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ABSTRACT

This thesis presents a detailed examination of the closed-loop behavior of a
micromechanical single element oscillator. First, describing function analysis techniques
are used to demonstrate the existence and stability of a limit cycle for a micromechanical
resonator self-excitation loop. It is shown that this limit cycle exists at the amplitude-
dependent resonant frequency of the drive axis, and it is stable if the restoring force is a
linear or hard spring. The amplitude regulator is adequately modeled with the slowly
varying parameter method of Krylov and Bogoliubov. Transfer functions relating
parameter variations to the frequency and amplitude of the limit cycle are derived.

A rotational degree of freedom is added to the traditional, two degree of freedom
(horizontal and vertical), coupled, nonlinear, second-order dynamic model of a
micromechanical resonator. It is shown through finite element analysis that rotations less
than 0.01 degrees do not affect the interdigitated comb finger capacitance. The impact of
angular displacement is limited to the parallel plate capacitor between the rotor and the
substrate electrodes. A new method for simultaneously observing the vertical and
angular displacements of the rotor is used to measure the open-loop responses of both
motions due to on-axis applied forces and coupling from horizontal oscillations.

Force-rebalance loops are designed to eliminate both vertical and rotational motions
and to provide information on the magnitude of the in-phase and quadrature (with respect
to the rotor horizontal velocity) components for both degrees of freedom. Extensive
numerical simulations demonstrated the stability and robustness of these force-rebalance
loops. The vertical rebalance loop was successfully implemented on a laterally
oscillating micromechanical resonator. Vertical motion was reduced by a factor of 175.
Information on both the in-phase and quadrature components of vertical motion was
provided through the control voltages. An applied rate sinusoidal disturbance was
introduced to generate in-phase Coriolis force errors. The vertical motion was held at
zero by the force rebalance loop, and the in-phase control signal provided information on
the magnitude of the disturbance.
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Chapter 1

Introduction

1.0 History of Resonant-Structure Micromotors
Resonant-structure micromotors are "a class of mechanisms that operate on the

principle of mechanical resonance so that the armature is driven for maximum

displacement and power [25, 26]." The desire to keep time accurately has yielded several

significant developments in resonant structure motors over the last 700 years. In the

thirteenth century, the first resonant-structure motor was constructed: a clock based on

the verge escapement and resonant pendulum. To avoid bearing friction and wear, these

mechanisms used flexural components; thus, they may be considered the oldest resonant-

structure motors. These devices kept time poorly and were abandoned in 1675, when the

recoil escapement was invented [25, 26].

This concept of the resonant-structure motor was refined over the next three centuries.

The first miniaturization of these motors occurred between 1510 and 1765, when portable

clocks, i.e., watches, such as pocket watches, were developed; these were the first

resonant-structure mini-motors. The invention of the "remontoire escapement" by

Thomas Mudge in 1765 greatly aided this reduction in size. These chronometers were

capable of 21,600 beats per hour by the late eighteenth century: a very high frequency for

that time [25, 26].

The main drawback of the pendulum clocks is that they depended on gravity to

generate resonance. The development of the balance wheel freed clock designers from

gravity's limitations and focused research on improved clock design and material

performance for resonant-structure motors. The transition from timepieces to

micromotors begin with the introduction of the first resonant-structure millimotor: the

Bulova Accutron watch. In this device, a miniature tuning fork was mechanically

resonated at 100 Hz with electric forcing. This fork drove a gear wheel at 380,000 teeth

per hour, making it one of the first commercially available resonant-structure

millimechanical motors [25, 26].



The next step, which led to resonant-structure micromotors, came in the 1980s, when,

at the University of California at Berkeley, Roger T. Howe and William C. Tang

developed resonant structures on silicon, using traditional integrated circuit etching

techniques [31-33]. Tang's invention of the comb drive permitted electrostatic forces to

resonate suspended micromechanical rotors. In this design, a flat, planar proof mass,

guided by a flexure suspension, moves translationally, parallel to the substrate, as shown

in Figure 1.1. Applying a voltage to the comb drive generates a position-independent

force on the rotor. By using a comb drive to sense the motion of the rotor, closed-loop

oscillations may be sustained at frequencies on the order of tens of kiloHertz. By

exploiting a double-ended tuning fork design for the rotor, many applications for the

resonant-structure micromotor, including gyroscopes, accelerometers, and time

references, have emerged.

Figure 1.1. Optical Micrograph of a Typical Single Element Oscillator

It is interesting to note that the current issues of resonant-structure micromotors are

very similar to those encountered 700 years ago. In the early development of the clock,

friction on the macro level was a significant concern and forced designers to use flexural

components. As the timepieces became smaller, it was clear that friction and wear

limited performance, regardless of the size of the device. Presently, micro-friction is a

major dissipative force, and suspended rotors are used in micromotors to minimize the

effects of friction by eliminating moving mechanical contact. In addition, the

micromechanical resonators are operated in a vacuum, either sealed to hold the vacuum

or connected to a pump to remove the air. However, as clocks continued to shrink in

size, the material choice and design became major issues. In micromotors, silicon is used



because of its attractive properties, and careful design will maximize the performance of

the silicon while minimizing the effects of drag [25, 26].

1.1 Fabrication of Micromechanical Resonators
At Draper Laboratory, micromechanical structures, including oscillators, gyroscopes,

and accelerometers, are built using a dissolved-wafer process, which results in crystal

silicon structures anodically bonded to glass substrates [37]. The silicon and glass are

both defined and etched separately, and then joined together to yield a micromechanical

structure.

In the silicon process, a recess is etched into a p-type (100) silicon wafer using KOH

to define the gap spacing of the conducting plates. Next, the thickness of the device is

determined by using a high temperature boron diffusion. Reactive ion etching (RIE) cuts

out the structure features, which are then released by etching past the p++ etch stop.

In the first glass step, a #7740 Coming glass wafer is recessed by 1600 A, and a

multi-metal system is deposited and lifted off of the wafer. With this method, the

metalprotrudess only about 500 A above the surface of the glass, and it defines both sense

and drive plates for the proof mass, as well as provide output leads from the silicon

transducers to the controlling electronics.

Finally, the glass and silicon are electrostatically bonded together at 3750 C with a

potential of 1000 V. During this process, the silicon and glass are drawn tightly together,

insuring a low resistance silicon to gold contact. The last step is a selective etch in

ethylene diamine pyrocatechol, which dissolves the silicon up to the heavily doped (p+)

diffused layers. This fabrication sequence requires only single-sided processing, with

three masking steps on the silicon and one on the glass. Yield from this approach is high,

and it is compatible with batch processing.

1.2 Motivation for Advanced Modeling and Control
The traditional dynamic model for a laterally driven micromechanical resonator has

two degrees of freedom: horizontal and vertical. As these devices mature and fabrication

becomes more precise, the effects of a rotating proof mass on performance need to be

quantified. By adding a rotational degree of freedom to the dynamic model, the impact of

angular displacements on the dynamics of the system and on the capacitor sensing and

forcing models can be investigated.
As a first step in advanced dynamic modeling, the existence of a limit cycle at the

lateral resonant frequency for the oscillator closed-loop system with a relay feedback

element is demonstrated. This limit cycle is shown to be stable for linear and hard



springs, and the effects of system parameter perturbations on the amplitude and frequency

are determined. The amplitude regulator loop is simplified using the slowly varying

parameter method, and the resulting model is shown to be an accurate representation of

the loop.

In addition to modeling the rotational behavior of the system, the next step in the

development of micromechanical devices is to force rebalance both the vertical and

rotational motions of a laterally oscillating proof mass. Previous efforts at vertical

closed-loop control have included static vertical positioning of a stationary proof mass [9,

10]. To be truly effective, the vertical and rotational control loops should be capable of

eliminating all out-of-plane motion that couples from the proof mass lateral dynamics. In

this scenario, the controllers can compensate for dynamic and transient errors, such as

spring cross-coupling or rate-induced Coriolis forces. When implemented, this

micromechanical resonator is operating with three closed loops: the drive axis loop to

sustain lateral oscillations, and the vertical and rotational force-rebalance loops to

eliminate out-of-plane motions.

1.3 A 3 DOF Dynamic Model with Force-Rebalance Loops
In the following chapters, the fundamental theories of micromechanical resonators are

presented for a single element oscillator (SEO). The stability of the self-exciting motor

loop is then demonstrated. Next, the third degree of freedom is added, and its impact on

the entire electromechanical model of the oscillator is examined. Force-rebalance loops

for both the vertical and rotational degrees of freedom are then designed. Finally, the

three DOF dynamic parameters are characterized, and the vertical axis is controlled with

a force-rebalance loop.

1.3.1 Organization of Thesis

This thesis was organized so that someone with a basic grasp of mechanics and

control theory could follow the development of the dynamic model and force-rebalance

loops. Each chapter begins with a brief description of the problem examined in that

chapter. Therefore, in places, the text may seem fundamental. This was done

intentionally to permit the reader an opportunity to understand the direction of the

investigation.

1.3.2 Fundamental Micromechanical Resonator Theory

The two most important concepts for microelectromechanical resonators are mass-

damper-spring second-order mechanics and capacitor electrostatics. In Chapter 2, an



overview of the mechanical models is given, and cubic spring behavior is examined in

detail, because of the significant role that it plays in the closed-loop performance of the

horizontal axis.

Electrostatic fundamentals are also presented in Chapter 2. Forcing and sensing

models for both the interdigitated comb finger and parallel plate capacitors are developed.

For the comb fingers, finite element analysis leads to conclusions that are not readily

apparent from the analytic models of the comb drive, such as comb sensitivity to vertical

motion. The spring softening effect of the parallel plate capacitor is also explored, and its

constraints on control system implementation are highlighted.

1.3.3 Sustained Limit Cycles in Micromechanical Resonators

For mass production of these devices, self-excitation loops have been developed to

sustain lateral oscillations of the proof mass. In Chapter 3, describing function analysis is

used to linearize the sinusoidal responses of the cubic spring and hysteretic relay and to

develop a state-space representation of the system dynamics. This analysis is then

expanded to demonstrate closed-loop stability of a limit cycle at the nonlinear, amplitude-

dependent, horizontal resonant frequency of the self-oscillation loop. The stability

criterion is based solely on the nature of the nonlinear spring, and the system is stable for

linear and hard springs. Stable lateral oscillations do not depend on the pressure at the

device. Finally, the effects of transient perturbations of the system parameters on the

limit cycle amplitude and frequency are investigated with describing function analysis.

In addition, a first-order model of the amplitude regulator is developed by assuming

that, compared to a resonant frequency of 20 kHz, the oscillation amplitude and

frequency are slowly varying functions of time. With this model, the behavior of the

oscillator amplitude during startup can be studied. From the analysis, it is clear that the

amplitude regulator is a very nonlinear controller. This simplified model is compared to

simulation results in order to show that it is an adequate representation of the amplitude

regulator.

Finally, a numerical simulation is developed for the closed self-excitation loop. By

using the basic horizontal and vertical dynamic model, the startup and steady-state

behaviors of the simulation correspond well with observed performance in

micromechanical resonators. This simulation contributes understanding and a simpler

mathematical model of the resonator behavior.



1.3.4 Three Degree of Freedom Micromechanical Resonator Model

In Chapter 4, a rotational degree of freedom, 0, is added to the dynamic model. First,

the impact of dynamic coupling between this mode and the other two modes is discussed,

and this model is then linearized to a state-space representation using describing function

analysis. The simulation introduced in Chapter 3 is modified to include the proof mass

rotational dynamics, and the stability of the 6-dynamics is demonstrated.

Investigating the impact of rotation on the electrostatic analysis of Chapter 2 requires

re-evaluating both the comb and parallel plate capacitor models. First, the comb drive

model is rederived for a rotating proof mass, and finite element analysis is used to verify

that small rotations, on the order of 0.010, do not affect the comb drive model developed

in Chapter 2. Next, the parallel plate capacitor model is rederived, with significant

rotational effects. From this new parallel plate model, sensing methods for both vertical

and rotational motion are presented. Since vertical motion is the common mode and

rotational motion is the differential mode, it is proposed that the sense plate be split, and

the integrated charge outputs from these plates summed and differenced to yield

indications of both vertical and rotational motions.

1.3.5 Force-Rebalance Loops for Vertical and Rotational Motion

In Chapter 5, force-rebalance loops for both vertical and rotational motion are

developed. First, the required modulations and demodulations are linearized to derive a

baseband model for the disturbances and the control signals. With this model, a PI

compensator is designed to guarantee stability for both the vertical and rotational force-

balance loops. Here, the compensator gain depends on the pressure in the system; as the

pressure in the system decreases, the required gain increases.

For rotational control, the control plate design requires nonlinear torquing

coefficients. To linearize these terms, complex control signals are required; solutions are

presented for both the actual and an alternative oscillator design. The nonlinearity is

introduced by the proof mass oscillations; a torquing model is also developed for a

stationary proof mass.

Finally, the simulation from Chapter 4 is modified to include both force-rebalance

loops. After verifying the performance and robustness of the vertical and rotational

control loops independently, the micromechanical oscillator is successfully simulated

with all three loops closed. The horizontal oscillation is sustained by the oscillator loop

and amplitude regulator, and the vertical and rotational motions are driven to zero by

their respective force-rebalance loops.



1.3.6 Parameter Measurement and Closed-Loop Oscillator Experiments

In Chapter 6, the single element oscillator is constructed and experiments are

performed to determine the parameters of the device. First, the dimensions of the

oscillator are determined with a WYCO® profilometer [5]. Next, the mass and moment

of inertia are calculated from analytic models. All of the capacitors are then measured.

From these values, forcing and sensing constants for all degrees of freedom are estimated.

The on-axis and cross-coupling parameters of the device are determined with open-

loop frequency responses. Here, a reduced model is used to determine the significant

couplings, which include the drive axis motion and force coupling into both the vertical

and rotational degrees of freedom.

Finally, the vertical force-rebalance loop is implemented about an advanced resonator

design. Here, the vertical motion is reduced substantially, and the in-phase and

quadrature rebalance channels provide independent information on the magnitudes of

each component of the vertical motion. The effectiveness and robustness of the control

system is demonstrated by introducing a sinusoidal disturbance to the system and

verifying that the control voltages compensate for this additional error.

1.3.7 Conclusions and Future Work
Finally, in Chapter 7, conclusions from this thesis and recommendations for future

work are presented. The next significant step would be to independently force rebalance

two proof masses, such as in a tuning fork gyroscope. With this accomplishment, the

dynamic range and sensitivity of such devices would be greatly increased.
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Chapter 2

Micromechanical Resonator
Lumped Parameter Modeling

2.0 Theory of Micromechanical Oscillators
The development of silicon micromechanical single element oscillators (SEO)

combines many disciplines: classical mechanics, electrostatics, electronic design, finite

element analysis, fluid dynamics, and many other diverse fields. The dynamics of a

resonator are typically a second-order, damped-spring system, often with nonlinear

characteristics. The damping of the device depends greatly on the pressure within the

enclosed device; Q's on the order of 250,000 have been observed in very low pressure

resonators. Electrostatic actuation is used to generate motion; the invention of the comb

drive permits position-independent forcing. Capacitive sensors are used for resonator

motion detection. The goal of this chapter is to present a basic mechanical model of the

oscillator and to describe how electrostatics are used both to generate and to sense proof

mass motion.

2.1 Two Degree of Freedom Dynamic Resonator Model
The basic dynamic model for a micromechanical resonator or SEO consists of two

degrees of freedom, both vertical and horizontal, and it may be derived from Lagrange's

energy formulation. Although this result is useful, non-dimensionalizing the equations of

motion results in more powerful conclusions and improves numerical simulations of the

system. Because the proof mass is supported by beams, the springs for both degrees of

freedom may exhibit nonlinear behavior at large oscillation amplitudes. In this section,

the dynamic model for a typical micromechanical oscillator is derived, and cubic spring

behavior is explored in detail.



2.1.1 Lagrangian Derivation of 2-D Lumped Parameter Model
The basic dynamic model for a micromechanical resonator is a coupled pair of

second-order, nonlinear, differential equations [2]. The two generalized coordinates for
the SEO are the horizontal, or drive, motion along the x-axis; and the vertical, or out-of-
plane, motion along the y-axis, as shown in Figure 2.1. In this schematic, a top and side
view are shown with the drive and sense combs included so that positive x-axis motion is
towards the motor sense comb, and that positive y-motion is away from the substrate, i.e.,
out of the page. A third coordinate, z, is used only as a reference axis. These coordinates
are defined with respect to the substrate, not the inertial reference frame. The proof mass
is assumed to be constrained by design to be rigid, i.e., immovable, along the z-axis, and
unable to rotate about any axis.

+Y

+x

.I Substrat

Motor Drive DlUl Motor Sense
Comb 8 Proo fMassl 8  Comb

+Z

Figure 2.1. Top and Side Views of Two-Dimensional SEO Coordinate System

The equations of motion for this system may be derived using Lagrange's equation for
a system of n generalized coordinates, 4, and time, t:

dt d d 84i ,



where,

L = Lagrangian operator = T* - V

T* = total kinetic co-energy of system

V = total potential energy of system from conservative forces, and
i = total non-conservative and external forces for i.

The only non-conservative force in a micromechanical resonator is assumed to be viscous

damping, which is proportional to velocity. Lagrange's equation may now be rewritten as

d (L dL Dv
S-- +  = exti for i= 1,...,n (2.2)

dt ad i) i & i d'
where D, is the viscous damping energy term and Hext,i are the applied external forces.

Since the velocities must be expressed with respect to inertial space, if the device is
rotating about its z-axis at a rate 2, then the horizontal and vertical velocities will have

angular velocity components. The total kinetic energy of the basic resonator may be

expressed in terms of the two generalized coordinates

T=lm( - y)2 + m(y, + x1)2 (2.3)
2 2

where m is the mass of the oscillator element. It is assumed that a cross-inertia term does

not exist in this system. However, both stiffness and damping cross-coupling do exist.

The total potential energy may be expressed as

1 2 1 3 1 41 1 y31 4 12
V =kxx2 + kx2 3 +x kx3 4 + kyy2 +-k2 3 +k kxyxy + CV2 (2.4)

2 34 3 Y2 -4 4 2

where kx, kx2, and kx3 are the linear, quadratic and cubic spring terms along the x-axis,

respectively; ky, ky2, and ky3 are the linear, quadratic and cubic spring terms along the y-

axis; and kxy is the cross-coupling term between the x- and y-axes. The CV2 term is the

energy stored in the capacitor; this term is used to generate motion in the

micromechanical resonator. Here, C represents all of the capacitors, and the effects of the

individual capacitors will be addressed in significant detail in Section 2.2

The non-conservative viscous damping function, D,, may then be written as

Dv =l bx2 + by2 + bxyj (2.5)
2 2

where bx, by, and bxy are the x-axis, y-axis and cross-coupling damping coefficients for

the micromechanical resonator. There are no external forces in this system.

If, for now, all of the electrostatic terms (from CV2) acting along the x-axis are

defined as Fx, and those along the y-axis as Fy; and the centripetal force terms are



neglected as higher order; then, by inserting Equations 2.3, 2.4, and 2.5 into Equation 2.2,

the Lagrangian formulation of the equations of motion are

mn +bxi +kxx +kx 2x 2 + kx3x + ky bxy- 2mQ = Fx (2.6)

my +byy + kyy +k2 2 +ky3 y3 +kxyx +bxyi + 2m = Fy (2.7)

which is a nonlinear, coupled, second-order system consisting of four states: a position

and velocity for motion along both x and y.

2.1.2 Non-dimensionalization of the Equations of Motion

Before proceeding, it is useful to non-dimensionalize the dynamic model. By

normalizing both the time and the displacement, further analysis and simulation will be

greatly simplified. The resonant frequency of a typical system is about 20 kHz, and the

displacements are on the order of microns, requiring very, very small time steps in order

to simulate this system adequately. By non-dimensionalizing the system, the required

time steps and resulting displacements are much closer to one, permitting a more accurate

simulation, since problems with roundoff errors, numerical quantization effects, and

poorly conditioned matrices are greatly reduced. An additional motivation for non-

dimensional analysis is that conclusions and observations, when stated in normalized

parameters, are applicable to a range of resonator sizes with similar non-dimensional

values.

The first step in the normalization of these equations is to define a non-dimensional

time and two non-dimensional displacements,

T = COnt = kx t
m

= = - (2.8)
xo

xo

where,

on = nominal natural frequency of the x-axis, and

x0 = nominal steady-state oscillation amplitude along x-axis, normally about 10 pm.

By first substituting these three values into Equations 2.6 and 2.7; then by separating the

electrostatic forces into on-axis and coupled terms, retaining the Coriolis forces, and

neglecting the centripetal forces; and finally by dividing each equation by mOn2xo, the

following non-dimensional equations are derived:



1 2 3 -2- 1 L .-2 3 - (2.9)
x+-x+x+k + +kx +  y aFy + 2(2.9)

Qxy

+y + 2 y 25 2 + Y + 2 xy + F y x + 22 (2.10)y + y + ky2 + ky =3y -2 Qy -=

where,

mOn kx 1 k Y - kxy
bx y - 2 - 2

kx n kx mn (2.11)

kx3 0 MO _mn

kx3 kx  by bxy

x kxxo - ky2xo a
kxx ky2- kxOn

kxxo

and £2 is an applied input rate that generates a Coriolis force. In these definitions, both
-2
xy, the cross-frequency, and Qxy, the cross-damping, may be negative. These terms

have been defined only to assist in the understanding of the system, i.e., as a cross-

resonant frequency and cross-damping. For now, a and P are simply scaling coefficients

to describe the cross-coupling of the vertical and horizontal forces. In Section 2.2.3,

more accurate models of these terms will be presented.

2.1.3 Duffing's Equation and Non-linear Springs

A significant nonlinear element in the dynamics of both degrees of freedom is the

cubic spring. In 1918, G. Duffing first proposed a harmonic solution to this problem by

using the iteration method, and, therefore, this equation is known as Duffing's Equation.

In general terms, a non-dimensionalized, damped, forced, Duffing equation may be

expressed as [22]

S+ + x +Ax 3 = ycos ot

x(O)= a (2.12)

(o) =where,

where,



co = frequency of the applied force

t = dimensional time

3 = the damping parameter

a = the cubic spring parameter

y = the force amplitude

and a and P are the initial conditions of the system. The character of the nonlinear spring

is determined by A. For A> 0, the spring is hard; for A < 0, the spring is soft; and for A =

0, the spring is linear. This equation is identical in form to Equations 2.9 and 2.10 if the

cross-coupling terms are neglected.

Duffing's equation may be analyzed by a variety of methods. Here, Lindstedt's

perturbation method is used to develop the classic solution to the damped Duffing

equation and to provide analysis of the behavior of the cubic spring. In Chapter 3, a

describing function approach yields identical results that are then used in the state-space

model of the system. Perturbation methods, such as Lindstedt's, are very effective at

analyzing nonstationary systems when the amplitudes and frequencies are slowly varying

functions of time. 1

First, the parameters are defined as functions of E (a small parameter), so that, as E

goes to zero, the system reduces to an unforced, undamped, linear oscillator:

x(E) = x0 + £l+...

a(e) = ao + E +...

f(E) = flo + E+-

y(E) = EY+... (2.13)

3() = E31+..-

S(E)= EI+.+...

By defining the coefficients in this manner, small input forces near the resonant

frequency will generate large amplitude responses because of the very light damping

provided by small 6. In this perturbation analysis, only terms to the first order in E are

kept. In order to examine the harmonic response of the system, let co = 1, so that the

1 This is not the only time that this condition is required. Krylov and Bogoliubov required this for their
describing function-like analysis shown in Chapter 3. The describing function analysis and most of the
stability analyses also assume systems of slowly varying amplitude and frequency (or phase).



forcing is at a frequency that varies slightly from the ideal resonator 2. Substituting the

values above into Equation 2.12 yields3

x + e5x + x + El x 3 = eY1 cos(1 + eOl)t (2.14)

Differential equations for xO and xl may be found by first defining r = o(e)t in the

derivatives and trigonometric terms of Equation 2.14, then by expanding the result with

respect to e, and finally by equating the e0 and E1 coefficients:

xoj + x0 = 0 (2.15)

x"+ x1 = -2 1lx6' - x6 -2lx3 + 71 cosr (2.16)

where 'denotes d/dr. The solution to Equation 2.15 is straightforward; it is simply the

combination of sines and cosines that yields the correct magnitude and phase of the

zeroth order term of x for a given set of initial conditions:

xo = ao cos T+ l0 sin T = Ag cos( - Tp) (2.17)

where,

Ao = magnitude of xo, and

(9 = the phase angle between xO and the forcing function.

Inserting this solution into Equation 2.16 leads to a differential equation for xl:

xf'+ x1 = 20 1Ao cos(t- 40)- 1 (Ao sin(T- 9))
3 (2.18)

-Az(Acos(- 9))3 + ycosr

Before proceeding, it is useful to define cost in terms of rand 9,

cos t = cos(-r- 49 + p) = cos(,r- 9)cos 9 - sin(rt- rp)sin 49 (2.19)

Substituting Equation 2.19 into Equation 2.18 and using the trigonometric identity

cos3 6= cos + cos3 (2.20)
4 4

leads to a differential equation for xl:

X'+ x 1 = 2oi1AO0 - 1A1A + Y cos }cos(t- 9)

(2.21)
+1 YAo -y sin sin(- p)- 14 A cos3( - p)

2 This is the linear, non-dimensional, natural frequency of the x-axis motion, as shown in Equation 2.12.
3 In this analysis, sub- and super-harmonics are acknowledged, but neglected from the analysis. Neither has
been observed in closed loop operation of a resonator.



The terms in the braces are linearly resonant, and they lead to secular terms in xl. Setting

them equal to zero defines the resonance in terms of the space spanned by cos(-(p) and

sin(r-p)

2wlA 3 + y cos 9 = 0 (2.22)

31A 0 - yl sin 9( = 0 (2.23)

Equation 2.23 gives a solution for (p,

sin (p = 31A (2.24)
71

which implies that

cos 1 1A (2.25)

Substituting this into Equation 2.22 gives an equation relating ol to AO

01- 3A 2 712 81 (2.26)
8 4 A 2 4

This solution, however, is not expressed in terms of the original Duffing equation

parameters. By using the definitions of Equation 2.13 and eliminating E, substitutions

may be made to obtain a function of the original terms,

- 1 3 2 - (2.27)
8 4A0  4

which is known as the frequency response equation for Duffing's equation.

Equation 2.27 may then be solved for co in terms of Ao, and the phase angle may be

defined from Equations 2.22 and 2.23:

3 2 Y 2  
2

o = 1+ A + 2 (2.28)
8 4A6 4

(p = +tan_ 2 (2.29)
Y2
A 2



where, by comparing Equations 2.28 and 2.29 with Equation 2.9,

X3

S= 1/Q, and

= Fx.

The cubic spring nonlinearity shifts the phase of the response by -p with respect to the

excitation. The frequency varies nonlinearly with both the amplitude of the oscillation

and the forcing of the system. The peak amplitude, defined by the square root term in

Equation 2.28, is Ap = y/6. This amplitude corresponds to a phase of 90' . It will be

shown that, in steady-state closed-loop operation, the forcing, y, will be equal to the

damping, 3, resulting in only one possible resonant frequency.

Equations 2.28 and 2.29 may be plotted for various forcing and physical parameters.

