro results could be further

examined in a cell-based assay because of the enormous literature precedent demonstrating that

most psoralen derivatives still retain their DNA damaging properties. 16 Cisplatin adducts were

avoided because they would likely attract HMG-box proteins, which would potentially confuse

the results.

It was the lack of a convenient method for the site-specific incorporation of derivatized

psoralen adducts into oligonucleotides that spawned the synthesis of the furan-side psoralen-

thymidine monoadduct described in Chapters 1 and 2. In fact, the same 2-carboxy group that

was crucial for the synthesis of the cis-syn furan-side psoralen-thymidine adduct was envisioned

to provide a convenient site of attachment for the protein recognition group. This chapter

describes the development of a method to attach small molecules chemoselectively to a psoralen-

thymidine adduct site-specifically placed in an oligonucleotide. Using this methodology,

oligonucleotides containing a site-specific psoralen-thymidine derivative were synthesized that

bind specifically to the ER. In addition, the repair blocking hypothesis was tested using these

oligonucleotides in the aforementioned in vitro NER assay in the presence or absence of

recombinant ER.
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Attachment of a Protein Recognition Domain

The ER protein was chosen to test the repair blocking mechanism because it possess a

high affinity (< nM) small molecule recognition site that provides the essential protein

recognition domain. In addition, purified ER is readily available66 as are ER+ and ER- human

cell lines. 67 Extracts from these cell lines could be used in the in vitro NER assay. Although

estradiol is the natural ligand for the ER, many non-steroidal derivatives have been synthesized

that bind the ER with similar high affinity.68 2-Phenylindoles (2PI) are compounds that interact

well with the ER and are simple to prepare.68 Our lab has made a series of bifunctional

compounds consisting of a 2PI ligand covalently attached to a nitrogen mustard.62 The length of

the linker between the nitrogen mustard and 2PI group was varied to assess the affinity of the

compounds for the ER (Table 3.1). The bifunctional compounds that competed best with

[3H]estradiol for the ER possessed at least a five (Mustard-Cs), preferably six carbon (Mustard-

C6) linker attached to the N2 position of the 2PI molecule. Because linker length greatly affected

the relative binding affinity between the 2PI nitrogen mustard compounds and the ER, a modular

synthesis was developed in which a protein recognition domain could be readily attached to an

oligonucleotide containing a site-specifically placed psoralen-thymidine monoadduct. The

chemoselective reaction between ketones and nucleophilic weak bases such as aminooxy,

hydrazide or 1,2 aminothiols provides a means of attaching the 2PI derivative to a psoralen

adduct within an oligonucleotide.6 9 Such carbonyl addition reactions have been recently

revitalized for the synthesis of peptides and other biopolymers because they can be performed

chemoselectively in water in the absence of protecting groups.7" This convergent strategy would
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Table 3.1. Relative binding affinities of nitrogen mustard
2-phenylindole conjugates.

CI

CIN-
Cli

2PI-Compound m n RBA
Mustard-C3  3 3 0
Mustard-C 5  3 5 0.6
Mustard-C 6 2 6 7.1

Relative binding affinity (RBA) for estradiol
Adapted from Rink et al.63

was set at 100.
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allow for the synthesis of only one psoralen-thymidine phosphoramidite, yet have the flexibility

to couple different protein recognition domains with various linkers.

The first step in the development of this method would be the attachment of a ketone onto

the psoralen-thymidine monoadduct. The benzofuran-thymidine monoadduct was used as a

model because it is easier to prepare while being structurally similar to the psoralen-thymidine

monoadduct. Facile synthesis involved amide bond formation with an aminoketone and the 2-

carboxybenzofuran-thymidine photoproduct, though protection of the ketone as a ketal would be

necessary in order to avoid Schiff base formation. The synthesis of aminodimethyl ketal 3.1 has

been previously described by Drueckhammer and co-workers. 71 The benzofuran-thymidine

monoadduct 1.24 was saponified with carbonate to afford acid 3.2 (Fig. 3.2). Treatment of 3.2

HMe HMe
MeO OMeONH NH

Me 2C H NaCO PyBO H 2C H

HO HO HO H/DMFOH 50%MeOH
OAc OH

1.24 3.2

MeO OMe

MeO
NH 3.1

PyBOP, DIEA0 N H 0 DMF

0 H H 2. Oxalic Acid
HO"" 0, H20/DMF

OH 50%
3.3

Figure 3.2. Synthesis of ketone benzofuran-thymidine monoadduct 3.3.
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and amino dimethylketal 3.1 with PyBOP and diisopropylethylamine selectively formed the

amide bond. Immediate removal of the dimethyl ketal protecting group with aqueous oxalic acid

afforded ketone 3.3.

With the ketone "handle" in place, the next step was to determine which chemoselective

nucleophile would be suitable for this strategy. Commercially available biotin hydrazide and

benzyloxyamine were tested to see if they would react with ketone 3.3 in mildly acidic aqueous

solutions. Biotin hydrazide failed to react with ketone 3.3 under several pH conditions. On the

other hand, benzyloxyamine reacted quantitatively with ketone 3.3 yielding the oxime within 3 h

in 0.1 M sodium phosphate buffer (pH 5.6). Two peaks, presumably the cis and trans isomers of

the resulting oxime, were observed in the chromatogram.

These results suggested that oxime formation could be used to attach the 2PI moiety to

the psoralen-thymidine ketone. Previous work in the lab had demonstrated that attachment of at

least a five carbon linker to the N2 position of 2PI is required in order to retain ER binding

(Table 3.1). The bromo-N-alkyl 2-phenylindoles shown in Figure 3.3 have been previously

synthesized in the lab.62 Displacement of the bromine with N-hydroxyphthalimide affords the

protected aminooxy derivatives. Deprotection of the phenol protecting groups was accomplished

with concentrated HCl in methanol. Removal of the phthalimide protecting group with

hydrazine afforded the aminooxy 2PIs, 2PI-C5-ONH2 3.10 and 2PI-C 6-ONH2 3.11. Figure 3.4C

shows the reaction between 2PI-C5-ONH 2 3.10 and nucleoside ketone 3.3. The reaction was

nearly complete after 21 h at room temperature. The newly formed peaks (cis and trans) were

isolated and their mass corresponded to oxime formation.
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Figure 3.3. Synthesis of 2-phenylindole aminooxy derivatives 3.10 and 3.11.

In order to determine if the chemoselective reaction would occur when the nucleoside

ketone was within an oligonucleotide, the synthesis of a suitably protected phosphoramidite of

3.3 was needed (Fig. 3.5). The attachment of the ketone onto the benzofuran-thymidine adduct

had the added benefit of not requiring protection during DNA synthesis. Silver nitrate activated

DMT protection provided 5' protected 3.12. 55 Phosphitylation under standard conditions afforded

3.13. Phosphoramidite 3.13 was incorporated into a 13 base oligonucleotide
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Figure 3.4. HPLC traces (260 nm) of (A) benzofuran-thymidine ketone 3.3,
(B) 2PI-Cs-ONH 2 3.10 and (C) the reaction between 3.3 and 3.10 at room
temperature (pH 5.6) for 21 h.

5'-AGCTATAAAAGGT using PAC-protected phosphoramidites. To conserve precious

phosphoramidite, a 0.05 M solution of 3.13 was used in conjunction with a 15 min extended

coupling time for the modified base. Although these non-ideal conditions afforded a coupling

yield of only 40%, they provided an ample amount of material for these model studies.

Deprotection for 24 h with 10% DBU in anhydrous ethanol, followed by neutralization and

removal of the salts by sodium ion exchange gave the oligonucleotide 3.14, which was further

purified by reversed phase HPLC. Treatment of oligonucleotide 3.14 with 2 equivalents of either

2PI-C 5-ONH 2 3.10 or 2PI-C6-ONH2 3.11 in 0.2 M sodium phosphate (pH 5.6) for 24 h afforded

two products 3.15 or 3.16 that were separable by reverse phase HPLC (Fig. 3.6C). All attempts

to identify the nucleoside adduct by enzymatic digestion methods resulted in incomplete

digestion presumably due to the presence of the added 2PI group. The modified oligonucleotides

3.15 and 3.16 contained an absorbance at 300 nm, which is outside of the absorbance of
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Figure 3.5. Synthesis of ketone benzofuran-thymidine phosphoramidite 3.13.

unmodified DNA and is the absorbance maxima for the 2PI (Fig. 3.6E). In addition, electrospray

ionization mass spectrometry of either isomer of 3.15 gave a mass of 4607.0, which is consistent

with the addition of the 2PI group. Likewise, the molecular weight of either isomer of

oligonucleotide 3.16 was 4621.0 corresponding to an addition of a six carbon linked 2PI moiety.

One plausible side reaction involves nucleophilic attack of hydroxylamine or methoxyamine at

the N4 position of cytosine. Although such reactions have been observed, they require harsh

conditions of 1 M solutions of methoxyamine at low pH and elevated temperatures. 72 Moreover,

the yield of modification under these conditions was less than 1% for 24 hr. To test the stability
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Figure 3.6. HPLC analysis of the reaction between aminooxy 2PI compounds and
oligonucleotide 3.14. Data for the reaction with 2PI-Cs-ONH2 is shown. HPLC traces
(260 nm) of (A) oligonucleotide 3.14, (B) 2PI-Cs-ONH 2 3.10 and (C) the reaction between
3.14 and 3.10 at room temperature (pH 5.6) for 24 h. (D) The HPLC trace showing that no
reaction occurred after 90 h between 2PI-C,-ONH 23.10 and oligonucleotide 2.5, which is
missing the ketone "handle". (E) UV spectrum of oligonucleotide 3.15. The shoulder at
300 nm is due to the 2PI moiety.

of cytosine under the more milder conditions, aminooxy 3.10 and oligonucleotide 2.5, which is

identical to oligonucleotide 3.14 except it lacks the ketone 'handle', were allowed to react under

the same conditions. Even after 90 h at room temperature, no reaction products were observed

(Fig. 3.6D). These results suggest that oxime formation is selective between oligonucleotide

3.14 and the aminooxy 2PIs.

Having developed a methodology to attach a 2PI group at the site of the photolesion via

oxime chemistry in the model system, the next step was to synthesize psoralen-thymidine

monoadduct with a ketone at the 2-carboxy position for its incorporation into an oligonucleotide.
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Figure 3.7. Synthesis of ketone psoralen-thymidine monoadduct 3.17.

Synthesis of the psoralen derivative proceeded as designed in the model system (Fig. 3.7).

Saponification of psoralen photoproduct 1.24 with 50 mM sodium carbonate (pH 9.0) in

methanol/water yielded carboxylate 2.1 without lactone ring rupture. PyBOP coupling of acid

2.1 with amine 3.1 followed by hydrolysis of the ketal with aqueous oxalic acid gave psoralen

ketone 3.17. Oxime formation with 3.17 and 2PI-C 6-ONH 2 3.11 occurred under the same

conditions as the model system (Fig. 3.8). The two oxime isomers were collected and the

addition of the 2PI group was confirmed by proton NMR.

The next step in the synthesis was to incorporate the psoralen-thymidine nucleoside into

an oligonucleotide. Psoralen-ketone 3.17 was converted into a suitably protected
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Figure 3.8. HPLC traces (260 nm) of (A) psoralen-thymidine ketone 3.17,
(B) 2PI-C6-ONH 2 3.11 and (C) the reaction between 3.17 and 3.11 at room
temperature (pH 5.6) for 20 h.

phosphoramidite as shown in Figure 3.9. Protection of the 5' hydroxyl with 4,4'-dimethoxytrityl

chloride (DMT-C1) in the presence of silver nitrate led to rapid conversion to 3.18.

Phosphitylation using standard procedures afforded phosphoramidite 3.19.

The oligonucleotide sequence 5'-CC TCT TCT TCT GXG CAC TCT TCT TCT 3.20 was

chosen for incorporation of phosphoramidite 3.19. This sequence is complementary to the

plasmids used in the Dr. Richard Wood's laboratory with whom we were in collaboration. The

Wood lab has shown that this particular oligonucleotide sequence provides the strongest

nucleotide excision repair signal for the 2-carboxypsoralen adduct.43 Oligonucleotide 3.20 was

synthesized on a 1 p~mol scale using PAC-protected phosphoramidites. The modified

phosphoramidite 3.19 was hand coupled for 15 min in order to maintain a 0.1 M

phosphoramidite concentration. The coupling efficiency for 3.19 was 85%. PAC-group

deprotection, neutralization and salt removal afforded crude oligonucleotide 3.20. The length of
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Figure 3.9. Synthesis of ketone psoralen-thymidine phosphoramidite 3.19.

the oligonucleotide necessitated purification by strong anion exchange HPLC using a sodium

chloride gradient. Enzymatic digestion established the integrity of oligonucleotide 3.20. Figure

3.10 shows the HPLC trace of digested 3.20 that yielded nucleoside ratios that were within

experimental error of the theoretical composition. The peak corresponding to the modified

nucleoside had identical HPLC retention characteristics and UV spectrum as the synthesized

standard 3.17.

The next step was attachment of the 2PI derivative to the oligonucleotide containing the

psoralen-ketone oligonucleotide. Oligonucleotide 3.20 and two equivalents of 2PI-C 6-ONH 2

3.11 were allowed to react in 100 mM phosphate buffer (pH 5.6) overnight (Fig. 3.11). Attempts
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Figure 3.10. HPLC profile of enzymatically digested 3.20. Chromatograph A shows
the corresponding nucleosides observed at 260 nm and the numbers represent the
calculated peak ratio areas. Peak identities were determined by nucleoside standards.
Chromatograph B shows the absorbance at 330 nm displaying only one peak
corresponding to the psoralen-thymidine nucleoside 3.17. Inset: UV spectrum of peak
3.17, which is identical to the characteristic UV profile of a synthesized standard.

to separate the two resulting oximes under many different HPLC conditions proved futile.

However, it was discovered that the oligonucleotide oximes were in equilibrium with the starting

materials and thus the isolated material would be contaminated with starting material. The

oxime instability was surprising because it had not been observed in the benzofuran-thymidine

model system. Reduction of the crude oxime with NaCNBH 3 under acidic conditions afforded a

stable secondary alkoxyamine 3.21.73 Reduction of the oxime also eliminated the geometrical

restraints imposed by the carbon-nitrogen double bond and thus resulted in the isolation of only

one peak (Fig. 3.11C). Presumably the reduction was not stereoselective and the isolated

material was a mixture of inseparable diastereomers. The UV and MALDI mass spectrum of the
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isolated material are consistent with the addition of the 2PI group. Most importantly,

oligonucleotide 3.21 was stable in aqueous solution and could be used to test the repair blocking

mechanism.

A

B

CL

0 15 30
Time

Figure 3.11. HPLC traces (260 nm) of (A) oligonucleotide 3.20 and (B) the reaction
between 3.20 and 2PI-C6-ONH,3.11 at room temperature (pH 5.6) for 24 h.
(C) HPLC trace of the reduction of the oxime reaction with NaBH4 at room
temperature for 15 min to afford oligonucleotide 3.21.

ER Binding of 2PI Containing Oligonucleotides

Previous work in the Essigmann lab had demonstrated that 2PI nitrogen mustard

compounds conjugated to oligonucleotides were capable of specific binding to the ER.62 In order

for the psoralen-2PI oligonucleotides to be blocked from repair, they would have to exhibit

similar specific binding to the ER. Consequently, oligonucleotides containing the 2PI-psoralen

lesion were assayed for ER binding affinity. The relative affinities of all 2PI containing

substrates for the calf uterine ER were measured by using a competitive binding assay with 17-3-
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[3H]estradiol. 74 Figure 3.12 shows that all 2PI containing oligonucleotides, including the model

substrates, competed with estradiol for binding to the ER. The relative binding affinity (RBA) of

estradiol to remove 50% receptor-bound radioactivity was set at 100. Approximately a 10-fold

improvement in binding affinity was observed with the substrates that possessed a six carbon

linker (RBA = 1.4 - 1.8) versus a five (RBA = 0.3). DNA containing only the psoralen ketone

damage did not compete with estradiol for the ER demonstrating that the interaction was specific

for the 2PI moiety. These data established that the oligonucleotides containing a psoralen-2PI

lesion can bind specifically to the ER.

S 100  AA

: ' \'

. 80 , --- Estradiol
- E- 2Pl-C 6-Benzofuran (3.15)

LU - u- 2PI-C-Psoralen (3.21)
60 *r- 2PI-C,-Benzofuran (3.16)

0 , o , 1 Psoralen Ketone (3.20)
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Figure 3.12. Oligonucleotides containing the 2PI-photolesions compete with estradiol
for the ER. The modified or control oligonucleotides were added to a calf uterine
extract along with [3H]estradiol and the ability of each oligonucleotide to compete
with estradiol was determined.
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Nucleotide Excision Repair Experiments

The cell-free nucleotide excision repair assay involves constructing a damaged DNA

plasmid and treating it with whole cell extracts. NER competent extracts can excise a small

patch (28-32 nucleotides) of DNA around the site of the lesion. The resulting gap is filled with

dNTPs by DNA polymerase and ligated in place with DNA ligase.6 5 There are currently two

methods to detect NER using this assay. DNA repair synthesis can be visualized and quantitated

by using 32P labeled dNTPs. This approach requires the constructed covalently closed circular

plasmids to be extremely pure because any nick in the plasmid will generate a repair signal and

increase the background noise dramatically. Consequently, visualization of the excision step of

NER using an internally radiolabeled single-lesion plasmid is the method of choice.

32P

T4 Polymerase

T4 Ligase

Figure 3.13. Construction of a plasmid utilizing a 32P labeled oligonucleotide
containing a site-specifically placed DNA lesion. Priming single-stranded
circular DNA with a radiolabeled oligonucleotide followed by DNA synthesis
and ligation with T4 DNA polymerase and ligase affords a single-lesion internally
32P labeled plasmid.

Construction of the labeled plasmid is accomplished by 5'-phosphate labeling a site-specifically

modified oligonucleotide followed by DNA synthesis and ligation (Fig. 3.13). Treatment of this

substrate with cell extracts affords radioactive excised fragments that can be quantitated (Fig.

3.14). In order to perform the repair blocking experiments using this in vitro NER assay, an

internally radiolabeled plasmid containing a site-specifically placed psoralen-2PI lesion would
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Figure 3.14. The in vitro nucleotide excision repair (NER) assay utilizing a
internally 32P labeled single-lesion plasmid as the DNA substrate. The internal label
allows for the observation and quantitation of the incision step of NER.
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Figure 3.15. Testing of the repair blocking hypothesis using an in vitro NER assay.
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have to be constructed. Treatment of these single-lesion substrates with human whole cell

extracts in the presence or absence of the targeted ER protein should determine if the psoralen-

2PI lesion can be shielded from repair (Fig. 3.15).

Oligonucleotides containing three different psoralen derivatives were 32P phosphate

labeled: psoralen ketone 3.20, 2PI-psoralen 3.21 and 2-carboxypsoralen 3.22. Covalently closed

circular duplex DNA was produced by priming single stranded circular DNA with a radiolabeled

oligonucleotide containing a psoralen lesion followed by DNA synthesis and ligation with T4

DNA polymerase and ligase (Fig. 3.13).43, 75 As seen in Figure 3.16, this procedure afforded

covalently closed circular (CCC) DNA; however, open circular (OC) species and linear DNA

were present as well (Fig. 3.16, lane 1). Previous methods for removal of these side products

were accomplished by using CsCl/EtBr density gradient centrifugation and visualization of the

CCC DNA with long wave UV light.75 Plasmids containing furan-side psoralen-thymidine

OC -

DS -i

CCC

SS -

1 2 3

Figure 3.16. Construction of 32P internally labeled plasmids containing a single psoralen
lesion. (Lane 1) Synthesis of the single-lesion substrate. (Lane 2) Digestion of open circular
(OC), double-stranded (DS) and single-stranded (SS) DNA with T5 exonuclease.
(Lane 3) The covalently closedcircular (CCC) plasmid after two size exclusion spin columns.
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monoadducts cannot be purified in this manner because the UV light would convert them into the

crosslink. Fortunately, Isa Kuraoka, in Dr. Wood's laboratory, developed a facile procedure for

the removal of the side products of DNA synthesis without the use of arduous CsCl gradients and

long-wave UV light.43 Addition of T5 exonuclease for 3 h selectively degrades all DNA species

except for CCC DNA into small oligonucleotide fragments (Fig. 3.16, lane 2). Removal of the

oligonucleotide fragments using a size exclusion spin column afforded apparently homogeneous

internally 32P labeled single lesion plasmids, as determined by autoradiography. All of the

plasmids constructed contained the psoralen adduct within the unique recognition sequence of

the restriction enzyme ApaLI (Fig. 3.17). Closed circular plasmids containing the psoralen lesion

were resistant to cleavage by ApaLI (Fig. 3.17, lane 4), while unmodified plasmid was

completely linearized (Fig. 3.17, lane 11). Restriction enzymes with unique sites in DNA

Psoralen Unmodified
I I I I

U Bsu H A E X Bsa U Bsu H A E X Bsa

CCC-

S2 3 4,5 6 7 8 9 10 11- 12 13 14

Figure 3.17. An agarose gel (0.8%) demonstrating the presence of the 2-carboxypsoralen-
thymidine monoadduct in a closed circular duplex DNA plasmid. Lane 1, uncut psoralen
containing plasmid. Lanes 2-7, digestion of psoralen containing plasmid with Bsu36I (Bsu),
HindlII (H), ApaLI (A), EcoRI (E), XhoI (X), and BsaHI (Bsa). Lane 8, uncut unmodified
plasmid. Lanes 9-14, digestion of unmodified plasmid with the same enzymes. The
mobilities of covalently closed circular (CCC) and linear (lin) DNA are indicated.
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sequences flanking the psoralen adduct linearized both psoralen and unmodified substrates (Fig.

3.17). These data confirm the presence of a lesion at the anticipated site of the site-specific

psoralen monoadduct.

The newly synthesized psoralen ketone and 2PI-psoralen lesions were assayed for NER.

A time course was performed to obtain the optimal repair signal for the new psoralen adducts.

The plasmids were treated with HeLa whole cell extracts76 for varying amounts of time and the

excised oligonucleotides were separated by electrophoresis in a denaturing polyacrylamide gel

(Fig. 3.18). The NER complex removes 28-32 nucleotide patches giving rise to a ladder of

products. The smaller fragments in Figure 3.18 are presumably due to the exonuclease activity in

NH - HMe
0 NH

o 2PI -(CH6 -O HN

I I I

M 0 5 10 20 30 40 80 M 0 5 10 20 30 40 80 time(min)

Figure 3.18. Kinetics of removal of psoralen adducts using HeLa cell extracts. An
autoradiograph of an excision gel. The psoralen ketone and 2PI-psoralen substrates were
incubated with extracts at 30 'C for the times indicated. No repair signal was observed for
the psoralen ketone adduct. The best repair signal for the 2PI-psoralen adduct was between
20 and 30 min.



Nucleotide Excision Repair ofPsoralen-Thymidine Adducts 89

the whole cell extract.6 1, 65 The 2PI-psoralen adduct gave the best signal between 20 and 30 min

after starting the repair reaction and the amount of excision ranged from 30-40%. In stark

contrast, the psoralen ketone substrate afforded no repair signal (Fig. 3.18, left lanes). All

attempts to improve or enhance a possible repair signal for the psoralen ketone lesion failed. The

lack of a repair signal of the psoralen-ketone adduct was not detrimental for testing the repair

blocking mechanism because the 2-carboxypsoralen derivative could serve as a negative control

in these experiments. Nonetheless, the absence of a repair signal for the psoralen ketone adduct

was quite intriguing and possible experiments to probe this result will be entertained in the

Discussion section.

The NER assay was next used to test the repair blocking hypothesis (Fig. 3.15). One

advantage of the in vitro repair assay is that varying amounts of shielding protein can be added to

the reactions as long as the storage buffer of the purified protein is compatible with the repair

reactions. The Wood lab has observed that high chloride ion concentrations and certain protein

phosphatase inhibitors (PP2A-type) completely inhibit the repair reactions.77 Unfortunately,

purified, recombinant ER is typically stored in 500 mM KCl to minimize aggregation and 1 mM

sodium orthovanadate to prevent ER inactivation by dephosphorylation during purification.66

Due to the obvious incompatibility between the ER storage buffer and the in vitro repair

reactions, a set of repair reactions was performed to determine a buffer that would not inhibit the

repair reactions. As expected, the general phosphatase inhibitor sodium orthovanadate (1 mM)

completely inhibited repair (Fig. 3.19, compare lanes 4 and 7) whereas decreasing the overall

chloride ion concentration to 75 mM enhanced the repair signal remarkably (Fig. 3.19, lanes 5-7).

The highest chloride ion concentration tested in this set of experiments represented the total
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+ + - - - 1 mM NaVO4
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Figure 3.19. The effect of chloride ion and sodium orthovanadate concentration on the
excision repair of the 2PI-psoralen lesion using HeLa cell extracts. Lane 1, marker.
Lane 2, repair reaction using the standard repair buffer. Lanes 3-4, repair reaction in the
presence of sodium orthovanadate. Lane 3 represents the addition of 3 L of ER storage
buffer in lieu of the standard buffer used in lane 2. Lanes 5-7, repair reaction in the presence
of varying concentrations of chloride in the absence of sodium orthovanadate.

chloride concentration if a 3 tL aliquot of ER storage buffer were to be added to a repair

reaction. Based on these results, the ER protein was dialyzed into a sodium orthovanadate free

buffer that contained 100 mM chloride ion, which, unfortunately, might compromise ER

solubility. Dialysis was accomplished by using two successive size exclusion (G25) spin

columns that were pre-equilibrated with the optimized buffer. A rapid salt exchange was

preferred over a slow membrane dialysis because of the known aggregation problems with ER in

low salt buffers. Successful dialysis was monitored by the recovery of NER for the psoralen

lesions.
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Now that the ER was in a buffer that could be added to, but not inhibit, the repair

reactions, the repair blocking experiments could be performed. The blocking experiments were

performed as close to the previously described conditions for the HMG box-cisplatin shielding

experiments as possible.61 The ER was dialyzed just prior to use and immediately added to the

reaction mixture. Heat inactivated dialyzed ER was used to maintain the dialyzed buffer

concentration in order to prevent any loss of signal due to incomplete buffer exchange. Plasmids

containing a single psoralen adduct with or without the 2PI group were incubated at 30 'C for 30

minutes with increasing concentrations of ER. HeLa whole cell extracts were added and the

repair reactions were stopped after 30 minutes. Figure 3.20 shows that no blocking had occurred

with either substrate up to what was believed to be an ER concentration of 600 nM. The lack of

S H Me0  0< H M e0

NH NH

Ho _ 2PI -(CH2,)," N o H

I I I

M M ER concentration

Figure 3.20. Effect of the estrogen receptor (ER) on the excision repair of the
2-carboxypsoralen and 2PI-psoralen lesions using HeLa cell extracts. Denaturing 14%
polyacrylamide gel showing no inhibition of either adduct by addition of ER.
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repair blocking prompted the determination of the activity of the commercial source of ER. The

amount of active ER was determined by quantitation of a 3H-estradiol receptor complexes using a

hydroxyl apatite batch assay."7 The activity of the commercial source of ER was found to be only

1/6th of the reported 3 [tM concentration. This lower activity would reduce the final

concentration of active ER to 100 nM in these experiments. In addition, quick spin dialysis may

have also partially inactivated the ER additionally lowering the active concentration. Although

repair blocking was not seen in this experiment, the ER activity complications may have been the

primary cause for its lack of success. Clearly, these experiments are inconclusive at best;

however, the materials and methods have been developed to determine whether or not DNA

damage can be designed to be selectively repaired in vitro. Now that the general procedures have

been established, future experiments with an ER preparation of better integrity will be used to

evaluate the repair blocking hypothesis.

Discussion

The combination of the cisplatin-HMG box shielding experiments 61 and the recent design

of the selectively toxic DNA damaging agents in the Essigmann lab62 has suggested a general

strategy to design DNA damage that can be shielded from repair in the presence of a targeted

protein (Fig. 3.1). In an attempt to observe repair blocking directly in a cell-free assay, site-

specifically damaged oligonucleotides capable of binding the ER were synthesized utilizing a

chemoselective oxime reaction. A very preliminary experiment suggested that repair blocking

does not occur at protein concentrations up to -100 nM (Fig. 3.20), but the questionable activity
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of the commercial available ER protein and the limited experimental data warrants further

investigation of this system before any conclusions can be made.

In order to screen protein recognition domains rapidly and optimize linker length a

general strategy was developed to attach small molecules bearing an aminooxy group to ketone

photolesions site-specifically placed within an oligonucleotide. Oxime formation was used to

attach the 2PI group to the nucleoside chemoselectively. The high barrier of rotation around the

oxime bond facilitated the separation of the syn and anti isomers. It was surprising that biotin

hydrazide and ketone nucleoside 3.3 failed to react under similar conditions; however, hydrazone

formation with ketones typically requires at least a 100-fold excess of hydrazide to afford a 50%

conversion. 79 Reaction of 2 equivalents of an aminooxy 2PI with the benzofuran-thymidine

containing oligonucleotides afforded oligonucleotides with the 2PI group at the site of

photoproduct damage. The syn and anti oximes of these oligonucleotides could also be separated

by HPLC. The chemoselectivity of the reaction was confirmed by the lack of reaction between

2PI-C5-ONH2 3.10 and oligonucleotide 2.5 (Fig. 3.6D), which is missing the ketone "handle."

Reaction of the 2PI-C6-ONH2 3.11 with psoralen ketone oligonucleotide 3.20 afforded products

that could not be separated by HPLC and more importantly were in equilibrium with the starting

materials. The major difference between these two oligonucleotides was the sequence context

surrounding the photolesion. In the model system, the benzofuran-ketone oligonucleotide was

surrounded by adenines; however, the psoralen-ketone oligonucleotide was flanked by guanines.

The possible sequence dependent stability of the oxime bond was not explored because it could

be reduced to the secondary alkoxyamine to provide a 2PI-psoralen oligonucleotide that was

stable. There is a possibility that the 04 of the psoralen-thymidine adduct maybe susceptible to
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reduction because it has been shown that NaBH 4 can reduce the cyclobutane dimer of

thymidine."0 Although the molecular weight of the 2PI-psoralen oligonucleotide determined by

MALDI mass spectroscopy was within experimental error, the additional 2 protons due to 04

reduction would be within this error. If this contamination does exist, it would have little to no

effect on whether the psoralen adduct can be blocked from repair or not. However, any future

experiments that require the integrity of the psoralen-thymidine adduct to be fully maintained

may need to seek an alternative method to conjugate a psoralen containing oligonucleotide to a

small molecule protein recognition element.

2PI containing oligonucleotides competed with [3H]-estradiol for binding to the ER (Fig.

3.12). It was discovered that the these oligonucleotides competed with relative binding affinities

from 0.3% to 1.8% of that of estradiol (Figure 3.12). Oligonucleotides containing a six carbon

linker between the N2 of 2PI and the aminooxy group bound 10-fold higher to the ER than

compounds with a five carbon chain. The fraction of adducts expected to exist in a complex with

the ER in the in vitro repair reactions can be estimated from the Kd.81 From the relative binding

data, the apparent dissociation constant for the 2PI-psoralen adduct for the ER was estimated to

be 1.8% that of estradiol (Kd = 0.35 nM), implying a Kd of -19 nM for the 2PI-psoralen lesion.

Based on these rough calculations, - 84% of the 2PI adducts should have been bound at 100 nM

ER which, in theory, should translate into repair blocking. One possible source of error for these

numbers was in the calculation of the relative binding affinities for the 2PI-psoralen adducts.

The ER binding assays were performed on single-stranded substrates whereas the repair

experiments were conducted in double-stranded plasmids. Given the secondary structure of the

B-DNA helix, it is possible that the hydrophobic planar 2PI molecule could intercalate between
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the nucleobases and become available for ER binding. Previous work in the Essigmann lab has

suggested that the double-stranded interstrand 2PI-nitrogen mustard crosslink binds 10-fold less

than the alkylated single-stranded adducts.62 However, this result was complicated by the fact

that the exact structural nature of the single-stranded species is uncertain because complementary

oligonucleotides were used in those experiments. The relative binding affinity of the 2PI-

psoralen lesion should be determined in a double-stranded oligonucleotide to answer these

questions.

The specific binding of the ER to the 2PI-psoralen oligonucleotides prompted study of the

susceptibility of these lesions to NER. The site-specific incorporation of the 2PI-psoralen lesion

into circular duplex plasmids allowed for the direct visualization of the incision step of NER.

The side products of DNA synthesis were removed with T5 exonuclease since the psoralen

adducts are UV sensitive (Fig. 3.16). This method was highly efficient and also eliminated the

tedious CsCl/EtBr gradients that were previously required for plasmid purification.7 5 All three

psoralen adducts were assayed for NER with HeLa whole cell extracts. The 2PI-psoralen adduct

was repaired to the greatest extent (Fig. 3.20, compare lanes 2 and 7). This result correlates well

with the fact that nucleotide excision repair typically recognizes bulky, structurally distorting

lesions. The presence of the 2PI group presumably distorts the structure of B-DNA more than

the 2-carboxypsoralen adduct. A trend in the recent NER literature suggests that the more

structurally distorting the DNA lesion is, the more efficiently it is removed.82 In fact, a growing

body of evidence has recently revealed that the repair difference between the "repair shielded"

1,2-intrastrand cisplatin-DNA crosslink and the free 1,3-intrastrand adduct can be attributed to

the amount of structural distortion each lesion makes. Using a reconstituted NER system in the



96 Chapter 3

absence of shielding HMG-box proteins, Lippard and co-workers demonstrate the 1,3-d(GpTpG)

adduct is repaired at least 3-fold better than 1,2-(GpG) adduct. 61c However, these researchers are

quick to point out that the presence of 1 [M HMG-box protein can partially reduce repair of the

1,2-(GpG). It remains to be determined if HMG-box proteins are present at these levels in cancer

cells that are responsive to cisplatin. Recently, Wood et al. have shown that if the 1,2-d(GpG)

adduct paired opposite thymidines it is repaired as well as the 1,3-d(GpTpG) adduct.8 3 They

speculate that the mismatches make the lesion more distorted and hence a more favorable target

for NER. These results suggest that DNA distortion, not shielding, may be responsible for the

difference in repair efficiencies for the two cisplatin lesions.

Taking all of this structural distortion into perspective, it is interesting to note that no

repair was observed for the psoralen-ketone adduct (Fig. 3.18). Previous work in collaboration

with the Wood lab has shown that the structurally similar 2-carboxypsoralen group is repaired by

NER. The presence of the psoralen-ketone adduct in the plasmid was suggested by its resistance

to cleavage with ApaLI. One possible explanation for the absence of a repair signal is that the

psoralen-ketone adduct was actually repaired, but the repair signal was lost during the

experiment. The excised oligonucleotides containing the ketone moiety maybe forming a Schiff

base with the plasmid DNA or proteins in the cell extract preventing the oligonucleotide

fragment from entering the gel and eliminating the repair signal. A different incision pattern by

NER may also be responsible for the lack of repair signal because the 5' internal radiolabel was

placed 14 bases away from the adduct. A 5' incision that occurred less than 14 bases away from

the psoralen-ketone adduct would afford oligonucleotide fragments that would not be

radiolabeled; however, this incision pattern would be entirely novel because 5' incisions for all
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reported adducts to date, including the two other psoralen lesions, occur at least 16 bases from

the site of the adduct.

Alternatively, the psoralen-ketone adduct may not be repaired by NER in vitro. There are

few explanations that may account for its lack of repair. The first and most simple explanation is

that the psoralen-ketone adduct is in fact less structurally distorting than the 2-carboxypsoralen

adduct and therefore not recognized as a lesion by NER. Another possibility is that the ketone

group is forming a Schiff base with a protein in the whole cell extract and thereby shielding itself

from being repaired. One possible strategy to pinpoint the role of the ketone group in repair

inhibition would be to synthesize isosteres of the psoralen-ketone adduct and monitor the repair

of these adducts. If the ketone were indeed forming a Schiff base with a protein in the cell

extracts, these isosteres should give a repair signal. Additionally, it should be possible to reduce

the Schiff base between the protein and the psoralen-ketone adduct and trap this adduct.84 A

restriction digest of the protein-plasmid species followed by PAGE analysis would easily detect a

protein-DNA adduct by retardation of the bands due to the added protein. One set of particularly

enticing proteins that could be forming a Schiff base with the psoralen-ketone adduct are the

damage recognition proteins of the NER. The psoralen-ketone adduct maybe acting as a pseudo-

suicide substrate for NER trapping the proteins crucial for DNA damage recognition. If this

scenario is indeed the case, reduction of the psoralen-ketone adduct using a reconstituted NER

system would identify the repair protein that was forming the Schiff base. In any case, the lack

of a repair signal for the psoralen-ketone adduct is quite intriguing.

The lack of any observable repair blocking with 2PI-psoralen adducts in the presence of

ER was not surprising due to the limited amount of experimentation performed (Fig. 3.20). The
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incompatibility between the ER storage buffer and repair reaction conditions hampered these

experiments (Fig. 3.19). In addition, the lower than reported activity of the commercially

available source of ER made the addition of - 1 tM concentrations of ER to the repair reaction

infeasible. Although the high affinity of the 2PI compounds for the ER warrants further

investigation of this protein for future experiments, a different approach may be needed to

determine if the repair blocking hypothesis is a viable strategy leading predictably to selective

cytotoxins. An alternative to using purified recombinant ER is to make whole cell extracts from

ER+ MCF-7 cells. Repair reactions performed with these extracts could alleviate the ER

concentration and storage buffer complications. This approach is somewhat limited because ER

activity would be dependent on the MCF-7 cell line; however, the availability of the ER to bind

the 2PI-psoralen adduct could be eliminated by adding saturating amounts of competitor estradiol

to the repair reactions. While the experiments described in this chapter have not provided any

evidence for or against a repair blocking mechanism in vitro, the substrates synthesized and

methods utilized provide a high degree of flexibility in the design of future experiments.

Future Directions

The uncertainties in this chapter provide many opportunities to design new experiments

in order to probe these unanswered questions. The chemoselective conjugation chemistry

developed has great potential as a general strategy for selectively attaching small molecules to

DNA. For further development of this method it is necessary to determine the source of the

apparent sequence context instability. The current oxime formation and reduction system is

suitable for testing the repair blocking mechanism in vitro and can easily accommodate a change
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of the small molecule protein recognition domain and shielding. Other protein/small ligand

targets may be more suitable for the testing of the repair blocking hypothesis. Although not

medicinally interesting, the high affinity interaction between biotin and avidin could replace the

current ER and 2PI duo. If repair blocking is not observed with this strong small molecule-

protein interaction, the likelihood of identifying other working combinations is dire. The recent

correlation between structural distortion and in vitro repair efficiency suggests that

therapeutically effective DNA damaging anticancer agents may make stable, non-distorting

lesions. In this vein, the psoralen-ketone substrate could serve as a model candidate. The simple

addition of the 2-pentanone group to the 2-carboxypsoralen moiety appears to harbor the adduct

from damage recognition. Understanding the basis of this phenomenon may be the first step of

designing a new generation of DNA damaging agents that can elude the DNA repair machinery

and kill rapidly dividing cancer cells.