In Figures 2.2a and 2.2b, the frequency response magnitudes and phases are plotted for a

soft (A < 0), a linear (Al = 0), and a hard (A > 0) spring versus a normalized frequency.

For the soft spring, the frequency is reduced as the amplitude Ao is increased.

Electrostatic forces along the vertical axis cause spring softening. The linear spring

behaves as expected, with a symmetric amplitude response and a phase shift of 900 at the

resonant frequency of the system. The hard spring shows increasing frequency for larger

amplitudes, as is the case on the motor axis. Each of these responses are similar in

appearance. For the linear spring, the system exhibits a peak at the resonant frequency of

1, and is at a much lower magnitude away from this point. For the hard spring, this peak

amplitude has been "pushed" to the right, such that both the amplitude and phase are

multi-valued at frequencies slightly greater than the linear resonant frequency. Similarly,

the soft spring has "pushed" the peak to the left, such that the amplitude and phase are

multi-valued at frequencies lower than the linear resonant frequency. Far from the

normalized frequency of 1, the amplitudes and phases of these systems are identical.

However, the nonlinear behavior of these systems near resonance deserves more detailed

study.
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2.1.3.1 Jump Phenomenon

Both the hard and soft spring are multi-valued in both magnitude and phase in critical

regions. If a constant amplitude force is applied at increasing frequencies, then the cubic

spring may exhibit jump phenomena. This event is a discontinuity in the open-loop

response of the system. Both linear and hard spring responses are shown in Figures 2.3a

and 2.3b. The upward frequency sweep is started at point 1 in Figure 2.3a, a hard spring

response. The amplitude slowly climbs the "shark fin" as the forcing frequency is

increased. When the amplitude reaches point 2, it is at its peak value. As a is increased

further, the amplitude jumps suddenly and drastically from point 2 to point 3.

Additionally, the phase angle -(p drops from -90' to -180', as shown in Figure 2.3b. The

response is then at a much lower amplitude for further increases in ao past point 4. If the

frequency is instead decreased, starting at point 4, the amplitude will increase from point

4 to point 5. At point 5, a further decrease in co will cause the amplitude to jump to point

6. The amplitude will continue to decrease as the frequency is lowered past point 1.

If instead the spring is a soft spring, a decreasing frequency sweep starting at point 4

in Figure 2.4a will generate the larger amplitude response with the jump occurring from

point 5 to point 6. Sweeping up in frequency beginning at point 1 results in a jump from

point 2 to point 3. The phase in Figure 2.4b also undergoes significant jumps at these

critical points.

For both the soft and hard springs, the dashed region on the curve between points 2

and 5 is unstable for an open-loop constant drive amplitude excitation, and it cannot be

reproduced experimentally because of the jump phenomenon, but this region can be

reached in closed-loop operation. The location of the vertical tangent points, i.e., the

jump transition points, may be calculated by finding dcodA-0 from Equation 2.28:

1

d)- 3AAo 2 2 2 = 0 (2.30)
dA0  4 2A A2

This equation is difficult to solve algebraically; but, for a given system, it can be used to

determine the amplitude and frequency for which jump phenomena might occur. For the

hard spring system modeled in Figures 2.3a and 2.3b, the increasing frequency sweep

jump occurs at an amplitude of 0.9992, which corresponds to a non-dimensional

frequency of 1.0075 (point 2). The decreasing frequency sweep jumps happens at an

amplitude of 0.3495 and a frequency of 1.0025 (point 5). Similar values may be

calculated for the soft spring response.
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2.1.3.2 Quadratic and Cubic Spring

It will be shown in Section 2.2.4 that the sense axis dynamic equation includes a

forcing term that is proportional to 1/y2. Through a Taylor series expansion, the force can

be represented as a nonlinear spring with linear, quadratic and cubic terms. Once again,

the Lindstedt perturbation method can be used to determine the relationship between the

resonant frequency and the amplitude of the oscillation [22]. The general equation for

this nonlinear spring is

i+ &+ x + 2 +2x3 = ycoso)t

x(O)= a (2.31)

where y is the quadratic spring parameter. As before, the parameters are expressed as a

function of E. In this case, some first-order dependencies have been neglected, and all

terms are expanded to second order:

x(E) = x 0 + 1 + 82x 2 +...

a() = ao + 8a 1 + E2 a 2 +

P(E)= P>o + 81f + E2P2 +...
Y(E)= 2y2+...

8(e)= E282*+..**
(2.32)

A(E) = 822 +. ..

11(E) = 1 + 82 12 +...

0(E) = 00 + E01 + 8 2 2 +-. -

Substituting these approximations into Equation 2.31, letting 'r = 0o ()t (and,

consequently, )(s)dt = dr), and grouping the sE, 81, and e2 terms yields

x' + x0 = 0 (2.33)

x+ x1 = -20 1xg - l1xO (2.34)

x2' + x2 =-( + 202)x' -20xi'- 2 x6 (2.35)

-2lxlxo - A2x0 + 72 cos r

The solution for x0 from Equation 2.33 is again a sinusoidal term with constant amplitude

and phase. This solution is then inserted into Equation 2.34 and solved for x l by

eliminating the secular terms. Finally, x0 and xl are used in Equation 2.35 to find x2 by

again setting the secular terms equal to zero. These solutions are [22]



x0 = A0 cos(r - p) (2.36)

l= - -A1 - cos(2(T- P)) (2.37)

X2 =A P1+2 cos(3(T - )(2.38)

The amplitude, phase, forcing frequency, and forcing amplitude are related by solving the

secular terms of Equations 2.34 and 2.35

0 = 01 (2.39)

0 = 2A 2 - A ,2 - -,12 7I 2 cos T (2.40)

0 = 82AO - y2 sin 9 (2.41)

By replacing the expansions of Equation 2.32 into the previous three equations, the phase

and frequency are classic functions of the input and response amplitudes [22]:

0=l+ A2( 5 I2 + 2 2 (2.42)
8 1 2 4A 4

p = + tan 1  F (2.43)
2

which are very similar to Equations 2.28 and 2.29, and in fact reduce to those equations

as y, the quadratic spring term, goes to zero. A system with both a quadratic and cubic

spring may be expressed as an equivalent cubic spring system by letting the coefficient to

the cubic term be

Ae = - 10 2 (2.44)
9

In this system, the quadratic term acts as a spring softener. The equivalent nonlinear

spring will then be hard, linear, or soft, depending on the values of both A and g. The

only difference between the two systems, to second order in e, is that the quadratic spring

introduces a DC component that is second order in e

x(t)= xo(t)+ Exl (t) + E2x 2 (t)

= A0 cos( -9)- 2 E 2 I[i cos(2(,T.-))5)
2 3



No further discussion is necessary, since the analysis mirrors the previous investigation of

the cubic spring.

2.1.4 Theory of Damping in Micromechanical Resonators

Air is the most significant source of damping in a micromechanical oscillator [6, 7].

The next greatest contributor to energy loss is the intrinsic damping of the beams

supporting the proof mass. The damping of the resonator may be modeled by

determining its behavior over four distinct pressure regimes: intrinsic, molecular, viscous

laminar and viscous turbulent, as shown in Figure 2.5 [4, 23]. In each region, the

dominant factor may be used to provide an estimate of Q.
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Figure 2.5. Q vs. Pressure for Micromechanical Resonators

In the intrinsic region, the air pressure is so low that the damping of the beam itself is

much greater than that due to the air. Here, Q will reach its greatest value, and the best

resonator performance is achieved in or near this region. At pressures between 1 and 100

Pa, known as the molecular or Knudsen regime, the dynamics of the gas molecules

become the dominant damping force. This increase in damping is caused by

"independent collisions of non-interacting air molecules with the moving surface" [4] of

the proof mass. The quality factor in this regime varies inversely with the pressure.

When the pressure reaches about 100 Pa, there is "sufficient" air for the damping to be

modeled as a viscous laminar fluid flow, and the mean free path is about equal to the gaps

in the resonator combs. In this region, the quality factor is again independent of the

pressure. However, at a critical pressure, Q will become inversely proportional to the

square root of the pressure when viscous turbulent damping is created. This occurs at

about 5000 Pa, and is never seen in micromechanical resonators.



2.2 Electrostatic Theory of Micromechanical Resonators
Micromechanical resonators rely heavily on the electrostatic forces generated by a

capacitor. Most systems use a comb drive actuator to generate lateral forces and a

parallel plate actuator to create vertical forces [2, 29-33]. The same capacitive

arrangements are used to detect both horizontal and vertical motion. In the following

sections, both electrostatic forcing and capacitor sensing theories are presented for the

interdigitated comb finger and parallel plate configurations.

2.2.1 Electrostatic Forces

The electrostatic force between the two charged conductors shown in Figure 2.6 may

be determined using Lagrange's energy formulation [10, 38]. For these conductors, the

potential energy may be expressed as

V 1 = CV2 (2.46)

where,

V = voltage between the conductors, and

C = the capacitance between the conductors. It may be a function of x.

x

Figure 2.6. Force and Capacitance Between Two Charged Conductors

The force applied for is the derivative of the potential energy with respect to position,

as shown in Equation 2.2

--

F = VVP (2.47)



If the voltage is independent of the generalized coordinates, but the capacitance is not,

then the vertical and horizontal forces due to electrostatic potential energy are

Fe,x Vp 1 V2 (2.48)
dx 2 dx

F Vp 1 dC 2

ey y 2 dy (2.49)

These force are not directly dependent on the charge stored on the conductors, but vary

with the capacitance spatial derivative and the square of the voltage. The implications of

these equations will be investigated in detail in the following sections.

2.2.2 Interdigitated Comb Actuators

A comb actuator consists of overlapping tines from two different oscillator elements,

such as the stator and rotor shown in Figure 2.7. In this figure, the ground plane is shown

under one comb interaction only. In an actual device, each comb would have a ground

plane below it. These combs are designed to generate horizontal forces. However, there

are also capacitors between the combs and the substrate, and these capacitors create

vertical forces on the proof mass [29, 30]. The analysis of the interdigitated comb drive

actuator will be twofold [15]. First, the combs will be analyzed without the contributions

of the substrate. The ground plane on the substrate will then be introduced, and finite

element analysis will be used to determine the capacitances and their spatial derivatives

for this more detailed configuration.

2.2.2.1 Generation of Lateral Forces by Comb Drive

The comb drive, consisting of interdigitated capacitors, generates the lateral motion of a

micromechanical resonator. A set of engaged fingers includes a stationary comb, known

as the stator, and a comb on the rotor, or proof mass, which is free to move both

horizontally and vertically (out of the plane). There are two sets of interdigitated

capacitors: the drive comb is used to generate horizontal rotor motion, and the sense

comb is used to detect this motion. A ground plane may be located under the comb

fingers to eliminate electrostatic pull-down force to the substrate [10, 29, 30]. However,

the ground plane may also be used to generate forces to control rotational and vertical

motions of the proof mass, as shown in Chapter 5. In the derivations that follow, the

subscripts s, r, and p will be used to denote the stator fingers, rotor fingers and ground

plane, respectively. The stator-rotor-ground plane interaction is investigated with finite

element analysis in Section 2.2.3.3.
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Figure 2.7. Location of Drive and Sense Interdigitated Capacitors
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Figure 2.8 shows two stator tines and one proof mass tine. Without including the

effects of the ground plane, the capacitance between one proof mass tine and one stator

tine may be modeled as a simple parallel plate capacitor,

Ct = a hx (2.50)
d

where,

Eo = the permittivity of free space = 8.854 x 10-12 F/m or C2/N-m 2

h = the thickness of the tines

d = the gap between a rotor and stator tine

x = the time varying overlap between comb fingers, and

a = the fringing coefficient to account for edge effects of the capacitance.

For N total tine interactions4 , the total capacitance between two combs is

C = aN (2.51)
d

From Equation 2.48, the mechanical force between the stator and proof mass combs is

F 1 dC (Vs - Vr)2 = NEOh (Vs - Vr)2 (2.52)
2 dx 2d

where,

Vs = the voltage on the stator, and

Vr = the voltage on the rotor.

If the proof mass is grounded (Vr = 0), then the electrostatic force due to the comb drive

is simply

F = 1 dCV 2 =a 0 h V 2 (2.53)
2 dx 2d s

where, from Equation 2.51 above,

C = aN = constant (2.54)
dx d

Since this derivative is constant, the force acting on the proof mass created by applying a

voltage to the drive stator depends only on the voltage. The two most common choices

for generating a force at the resonant frequency of the system are [31-33]

4 There is one fewer tine interaction than tines, i.e., N = M - 1, where M is the total number of tines on one
side (stator+rotor).



V = Asin-cot (2.55)
2

V = Asin wnt + B (2.56)

where o)n is the natural frequency of the proof mass. If either of these are inserted into

Equation 2.53, the resulting electrostatic forces are

1dC A21
F = dCA2 -cos 0t) (2.57)

4 dx

F= 2ABsinnt + B2 + A2 (1- cos2lont)] (2.58)
2 dx 2

Both of these forces have a component at the resonant frequency and a DC component.

For a lightly damped system, the response of the system to the second harmonic in

Equation 2.58 will be negligible when compared to the resonant frequency amplitude

response.

2.2.2.2 Capacitance with z-axis Variation

In the previous section, it was assumed that the drive comb capacitance was

dependent on x only. However, both the basic and SEO dynamic models include an

additional translational degree of freedom: vertical motion. Also, even though the SEO

has been designed to minimize z-axis motion, the effects of small z=displacements on the

drive capacitance should be examined by looking at a tine with both vertical and z-axis

displacement. From Figure 2.9, the overlap height of the proof mass tine and stator tine

may be redefined from h to h-lyl, since any vertical motion, positive or negative, will

reduce the overlap area. For the capacitance between the proof mass tine and upper stator

tine of Figure 2.10, the distance between the two decreases for positive z-motion, so that

the gap may be expressed as (d-z). Conversely, for the lower stator tine, the gap may be

defined as (d+z).

rotor tine

h
sttr ie----------------- ----stator tine y T

Figure 2.9. Comb Capacitance for a Vertical Displacement of the Proof Mass
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Figure 2.10. Comb Capacitance for z-axis Displacement of Proof Mass

The capacitances for these two tine interactions may be written as

eo(h - IYl)xCu = u  (2.59)
d-z

Es(h - y)x (2.60)Cl = l
d+z

where the subscript u represents the upper capacitor, and the subscript I represents the
lower capacitor. For small z, the sum of these two capacitances is

EO(h - yj)x ( zCu + Cl = u (l + z ) + a(1 -d)

(2.61)
= 2a EO0 (h - jyI)x

d

where au is assumed to be equal to al. Therefore, the total capacitance between two
stator tines and one proof mass tine is independent of z, for small z, and decreases with
any vertical displacement.

2.2.2.3 Comb Drive with Ground Plane

By including the ground plane below the engaged combs, the derivation of the force
equation is more complex [9, 10]. Here, there are several considerations. First, as shown
in Figure 2.11, there are three distinct regions of interaction. In Region I, only the rotor
tines and ground plane (or control plate) interact. In Region H, the stator, rotor, and



ground plane are all engaged. In the third region, only the stator and ground plane
overlap.

Region I t Region III It I I

Figure 2.11. Three Regions of Tine-Control Plate Interaction

Three separate capacitor schematics may be drawn to show the interaction of the three
capacitors: Cs, Crp, and Csp. The first, shown in Figure 2.12a, represents Region I.
Figure 2.12b shows the engaged fingers and ground plane of Region II. Finally, in Figure
2.12c, the interaction between the stator and ground plane is shown. The comb tines are
designed to be about 20 times longer than the gap between the combs and the control
plate, with an initial overlap of 50% of the tine length.

As the rotor oscillates, the lengths of the three regions of engagement vary in size,
and this change affects the fringing coefficients of the capacitances. In order to
determine the magnitude and significance of the proof mass oscillation, the values of the
capacitors as a function of x may be determined by using finite element analysis. The
results of the finite element analysis are discussed in Section 2.2.3.
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Figure 2.12c. Schematic of Capacitances in Region III

2.2.2.4 Comb Drive with Ground Plane Lateral Force

For a system of n conductors and p forces, the total electrostatic potential energy may

be expressed as [10]

n

VP cfiV' (2.62)

where Vi and Ci are the respective voltages and capacitances associated with the ith

conductor.

The potential energy of the three conductor comb drive shown in Figure 2.12b may be

written as

V, = I Crs(V - Vr)2 + Crp( Vr - Vp) 2 ICsp(Vs - V p ) 2

| •

| •

I

(2.63)



where qs, q, and qp are the charge per unit length for the stator, rotor, and control plate

respectively. The capacitances in Figures 2.12a-2.12c are given per tine per unit length:

Crs for the rotor-stator capacitance, crp for the rotor-ground plane capacitance, and Csp for

the stator-ground plane capacitance. Using these definitions and integrating Equation

2.63 yields the electrostatic force (with units of force)
I dCrs 1 Csp 1Crp )2

Fe,x - 2 (Vs - Vr) + 2  ( V s - V ) 2 (V r - V (2.64)
2 dx 2 dx ( V>) 2 dx

which has the associated charges per unit length

qs = (csp + Crs)Vs - crsVr - cspVP (2.65)

qr = -crsVs + (Crp + Crs)Vr - crpVp (2.66)

qp = -cspVs - crpVr + (csp + Crp)Vp (2.67)

The capacitances must include the effects from each of the three regions. In this

design, Region I is either non-existent or very small and may be neglected. Region III

consists of the stator and ground plane only, and the sizes of Regions II and III vary with

x. To first order, the capacitances in Equation 2.64 may be expressed as

Crs = Ncrs(LO + x) (2.68)

Csp = N[csp,e(Lo + x) + csp,u ( - x)] (2.69)

Crp = N[Crp,e(L + x) + crp,u (L -x)] (2.70)

where,

L0 = the overlap of tines when proof mass is at rest (assumes a 50% overlap)

x = the horizontal displacement, and

N = the total number of rotor tines.

The subscripts u and e are used to represent unengaged and engaged tines of the stator

and rotor. Since these capacitances are, to first order, linear functions of x, the horizontal

force is independent of x.

If the rotor is grounded (Vr = 0), then the comb drive horizontal force becomes

IdCrsV2 1dCs 2 1 Crp 2
Fex - x V +2 s (Vs - Vp) + 2 V2  (2.71)

2 dx 2 dx 2 dx P

where the first term makes the largest contribution to horizontal motion. These partial

derivatives may depend on both x and y if the variations in fringing coefficients are large.



2.2.2.5 Comb Drive Vertical Force

This approach may also be used to determine the vertical force generated by the comb

drive. The y-axis equivalent (for Vr= 0) to Equation 2.71 is

Fe y = I Vrs V2 (Vs - Vp)2 dCrp V2 (2.72)
2 dy S 2 dy 2 y2

In this equation, the variation of the capacitances with respect to the gap between the

tines and the ground plane is required. The capacitance between the rotor and the ground

plane depends greatly on the vertical displacement of the proof mass, as shown in the

finite element analysis of Section 2.2.3 [29, 30].

2.2.3 Finite Element Models of Capacitors and Their Derivatives

Finite element analysis provides a method to model accurately both the comb

capacitors and their derivatives as a function of the vertical position of the proof mass by

including the fringing field effects. For smaller capacitors, in terms of the length to width

ratios, the fringing fields are a significant portion of the total capacitance. The finite

element approach yields both the electric field and the potential (voltage) of the

arrangement. From these results, it is possible to extract both the charge on a plate and

the force exerted on a capacitive element. By repeating the analysis for several applied

voltages, it is possible to do a least squares fit to determine the capacitors and their spatial

derivatives. Because of the symmetry of the combs, the electric field is also symmetric,

such that it is possible to model the interaction between one rotor tine and two stator

tines, and then to extrapolate this result over an entire comb. By neglecting the fringing

effects at the tips of the tines, two dimensional finite element analysis may be used to

yield accurate models of the comb capacitors.

By extending the symmetry arguments further, it is possible to define the region of

interest for the comb capacitors as shown in Figure 2.13, which is a cross-section of the

combs. In this schematic, the y-axis is up, the z-axis is to the right, and the drive, or x-

axis, is into the page. Here, an entire rotor tine is flanked on both sides by one half of a

stator tine. Beneath all of the tines is the control plate. Both stators have the same

voltage applied to them, and the rotor and control plate are permitted to have independent

voltages. It is assumed that each rotor tine will have the same electric field, such that the

total capacitance of the comb drive is simply the product of the capacitance of one rotor

tine times the total number of rotor tines.



Control Plate

Figure 2.13. Region of Interest for Finite Element Analysis of Tine Interaction

In this figure,

V, = the voltage applied to the stator

Vr = the voltage applied to the rotor

Vp = the voltage applied to the control plate

w = the width of the rotor and stator tines

h = the height of the tines

g = the gap between a rotor and stator tine, and

yo = the gap between a tine and the control plate.

These values may be varied to determine the effects of either different voltage or design

configurations on the forces generated on the rotor.

2.2.3.1 Finite Element Analysis of Electrostatic Forces

In order to determine the electric field for this capacitive relationship, a governing

differential equation is required, and its boundary conditions must be defined for the

entire region. On the tines and control plate, the boundary conditions are defined by the

voltage applied to the surface. On the boundaries of the region that are not part of the

oscillator, the voltage is free. The governing equation for the electric field is

V-E=O (2.73)

where,

V = the divergence operator, and

E = -eoVV= the electric field.

Here,



V= = the gradient operator, and

V = the voltage between the tines.

Once the region, its boundary conditions, and the governing differential equation have

been defined, the finite element software package PDEaseTM may be used to numerically

determine the electric field and potential distribution for various applied voltages and

vertical displacements 5. Typical results from this program are shown in Figures 2.14
through 2.17. For these plots, the applied voltages are Vs = 1 V, Vr = 0 V, and Vp = 0 V.

The distribution of the potential is shown in the contour plot of Figure 2.14. The first

significant observation is that the voltage distribution is symmetric about the rotor, as

assumed earlier. The symmetry of the potential permits the construction of the entire

comb electric field. Between the tines, the voltage is very concentrated, implying a

constant and large electric field, with significant energy storage between the tines. Along

the top of the tines, the potential distribution is symmetric and rounded. This behavior
generates the fringing effect that was represented by a in Equation 2.50. The fringing

coefficient can be determined directly by dividing the capacitance determined through

finite element analysis by the capacitance derived from the parallel plate equation.
The contour of the electric field in Figure 2.15 has been divided by e0 to increase the

magnitude of the scale of the contour plot. Between the tines, the electric field has a
nearly constant value around 0.50, ranging from e0 at the stator to 0 at both the rotor and

the control plate6 . Slightly above the tines (about 2 gm), the electric field is nearly
constant at 0.1 E0. The electric field bends from the stator-control plate region to the

stator-rotor region because both the rotor and control plate are at the same potential, such

that the field distribution between these and the stator should be identical. However, the

effects of the bend of the electric field will be quite significant.

As expected, the electric field flows from high potential to low potential, as shown in

Figure 2.16. This vector plot emphasizes that, except for the corners, the electric field

flows directly from the stator to the rotor and the control plate. From the top of the stator,
the electric field bends towards the rotor. From the bottom corner of the stator, the

electric field travels either to the rotor or to the control plate.

Finally, the energy density plot in Figure 2.17 emphasizes the concentrations of

energy7 . Most of the electrostatic energy is stored between the stator and the rotor, with

5 PDEase is provided by Macsyma, Inc. of Arlington, MA.
6 The accuracy of the finite element analyses are about 0.001 0 &.
7 Similar to Figure 2.15, the contour labels are hard to discern. The b-contour is on the rotor, and the c-
contour is on the stator. The value in the stator-rotor gap is 0.125. Again, the values at the stator corners
have significant energy concentrations.



some stored between the control plate and the stator. The energy density plot suggests

that most of the drive force will be generated by the rotor-stator interaction, and that the

stator-control plate and rotor-control plate overlaps contribute secondary drive forces.

After determining the potential, the electric field, and the energy density for a

particular geometry and voltage configuration, the Maxwell stress tensor may be

calculated, which, in turn, leads to the force generated on either the rotor or the stator

tine. From Appendix B, the stress tensors for a two-dimensional field are [38]

11 E 2  (2.74a)

T12 =0 (2.74b)

82
T22 = 2E (2.74c)

where the subscript "11" represents the x-force exerted on the x-face; "12", the y-force on

the x-face, and vice versa; and "22", the y-force on the y-face. These values may then be

integrated over the surface to yield the mth component of the force per unit length,

fm = sTmnnnda (2.75)

From this equation it is possible to determine the total electric force on a volume by

knowing only the electric fields on the surface of the volume.



Figure 2.14. Voltage Potential Contour Plot for Zero Proof Mass Displacement

Figure 2.15. Electric Field Contour for Zero Proof Mass Displacement
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2.2.3.2 Charge and Force per Unit Length
Because the charge and force problems have been stated in two dimensions, it is more

convenient to recast the problems such that the surface integrals become contour
integrals, and both the charge and force are expressed as charge per unit length and force
per unit length, respectively. In this case, the charge may be found from [38]

q = a -dl (2.76)

where,

a=D-n (2.77)

D = the electric displacement, and
n = the normal to the surface.

The net charges on the rotor and ground plane are found by integrating over the surface of
each element.

The force may be written as

fm = JTmnnndl (2.78)

where the contour C is defined for the stator and the rotor in Figure 2.18. The rotor
contour (Cr) is closed within the region, but the stator contour (Cs) must be closed by
assuming electrostatic symmetry about a comb tine. Also in Figure 2.18, the normals (n)
to each surface are shown. The vertical force on the rotor is determined by finding the
electric field density on the top and bottom surfaces, and differencing them to yield a net
force.

nsl nrt ns

ns2 n 4

: r n4, nr2
ns3 yCr

nr3

Figure 2.18. Surface Contours and Normal Vectors for Finite Element Analysis



Because the problem has been stated in two dimensions, only the y- and z-axis forces may

be determined from this method. However, this assumption also permits a method of

calculating the x-axis force. By integrating the energy density over the entire surface of

the region, the result will be in units of energy per length. The total energy stored in the

combs may then be found by summing these infinitesimal slices over the entire length of

the comb overlap. Since the overlap occurs along the x-axis and the drive force is the

gradient of the stored energy along the drive axis, the drive force may be expressed as

Fx =dEc = eE -EdA (2.79)
x 2 Js

Therefore, by assuming constant energy density at each comb cross-section, the energy

density may be integrated over the entire surface of the region to determine the drive

force:. This is a very powerful result that will complete the estimates of the tine

capacitors and their derivatives.

2.2.3.3 Determining Capacitors and Their Derivatives

Once the force and charge are determined from the finite element analysis and

subsequent integration, the results are fitted to the analytic definitions of the charge and

force

qr = Crs(Vr -Vs) + Crp(Vr -Vp) (2.80a)

qs = crs (Vs - Vr)+ Csp(Vs - Vp) (2.80b)

fY= - Vs)2 ( r Vp) 2 +1 d Vs- Vp)2  (2.81a)
2 6 S 2 dy 2 dy

Fx = (Vr -Vs) 2 + d , V 2  1 sp(VV2 (2.81b)
X 2 dx 2 dx 2 dx

where the lower case variables represent quantities per unit length per finger and the

upper case variables represent the quantities in the proper units per finger. For example,

qr, the charge per unit length per rotor finger, is expressed in terms of the capacitance per

unit length per finger. On the other hand, the drive force, Fx, has units of force and is

expressed in terms of the partial spatial derivatives of the capacitances, which have units

of Farads per meter. The capacitances and their derivatives need to be determined in all

three regions shown in Figure 2.11.