Chapter 4

Design of an Intercalation Inhibitor

Introduction

The benefits of working with oligonucleotides containing a site-specifically placed DNA

adduct have been well documented in the literature and throughout this dissertation. The total

synthesis of a psoralen-thymidine monoadduct illustrates the flexibility provided by using a total

synthetic approach in the design of single-lesion substrates; however, there are DNA adducts that

have not been or cannot be made using a total synthetic approach. DNA damaging agents that

make N7-guanine adducts such as the aflatoxins, nitrogen mustards, and some alkylating agents

are not suitable for a total synthetic approach because these lesions would decompose during

DNA synthesis and/or deprotection. b, 35 Other lesions (benzo[a]pyrene, MeIQx, and aromatic

amines) are deemed too synthetically challenging and are therefore synthesized by directly

treating an oligonucleotide with an activated DNA damaging agent.34 Although the direct

treatment procedure is quite facile, the DNA sequence of the target oligonucleotide must be

chosen carefully to avoid multiple products that would complicate purification. Unfortunately,

this sequence restriction prevents the study of many biologically important lesions that occur in

mutational hotspots in proto-oncongenes and tumor supressor genes that are thought to play a key

role in neoplastic transformation. It is desirable to have a method that combines the flexibility of

a total synthetic approach and the simplicity of a direct treatment procedure.

One strategy to achieve site-specific placement of adducts exploits a key mechanistic step

exhibited during the reaction of many hydrophobic alkylating agents with DNA -- intercalation
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into the helix. Synthesis of a compound that can occupy an intercalation site in a DNA duplex

could be used to direct an alkylating agent selectively to an unoccupied intercalation site. To

explore the potential of this methodology, a system was developed using aflatoxin B1 (AFB,)

epoxide as the alkylating agent: DNA duplexes were prepared consisting of a target strand

containing multiple potentially reactive guanines and a nontarget strand containing a cis-syn

benzofuran-thymidine photoproduct. Because the covalently linked benzofuran moiety

physically occupies an intercalation site, that site should be rendered inaccessible to AFB,

epoxide. By strategic positioning of this intercalation inhibitor, it should be possible to alter the

target selectivity of aflatoxin B, epoxide to afford singly-adducted oligonucleotides that have

multiple sites of reactivity.

Aflatoxin B, (AFB,) is a hydrophobic toxic metabolite of the fungus Aspergillus flavus.8 5

The fungus thrives in climates with high heat and humidity producing AFB, that has been

detected during growth, harvest, and storage of foods such as peanuts, corn and rice.86 Exposure

to AFB, and infection by hepatitis B virus are known risk factors for hepatocellular carcinoma in

developing areas of the world. 87 Although, the molecular mechanism of human hepatocellular

carcinogenesis is poorly defined, AFB, is known to be a potent mutagen and hence may induce

the mutations that appear in end stage tumors. Upon metabolic activation to the exo-8,9-epoxide,

AFB1 reacts almost exclusively with the N7 of guanine to form primarily guanine DNA adducts

(AFB,-N7-Gua; Fig. 4.1).88 The N7 adduct is quite unstable due to the positive charge on the

imidazole ring. The half life of the intact N7 adduct at neutral pH has been determined to be 12-

50 h in vitro, depending on the adduction levels of AFB1.89 As with most positively charged N7

adducts, the AFB,-N7-Gua can depurinate giving rise to an apurinic site. Under mildly basic
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conditions, water can add to the C8 position and open the imidazole ring to form the chemically

more stable AFB,-formamidopyrimidine adduct.90 Additionally, AFB,-N7-Gua adducts have

also been observed to reverse to guanine and free AFB-diol in vitro.91
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Aflatoxin B 1 I AFB1-8,9-exo-
(AFB1) DNA epoxide
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DNA Adduct DNA Adduct

Figure 4.1. AFB, is activated by cytochrome P450 to generate its exo epoxide. The epoxide
reacts with DNA to form the primary AFB, adduct, AFB,-N7-Gua, which can undergo
depurination to an AP site or opening of the imidazole ring to form AFB,-FAPY.

Analysis of bacterial mutational spectra and phage genomes containing a specific

AFB,-N7-Gua adduct reveals G-T substitutions as the predominant mutagenic event.92

Interestingly, approximately 50% of hepatocellular carcinomas in portions of eastern Asia and

sub-Saharan Africa, where exposure to AFB, through contaminated food is a frequent event,
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possess G:C-+T:A transversions in the third position of codon 249 of the p53 tumor suppressor

gene.93 The construction of oligonucleotides and genomes containing AFB,-N7-Gua adducts at

specific sites would facilitate understanding of the molecular origin of the observed p53

mutational hotspot in hepatocellular carcinoma. A recent advance in chemical synthesis has

facilitated the production of AFB, epoxide, which provides access to oligonucleotides containing

site-specific aflatoxin B, adducts by simple treatment of an oligonucleotide duplex with AFB,

epoxide (Fig. 4 .2 ).lb However, the formidable obstacle of resolving and purifying highly labile

AFB adducts from complex mixtures of multiple reaction products has limited the synthesis of

site-specifically modified AFB, adducts to targets containing a single guanine.92, 94 This synthetic

limitation has hampered the study of AFB, adducts in the p53 mutational hotspot because of the

presence of numerous guanines in the nucleotide sequence surrounding codon 249.

0-0 0
8 9 00

0 0

0 CH3  O0

AFB1  8,9-Epoxide

5' CG 3'GC

AFB,-N7

Separation by 5' CG 3'
HPLC 51 U U 31

GC

Figure 4.2. Construction of AFB, containing oligonucleotides using the direct treatment
method developed by Harris and co-workers."b Oxidation with dimethyl dioxirane affords AFB,
epoxide. Treatment of a DNA duplex containing only one reactive guanine with AFB, epoxide
and separation by HPLC yields an oligonucleotide containing a single AFB, adduct.
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Current evidence suggests that formation of AFB,-N7-Gua DNA adducts proceeds

through a transition state in which the AFB, epoxide is intercalated on the 5' side of the target

guanine. This hypothesis is supported by the observation that the reactivity of AFB1 epoxide

with double stranded B-form DNA is greatly enhanced as compared to single stranded DNA or

alternative duplex structures. 95 From NMR structural studies on the adduct, it is speculated that

5' intercalation facilitates adduct formation by positioning the epoxide for in-line nucleophilic

attack by the guanine N7.96 Additional evidence for a 5' intercalation event arises from

stoichiometric studies with the two self-complementary hexamers ATCGAT and ATGCAT.

Reaction with excess AFB, epoxide yields only a 1:1 ratio of AFB, to the duplex oligonucleotide

(ATCGAT) 2, where the two guanines share the same 5' intercalation site; in contrast, in the case

where distinct 5' intercalation sites exist in each strand, a 2:1 AFB,: (ATGCAT)2 ratio is

observed.94 Furthermore, modifications of the ring systems in AFB1 that decrease planarity and

therefore intercalation ability, a situation that exists with aflatoxin G,, decrease affinity for DNA

and result in lower reactivity. 97 Finally, addition of the intercalating agent ethidium bromide to

target DNA prior to treatment with AFB, epoxide greatly reduces guanine reactivity.95a These

experiments, coupled with stopped-flow kinetic analysis, support a model in which the

intercalated intermediate provides a kinetic and entropic advantage for productive reaction with

DNA over hydrolysis. 98 Moreover, in the absence of this favorable interaction, AFB1 epoxide

can be readily hydrolyzed to the inactive AFB, diol.

Another agent that intercalates prior to its reaction with DNA and is the cornerstone of

this thesis is psoralen. 22 Detailed structural analysis of psoralen-thymidine adducts reveal that

both the cis-syn furan-side monoadduct and the crosslink are intercalated in the DNA duplex.22
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The structurally analogous model compound, a cis-syn benzofuran-thymidine photoproduct, also

possesses the same stereo- and regiochemistry as the cis-syn psoralen furan-side thymidine

monoadduct; these constraints dictate that the benzofuran moiety occupies an intercalation site

when situated in duplex DNA, raising the possibility that such a molecule could be used to

inhibit subsequent intercalation by other molecular species.

In light of the above observations suggesting that intercalation of AFB, epoxide precedes

covalent bond formation, it seemed reasonable that physical occupation of an intercalation site

with a thymidine-benzofuran photoproduct would inhibit intercalation by AFB, epoxide and

thereby prevent the formation of an AFB, adduct at the proximal guanine (Fig. 4.3). Removal of

the inhibiting strand would provide singly-adducted AFB, oligonucleotides. The sequence

5' 3'

LT( A I

I Aflatoxin B, 0o

SII

A

N OMe A T

3' 5'

Figure 4.3. Experimental scheme. Occupation of an intercalation site 5' to a guanine
should prevent intercalation by AFB, epoxide and reduce reactivity at the protected site.
The covalently attached intercalation inhibitor (designated II), a cis-syn thymidine-
benzofuran photoproduct, is positioned in the complementary strand. The benzofuran
moiety is positioned on the 3' side of the T component of the cis-syn thymidine-benzofuran
adduct.
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context freedom of the benzofuran-thymidine monoadduct and the simplicity of treating duplex

DNA with AFB, epoxide provides a means of combining the best attributes of both

methodologies.

The ideas for this work arose from the many discussions with Drs. Gerald Wogan, Lisa

Bailey and Marjorie Solomon. However, this work would not of come to fruition without my co-

worker David Wang. Dave was an integral part in the design and execution of all of the

experiments to be described. In this chapter, we present evidence that the reaction of DNA with

AFB, epoxide is modulated by inhibiting intercalation. Moreover, judicious placement of the

intercalation inhibitor in the complementary strand of a human p53 gene derived sequence results

in simplification of the local adduct spectrum and improves the yield of individual adducts in the

p53 mutational hotspot.

Intercalation Inhibition of AFB, Epoxide

Evidence accumulated over the past several years suggests that intercalation of AFBI

epoxide greatly enhances the reactivity of the potent carcinogen with DNA.94-96 Accordingly, if it

were possible to reduce the likelihood of intercalation at a given site, one would expect to

diminish substantially the adduct yield at that site (Fig. 4.3). A series of duplex oligonucleotides

was designed to examine this possibility (Table 4.1). In each case, one strand contained two or

more guanines that were potential adduction sites. In the complementary strand, a cis-syn

thymidine-benzofuran intercalation inhibitor was situated to occupy the intercalation site

immediately 5' to one of the guanines. Chemical synthesis of the phosphoramidite of the

intercalation inhibitor (Fig. 4.4) would enable the control of precisely the number and position of
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Table 4.1. Oligonucleotides used in this chapter.

H 5'-ATAGATTGTA-3'

QC 3'-TATCTAACAT-5'

QT 3'-TATTTAACAT-5'

Q8 3'-TAXTTAACAT-5'

Q7 3'-TATXTAACAT-5'

Q6 3'-TATTXAACAT-5'

Q3 3'-TATCTAAXAT-5'

GG 5'-TATAGGTTAT-3'

RO 3'-ATATCCAATA-5'

R6 3'-ATATXCAATA-5'

R5 3'-ATATCXAATA-5'

P53 5'-CCGGAGGCC-3'

SO 3'-T77TCTCC7-5'

S6 3'-T77XCTCC7-5'

S5 3'-T77CXTCC7-5'

7=7-deaza-dG; X=thymidine-benzofuran

photoproduct (intercalation inhibitor)

108 Chapter 4
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Figure 4.4. Synthesis of 2-carbomethoxybenzofuran-thymidine phosphoramidite 2.4

the intercalation inhibitors in a target duplex. The synthesis of deoxynucleoside 1.24 was

described in Chapter 1. Treatment of 1.24 with 4,4'-dimethoxytrityl chloride in the presence of

silver nitrate led to rapid protection of the 5' hydroxyl." Removal of the acetate protecting group

with 5% 1,8-diazabicyclo[5.4.0]undec-7-ene in freshly distilled methanol afforded the free 3'

hydroxyl. Phosphitylation using standard conditions gave phosphoramidite 4.3. Upon reacting

the various DNA duplexes with AFB1 epoxide, HPLC analysis was utilized to separate and

isolate the reaction products. The standard elution conditions were sufficient to denature the

duplexes, resolving the target strands from their complements. By this method, the

complementary strands, which contained the unnatural thymidine-benzofuran moieties, could be

109
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removed and the single-stranded site-specifically AFB, modified oligonucleotides could be

isolated.

A Model System

The simplest model system consisted of a 10-bp oligonucleotide duplex containing only

two G residues in one strand separated by three nucleotides (Table 4.1, H/QC). In the control

sequence, reaction with AFB1 epoxide afforded two peaks corresponding to AFB, monoadducts

and one peak representing the diadduct, as determined by the ratio of their UV absorbances at

360 nm and 260 nm (Fig. 4.5A and 4.5B). The two monoadduct peaks were isolated, desalted

and then 5'-3 2P end-labeled by using polynucleotide kinase. The known alkaline lability of

AFB,-N7-Gua adducts99 was utilized to determine the identity of each peak. Electrophoresis of

the piperidine treated samples revealed that peak 1 was the G8 AFB, adduct while peak 2 was the

G4 adduct (Fig. 4.5F). It is known that the reaction of AFB, epoxide with guanines in duplex

DNA is not random, but rather displays sequence specificity. Although the basis for this

discrimination is not well understood, a systematic investigation by Loechler and coworkers has

empirically determined reactivity rules based on the immediate 5' and 3' neighboring bases. 00 In

the first model system, the two adducts formed in a ratio of 2.4:1, in close agreement to the

predicted 2:1 ratio.

Upon altering the complementary strand to position an intercalation inhibitor in the 5'

intercalation site of G4 (H/Q7), the ratio of observed products was dramatically shifted;

essentially no monoadducts derived from G4 or diadducts were observed (Fig. 4.5D).

Conversely, placement of the intercalation inhibitor opposite G8 (H/Q3) greatly reduced the
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Figure 4.5. Intercalation inhibition in duplex (H/Q) series. Only molecules containing AFB,
have UV absorbance at 360 nm. (A) 260 nm HPLC trace of the AFB, reaction with H/QC.
The peaks near 30 min are the unreacted H and QC oligonucleotides, respectively. Peaks 1 and 2
are AFB, monoadducts, and the peak near 55 min is an AFB, diadduct. (B) 360 nm trace of
H/QC. (C) 360 nm trace of H/QT reaction. (D) 360 nm trace of H/Q7. (E) 360 nm trace of
H/Q3. (F) Electrophoretic analysis: piperidine cleavage of purified peaks 1 and 2 and
comparison to markers generated by the Maxam and Gilbert G-reaction. Piperidine cleavage of
the untreated duplex is shown in the lane labeled "unmodified."

extent of reaction at G8 such that only 11% of the monoadducts arose from G8 (Fig. 4.5E). The

asymmetry in the protection afforded is likely due to the inherently higher reactivity of G8,

making total abolition of reactivity at that site more difficult.

Because positioning the intercalation inhibitor to occupy the intercalation site 5' to a

target guanine necessarily forms a G-T mismatch at that site, the effect of a mismatch alone

(H/QT) on adduct distribution was examined. Interestingly, substitution of a G-T base pair for a

G-C actually resulted in increased reactivity of the mismatched G (compare Fig. 4.5B to 4.5C).

Thus, the observed diminished reactivity upon introduction of an intercalation inhibitor can be
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attributed to the presence of an intercalated moiety and not merely distortions resulting from a

mismatched base pair.

A E K _r.v,-,

B A

20 30 40 5'

Figure 4.6. Intercalation inhibition in duplexes GG/R. (A) 260 nm HPLC trace of reaction with
GG/RO. Large peak near 20 min is RO. Peaks 1 and 2 are AFB, monoadducts. (B) 360 nm trace
of GG/RO. (C) 360 nm trace of GG/R5. (D) 360 nm trace of GG/R6. (E) Piperidine cleavage of
purified peaks 1 and 2.

AFB1 Inhibition at Adjacent Guanines

In the second model system, the reactivity and inhibition in oligonucleotides containing

two adjacent guanines (GG) was examined. In the absence of an intercalation inhibitor (GG/RO),

two peaks were observed in the HPLC trace, reflecting the two different monoadducts (Fig. 4.6A

and 4.6B). Loechler's rules100 predict that the two adducts should form in a 3.25 to 1 ratio, which

agrees well with the observed product ratio of 3.3:1 (Fig. 4.6B). Interestingly, there were no

diadduct peaks present in the trace. This observation is consistent with the neighbor exclusion

principle that has been postulated to govern the ability of molecules to intercalate at adjacent

sites."' Initial intercalation and reaction of an AFB1 epoxide molecule at one guanine results in
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inhibition of intercalation at the other adjacent guanine, thereby preventing the formation of a

second adduct. Nevertheless, placement of the intercalation inhibitor at either of the two guanine

sites (GG/R5 and GG/R6) resulted in an increase in the yield of adduct at the non-protected

guanine (Fig. 4.6C and 4.6D).

Because the AFB1 adducts seemed to exhibit neighbor exclusion properties, the

benzofuran moiety was tested to see if it possessed similar characteristics. Duplexes were

prepared with an intercalation inhibitor occupying the intercalation sites either 3' to or 5' to the

actual target intercalation site (Fig. 4.7). Positioning the intercalation inhibitor 3' to the target

site provided some inhibition (Fig. 4.7B), whereas placement of the intercalation inhibitor to the

5' side had no effect (Fig. 4.7C).

2

A

B

C
30 40 50

Figure 4.7. Nearest neighbor inhibition in duplex (H/Q) series. (A) 360 nm trace of H/QC
reaction. Peaks 1 and 2 are AFB , monoadducts, and the peak near 55 min is an AFB,
diadduct. (B) 360 nm trace of H/Q6 reaction. (C) 360 nm trace of H/Q8 reaction.

Synthesis ofAFBI Adducts in a p53 Mutational Hotspot

Finally a sequence representing nucleotides 741 to 749 of the human p53 cDNA, 5'

CCGGAGGCC (P53), was tested (Fig. 4.8). In the complementary strands, guanine bases were
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substituted with 7-deaza-dG to prevent formation of additional AFB1 adducts in this strand; such

adducts would complicate analysis of the adduct spectrum. Treatment of a control duplex

(P53/SO) revealed three HPLC peaks that corresponded to AFB , monoadducts (Fig. 4.8B). After

3 2 P labeling and alkali cleavage, it was determined that peak 1 contained exclusively the G747

adduct, peak 2 contained the G744 adduct, while peak 3 was a mixture of the G743 and G746

(Fig. 4.8A). Under certain conditions, peak 3 could actually be resolved to afford two peaks.

Experiments carried out with two intercalation inhibitors present within several bp of

each other yielded reaction profiles consistent with single-stranded DNA, indicating that too

A
3

1 2
3' 

B

C

G74 - *
Ac
G7 4

C

. D
30 40

Figure 4.8. Effects of introducting an intercalation inhibitor into duplexes derived from the
human p53 sequence. For clarity, all HPLC traces are at 360 nm and show only the monoadduct
region. (A) Electrophoretic analysis: piperidine cleavage of peaks 1, 2 and 3 and comparison to
markers. The sequence of oligonucleotide P53 is shown (left). Numbers refer to the nucleotide
position of each base in the human p53 cDNA. (B) AFB, reaction with P53/SO. Peaks 1, 2 and
3 are monoadducts. (C) Reaction with duplex P53/S6. (D) Reaction with duplex P53/S5.



Design of an Intercalation Inhibitor 115

much structural distortion was imposed by multiple intercalators or mismatches to maintain

duplex structure. Thus, the effects of placing a single intercalation inhibitor at different positions

in the DNA was determined. The first experiment examined protection of G743 (P53/S6), the

nucleotide predicted to have the greatest inherent reactivity. Protection of that site altered the

product profile significantly: peak 3 was greatly reduced; peak 2 increased by approximately

4-fold; and peak 1 was relatively unchanged (Fig. 4.8C). In contrast, protection of G744

(P53/S5) resulted in diminished yield of peak 3 while enhancing peak 1 by 3-fold (Fig. 4.8D).

The presence of intact AFB, monoadduct in each sample was confirmed by electrospray MS.