For the SEO, which has a thickness of 20 pm, a tine width of 5 gim, a tine gap of 2

pm, a tine-control plate gap of 2.5 gm, and an overlap of 25 gm, the capacitor results are

plotted in Figures 2.19 through 2.21 and are shown in Table 2.1 for zero vertical



displacement of the proof mass. In this table, the raw values of the quantities, with their

units, are listed for each of the three regions. The signs of the Csp x-derivative arises

from the its x-dependency in Equation 2.69. Using Equations 2.68 through 2.70 and

assuming that x = 0, the net values in the fourth column are calculated. From these

calculations, an observation from Figures 2.14 through 2.17 may be confirmed. The

capacitance between the rotor and the stator, crs, is the largest; a conclusion that is

expected based on the large thickness and small gap between these tines. In fact, this

capacitance is about 9 times greater than the remaining two capacitors. As a result of

this, most of the horizontal force is generated by the stator-rotor interaction.

Table 2.1. Finite Element Analysis Estimates of Capacitors and Derivatives

Quantity Region I Region II Region III Net Values

Crs 0 4.7329 fF/finger 0 4.7329 fF/finger

Crp 0.853 fF/finger 0.5583 fF/finger 0 1.4113 fF/finger

Csp 0 0.5975 fF/finger 0.9092 fF/finger 1.5067 fF/finger

dCrs
0 56.301 pF/m/finger 0 56.301 pF/m/finger

dC
-460.978 pF/m/finger -453.284 pF/m/finger 0 -914.262 pF/m/finger

dyaCsp
0 58.956 pF/m/finger 0 58.956 pF/m/finger

dCrs
x 0 190.970 pF/m/finger 0 190.970 pF/m/finger

dC
-35.69 pF/m/finger 23.347 pF/m/finger 0 -12.343 pF/m/fingerdx

dCsp 0 24.244 pF/m/finger -36.367 pF/m/finger -12.123 pF/m/fingerdx

One significant result may be seen in the partial derivatives of the capacitances with

respect to y. Here, the derivative of Crp is negative, suggesting that a potential difference

between these two plates will generate a downward force. However, the other two

capacitor derivatives will push the rotor up, not down. Because a potential difference

does exist between the stator and rotor, there is force coupling between the horizontal and

vertical axes. With the control plate grounded and 25 pLm of tine overlap, the ratio of the

horizontal to vertical forces is 3.4. The significant increase in csp in Region III occurs



because the electric field is not constrained by the rotor, and the field goes from the entire

length of the stator to the control plate.

From these results, it is possible to determine the fringing coefficients for each of the

three capacitors. For Crs, a is 1.07; for Crp, 1.26; and for Csp, 1.35. The rotor-stator

fringing coefficient is the smallest because the tines are thick enough that the fringing

effects at the top are small when compared to the capacitance between the tines

themselves.

The results of this analysis are shown in Figures 2.19 through 2.25. In Figure 2.19,

the capacitors for all three regions are shown in per finger values with an assumed

overlap of 25 gm. From here, it is clear that the rotor-stator capacitance is the largest.

Also, in Figure 2.20, the partial derivatives of the capacitances with respect to x shows

that Crs also contributes the largest component to the horizontal force of the comb drive.

From Figure 2.21, the rotor-ground plane capacitance has the largest vertical partial

derivative, with a value of -9500 pF/m/finger at -2 gm vertical displacement. This term

pulls the proof mass towards the substrate. As the rotor moves towards the ground plane,

the vertical force increases, since the partial derivative of Crp with respect to y becomes

more negative. However, by chosing the proper ground plane voltage, this effect can be

minimized.
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Figure 2.19. Comb Finger Capacitances versus Rotor Vertical Position
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From the force expressions in Equations 2.81a and 2.81b, the horizontal and vertical

forces may be determined for various voltages. These forces are plotted in Figures 2.22

and 2.23, respectively. In these plots, the ground plane voltage, Vp, was varied from 0%

to 50% of the stator voltage in 10% increments. The horizontal force in Figure 2.22 is

relatively insensitive to the ground plane voltage, with a force of about 100 pN/finger for

all applied forces. However, in Figure 2.23, the vertical force varies significantly with

the ground plane voltage. As the voltage increases, the Crp derivative becomes the

dominant factor in determining the force. Figure 2.24 shows the ratio between the

vertical and horizontal forces in 10% increments of Vp. From this plot, a ground plane

voltage may be chosen that minimizes the lift-to-drive ratio.

The vertical-to-horizontal-sensitivity ratio of the stator comb is plotted for various Vp
and rotor vertical displacements in Figure 2.25. From this plot, the sensitivity ratio is

clearly a function of the ground plane voltage. The larger the ground plane voltage, the

lower the sensitivity ratio is. This phenomemon needs to be balanced with the lift-to-

drive ratio in order to permit closed-loop operation of the horizontal axis of the oscillator.

When the proof mass moves up, the capacitance between the stator and the control plate

increases, as seen in Figure 2.19. This occurs because, as the rotor moves, more of the

electric field travels from the stator to the control plate, instead of to the rotor.

In Figures 2.26 and 2.27, the rotor is displaced upwards by 1.75 Rtm. The potential

distribution has bulged under the rotor since more of the stator is exposed directly to the

control plate. As shown in Figure 2.27, the electric field is much stronger under the rotor.

Since both the rotor and the control plate are at the same potential, this increase in the

electric field must be attributed to the stator and control plate interaction. Here the

voltage and distance between the stator and control plate remain unchanged, so that the

growth in the electric field must be caused by an increase in the stored charge, which

implies that the capacitance between the stator and control plate is larger when the proof

mass is displaced upwards. Similarly, when the proof mass moves towards the control

plate, the stator-control plate capacitance decreases.
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2.2.3.4 Implications of Finite Element Analysis

The results of the finite element analysis have some implications for micromechanical

oscillators in general. First, the fact that the application of a voltage on the stator

generates both vertical and horizontal forces on the proof mass means that there is

intrinsic coupling of the motions in a comb drive. The ratio of the vertical to horizontal

force for the SEO is 0.3. The second major effect is on the detection of proof mass

horizontal motion, as shown in Figure 2.25. As discussed in Section 2.2.5.1, the x-

displacement of the rotor is determined by integrated the total charge leaving the motor

sense comb. The differential charge may be expressed as

dCr+ sp (dC Csp  1
Aq= x + -AX +  -+ )AY Vs (2.82)

where both the motor sense control plate, Vp, and the rotor, Vr, are grounded. Therefore,

the ratio of the detection coefficient of vertical to horizontal motion, assuming a 25 gm

tine overlap, is about 1.

2.2.4 Parallel Plate Actuators

In addition to the forces generated by the comb interactions, an electrostatic force

may also be created between two parallel plates, as shown in Figure 2.28. In this figure,

one plate is the sense plate, which is fixed to the substrate, and the other is the proof

mass, which is free to move. The capacitance between these two plates may be expressed

as

C= yer lw (2.83)

where,

C = total capacitance (Farads)

y = the fringing coefficient

EO = permittivity of free space

1 = length of plate

w = width of plate, and

y = distance between plates.



Figure 2.28. Parallel Plate Capacitance

It is helpful at this point to redefine the gap as a variation, y, about the nominal gap,

yo, such that the capacitance is now

EOlw Elw 1CY='r YO+Y Y 0 w 1 (2.84)

From a development similar to that in Section 2.2.1, the force generated along the y-axis

may now be expressed as the partial derivative of the capacitance with respect to y

l dCy 2 eolw 2 eolw V2
F= V 2 ( -y 2 V = -y 2 (2.85)

2 y 2(Yo +y) 2y

For y/yo << 1, the capacitance and force may be expressed using Taylor series expansions

Cy = Ow  - + y .. Y . (2.86)
70 Y0 70 YO 70 (2.86)

F=-y E+ 31-2 L + 3( Y - 4 +... V2 (2.87)
2Yo Yo YO Y0

It is important to note that the force generated by the parallel plates is proportional not

only to the voltage squared, but also to y, and the capacitance has a DC component in

addition to the y-dependent term.

2.2.4.1 Electrostatic Spring Softening

The force in Equation 2.87 makes a significant contribution to the vertical dynamics

of the proof mass. This force not only generates a vertical force, but also reduces the



spring constant along the vertical axis [10, 36]. If a typical mass-spring-damper, second-

order equation is driven by the first-order approximation of the electrostatic force, Fy,

my + bw + kyy - j 1-21 V2  (2.88)

then the system takes on some very interesting characteristics. Collecting the terms linear

in y yields the equation

my+by + ky - yEW V 2 Y= -yr V2 (2.89)3 2y2

This equation now has a spring constant that includes the mechanical spring, km, and an

electric spring with

solwV 2
ke =- V 3 (2.90)

For small y, the resonant frequency of this system is therefore

2 - 7 0 V2

coy = (2.91)
m

If either a positive or negative voltage is applied to the stationary plate, then the resonant

frequency along this axis decreases. When a large enough voltage is applied, the resonant

frequency of the system will go to zero, and the two plates will come into contact for any

increase in the applied voltage. This is called the snapdown voltage, and it is defined as

the voltage for which both the net force and net spring are equal to zero. This occurs

because of spring softening, i.e., the net spring constant has changed from positive to

negative, so that the total spring force is no longer a restoring force, but is instead an

attractive force. If k = 0, then any voltage would cause the plates to come together.

Figure 2.29 is a plot of the resonant frequency versus the voltage normalized by the

snapdown voltage. For V near zero, the resonant frequency is nearly quadratic with the

voltage. As the potential increases, the frequency is a nonlinear function of the voltage,

as the displacement becomes significant and the Taylor series expansions are no longer

valid. In order to prevent this instability, the voltages applied to the stationary plate

should remain well below the snapdown voltage.
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As the resonant frequency of the y-axis decreases, the small displacement assumption

for y is no longer valid. Therefore, in order to determine when the spring constant goes to

zero, the electrostatic spring constant must first be derived from Equation 2.92.

ke (Y) dFe EWl3 V2  (2.92)dy - (y +yo S

When this term equals the mechanical spring constant, the resonant frequency of the

system is zero, and the snapdown voltage may be derived. This requirement yields a

voltage

_ 8kyy 8k y

Vsna 27 0w- (2.93)snap = 277EOwl 27Cyo

where Cyo is the nominal sense plate capacitance. Snapdown also requires a critical

displacement

Ycrit YO (2.94)
3

If the resonant frequency goes to zero, then the proof mass will snap down when the

displacement has reduced the gap by one-third of its nominal value. For displacements

less than this, the proof mass is marginally stable. This dramatic behavior is seen in both

Figures 2.29 and 2.30. In Figure 2.30, for a normalized voltage near 1, the vertical

displacement moves rapidly from -0.33 to -1 as the voltage increases. Similarly, as seen

in Figure 2.29, the sense frequency drops to zero. This behavior places a strict limit on

the magnitude of voltages that may be used to control the vertical and rotational motion

of the proof mass.

2.2.5 Electrostatic Position Sensing

An essential element in any control system is measuring the variables to be

controlled. If the displacement and velocity of the structure are unknown, then it is

impossible to determine the magnitude of its vibration, or even whether or not the system

is resonating. In micromechanical systems, the electrostatic behavior used to create

forces is used in a slightly different way to measure the position of the proof mass. By

exploiting the behavior of capacitors, both vertical and horizontal displacements may be

detected in a micromechanical system.



2.2.5.1 Comb Drive Motion Detection

A typical micromechanical resonator has two sets of stationary combs associated with

each proof mass, as shown in Figure 2.1. One comb is used to force a horizontal

oscillation of the proof mass, and the other comb is used to detect that lateral motion [37].

By applying a constant voltage on the sense comb, proof mass oscillations cause the total

capacitance between the rotor and the stator combs to vary, injecting a time varying

charge (current) onto the sense comb that is integrated to determine proof mass position.

The total capacitance between two set of combs from Section 2.2.2.1 is repeated here

C= a (2.51)
d

The total charge on the detection stator may then be written as

Neohxq = CV = a Vms (2.95)
d

where,

Vms = DC voltage applied to stationary detection comb.

As the proof mass moves, the net charge varies, creating a current on the sense comb,

dq d NeohV dx dC dx=d = (CV) = a = VM (2.96)
dt dt d dt msx dt

With a DC voltage, the current depends only on the velocity of the proof mass. This

current may then be integrated with an ideal op-amp, as shown in the schematic in Figure

2.31, high-pass filtered, and finally amplified by a factor of gl. The ideal voltage output8

is equal to

gl it= gl 8 Cdx Vm saNeOh
Vout dt = V ms  dx = g ms h x (2.97)

Cfb Cfb dx Cb d

In this solution, the effects of the control plate seen in Equation 2.82 have been ignored.

Therefore, the output voltage from the integrator is a scaled version of the proof mass

position. This scale factor may be estimated either through direct measurement or by

calculation, so that the displacement of the rotor can be determined.

8In Section 3.2.1.2, the effects of noise, the blocking capacitor, and the gain stage are studied in more
detail.
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Figure 2.31. Integrator for Drive Motion Detection

The inclusion of the ground plane and the sensitivity to vertical motion, as shown in

Equation 2.82, yields an output

V dC dC d dC
Vout = 1-m rs + x t + (2.97)

In steady-state operation, the vertical motion may be neglected, since the horizontal

motion is significantly larger. However, for modeling oscillator startup, as in Chapter 3,

both sensitivity terms should be included.

2.2.5.2 Parallel Plate Motion Detection

Measurement of vertical motion of the proof mass is analogous to the measurement of

horizontal motion. In this case, however, the voltage is applied to the stationary plate,

and the proof mass itself is connected to the integrator. The proof mass is held at a

virtual ground, as shown in Figure 2.32, and, analogous to the motor axis, the output

signal is high-passed and gained to yield a signal linear with position.

C

S+ VOR

Figure 2.32. Integrator for Vertical Motion Detection



The capacitance between the proof mass and the stationary plate is now

Eolw
C=y Ew (2.84)

y + Yo

and the total charge on the proof mass is

Eolwq = CV = y Vs (2.98)
y + Yo

Here, the voltage will not be assumed to be constant, but will instead have both a DC and

an AC component, in order to derive a more general solution. As the proof mass moves

vertically, the current generated on the proof mass is

dq d dC dV E01w dy o01w dVs
= (CV)= V + = Vs + y (2.99)
dt dt dt dt (Y +yo)2 dt (y +yo) dt

This current may also be integrated using an ideal op-amp, and then high-passed and

amplified by gs, so that the output voltage becomes

gs Ji= gsVs Yeolw
Vout = s idt = sVs olw (2.100)

Ci Cfb (Y +YO)

For small vertical motion with respect to the gap between the plates and a constant sense

voltage, the output voltage may be approximated as

Vout gs Cf 01w Vs 1 gs Cfb  Y (2.101)

The output voltage is approximately a DC value plus a small AC term that varies directly

with the proof mass vertical motion. In Section 3.2.1.2, real op-amps are discussed, and

the effects of noise on the minimum detectable signal are presented.

2.3 Micromechanical Resonator Total Lumped Parameter Model
Having examined in detail both the dynamics and electrostatics for the

micromechanical resonator, the non-dimensional, coupled, nonlinear, differential

equations of motion may be stated as



z 1 - - 2 - 3 -2- 1x+ -x+ x +x2 k 2  + y + - y y 2 (2.102)

S 3Crs 2 rp V2 sp V, - V,)]

2kxxo dx s  dx dx sV

y 2 2 3 - 2  1 (2.103)
+ - y Y+~ +k k2 3 xyx + -x + 2

S+ OCrs V2 + rp V2 sp V, - V)2]
2kxxo dy s p y s-

This model incorporates the nonlinear springs, the coupling effects of the comb drive, and

the coupling of both dissipative and restoring forces. The additional vertical force not

due to the combs will be used in Chapter 5 as the vertical control force, which does not

couple into the horizontal axis.

A capacitor model of a single element oscillator 9 is shown in Figure 2.33. In this

figure, the proof mass is connected to the pre-amplifier with the output Vout,y, and the

motor sense comb to Vout,x. Each of the circular nodes may be set either to ground or to a

potential for capacitor measurements, as done in Chapter 6.

Vout,y

motor
motor cap. sense cap.

proof mass

left right
control control Vbs
plate plate

left sense center right sense
cap. control plate cap.

Figure 2.33. Capacitor Model for Single Element Oscillator

9 See Figure 4.2 for an optical micrograph of the SEO.



There are seven capacitors for the SEO. Models for all of these capacitors were

presented in Chapter 2. The motor and motor sense capacitors are interdigitated comb

capacitors; the left and right control plates are ground planes; and the left and right sense

and center control electrodes are parallel plate capacitors. These control plates will be

examined in more detail in Chapters 4 and 5 as control actuators for the vertical and

rotational motion control.



Chapter 3

Sustained Oscillations in
Micromechanical Resonators

3.0 Introduction
Because the micromechanical resonator is a second-order system, it is possible to

generate steady-state oscillations, i.e., limit cycles, by closing the loop of the system with

an integrator and a relay. Significant analyses of these types of systems were performed

in the 1960s [13, 19]. The techniques that emerged from this era include describing

function analysis and stability criteria for nonlinear closed-loop systems. These tools are

used extensively here to characterize the performance and behavior of a closed-loop

micromechanical oscillator. After introducing the describing functions used for modeling

the resonator, the behavior of the amplitude regulator loop is studied. Next, the stability

of the closed oscillator loop is demonstrated, and perturbation analysis is used to examine

the transient behavior of the system in response to parameter variations.

3.1 Describing Function Analysis
From Chapter 2, it is clear that the oscillator itself possesses a nonlinear element: the

cubic spring. In order to close the loop on this system, the relay, another nonlinear

element, is required. If the transfer functions of both of these elements can be linearized,

then quasilinear techniques may be used to analyze the closed-loop behavior. In a steady-

state oscillation, the dominant signals in the system are sinusoids; this fact will permit the

application of describing functions to linearize the system.

3.1.1 Theory of Describing Function Analysis

The principle of superposition permits straightforward analysis of linear system

behavior. This principle states that,



If the input rl(t) produces the response cl(t), and the input r2(t) yields the

response c2 (t), then for all a and b the response to the input arl(t) + br2(t)
will be acl(t) + bc2 (t); and this must be true for all inputs [13].

This means that linear elements may be studied one input at a time, and the response from

these inputs may be used to extrapolate the response for all other inputs. A system that

does not satisfy the superposition principle is defined to be nonlinear. For these systems,

the output cannot be generalized given the response of the system for a particular input.

The first step in simplifying the analysis of a nonlinear feedback control system is to

express the system as a single loop with both linear and nonlinear components, as shown

in Figure 3.1 [13]. Nonlinearities may occur in any of the elements, but they most often

occur in the actuator or in the feedback element.

Reference System
Signal 3.1 Output

apo K(s) a Actuator Smi s
r(t)c (t)

Compensator

Feedback
Element

Figure 3.1. Typical Nonlinear Feedback Loop

For linearization, several different methods may be used. The most common

approaches are power series expansion, perturbation techniques, and describing function

analysis. In describing function analysis, a general form of the input to a nonlinear

element is assumed, and from there, a solution may be derived for this particular input.

The most common describing function inputs are a bias, a sinusoid, and a gaussian

process. Quasilinear approximations to the nonlinear element response based on these

inputs are called describing functions. The closer the actual input is to the assumed input

shape, then the more accurate the describing function analysis will be. For a sinusoidal

describing function approach to be meaningful, three essential criteria must be met:

1. The nonlinear element must be time-invariant.

2. No subharmonics may be generated by the non-linearity in response to

a sinusoidal input.



3. There must be a low-pass filter somewhere in the system, so that the

fundamental frequency is fedback, and higher harmonics are

attenuated. This is known as the filter hypothesis [13].

For the SEO, all three requirements are satisfied for sinusoidal describing functions. The

linear plant for each degree of freedom is a high-Q resonator that acts as a low-pass filter

with large gain at resonance and -40 dB/decade roll-off above the natural frequency of the

system. It will be shown that, in the electronics, sufficient low-pass filters exist to

attenuate the higher-order harmonics from the system throughout the closed loop.

3.1.2 General Solutions for Sinusoidal Describing Functions

The three nonlinearities typically encountered in a closed-loop micromechanical

resonator are a cubic spring, a relay with hysteresis, and an ideal relay. Here, the

sinusoidal describing functions for these elements are derived. The output of a nonlinear

element, y(x, x), may be written as a Fourier series for a sinusoidal input. By the

conditions defined above for the describing function, the significant quantity of the output

will be at the first harmonic of the series, so that, for the input

x = Asin V (3.1)

where,

A = real amplitude of input

6 = non-dimensional input frequency

7 = non-dimensional time, and

(p = real phase shift,

the output is

y(Asin y,Aocos i) = An(A, (A,)sin[noz+ 9n(A, o)] (3.2)

n=1

From this equation for y, the describing function of the nonlinear element may be

expressed as

N(A, ) output component at &

input component at (3.3)
(3.3)

AI(A, c) ej1 (A,o)

A



Equations for A 1 and PI may be defined by solving Equation 3.2 for the Fourier

coefficient and phase at n = 1. Substituting this result into Equation 3.3 yields a solution

for N(A, o) in terms of the nonlinearity, y,

N(A,) = - y(A sin f, A A cos y)e-J/dy (3.4)

This representation of N(A, Ji) may be expanded into real and imaginary parts

N(A,) = I- y(Asin Y,Acos y)sin yd+ -j fy(Asin ,Acos )cos d
irA 0 dA 0 (3.5)

= np (A, ) + jnq(Ao)

where np(A, C5) and nq(A, 6) are the in-phase and quadrature gains of the nonlinearity

output, respectively. This representation will useful for the analyses performed in

Sections 3.3.3 through 3.3.5.

3.1.2.1 Describing Function for the Cubic Spring

For many real mechanical systems, the forces exerted by the springs have significant

nonlinearities. Typically, nonlinear terms depend on the magnitude of the displacement.

A third-order restoring force may be written as

kj1 + k22  + k3 3 (3.6)

where is a generalized coordinate (either x or y) and the ki are non-dimensional spring

constants. In steady-state operation, both x and y will be sinusoidal, so 4 may be defined

as Asin Wy where A is the non-dimensional amplitude and yf is the non-dimensional

argument of the trigonometric function defined earlier. If this definition is substituted

into Equation 3.6, then

lA sin V + k2 A2 sin 2  + 3A 3 sin3

A2  A3  (3.7)
= klAsin y + k2 -(1- cos2y) + k3  (3sin y- sin 3y/r)

2 4

Collecting like terms yields

-k 2 A2 + : 3A2Asin - k2  cos2/yI- k 3A3 sin3 (3.8)
2 4 2 4

The filter hypothesis allows the non-fundamental frequency terms to be neglected, so that

the approximate output for the quadratic and cubic spring becomes



I22 +(k +k 3 A2 Asinr (3.9)

which is similar to the results of Section 2.1.3.2, in that the quadratic spring contributes a

DC component to the system. If the quadratic term is set equal to zero, such as the case

for the drive axis, then the describing function for the cubic spring is

3 2
N(A, ) = -k3 A 2  (3.10)

4

This describing function is dependent only on the amplitude of the oscillation. The

linearization of the cubic spring by describing function analysis is identical to that by

perturbation methods in Chapter 2. By using this describing function, the non-

dimensional resonant frequency of the system may be written as

2 =1+3 k 3 A2 (3.11)
4

For small k3 , the resonant frequency may be approximated by

S=1+3k3A2 (3.12)
8

The increase in the resonant frequency due to the cubic spring depends on the square of

the amplitude, as shown in Section 2.1.3.

3.1.2.2 Describing Function for Relays

The typical response for a relay element with hysteresis is shown in Figure 3.2. In

this figure, the input signal is x, and the output is y. Physically, if y is equal to -D, then,
as x becomes greater than 8, y will switch its value from -D to +D. The output will

remain at +D until x decreases below -8. Because the output depends on its previous

state, the hysteretic relay is known as an odd, static, symmetric, frequency-independent,
nonlinear element with memory. As 6-40, this element becomes an ideal relay, which is

a memoryless, odd, static, symmetric nonlinearity. To determine the describing function

for the relay, it is best to include the hysteresis, and then let -->0 to find the describing

function for the ideal relay.

The response of a relay to a sinusoidal input is a square wave with phase shift. A

typical square wave response is shown in Figure 3.3 for an input magnitude greater than

the delay, 8. The phase shift of the output square wave due to the hysteresis is clearly

seen between the input and output signals because the output signal does not switch until

after the input has changed signs. For the ideal relay, there is no phase shift.
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Figure 3.2. Relationship Between Input and Output for a Relay with Hysteresis
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Figure 3.3. Response of Relay with Hysteresis to a Sinusoidal Input

The describing function for the hysteretic relay may be found by solving the

describing function equation for an odd static nonlinearity

N(A) = j " y(A sin y)e-Jdyf
KA 0o

(3.13)

From Figure 3.3, it is clear that this system may be divided into two separate integrals for

each region of the relay output, for A > 8,

_ _

-3 +S



NHR(A)= -f De-dyf + De dy (3.14)

_ 4D eg1 1
-- e -w

irA

where,

D = magnitude of relay output

y1 = phase shift due to hysteresis = sin-1 (8/A),

and the subscript HR stands for hysteretic relay.

This describing function may also be expressed as a complex number

4D -2 4D3
NHR(A)= 1 - j A2  (3.15)

4A A A

By letting 3->0, the describing function for the ideal relay is

4D
NIR(A) = (3.16)

irA

where the subscript IR means ideal relay. Therefore, the hysteretic relay introduces both

gain and phase shift, while the ideal relay is a pure gain element. Both of these

describing functions are independent of frequency, a fact that greatly simplifies later

analyses. The describing functions derived in this section are summarized in Table 3.1.

Table 3.1. Describing Functions Encountered in Closed-Loop Oscillator

Nonlinear Function Description Describing Function N(A, &)
Cubic spring 33  k3A2

Relay with hysteresis +D 4D 1- .4DS

7rA J 7rA2
-D 8

Ideal relay +D-- 4D

I)rA

-D



3.2 A Closed-Loop Micromechanical Oscillator
A typical closed loop for generating steady-state oscillations is shown in Figure 3.4.

Two control loops are required for self-exciting the SEO and maintaining a constant

amplitude: the oscillator loop and the amplitude regulator loop. The oscillator loop

consists of the micromechanical resonator, a preamplifier and gain stage, a 900 phase

shifter, and a hard limiter. The amplitude regulator loop contains the resonator plant, an

absolute value operation, a low-pass filter that eliminates the resulting second harmonic, a

summing element that compares the amplitude of the oscillation to a desired value, and a

compensation block with a proportional plus integral gain that determines the voltage

necessary to maintain the desired amplitude.

Figure 3.4. Block Diagram of Self-Exciting Motor Axis Control Loop

The outputs from each of these loops are then summed together and applied to the

drive comb of the oscillator as VD, a voltage that consists of a signal in-phase with the

velocity of the proof mass and a DC term equal to the gain required to maintain the

oscillation amplitude. Through the comb interaction, this voltage creates a force that is

in-phase with the proof mass velocity. This force eliminates the effects of damping and

sustains the oscillation. These two loops are related; the oscillation loop determines the

frequency of the force, and the regulator determines the magnitude of the applied force.