Discussion

Given that the half life of AFB, epoxide in water is approximately one second, 10 2 it has

been proposed that intercalation of AFB1 epoxide provides a kinetic and entropic advantage for

productive reaction with DNA versus unproductive hydrolysis. 97 98 In order to examine directly

the effects of intercalation on AFB1 epoxide reactivity with DNA, a means was devised to occupy

intercalation sites with covalently linked benzofuran derivatives (Fig. 4.3). These results support

the hypothesis that intercalation in DNA by AFB, epoxide facilitates adduct formation, as

evidenced by the observation that abolishing intercalation at a given site greatly diminished

reactivity at that site. Furthermore, application of this principle to the problem of synthesizing

specific AFB,-N7-Gua adducts within a region of the p53 gene and increased the yield of

isolatable adducts by several fold.

The first set of experiments clearly revealed that intercalation contributes significantly to

the ability of AFB, epoxide to react with DNA (Fig. 4.5). The relative adduct yields could be
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shifted from almost exclusively one adduct to almost exclusively the other depending upon the

location of the intercalation inhibitor. In addition, diadduct formation was almost completely

abolished. There remained, however, some residual adduction at the protected site (Fig. 4.5D

and 4.5E). This observation was not unexpected since both single stranded DNA and

mononucleotides are known to react, albeit to a much lesser extent, with AFB, epoxide95b

indicating that intercalation is not an obligate step for reaction with guanine.

The susceptibility of AFB, adducts to piperidine cleavage enabled the assignment of the

HPLC peaks to specific guanine adducts by comparison to Maxam-Gilbert G-reaction markers

(Fig. 4.5F). No cross contamination of the two different adducts was observed. A minor band

(10%) of similar mobility to the unmodified target oligonucleotide was observed in the piperidine

treated samples for every monoadduct (Fig. 4.5F, 4.5E and 4.5A). This band most likely arises

during manipulation of the samples from chemical reversal of the AFB1-N7-Gua adduct to give

free AFB,-diol and guanine, as has been previously observed in vitro.91 It is unlikely to be a

contamination from the HPLC purification process as the band persisted, even after multiple

HPLC purifications.

An intriguing finding is the increased reactivity of DNA with AFB, epoxide upon

substituting T for C in the complementary strand (Fig. 4.5C), suggesting that the diminished

reactivity observed after introduction of an intercalation inhibitor is due to the presence of the

intercalated benzofuran moiety and not merely to distortions induced by a G-T mismatch. One

possible explanation is that the guanine is more favorably positioned for nucleophilic attack on

the epoxide when it is engaged in a wobble pairing characteristic of G-T base pairs. 3"'

Alternatively, the mismatch itself, or the presence of the additional hydrophobic methyl group of



Design of an Intercalation Inhibitor 117

T, might facilitate intercalation. As CpG groups in mammalian DNA are often methylated,

methylation status could play a significant role in the reaction of AFB epoxide with DNA in

vivo. Of particular relevance is recent evidence that CpG methylation significantly alters the

distribution of DNA adducts of another intercalative carcinogen, benzo[a]pyrene diol epoxide. 104

The second model system tested the reactivity of AFB1 epoxide with a target DNA

containing two adjacent guanines (Fig. 4.6). One interesting observation was that essentially no

diadducts were observed with this duplex. The absence of diadducts can be rationalized on the

basis of the nearest neighbor exclusion principle, which postulates that occupation of a single

intercalation site prevents subsequent intercalation both immediately 5' and 3' to the initial site.10o

In this scenario, initial modification at one guanine results in occupancy of an intercalation site,

effectively blocking intercalation at the adjacent guanine target site and thus diminishing

reactivity of that guanine. Nevertheless, addition of intercalation inhibitors in the complementary

strand had the expected effects. In both cases (GG/R5 and GG/R6), reaction at the protected

guanine diminished while the yield of the other adduct increased (Fig. 4.6C and 4.6D). From

these experiments, it is unclear whether the benzofuran moiety possesses neighbor excluding

properties and to what extent this principle affects the reaction. If the neighbor exclusion

principle is equally applicable to all intercalators, then the expectation upon placing an

intercalation inhibitor at one of the two sites would be that all reactivity should be abolished.

This was not the case, however, suggesting that the neighbor exclusion principle is not strictly

applicable. Indeed, other violations of the neighbor exclusion principle have been reported.o5

Based on the observations with the GG/RO duplex, the intercalation inhibitor was tested

for nearest neighbor exclusion properties in a simpler system using oligonucleotide H (Fig. 4.7).
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Duplexes containing an intercalation inhibitor shifted one base to either the 5' or 3' side of the

target were treated with AFB, epoxide. These experiments revealed an asymmetry in the

protection afforded by these constructs. Placing the intercalation inhibitor immediately 3' to the

target resulted in some protection, but the presence of diadducts suggests that this site is

somewhat accessible to the AFB1 epoxide. However, when placed to the 5' side, the reactivity at

the target provided exclusively diadduct. The lack of consistently observable neighbor exclusion

by this particular intercalation inhibitor may stem from the size of the intercalation inhibitor or

the specific helix-distortion imposed. Expansion of the benzofuran moiety to a bulkier molecule

that completely spans the helix may fill the entire intercalation space and serve as a more

efficient inhibitor of intercalation. In any case, examination of the basis of the neighbor

exclusion principle warrants further investigation.

Having established the feasibility of altering chemical reactivities by intercalation

inhibition, this methodology was applied to help understand the conundrum presented by an

observed AFB,-related p53 mutational hotspot. In greater than 50% of hepatocellular carcinomas

in regions of the world with exposure to AFB, and hepatitis B, a G to T mutation at G747 (the

third position of codon 249) is observed. 93 Based on Loechler's predictions, G747 should not be

exceptionally prone to adduction; the four potential target guanines in the p53 mutational hotspot

sequence (Fig. 4.8E) are expected to have relative reactivities of 3:1.4:1:1.4.100 Why, then, are so

many mutations observed at G747? Although selective pressures certainly play a role in shaping

the mutations observed in end-stage tumors, selection alone is unlikely to explain why G747

mutations are so abundant. One approach towards understanding the factors and processes

subsequent to adduct formation that lead to a mutation is the use of oligonucleotides containing
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adducts at specific sites.10 6 By synthesizing a series of oligonucleotides each containing an AFB,

adduct at a different site, one can begin to study the relative ability of each adduct to induce a

mutation. In addition, site-specific methods can address the identity of the actual mutagenic

species. AFB,-N7-Gua adducts are highly labile, undergoing either depurination to afford an

abasic site or imidazole ring opening to form the formamidopyrimidine derivative. Insertion of

defined substrates into an appropriate vector will enable the first site-specific examination of the

ability of each of the AFB1 adducts or their decomposition products to induce mutations in the

p53 sequence. However, to date, no study of the synthesis of site-specific AFB, adducts in such

a sequence or any oligonucleotide containing multiple guanines has been reported. The ultimate

goal of our strategy was to utilize intercalation inhibitors to facilitate the synthesis and

purification of specific AFB1 adducts in such a sequence. In studies of the GC-rich p53 sequence

between nucleotides 741-749 (Fig. 4.8), 7-deaza-dG, which lacks a nitrogen at position 7, was

used in the place of dG in the complementary strand to simplify the reaction products. In the

absence of an intercalation inhibitor (P53/SO), three peaks corresponding to monoadducts were

obtained with peak 3 the dominant reaction product (Fig. 4.8B). Electrospray MS confirmed that

the isolated products were of the expected molecular weight corresponding to intact AFB1

monoadducts. As anticipated, placement of two intercalation inhibitors within several bases of

each other in a short oligonucleotide appeared to prevent hybridization of the duplex. Thus, the

effects of a single intercalation inhibitor on the product profile were examined. Upon protection

of the theoretically most reactive site, G743, the yield of the other peaks increased significantly,

with the G744 adduct comprising greater than 50% of the monoadducted species (Fig. 4.8C).

Similarly, protection of G744 lead to a large increase in the yield of the G747 adduct (Fig. 4.8D).
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This is consistent with the observed asymmetry of protection afforded by the intercalation

inhibitor, which appears to inhibit intercalation at both the site itself as well as the 5' neighboring

intercalation site. Thus, depending upon the location of the intercalation inhibitor, it was

possible to alter the adduct distribution such that any of the three monoadduct peaks represented

the major reaction product (Table 4.2).

Conclusions

This work demonstrates clearly that inhibiting intercalation of AFB, epoxide can

significantly alter the resulting adduct spectrum and that introduction of intercalation inhibitors

into DNA duplexes provides a facile means of manipulating product yields (Table 4.2). Even in

complex sequence environments, such as the p53 mutational hotspot sequence surrounding

codon 249, a significant effect on adduct distribution with a single intercalation inhibitor can be

demonstrated (Table 4.2). In addition, it should be possible to use these novel molecules to gain

a better understanding of the phenomenon of intercalation. Structure-function investigations

with intercalation inhibitors may shed more light on factors that contribute to the neighbor

exclusion principle, and second generation intercalation inhibitors can be designed with superior

inhibitory or neighbor excluding capabilities. Moreover, intercalation inhibitors can be used to

probe the intercalation requirements of other carcinogens, such as benzo[a]pyrene and aromatic

amines, and facilitate the site-specific synthesis of carcinogen-DNA adducts.
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Table 4.2. Relative monoadduct yield as a

percentage of total monoadducts.

Duplex % Peak 1 % Peak 2 % Peak 3

H/QC 70 30 N/A

H/QT 34 66 N/A

H/Q7 >95 <5 N/A

H/Q3 11 89 N/A

GG/RO 77 23 N/A

GG/R6 93 7 N/A

GG/R5 33 67 N/A

P53/SO 17 14 69

P53/S6 21 60 18

P53/S5 51 14 35

Peak areas determined by integration of A36 0.

N/A, not applicable
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Experimental Section

General Procedures. Unless otherwise specified, materials were obtained from

commercial suppliers and were used without further purification. Tetrahydrofuran (THF) was

distilled from potassium/benzophenone ketyl. Methanol (MeOH) was distilled from sodium

metal and used immediately after distillation. Anhydrous solvents were otherwise obtained from

Aldrich. Column chromatography was performed on Merck silica gel (230-400 mesh). 'H NMR

spectra were recorded at 500 or 300 MHz on superconducting FT spectrometers. 13C NMR

spectra were proton decoupled and were recorded at 125 or 75 MHz. 'H NMR data are tabulated

in order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; app,

apparent), number of protons, coupling constant(s) in Hertz. Melting points (Pyrex capillary) are

uncorrected. Fast atom bombardment (FAB+) and electron impact (EI) were recorded at the MIT

Mass Spectral Laboratory. All high-pressure liquid chromatography (HPLC) separations were

conducted with a Rainin analytical or preparative instrument with Rainin Dynamax or Beckmann

ODS columns.

Synthesis of Modified Oligonucleotides. All oligonucleotides were synthesized using

an Applied Biosystems Model 391 DNA synthesizer on a 1 pmol scale. The modified base was

typically dissolved to 0.1 M concentration in anhydrous acetonitrile. The modified base was

added to the reaction column by either utilizing the optional port for the modified

phosphoramidite or manually added by attaching two 1 mL syringes containing the modifed base

and tetrazole to the DNA synthesis column. The coupling time for the addition of any non-

commercial modified base was always extended to 15 min. The coupling yields for the modified

phophoramidites were determined by trityl release. Oligonucleotides containing the modified

base 7-deaza-dG (Glen Research) were oxidized by using a 0.5 M solution of (1S)-(+)-(l0-

camphorsulfonyl)oxaziridine in anhydrous acetonitrile to prevent degradation of the 7-

deazaguanine residues. The non-aqueous oxidation step was extended to 5 min to ensure

complete oxidation. Oligonucleotides were deprotected by using "standard conditions", NH4OH

for 18 hr at 55°C, and then lyopholyzed. Otherwise, oligonucleotides were deprotected with a 1:9



(v/v) DBU:ethanol solution containing 10 mg of cetyltrimethyl ammonium bromide in a sealed

Eppendorf tube. After 24 h at room temperature, this reaction was quenched with 100 .L of a

1:1 acetic acid:water solution. The neutralized solution was immediately placed onto a Na+

Dowex resin column and eluted with water to remove the cetyltrimethyl ammonium and DBU

salts. The fractions containing the oligonucleotide were collected and lyopholyzed.

Oligonucleotides were purified by HPLC and desalted on a Sep-Pak C18 cartridge eluting with

1:1 acetonitrile:water.

Enzymatic Digestion Conditions. To a solution of 10 tg of oligonucleotide in 10 pL of

water were added 1 tL of IM NaOAc at pH 5.0, 1 [L of 20 mM ZnC12, and 1 IL (1.7 U/jIL) of

nuclease P1 (Sigma). After 1 h at 37 'C, the reaction was cooled on ice and 1.3 tiL of 1 M

Tris*HCI (pH 9), 1.0 gl of snake venom phosphodiesterase (ICN, 0.05 U/tL) and 1 pl of

alkaline phosphatase (Sigma, 25 U/pL) were added. After 90 min at 370 C, the entire reaction

mixture was analyzed by C18 reversed phase HPLC using a photodiode array detector. Solvent

A: 0.1 M NH4OAc in water; solvent B: 0.1 M NH4OAc in 1:1 water:CH 3CN; gradient 0-8.2% B

over 35 min, 8.2-30% B over 25 min. The nucleoside ratios were quantitated by integration of

the peak areas at 260 nm.
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/ CHO

MeO ° OH MeO CO2H

6-Methoxy-2-benzofuran carboxcylic acid (1.21). To a solution of 5.74 g (37.7 mmol)

of 4-methoxysalicylaldehyde 1.20 in 400 mL of dry 2-butanone were added 9.70 mL (56.6

mmol) of diethyl bromomalonate and 15.6 g (113 mmol) of oven dried K2CO 3 . The solution was

stirred vigorously and heated to reflux for 7 hr, cooled and filtered. The solvents were removed

and the solids diluted in 100 mL of methanol and 200 mL of IN NaOH solution. The solution

was then heated to reflux for 1 hr. After cooling to room temperature, the reaction mixture was

extracted once with ethyl acetate and then acidified to pH 1. The tan precipitate that formed was

collected, rinsed with IN HC1, and dried to afford 5.53 g (76%) for two steps: 1H NMR (500

MHz, DMSO-d 6) 8 3.82 (s, 3 H), 6.96 (dd, 1 H, J= 2.0, 8.3), 7.28 (d, 1 H, J= 1.5), 7.58 (s, 1 H),

7.63 (d, 1 H, J= 8.3); 13C NMR 6 55.62, 95.81, 101.70, 113.60, 119.89, 123.18, 145.24, 156.37,

159.86, 159.95; HRMS (EI) calcd for C1oH80 4 (M) 192.0423, found 192.0424.
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0
MeO

CMeO COH O 0 N oO
OAc

5'-O-(6-Methoxy-2-benzofuranyl)-3'-O-acetylthymidine (1.22). To a solution of 0.38

g (1.52 mmol) of compound 1.21 in 5 mL of dry pyridine was added 0.46 g (1.60 mmol) of 3'-O-

acetylthymidine 1.18, 0.35 g (1.82 mmol) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide

hydrochloride (EDC) and 20 mg (0.15 mmol) of DMAP. The solution was stirred at room

temperature under an argon atmosphere for 16 hr. The reaction mixture was concentrated,

dissolved in CH 2C12, washed with 1 N HC1 and saturated NaHCO 3 and then dried over Na 2 SO 4.

The crude product was purified by silica gel chromatography eluting with 100:1

dichloromethane/methanol to afford 0.54 g (75%) of a white foam: 'H NMR (300 MHz, CDC13)

6 1.63 (app s, 3 H), 2.12 (s, 3 H), 2.38 (ddd, 1 H, J= 6.2, 8.8, 14), 2.50 (app dd, 1 H, J= 5.6, 14),

3.84 (s, 3 H), 4.36 (app d, 1 H, J= 1.6), 4.59 (dd, 1 H, J= 2.5, 12), 4.66 (dd, 1 H, J= 2.9, 12),

5.35 (app d, 1 H, J= 6.2), 6.44 (dd, 1 H, J= 5.6, 8.8), 6.92-6.96 (m, 2 H), 7.26-7.54 (m, 3 H),

9.54 (br s, 1 H); 13C NMR 6 12.18, 20.78, 37.52, 55.71, 64.55, 74.89, 82.35, 84.89, 95.48,

111.52, 114.52, 115.44, 119.98, 123.21, 134.76, 143.80, 150.49, 157.21, 158.61, 161.11, 163.53,

170.35; UVmax (CH 3CN) 312, 268, 246 nm; HRMS (FAB', 3-NBA) calcd for C22H220 19N2

(M+H)+ 459.1404, found 459.1404.
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0 NMeO HMeO 
H MeN

MeO ~NH NH

NH 0  N 0 N

SN O ' MeO2C H H

O HO+

OAc OAc OAc

5'-O-(6-Methoxy-2-benzofuranyl)-3'-O-acetylthymidine photoproduct. A solution of

75 mg (0.16 mmol) of photoprecursor 1.22 in 85 mL of dry CH3CN was deaerated with argon

bubbling for 30 min. Acetone (4.25 mL) was added and the solution was irradiated with 300 nm

light in a sixteen bulb Rayonet photoreactor for 5 hr at room temperature. The solvent was

removed in vacuo and the crude material was dissolved in 25 mL of methanol with 150 mg of

silica gel and stirred at room temperature for 30 min to effect transesterification. The methanol

was removed and the absorbed material was directly added to the top of a silica gel column.

Elution with a gradient of 100:1 to 50:1 dichloromethane/methanol afforded 45 mg (57%) of a

major isomer 1.24 and 10 mg (14%) of a minor isomer 1.23b.

Experimental Section (Chapterl)
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OAc

Major isomer cis-syn (1.24): 'H NMR (500 MHz, CDC13) 6 1.78 (s, 3 H), 2.07-2.12 (m,

1 H), 2.08 (s, 3 H), 2.37 (ddd, 1 H, J= 2.0, 5.4, 14), 3.76 (s, 3 H), 3.79-3.83 (m, 2 H), 3.86-3.88

(m, 1 H), 3.87 (s, 3 H), 3.95 (d, 1 H, J= 2.0), 4.73 (d, 1 H, J= 2.0), 5.19-5.22 (m, 1 H), 5.95 (dd,

1 H, J= 5.4, 9.3), 6.46-6.48 (m, 2 H), 6.99 (d, 1 H, J= 7.8), 7.06 (br s, 1 H); 13C NMR 6 21.00,

22.71, 36.12, 46.34, 53.44, 55.52, 56.05, 57.85, 62.58, 74.48, 84.25, 85.42, 86.72, 96.49, 108.75,

115.30, 126.81, 150.69, 161.70, 162.33, 169.67, 170.65, 170.69; UVmax (CH 3CN) 284 nm;

HRMS (FAB+, 3-NBA) caled for C23H2600N2 (M+H) + 491.1666, found 491.1664.