3.2.1 Components of the Oscillator Loop

The self-exciting oscillator loop consists of the inner loop shown in Figure 3.4. Each

of these blocks represents a component with unique behavior. It is useful to examine

each of the individual elements in detail with a state-space approach. For this discussion,

it is assumed that a steady-state oscillation exists at the resonant frequency of the system

(with the cubic spring effects included). In Section 3.3.3, it is proven that a stable limit

cycle exists for any hard spring. Here, each block of the oscillator loop is examined in

detail. First, the resonator dynamics are expressed in state-space form by using the cubic

spring describing function. Next, each of the components in the oscillator loop is

discussed. Finally, a state-space model for the self-excitation loop is given.

3.2.1.1 State-Space Model for the SEO

It is possible to express the nonlinear, second-order, differential equations (2.9 and

2.10) of the SEO from Chapter 2 in state-space form by using the describing function for

the cubic spring from Equation 3.10

1 3 1 21 + -k Ax2  1
S Q 4 3 Qxy Xy X

S-1 0 0 0 0 0 x (3.17)
d 1 - 2 y -2 3 2  1 Fy 1

xy y QY 4 3 A0 0
0 0 -1 0

By writing the SEO dynamics in state-space form, it is much simpler to analyze the

behavior of the system, to determine a stability criterion, and to simulate the startup and

steady-state behavior of the system. The force coupling coefficients, a and , were

determined from the finite element analysis of Section 2.2.3, and the actual values depend

on the voltages applied to the stator, rotor, and ground plane. Here, the coefficients will

be used to simplify the description of the force cross-coupling effects.

3.2.1.2 Preamplifier and Gain Stages

The preamplifier and gain stage can be modeled as shown in Figure 3.5. Here, the

drive capacitance, Cd, is represented by a variable capacitance due to the proof mass

oscillations, and the op-amp feedback elements are a capacitor and a resistor connected in

parallel. The positive input to the op-amp has both the DC bias of the sense comb and the

input noise of the pre-amp. The noise capacitance is modeled by CN, and the gain stage

is simply represented by gs.

By modeling the capacitors as impedance elements, Kirchoffs current law states



-s(Vbs + VN)(Cd + CN) =Cf + RC (Vbs + V - Vou

= DC bias on motor sense comb

= preamplifier noise

= feedback capacitor

= feedback resistor

= capacitance between proof mass and sense comb

= output voltage from pre-amplifier, and

= stray capacitance.

Cd

Vpre

CN

V VV
Figure 3.5. Schematic of Motor

Vbs

Sense Comb Output Integrator with Noise

To find the transfer function of this system, first define x*, with units of Volts, to be a

combination of the output voltage, sense comb bias, and noise of the pre-amp,

X* = Vout - (Vbs + VN) 1+ (3.19)

Substituting this definition into Equation 3.18, and assuming Vbs>>VN, yields the

differential equation

C*= Vb s d- Opre X* +C (Vbs + VN)

(3.18)

where,

Vbs

VN

Cf b

Rb
Cd

Vout

CN

(3.20)



where opre = 1/RCpb. This equation may then be non-dimensionalized by making the

time and displacement normalizations from Equation 2.8,

i*= d - Cpre x Cfb(Vbs + VN) (3.21)

The gain stage also includes a blocking capacitor to remove the Vbs term from the output

voltage. Therefore, the transfer function from Vout, the output of the preamplifier

expressed in terms of x*, to Vpre, the output of the gain stage, is

Rg C22)
Vpre= * +(Vbs V ) 1+ (3.22)

where,

Rg = the feedback resistor in the gain op-amp

Rb = the resistor for the high-pass filter
Cb = the cut off frequency of the high-pass circuit; Cb = 1 / (RbCbon), and

Cb = the blocking capacitor for the high-pass filter.

For the DC term, Vbs, the gain of the high-pass transfer function is 0. For x* and VN, the
transfer function approaches 1 for iCb<< 1. Therefore, in Equations 3.21 and 3.22, the

Vbs term in the sum Vbs+VN may be ignored. These three equations then become

* = Vout - V1+ CN (3.23)

*= V- C pre x *+N VN (3.24)

Vpre =- R x*+VN I+ C (3.25)

The transfer function between the preamplifier output and the input noise, before the

gain stage, is, from Equation 3.18

1
s+

Vou Cd+ CN RfP C + Cd + CN)
- 1+1 (3.26)Vy Cfb s+ I

RfbCj



For very low frequencies, the gain of this transfer function is 1, and for very high

frequencies, the gain is

1+ Cd CN = c (3.27)
Cfb Cfb

Therefore, the high frequency noise is amplified by this arrangement, and will limit the

position measurement accuracy. The non-dimensional position equivalent noise may be

expressed approximately as

Cfb + Cd +CN
c y = acd ON (3.28)

VbsXO 
C
dx

where oN is the square root of the input noise density. For an assumed input noise

density of 10-16 V2/Hz, the noise on the drive position measurement is 115x10-9 1/Hz,

which is equivalent to 0.0115 AkHz. For amplitudes on the order of microns, the noise

is insignificant in the steady-state signal.

From Section 2.2.3.4, it was shown that there exists cross-sensing at the motor comb.

Including this effect in the preamplifier model changes Equation 3.24 to

S= Vx + -dopre x * + VN (3.29)
Cfb dx dy fb

where both partial derivatives include the total effects of the interactions between the

stator, rotor, and ground plane.

3.2.1.3 900 Phase Shifter and Hard Limiter

The 900 phase shifter adds 900 of phase shift to the position signal so that it is now in-

phase with the proof mass velocity. This phase shift is necessary in order to generate a

force that is proportional to velocity and therefore maintain a steady-state oscillation. In

practice, the sinusoidal position signal is integrated and multiplied by -1 to achieve the

correct phase shift. The phase shifter may simply be modeled as a non-dimensional

differential equation

Vps = Vpre - COintVps (3.30)

where,

Vps = the phase shifted voltage, and

COint = non-dimensional break frequency of integrator = 0.001 6 n .



With such a low break frequency, the phase of this low-pass filter will approach 900

(89.940) at the resonant frequency of the system. Also, at a non-dimensional resonant

frequency of 1, the gain of this filter is very close to 1 (1-5x10-7).

The hard limiter behaves as shown in Figure 3.2. A typical hard limiter has

hysteresis, such that the transition between +1 and -1 does not occur as soon as the input

voltage changes from positive to negative. The hard limiter may be modeled with an

algorithm, as shown in Equation 3.31, or by using the describing function of Equation

3.15.

Vhl +i1, if S>3 and Vhl=-1 (3.31)
-1, if Vps <-8 and Vhl = +1

where,

Vhl = the output of the hard limiter, and

3 = half-width of the hard limiter hysteresis.

During startup, the hard limiter must be modeled using Equation 3.31, since the input to

the relay is not sinusoidal. Describing function analysis may be used for the hard limiter

in the steady-state because, at that point, the input to the limiter will be sinusoidal.

The elements of the oscillator loop sustain limit cycles because there is a total of 3600

of phase shift in this loop. The resonator itself contributes -900, the phase shifter

contributes another -90', and the negative feedback adds the remaining 1800. This

configuration is a very straightforward implementation of a relay controller used to

generate steady-state oscillations.

3.2.2 Amplitude Regulator Loop

In addition to the self-excitation loop, the oscillator electronics have an amplitude

control loop. In Figure 3.4, the regulator loop is the outer control loop, and it consists of

the peak detector, the low-pass filter, the addition of a reference voltage, a proportional

plus integral controller, the addition of the oscillating drive signal, and the oscillator

itself. At the drive voltage summation, the oscillator and amplitude control loops are

reunited to generate a signal that controls both the frequency and the amplitude of the

oscillation. By automatically monitoring the amplitude of the oscillation, the system can

be driven at a reasonable amplitude that balances the nonlinear effects of the cubic spring

against the need for a large signal-to-noise ratio. As with most amplitude regulators, the

magnitude of the oscillation is found and compared to a reference value. The error

between the actual and desired amplitudes is then passed through a proportional plus

integral controller, and the resulting voltage is applied to the oscillator loop.



The magnitude is found by multiplying the sinusoidal output of the preamplifier after

the gain, Vpre, by a square wave generated by a hard limiter with Vpre as the input. The

resulting output signal is then the absolute value of Vpre, as shown in Equation 3.32,

Vpre = Ksx = KsAsin oT

4 1 2 (3.32)
Vpre sqr Cor = 7KsA sin sin r+ 3 sin 3 ir+... = -KsA(1- cos2 ) (3.32)

where,

C = non-dimensional drive axis resonant frequency (may include spring hardening)

Ks = the preamplifier gain, and

A = the non-dimensional amplitude of the proof mass oscillation.

This signal is low-pass filtered to produce a nearly constant signal that is proportional to

the amplitude of the proof mass oscillation.

The reference voltage, Vref, is calculated analytically by using the oscillator dynamic

model and the preamplifier model

2 2 gpreVbsXO CdVref = - s g Vx C (3.33)
7 7 Cf dx

where gpre is the gain stage amplification. For a desired amplitude of 10 gm and a

preamplifier gain of 10, the reference voltage is approximately 0.39 Volts.

The error between the amplitude of Vpre and Vref is passed through a PI controller to

generate the control voltage, VA,

VA = + Vref -KsA (3.34)

where Kp is the proportional gain and KI is the integral gain.

This DC value is added to the hard limiter output, yielding a drive control voltage

Vd = VA + VDCsqr(&o) (3.35)

where sqr( &r) is a square wave at the resonant frequency and in-phase with a sinusoid 1

This voltage is then applied to the stator comb, resulting in a drive force

1 LdC 2 C 2 2
Fd =-V 2 -C (2VAVDCsqr(OT)+ VA + V2C (3.36)

2 dx 2 dx

The constant forces are offset by the DC voltage on the sense comb, and, in steady-state,

the AC component of the force is at the resonant frequency of the oscillator.

Icsqr(cot) will be a square wave at co that is in-phase with a cosinusoid. See Appendix A for details on
square wave relationships.



The behavior of the amplitude regulator loop may be studied by using the slowly varying

parameter approach introduced by Krylov and Bogoliubov [17]. Here, the shape of the

signal is assumed to be A(t)sin(coar+(p(t)), where both the amplitude, A, and phase, T, are

time varying. If the amplitude control element is assumed to be an integral plus

proportional controller, then the nonlinear elements of the frequency modulation and low-

pass may be simplified to the closed-loop block diagram shown in Figure 3.6, where

x_vel is a square wave in phase with the proof mass velocity.

+ Nonlinear Absolute Value
0 Plant K/s - and

0 Dynamics L o wp a s s Filter

Comb +
Electrostatic  Kp+K/s

Forcing
+ +

_vel Vre

Figure 3.6. Simplified Block Diagram of Amplitude Regulator Loop

If it is also assumed that the oscillator loop has locked onto the natural frequency of

the drive axis, then the dynamic model for the amplitude control loop is

x 3 4 x (3.37)c +- +i + .3 = Kf ,A-A- (3.37)
Q t A

where,

VA =(Kp + - -)(Vref 2K- A) (3.38a)

2 = Asin(T + 9) (3.38b)

x = Asin(c + p)+ (1 + O)A cos(z + 9) (3.38c)

i = (-(1+ )2A)sin( + p)+(A+2A(1 + 0))cos(Tr + p) (3.38d)

KfA = forcing coefficient for the amplitude control loop = VD C dCd

kxxo dx
K, = sensing coefficient for amplitude control loop (defined in Equation 3.33)

Kp = GAR = the proportional gain of the PI compensator = 0.0179

K = GAR jz = the integral gain of the PI compensator = 1.424 x 10-7



gl = gain after preamplifier

GAR = gain of amplitude regulation loop

o z = location of zero in PI controller = 1 rad/sec. It is non-dimensionalized for KI,

and VA is the varying control voltage discussed previously. This voltage is passed

through a saturation function with limits equal to zero or the positive supply voltage, i.e.,
10 Volts, such that VA is always positive and less than or equal to 10 Volts.

In Equation 3.37, the nonlinear plant is driven by a sinusoidal force that is in-phase

with the proof mass velocity and has a magnitude determined by the amplitude regulator.

Substituting the derivatives (Equations 3.38c and 3.38d) into Equation 3.37 and

collecting the trigonometric coefficients yieldsA 3 4K A
0= (A-(1+ )2A + +A+i 3 A3 4 Kf,A VA1 sin(T + p)

Q 4 7r A
(3.39)

(( + 2A(l + 0+ (1+ )A 4 Kf,A VAcos(
Q r

Since this system is assumed to be slowly varying, the first derivatives of both the

amplitude and phase will be quite small. Therefore, in this equation, second derivatives

and products of first derivatives may be neglected. For lightly damped systems, 1/Q will

be very small, as will KfA. Neglecting second derivatives, products of first derivatives,

and products between first derivatives and l/Q or KfA, leads to the simplified result2

3A3 9)+ 2A+ 4KfA VAcos(T 9) (3.40)
4 Q 7

Setting the coefficients of the trigonometric terms equal to zero and using the definition

of VA from Equation 3.38a yields

= 8/3A2 (3.41)
8

A+ 2K VA  (3.42)
2Q 7r

1 4KpKsKf,A 4KKsKfA 2Kf,AKI
A + - + A = Vref (3.43)

(2Q 72 2 ref

Equation 3.41 is exactly the solution that is expected for the change in frequency due to

the cubic spring, as shown in Section 2.1.3, and it is valid for all values of VA. The next

two equations describe the growth of the amplitude of the limit cycle once the self-

2 These assumptions were verified by simulating and comparing both Equations 3.39 and 3.40.



exciting electronics have locked onto the resonant frequency. Equation 3.42 is used when

the control voltage VA exceeds the saturation limits of 0 Volts and 10 Volts. For VA less

than 0 Volts, VA is held at zero by the negative supply voltage, and the amplitude decays

exponentially from its present value towards zero with time constant 2Q. For VA greater

than 10 Volts, VA is 10 Volts, and the amplitude decays as (1-e(-t/v)) from its present

value to the value defined by the right hand side of Equation 3.42. For O<VA<10 Volts,

the second-order response of Equation 3.43 may be used. By numerically integrating

these equations and Equation 3.38a, and by including the saturation limits for VA, the

behavior of the amplitude during startup may be determined.

3.2.2.1 Simulation of Amplitude Regulator Loop

Typical responses of the amplitude regulator loop components are shown in Figures

3.7 through 3.10 for a Q of 150,000. The amplitude of the oscillation is plotted in Figure

3.7. Here, it is clear that there are three distinct regions of operation, which are defined

by the value of VA. In the steady-state, the amplitude does reach the desired value of 1.

The corresponding control voltage is plotted without and with the saturation limits in

Figures 3.8a and 3.8b, respectively. The nominal steady-state value for VA occurs when

the applied force is equal and opposite to the damping force and the time derivative of the

amplitude is zero,

VAss = i (3.44)4 QKf,A

This yields a nominal value of 0.196 Volts. In Figure 3.8, the simulated, unsaturated,

steady-state value is 0.204 Volts. The saturated control voltage is shown in Figure 3.9.

In Region 1, VA is 10 Volts, and the amplitude increases rapidly. When the amplitude

exceeds 1, VA begins to decrease, and soon becomes negative, saturating to a value of 0

Volts. In Region 2, the overshoot of the response decays exponentially towards zero with

time constant 2Q. When the amplitude falls below 1, the control voltage becomes

positive, but less than 10 Volts. In Region 3, the amplitude behaves according to the

second-order system of Equation 3.43, which has a steady-state amplitude of 1. The

frequency of the limit cycle oscillation, 4, is plotted in Figure 3.10. Since the resonant

frequency is a function of the amplitude squared, its appearance is similar to Figure 3.7.

The three regions of amplitude behavior can now be examined in more detail.

In Region 1, the amplitude is quickly driven past the desired value of 1, since the

error between the reference voltage and preamplifier voltage is quite large, and the

control voltage has saturated. In this region, the time constant is 2Q, and the amplitude



grows as 51(1-e(-t/2Q)), where 51 is the magnitude of the right-hand side of Equation

3.42. The control signal shoots rapidly to the saturation value of 10 Volts, resulting in the

maximum drive force, i.e. overforcing. Despite the slow time constant, the amplitude

exceeds 1 in 0.047 seconds. Once the proof mass amplitude is greater than the reference

amplitude, the control voltage decreases because the error is less than zero. The control

voltage will briefly re-enter the linear region of controller before becoming negative and

saturating to an output of zero. As VA decreases, the amplitude continues to grow, hence

the overshoot of the desired amplitude of unity in Region 1.

Region 2 begins at about 0.1 seconds, with the negative control voltage saturating to

zero Volts. Here, the amplitude decays with a time constant of 2Q from a peak of 1.4 to a

nearly steady-state value of one. At about 1.1 seconds, the amplitude is at 0.9.

Throughout this region, no force is applied by the closed loop; it simply permits the free

decay of the oscillator amplitude towards 1. The amplitude undershoots the steady-state

value because the amplitude continues to decay while VA is increasing towards zero.

In Region 3, the amplitude increases towards a steady-state value of one as the

second-order system in Equation 3.43. The amplitude and control voltage for Region 3

are shown in Figures 3.11 and 3.12, respectively. The amplitude is the sum of an

exponential of the form (1-e(-t/)) with an exponentially decaying sinusoid. Because the

control voltage is a function of the amplitude, it is also an exponentially decaying

sinusoid. In the steady-state, the amplitude is 1, and the control voltage is 0.204 Volts.
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Figure 3.7. Displacement Response of Amplitude Regulator
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Figure 3.12. Amplitude Control Voltage in Region 3

If the Q of the system is reduced, then the system will reach steady-state quicker.

Figures 3.13 through 3.16 show the amplitude and control voltage for a Q of 30,000 for

all three regions and for Region 3. Here, the system reaches the desired steady-state

amplitude of 1 and a control voltage3 of 0.979. Since there is more damping in this

example, the amplitude decays more rapidly towards its steady-state value. The three

regions of operation still exist, but both Regions 2 and 3 are significantly shorter in time.

Region 1 is nearly identical, but the maximum amplitude for Q = 30,000 is less than that

for Q = 150,000. The results indicate that higher Q systems require more time to reach

steady-state than lower Q systems, since the reduced damping makes the proof mass more

sensitive to changes in the applied force. However, the lower Q needs more control

voltage to generate a larger force, and the smallest Q for which a 10 gm amplitude is

feasible is about 3000, at which point the control voltage is 10 Volts, and the control

electronics have saturated.

3 The lower Q requires more voltage to maintain a given amplitude.
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The oscillation amplitude of the reduced-Q example enters Region 3 in about 0.25

seconds, instead of the nearly 1 second required for a higher Q. For the lower-Q case, the

amplitude has a rapidly decaying sinusoidal response for less than 0.25 seconds, and the

amplitude is with 0.5% of its steady-state value in 0.5 seconds, compared to almost 3

seconds for the higher-Q example. The control voltage is also at its steady-state value in

0.5 seconds, but it overshoots the steady-state value by 2 Volts, compared to about 0.6

Volts in the first example. Although the lower-Q amplitude reaches steady-state faster,

the control voltage has more overshoot and a larger steady-state value. One significant

trade-off in designing low pressure resonators is startup time versus the magnitude and

overshoot of the control voltage.

3.2.3 Electronics Operation

The self-starting electronics operate in the following manner. At initial turn-on, the

oscillator is at rest, and the pre-amplifier output is broadband noise, as shown in Figure

3.17. This noise passes through the gain stage, the 900 phase shifter, and the hard limiter;

it is simultaneously passed through the absolute value and low-pass filter. The low-pass

filter output is compared to a reference voltage, and the resulting error is integrated in the

automatic gain control (AGC) stage.
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At startup, the only input to the amplitude regulator is noise, so the resulting error is

quite large, causing the drive voltage to reach its positive limit. This value is then added

to the output of the hard limiter, which in turn is applied to the drive comb of the

oscillator. Through the interaction of the combs, a force proportional to the voltage

squared is generated. At this point, the force is the largest possible, and the voltage

spectrum is broad band. However, since the oscillator is a very high-Q system, the noise

around the resonant frequency of the oscillator is amplified, and higher frequencies are

attenuated. This output signal is then integrated and amplified.

Because of the high-Q, the output signal is concentrated at the natural frequency, and

the oscillation of the SEO grows, as shown in Figure 3.17. This growth continues until

the output from the oscillator is large enough that the hard limiter begins to switch back

and forth at the resonant frequency of the oscillator; frequency lock-in [37]. Once this

happens, the amplitude control loop varies the DC voltage until the error between the

position signal amplitude and the reference voltage is zero, as discussed in Section 3.2.2.

Now the oscillator may be considered to be in steady-state operation.

In Figure 3.17, a system with an assumed cubic spring nonlinearity of 2.5% is shown.

This results in a shift of the non-dimensional resonant frequency by 9.375x10-3. The

dominant signal in both loops is the sinusoidal position signal. The noise from the pre-

amplifier, crucial for exciting the oscillator, may now be neglected in the analysis of the

steady-state behavior of the loops.

3.3 Determination of Limit Cycles
In Section 3.2, the two loops of the micromechanical resonator were examined. In

that analysis, it was assumed that a limit cycle could be established. Here, the existence

of a limit cycle is demonstrated. It is then shown that this oscillation is stable for all

linear and hard spring systems. Finally, a perturbation analysis is performed to determine

the response of the closed loop to possible variations in the system parameters.

3.3.1 Nonlinear State-Space Model of Oscillator Loop

In order to determine whether or not a limit cycle exists in the single element

oscillator, a nonlinear representation of the motor loop is necessary [34]. A simplified

version of Figure 3.4 is shown in Figure 3.18.



NHR

Figure 3.18. Simplified Motor Axis Control Loop

This limit cycle loop does not include the amplitude regulator because it is assumed to

have no effect on the oscillation of the system when reasonable steady-state amplitudes

are commanded, i.e., no greater than 15 microns. The amplitude regulator affects the
magnitude of Kf, not its sign 4 . It will be shown that the magnitude of Kf is not critical

to the stability of the system. In this figure, there are two nonlinear elements: the cubic

spring, whose output depends on the displacement of the proof mass, j.; and the

hysteretic relay, whose output varies with the velocity of the proof mass 5, i~. The minus

sign on the outer feedback loop constant gain is necessary to make the applied force in-

phase with the velocity, not 1800 out of phase. The input to the linear oscillator plant for
a non-dimensional frequency, L(9), can be approximated as

y = KfNHR~ - NCS (3.45)
where,

NHR = describing function of hysteretic relay (Equation 3.15)

NCS = describing function of cubic spring (Equation 3.10), and

Kf = non-dimensional forcing constant (for a non-dimensional amplitude of 1).

The closed-loop differential equation for the self-excitation loop may be expressed as

""NC2i 
(3.46)X + - + X = KfNHR- NCSX (3.46)

4 The tilde is added to Kf to signify that, in the following sections, this constant is non-dimensional.
5In practice, the displacement is integrated, gained by -1 and fedback. From an electronics viewpoint, this
is a better approach. For a non-dimensional sinusoidal system, this will yield a signal that has the same
magnitude and phase as the velocity signal. Therefore, in this analysis, the velocity signal is used directly.

100



where Q >>1, so that the system may be considered lightly damped6 . This system may

then be expressed in state-space form with yl = .:, Y2 = -,

d [Y -1 KfNHR 1 + Ncs (3.47)
- Q f(3.47)

dr y2 Y10 2-Y2 I - 1 0 1Y2

To solve this system of equations, define

Yl = Al sin(&r + 61) (3.48a)

Y2 = A2 sin(C'r + 2) (3.48b)

where & is some non-dimensional frequency and r is a non-dimensional time. It is

assumed for now that A1 and A 2 are independent. It will be shown shortly that these

amplitudes are related through differentiation. For this assumed solution, let 62 = 00, i.e.,

the displacement will be used as the reference signal. Inserting Equations 3.48a and

3.48b into Equation 3.47 yields the coupled equations

A o cos(T + 1) = - I- If NHR A, sin(& + 9z1) -(1 + Ncs)A2 sin(c T) (3.49a)

A2 6 cos(Cr) = A1 sin(C9r + )01 (3.49b)

Examination of Equation 3.49b leads to the solutions

01
2 (3.50)

A, = @A2

The solution for A 1 is expected since the derivative of y2 is equal to yl. Inserting 01 and

the describing functions determined in Section 3.1 into Equation 3.49a and expanding the

trigonometric terms with standard identities yields the following two equations for the

coefficients of cos(C&z) and sin(&'), respectively:

SA, K 1 (3.51a)0= + 1-
Q r A,

-Al = -A 2  3 3A 3 4Kf (3.51b)
4 A+ A

where,

6 It will therefore meet the filter hypothesis requirement for describing function analysis.
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By manipulating these equations, solutions for A , A2, and & may be derived:

2KA

Assuming 2<<1 and 8/Q << 1 and requiring a non-dimensional steady-state amplitude of

1 for A 1 yields the real, non-trivial solutions

f=7 (3.53)

2-A2 = 1 (3.54a)

2 2( +3k 3 -1)
A2 = (3.54b)

33

A1 = 1 (3.55a)

3
A2 =-- k3  (3.55b)

8

3C =1+-k 3  (3.55c)
8

These are the steady-state values for the limit cycle. The amplitude of the oscillation is

A 2 and the frequency of the oscillation is C. Here, A 2 is nearly 1, and & has been

increased by the hard spring, as predicted in Sections 2.1.3 and 3.1.2.

As mentioned earlier, amplitude regulation is not considered here. If it was, then the

ratio of the steady-state velocity and position amplitudes must be equal to the ratio of A 1

to A 2 in order to satisfy the limit cycle condition. The amplitude is controlled by
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changing the value of Kf, which appears in the solution for A 1, which in turn affects the

amplitude A2.

If these solutions are inserted into the original nonlinear state-space equation, then,

for small 3, the eigenvalues of the system are

A = +j 1+ .- 3  (3.56)

which are purely imaginary, and an oscillation will exist. The open-loop small-amplitude

eigenvalues of this system are

1-= + j 1  (3.57)
2Q - 4Q2

Therefore, by closing the loop on this system with the hysteretic relay, the poles are

moved from a complex left-half-plane pair to a purely imaginary pair.

3.3.2 Graphical Solution to Limit Cycle

The steady-state limit cycle for Figure 3.18 may also be found by examining the

magnitude-phase plots for both the linear and nonlinear elements. The characteristic

equation of the system is

1+ L()[- fNHR(A,) + NCS(A, )] =0 (3.58)

where A and & describe the amplitude and frequency of the horizontal sinusoidal motion.

This equation must hold true at the location of a limit cycle. Hence, a limit cycle exists

when

1
L(9) (3.59)

Ncs(A, ) - j fNHR(A, ) (3.59)

If the functions on both sides of the equation are plotted in a magnitude-phase diagram,

then limit cycles would exist at the intersections of these curves.

It is clear that the linear transfer function depends on the frequency of the oscillation.

However, it is not as obvious that the nonlinear transfer function only depends on the

amplitude of the oscillation. This is true because the input to the hysteretic relay is the

velocity of the proof mass, which has an amplitude equal to A6J, and the describing

function must be expressed in terms of this amplitude. By then rewriting the describing

function as the product of a derivative and the hysteretic relay describing function, the &

in the denominator of the describing function will cancel that in the numerator from the

103



derivative, as will be shown in Section 3.3.3.1. The frequency term that remains both in

the square root and in the imaginary term are both negligible because S is assumed to be
small. Numerical simulation verified that these frequency terms do not affect the
conclusions drawn here, i.e., the nonlinear transfer function depends on amplitude only.

The linear transfer function L(9) and the negative inverse of the sum of the nonlinear

elements (Equation 3.59) may be drawn on a magnitude-phase plot, as shown in Figure

3.19, where the solid line is the linear response and the dashed line is the nonlinear

response. In this plot, the phase of the linear system changes dramatically from 00 to

-180' due to the high Q of the resonator. The nonlinear plot starts at -900 for small

amplitude and moves toward -1800 for increasing oscillation amplitude. From this plot, it

is clear that there is only one limit cycle, since there is only one intersection of the two

curves. The location of the limit cycle is shown in the expanded plot of Figure 3.20. The
point of intersection (A, C)) is very close to the values found in Section 3.3.1. For an

assumed cubic spring constant of 0.025, the graphical and analytical locations of the limit

cycle are shown in Table 3.2.

Table 3.2. Location of Stable Limit Cycle

Limit Cycle Graphical Analytical Error

A 0.99 0.9906 0.06%

c 1.0091482 1.009375 0.02%

The errors between the graphical and analytical solutions are less than 0.1%,

suggesting that the analytic approach provides a solution that is nearly identical to that of

the graphical approach, but much more straightforward to compute. The narrow range of

the phase (0.0250) in Figure 3.20 suggests that determining the exact location of the curve

intersection can be very time consuming.

The stability of the limit cycle point may be determined graphically from Figure 3.20.

If the -1/N point is considered to be equivalent to the Nyquist critical point of -1, then

stability of the limit cycle may be determined with Nyquist-like arguments. If the

amplitude is increased from A to (A + AA), the location of the critical point will move to

the left of the linear curve along the nonlinear curve. Using Nyquist arguments, it may be

shown that the response to the perturbation is stable when the linear curve passes to the

right of the critical point, i.e., it will not encircle the new critical point. If the linear curve

is to the left of the equivalent critical point, then the system is unstable because it
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encircles this critical point. Therefore, if the amplitude is increased, then the system is

stable, and the amplitude will decay to the steady-state value. On the other hand, if the

amplitude is decreased, then the system will be unstable, and the amplitude will grow
until it returns to the steady-state value of (Ao, 0o)-

3.3.3 Stability Analysis of Oscillator Loop

Having determined that a limit cycle solution exists for the motor loop, the next step

is to verify analytically the stability of this solution by examining the characteristic

equation of the system,

1+ L(jCo)[-j)ok f NHR (Ao 0, 6O) + Ncs(A 20 , )] = 0 (3.60)

where A 10 , A 2 0 , and C are the amplitudes (velocity and position, respectively) and

frequency of the equilibrium limit cycle. The additional term of jo 0 is necessary

because the input to this non-linearity is the derivative of position, and the relay

describing function must be rewritten to derive the characteristic equation. It is helpful to
make the substitution A 1 = &)A2 from Equation 3.52c, so that the characteristic equation

is defined in terms of A 2 and ) only. Equation 3.60 can now be rewritten in complex

form as

U(Ao, 0) + jV(A0,&o) = 0 (3.61)

where U and V may be found through straightforward manipulation of Equation 3.60 and
Ao now represents A 20 . If AO and ci0 are perturbed slightly, such that

A0o Ao + AA

O0 - )0 + ACi + jAC(3.62)

where Ao = -A / A, then the stability of the steady-state limit cycle may be determined

[13]7 . By first substituting these perturbations into Equation 3.61, then by performing a
Taylor series expansion about the equilibrium point (Ao, C)0 ) , and finally by removing the

quiescent terms (Equation 3.61), the first-order differential terms may be derived

dU dU (dv +dvdU AA + (A+ jA) +j- AA+j - (A) + jAc) = 0 (3.63)
A dA d Co

where the partial derivatives are evaluated at the equilibrium point. To satisfy this

equation, both the real and imaginary terms must equal zero. If A6C is eliminated from

7In [13] page 122, "the perturbation of the rate of change of amplitude has been associated with the
frequency term, a device which becomes clear upon thinking of the limit cycle in the form A0exp(jo)0t)." In
the next section, a will be defined as the positive ratio of the rate of change of amplitude to the amplitude.
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both of these terms, then a relationship for the stability of the equilibrium point is

derived:

Sd V d
dA dC5

dudVA F dU 2 dV + 2
d M A - +C(-o AO " (3.64)

In order for an oscillation to be stable, a positive change in AA must cause a positive

change in Ao, and, similarly, a negative change in AA must create a negative Ao. From

the definition of Ao, this means that A must always vary in the opposite direction of A,

i.e., drive A back towards its steady-state value. In order for this to be true, Equation 3.64

may be rewritten as the necessary condition:

du dV dU dV
S -dC >0

dA di3 dib dA
(3.65)

For the motor excitation loop of the SEO, the characteristic equation is, with the

substitution for A having been made,

1- )+ Q0 (3.66)
+
+A +3 3A =

AO )O 4

Further manipulation of this equation yields the form of Equation 3.61, (i.e., U+jV) by

using Equation 3.53 for Kf

3- 21 - 66 + 33A
4

+ j 0  1
Q AoQ

A 
2] 0

Ago
(3.67)

Inserting these values of U and V into the stability equation, and then substituting the
steady-state limit cycle values of Ao and &0 (Equations 3.55b and 3.55c) yields the

necessary condition for small k3 , large Q, and 42<<1,

15
2+ 1-k 3 > 0

4
(3.68)

which implies a stable system for k3 > -0.533. As k3 increases, this criterion is no longer

valid because of the Taylor series approximation. It has been shown through numerical

simulation that the stability criterion is met for all non-negative values of k3 , i.e., for all

linear and hard springs. This is a conservative conclusion that acknowledges the
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existence of an instability at some negative k3 value 8. In Figure 3.21, the stability

criterion derived from Equation 3.67 is plotted for k3 
> 0, without a Taylor series

approximation.

x10-5
9 r-

1 2 3 4 5

Cubic Spring Constant

Figure 3.21. Stability Criterion for Closed-Loop Oscillation

This value is greater than zero for all positive k3. Therefore, the closed-loop limit

cycle is stable. It is interesting to note that the stability of the system does not depend on

the quality factor. Therefore, pressure does not dictate the stability of the closed-loop

drive axis. Since Q only appears in the denominator of the stability criterion and is

positive, it only affects the magnitude of the criterion. Large Q will decrease the value of

the test function, but will never force it to be less than zero. The value of the cubic spring

is the only system parameter that determines closed-loop stability.

In practice, the amplitude of the oscillation is directly related to Q, and, as shown in

Section 3.2.2, the system cannot reach the desired amplitude for Q less than 3000.

However, the system may still maintain an oscillation at a degraded magnitude. At a

sufficiently low Q, no oscillation can be maintained because the force cannot overcome

the viscous damping, and the amplitude of the oscillation is of the same order as the

noise. This occurs for Q on the order of 100.

8In this thesis, limit cycles are studied for hard springs only, the exact location and behavior of this
instability are not examined in detail. This is a topic of future investigations.
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3.3.3.1 An Alternative Approach to Stability Analysis

A second approach to the stability problem is to assume that the hysteretic relay

nonlinearity also includes a 90' phase shift with the position signal as the input. The

input to the hysteretic relay is the velocity of the proof mass, which has an amplitude of

A6.. However, in order to determine the characteristic equation, it is necessary to rewrite

this nonlinearity so that its input is the position. The derivative, which is expressed as

si, may be written explicitly, as in Section 3.3.3, or incorporated implicitly into the

describing function, as it is done here. In this case, the describing function is

S j- 2
43 4 8

NHRS(A, C)= joNHR(AA)= + j 1- (3.69)
CA w rA Aj

where the subscript HRS represents the hysteretic relay with phase shift. The differences

between this describing function and NHR are that the signs of both terms of NHRS are

positive, and the imaginary term contains the square root. In Equation 3.69, the

describing function depends on both the frequency and amplitude of the position,

whereas, in Section 3.3.3, NHR depended only on the amplitude of the velocity.

From Figure 3.18, the transfer function from y to i is clearly L(). Also, the time-

domain relationship between x and y across the non-linearities is

y(t) = -[-Kf NHRS(t) + NCS(t)](t) (3.70)

These two relationships lead to the characteristic equation

1+ L(jo)[-KfNHRs(A, o) + Ncs(A, 6)] = 0 (3.71)

By defining U and V as in Section 3.5.2 and following the procedure from above, the
necessary condition for stability at the equilibrium point (Ao, Co0) (Equation 3.55b and

3.55c) for small k3 , small 3, and large Q is

2+ -- k3 > 0 (3.72)
4

Once again, as in Section 3.3.3, it can be shown that for positive k3 , the system is always

stable. Therefore, either by using the describing function state-space approach or by

redefining the non-linearity to have an input _i, the motor loop has been shown to be

stable for all linear and hard spring cases. The existence of an instability for a negative

k3 value is acknowledged, but not investigated, in this thesis.
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3.3.4 Analysis of Transient Oscillations

The modification to the hysteretic relay to include a 900 phase shift was an important

step towards a straightforward analysis of transient oscillations in the system. A transient

oscillation is meant "to imply a function of time which is oscillatory in nature and which

can be described as a sinusoid with slowly changing amplitude and frequency [13]". By

performing this study, the behavior of the system for changes in its physical parameters

can be better understood. Specifically, it would be quite useful to understand how the

amplitude of the oscillation will vary with changes in the spring constants, damping,
forcing, or hysteresis behavior of a micromechanical resonator.

If the shape of the output signal i-(t) is defined as

i(t) = A(t)ejv(t) (3.73)

then its time derivative is
d = AeJV + j4iAeJV
dt

=(A + ji@AeJv 
(3.74)

From here, a clever definition of variables leads to an elegant solution [13, p. 215]. Let

A
A0=- (3.75a)
A
S= j (3.75b)

s = a + jw (3.75c)

where a and Co both vary with time, and s is used as a variable [13]; it is not a Laplace

transform! By using this new variable, the derivatives of x may be rewritten as

S= - + (3.76a)-= sx =(o+ji)
dt

dt
2 = sx + sx

= (s 2 + ) = (C 2
-_ 2 + 2jaC + + jo).i (3.76b)

Higher derivatives may be calculated in a similar fashion, but they are not necessary here.

Also, time derivatives of the product Nx can be determined as
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d(Nx) = (Ns + )i (3.77a)
dt

d2 (Nx) = Nsi + Nsi + si + x + Nx
dt2

= [N(s2 + S) + 2Ns + Ni (3.77b)

This expansion will not be used in this thesis.

By inserting the definitions for the first and second derivatives from Equations 3.73 to

3.76 into Equation 3.46, and by replacing the describing function NHR in Equation 3.46

with the describing function NHRS of Equation 3.69, a complex equation is derived9 ,

which may be separated into real and imaginary parts:

-2 2a 3 3A2 43Kf

R(O,Cb,A,@)= &+1- a2 +233 A2 K =0 (3.78a)
Q 4 A2

( 2
.7O 4If I (3.78b)

I(ao,uA,)= 9+-+2- 1- = (3.7b)
Q irA A) )

This solution is a more general version of the slowly varying parameter approach of

Krylov and Bogoliubov [17]. In Equations 3.78a and 3.78b, the dependencies on d, 6
and higher powers of a have not been eliminated. By allowing Co to be non-zero and

perhaps time varying, a wide range of dynamic systems can be studied.

3.3.4.1 Determination of Limit Cycle Values

Equations 3.78a and 3.78b are a more exact solution, and they will be used in the

subsequent analysis. The quasi-static solution for this system may be found by setting a

and its derivatives and the derivatives of & equal to zero in Equations 3.78a and 3.78b.

Here the limit cycle quantities are

2 = 1 + + 3 3 ) (3.79a)

2  2(1 + 3 3 - 1)A = (3.79b)
3 3

which are identical to the solutions found in Equations 3.54b and 3.54c.

9 Before making this substitution, the Laplace transform of the plant transfer function L(s) should be
rewritten in the time domain so that the derivatives are clearly seen.
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3.3.4.2 Limit Cycle Amplitude Transients with Small-a Analysis

The steady-state behavior of the perturbed limit cycle of this system can be

approximated in order to examine the effects of disturbances on the system. If the

amplitude and frequency are indeed slowly varying such that the changes over one period

are very small, i.e.,

=AI 2 27r1 << 1

(3.80)

then the small-a solution may be used to determine an approximate steady-state response

to system variations [13]. The first step of this approach is to drop the derivatives of a

and @ and powers of a greater than two in the equation of reals (Equation 3.75a). From

this equation, solve for @i(a,A) by substituting for Equation 3.53 Kf and by assuming

/Q << 1,

2 a +2 3 3A 2 (3.81)
Q 4

Next, differentiate this expression with respect to time and drop the derivatives of a to

get a solution for (, A),

3k3aA 2

C0 = (3.82)
4di(a,A)

The derivatives of a are neglected because, from Equation 3.80, a is a small value, and it

is assumed to be slowly varying, since it is a function of A.

Third, in the equation of imaginaries (Equation 3.75b), drop the derivatives of a and

the second and higher derivatives of i. Insert Equations 3.81 and 3.82 and then solve

for o(A). After the substitutions, the resulting equation is

(QA)223 +- 2 +2(9k 3A2 +( 3A22 = k 2  (3.83)

If this equation is then expanded and powers of a greater than two are neglected, the

quadratic equation for a is
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1 k32A6 + 9k3A 4 + 4A2 12

36 Q2

+ k2A6 + k3A4  +4A 2 (3.84)

+ 1 9 32A6+3 3A4 + A2(l 3 1 ]=

Here, the quantity of interest is A, which is equal to Ac. The solution to Equation 3.84

for small k3 and Q>>l may be expressed in terms of A as

A= Au 2 (3 3A2 +1) A (15 3A 2 +8) (3.85)
Q (9k3A 2 + 4) 4Q (9 3A2 + 4)

The Taylor series expansion of this solution is

1
A = Ac = (1- A) (3.86)

2Q

which, when plotted as Ac vs. A, appears as a straight line. Because k3 is small, there is

very little difference between the series expansion and exact solutions for A near 1. The

approximation of Equation 3.85 may be fitted to the curve

A = mA + n (3.87)

From here, the amplitude may be estimated from the exponential equation

t

A= 1 - e 2Q (3.88)

While this is an adequate approximation to the behavior of the amplitude in steady-state,

it neglects one important aspect. In the startup sequence of the oscillator, the forcing

coefficient Kf is not a constant. When the amplitude of the proof mass is very small, the

error between the actual and desired amplitudes is very large, generating much larger

forces than the steady-state force assumed here. Therefore, this analysis is not useful for

analyzing the startup of the resonator. However, the significance of this solution will

become apparent in the next section, in which the time constant for the transfer functions

between the amplitude or frequency and system parameters will also be 2Q. A derivation

of the startup model with an amplitude-varying forcing constant was performed in

Section 3.2.2.
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3.3.5 Limit Cycle Amplitude Variation

As a parameter in the system, such as the pressure, damping, spring constant, etc.

changes, a transient variation is induced in the amplitude of the limit cycle. Since the

SEO will be operating with an amplitude controller, it may be assumed that A will not

depart very far from zero during steady-state operation. The time derivative of the

amplitude may therefore be approximated as a linear function of the amplitude, i.e., [13]

*dA
dA- (A-A 0 ) (3.89)
A A=O

for which the exponential solution has the time constant

dA d 1

dAA=o A dA=0 (3.90)

which leads to a transfer function between a change in a parameter and the change in

limit cycle amplitude [13]

AA (AP)ss
AA =(A/P)ss (3.91)
AP 79 +1

where both r and (AAI/AP)ss must be derived. If " is positive, then the nonlinear system is

stable, since variations in system parameters will generate exponentially decaying

responses. A negative r indicates an unstable limit cycle.

3.3.5.1 Derivation of Time Constant

In order to solve for the time constant, the real and imaginary terms from Equations

3.78a and 3.78b are needed to obtain doldA. In a manner similar to the small-o solution

above, it is permissible to drop the derivatives of a, the derivatives of CO of higher order

than one, and the powers of a greater than 1, such that

R(,a, ,dA,)=0= l 2 3A2 -rK (3.92a)

T e fi2
I 4fI 1 -- (3.92b)

SarA i Al a

The first differentials of the real and imaginary equations, in general, are
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dR dR dRdoa+ d + -dA
da d@ dA

dI +do
dldI d~dM + ddA

dA

dR
+ d---d = 0

dl
+-- d = 0dj)

(3.93a)

(3.93b)

The equation of reals may now be solved for d6, and the time derivative of the resulting

equation may be written as

L dto
,O
dt

(R R ( da dR dA
d d &o dt dA dt

dR d&+ ----
d& dt

(3.94)
"do-CR R "i

=W AG

where d6 and & have been neglected in these equations. In the steady-state (a = 0), this

equation becomes

d = R - dR R Aod
d M - A

(3.95)

Equations 3.94 and 3.95 may be inserted into the equation of imaginaries (Equation

3.93b). This result may then be solved for dcr/dA

do

dA dl dI(

da di

dI dl ( dR -' R

dR -1 dR
Ml dA

which, when inserted into Equation 3.90, yields the time constant

1 dI dI dR \ 3R
AO a dtd dA A

dr dR Ao1 dRd5 di) d

dI dI (
dA d@i

dR (R )-' dR
dib MdA

dR -1 dRA _
di~o Ad

(3.97)

To find the steady-state time constant, the limit cycle values may be inserted: a = 0, ci =

@o, A = A0, b = 0. As will be shown in Section 3.3.5.3, the time constant is 2Q, which

has been demonstrated several times in this chapter. Therefore, this limit cycle is stable,

confirming the conclusions of Section 3.3.3.
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3.3.5.2 Amplitude-Parameter Transfer Functions

The steady-state amplitude/parameter relationships required for Equation 3.91 may be
determined by evaluating the real and imaginary equations when a = 0 and 60 = 0. In

this case, Equations 3.78a and 3.78b become functions of the amplitude A, the frequency

C, and any system parameter P, where P may be chosen from the set of [Q, k3 , Kf, 8].

R(A, o,P)=0= -1 2 3 3 A2 4SKf (3.98a)
-24 rA2 w)

4/fI  " (23.98b)I(A, , P) = 0 o 1- (3.98b)
Q KA A Co

The differential relating changes in P to changes in A may be written in a manner similar
to that of Equations 3.90 and 3.90b

R dA + db + dP = 0 (3.99a)
dA di dP

dl dl dldA + dio + dP = 0 (3.99b)
dA dO dP

By eliminating d& from these equations, the relationship between A and P may be

expressed as

dl dI dR AdR

d d(3.100)
dP dl dI R dR

dA d id, iio) dA

where the partial derivatives are evaluated in the steady-state, with o = 0 and all

derivatives of a and r equal to zero. Additionally, the relationship between the limit

cycle frequency o and P may be expressed as

dI I (dR -I 'R
df dP dA -dA) dPSP A (3.101)
dP l dl (dR) 1 dR

A cursory examination of Equations 3.97, 3.100 and 3.101 shows that the same partial

derivatives are used in all three cases. Once the time constant and dAldP have been

derived, the transfer function between A and any P may be determined from Equation

3.91.
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3.3.5.3 Parameter Variation for SEO Model

The sensitivity of the limit cycle amplitude to parameter variations for the SEO may

now be derived from the approach discussed above. From Section 3.5.3, the real and

imaginary parts of the characteristic equation are as listed in Equations 3.78a and 3.78b:

+a + 3 2 43KfR(a,Co,A,) =0= + 2 2 3+ Z iA 2

AQ + 2A A

(3.78a)

(3.78b)

where it may be noted that, since the partial derivatives will be evaluated at the steady-

state limit cycle, it is not necessary in that case to redefine R and I for dA/dP, since the

steady-state values of a and CO will be equal to zero. The relevant partial derivatives are

dl 1
= 20a+-

i&b Q

I 4f [(A)2 - 2]

"A - A4--2

I o
dQ Q2

dI 4kf S

= 0
dk3
dl 4

arc :A

dR 1
a Q

22A -2C +
dR 3 SKfS

- k3 A+
A 2 xioA3

dR
=0

d@ 2
dR 4ka

dR_ 4K2f

dR 3r A2
A-- 3 A 2
k3 4

dR 4S

dKf roiA 2

which, when inserted into Equation 3.97 and evaluated at the steady-state values (a= 0,
A = A0, & = Co) yields the time constant

4(3k3 +4)

(9k3 +8)Q=2Q

It should be noted that for small k3 , the time constant is exactly that derived in the small-

a solution, which estimates the behavior of the system near steady-state. For linear and

hard springs, T will always be greater than zero.
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The steady-state gains between the amplitude and the system parameters k3 , 6, Q,
and Kf may be evaluated for 82<< 1, k3 << 1, from the development of Section 3.3.110

3-
Ao = -8 3 (3.55b)

3
C0 = 1 +-k 3  (3.55c)

f = 4- (3.53)
4Q

where Kf is defined for a non-dimensional amplitude of 1. With these first-order

approximations of Ao and oo, the Taylor series expansions of the partial derivatives are

4dA _ 3A 3 3 3 -2 3 (3.104a)
3 (3.104a)

dk3  8o 0 + 6Ag3k 3  2 9k3 +8 8

dA 2A0 -46SQ 8 + 3k 3  86 1 (3104b)
d3 AOao(4 0 + 3Ak 3 )Q 2(9k3 + 8)Q 9k 3 +8 2Q

dA 4AoO2  8 1

Q (4co + 3Ak3)Q (9 3 +8)Q Q (3.14c)

A 16A 0 Q 32Q 4Q (3.104d)
dKf ,(4wo + 3Ak 3 ) 7(9k3 +8) 7 9

The final approximations of these derivatives are based on k3 <<1. The physical

importance of these gains can be interpreted in the context of the amplitude control loop

that maintains a constant amplitude. First, it is assumed that the amplitude regulator will

not adjust the force to maintain the amplitude, i.e., the applied force remains as a

constant. Comments are then made on the impact of these derivatives on the behavior of

the amplitude regulator loop, i.e., how these variations change the amplitude control

voltage.

If the nonlinear spring is made harder, i.e., k3 increases, then the amplitude will

decrease, as shown in Equation 3.104a and suggested by Equation 3.55b. Since the force

varies with the velocity of the proof mass, an increase in k3 will increase the resonant

frequency. However, the velocity amplitude is kept at 1, so the displacement amplitude

must decrease to satisfy Equation 3.52c. For larger k3 , the Taylor series expansions are

no longer valid, and a more general solution must be derived. In this case, the amplitude

10These equations are repeated here so that the reader does not have to refer to Section 3.3.1.
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regulator loop would supply more voltage to increase the force in order to maintain the

non-dimensional amplitude of the proof mass at 1.

In Equation 3.104b, an increase in 3 will also decrease the resulting amplitude for a

constant magnitude force. Likewise, the amplitude regulator loop will increase the

voltage to compensate for the increase in the hysteresis of the relay. As the hysteresis of

the relay is increased, the real gain of the relay decreases and the imaginary gain

increases, as suggested by Equation 3.15, which is repeated here with D = 1:

2
4 _4_

NHR (A) = 1- - - j 2 (3.15)

Therefore, increasing 8 not only lowers the in-phase gain, but also increases the

quadrature gain, which in turn generates a force that is in-phase with proof mass

displacement, not velocity. At a certain point, not relevant here, the size of the hysteresis

will prevent the system from oscillating. This value is not determined here because the

relays used are nearly ideal, with hystereses on the order of mV, and input signals on the

order of Volts.

By increasing the quality factor of the system, i.e., by reducing damping, the

amplitude of the proof mass will increase if the applied force is held at a constant

magnitude, as shown in Equation 3.104c. As the damping of the system is decreased, the

Q of the system goes up, so that less force is required to overcome the damping in the

system. In this case, the amplitude control loop will lower the applied voltage because

less force is required to maintain the desired amplitude. On the other hand, if the

damping is increased, perhaps by increasing the pressure around the oscillator, then the

amplitude will decrease and more voltage is required in order to keep the amplitude at its

reference value. By integrating this equation, it is clear that the amplitude grows as the

natural logarithm of the quality factor.

Finally, if the forcing constant itself is increased, then the amplitude will also grow

because the amplitude is directly proportional to the forcing constant. Once again, the

amplitude regulator will use less voltage to achieve a non-dimensional amplitude of 1

because the applied voltage is more efficient in generating an electrostatic force, i.e.,

there is more "bang for the buck." In practice, the forcing constant is varied by changing

the DC value in the drive voltage or by modifying the design to affect the comb drive

capacitor derivatives with respect to x. By varying the shape of the stator comb fingers or

the distance between them and the rotor fingers and ground plane, the forcing constant

may be changed.

For typical non-dimensional oscillator values,
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Kf = 5.236x10 - 6

S = 0.0103

Q = 150,000

k3 = 0.025

The nominal values of the partial derivatives of Equation 3.104 are shown in Table 3.3.
For these calculations, the second to last equations for the partial derivatives are used to
include the effects of the cubic spring.

Table 3.3. Typical Values of Steady-state Amplitude Gains

Steady-state Gain Value

dA -0.3511

dA 6.48 x 10-6
Q

dA -0.0100

dA 1.858 x 105

Although some of these gains seem to be either quite large or quite small, in reality these
values are quite reasonable. For example, although the partial derivative of the amplitude
with respect to Kf seems quite large, the forcing constant is unlikely to change more

than 10-5 , such that the amplitude will change, at most, by twice its value. Similarly, a

change in Q will be on the order of 103 to 104, such that the amplitude will change by

0.006 or 0.06. In fact, the solution for A as a function of Q is the natural logarithm,

suggesting that, after a certain point, increasing Q will not increase the amplitude of the

system by a significant amount. Therefore, once an adequate package pressure has been

designated, improvements beyond that value are not required. On the other hand, for low
Q, small changes will have a great impact on the amplitude of the limit cycle.

From Equation 3.101, the partial derivatives of the frequency with respect to the

system parameters may be found under the same assumptions as the amplitude

derivatives:
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do 3 3k3 -4 (3.105a)
dk 3  4 9k3 +8)

do 2 (3.105b)
dS (3k 3 + 4)Q

do 6/3  (3.105c)

Q (9/k3 + 8)Q

do 24Qk3  (3.105d)
dkf r(9k3 +8)

Once again, a physical understanding of these steady-state gains is necessary in order

to evaluate the usefulness of this approach. From Equation 3.55c, it is obvious that as k3

increases, the resonant frequency of the system will also increase. As shown in Equation

3.105a, the frequency does in fact increase as k3 goes up. To first order, the partial

derivative is exactly equal to that obtained by differentiating Equation 3.55c with respect

to k3 . Changes in S do not affect the frequency of the system. Because the relay

determines the magnitude of the force, not its frequency, it is logical that the resonant

frequency is independent of variations in the hysteresis. The contributions that the relay

make are limited to amplitude and phase. In addition, changes in Q have little effect on

the frequency. Varying damping, to first order, affects the amplitude of the system only.

As the damping becomes larger, the Taylor series approximation is no longer valid, and

the damping may affect the frequency of the system. Finally, for similar reasons, the

forcing constant also has a small effect on the frequency.