O
MeOMeO\ / NH

O NO
O H

O00

OAc

Minor isomer trans-syn (1.23b): 'H NMR (500 MHz, CDC13) 6 1.28 (s, 3 H), 2.10 (s, 3

H), 2.24 (app d, 1 H, J= 7.3, 15), 2.84 (ddd, 1 H, J= 5.9, 8.8, 15), 3.80 (s, 3 H), 3.89 (s, 3 H),

4.18 (app d, 1 H, J= 12), 4.25 (app d, 1 H, J= 2.0), 4.66 (s, 1 H), 5.19 (dd, 1 H, J= 2.0, 12),

5.48 (app d, 1 H, J= 5.9), 6.35 (app t, 1 H, J= 8.8), 6.55-6.58 (m, 2H), 7.15 (d, 1 H, J= 8.3),

7.50 (br s, 1 H); 13C NMR 6 20.98, 22.49, 32.25, 48.00, 55.61, 65.59, 67.57, 77.20, 77.85, 82.60,

87.86, 91.55, 97.13, 108.35, 114.93, 126.97, 151.24, 161.12, 161.73, 165.55, 170.58, 171.77;

HRMS (FAB', 3-NBA) calcd for C22H22O9N 2(M+H) 459.1404 found 459.1398.
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CHO I CHO

MOMO v "OH MOMO "OH

2-Hydroxy-5-iodo-4-(methoxymethyl)benzaldehyde (1.26). Chloramine T hydrate

(4.54 g, 20.6 mmol) in 15 mL of DMF was added over a 10 min period to a solution of 3.13 g

(17.2 mmol) 1.25 and 3.09 g (20.6 mmol) of sodium iodide in 50 mL of DMF. The solution was

stirred for an additional 30 min, diluted with ethyl acetate, washed with 1 N HC1, and 5% sodium

thiosulfate. The organic layer was then extracted twice with IN NaOH and the aqueous

extractions separated. The aqueous layers were acidified with IN HCl in the presence of ethyl

acetate. The organic layer was dried over MgSO 4. Purification of the crude product by silica gel

chromatography eluting with 15:1 hexanes/ethyl acetate afforded 3.92 g (74%) of a white flaky

solid: 1H NMR (300 MHz, CDC13) 8 3.34 (s, 3 H), 5.12 (s, 2 H), 6.48 (s, 1 H), 7.72 (s, 1H), 9.52

(s, 1 H), 11.13 (s, 1 H); 13C NMR 6 56.74, 74.47, 94.81, 102.55, 117.70, 143.81, 162.15, 164.08,

193.6; HRMS (EI) calcd for C9H90 4I (M)' 307.9546, found 307.9545; Anal. calcd for C9H 9 0 4I:

C, 35.09; H, 2.94; I, 41.19. Found: C, 35.24; H, 3.04; I, 41.52; mp 77-79' C.
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I CHO I

SC0 2 Et

MOMO" OH MOMO O

2-Carboethoxy-5-iodo-6-(methoxymethyl)benzofuran (1.27). To a solution of 3.89 g

(12.6 mmol) of compound 1.26 in 200 mL of dry 2-butanone was added 3.25 mL (18.9 mmol) of

diethyl bromomalonate and 5.25 g (37.8 mmol) of oven dried K2CO 3. The solution was stirred

vigorously and heated to reflux for 24 hr, cooled and filtered. Removal of the solvents in vacuo

and purification by silica gel chromatography eluting with 10:1 hexanes/ethyl acetate afforded

2.76 g (58%) of a fluffy white solid: 'H NMR (300 MHz, CDC13) 8 1.39 (t, 3 H, J= 7.1), 3.49

(s, 3 H), 4.39 (q, 2 H, J= 7.1), 5.26 (s, 2 H), 7.31 (s, 1 H), 7.36 (s, 1 H), 8.05 (s, 1 H); 13C NMR

6 14.23, 56.39, 61.39, 82.87, 95.30, 98.59, 112.47, 123.26, 132.27, 145.81, 155.31, 156.51,

159.09; HRMS (EI) calcd for CI3H1305I (M)+ 375.9808, found 375.9807; Anal. calcd for

C13H130 51: C, 41.51; H, 3.48; I, 33.74. Found: C,41.42; H, 3.48; I, 33.93; mp 90-91 C.
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I OHC

C02Et O C02Et
MOMO O MOMO O

2-Carboethoxy-5-formyl-6-(methoxymethyl)benzofuran (1.28). A solution of 1.00 g

(2.66 mmol) of compound 1.27 and 231 mg (0.20 mmol) of Pd(Ph3P)4 in 10 mL of dry THF was

heated to 50 'C under an CO atmosphere (1 atm). A solution of 0.79 mL (2.93 mmol) of

tributyltinhydride in 20 mL of dry THF was added to the solution over a 6 hr period. The

solution was cooled to room temperature and the solvents were removed in vacuo. The crude

material was purified by a short silica gel column eluting with chloroform to separate the tin

impurities from the product. Purification of the tin free product eluting with a gradient of 10:1

hexanes/ethyl acetate to 5:1 hexanes/ethyl acetate afforded 0.53 g (72%) of yellow-white solid:

'H NMR (300 MHz, CDC13) 8 1.35 (t, 3 H, J= 7.2), 3.48 (s, 3 H), 4.36 (q, 2 H, J= 7.2), 5.30 (s,

2 H), 7.33 (s, 1 H), 7.42 (s, 1 H), 8.09 (s, 1 H), 10.43 (s, 1 H); 13C NMR 6 14.10, 56.39, 61.43,

95.04, 98.36, 113.99, 121.14, 123.38, 123.42, 146.62, 158.73, 159.47, 159.49, 188.76; HRMS

(EI) calcd for C 14H 140 6 (M)+ 278.0790, found 278.0792; Anal. calcd for C14H 140 6: C, 60.43; H,

5.07. Found: C, 60.34; H, 5.07; mp 70-71 C.
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OHO OHZ
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MOMO n MOMO O

5-Formyl-6-methoxymethyl-2-benzofuran carboxcylic acid (1.29). A solution of 0.49

g (1.77 mmol) of compound 1.28 and 7.5 mL of saturated aqueous K2CO 3 in 30 mL of ethanol

was heated to reflux for 30 min. The solvents were removed, and the crude product was

dissolved in water and the aqueous layer was washed twice with ethyl acetate. The aqueous layer

was acidified to pH 3 with 0.1 M H 2 SO 4. The resulting precipitate was filtered, washed with cold

pH 3 water and dried overnight to afford 0.35 g (79%) of a white solid: 'H NMR (300 MHz,

DMSO-d 6) 6 3.46 (s, 3 H), 5.43 (s, 2H), 7.52 (s, 1 H), 7.67 (s, 1 H), 8.13 (s, 1 H), 10.39 (s, 1 H);
13C NMR 6 56.31, 94.91, 98.64, 114.11, 121.14, 123.17, 123.44, 147.23, 158.84, 159.02, 159.62,

188.74; HRMS (FAB+, glycerol) calcd for C12HI 00 6 (M+H)+ 251.0556, found 251.0552.
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5'-O-[5-Formyl-6-(methoxymethyl)-2-benzofuranyll-3'-O-acetylthymidine (1.30). To

a solution of 0.30 g (1.18 mmol) of compound 1.29 in 4 mL of dry pyridine were added 0.36 g

(1.25 mmol) of 3'-O-acetylthymidine 1.18, 0.29 g (1.50 mmol) of 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDC) and a catalytic amount of DMAP. The solution was

stirred at room temperature under an argon atmosphere for 24 hr. The solvent was concentrated,

dissolved in CH 2C12, washed with 1 N HCI and saturated NaHCO3 and then dried over MgSO 4.

The crude product was purified by silica gel chromatography eluting with 100:1

dichloromethane/methanol to afford 0.50 g (90%) of a white foam: 1H NMR (300 MHz, CDC13)

8 1.67 (d, 3 H, J= 1.2), 2.12 (s, 3 H), 2.37 (ddd, 1 H, J = 6.4, 9.0, 14), 2.51 (ddd, 1 H, J = 1.3,

5.5, 14), 3.52 (s, 3 H), 4.34-4.37 (m, 1 H), 4.59 (dd, 1 H, J= 2.7, 12), 4.67 (dd, J= 3.1, 12), 5.32-

5.37 (m, 1 H), 5.34 (s, 2 H), 6.42 (dd, 1 H, J= 5.5, 9.0), 7.32 (s, 1 H), 7.44 (d, 1 H, J= 1.2), 7.62

(s, 1 H), 8.19 (s, 1 H), 9.46 (br. s, 1 H), 10.48 (s, 1 H); 13C NMR 8 12.31, 20.83, 37.43, 56.58,

64.91, 74.70, 82.13, 84.87, 95.14, 98.31, 111.51, 115.75, 120.98, 123.85, 123.94, 134.71, 145.64,

150.45, 158.13, 159.59, 160.00, 163.52, 170.43, 188.76; HRMS (FAB+, 3-NBA) calcd for

C24H24O11N2 (M+H) + 517.1458, found 517.1458.
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5'-O-(5-Formyl-6-hydroxy-2-benzofuranyl)-3'-O-acetylthymidine (1.31). To a

solution of 0.44 (0.86 mmol) of compound 1.30 in 20 mL of dry CH 2Cl 2 was added 0.32 g (0.95

mmol) of trityl tetraflouroborate. The solution was stirred at room temperature under an argon

atmosphere for 30 min. Completion of the reaction was monitored by the product's green

fluorescence under long wave UV light (366 nm). The solution was diluted with CH2C12, washed

with water and dried over Na 2SO4. Purification of the crude product by silica gel

chromatography eluting with a gradient of 100:1 to 50:1 dichloromethane/methanol afforded

0.50 g (90%) of a white foam: 'H NMR (300 MHz, CDC13) 8 1.68 (d, 3 H, J= 1.0), 2.12 (s, 3

H), 2.37 (ddd, 1 H, J = 6.4, 8.8, 14), 2.53 (ddd, 1 H, J = 1.3, 5.5, 14), 4.35-4.38 (m, 1 H), 4.60

(dd, 1 H, J= 3.0, 12), 4.67 (dd, 1 H, J= 3.4, 12), 5.34 (app d, 1 H, J= 6.4), 6.39 (dd, 1 H, J=

5.5, 8.8), 7.02 (s, 1 H), 7.39 (d, 1 H, J= 1.0), 7.61 (s, 1 H), 7.93 (s, 1 H), 9.58 (br s, 1 H), 9.95 (s,

1 H), 11.23 (s, 1 H); 13C NMR 6 12.33, 20.83, 37.39, 64.93, 74.63, 82.16, 85.04, 99.88, 111.45,

115.20, 119.51, 120.08, 130.23, 134.66, 145.80, 150.45, 158.08, 160.13, 162.20, 163.60, 170.45,

195.79; HRMS (FAB', 3-NBA) calcd for C22H20 ON 2 (M+H)+ 473.1196, found 473.1202.
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5'-O-[6-Hydroxy-5-(hydroxymethyl)-2-benzofuranyl]-3'-O-acetylthymidine (1.32).

To a solution of 0.32 g (0.69 mmol) of compound 1.31 in 8 mL of a 1:1 mixture of

ethanol/dioxane was added 10 mg (0.26 mmol) of NaBH 4. The solution was stirred at room

temperature for 15 min, neutralized with saturated NH 4C1, diluted with CH 2C12, washed with

water, and dried over MgSO 4. The crude product was purified by silica gel chromatography

eluting with a gradient of 20:1 to 10:1 dichloromethane/methanol to afford 0.29 g (88%) of a

white solid: 'H NMR (300 MHz, acetone-d 6) 6 1.63 (d, 3 H, J= 1.8), 2.10 (s, 3 H), 2.47 (ddd, 1

H, J= 6.4, 8.7, 14), 2.55 (ddd, 1 H, J = 2.0, 5.9, 14), 2.87 (br. s, 1 H), 4.40-4.42 (m, 1 H), 4.59

(dd, 1 H, J= 3.7, 12), 4.67 (dd, 1 H, J= 4.0, 12), 4.79 (d, 2 H, J= 2.0), 5.42-5.45 (m, 1 H), 6.38

(dd, 1 H, J= 5.9, 8.7), 7.03 (s, 1 H), 7.63 (d, 1 H, J= 2.6), 7.71 (app s, 2 H); 13C NMR (DMSO-

d6) 6 11.97, 20.74, 35.88, 58.37, 64.33, 74.15, 81.14, 84.03, 96.62, 109.97, 115.65, 118.32,

120.62, 128.04, 135.50, 142.75, 150.39, 155.53, 155.91, 158.36, 163.55, 170.02; UVmax (CH 3CN)

314, 270, 249 nm; HRMS (FAB', glycerol) calcd for C22H220 10N2 (M+H) + 475.1353, found

475.1355; Anal. cacld for C22H 22010N 2: C, 55.70; H, 4.67; N, 5.91. Found: C, 55.48; H, 4.76;

N, 5.63.
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2-Carbomethoxy-6-hydroxy-(5-methylalcohol)benzofuran 3'-O-acetylthymidine cis-

syn photoproduct (1.33). A solution of 0.25 g (0.52 mmol) of compound 1.32 in 350 ml of dry

CH 3CN was deaerated with argon bubbling for 60 min. Acetone (17.5 mL ) was added and the

solution was irradiated with 300 nm light in a sixteen bulb Rayonet photoreactor for 3 hr at room

temperature. Removal of the solvents and absorption of the crude material onto silica gel using

methanol as the solvent effected the ring opening. The absorbed compound was loaded on top of

a silica gel column and purified by eluting with a gradient of 30:1 to 15:1

dichloromethane/methanol to afford 0.15 g (58%) of a clear foam: 'H NMR (300 MHz, acetone-

d6) 8 1.70 (s, 3 H), 2.00-2.11 (m, 2 H), 2.06 (s, 3 H), 3.69-3.71 (m, 2 H), 3.85 (s, 3 H), 3.88-3.90

(m, 1 H), 4.00 (d, 1 H, J= 1.0), 4.04 (t, 1 H, J= 5.4, (-OH)), 4.55 (d, 1 H, J= 13), 4.63 (d, 1 H, J

= 13), 4.84 (d, 1 H, J= 2.0), 5.17-5.19 (m, 1 H), 6.18 (dd, 1 H, J= 5.4, 9.3), 6.37 (s, 1 H), 6.94

(s, 1 H), 8.71 (br s, 1 H), 8.93 (br s, 1 H); 13C NMR 8 21.07, 22.95, 35.80, 47.35, 53.43, 56.76,

57.56, 61.68, 63.06, 75.56, 84.42, 84.84, 88.11, 98.32, 116.04, 122.28, 126.57, 152.55, 157.85,

162.83, 170.87, 170.93; UVmax (CH 3CN) 287 nm; HRMS (FAB', 3-NBA) calcd for C23H2601 1N2

(M+H)+ 507.1615, found 507.1611.
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(2-Carbomethoxy-5-formyl-6-hydroxybenzofuran) 3'-O-acetylthymidine cis-syn

photoproduct (1.34). To a solution of 0.16 g (0.31 mmol) of compound 1.33 in 2 mL of DMF

were added 13 mg (0.08 mmol) of TEMPO and 8 mg (0.08 mmol) of CuC1. Oxygen was

bubbled through the solution for 2 hr after which another 13 mg of TEMPO and 8 mg of CuCl

were added. After stirring under a oxygen atmosphere for 6 hr, the reaction was diluted with

ethyl acetate and washed with 1 N HC1, saturated NaHCO3 and brine and then dried over MgSO 4.

Purification of the crude product by silica gel chromatography eluting with 50:1

dichloromethane/methanol afforded 0.11 g (70%) of a white foam: 1H NMR (300 MHz, acetone-

d6) 6 1.75 (s, 3 H), 1.96-2.11 (m, 2 H), 2.06 (s, 3 H), 3.70-3.73 (m, 2 H), 3.88 (s, 3 H), 3.89-3.91

(m, 1 H), 4.16 (app s, 1 H), 4.95 (d, 1 H, J= 1.8), 5.18-5.21 (m, 1 H), 6.19 (dd, 1 H, J= 5.6, 9.3),

6.49 (s, 1 H), 7.47 (d, 1 H, J= 0.7), 9.80 (d, 1 H, J= 0.7); 13C NMR 6 21.07, 22.78, 35.84, 47.50,

53.70, 55.04, 57.55, 63.04, 75.59, 84.53, 84.77, 89.53, 98.98, 117.57, 119.14, 133.49, 152.30,

166.11, 169.34, 169.73, 170.59, 170.87, 196.10; HRMS (FAB', 3-NBA) calcd for C23H240,N 2

(M+H)+ 505.1458, found 505.1455.
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(2-Carbomethoxypsoralen) 3'-O-acetylthymidine cis-syn photoproduct (1.35). To a

solution of 43 mg (0.09 mmol) of compound 1.34 in 0.4 mL of dry THF were added 4 A sieves

and 125 4tL (0.85 mmol) of N,N-dimethylacetamide dimethylacetal. The solution stirred for 2 hr

at room temperature under an argon atmosphere. The reaction was diluted with ethyl acetate,

washed with saturated NH4C1, saturated NaHCO 3 and brine and then dried over MgSO 4. The

crude product was purified by silica gel chromatography eluting with a gradient of 50:1 to 33:1

dichloromethane/methanol to afford 17 mg (38%) of a white foam: 'H NMR (300 MHz,

acetone-d 6) 8 1.76 (s, 3 H), 2.01-2.05 (m, 1 H), 2.07 (s, 3 H), 2.13 (ddd, 1 H, J= 2.0, 5.9, 14),

3.71-3.73 (m, 2 H), 3.88 (s, 3 H), 3.90-3.92 (m, 1 H), 4.11 (t, 1 H, J= 5.4, (-OH)), 4.24 (s, 1 H),

4.97 (d, 1 H, J= 2.0), 5.20-5.22 (m, 1 H), 6.20 (dd, 1 H, J= 5.9, 9.8), 6.24 (d, 1 H, J= 9.3), 6.90

(s, 1 H), 7.39 (s, 1 H), 7.90 (d, 1 H, J= 9.3); 13C NMR (CDC13) 8 20.10, 22.85, 35.80, 46.60,

53.68, 54.97, 57.28, 62.53, 74.27, 84.10, 84.94, 87.77, 99.35, 113.81, 114.41, 121.48, 125.81,

143.23, 150.43, 156.32, 160.47, 163.98, 169.20, 169.70, 170.69; UV (MeOH) 324, 293; HRMS

(FAB+, 3-NBA) calcd for C25H240,N2 (M+H) + 529.1458, found 529.1456.
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2-Carbomethoxypsoralen thymidine cis-syn photoproduct (1.15). To a solution of 9

mg (17 pmol) of compound 1.35 in 0.5 mL of freshly distilled methanol was added 50 [L of

DBU. After stirring for 10 min at room temperature the reaction was diluted with ethyl acetate,

washed with saturated NH4C1, saturated NaHCO3 and brine and then dried over Na2 SO 4 . The

crude product was purified by silica gel chromatography eluting with 25:1

dichloromethane/methanol to afford 8 mg (97%) of a white foam: 'H NMR (300 MHz, CDC13) 6

1.80 (s, 3 H), 1.87 (br s, 2 H), 2.02-2.11 (m, 1 H), 2.27 (ddd, 1 H, J= 3.1, 5.9, 14), 3.70 (dd, 1 H,

J= 3.8, 12), 3.80-3.89 (m, 2 H), 3.89 (s, 3 H), 4.02 (s, 1 H), 4.39-4.43 (m, 1 H), 4.97 (d, 1 H, J=

1.7), 5.96 (dd, 1 H, J = 5.9, 8.1), 6.27 (d, 1 H, J = 9.5), 6.91 (s, 1 H), 7.24 (s, 1 H), 7.40 (br s, 1

H), 7.60 (d, 1 H, J= 9.5); 13C NMR (methanol-d 4) 6 22.92, 38.64, 48.44, 54.01, 56.16, 57.97,

63.36, 72.41, 85.16, 87.35, 89.97, 99.67, 113.97, 115.85, 124.40, 127.84, 145.90, 153.72, 157.68,

162.91, 166.21, 170.73, 172.26; UV (1:1 methanol:water) 332, 294; HRMS (FAB', 3-NBA)

calcd for C23H22O10N2 (M+H) + 487.1353, found 487.1349.
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2-Carboethoxy-5-formyl-6-hydroxybenzofuran (1.37). A solution of 1.02 g (3.67

mmol) of compound 1.28, 2 mL of concentrated HC1, and 100 mL of ethanol was heated at

reflux for 1 h. After cooling to room temperature, the solution was neutralized with saturated

NaCHO 3 and diluted with ethyl acetate. The layers were separated and the aqueous portion was

washed twice with ethyl acetate. The combined organic washes were washed with brine and

dried over Na 2 SO 4. Removal of the solvents in vacuo and purification by silica gel

chromatography eluting with a gradient of 10:1 to 2:1 hexanes/ethyl acetate afforded 0.78 g

(91%) of a yellow-white solid. Recrystallization from hexanes/ethyl acetate afforded yellow

plates: mp 158-159 'C; 'H NMR (300 MHz, CDCl3) 8 1.41 (t, 3 H, J = 7.2), 4.42 (q, 2 H, J=

7.2), 7.09 (s, 1 H), 7.49 (s, 1 H), 7.88 (s, 1 H), 9.95 (s, 1 H), 11.23 (s, 1 H); 13C NMR 8 14.3,

61.7, 100.1, 113.7, 119.2, 120.5, 129.9, 147.0, 158.9, 160.2, 161.8, 195.9; HRMS (EI) calcd for

C 12HI00 5 (M)+ 234.0528, found 234.0529. Anal. Calcd for C12H100 5: C, 61.54; H, 4.30. Found:

C, 61.17; H, 4.11.
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2-Carboethoxypsoralen (1.38). To a solution of 95 mg (0.41 mmol) of compound 1.37

in 4 mL of dry THF were added 4 A sieves and 120 [tL (0.82 mmol) of N,N-dimethylacetamide

dimethylacetal. The solution was stirred for 5 h at room temperature under an argon atmosphere.