Table 3.4. Typical Values of Steady-state Frequencv Gains
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Steady-state Gain Value

do 0.3579

dk3

do) 1.216 x 10-7

dQ
do) -3.27 x 10-6

do) 3.48 x 103

dKf
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For the typical system parameters given earlier, the steady-state frequency gains are
shown in Table 3.4. Here, the dependence on k3 is nearly equal to 0.375, as expected.

However, the other three values are significantly less than the amplitude gains, verifying
that the frequency is essentially independent of these system parameters.

From this approach, transfer functions have been derived for both the amplitude and
frequency with respect to the system parameters; both the time constant 7 and the steady-
state gains, (AA/AP)ss and (Aco/AP)ss, have been calculated. A typical response to a

variation in a parameter may be determined using Equation 3.91. Figure 3.22 is a plot of
the time response of the amplitude and frequency where k3 = 0.025, Q = 15,000, and AQ

= 1000. The value for Q was chosen this low for a reasonable time constant.

1.07

C: 1.06

*• 1.05

> 1.04
0o

= 1.03
o

r 1.02

1.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 3.22.

Time (sec)

Amplitude and Frequency Response for AQ = 1000

In this plot, it is clear that variations in the damping affect the amplitude more than the

frequency. The amplitude changes by 6% for a variation of 6.66% in the damping.

However, the frequency variation is only 0.09%. Similar analyses may be made for

variations in the other system parameters.

3.3.6 Summary of Transient Response Analysis

In the previous sections, Equations 3.78a and 3.78b were used to derive various

transient characteristics of the closed-loop system. These two equations were determined

with the hysteretic relay describing function that included differentiation (Equation 3.69).
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Table 3.5 summarizes the approaches taken. The first column lists the section, the second

shows the quantity that is derived, the third column states the approach taken, and the

fourth column summarizes the assumptions. The steady-state assumption means that a

and its derivatives are equal to zero, D = Co, A = Ao, and C0 = 0.

Table 3.5. Transient Response Analysis Summary

Section Derivation Approach Assumptions

3.3.4.1 limit cycle steady-state sol'n steady-state values

3.3.4.2 A(T) small-oa solution drop <6Y, o', an , n > 2

3.3.5.1 _7 first differential steady-state values

3.3.5.2 [A, & ]/P Xfer Fcns first differential steady-state values

3.4 Simulation of Motor Loop Operation
The closed loop, non-dimensionalized, two-dimensional, lumped parameter

mechanical model was simulated using FORTRAN [36]. The nonlinear, coupled,

second-order equations were separated into four first-order differential equations. The

oscillator was represented by the state-space model of Equation 3.17. The preamplifier

and gain stages were modeled using Equations 3.23 through 3.25. An integrator was used

for the phase shifter, and the relay was implemented according to Equation 3.31. The

elements of the amplitude regulator are shown in Figure 3.6, where an absolute value

function was used to represent the peak detector. The MATLABTM and FORTRAN code

are shown in Appendix C11. Two cases were run to examine the startup and steady-state

behavior of the two-dimensional model.

3.4.1 Amplitude Regulator Simulation

In the first case, all cross-coupling terms were set equal to zero, so that only x-axis

motion is present. The horizontal displacement is shown versus time in Figure 3.2312

As the oscillator starts, the initial displacement is zero. Once the excitation loop has

locked onto the resonant frequency, the amplitude initially exceeds the nominal value of

1, and this overshoot quickly settles out, as shown in Figure 3.24. The phase-plane plot

of Figure 3.25 demonstrates that the system starts from rest at the origin, and slowly

increases to a steady-state non-dimensional position of 1.

1 1MATLABTM is provided by The Mathworks, Inc. of Natick, MA.
12In this plot, the data is aliased, so the observed sinusoidal motion is actually at a much lower frequency
than that occurring in the simulation.
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Figure 3.23. Simulation of Startup Response for SEO
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Figure 3.24. Magnitude of Response of Horizontal Axis for SEO
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Figure 3.25. Phase Plane of SEO Startup Simulation

In Figure 3.24, the amplitude of the drive motion grows as predicted in Section 3.2.2.

Here, the amplitude is quickly driven beyond the desired amplitude. The control voltage

then goes to zero and allows the motion to decay below the steady-state value. At this

point, the control voltage is again non-zero, and the amplitude increases towards a steady-

state value of 1. In Figures 3.26 and 3.27, the length of the simulation was increased to

examine the amplitude behavior. Figure 3.26 shows the simulated (solid) and predicted

(dashed) amplitudes of the oscillation. The predicted behavior of the amplitude is quite

close to the simulated response. The slight differences arise due to the complexity of the

simulation and the fact that the system does not immediately lock onto the correct

frequency. Also, the simulated behavior has some low-pass filters that do not have a gain

of exactly one, and that difference will vary the response. In addition, the second

derivative of the amplitude is ignored in the prediction, and, during startup, that may

affect the estimates slightly.
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Figure 3.26. Predicted vs. Simulated Behavior of Amplitude Regulator
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Figure 3.27. Predicted vs. Simulated Amplitude Control Voltage
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Figure 3.27 shows the non-limited control voltages for both the simulation (solid) and

the prediction (dashed) based on Section 3.2.2. Here, both signals have very similar

behavior. Initially, both voltages exceed the +10 Volt saturation point and continue to

increase for about 0.1 seconds. At that point, the signal decreases, until it is below the 0

Volt saturation point. At about 0.8 seconds, both voltages become positive again, and

head towards the desired steady-state values. The slight errors in the prediction occur

because at start up, the higher-order derivatives of the amplitude cannot be ignored.

However, the impact of this assumption does not reduce the utility of the methodology

which predicted, in a very simple way, the behavior of the amplitude control loop.

3.4.2 Oscillator Simulation with Cross-Coupling

In the next case, the cross-coupling terms were included to show that the cross-

coupling of the x-motion and x-force can induce significant motion into the y-axis. The

resulting x- and y-motions are shown in Figures 3.28 and 3.29. The horizontal motion is

essentially unchanged from the previous case, verifying that the cross-coupling forces do

not couple back into the original axis. The vertical motion is clearly coupled to the

horizontal motion. Both degrees of freedom have very similar shapes, but with different

amplitudes. The y-motion amplitude is about 4% of the non-dimensional nominal sense

gap of 0.25. This large vertical motion is the motivation for designing vertical control.
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Figure 3.28. Startup Response of Horizontal Axis for SEO
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Figure 3.29. Startup Response of Vertical Axis for SEO

Comparisons between experiments and simulations of oscillator start-up, performed
independently of the work reported in this thesis, suggest that the simulation is quite
accurate. The behavior of the amplitude, the time to steady-state behavior, and the values
of the control voltages were verified experimentally; the results agree with the
simulations. For example, the time-to-steady-state was simulated as about 1 second
(from Figure 3.26), and typical times-to-steady-state are on the order of 1 second. The
control voltage for an assumed Q of 150,000 was about 1 Volt, which is often seen in
resonators sealed in low pressure containers [2, 3, 37]. Actual performance depends on
the parameters of the oscillator, and the simulation will adequately predict behavior,

given the characteristics of the device. This simulation of the basic model will be

expanded and used to implement the third degree of freedom and vertical and rotational

control systems of Chapters 4 and 5.
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Chapter 4

Silicon Element Oscillator
Lumped Parameter Model and Design

4.0 Introduction
The two degree of freedom dynamic model developed in Chapters 2 and 3 is adequate

for most analyses of micromechanical oscillators. However, in real systems, the proof

mass may rotate about the z-axis because of cross-coupling with both the lateral and

vertical motions. A third degree of freedom, 0, may be added to the dynamic model to

study the extent to which this occurs. With this expanded model, the magnitude of the

rotational motion may be determined through open-loop frequency response analysis.

The addition of 0 also requires revisiting the electrostatic model to include the effects of

rotation in the capacitor models.

In this chapter, the design of the silicon element oscillator (SEO) is presented. This

design includes modifications that are necessary to observe and to control vertical and

rotational motions, and will be examined in both Chapters 4 and 5. In Chapter 4, the

three degree of freedom dynamic model is derived, and the vertical and rotational motion

detection schemes are presented. In addition, the design of both vertical control force

plates and rotational control torque plates for the SEO is discussed, and the magnitude of

the error signals is analyzed. Simulations are performed to demonstrate the stability and

behavior of this dynamic model. In Chapter 5, control systems are designed to minimize

both vertical and rotational motion.

4.1 Design and Layout of Single Element Oscillator
In order to study the impact of rotation on the micromechanical resonator and to

control both vertical and rotational motions of the proof mass, several changes to the

basic oscillator layout had to be made. First, control torque plates are located under both
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sets of combs so that the torque, which can be applied from either plate, is maximized. A

vertical force control plate is under the center line of the proof mass to generate vertical

control forces.

In order to place these control plates under the proof mass, the sense plate must be

split in two, as shown in Figure 4.1. This reduces the total sense plate area, and decreases

the sensitivity to vertical motion, which is proportional to the sense plate area. In this

design, each sense plate is 209.5 9tm by 424 gim for a two sense plate total area of

177,656 jim 2, compared to the Chapter 2 design of a 474 pm by 424 pm sense plate with

an area of 200,976 jm 2 . The vertical control force plate is 40 pm by 424 lm, and each

rotational control torque plate is 48 pm by 424 pm. Although the overall sensitivity is

reduced, the dual sense plate design permits simultaneous detection of both vertical and

rotational motions, which is a significant advantage, as shown in Section 4.3.3.

Vertical
Control Force

SPlate

Sense Sense
Plate Plate

Rotational
Control Torque

Plates

Figure 4.1. Sense and Control Plate Metallization Pattern for a Typical SEO

The proof mass and the stationary combs of the SEO are unchanged from the Chapter

2 micromechanical resonator. One set of combs generates horizontal motion, and the

other set detects this motion. The SEO was designed to be 20 pm thick, with a total proof

mass size (including the 50 pm fingers on each side) of 550 p.m (x-axis) by 400 pm (z-

axis). There are 28 tines on each side of the proof mass and on each stator. The fingers

are 50 p.m long, 5 pm wide with 2 jim spacing between a rotor and stator finger. An

optical microscope picture of a typical SEO structure is shown in Figure 4.2. Here, the

comb fingers on both the stators and the rotors are clearly seen on the left and right sides
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of the image. The motor drive comb is on the left side of the picture, and the motor sense

comb is on the right side of the device. The control torque plates are situated under the

interdigitated comb fingers. For typical oscillators, gold leads travel from both the silicon

components and the surface plates to bond pads not shown in the picture. In this figure,

the gold is white, and both the silicon and glass are gray.

Figure 4.2. Optical Micrograph of a Typical Single Element Oscillator
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Figure 4.3. Coordinate System for Three Degrees of Freedom
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4.2 Expanded SEO Dynamic Model
For the single element oscillator, a three degree of freedom model is a more accurate

representation of the system than the traditional two degree of freedom model. Here the
generalized coordinates are x, y, and 0, as shown in Figure 4.3. A folded-flexure

structure was used to inhibit motion along the z-axis and rotation about the x- and y-axes,
so these degrees of freedom are neglected in the dynamic model analysis.

With no vertical displacement, the largest proof mass rotation is tan-1 (y0/L). For a
typical resonator, IOmaxl < 0.5210, where yo is the nominal sense gap and LO is the

distance along the x-axis from the center of the rotor to the end of a rotor comb finger.

For larger rotations, the proof mass will contact the substrate. If the proof mass has been
displaced vertically, then max decreases.

4.2.1 Lagrangian Derivation of Three DOF Model

From Section 2.1.1, the Lagrange equation for a system of n generalized coordinates

with viscous damping was

d dL dL dD,+ 1 D = - exti for i= 1,...,n (2.1)
dt (dij -- i +-j "ext,

with the terms defined in Chapter 2.

Inserting the three generalized coordinates of the SEO into the kinetic energy,

potential energy, and viscous damping equations and including an angular rate, £2, about

the z-axis yields

T*= m( - y)2 + m(y, + .x)2 + 2  (4.1a)
2 2 2

V =kxx2 + kx2x 3 +- kx3 4
2 3X2 4X3

+1 kyy2 +1 kz2 3 +1 k3 4 (4.1b)

2 3 4

+- k2 + k9 2  3 + k0 3 4
2 3 4

+kxyxy + kxex6 + kyeY + I CV2

Dv = bxi 2 + byy2 +I be2 +bxyi +bxe +byeOe (4.1c)

where,

Ie = moment of inertia about z-axis = mR2

R = radius of gyration about z-axis
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be = torsional damping about z-axis

ke, k02, k03 = linear, quadratic, and cubic torsional springs about z-axis

bxe, bye = cross-damping between translational and rotational modes, and

kxe, kye = spring cross-coupling between translational and rotational modes.

The effects of the electrostatic potential energy will be addressed in significant detail in

Section 4.3.

If, for now, the electrostatic forces are defined along the x-axis as Fx, along the y-axis

as Fy, and about the z-axis as Te, then, by inserting Equations 4.1a, 4.1b and 4.1c into

Equation 2.1, the equations of motion become, assuming here that S2 is a constant,

m +bxi +kxx + kx2 
2 +kx 3 

3 +kxy + (bxy - 2m)y +kxe6 +bx 6 = Fx (4.2a)

m+by+bkyy+ky22 2 +ky3 3 +kxyx+ (bxy +2m)i + kyO6+by 6 = Fy (4.2b)

I06 + be6 + ko0 + k02 02 + ke3 3 + kxex + bxei + kyey + bye' = Te (4.2c)

These equations are significantly more complex than those of Section 2.1.1, even though

only one degree of freedom has been added. There are four new dynamic coupling terms

and two new force coupling terms, the details of which will be addressed in Section 4.3.

The equation for each degree of freedom now has ten terms, including one forcing term

that includes the effects of all external forcing. However, through careful analysis, it is

shown that the basic behavior of this model is very similar to that of Chapter 2.

4.2.2 Non-dimensionalization of Equations of Motion

Once again, it is useful to non-dimensionalize these equations [36]. The first step in

the normalization is to use the non-dimensional time and two non-dimensional

displacements from Section 2.1.2 (0 does not need to be normalized, since it is non-

dimensional by definition, i.e., its units are radians). After substituting these three values

into Equations 4.2a through 4.2c, the x- and y-equations are divided by moan2xo, and the 6
2 2 2

equation is divided by mR2 ox 0O, to yield the non-dimensional equations:

Q e2 2

QQxy Qye

+ O 2 + k0 2 02 183 1 (4.3c)
e+x+ 2 x+T Y 2 y e
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where, from Section 2.1.2 and Equations 4.2a through 4.2c above,

m O)rn k __ k_ kxy (4.4)

- k 3  y 22 Q mO
b _Y by Qo x xy b

k y b ey
- kx kx ke2 -kx kxxo

~ F" 2 Q manx0x x  _ ky3x x ko3  x - X

R 2 kO
= T kO y2

e =- kxxo
Xo Fy = kxx,

kxxy m2x k

by

The term R is the radius of gyration about the z-axis of the proof mass. Since each cross-
coupling term in the 0 equation is divided by the radius of gyration, their impact on the

rotational mode is reduced. As in Chapter 2, the cross-coupling frequencies 0y, 2 -,

and y0 , and the cross-quality factors Qxy, Qx, and Qyo may be negative. These terms

were defined to keep the appearance of the equations consistent, i.e., Q terms represents

viscous damping constants, and Co terms represent spring restoring constants, whether

on- or off-axis. In Chapter 6, values for the significant parameters are measured

experimentally for the SEO. Magnitude analysis was performed on these results, and a

reduced-order model that retains only the critical terms is presented in Chapter 6.

4.2.3 State-Space Representation of System
These non-dimensional equations of motion may be linearized and then expressed in

the state-space form of Equation 4.5. Here, the forces are assumed to be the control

forces applied for each axis. As discussed in Chapter 2, the drive voltage generates

vertical forces in addition to the desired horizontal force, resulting in the cross-coupling
term fx. Similarly, the control signals for the vertical and rotational motion may also

couple into other modes. A detailed analysis of the forces in Section 4.3.1.3 gives

explicit values for the cross-coupling between generalized coordinates. In Equation 4.5,
ai, Pi, and r, represent the magnitude of the force coupling into the x, y, and 0 degrees of

freedom, respectively.
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0 0 0 0 -1 0

This expanded state-space model was added to the simulation introduced in Chapter

3. In Section 4.4, results from this simulation are shown. As shown in Section 2.1.3.2,

the effects of the quadratic and cubic springs on the vertical and rotational axes have been

incorporated in the cubic springs. The cubic spring describing function has then been

used to linearize the model. In Section 4.3, the forces and torques will be analyzed and

separated into coupled forces, similar to those found in Chapter 2. The state-space

representation will also be useful in designing the open-loop tests used in Chapter 6 to

evaluate the parameters of this system.

4.3 Electrostatics for Three DOF SEO
Adding 0 to the SEO dynamic model requires re-evaluating the electrostatic capacitor

and forcing models. Proof mass rotation changes the configuration not only between the

stator and rotor combs, but also between the proof mass and the sense plates. Both

positive and negative rotations decrease the overlap area between the rotor and stator

combs and vary the distance between the rotor and the control plate. With a rotating

proof mass, the gap between the proof mass and sense plate also changes, increasing the

capacitance for one sense plate and decreasing it for the other. The capacitor models for

both the combs and parallel plates can be recalculated by considering the effects of proof

mass rotation. These expanded models yield new electrostatic forcing models for the

SEO.
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4.3.1 Interdigitated Comb Capacitors for Three DOF Model
If a stationary proof mass is permitted to rotate, then the effective area between the

rotor and stator tines is reduced. The magnitude of this effect can be determined through
two approaches. The first model is derived from geometry, which means that the fringing
fields are either ignored or assumed to be constant. In the second model, the finite
element results of Chapter 2 are modified to construct first-order estimates of the
capacitance as a function of the rotation of the proof mass.

4.3.1.1 Geometric Model for Drive Comb Capacitance
With the addition of 0, the comb capacitor model becomes more complicated. In

Figure 4.4, a stator tine is shown (in an unscaled diagram) with the proof mass rotated
through an angle 6, and displaced both along y and x. For any rotation, the overlap area

between the proof mass and stator tines is decreased. The dashed box represents the
stationary position of the proof mass. In this case, the effects of the substrate are not
included here. They are investigated in Section 4.3.1.2 because when the proof mass
rotates, the rotor tine moves closer to the substrate, and that increases the magnitude of

Crp, an effect not considered in this section. In this figure,
The values given here are nominal values for the SEO only. The numerical results in

both Chapters 4 and 5 are based upon these dimensions. The actual dimensions,
determined by experiment, are presented in Chapter 6.

Through geometric analysis of the overlap area, it can be shown that the total

capacitance between the motor drive stator and the proof mass is

Cmd = Na h(I-X) -( ( 0- - x) 1 (4.6)
d 2

Similarly, the capacitance for the motor sense stator may be expressed as

EO (10 + x) ( 1 x)
Cm,s = Na h-+ I  2 (4.7)

where,

LO = the distance from the center of the proof mass to end of its tine = 275 Rm

10 = the nominal overlap between the proof mass and stator tines = 25 Rm

d = the gap between the rotor and stator tine = 2 gm

h = the thickness of both the tines and the proof mass = 20 gm

Ae = the effective area of overlap between the proof mass and stator tines, and
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sense plate/control plate

Figure 4.4. Stator-Rotor Comb Finger Interaction for Rotating Proof Mass

the signs in the absolute value have changed to reflect that 0 changes the overlap area in

different directions at both stators, i.e., positive 0 movesthe proof mass down with

respect to the drive stator and moves it up with respect to the sense stator. If y and 9 are

very small, then both of these equations reduce to Equation 2.51, the general equation for

the capacitance between two comb tines. For a typical oscillator, 0 is very small, and y is

at most 13% of h. For 0 = 0.10, the rotation reduces the capacitance by 2.29%. At Omax =

0.520, the point at which the end of the proof mass would contact the substrate, the

capacitance is 88.1% of its nominal value. Therefore, even for the largest possible

rotation, the drive capacitance is not significantly reduced. For a typical 0 on the order of

a milliradian, the capacitance is about 98.6% of its nominal value. This geometric model

does not include variations in the fringing fields due to rotation; these effects are included

in the next section.

4.3.1.2 Finite Element Model for Drive Comb Capacitance

A finite element approach is more accurate than an analytic method because the

fringing effects are included in the capacitor estimates. From the 2-D results in Chapter

2, a first-order finite element model of the capacitance with rotation may be derived by

assuming again that the electric field is only two-dimensional, i.e., there are no three-

dimensional fringing effects at the ends of the tines. Therefore, all interactions between

the stator, rotor, and ground plane must be considered.

In Figure 4.5, a vertical cross-section of a proof mass comb, perpendicular to the

ground plane, has been highlighted. Under this interaction a sense or control plate is

shown. The actual electrode depends on how the metallization is designed. For the SEO,

this is a control torque plate. As the proof mass rotates, the area of this cross-section

increases, since a longer cut is necessary to generate the perpendicular section. Its area is
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proof mass

Figure 4.5.
sense plate/control plate

Location of Stator-Rotor Cross-section for Finite Element Analysis

Control Plate

Figure 4.6. Cross-section of Stator-Rotor for Finite Element Analysis

h1 by w, where h is the height of the cross-section and w is the width of the comb, as
shown in Figure 4.6. For any 0, with no vertical displacement, hi is related to the
thickness of the tine, h, by

(4.8)cos 0

For small 6, hi is about equal to h, so that the finite element results from Chapter 2 may
be used here. The rotation may be assumed to be just a vertical displacement of the
cross-section of the rotor tine. In this figure, the distance between the rotor and the
control torque plate is

y'= y - (LO-x')6
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where,

y = vertical displacement of the proof mass

LO = length from center of proof mass to end of combs

y' = distance from control plate to bottom of cross-section, and

x' = distance from cross-section to the end of the tine.

The total capacitance of a rotated tine may be determined by integrating over the

length of the tine. At each cross-section along the rotor tine, the capacitance and its

derivative are defined by the height of that section above the control plate. The vertical

displacement of each point may be determined from Equation 4.8, and this result may be

integrated over the entire length of the rotor-stator tine interaction in order to generate
capacitance estimates as a function of 0

-L-(lo-x)

CT = C(x')dx' (4.10)

-L

where L is the distance from the center of the substrate to the edge of the stator comb and

each C(x') depends on the rotation angle. With this integral, all three capacitors and their

derivatives at the comb interactions may be determined from the finite element results.

For a rotation of 0.10, the height of a rotor tine cross-section above the substrate

ranges from 2.02 im at the end of the rotor tine to 2.064 gm at the inner edge of the
control plate. At 0 = 0.010, the gaps range from 2.452 gim to 2.456 gm. These small

variations permit a linearization of the capacitance for a given rotation. The integrand of

Equation 4.10 is a line whose slope and intercept may be found by curve-fitting the

capacitor cross-section values at each end of the range. Table 4.1 summarizes the

capacitances between the stator and the rotor from the finite element analysis for various
6. In this table, the stator-rotor capacitance is given for 6, assuming that x = y = 0.

Table 4.1. Stator-Rotor Total Comb Capacitance versus 0

Geometric Finite Element

O (Nominal) 0.24792 pF 0.27352 pF

0.0010 0.24786 pF 0.27358 pF

0.010 0.24734 pF 0.27355 pF

0.10 0.24224 pF 0.27245 pF

From this table, the fringing coefficient for Crs is about 1.10. As 0 rotates from 00

through 0.10, Crs changes by about 0.4%, an insignificant amount. The nominal value at
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00 is slightly different from that of 0.0010 because of numerical limitations in the finite

element software package.

Figures 4.7 through 4.9 show the three capacitorsI, Crs, Crp, and Csp; and their partial

derivatives with respect to x and y, as functions of e. A kink occurs at 0.010 because only

the four values of 8 listed in Table 4.1 were used to generate this plot. These values were

calculated using the approach discussed with Equation 4.10. If the maximum angle is

less than 0.010, then the effects of the rotation may be neglected for both the motor drive

and motor sense combs because the capacitors and their derivatives are virtually constant.

The lift and drive forces versus rotation angle for zero vertical displacement are

shown in Figures 4.10 and 4.11, assuming that 0%, 20%, 40%, and 60% of a one Volt

drive voltage is applied to the control plate. The drive force changes by 0.75% for a

grounded control plate as 0 changes from 0.0010 to 0.10. The lift force can change by as

much as 50% over this range of 0, with great dependence on the control plate voltage, as

shown in Figure 4.11. For 0 less than 0.010, the effect of rotation on the drive force is

negligible (0.07% maximum). For a grounded control plate and rotation between 00 and

0.00 10, the drive force variations are about 0.1%, and the lift force variations are 0.45%.

5

Crs

4

3-3

2

U

CP

C
0.
10-3 10-2 10-1

Proof Mass Rotation Angle (deg)

Figure 4.7. Comb Capacitances for Various Proof Mass Rotations

1There is some bend in these plots at the second point because only three rotation angles (0.0010, 0.010, and
0.10) were used.
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Figure 4.8. Comb Capacitor x-Derivatives for Various Proof Mass Rotations
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Figure 4.9. Comb Capacitor y-Derivatives for Various Proof Mass Rotations
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Figure 4.10. Comb Drive Force versus Proof Mass Rotation and Vp
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Figure 4.11. Comb Lift Force versus Proof Mass Rotation and Vp
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Figure 4.12. Lift-Drive Ratio versus Proof Mass Rotation and Vp

For the comb model derived above, it is clear that the effects of rotation are not

significant for & less than 0.010. For certain control plate voltages, the lift-to-drive ratio

may be reduced significantly, as shown in Figure 4.12, further reducing the effects of

rotation on the SEO dynamics. Because the tines are thick, the rotations, even at max, do

not change the capacitance significantly. Therefore, both the comb drive horizontal and

vertical forces may be assumed to be insensitive to the rotation of the proof mass, and the

comb capacitor models derived in Chapter 2 may be used as approximations to the more

detailed models developed here.

4.3.1.3 Forcing Models for Comb Actuators

Both the horizontal and vertical comb forces generate torque on the proof mass, as

shown in Figure 4.13. Because the vertical force is applied at the end of the proof mass,

it will always contribute a torque. For the horizontal force, a torque is created only if the

force is not applied along the center of mass of the rotor. In Sections 4.3.2 and 5.2.1, the

torque is derived based on Lagrange's equation.
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control plate

Figure 4.13. Forces and Moment Arms for SEO

where,

Lo = distance from center of proof mass to end of rotor tine, and

L = distance from center of substrate to inner edge of control plate.

The moment arm for the control plate vertical force, assuming a stationary proof mass, is

(Lo+L)/2. For the horizontal force, the moment arm is defined as Lx, and is equal to the

distance between the rotor center of mass and the plane of the lateral force. All of the

external torques are generated by either lateral or vertical forces, and these forces may be

determined directly from the comb force equations for the x- and y-axes.