The reaction mixture was diluted with ethyl acetate, washed with saturated 1 N HC1, saturated

NaHCO 3 and brine and then dried over Na2SO 4. The crude product was purified by silica gel

chromatography eluting with a gradient of 3:1 to 1:1 hexanes/ethyl acetate to afford 69 mg (65%)

of a white solid. Recrystallization from hexanes/ethyl acetate afforded white needles: mp 221-

222 oC; 1H NMR (300 MHz, CDC13) 6 1.44 (t, 3 H, J= 7.2), 4.46 (q, 2 H, J= 7.2), 6.42 (d, 1 H,

J= 9.6), 7.55 (s, 1 H), 7.57 (s, 1 H), 7.79-7.82 (m, 2 H); 13C NMR 6 14.3, 61.9, 100.6, 113.2,

115.5, 116.5, 121.8, 124.2, 143.5, 147.6, 153.7, 156.8, 158.9, 160.2; HRMS (EI) calcd for

C 14HI00 5 (M)+ 258.0528, found 258.0529. Anal. Calcd for C14HI00 5: C, 65.12; H, 3.90. Found:

C, 65.05; H, 3.72.
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2'-Carboxypsoralen (1.39). A solution of 0.27 g (1.06 mmol) of compound 1.38 and 10

mL of aqueous 1 N NaOH in 10 mL of methanol was heated to reflux for 30 min. The solvents

were removed, and the crude product was dissolved in water and acidified to pH 1 with 1 N HC1.

The resulting precipitate was filtered, washed with cold 1 N HCI and ether and then dried

overnight to afford 0.19 g (77%) of a yellowish-white solid: 1H NMR (300 MHz, DMF-d 7) 6

6.51 (d, 1 H, J= 9.6), 7.79 (s, 1 H), 7.83 (s, 1 H), 8.23 (s, 1 H), 8.26 (d, 1 H, J= 9.6); 13C NMR 8

100.9, 114.4, 116.0, 117.8, 124.1, 125.7, 145.7, 149.7, 154.9, 157.8, 160.9, 160.9; HRMS (EI)

calcd for C12H60 5 (M)+ 230.0215, found 230.0214.
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5'-O-[2-psoralenyl-]-3'-O-acetyl thymidine (1.40). To a solution of 80 mg (0.35 mmol)

of compound 1.39 in 1.5 mL of dry DMF and 1.5 mL of dry pyridine were added 150 mg (0.53

mmol) of 3'-O-acetylthymidine 1.18 and the suspension was sonicated for 5 min. To the milky

white solution were added 170 mg (0.88 mmol) of 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDC) and 5 mg (0.35 mmol) of DMAP. The solution was

stirred at room temperature under an argon atmosphere for 24 h. The solvent was concentrated,

dissolved in CH 2C12, washed with 1 N HCI and saturated NaHCO3 and then dried over MgSO 4.

The crude product was purified by silica gel chromatography eluting with a gradient of 100:1 to

50:1 dichloromethane/methanol to afford 106 mg (61%) of a white foam: mp 264-266 oC (dec);

'H NMR (300 MHz, CDC13) 8 1.70 (d, 3 H, J= 1.0), 2.14 (s, 3 H), 2.39 (ddd, 1 H, J= 6.6, 8.7,

14), 2.55 (ddd, 1 H, J= 1.4, 5.5, 14), 4.34-4.40 (m, 1 H), 4.64-4.71 (m, 2 H), 5.36 (app d, 1 H, J

= 6.4), 6.40 (dd, 1 H, J= 5.5, 8.7), 6.43 (d, 1 H, J= 9.7), 7.39 (d, 1 H, J= 1.2), 7.48 (s, 1 H),

7.67 (s, 1 H), 7.80 (d, 1 H, J= 9.7), 7.83 (s, 1 H), 9.01 (br s, 1 H); 13C NMR 8 12.4, 20.9, 37.4,

65.1, 74.6, 82.1, 85.1, 100.4, 111.5, 114.6, 115.9, 116.9, 122.2, 123.9, 134.7, 143.3, 146.5, 150.3,

154.2, 156.8, 158.1, 159.9, 163.3, 170.5; UVmax (MeOH) 334, 264 nm; HRMS (FAB', NBA)

calcd for C24H20O10N2(M+H) + 497.1196, found 497.1203.
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(2-Carbomethoxypsoralen)-3'-O-acetylthymidine Cis-Syn photoproduct (1.35). A

solution of 20 mg (0.04 mmol) of compound 1.40 in 40 mL of dry CH3CN was deaerated with

argon bubbling for 30 min. Acetone (2 mL) was added and the solution was irradiated with 300

nm light in a sixteen bulb Rayonet photoreactor for 3 h at room temperature. Removal of the

solvents and adsorption of the crude material onto silica gel using methanol as the solvent

effected lactone ring opening. The absorbed compound was loaded on top of a silica gel column

and purified by eluting with a gradient of 100:1 to 50:1 dichloromethane/methanol to afford 6 mg

(24%) of a clear foam. Attempts to perform this reaction on a scale greater than 50 mg afforded

lower yields; however, multiple reaction vessels placed in a Rayonet photoreacter afforded

yields in the 20-25% range: 1H NMR (300 MHz, acetone-d 6) 8 1.76 (s, 3 H), 2.01-2.05 (m, 1 H),

2.07 (s, 3 H), 2.13 (ddd, 1 H, J = 2.0, 5.9, 14), 3.71-3.73 (m, 2 H), 3.88 (s, 3 H), 3.90-3.92 (m, 1

H), 4.11 (t, 1 H, J= 5.4, (-OH)), 4.24 (s, 1 H), 4.97 (d, 1 H, J= 2.0), 5.20-5.22 (m, 1 H), 6.20

(dd, 1 H, J= 5.9, 9.8), 6.24 (d, 1 H, J= 9.3), 6.90 (s, 1 H), 7.39 (s, 1 H), 7.90 (d, 1 H, J= 9.3);

13C NMR (CDC13) 8 20.1, 22.9, 35.8, 46.6, 53.7, 55.0, 57.3, 62.5, 74.3, 84.1, 84.9, 87.8, 99.3,

113.8, 114.4, 121.5, 125.8, 143.2, 150.4, 156.3, 160.5, 164.0, 169.2, 169.7, 170.7; UV (MeOH)

324, 293; HRMS (FAB+, 3-NBA) calcd for C25H240,N2 (M+H)+ 529.1458, found 529.1456.
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2-Carboxypsoralen Thymidine Cis-Syn Photoproduct (2.1). To a solution of 47 mg

(89 umol) of compound 1.35 in 2 mL of methanol was added 2 mL of 100 mM Na2CO 3 (pH 9.0)

solution. After stirring for 1 h at room temperature, the reaction was neutralized with IN HCI

and adsorbed onto silica gel via lyophilization. The crude product was purified by silica gel

chromatography eluting with 5:1 dichloromethane/methanol to afford 34 mg (81%) of a white

solid: 1H NMR (500 MHz, methanol-d) 8 1.76 (s, 3 H), 2.02-2.12 (m, 2 H), 3.62 (dd, 1 H, J=

5.9, 12), 3.66 (dd, 1 H, J= 4.9, 12), 3.77-3.79 (m, 1 H), 3.95 (s, 1 H), 4.22-4.25 (m, 1 H), 4.81

(d, 1 H, J= 1.5), 6.21 (d, 1 H, J= 9.3), 6.22-6.26 (m, 1 H), 6.85 (s, 1 H), 7.32 (s, 1 H), 7.84 (d, 1

H, J= 9.3); 13C NMR 8 22.80, 38.20, 48.40, 50.00, 56.30, 58.47, 63.78, 72.38, 85.33, 87.19,

99.48, 113.05, 115.31, 125.64, 127.54, 146.22, 153.95, 157.51, 163.34, 167.11, 173.16, 175.46;

HRMS (FAB+, glycerol) cacld for C22H200O0N2 (M + H)+ 473.1196, found 473.1198.
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2-Carbomethoxypsoralen 5'-O-DMT-3'-O-acetylthymidine Cis-Syn Photoproduct

(2.2). To a solution of 42 mg (80 pmol) of compound 1.35 in 500 tL of dry DMF were added

34 mg (100 jimol) of dimethoxytrityl chloride, 17 mg (100 [tmol) of silver nitrate and 17 [L

(120 pmol) of collidine. The cloudy orange solution was stirred for 15 min at room temperature

under an argon atmosphere. The reaction mixture was diluted with ethyl ether, washed with

water, saturated CuSO4, and brine, and then dried over Na2SO 4. The crude product was purified

by silica gel chromatography eluting with 100:1 dichloromethane/methanol to afford 62 mg

(93%) of a yellow foam: 'H NMR (300 MHz, acetone-d 6) 8 1.69 (s, 3 H), 2.03-2.10 (m, 1 H),

2.05 (s, 3 H), 2.14-2.22 (m, 1 H), 3.24 (dd, 1 H, J= 4.4, 10), 3.37 (dd, 1 H, J= 4.4, 10), 3.78 (s, 3

H), 3.79 (s, 3 H), 3.80 (s, 3 H), 3.96 (app dd, 1 H, J= 4.3, 8.5), 4.26 (s, 1 H), 4.79 (s, 1 H), 5.23-

5.28 (m, 1 H), 6.21-6.26 (m, 2 H), 6.84 (d, 1 H, J= 8.7), 6.90-6.95 (m, 4 H), 7.19 (d, 1 H, J=

8.8), 7.23-7.42 (m, 7 H), 7.55 (d, 2 H, J= 7.7), 7.90 (d, 1 H, J= 9.5), 9.12, (s, 1 H); 13C NMR 6

20.99, 23.17, 35.47, 47.80, 53.93, 55.57, 55.62, 55.66, 57.66, 64.09, 73.89, 81.94, 83.74, 87.11,

89.46, 99.25, 113.71, 114.01, 114.10, 115.13, 123.66, 127.47, 127.52, 128.81, 129.13, 130.15,

131.12, 136.89, 137.02, 144.77, 146.29, 152.25, 157.30, 159.78, 160.65, 165.70, 170.12, 170.33,

170.71; HRMS (FAB+, 3-NBA) calcd for C 4 6H 4 20 13N 2 (M + H)+ 831.2765, found 831.2758.
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2-Carbomethoxypsoralen 5'-O-DMT-thymidine Cis-Syn Photoproduct (2.3). To a

solution of 42 mg (50 jmol) of compound 2.2 in 2.5 mL of freshly distilled methanol was added

125 [tL of DBU under an argon atmosphere. After stirring for 10 min at room temperature the

reaction was diluted with ethyl acetate, washed with saturated NH4C1, saturated NaHCO 3, and

brine, and then dried over Na2 SO 4 . The crude product was purified by silica gel chromatography

eluting with 50:1 dichloromethane/methanol to afford 34 mg (86%) of a yellow foam: 1H NMR

(300 MHz, acetone-d6) 8 1.65 (s, 3 H), 1.84-1.93 (m, 1 H), 2.10 (ddd, 1 H, J= 4.7, 6.7, 14), 3.20

(dd, 1 H, J= 5.0, 10), 3.29 (dd, 1 H, J= 4.3, 10), 3.73 (s, 3 H), 3.80 (s, 3 H), 3.80 (s, 3 H), 3.82-

3.87 (m, 1 H), 4.24 (s, 1 H), 4.29-4.34 (m, 1 H), 4.47 (d, 1 H, J= 4.6, (-OH)), 4.75 (d, 1 H, J=

1.5), 6.23-6.3 (m, 2 H), 6.90-6.96 (m, 5 H), 7.26 (d, 1 H, J= 7.3), 7.33-7.43 (m, 7 H), 7.55 (d, 2

H, J= 7.2), 7.89 (d, 1 H, J= 9.6), 9.06, (s, 1 H); 13C NMR 8 23.19, 38.21, 47.96, 53.69, 55.63,

57.57, 64.63, 71.40, 83.69, 84.97, 86.94, 89.73, 99.23, 113.96, 114.06, 115.09, 123.73, 127.43,

127.66, 128.73, 129.20, 131.14, 137.09, 144.74, 146.40, 152.16, 157.29, 159.77, 160.63, 165.71,

170.14, 170.38; HRMS (FAB+, 3-NBA) calcd for C44H400 12N2 (M + H)+ 789.2660, found

789.2663.
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2-Carbomethoxypsoralen 5'-O-DMT-3'-O-(isopropylamine-2-cyanoethyl

phosphoramidite)-thymidine Cis-Syn Photoproduct (2.4). To a solution of 25 mg (32 tmol)

of compound 2.3 in 500 jiL of dry CH 2C12 were added 6 mg (32 tmol) of bisisoproplyamonium

tetrazolide and 20 [.L (64 [tmol) of bis(isopropylamine)-2-cyanoethyl phosphoramidite. After

stirring for 5 h at room temperature under an argon atmosphere the solvents were removed in

vacuo. The crude product was purified by silica gel chromatography eluting with 1:1

hexanes/ethyl acetate. The purified product was dissolved in benzene and lyophilized to afford

23 mg (73%) of a white crunchy foam: 31P NMR 8 (121 MHz, benzene-d 6) 149.30, 149.65;

HRMS (FAB+, 3-NBA) calcd for C53H570 13N4P (M + H) + 989.3738, found 989.3737.
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5'-AGCTAXAAAAGGT-3'

Oligonucleotide (2.5). A 0.1 M solution of the modified phosphoramidite 2.4 was added

using the optional port. The coupling yield for the modified base was 85-92%. The

oligonucleotide was deprotected using 10% DBU in ethanol and the 2'-carboethoxypsoralen was

converted into the carboxylic acid by treatment with 1 mL of a 100 mM Na2CO 3 solution at pH

9.0 for 12 h. The reaction was neutralized with 50 [tL of a 50% acetic acid water solution and

purified by C18 reversed phase HPLC. Solvent A: 0.1 M NH4OAc in water; solvent B: 0.1 M

NH4OAc in 1:1 water:CH 3CN; gradient 10-30% B over 30 min. Electrospray ionization mass

spectrometry revealed the presence of ions at m/z 1058.05, 846.5, 705.2 corresponding to 4-, 5-, 6-

ions, respectively. The determined molecular weight was 4236.9, which agreed well with the

calculated molecular weight of 4236.7. Enzymatic digestion and HPLC analysis yielded

nucleoside ratios which were within experimental error of the theoretical composition of the

oligonucleotide. The peak corresponding to the modified nucleoside had identical HPLC

retention characteristics and UV spectrum as the synthesized standard 2.1.
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Synthesis of the Psoralen-DNA Cross-link. Oligonucleotides 2.5-2.7 (50 pmol) were

phosphorylated with [y- 32P]ATP (New England Nuclear [6000 Ci/mmol]) and T4 polynucleotide

kinase (New England Biolabs) followed by a chase of the kinase reaction with unlabeled ATP to

achieve full 5' phosphorylation. The kinase was heat inactivated (65 'C, 15 min), and the

appropriate unlabeled complementary strand was added. The oligonucleotides were annealed in

100 mM NaCl in a total volume of 100 pL at 75 'C for 5 min and allowed to cool slowly to 40 C.

The labeled duplexes were placed in 6x50 mm pyrex tubes and were irradiated with 366 nm light

using a 16 bulb Ray-O-Net photoreactor (9.0 J/m 2) for 5 min at 4 oC. Hand-held irradiations

were accomplished by placing a 366 nm UVP 4 watt lamp directly over the samples in opened

Eppendorf tubes at 4 OC.

Reversal of the Psoralen-DNA Cross-link. (A) Photoreversal: Photocrosslinked

oligonucleotides were photoreversed by irradiation of the samples with 254 nm light source (16.7

J/m 2) for 20 min or by a 254 nm hand-held UVP 4 watt lamp placed directly over the samples for

2 h. (B) Base catalyzed reversal: The crosslink was treated with 0.1 M NaOH for 30 min at 90

'C. The reaction mixture was chilled on ice, neutralized with saturated NH4C1, and the salts were

removed by a C 18 Waters Sep-Pak eluting with 1:1 CH 3CN:water. All products were analyzed

by electrophoresis on a denaturing 20% (19:1 mono:bis) polyacrylamide gel.
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6-Methoxy-2-carboxybenzofuran Thymidine Cis-Syn Photoproduct (3.2). To a

solution of 156 mg (0.32 mmol) of compound 1.24 in 15 mL of methanol was added 10 mL of a

saturated Na2 CO 3 solution. After stirring for 1 h at room temperature, the reaction was

neutralized with IN HCI and adsorbed onto silica gel via lyophilyzation. The crude product was

purified by silica gel chromatography eluting with 5:1 ethyl acetate/methanol to afford 126 mg

(93%) of a white solid: 'H NMR (300 MHz, D20) 8 1.75 (s, 3 H), 1.92-2.04 (m, 1 H), 2.16 (ddd,

1 H, J = 2.4, 5.9, 14), 3.63-3.75 (m, 2 H), 3.83 (s, 3 H), 3.88-3.94 (m, 1 H), 4.01 (s, 1 H), 4.31-

4.39 (m, 1 H), 4.74 (s, 1 H), 6.27 (dd, 1 H, J= 5.5, 9.5), 6.56-6.63 (m, 2 H), 7.08 (d, 1 H, J=

8.3).
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6-Methoxy-2-(2-oxopentamide)benzofuran Thymidine Cis-Syn Photoproduct (3.3).

To a solution of 67 mg (0.15 mmol) of compound 3.2 in 2 mL of dry DMF were added 66 mg

(0.45 mmol) of 5-amino-2,2-dimethoxypropane 3.1,71 88 mg (0.17 mmol) of PyBOP, and 108 ipL

(0.62 mmol) of diisopropylethylamine. The solution was stirred at room temperature under an

argon atmosphere for 2 h. The solvent was removed and the residual was dissolved in 2 mL of a

0.2 M solution of oxalic acid in water. After 5 min, the reaction was neutralized with saturated

NaHCO 3 and the solvents were removed in vacuo. The residue was dissolved in methanol,

adsorbed onto silica gel and directly added to the top of a silica gel column. Elution with a

gradient of 20:1 to 10:1 dichloromethane/methanol afforded 39 mg (50%) of a yellow-white

solid: 1H NMR (500 MHz, acetone-d 6) 8 1.67 (s, 3 H), 1.71-1.81 (m, 3 H), 2.01 (ddd, 1 H, J=

2.4, 5.9, 13), 2.07 (s, 3 H), 2.49 (app t, 2 H, J = 7), 3.15 (ddd, 1 H, J= 6.8, 13, 13), 3.35 (ddd, 1

H, J= 6.8, 14, 14), 3.59-3.60 (m, 2 H), 3.75 (s, 3 H), 3.76-3.79 (m, 1 H), 3.84 (s, 1 H), 4.28-4.30

(m, 1 H), 4.77 (d, 1 H, J= 1.9), 6.27 (dd, 1 H, J= 5.9, 8.8), 6.42 (d, 1 H, J= 2.5), 6.46 (dd, 1 H,

J= 2.5, 7.8), 6.97 (d, 1 H, J= 7.8), 7.94 (br s, 1 H), 8.84 (br s, 1 H); 13C NMR 8 22.27, 24.35,

38.08, 39.65, 41.05, 47.35, 55.97, 56.40, 56.69, 63.56, 72.16, 84.31, 87.05, 89.71, 97.65, 108.79,

117.99, 128.16, 152.72, 162.29, 163.52, 170.54, 171.16, 208.21.
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5-N-Hydroxyphthalimide 1-N-(2-(4-methoxymethylphenyl)-5-methoxymethylindole)

pentane (3.6). A solution of 0.22 g (0.46 mmol) of bromide 3.4 62 and 0.11 g (0.65 mmol) of N-

hydroxyphthalimide in 0.5 mL of dry DMF was heated to 60 'C under an argon atmosphere.

Triethylamine (91 [l, 0.65 mmol) was added and the solution was stirred overnight. The

solution was diluted with ethyl ether, neutralized with NH4C1, and dried over Na2 SO 4 . The crude

product was purified by silica gel chromatography eluting with a gradient of 5:1 to 3:1

hexanes/ethyl acetate to afford 0.22 g (86%) of a viscous yellow oil: 'H NMR (300 MHz,

CDC13) 6 1.35-1.38 (m, 2 H), 1.60-1.75 (m, 4 H), 2.20 (s, 3 H), 3.54 (s, 3 H), 3.55 (s, 3 H), 4.00-

4.10 (m, 4 H), 5.23 (s, 2 H), 5.25 (s, 2 H), 6.97 (dd, 1 H, J= 2.4, 8.8), 7.16 (d, 2 H, J= 8.8),

7.23-7.25 (m, 2 H), 7.31 (d, 2 H, J = 8.8), 7.71-7.74 (m, 2 H), 7.81-7.84 (m, 2 H); 13C NMR 8

9.23, 22.84, 27.64, 29.62, 43.66, 55.74, 55.81, 56.05, 78.00, 94.50, 95.95, 105.29, 108.36,

110.06, 112.87, 116.14, 123.36, 125.88, 128.96, 131.66, 132.39, 134.32, 138.03, 151.22, 156.99,

163.44.

5-N-Hydroxyphthalimide 1-N-(2-(4-methoxymethylphenyl)-5-methoxymethylindole)

hexane (3.7). A solution of 46 mg (94 Vpmol) of bromide 3.5 62 and 23 mg (141 pmol) of N-

hydroxyphthalimide in 0.5 mL of dry DMF was heated to 60 OC under an argon atmosphere.

Triethylamine (20 pL, 141 [pmol) was added and the solution was stirred overnight. The solution

was diluted with ethyl ether, neutralized with NH4C1, and dried over Na2 SO 4 . The crude product

was purified by silica gel chromatography eluting with a gradient of 5:1 to 3:1 hexanes/ethyl

acetate to afford 41 mg (76%) of a viscous yellow oil: 'H NMR (500 MHz, CDC13) 8 1.11-1.15

(m, 4 H), 1.48-1.56 (m, 4 H), 2.15 (s, 3 H), 3.54 (s, 3 H), 3.55 (s, 3 H), 3.94 (t, 2 H, J= 7), 4.02

(t, 2 H, J= 6.7), 5.23 (s, 2 H), 5.25 (s, 2 H), 6.75 (dd, 1 H, J= 2.4, 8.6), 6.94 (d, 1 H, J= 2.4),

6.99 (d, 2 H, J= 8.8), 7.16 (d, 1 H, J= 8.6), 7.22-7.26 (m, 2 H), 7.72-7.76 (m, 2 H), 7.82-7.87

(m, 2 H).
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5-N-Hydroxyphthalimide 1-N-(2-(4-hydroxyphenyl)-5-hydroxyindole) pentane (3.8).

To a solution of 0.22 g (0.40 mmol) of 3.6 in 10 mL of methanol was added 0.2 mL of

concentrated HC1. The solution was heated to reflux for 1 h, allow to cool to room temperature,
and neutralized with saturated NaHCO 3. The reaction mixture was diluted with ethyl acetate and

the organic layer was dried over Na 2SO 4. Thin layer chromatography showed two spots

suggesting that the phthalimide had partially degraded with the heat and acid. Purification of the

crude mixture using silica gel chromatography eluting with a gradient of 5:1 to 2:1 hexanes/ethyl

acetate afforded 0.10 g (54%) of a yellow oil: 'H NMR (300 MHz, CDC13) 8 1.24-1.28 (m, 2 H),

1.52-1.63 (m, 4 H), 2.11 (s, 3 H), 3.95 (t, 2 H, J= 7), 4.03 (t, 2 H, J= 6.7), 5.26 (br s, 1 H), 6.14

(br s, 1 H), 6.79 (dd, 1 H, J= 2.4, 8.7), 6.94-6.97 (m, 3 H), 7.15-7.22 (m, 3 H), 7.70-7.72 (m, 2

H), 7.78-7.82 (m, 2 H).

5-N-Hydroxyphthalimide 1-N-(2-(4-hydroxyphenyl)-5-hydroxyindole) hexane (3.9).

To a solution of 41 mg (71 [pmol) of 3.7 in 2 mL of methanol was added 40 pL of concentrated

HC1. The solution was heated to reflux for 1 h, allow to cool to room temperature, and

neutralized with saturated NaHCO 3. The reaction mixture was diluted with ethyl acetate and the

organic layer was dried over Na 2SO 4. Thin layer chromatography showed two spots suggesting

that the phthalimide had partially degraded with the heat and acid. Purification of the crude

mixture using silica gel chromatography eluting with a gradient of 5:1 to 5:2 hexanes/ethyl

acetate afforded 17 mg (50%) of a yellow oil: 'H NMR (500 MHz, CDC13) 6 1.11-1.15 (m, 4 H),
1.48-1.56 (m, 4 H), 2.15 (s, 3 H), 3.94 (t, 2 H, J= 7), 4.02 (t, 2 H, J= 6.7), 6.75 (dd, 1 H, J= 2.4,
8.6), 6.94 (d, 1 H, J = 2.4), 6.99 (d, 2 H, J= 8.8), 7.16 (d, 1 H, J= 8.6), 7.22-7.26 (m, 2 H), 7.72-

7.76 (m, 2 H), 7.82-7.87 (m, 2 H).

Experimental Section (Chapter3)



Ex,1erimental Section (Chapter3)

HO
HO OH HO

SH2)O (H 2)

N O
/ \ n=5,6 NH2

5-N-Hydroxyamine-N-(2-(4-hydroxyphenyl)-5-hydroxyindole) pentane (3.10). To a

solution of 25 mg (50 tmol) of 3.8 in 5 mL of methanol were added 150 IL of hydrazine. After

stirring for 20 min at room temperature, the solvents were removed in vacuo. The crude material

was dissolved in methanol, adsorbed onto silica gel and was directly added to the top of a silica

gel column. Elution with 25:1 dichloromethane/methanol afforded 14 mg (82%) of a yellowish

oil: 'H NMR (300 MHz, methanol-d 4) 8 1.06-1.16 (m, 2 H), 1.31-1.41 (m, 2 H), 1.44-1.56 (m, 2

H), 2.09 (s, 3 H), 3.44 (t, 2 H, J= 6.7), 3.96 (t, 2 H, J= 7), 6.69 (dd, 1 H, J= 2.4, 8.6), 6.85-6.93

(m, 3 H), 7.11-7.19 (m, 3 H).

5-N-Hydroxyamine-N-(2-(4-hydroxyphenyl)-5-hydroxyindole) hexane (3.11). To a

solution of 16 mg (33 [pmol) of 3.9 in 3 mL of methanol were added 90 [L of hydrazine. After

stirring for 30 min at room temperature, the solvents were removed in vacuo. The crude material

was dissolved in methanol, adsorbed onto silica gel and was directly added to the top of a silica

gel column. Elution with 25:1 dichloromethane/methanol afforded 5 mg (45%) of a yellowish

oil: 1H NMR (500 MHz, methanol-d 4) 6 0.99-1.11 (m, 4 H), 1.31-1.37 (m, 2 H), 1.42-1.49 (m, 2

H), 2.06 (s, 3 H), 3.47 (t, 2 H, J= 6.7), 3.93 (t, 2 H, J = 7), 6.65 (dd, 1 H, J= 2.4, 8.6), 6.81-6.87

(m, 3 H), 7.10-7.15 (m, 3 H).
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6-Methoxy-2-(2-oxopentamide)benzofuran 5'-O-Dimethoxytritylthymidine Cis-Syn

Photoproduct (3.12). To a solution of 39 mg (75 [tmol) of compound 3.3 71 in 1 mL of dry

DMF were added 28 mg (83 pmol) of dimethoxytrityl chloride, 14 mg (83 [tmol) of silver nitrate

and 15 [tL (113 [tmol) of collidine. The cloudy orange solution was stirred for 15 min at room

temperature under an argon atmosphere. The reaction mixture was diluted with ethyl ether,

washed with water, saturated CuSO 4, and brine, then dried over MgSO 4. The crude product was

purified by silica gel chromatography eluting with a gradient of 100:1 to

50:1dichloromethane/methanol to afford 34 mg (55%) of a yellow foam: 'H NMR (500 MHz,

acetone-d6) 6 1.57 (s, 3 H), 1.70-1.74 (m, 2 H), 1.88-1.92 (m, 1 H), 2.02 (s, 3 H), 2.02-2.06 (m, 1

H), 2.47 (app t, 2 H, J= 7), 3.11-3.17 (m, 2 H), 3.29-3.37 (m, 2 H), 3.75 (s, 1 H), 3.75-3.79 (m, 1

H), 3.80 (s, 6 H), 3.86 (s, 1 H), 4.36-4.39 (m, 1 H), 4.74 (d, 1 H, J= 1.5), 6.31 (app t, 1 H, J= 7),

6.43 (d, 1 H, J= 2.0), 6.47 (dd, 1 H, J= 2.4, 8.3), 6.91-6.95 (m, 4 H), 6.98 (d, 1 H, J= 8.3), 7.21-

7.25 (m, 1 H), 7.34-7.37 (m, 2 H), 7.40-7.42 (m, 4 H), 7.54-7.56 (m, 2 H), 7.92 (br s, 1 H), 8.87

(br s, 1 H); '3C NMR 6 22.37, 24.38, 38.03, 39.57, 41.04, 47.51, 55.57, 55.93, 56.25, 57.02,

64.70, 71.32, 83.22, 84.96, 86.87, 89.87, 97.63, 108.72, 114.02, 114.03, 118.02, 127.51, 128.16,

128.72, 129.21, 131.14, 131.17, 137.11, 137.25, 146.47, 152.68, 159.64, 159.65, 162.23, 163.54,

170.33, 171.05, 208.05.
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6-Methoxy-2-(2-oxopentamide)benzofuran 5'-O-Dimethoxytrityl-3'-O-

(isopropylamine-2-cyanoethyl phosphoramidite)thymidine Cis-Syn Photoproduct (3.13).

To a solution of 34 mg (41 pmol) of compound 3.12 in 400 [L of dry CH 2C12 were added 6 mg

(32 [tmol) of bisisoproplyammonium tetrazolide and 16 [L (64 [imol) of bis(isopropylamine)-2-

cyanoethyl phosphoramidite. After stirring for 3 h at room temperature under an argon

atmosphere the solvents were removed in vacuo. The crude product was purified by silica gel

chromatography eluting with 1:1 hexanes/ethyl acetate. The purified product was dissolved in

benzene and lyophilized to afford 28 mg (67%) of a white crunchy foam: 31P NMR (121 MHz,

benzene-d6) 6 147.89, 149.16.
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2-(2-Oxopentamide)psoralen Thymidine Cis-Syn Photoproduct (3.17). To a solution

of 34 mg (72 ptmol) of compound 2.1 in 1 mL of dry DMF were added 42 mg (290 [pmol) of 5-

amino-2,2-dimethoxypropane 3.1, 56 mg (110 jpmol) of PyBOP, and 70 ptL (400 pImol) of

diisopropylethylamine. The solution was stirred at room temperature under an argon atmosphere

for 2 h. The solvent was removed and the residual was dissolved in 3 mL of a 0.2 M solution of

oxalic acid in water. After 5 min, the reaction was neutralized with saturated NaHCO 3 and the

solvents were removed in vacuo. The residue was dissolved in methanol, adsorbed onto silica

gel and directly added to the top of a silica gel column. Elution with 20:1

dichloromethane/methanol afforded 32 mg (80%) of a yellow-white solid: 'H NMR (300 MHz,

methanol-d 4) 8 1.74 (s, 3 H), 1.64-1.87 (m, 3 H), 2.03 (ddd, 1 H, J= 3.0, 5.9, 13), 2.09 (s, 3 H),

2.50 (app t, 1 H, J= 7.1), 3.12-3.29 (m, 2 H), 3.59-3.62 (m, 2 H), 3.75-3.79 (m, 1 H), 4.04 (s, 1

H), 4.17-4.21 (m, 1 H), 6.23-6.28 (m, 1 H), 6.26 (d, 1 H, J= 9.5), 6.98 (s, 1 H), 7.39 (s, 1 H),

7.85 (d, 1 H, J= 9.8); 13C NMR 6 22.23, 24.47, 29.94, 38.30, 40.25, 41.52, 47.49, 56.14, 57.49,

63.69, 72.43, 84.87, 87.37, 91.27, 100.30, 113.98, 116.02, 124.50, 127.94, 145.93, 153.89,

157.42, 162.92, 165.65, 170.72, 172.51, 211.28.
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2-(2-Oxopentamide)psoralen 5'-O-Dimethoxytritylthymidine Cis-Syn Photoproduct

(3.18). To a solution of 32 mg (58 [tmol) of compound 3.17 in 1 mL of dry DMF were added 22

mg (64 p~mol) of dimethoxytrityl chloride, 11 mg (64 pmol) of silver nitrate and 12 VL (87

jtmol) of collidine. The cloudy orange solution was stirred for 15 min at room temperature under

an argon atmosphere. The reaction mixture was diluted with ethyl ether, washed with water,

saturated CuSO4, and brine, and then dried over MgSO 4. The crude product was purified by

silica gel chromatography eluting with a gradient of 100:1 to 50:1 dichloromethane/methanol to

afford 14 mg (28%) of a yellow foam: 1H NMR (500 MHz, acetone-d 6) 6 1.61 (s, 3 H), 1.70-

1.75 (m, 2 H), 1.89-1.93 (m, 1 H), 2.02 (s, 3 H), 2.04-2.11 (m, 1 H), 2.47 (app t, 2 H, J= 7),

3.14-3.18 (m, 2 H), 3.31-3.35 (m, 2 H), 3.77-3.80 (m, 1 H), 3.80 (s, 6 H), 4.06 (s, 1 H), 4.38-4.42

(m, 1 H), 4.82 (d, 1 H, J= 1.5), 6.25 (d, 1 H, J= 9.8), 6.30-6.33 (m, 1 H), 6.83 (s, 1 H), 6.92-

6.95 (m, 4 H), 7.22-7.25 (m, 1 H), 7.35-7.38 (m, 2 H), 7.41-7.43 (m, 5 H), 7.55-7.57 (m, 2 H),

7.90 (d, 1 H, J= 9.8), 8.07 (br s, 1 H), 8.98 (br s, 1 H); 13C NMR 8 22.39, 24.29, 29.13, 38.16,

39.72, 41.04, 47.95, 55.36, 55.58, 57.06, 64.60, 71.30, 83.23, 85.04, 86.90, 91.12, 99.73, 113.95,

114.04, 114.05, 115.24, 124.04, 127.53, 127.60, 128.73, 129.23, 131.16, 131.18, 137.12, 137.25,

144.82, 146.45, 152.48, 156.99, 159.66, 160.67, 165.21, 169.49, 170.80, 208.05; HRMS (FAB+,

glycerol) cacld for C48H47012N3 (M + H)+ 858.3238, found 858.3236.
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2-(2-Oxopentamide)psoralen 5'-O-Dimethoxytrityl-3'-O-(isopropylamine-2-

cyanoethyl phosphoramidite)thymidine Cis-Syn Photoproduct (3.19). To a solution of 14

mg (16 [tmol) of compound 3.18 in 200 tL of dry CH2C12 were added 3 mg (13 [tmol) of

bisisoproplyammonium tetrazolide and 7 ptL (20 p~mol) of bis(isopropylamine)-2-cyanoethyl

phosphoramidite. After stirring for 3 h at room temperature under an argon atmosphere the

solvents were removed in vacuo. The crude product was purified by silica gel chromatography

eluting with 1:1 hexanes/ethyl acetate. The purified product was dissolved in benzene and

lyophilized to afford 15 mg (89%) of a white crunchy foam: 31P NMR (121 MHz, benzene-d 6) 8

147.75, 149.43.
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5'-AGC TAX AAA AGG T-3'

Oligonucleotide (3.14). A 0.05 M solution of phosphoramidite 3.13 was added using the

optional port on the DNA synthesizer. The coupling yield for the modified base was 40%. The

oligonucleotide was deprotected using 10% DBU in ethanol and purified by C18 reversed phase

HPLC. Solvent A: 0.1 M NH4OAc in water; solvent B: 0.1 M NH4OAc in 1:1 water:CH 3CN;

gradient 15-25% B over 30 min. Electrospray ionization mass spectrometry revealed the

presence of ions at m/z 1426.9, 1070.7, 856.8, 714.0 corresponding to 3-, 4-, 5-, 6- ions,

respectively. The determined molecular weight was 4286.8, which agreed well with the

calculated molecular weight of 4281.8.
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(CH2 )-O- N N AOH

n=5 3.15 0 0
n = 6 3.16

5'-AGC TAX AAA AGG T-3'

Oxime Formation Between Oligonucleotide (3.14) and 2-Phenylindole Aminooxy

Compounds. To a solution of 19 nmol of oligonucleotide 3.14 in 200 pL of water were added

196 pL of 0.2 M sodium phosphate buffer at pH 5.6, and 4 pL (40 nmol) of a 10 mM solution of

2-phenylindole aminooxy compound in 1:1 DMF:water. After overnight incubation at room

temperature the samples were analyzed and purified by C18 reversed phase HPLC. Solvent A:

0.1 M NH4OAc in water; solvent B: 0.1 M NH4OAc in 1:1 water:CH 3CN; gradient 15-25% B

over 10 min, 25-40% B over 5 min, 40-60% B over 20 min, 60-100% B over 10 min.