The lateral and vertical force models are unchanged by small rotations of the proof

mass, i.e., less than 0.010. Typical magnitudes for 0 are on the order of a milliradian, so

the small angle assumption is valid. Therefore, the coupling of the forces into torques on

the rotational axis may be approximated by neglecting the effects of rotation:

To = yxFx + yF =

Lrac 2 dC dC5 ,
2 c(Vs - Vr) 2 + d(Vr -v ' )2 + -' I(V5 -Vp)] (4.11)

+ L (V _ Vr)2+ Vr_ +_ -Vp)2

where yx and yy are the cross-coupling coefficients from Equation 4.5. These coefficients

are the moment arms for the drive and lift forces. The magnitude of the torque depends

both on the voltages and on the misalignment of the proof mass. The voltages here

include the control torque voltage, Vp, that can be applied for rotational control. In the

current SEO design, with the control torque plates directly under the combs, the desired

control plate torque also creates undesired lift forces. The vertical control system must

also compensate for this additional excitation.
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Figure 4.14. Vertical to Horizontal Stator Charge Sensitivity Ratio

10-2

Proof Mass Rotation Angle (deg)

Figure 4.15. Vertical to Horizontal Rotor Charge Sensitivity Ratio
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4.3.1.4 Sensing Models for Interdigitated Comb Fingers

Although the lateral comb forces are assumed to be independent of e, it is important

to examine the effects of rotation on motion detection. The plots in Figures 4.14 and 4.15

show the ratio of vertical to horizontal sensitivity for both the stator and rotor for various

control plate voltage percentages and rotation angles. As in Section 4.3.1.2, the kinks are

due to the limited data points. For rotation angles less than or equal to 0.010, the rotor

sensitivity ratios change by 1% with the control plate grounded and by as little as 0.1%

with applied control plate voltages. The stator sensitivity ratios vary from 3.5% to 5.6%,
depending on the control plate voltage. The variations from 00 to 0.0010 are on the order

of 1%.

Since the comb drive is relatively insensitive to proof mass rotation, the comb sensor

detected motions may be assumed to be only the vertical and horizontal modes presented

in Chapter 2. Based on this analysis, rotational motion does not interfere with the self-

excitation loop, because it is not observed, so the electronics cannot lock onto this mode.

4.3.2 Parallel Plate Capacitor Model for Three DOF SEO

For a rotating proof mass, the gap between the proof mass and the substrate electrodes

varies over the length of the rotor. With only one sense plate, it is impossible to

determine whether the sensed motion is vertical or rotational. In this case, it is useful to

separate the sense electrodes into two separate plates. This design modification is

important because it permits simultaneous detection of both vertical and rotational
motions. There are two approaches to observe y and 6 at the same time, and both are

presented in Section 4.3.3.

The two control torque plates generate torque on the proof mass. First-order torquing

models are derived in Section 4.3.2.2, and, from these models, the rotational snapdown

voltage is derived. Just as along the vertical axis, the substrate electrodes decrease the

rotational restoring force, and, for some voltage, snap an end of the proof mass to the

substrate.

4.3.2.1 Derivation of Parallel Plate Capacitor Model

The capacitance between a stationary proof mass and each sense plate may be

expressed by analyzing Figure 4.16 and integrating over the width of each sense plate.

The sense plate capacitance for a laterally oscillating proof mass is derived in Section

5.2.2. In Figure 4.16, the shaded vertical area represents a three dimensional differential

capacitance.
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Figure 4.16. Capacitance Between Rotating Proof Mass and Sense Plates

The width of this region is dx, and its height is h. The length of this region into the page,
i.e., the length of the sense plate, is 1. The width of the sense plate is w, and the outer
ends of the sense plates are located at a distance L/2 from the center of the proof mass. In
this picture, the proof mass has been rotated through an angle 6 and displaced a height y
from the nominal sense gap yo.

The differential capacitance between a sense plate and the proof mass is expressed as

dC = y' 1 dx (4.12)
h

where,

h = y + yo + x tan 6 (4.13)

and yis the fringing coefficient.

For the left sense plate capacitance, the integral is

w-L/2

CL= + E dx
S+ yo + x tan 0

-L/2 (4.14)

o= y + yo + (w - L/2 ) tan 0
tan 8 y + yo - L/2tan e

Similarly, the capacitance between the right sense plate and the proof mass is

L/2

CR = 0l dx
S + yo + x tan 6

L/2-w (4.15)

= 0 Iln y + L/2 tan
tan 6 y + yO - (w-L/2) tan O
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For small displacements in both 0 and y, these capacitances may be expressed as

truncated Taylor series expansions:

EOCL=rwl1- + (L - w) y y (L -w) (4.16a)
YO 2Yo YO 70 2yo

EOwl (L - w) ty y 2 (L - w)
C=y - 2yo 2yo (4.16b)

Since 6max is less than 0.520 (0.01 radians), 0 may always be assumed small. The

derivations for the left and right capacitances may be used for both the sense plates and
the control torque plates. The values of L (the distance between the outer edges of the
two plates) and w (the width of a single plate) for both plates are shown in Table 4.2.

Table 4.2. Dimensions for Sense and Torque Plates

L (gm) w (m)

Sense Plate 474 209.5

Torque Plate 580 48

From these values, it is clear that the sense plate capacitor derivative with respect to 0 is

about 132 times greater than the derivative with respect to a non-dimensional y. For the
torque plate, the ratio is 266. The sense plate is more sensitive to rotation than to vertical

displacement, and the torquer plate is capable of generating much larger torques than
vertical forces.

For the vertical control force plate, the integral is derived in exactly the same manner,
as stated in Equation 4.14. The boundary conditions on the integral are changed to -L/2

and L/2, where L here is the width of the control plate (40 gm):

L/2

C= Eol dx
J y + Yo + xtan 0

-L/2 (4.17)

£01 y + YO + L/2 tan 0
tan 0 y + yo - L/2 tan 0

The truncated Taylor series expansion of this capacitance is

C= y I- + (4.18)
YO YO
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which is simply the sum of the left and right capacitances from Equations 4.16a and

4.16b. From this equation, it is clear that the vertical control plate capacitance is
independent of 6 to first order. This is a very important result, because an applied

vertical force does not depend on the rotation of the proof mass to first order, and

therefore y-axis motion may be controlled independent of 0.

4.3.2.2 Snapdown Voltage and Forcing Models for Parallel Plates

The torque created by the control torque plates also decreases the rotational restoring

force. As in Chapter 2, both snapdown voltage and spring softening issues exist for both

the vertical and rotational degrees of freedom. To determine the magnitude of these

effects, force and torque models are developed and examined for both the torque and

force control plates.

Neglecting cross-coupling and nonlinear spring terms, the dynamics of the rotational

mode are

0+ ,0 9+ 6 + = 0 (4.19)

The torque on a stationary proof mass from the control torque plates may be written from

Lagrange's energy formulation as

1 2 dVR CL 2 (4.20)TO 2k2 d )O --+- VL
2kxxoR n 4

The partial derivatives of the left and right capacitances with respect to & are

dCL w(L- w) 2 y [ L w(3L 2-6Lw+4w 2 ) (4.21b)
dO 2y2 yo 2yo 12y

dCR w(L - w) y L w(3L2 - 6Lw +4w2)

= YOl -  1- 2- 3 (4.21b)O 2YO2 Y0 2yo 12yO

If, for now, it is assumed that voltage is applied to the left control plate only, and that
there is no vertical displacement of the proof mass, then the dynamic model is

6 00- 00 eo0 wl (L-w) J[(3L 2 - 6Lw+4w2 )  Ly0  2 (42
O 2 2-2L+ + 0 V) (4.22)Qo Yo 4kxxoR2 6y(L - w) w(L - w)
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The equivalent rotational natural frequency is

SEo [w(3L2 - 6Lw + 4w2) + 6Ly]V2 (4.23)
dO 24kxxoR YO

This frequency and the net torque will both be equal to zero at the rotational snapdown

voltage, which is equal to

2 24y3a= 2k (4.24)snap - ol[w(3L2 -6Lw + 4w2) + 6L] k (4.24)

For the SEO control torque plates, the rotational snapdown voltage for a rotational
resonant frequency of 1.25 0n is 41.78 Volts.

From Chapter 2, the vertical snapdown voltage for the vertical control force plate is

v - 8kmy 3

Vsnap = 27 0w (4.25)
27yEowl

For the 40 gtm by 424 [tm control force plate and no vertical displacement, the snapdown
voltage is calculated as 37.84 Volts, assuming a sense frequency of 1.09 n.

The maximum vertical control force is limited by the largest voltage that may be
applied to the control plate2. Similar to the drive axis, the applied voltage is the sum of a
DC and an AC term. The DC value is constant, while the amplitude of the AC signal
varies, depending on the required force. The supplies of the electronics have been set to
10 Volts, so that the maximum vertical control force is defined by

Fmax = 1 (VDC + VAC, max)
2 od( 

(4.26)
1 dC( 2 22 dy VD C + VAC,max + 2VDCVAC,max)

The DC force generates a steady-state offset of the proof mass. However, this term does

not control vertical motion; the 2 VDCVAC term is the only one that may be used to

eliminate y-axis displacements at the drive axis resonant frequency. If the capacitance
derivative with respect to y from Equation 4.18 is used, and VDC is set equal to 5 Volts,

then the maximum AC force is about 1.3 gN. The DC force in this case is 1.5 gN. It

should be noted that the voltages applied here are significantly less than the snapdown

voltage, and that snapdown is not a concern in the SEO control system design.

2 The maximum control force is based on the limits of the op-amp outputs and the area of the control plate.
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The maximum control torque may similarly be evaluated from Equation 4.19 by

assuming that the left and right control voltages have equal DC terms and equal and

opposite AC terms, such that they create a force couple,

TO,max L- w y (VDC + VAC,max) L (VDC VAC, max
(4.27)

dC
= (L - w) VDCVAC,max

For the SEO, the maximum control torque is 0.844 nN-m. Another benefit of this

approach is that there is no DC offset of 6, i.e., for equal and opposite AC voltages on the

control plates, no net displacement of 8 occurs. If a constant torque is necessary to offset

a steady-state displacement, then either the DC or AC voltages may be modified to

accommodate both the steady-state and sinusoidal disturbances. By creating an

imbalance in the applied DC torque, but keeping the AC torques equal, the proof mass is

tilted, but does not rock. During proof mass rotation, the torque equations become more

complicated, as will be shown in Chapter 5.

4.3.3 Sensing Models for the SEO

As discussed in Section 2.2.5, proof mass motion is detected by measuring the change

in charge either on the motor sense comb or on the proof mass itself. For vertical motion,

the charge on the proof mass is typically monitored. With the SEO, both vertical and

rotational motions, which occur at the lateral resonant frequency, must be measured by

applying voltages to the sense plates and measuring the charge either from the proof mass

or from the sense plates themselves.

From the capacitances for the left and right sense plates (Equations 4.16a and 4.16b),

it is clear that vertical motion is a common mode, and that rotational motion is a

differential mode. Common mode motion is defined as motion that has no phase

difference between the left and right sense plates, i.e. each sense plate "sees" the same

motion. A differential mode is one in which each plate "sees" motion 1800 out of phase,

i.e., as one plate sees an increase, the other sees an equal and opposite decrease. To

demonstrate this, two cases will be examined. First, if the same voltage is applied to both

sense plates, and small displacements are assumed, then the total charge on the proof

mass may be expressed as

q = V(CL + CR) = 2V l (4.28)

YO ( Y
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Notice that, to first order, the charge is a function of y only. For an assumed input noise

density of 10-16 V2/Hz, the non-dimensional vertical position equivalent noise3 is 0.0069
AhlHz.

However, if equal and opposite voltages are applied to the plates, then the total charge

on the proof mass is

q= V(C L -CR)= V yEwl(L 0 1 +-Y (4.29)

Here, to first order, the charge depends only on the rotation of the proof mass. The
rotational equivalent noise is 523.26 picoradians/VHz. Since the vertical motion is
common mode with respect to the two plates, it is canceled by applying equal and
opposite voltages. The rotational motion is differential with respect to the sense plates,
so it is detected with the equal and opposite voltages, but it is not seen when equal
voltages are applied to both sense plates.

4.3.3.1 Simultaneous Vertical and Rotational Motion Detection

For the SEO, both vertical and rotational motion must be measured. Equations 4.28
and 4.29 suggest that the SEO must be designed to obtain both the sum and difference of
the charge from each sense plate. There are two major considerations for simultaneous
detection of both vertical and rotational motion. First, there is only one proof mass, so
that any vertical or rotational motion that varies the gap between the two plates will
generate a current on the proof mass. Therefore, it is impossible, without careful design,
to determine whether the change in output voltage from the sense preamplifier is due to
vertical or rotational motion. Second, both of these motions will be occurring at the

resonant frequency of the horizontal axis. Because energy is only being put into the

system at this frequency, all cross-coupling of errors and control forces into the vertical

and rotational modes will occur at the horizontal resonant frequency. Both modes will

therefore generate outputs at the same frequency, requiring a methodology to distinguish

the signals. This problem is two-fold: the motions must both be observable, and one

output signal must be used to sense both vertical and rotational motion. There are two

ways to separate these signals and simultaneously measure the vertical and rotational

motions.

If the stationary sense plate is split into a left and right half, as shown in Figure 4.17a,
then, as the proof mass moves, the two sense plates "see" different things. As the proof
mass rotates counterclockwise (positive 8), as shown in Figure 4.17b, the left sense plate

3 By an analysis similar to that performed in Section 3.2.1.2.
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"sees" an increase in capacitance while the right sense plate "sees" a decrease in

capacitance, i.e., differential motion. However, as the proof mass moves up (positive y),

both sense plates "see" an equal decrease in capacitance; and, as the proof mass moves

down, both "see" an equal increase, i.e., common mode motion, as shown in Figure 4.17c.

The gray box outline in Figures 4.17b and 4.17c represent the stationary position of the

proof mass.

Proof Mass

I II I
Left Right

Sense Plate Sense Plate

Figure 4.17a. Split Sense Plate Design for SEO

>0
dFigure 4.17b. Positive Rotation of

Figure 4.17b. Positive Rotation of

I i
dr

Proof Mass with Split Sense Plate

SProof Mass
Proof Mass

I Z I I
dCL dCR
dy dy

Figure 4.17c. Vertical Displacement of SEO with Split Sense Plate
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4.3.3.2 Motion Detection Using DC and AC Biases

By splitting the sense plate, it is straightforward to detect both rotational and vertical

motion using the charge injected onto the proof mass. By applying the same AC carrier

voltage to both sense plates, and equal and opposite DC voltages to the sense plates, it is
possible to measure y from the carrier signal and to measure 0 from the DC signal. Using

a development analogous to that for the single sense plate, the voltage after the integrator
and gain stage will be, for small displacements of y and 6,

(CL + CR) + (L - CR) VDC

Cp C
( (4.30)

2gs C VDC (L w) - Vcar Y(C (D 2y y

where the nominal sense axis capacitance is

Cy0 = wl (4.31)
Y0

and w and I are the width and length, respectively, of one of the split sense plates.
The scheme for obtaining y and 0 is shown in Figure 4.18, in which Vout is separated

and filtered to yield each signal. The rotational motion may be obtained by low-pass

filtering the voltage of Equation 4.30. To distinguish the vertical motion, Vout must first

be demodulated by the carrier signal to reduce the y information to a baseband frequency.

From there, the signal is low-pass filtered to yield the y motion.

VVAC
L V(&)out

V"q )

Figure 4.18. Demodulation and Low-pass to Obtain y and e

Therefore, by separating the sense plate into a right and left plates, and, by applying

common and differential mode voltages to the plates (one at DC, one at a carrier), it is

possible to detect simultaneously the rotational and vertical motions from the same

signal, even though the displacements both occur at the motor resonant frequency.
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4.3.3.3 Motion Detection Using DC Bias and Two Preamplifiers

A second approach is very similar to that above. In this scheme, a DC bias is applied

to each sense plate, and the charge injected onto each sense plate, instead of that injected

into the proof mass, is integrated separately and then summed and differenced to yield y

and 0. In this case, to first order, the charge on each plate is

qL = VLCyO 1- y + 0 (4.32a)yo 2yo

qR = VRCO I- yo 1  0 (4.32b)

If these charges are integrated by a preamplifier, amplified by a gain stage, and high-pass

filtered by a blocking capacitor, then the resulting output voltages are

VL,out = gs Cy (L- Y (4.33a)
ofb yo0 2y0 )Y

VR,= y (L - w) VR (4.33b)
Cfb yo 2y0

The sum and difference of these voltages are

Cyo (L - w)(4.34a)IV - gs yO -(VL + VR)Y + (VL - VR) 2 0 (4.34a)
YO Cfb 2

AV= gs Cyo (VL  VR)Y +(VL + VR ) (L - w) (4.34b)
YO Cfb, 2

These equations demonstrate, that, as long as the sense plate bias voltages are of equal

magnitude, then the sum will yield either y or 0, and that the difference will yield the

other quantity. For the SEO, VL is assumed to be a positive voltage, Vs; and VR is -Vs;

such that the sum and difference become

V = 2gs 
s  (L-w) (4.35a)

yo Cfb 2

AV = -2gs Vs CYO Y (4.35b)
y0 Cp

Therefore, the sum of the sense plate charge integrals yields 9, and the difference gives

-y. The minus sign may be eliminated by choosing the proper inputs for the differencing

op-amp. For the design and analysis of the SEO, the two preamplifier/sense plate

approach (Equations 4.35a and 4.35b) was chosen.

155



4.4 Stability and Simulation of Three Degree of Freedom System
In the development of the three degree of freedom SEO model, no claims were made

on the stability of the system. Both the vertical and rotational modes are basic second-

order, damped oscillator systems. With the natural frequency and quality factor of each

degree of freedom greater than zero, both modes are open-loop stable. The only

remaining concerns for stability are the cross-coupling of the modes and forces. The

force coupling is not a significant concern, because this coupling is based on the drive

axis voltage, which couples through the combs, the effects of which can be reduced or

eliminated through electronic and design modifications. It was shown earlier that the

motor sense comb does not detect small rotations, so the self-excitation loop is insensitive

to rotational motion. The cross-coupling of modes could be a concern if coupling of x

motion into another mode is fedback to the drive axis as an increasing disturbance.

However, the cross-coupling terms are symmetric, and any coupling back into the

original axis generates a negligible error force compared to the desired x-axis forces.

The simulation used in Chapter 3 was modified to include the 0 dynamic model as

well as the cross-coupling between all three modes. Simulations were then run to verify

that the new system behaves as expected, with the horizontal motion self-exciting and the

remaining modes acting as sinusoidally-forced, second-order systems. The non-

dimensional parameters used in these simulations are shown in Table 4.34. The nonlinear

spring effects were not included in either the vertical or rotational degrees of freedom.

In Figure 4.19, the horizontal position is shown versus time. Even with the additional

mode, the oscillator loop locks onto the drive axis resonance, and the amplitude regulator

drives the magnitude to the desired non-dimensional value of 1. The response of the

vertical motion is shown in Figure 4.20. Since this axis is driven only by the force and

compliance cross-coupling from the drive axis and, to second order, by 0, its response

closely resembles that of the drive axis, with an amplitude of 0.018. The DC

displacement of the vertical axis has been removed from this simulation to focus analysis

on its oscillatory behavior, not the magnitude of its steady-state offset.

Similarly, the rotational motion has a startup profile with characteristics similar to
those of the drive axis, as shown in Figure 4.21. The amplitude of the 8 oscillation is

79.5 gradians. These simulations were performed to demonstrate that the system is stable

and that the behavior of the drive axis is not affected by the additional cross-coupling

terms. These results also show that the drive motion and its force are capable of

generating significant disturbances on the other degrees of freedom. In these plots, the

4 A complete list of parameters used may be found in Appendix C.
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noise from the preamplifiers is not immediately apparent, since, for all three motions, the

noise is significantly smaller than the observed outputs, as discussed earlier.

Table 4.3. Dynamic Model Parameters for Simulation

Parameter Value

x-axis ix 1

kx3  
0.025

Qx 150,000

y-axis Cy 1.09

Qy 30,000

6-axis CO0 1.25

Qe 30,000
R2  117

x-y coupling )xy2 0.003

Qxy 5,000,000

ay 0
3Px 0.5

x-O coupling -2 0.005

Qxe 2000

ag 0

'Yx 12.925

y-O coupling 2 0.001

Qy 6,000,000

e , 0
_Y

In this simulation, the vertical and rotational motions were detected using the DC bias

with two preamplifiers approach from Section 4.3.3.3. In Chapter 5, the measured

motions will be demodulated by the position and velocity clocks of the drive axis to

estimate the quadrature and in-phase components, respectively, of both y and 6. These

values will be used to generate control signals that eliminate the undesired out-of-plane

motion.
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Figure 4.19. Horizontal Displacement vs. Time for 3 DOF Model

0.5 1 1.5 2

Non-dimensional Time

Figure 4.20. Vertical Displacement vs. Time for 3 DOF Model
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Figure 4.21. Rotation Angle vs. Time for 3 DOF Model

4.5 Complete Three DOF Model for SEO
From the analyses performed in this chapter, several conclusions on proof mass

rotation emerge. First, the magnitude of the force couplings among all three modes may

be reduced by careful electronic and mechanical design of the torque control plate

configuration. Second, both the motor drive and motor sense combs are insensitive to

rotations less than 1 milliradian. Therefore, the comb forcing and sensing models

developed in Chapter 2 may be used for analyzing the three degree of freedom dynamic

system. Third, snapdown effects exist for the rotational mode, but voltages near the

snapdown voltage are not applied. Finally, for small 0, the sense plate capacitance varies

linearly with both y and 0. This fact is exploited to develop two schemes for

simultaneously detecting both vertical and rotational motions. In Chapters 5 and 6, the

DC bias/two preamplifier method is used for both simulation of the control systems and

experimental measurement of the SEO parameters.
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Chapter 5

Closed-Loop Control of
Vertical and Rotational Motion

5.0 Introduction
In the expanded three degree of freedom model developed in Chapter 4, the cross-

couplings of the dynamics and forces generate undesirable vertical and rotational motion.

In order to eliminate these motions, closed-loop force rebalance systems may be designed

for each of these degrees of freedom. With this approach, both the in-phase and

quadrature components of y and 6 may be determined through demodulations at the

appropriate phase. In this chapter, a closed-loop control system for each coordinate is

presented and linearized to permit linear compensator design. Each control system is

then simulated to verify performance. For the 0 control system, configurations are

presented for the current SEO design and for future modifications to the metallization

pattern.

The two main goals in developing the control systems are simple design and

information output. First, because micromechanical devices can be produced on the order

of hundreds of thousands, and complicated control electronics will increase the per unit

cost, so simple solutions are desired to minimize cost. Second, instead of simply

reducing the undesired y and 0 motion, it would be useful to have the magnitude of the

in-phase and quadrature components for both coordinates. The in-phase signal of the

vertical motion contains information about angular rates applied about the z-axis.

Because of feedthrough and noise concerns, the sensed outputs for both y and 0 should

not be fedback directly, since both the feedthrough and noise can corrupt the control

signal to the extent that the desired displacement information is much smaller than the

disturbances themselves.

By using a force rebalance approach, the feedthrough problem may be avoided and

the desired quadrature and in-phase information may be obtained. By demodulating the

output signals with two clocks, one in-phase with drive axis position and one with drive

161



axis velocity, the in-phase and quadrature components of the vertical and rotational

motion may be isolated, passed through a PI controller, and then remodulated with the
same clocks to generate control signals. These reconstructed signals will be much
cleaner, since off-frequency disturbances have been eliminated by the demodulation and
resulting low-pass filtering. In addition, the desired quadrature and in-phase magnitudes
for both y and 0 have been obtained. Since the modulations are nonlinear, it is necessary

to linearize the motion detection and actuation of the system in order to analyze the
stability of the control system.

5.1 Vertical Motion Rebalance Loop Analysis
For both y and 0, the induced motions come mostly from coupling with the horizontal

dynamics. A control system is assumed for the y-axis and is also applicable to the 0

motion. From here, the modulators are linearized to yield a baseband transfer function.
This baseband model is then used to design a force rebalance control loop for the vertical
axis. Finally, the simulation expanded in Chapter 4 is modified further to include the
control systems, and results are presented for various control implementations.

5.1.1 Analysis and Linearization of Vertical Motion Control Loop
As the proof mass oscillates horizontally at the drive axis resonant frequency,

manufacturing imperfections (suggested by Equation 4.5) can generate error oscillations

in both the vertical and rotational coordinates

Ferr, = Fyo sin( + Ty) (5.1)

Terre = To sin(T+ (Pe) (5.2)

These models are valid for small couplings and some mode separation. With adequate

spacing between the resonant modes of the drive, vertical, and rotational axes, the
induced motion will be at the drive axis natural frequency, that is, the energy will not
"spill" into the resonant mode of either coordinate. By defining the drive-axis steady-
state motion as 2 = cos t, the resulting open-loop motions of both 3 and 0 may be

expressed as the sum of scaled components of the drive axis displacement and velocity

S= A cost' + By sinr (5.3)

0 = Ae cos z + Be sinr (5.4)

For the forcing shown in Equation 5.1 and a lightly damped second-order plant, the
steady-state motion amplitudes of 3 (a similar result exists for 0), may be written as
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00

Figure 5.1. Block Diagram for Vertical and Rotational Motion Control
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by -1)sin y - cos py

62 1Ty +y (5.5a)AB=F

(Y - 1) cos 9y + Ysin y
By = Fyo 2 (5.5c)

Y Qy

where iyo and Qy are the resonant frequency and quality factor for the vertical motion,

and py is the phase shift in the force with respect to the horizontal displacement. For

large Qy, which exists for the SEO, these equations may be reduced to

_ _0 sin 
(5.6)

F cosy (5.7)
Y ( -(5.7)I

Therefore, in a high-Q system, there is very little cross-coupling between the in-phase
(with respect to drive-axis velocity) and quadrature error forces.

A suitable feedback control system is shown in Figure 5.1. In this figure, Gp(s) is the
plant of the SEO for the given coordinate1, in this case, the y-axis. The sensing constant

Ks is determined by the sense capacitor arrangement and the preamplifier gain. The
forcing constant Kf is also defined by the gain stages and forcing capacitor layout. The
force FIN is the net input force to the vertical dynamics of the system. The voltage VO is

the output from the SEO for the given coordinate. The signal x-pos is a square wave that

is in-phase with the drive axis position signal (in quadrature with the velocity), and x_vel

is a square wave that is in-phase with the drive-axis velocity signal. The value Vol is the

demodulated quadrature signal consisting of two sinusoids: one at very low frequency

with an amplitude equal to 0.5Ay, and another at twice the drive axis resonant frequency

also at an amplitude of 0.5Ay. Similarly, the signal V0 2 is the demodulated in-phase

signal composed of a low-frequency sinusoid and a second harmonic signal both with

1Here, each coordinate will be analyzed separately, since, as shown above, the motions of x, y, and 0 are
sinusoidal with phase shift, and their contribution may be lumped into the error forces.
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amplitude 0.5By . The low-pass filters along both paths are used to eliminate the second

harmonic signals in Vol and V0 2 . VRQ and VRIP are the quadrature and in-phase

reference voltages, respectively. Since the goal is to drive both rotational and vertical

motion to zero, these voltages are set equal to zero. The transfer functions HCQ and HCIP

are the compensation required to drive the signals to zero in a stable way. The control

signals VQ and VIp are the quadrature and in-phase components at the baseband

frequencies, respectively. Finally, FIp and FQ include all external forces (in-phase and

quadrature) applied along the given SEO coordinate, i.e., cross-coupling from the other

modes and Coriolis forces.