Oligonucleotides 3.15 and 3.16 were characterized by UV absorbance and electrospray ionization

mass spectrometry. Electrospray ionization mass spectrometry of either peak of 3.15 revealed

the presence of ions at m/z 1534.0, 1150.9 and 920.7 corresponding to 3-,4- and 5- ions,

respectively. The determined molecular weight of 3.15 was 4607.0, which agreed well with the

calculated molecular weight of 4604.5. Electrospray ionization mass spectrometry of either peak

of 3.16 revealed the presence of ions at m/z 1539.0 and 1154.5 corresponding to 3- and 4- ions,

respectively. The determined molecular weight of 3.16 was 4621.0, which agreed well with the

calculated molecular weight of 4222.0. The UV spectrum of every isolated product contained a

shoulder at 300 nm corresponding to the addition of the 2PI group (Fig. 3.6E).
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5'-CC TCT TCT TCT GXG CAC TCT TCT TCT-3'

Oligonucleotide (3.20). The modified phosphoramidite 3.19 was added manually and

the coupling yield for this step was 85%. The oligonucleotide was deprotected using 10% DBU

in ethanol and purified by strong anion exchange HPLC. Solvent A: 0.025 M NH4OAc in 10%

CH 3CN; solvent B: 0.025 M NH4OAc, 1 M NaCl in 10% CH3CN; gradient 35-60% B over 30

min. Enzymatic digestion and HPLC analysis yielded nucleoside ratios which were within

experimental error of the theoretical composition of the oligonucleotide (Fig. 3.10). The peak

corresponding to the modified nucleoside had identical HPLC retention characteristics and UV

spectrum as the synthesized standard 3.13 (Fig. 3.10, inset)
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5'-CC TCT TCT TCT GXG CAC TCT TCT TCT-3'

Oligonucleotide (3.21). To a solution of 10 nmol of oligonucleotide 3.20 in 48.5 [tL of

water were added 50 [pL of 0.2 M sodium phosphate buffer at pH 5.6, and 1.5 pL (15 nmol) of a

10 mM solution of compound 3.11 in 1:1 DMF:water. After overnight incubation at room

temperature, 20 [pL aliquots were reduced with 18 tL of 1M NaCNBH 3 in water and 2 pL of M

HCI for 15 min. The reduced samples were purified by strong anion exchange HPLC. Solvent

A: 0.025 M NH4OAc in 10% CH3CN; solvent B: 0.025 M NH40Ac, 1 M NaCl in 10%

CH3CN; gradient 35-60% B over 30 min. Oligonucleotides were characterized by UV

absorbance and MALDI mass spectrometry. The determined molecular weight was 8408.0,

which agreed well with the calculated molecular weight of 8409.4.
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5'-CC TCT TCT TCT GXG CAC TCT TCT TCT-3'

Oligonucleotide (3.21). The modified phosphoramidite 2.4 was added manually and the

coupling yield for this step was 85%. The oligonucleotide was deprotected using 10% DBU in

ethanol and the 2'-carboethoxypsoralen was converted into the carboxylic acid by treatment with

1 mL of a 100 mM Na2CO 3 solution at pH 9.0 for 12 h. The reaction was neutralized with 50 tL

of a 50% acetic acid water solution and purified by strong anion exchange HPLC. Solvent A:

0.025 M NH4OAc in 10% CH 3CN; solvent B: 0.025 M NH4OAc, 1 M NaCl in 10% CH3CN;

gradient 35-60% B over 30 min.
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Oxime Formation Between Ketone Nucleosides and 2-Phenylindole Aminooxy

Compounds. To a solution of 250 nmol of a ketone nucleoside in 25 [tL of water were added 60

tL of 0.2 M sodium phosphate buffer at pH 5.6, 80 [L of DMF, and 35 .L (350 nmol) of a 10

mM solution of 2-phenylindole aminooxy compound in 1:1 DMF:water. After overnight

incubation at room temperature the samples were analyzed and purified by C 18 reversed phase

HPLC. Solvent A: 0.1 M NH4OAc in water; solvent B: 0.1 M NH4OAc in 1:1 water:CH 3CN;

gradient 30-50% B over 10 min, 50-100% B over 30 min.

Oxime of 2PI-C6-ONH 2 and Psoralen-Ketone. The two isolated peaks had nearly

identical proton NMR spectra. 'H NMR (500 MHz, acetone-d6) 8 1.10-1.21 (m, 4 H), 1.43-1.49

(m, 2 H), 1.53-1.57 (m, 2 H), 1.71 (s, 3 H), 1.74 (s, 3 H), 1.73-1.83 (m, 3 H), 2.01-2.05 (m, 1 H),

2.10 (s, 3 H), 2.13-2.16 (m, 2 H), 3.12-3.17 (m, 2 H), 3.61-3.62 (m, 2 H), 3.76-3.79 (m, 1 H),

3.87 (t, 2 H, J= 6.3), 3.98-4.01 (m, 3 H), 4.31-4.33 (m, 1 H), 4.86 (d, 1 H, J= 1.5), 6.24 (d, 1 H,

J= 9.8), 6.27 (dd, 1 H, J= 5.9, 8.8), 6.74 (dd, 1 H, J= 2.4, 8.8), 6.81 (s, 1 H), 6.91 (d, 1 H, J=

2.0), 6.99 (d, 2 H, J = 8.8), 7.21 (d, 1 H, J = 8.3), 7.24 (d, 2 H, J = 8.8), 7.36 (m, 2 H), 7.89 (d, 1

H, J= 9.8), 8.05 (br s, 1 H).

Relative Affinity of 2-Phenylindole Derivatives for the ER. The relative affinities of

the 2-phenylindole containing substrates for the calf uterine ER were measured by a competitive

binding assay73 with 17p-[3H]estradiol (New England Nuclear, 85-115 Ci/mmol). A 1:500

dilution of the stock solution of [3H]estradiol was made using 3:1 DMF:water. The 2PI

derivatives were dissolved in 10 gL of the [3H]estradiol dilution solution. Calf uterine extract7 3

(90 gL) was added, the samples were vortexed, and incubated overnight at 4 'C. After at least 8

hr, 100 gL of a 0.5% dextran-activated charcoal solution in 10 mM Tris-HCI (pH 7.5) was added

to each sample and vortexed. After a 1 hr incubation at 4 'C, the samples were spun for 10 min

at 4 "C and 100 gL of each sample was counted for radioactivity. By varying the ratios of the

molar concentrations of two ligands for the ER, it was possible to determine the concentration of
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the test substrate necessary to reduce receptor-bound radioactivity by 50%.

Assay for Recombinant ER Activity. The activity of the purchased human estrogen

receptor was determined by the protocol described by Panvera.66 Briefly, 5 pL of 400 nM [3H]-

estradiol (New England Nuclear, 40-60 Ci/mmol) was added to 95 [pL of ER in 10 mM Tris-HCI

(pH 7.5), 10% glycerol, 1 mM DTT, and 95 Lg of BSA. The reactions were incubated overnight

at 4 'C. A hydroxyl apatite slurry (100 iL) was added to each reaction and vortexed three times

during a 15 min incubation on ice. A wash buffer (1 mL) containing 40 mM Tris-HCI (pH 7.4),

100 mM KC1, 1 mM EDTA and 1 mM EGTA was added, the solution was vortexed, and spun 5

min at 10,000 in a microcentrifuge. The supernatant was discarded and the wash step was

repeated two more times. The hydroxyl apatite pellet was suspended in 200 [L of ethanol and

transferred into a scintillation vial. The reaction tube was washed with 200 iL ethanol and added

to the scintillation vial for quantitation. A non-specific binding (NSB) control was performed in

parallel containing 300-fold excess of cold estradiol. The ER concentration was determined by

using the following equation:

((cpm for ER)-(cpm of NSB)) X (dilution factor)
[ER] =

(0.005 mL) X (cpm/pmol for [3H]-estradiol)

Construction of 32P-Internally Labeled Closed Circular Plasmids Containing a Site-

Specific Psoralen Adduct. In separate reactions, 31 pmol of oligonucleotides 3.20, 3.21 or 3.22

were 32 P-5'-phosphorylated with [y- 32p] ATP (70 pCi), in a total volume of 10 pL, by incubation

with T4 polynucleotide kinase (10 U) at 37 'C for 30 min. T4 polynucleotide kinase (2 U) and 1

jL of 100 pmol of unlabeled ATP were added and the reactions were again incubated for 30

min. The reactions were heat inactivated at 65 'C for 20 min. To the 32P labeled

oligonucleotides were added 4 pmol of M13mp 18GTGx 74 circular single-stranded DNA in
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NEB2 (New England Biolabs) buffer in a total volume of 23 pL. The solutions were heated to

70 'C for 5 min allowed to cool to 37 'C for 30 min, and then cooled to room temperature for 20

min. The annealed substrates were stored on ice while the DNA synthesis premix was prepared.

The premix consisted of 10 [L of 10X NEB 1 (New England Biolabs) buffer, 1 tL of 100X BSA

(New England Biolabs), 2 [L of 100 mM ATP (Pharmacia), 30 tL of a solution that contained 2

mM of each dNTP, 22 pL of water, 10 pL of T4 DNA polymerase (3 U/tL) (New England

Biolabs), and 2 [L of T4 DNA ligase (400 U/tL) (New England Biolabs). The DNA synthesis

premix (77 L) was added to the DNA and incubated at 37 'C for 3 hr. The reaction was heat

inactivated at 75 'C for 10 min. Digestion of the DNA synthesis side products was

accomplished by addition of 1.5 L of T5 Exonuclease and incubation at 37 'C for 3 hr. The

reaction was heat inactivated at 70 oC for 10 min and the plasmid was purified by size exclusion

chromatography using two 1 mL Sephacryl-S400 spin columns (1700 rpm) pre-equilibrated with

10 mM Tris-HCI (pH 8.0) and 1 mM EDTA. The DNA substrates were stored at -80 'C.

The purity of the covalently closed circular DNA was determined by electrophoresis on a

15 x 30 cm 0.8% agarose gel at 50 V overnight in TBE buffer. The gel was exposed to BioMax

film at room temperature for 15 min. The site-specific placement of the psoralen adduct in the

plasmid was confirmed by enzymatic digestion at unique sites in DNA sequences flanking and

directly containing the psoralen lesion. Typically, 200-250 ng of plasmid was digested with 6

units of a restriction enzyme in a 10 L (NEB2 buffer) reaction at 37 'C for 90 min (Fig. 3.17).

The digestion products were analyzed by electrophoresis on a 15 x 30 cm 0.8% agarose gel at 50

V overnight in TBE buffer. The gels were exposed to BioMax film at room temperature for 15

min.

In vitro Nucleotide Excision Repair Assays. Reaction mixtures (10 L) contained 150

ng of plasmid containing a site-specific psoralen adduct and 20-40 jIg of HeLa whole cell

extract75 in a buffer containing 50 mM HEPES-KOH (pH 7.8), 70 mM KC1, 10 mM MgCl2, 1.3

mM DTT, 0.4 EDTA, 2 mM ATP, 22 mM phosphocreatine (di-Tris salt), 2.0 pg creatine

phosphokinase (type I, Sigma), 6.8% glycerol, 0.02% NP40 and 18 pg of BSA. HeLa cell
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extract was preincubated with buffer at 30 oC for 5 min, DNA substrate added, and reactions

incubated at 30 'C for the times indicated. The repair reactions were stopped by heating to 95

'C for 5 min. The incisions were analyzed by electrophoresis on a 14% 7 M urea polyacrylamide

gel (0.4 mM) at 50 'C for 2.5 hr. The gels were exposed to BioMax film at - 80 OC for 12-24 hr.

Amount of nucleotide excision was quantitated using a Molecular Dynamics PhosphorImager.

Blocking of Nucleotide Excision Repair by Recombinant ER. The ER storage buffer

(PanVera) (100 tL) was exchanged by passing it through two G25 (1 mL) spin columns (1900

rpm) pre-equilibrated with 50 mM Tris-HCI (pH 7.5), 100 mM KC1, 1 mM EDTA, 2 mM DTT,

12 mM MgC12, 0.067% NP40 and 10% glycerol. Half of the ER was heated to 95 'C for 5 min

and spun (14,000) at 4 'C for 5 min in order to pellet the precipitated protein. The heat

inactivated solution served as buffer for the repair reactions when less than 3 tL of dialyzed ER

was used. Reaction mixtures (10 [tL) contained 150 ng of plasmid containing a site-specific

psoralen adduct, 0-3 tL of ER, and 20-40 [tg of HeLa whole cell extract75 in a buffer containing

42.5 mM HEPES-KOH (pH 7.8), 15 mM Tris-HCI (pH 7.5), 40 mM KC1, 10 mM MgC12, 1.3

mM DTT, 0.4 EDTA, 2 mM ATP, 22 mM phosphocreatine (di-Tris salt), 2.0 tg creatine

phosphokinase (type I, Sigma), 4.7% glycerol, 0.02% NP40 and 18 Ig of BSA. The DNA

substrate and 3 iL of a ratio of ER and heat inactivated ER were preincubated with buffer at 30

'C for 30 min. HeLa whole cell extract was added and the repair reaction was incubated at 30

'C for 30 min. The repair reactions were stopped by heating to 95 'C for 5 min. The incisions

were analyzed by electrophoresis in a 14% 7 M urea polyacrylamide gel (0.4 mM) at 50 'C for

2.5 hr. The gels were exposed to BioMax film at - 80 'C for 12-24 hr.
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6-Methoxy-2-carbomethoxybenzofuran 5'-O-DMT-3'-O-acetylthymidine Cis-Syn

Photoproduct (4.1). To a solution of 0.25 g (0.50 mmol) of compound 1.24 in 2.5 mL of dry

DMF were added 0.20 g (0.60 mmol) of dimethoxytrityl chloride, 0.10 g (0.60 mmol) of silver

nitrate and 100 gL (0.75 mmol) of collidine. The cloudy orange solution was stirred for 15 min

at room temperature under an argon atmosphere. The reaction mixture was diluted with ethyl

ether, washed with water, saturated CuSO 4, and brine, and then dried over Na2 SO 4. The crude

product was purified by silica gel chromatography eluting with 100:1 dichloromethane/methanol

to afford 0.33 g (84%) of a yellow foam: 'H NMR (300 MHz, acetone-d 6) 6 1.65 (s, 3 H), 2.03-

2.14 (m, 2 H), 3.24 (dd, 1 H, J= 4.4,10), 3.37 (dd, 1 H, J= 4.4, 10), 3.76 (s, 3 H), 3.77 (s, 3 H),

3.80 (s, 6 H), 3.93-3.97 (m, 1 H), 4.06 (s, 1 H), 4.73 (d, 1 H, J= 1.4), 5.22-5.25 (m, 1 H), 6.22-

6.27 (m, 1 H), 6.45-6.50 (m, 2 H), 6.93-7.00 (m, 5 H), 7.23-7.28 (m, 1 H), 7.35-7.43 (m, 6 H),

7.54-7.57 (m, 2 H), 9.03 (br s, 1 H); 13C NMR 6 20.97, 23.15, 35.32, 47.34, 53.64, 55.58, 55.92,

56.62, 57.62, 64.18, 73.98, 81.85, 83.70, 87.06, 88.25, 96.97, 108.84, 114.05, 117.42, 127.65,

127.98, 128.76, 129.07, 131.07, 136.85, 136.99, 146.25, 152.42, 159.72, 162.53, 164.08, 170.56,

170.65, 170.94; HRMS (FAB+, 3-NBA) calcd for C 4 4 H 4 4 0 12N 2 (M + H)+ 792.2894, found

792.2892.
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6-Methoxy-2-carbomethoxybenzofuran 5'-O-DMT-thymidine Cis-Syn Photoproduct

(4.2). To a solution of 0.33 g (0.42 mmol) of compound 4.1 in 10 mL of freshly distilled

methanol was added 500 iL of DBU under an argon atmosphere. After stirring for 10 min at

room temperature the reaction was diluted with ethyl acetate, washed with saturated NH4C1 and

water, and then dried over Na2SO4. The yellow solid was one spot by TLC and used in the next

reaction without further purification (98%): 'H NMR (300 MHz, acetone-d 6) 8 1.60 (s, 3 H),

1.86-1.92 (m, 1 H), 2.03-2.07 (m, 1 H), 3.16-3.21 (m, 1 H), 3.25-3.30 (m, 1 H), 3.69 (s, 3 H),

3.74 (s, 3 H), 3.79 (s, 6 H), 3.77-3.85 (m, 1 H), 4.02 (s, 1 H), 4.28-4.30 (m, 1 H), 4.67 (d, 1 H, J

= 2.3), 6.27-6.32 (m, 1 H), 6.44 (dd, 1 H, J= 2.6, 8.4), 6.47 (d, 1 H, J= 2.7), 6.90-6.98 (m, 5 H),

7.23-7.26 (m, 1 H), 7.35-7.42 (m, 6 H), 7.53-7.56 (m, 2 H), 8.96, (br s, 1 H); 13C NMR 8 23.24,

38.07, 47.58, 53.49, 55.64, 55.98, 56.55, 57.48, 57.53, 64.68, 71.33, 83.59, 84.86, 86.93, 88.61,

97.04, 108.85, 114.05, 117.58, 127.69, 128.01, 128.78, 129.21, 131.16, 137.07, 137.12, 146.44,

152.43, 159.73, 162.56, 164.14, 170.71, 171.07; HRMS (FAB', 3-NBA) calcd for C42H420 11N2

(M + H)+750.2789, found 750.2790.
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6-Methoxy-2-carbomethoxybenzofuran 5'-O-DMT-3'-O-(isopropylamine-2-

cyanoethyl phosphoramidite)-thymidine Cis-Syn Photoproduct (4.3). To a solution of 0.31 g

(0.41 mmol) of compound 4.2 in 4 mL of dry CH 2C12 were added 60 mg (0.33 mmol) of

bisisoproplyammonium tetrazolide and 160 gL (0.50 mmol) of bis(isopropylamine)-2-

cyanoethyl phosphoramidite. After stirring for 5 h at room temperature under an argon

atmosphere the solvents were removed in vacuo. The crude product was purified by silica gel

chromatography eluting with 2:1 hexanes/ethyl acetate. The purified product was dissolved in

benzene and lyophilized to afford 0.29 (74%) of a white crunchy foam: 31P NMR (121 MHz,

benzene-d 6) 8 149.00, 149.47; HRMS (FAB', 3-NBA) calcd for C5,H590 12N4P (M + H)

951.3945, found 951.3941.
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Oligonucleotides. A 0.1 M solution of the modified phosphoramidite 4.3 was added

using the optional port. The coupling yield for the intercalating inhibitor was 85-92%.

Oligonucleotides containing the modified base 7-deaza-dG were oxidized as described in the

general experimental section. Oligonucleotides were deprotected using standard conditions and

purified by C18 reversed phase HPLC. Solvent A: 0.1 M NH4OAc in water; solvent B: 0.1 M

NH4OAc in 1:1 water:CH 3CN; gradient 10-30% B over 30 min. Oligonucleotides were annealed

by heating for 5 min at 80 'C in 100 mM NaHPO4 (pH 7.0), 100 mM NaC1. The samples were

allowed to cool at room temperature for 1 hr and then at 4 'C for 1 hr.

AFBj Epoxide Reaction with DNA. AFB1 epoxide was generated as reported. 94

Reactions contained 10 nmol duplex DNA in a total volume of 20 tl (0.5 mM DNA). In a 4 'C

room, samples were treated with 1-2.5 molar equivalents of AFB, epoxide, mixed by vortexing

for 5 min, diluted with buffer, and then the AFB,-diol was removed by extraction with CH 2C12.

Note: Everything contacting AFB1 or AFB, epoxide solutions was treated with bleach to

inactivate any residual toxin.

HPLC Purification of AFB1 Modified Oligonucleotides. Samples were loaded onto a

C18 reversed-phase analytical column and eluted with a gradient of 10-30% B over 60 min (A=

0.1 M NH4OAc in H20; B= 0.1 M NH4OAc in 50% H20/acetonitrile) with UV monitoring at

both 260 nm and 360 nm. Samples were desalted on a Sep-pak C18 cartridge at 4 'C and eluted

with 50% acetonitrile.

32 P-Labeling and Cleavage of AFB1 Treated Oligonucleotides. Purified

oligonucleotides were 5'-end labeled with T4 polynucleotide kinase and y-32P ATP (New

England Nuclear, 6000 Ci/mmol) in 70 mM Tris-HCI (pH 7.6) for 5 min at 37 'C.

Unincorporated label was removed by centrifugation of the sample through a Sephadex G25

column. Assays to identify the position of adducts formed were based upon the known lability of

Experimental Section (Chapter 4)



Experimental Section (Chapter 4) 175

AFB, adducts to conditions of alkali and heat.99 One hundred [pl of 10% piperidine was added

and heated for 30 min at 90 oC. Piperidine was removed by lyophilization, and samples were

subsequently electrophoresed through 20% 7 M urea polyacrylamide gels and visualized using a

Molecular Dynamics PhosphorImager. The mobilities of bands from samples were compared to

those of marker bands generated by the Maxam-Gilbert G-specific reaction. 107
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