In order to design adequate compensators for this system, it is useful to linearize the

modulation and demodulation portions of the feedback loop [8, 27]. Since it has been

shown that the in-phase and quadrature components of the vertical (or rotational motion)

are nearly independent, each sub-control loop will be analyzed separately.

First, the quadrature control loop of Figure 5.1 will be investigated [14, 36]. Let VQ

be a slowly varying signal at the non-dimensional baseband frequency i&, which is much

less than 1:

VQ = VQ cos 5' (5.8)

This signal is modulated by xpos and amplified by Kf to generate a control force

2KfVQOFC = _ KfVQ(cos(1 + )r + cos(l- 5)r) (5.9)

The output of the SEO may then be written as

2KsKV 0 &'r+ +(.2KVO +f [M(+) cos((1 + ) + 9(+))+ M(-) cos((l- C) + (p(-))] (5.10)

where,

4 4
x_ pos = csqr = -cos + -cos 3,r+...

Ir 37r
4. 4

x_vel = sqr = - sin - sin 3 T+...
Z 3 z

M(+) = G[j(1 + 5)]

To(+)= ZG[j(1+ 5)]

M(-) = G[j(1- )]

T(-) = ZG[j(1 - c)
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After this signal has been demodulated by xpos and the low-pass filter has removed the
higher harmonic terms, Vol can be expressed as

4KsKf V
Vol =4sf 2 {M(+)cos(Tc + 9(+)) + M(-)cos(9 r- 9(-))} (5.11)

The negative phase in the second term of the right hand side represents the complex
conjugate of G((1- C5)), such that the transfer function from VQ to Vol may be written as

Vo= 4KsKf Gp(+) + G(-) (5.12)

Similarly, x_vel demodulates the output signal Vo to yield the signal VO2. After low-
pass filtering, this signal becomes

2  4KsKfVQ 2 {-M(+) sin(6r+ 9(+)) + M(-)sin((&r- (-))} (5.13)V02 - 7r2

Along this demodulation path, the signal has been shifted by -90' or 1/j. Therefore, in
terms of the plant Gp(s), the transfer function between V0 2 and VQ may be expressed as

VO2 j 4Ks2 Gp (+) - Gp(-) (5.14)
VQ

An identical approach may now be taken to examine the effects of the in-phase
modulation/demodulation loop on the SEO plant. Define VIp as the slowly varying value

VIp = VIP0 sin CoT (5.15)

This voltage, modulated by x_vel, is then applied to the plant through the forcing constant
Kf, which yields an input force

FIN = 2KfVIPO (cos(1- 5)r- cos(i+5)t) (5.16)

The output of the SEO may then be written as

=2KsKYf VI [M(-)cos((1 - 5)r+p(-))M(+)cos((l + )r+ (p(+))1(5.17)

Once again, demodulation by xpos yields Vol after the low-pass filter

Vol -=4KKfVI [M(+)cos(c + 9(+))- M(-)cos( r- p(-)) (5.18)

which, when divided by Equation 5.15, yields the transfer function
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Vo- j 4 K G(+)- G*(-) (5.19)

A similar exercise yields the transfer function between V0 2 and Vjp

V0 2  4KsKf [G,(+) + G (-)(5.20)

VIP 7r2

The preceding analysis allows the non-linear modulation/demodulation loops to be

approximated as linear transfer functions for small & [14, 36].

Before redrawing Figure 5.1 with these linear approximations, it would be helpful to

find the transfer function between the error forces and Vol and V0 2 [14, 36]. Figure 5.2

shows the block diagram path between the error signals and the desired voltage outputs.

x_pos

Vol

G (s) Ks VO x vel
SKf MQcos( 7) cos r

Figure 5.2. Block Diagram Between Error Signals and Demodulation Outputs

An input error force

Ferr = -KfMQ cos tcos r (5.21)

into the plant Gp(s) may be rewritten as

Ferr = 2 KfMQ(cos( + ) + cos(i- &)r) (5.22)

After the SEO plant, the parallel demodulations by xpos and x_vel yield the transfer

functions
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Vl 4 [KK G, (+) + G()

V02  4KsKf [G, *
MQ

In addition, for an error force

Ferr = -KfMIp sin orrsin zr
e

the transfer functions are

Vo -J 4 [Gp(+)-Gl(-)]

V0 2 4KsKf

M If r2[P()G(

This result is quite convenient. Since these transfer functions are identical to those
derived above, the closed-loop system of Figure 5.1 may be redrawn as Figure 5.3 [8, 27,
36, 37].

Figure 5.3. Simplified Block Diagram for Vertical and Rotational Control
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In this figure, the transfer functions G 1 and G2 may be expressed in terms of the baseband

plant responses

G = jKs[ G (+) - G; (-)] (5.28)

G2 = [GP(+) + G;(-) (5.29)

and,

Gp(+) = evaluation of plant transfer function at 1+ 6), and

Gp*(-) = evaluation of complex conjugate of plant transfer function at 1- &.

This block diagram represents the baseband control for both off-drive SEO axes [14, 36].

5.1.2 Analysis of Baseband Transfer Functions

The two baseband transfer functions (Gj and G2) derived above are the key to

designing adequate compensation for the SEO. Both of these transfer functions may be

expanded using the actual plant dynamics. The analysis performed below will use the

vertical axis dynamics [14, 36]; a similar derivation exists for the rotational axis.

It is assumed in this section that an adequate control system has been designed to

minimize the vertical displacements of the proof mass. With this assumption, the

baseband transfer functions will be analyzed and simplified as though the system is

linear. After this reduction, compensation will be designed in order to drive the

displacements to zero in the presence of sinusoidal disturbances. The reason for this

assumption is to provide a basic shape to the control system so that analysis is possible.

This is very similar to the "guess a solution and solve" approach learned in first-year

calculus.

For a plant transfer function,

1
Gp = (5.30)

2 + - + 0.2

S02

the two transfer functions G1 and G2 may be expressed as
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S - 2 

Q2 2Q2

s + C + 2_ 2 )
4Ks Q2

Q2 (2
] 2

d+ 4 d (9+
iQ2

2Q2

where,

jd = drive axis resonant frequency

C2 = vertical (or rotational) axis resonant frequency, and

Q2 = vertical (or rotational) axis quality factor.

The poles of these transfer functions are simply those of Gp(+) and Gp*(-), i.e.,

-A = 2Q2 J 2 1- 1 + Od
Q2 4 Q22

For large Q2, the poles become

1, 2 +
1, 2

A2 +
A 3 ,4 -- "2

02

- 2 IC~d 
22

d 2 
s 21

For 02 nearly equal to @0 d, the second pair of eigenvalues (A3,4 ) is attenuated by the low-

pass filter and may be neglected in further analyses. Using the large Q2 assumption

again, and by keeping the DC gains equal between the full- and reduced-order transfer

functions, G 1 and G2 may be reduced to

4Ks  
2 6d

7r(2 + Id) 2

+ 022Q2

(2Q2)

-2 i2-s + 02

Q2

(5.36)

- (Od)
2

S+ + -2 ,d2
Q2

Q2 + j2g 2 2
Q2 (2Q2)

(5.37)

+(@2 - d)2
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The ratio of G2 to G1 may be expressed as

S2 02 2- 2)

G s+0 2

2 Q2

For small 9 (o <<1), this ratio may be approximated as

G2= Q2 2 (5.39)

In typical oscillators, there is about a 9% separation between the drive and vertical

resonant frequencies, and the quality factor of the vertical axis is about 30,000 when

operating. Therefore, G2 is much greater than G1 , and the two loops may be considered

independent. For the above vertical dynamic parameters, the ratio of G2 to G 1 is about

equal to 5200. Since G2 is the plant transfer function and G1 is the coupling transfer

function, this ratio is large enough to minimize the effects of coupling.

A concern may arise that if one phase-dependent (in-phase or quadrature) force is

much greater than the other, then the coupling effect may be significant. A typical

quadrature displacement may be on the order of 0.25 gm. If the in-phase amplitude was

about 5 A, then the G 1 coupled force would be one-tenth of the in-loop G2 force. That is,

if the in-phase force is 1/520 of the quadrature force, then the ratio of in-phase to

quadrature effects in V0 2 would be 10. However, the resulting in-phase forces are at least

100 times greater, so that the cross-coupling effects of G1 may be neglected. In the

closed-loop systems, if both the in-phase and quadrature components are driven to zero,

then the G1 coupling is still not significant.

5.1.3 Development of Feedback Model for Vertical Control

By first determining the closed-loop transfer functions for each loop in Figure 5.3,

then by writing the equations in matrix form, and finally, by inverting to isolate Vjp and

VQ, the following transfer functions may be derived [14, 36]:
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S2 + G2HCQ -GiHcp

- + G2H CI P2Kf

HCIP G2 MIP + G1MQ + 2Kf VRIP

HcQ -GlMp + G2MQ + VRQ
2K VR

((Z+ 2KfG2HCQ)(7+ 2KfG2HcIp) + 4(KfGI)2 HCQHCIP

This matrix expression may be multiplied to find transfer functions between the control
voltages (Vp and VQ) and both the disturbances (Mjp and MQ) and the reference voltages
(VRIP and VRQ).

VIP

VQ =

(2 1KfG2HCp + 4KHCIPHCQ (G 2 + G2))MIp + 2rKfGHCIpMQ

( 2 + 27KfG2 (HCQ + HCp) +4K2HCpHCQ (G12 + G2))

S( 2 + 2KfG2HCQ)HcIpVRIP - 2 KfGHIpHQVRQ

( 2 + 2 KfG2 (HCQ + HCp) + 4K HHCQ (G +G22))

(5.41)

-21 KfGIHCQMIp + (4KfHcQHcIp(G2 + G22) + 2rCKfG2 HCQ)MQ

( f 2 +2KrKfG 2 (HCQ + Hp) + 4K HCpHCQ (G? + G2))

27KfG1HCQHIpVRIP +(f2 + 2fKfG2HcIp)HCQVRQ
(5.42)

( t 2 + 2frKfG2 (HcQ + HCIP) +4KfHCIPHCQ (G2 +G2))

In this control system, both VRIP and VRQ are zero. If G2 >> G1, as shown above,
then Equations 5.41 and 5.42 simplify to

VIP = 2KfG2HCIP

S+ 2KfG2HcIP

2KfG 2HIP

r + 2KfG2 HcIp

2 rKf GHcp MQ

S+ 2KfG2 HCQ)(z + 2KfG2 HCIP)
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2 Kf G2HCQ 2 7rK fGHcQ

(+2KfG2 HCQ) ( + ( 2KG 2 HCQ)(r + 2KfG2 HCIP)
(5.44)

2KfG2 HCQ

(z+2KfG2 HCQ)

In both of these equations, as the baseband frequency Co goes to zero, the cross-coupling

gain of the quadrature into the in-phase control voltage (and vice-versa) goes to zero, and

the in-channel gain goes to one. As C goes to infinity, both gains go to zero.

The open-loop transfer function for both loops is 2KFHCiG21, where i represents

either quadrature or in-phase. The appropriate compensator in this system is chosen as an

integrator with recovery, i.e., a proportional plus integral controller with a low-pass

element

(s + Oz)HC = KC ( + (5.45)
s s+op)

where,

S= 1 rad/sec, and

cw = 45 rad/sec.

The choice of these frequencies is somewhat arbitrary, and is driven mainly by the

desired frequency response of the system. As long as the pole and zero are less than the

resonant frequency of the second-order poles, then the final choice may be made based on

the phase and magnitude responses. If the controller is non-dimensionalized, the transfer

function becomes

-C = ( + p) (5.46)
On" E + &p

The frequency response of the open-loop transfer function for this controller is shown

in Figures 5.4a and 5.4b for an assumed controller gain, KC, of 1. From this plot, it is

clear that, in order to guarantee stability, the magnitudes at the -180' phase frequencies

must be less than 0 dB. By choosing the proper KC, the open-loop stability of the system

can be guaranteed. The magnitude response crosses below .707 times its DC value twice;

once at 286.5 Hz, and again at 1923 Hz. The bandwidth of the open-loop transfer

function, defined from the error force input to the control force, is therefore 1923 Hz.
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Figure 5.4a. Bode Magnitude of Open-Loop Transfer Function
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Non-dimensional Frequency

Figure 5.4b. Bode Phase of Open-Loop Transfer Function
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The magnitude of the -180' crossover point at the zero location, 4, is less than 0 dB

by construction. The design choice is to pick Kc such that, at d = 2- d, the resonant

peak is less than 0 dB2 . At this peak, the value of the open-loop transfer function is

4 = K=(6 - d) (5.47)
16Kf Ks 2d

12  d 2( - d)(2 + 2 KC
Od 2 2 - @d)(@2

For stability, this gain must be less than 0 dB. Therefore, by chosing a proper KC, the

closed-loop control system will be stable. For typical values on the vertical axis, this

leads to a maximum Kc of 600. For this value of KC, the bandwidth of the closed-loop

controller is 5771 Hz.

This PI controller may be implemented about an operational amplifier as shown in

Figure 5.5.

R2

Figure 5.5. Amplitude Proportional Plus Integral Control Schematic

Here, the values R 1 and C1 determine both the gain and contribute to the location of the

pole. The impedence values R2 and C2 define the zero and aid in determining the

location of the pole, as shown in Equation 5.48

1
s+-

HC(s) = 1 R2 C2

RCl s s+ R2C + R (5.48)
R2 C2 R2C

= Kc +
s(s + W)

2 Assumes a 9% separation between the lateral and vertical frequencies.
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For the SEO, some reasonable choices for the impedences are R 1 = 10 kM, C1 = 0.022
9F, R2 = 1 MQ, C2 = 1 gF. These values may be used for both the quadrature and in-

phase paths of the rotational and vertical control loops. In the actual construction of the
control system, a potentiometer is used in place of R 1 to permit fine tuning of the
compensator gain. With this choice of C1, the maximum possible R 1 that guarantees
stability is 75 kW. The value for R 1 was chosen to optimize the response of the closed-

loop control system.

5.1.4 Simulation of Vertical Control System

The simulation introduced in Chapter 3 and expanded in Chapter 4 was modified
again to include this vertical control system, using the dynamic model developed in
Chapter 2. Later in this chapter, the 3 DOF dynamic model will be used for both vertical
and rotational control system simulations. The nominal parameters for the vertical
control simulations are listed in Table 5.13. In this table, the value for Qxy is very large
because there is little cross-damping between the x and y coordinates 4 . The parameter fix
is the coupling of the drive force into the vertical axis. These two terms contribute to in-
phase error forces; &Cxy generates undesirable quadrature motion.

Table 5.1. Non-dimensional Parameters for Vertical Control Simulations

Parameter Value

ox 1

kx3 0.025

ax 150,000

My 1.09

Qy 30,000
-2(Oxy 0.003

Qxy 5,000,000

_x 0.5

The characteristics of the four closed-loop simulations are listed in Table 5.2. In the
first run, the system was run with both in-phase and quadrature disturbances. In the
second run, only disturbances in-phase with the proof mass horizontal velocity were

3 A complete list of parameter values may be found in the MATLAB TM code of Appendix C.
4 The damping varies as 1/Qxy.
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permitted. For the third run, only disturbances in quadrature with the proof mass

horizontal velocity were used. In the final run, at r = 105 non-dimensional seconds, the

cross-coupling spring term was increased by 25%.

Table 5.2. Vertical Control Simulation Characteristics

Test Run Characteristics

1 All parameters at nominal values

2 Quadrature disturbances set to zero

3 In-phase disturbances set to zero

4 At t= 105 sec, increase Xy by 25%

Plots of these simulations, including the in-phase and quadrature control voltages, are

shown in Figures 5.6 through 5.25. Comparisons are made with open-loop responses,

when applicable. A summary of all four simulations is presented in Table 5.3.

5.1.4.1 Vertical Control with In-Phase and Quadrature Disturbances

In the first simulation, the nominal parameters were used for all values. The results of

this simulation are shown in Figures 5.6 through 5.11. In Figure 5.6, the open-loop,

steady-state, non-dimensional amplitude of the vertical motion is about 0.0182, which is

equal to 0.182 gm. With the control loop closed (Figure 5.7), the amplitude standard

deviation has a non-dimensional value of 2.0323x10 -4 , or 2 nm, which is about a factor of

90 reduction in amplitude. The standard deviation is 20 times the magnitude of the noise

because the quadrature disturbances and control voltages 5 couple into the in-phase

control loop, which generates an in-phase control force that is not balanced by an actual

in-phase error force. There is also a steady-state displacement of the proof mass towards

the sense plate, due the negative spring effect of the control plate. The non-dimensional

offset is -2.7386x 10-3, or -27.4 nm. The open and closed-loop steady-state responses are

compared in the phase-plane plot of Figure 5.8, which dramatically illustrates the

reduction in the steady-state amplitude of the vertical motion.

5 The control voltages can couple due to phase errors in the remodulation and low-pass filters.
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Figure 5.6. Open-Loop Response of Vertical Axis
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Figure 5.7. Closed-Loop Response of Vertical Axis
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Figure 5.8. Phase Plane of Open and Closed-Loop Vertical Motion

The control voltages for both the in-phase and quadrature signals are shown in

Figures 5.9 and 5.10. Here, since the quadrature is the main contributor to the vertical

oscillations, its voltage has a large value of -4.1+0.0054 Volts. The in-phase control

signal is smaller, at -0.0646±0.0064 Volts. The in-phase signal is slightly more noisy

because of cross-coupling between the quadrature and in-phase signals, as discussed in

the previous section. It was assumed above that the two control systems may be assumed

to be independent, since the Q of the system was sufficiently high. However, there is still

some cross-coupling and low-pass filter phase shift, and that causes a slight deterioration

in the performance of the control system, especially along the in-phase loop. The

horizontal motion of the system is not affected by the implementation of this control

system, as shown in Figure 5.11.
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Figure 5.10. Vertical In-Phase Control Signal
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Figure 5.11. Horizontal Motion for Closed Vertical Loop

5.1.4.2 Vertical Control with Quadrature Disturbance Only

In the second simulation, only quadrature disturbances were introduced into the

system. The results of this simulation are shown in Figures 5.12 through 5.15. The

vertical displacement of Figure 5.12 has been reduced to a DC offset of -28.55 nm, with a

standard deviation of 1.97 nm. This response is nearly identical to that of case 1, because

the significant error source is the spring cross-coupling, which is present in both cases.

The similarity between the two cases is also seen in the phase-plane plot of Figure 5.13.

As discussed earlier, there is some coupling between the in-phase and quadrature,

which was assumed to be trivial. However, for no in-phase disturbances, the quadrature

coupling can easily be observed in the in-phase channel, as shown in Figure 5.15.

Although the in-phase disturbance is zero, a steady-state control voltage of

-0.0377±0.0063 Volts is required to eliminate the "spill" from the quadrature channel

disturbance and control voltage coupling and low-pass filter phase shift. This is half of

the value required in the first case, which means that the quadrature coupling is about

equal to the in-phase disturbances. The steady-state quadrature control voltage is

-4.0785+0.0055 Volts, which is nearly identical to that of case 1.
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Figure 5.12. Vertical Motion with Quadrature Disturbance Only
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Figure 5.14. Quadrature Control Voltage for Quadrature Disturbance
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Figure 5.15. In-Phase Control Voltage for Quadrature Disturbance
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5.1.4.3 Vertical Control with In-Phase Disturbances Only

The third simulation consists of in-phase disturbances only. These errors come from
the damping and force cross-coupling between the horizontal and vertical axes, as well as
from Coriolis forces induced by rotation of the device about the z-axis. In this case, the
vertical motion of Figure 5.16 (and the phase-plane plot of Figure 5.17) is driven to a
steady-state offset of -23.581 nm, with a standard deviation of 3.48 A. This remarkable
performance is due to the low magnitudes of the in-phase error forces and the lack of
"spill" from the quadrature signal. The steady-state in-phase control signal is
-0.0264±0.0002 Volts, and the quadrature control is 0.0012+0.0001 Volts. From these
values, it is clear that the in-phase signal does not couple back into the quadrature channel
in a significant amount, because of its small magnitude.

In Figure 5.19, the discontinuity corresponds to the behavior of the self-oscillator and
amplitude regulator loops. Once the oscillator has locked onto the low-amplitude
resonant frequency, the regulator increases the amplitude to a steady-state value of 1.
During the amplitude growth, the magnitude of the in-phase and quadrature vertical error
forces are changing, and the reference phase angles used to define these values are also
varying due to the nonlinear spring. Once the steady-state amplitude and phase of the
drive axis are established, both vertical control loops are able to determine the true phase
of the disturbances, and proper control voltages are then applied.
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Figure 5.16. Vertical Motion with In-Phase Disturbance Only
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Figure 5.17. Phase Plane for In-Phase Disturbance Only
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Figure 5.18. Quadrature Control Signal for In-Phase Voltage
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Figure 5.19. In-Phase Control Voltage for In-Phase Disturbance

186



5.1.4.4 Vertical Control with Variation in Quadrature Disturbance

Finally, the robustness of the vertical control system was examined by increasing the
spring cross-coupling of the system by 25% at r = 105 non-dimensional seconds. The

vertical motion of the corresponding open-loop situation is shown in Figure 5.20. Before

increasing the spring cross-coupling, the open-loop magnitude is 0.182 gm. After the

change in kxy, the steady-state displacement amplitude increased to 0.22823 gm. The

closed-loop response is shown in Figure 5.21. Before the increase, the vertical DC offset

of the proof mass is -27.511 nm with a standard deviation of 3.1347 nm. After increasing

kxy and allowing the transients to decay, the DC displacement is -30.001 nm, with a

standard deviation of 2.28 nm. Phase-plane responses of the vertical displacement and

velocity before and after the change in kxy are shown in Figures 5.22 and 5.23,
respectively. In Figure 5.22, the open-loop vertical motion is still settling to a steady-

state value, so the open-loop response is not as tight as that seen in Figure 5.23. By

examining the closed-loop response before, during and after the change, it is clear that the

control system is robust enough to keep y small while the system parameters are varied.

The reason for the improvement in the control is that the quadrature signal has been

increased, and the resulting signal to noise ratio is larger. The impact of this increase

may be seen in the quadrature and in-phase control signals, shown in Figures 5.24 and
5.25. At T = 105, the quadrature signal reacts instantaneously to the change in kxy. The

steady-state value of the quadrature is now -5.1273+_ 0.00434 Volts, which is 25% greater

than that for the constant kxy case, which corresponds to case 1. The in-phase control

signal is slightly affected by the change in the cross-coupling, with a steady-state value of

-0.07392±0.0076 Volts. This simulation case confirms that the control system will

respond proportionally to variations in the system parameters. In Chapter 6, a rate will be
applied to the control system to demonstrate that the magnitudes of the in-phase and
quadrature signals remains at zero while the in-phase control signal varies to account for
the introduction of a time-varying force into the system.
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Figure 5.21. Closed-Loop Vertical Response for Case 4
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Figure 5.24. Quadrature Control Signal for Case 4

0.5 1 1.5 2 2.5 3

Non-Dimensional Time

Figure 5.25. In-Phase Control Signal for Case 4
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5.1.4.5 Summary of Vertical Control Simulations

In these simulations, it was demonstrated that undesired vertical motion may be

reduced by a factor of 100. In cases 1 and 4, the closed-loop performance was compared

to open-loop simulations of the same parameters. The results for all four cases are

summarized in Table 5.3. Each case has its own column, except for the fourth case,
which has a column for before and after the increase in the spring cross-coupling. The

first row shows the amplitude of the oscillatory, open-loop, vertical-axis response for the

given case. The closed-loop DC offset displacement is listed in the second row, and the
standard deviation of the closed-loop response is presented in the third row. The
reduction factor from the open-loop amplitude to the closed loop a is given in the fourth

row. Finally, the steady-state quadrature and in-phase control

deviations are given in the fifth and sixth rows, respectively.

voltages, and their standard

Table 5.3. Summary of Vertical Closed-Loop Simulations

Case 1 Case 2 Case 3 Case 4 Case 4

Normal quad only in-phase only Before Akx After Akx

OL Amp. (gm) 0.182 - - 0.182 0.228

CL DC Offset (nm) -27.386 -28.551 -23.581 -27.511 -30.001
CL a (nm) 2.0323 1.971 0.3480 3.135 2.287

Reduction Factor 88.57 - - 58.06 99.81

Quad. Control (V) -4.100 -4.079 0.0012 -4.100 -5.127
Quad. a (V) 0.0054 0.0055 0.0001 0.0054 0.0043

In-phase Control (V) -0.0646 -0.0377 -0.0264 -0.0646 -0.0739
In-phase a (V) 0.0064 0.0063 0.0002 0.0064 0.0076

This table shows clearly that the

simulations was on the order of 20

steady-state offset of the vertical axis for these

nm, with a standard deviation of about 2 nm. As
mentioned earlier, in case 4, when the cross-coupling is increased by 25%, the quadrature
control voltage also increases by 25%, a confirmation that the control signals are directly
proportional to the errors. Cases 2 and 3 demonstrated the independence of each loop;
open-loop results were not necessary. This control loop is implemented in Chapter 6 on a
micromechanical resonator with excellent results.

191



5.2 Rotational Motion Rebalance Loop Analysis
The development of a force rebalance loop for the rotational motion is very similar to

that for the vertical motion developed in Section 5.1. However, there are two significant
differences between the two systems. First, in controlling the rotational motion, there are
control plates located under both sets of combs, as shown in Figure 5.26.

X

Lo

I L

Figure 5.26. Torque Control Plate Geometry

where,

LO = half the length of the proof mass

1 = width of a control plate, and

L = distance between center and inner edge of a control plate.
This metallization pattern allows a torque to be generated on either side of the proof mass
by applying independent voltages to either the left or right control plate. For the SEO,
this configuration will be exploited to overcome the second difference between the two
systems, which is that, since the control plates are at the ends of the proof mass, the
torquing coefficient is no longer a constant, but instead depends on x. Because the
control plates are not completely under the proof mass, both the moment arm and the
overlap area vary with the horizontal position of the proof mass, which, in turn, creates a
position dependent torquing coefficient.

As in Section 5.1.3, the rotational control system may be designed as shown in Figure
5.27. The analysis of this loop may proceed directly, if, for now, it is assumed that it is
possible to generate control signals that nullify the quadrature and in-phase torquing
errors, i.e., that the control system eliminates rotational motion 6. Later, it will be shown

6This is similar to the assumption made in Section 5.1.2.
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that it is in fact possible to choose control signals to generate torques that reduce the

unwanted in-phase and quadrature motions.

s2 + o9 i + O 2 KS O e 0
TQcosr+ Tipsin p

Gp(s)

Figure 5.27. Block Diagram for Rotational Control

In this figure, both the in-phase and quadrature loops are modeled in one feedback path.
In both the simulation and implementation of this system, there are two distinct paths, but
the analysis is similar, so only one path is shown.

For a quadrature control voltage of

VQ = VQ cos o5" (5.49)

a control torque of the form

2KTVQ
Tin = - TVQ (cos(l + Co)6 + cos(l- o)T) (5.50)

may be generated, where KT is the torquing constant. With this assumption, the block
diagram of Figure 5.27 is nearly identical to that of Figure 5.1.

The only difference between the 0 and y control loops now is that the remodulation
that occurs after the AGC blocks HC in Figure 5.1 is not straightforward for 6 control.

Instead, a more complex, non-linear scheme is required to generate the control signals VQ
and Vjp. If for now, it is assumed that this new, as yet undesigned, remodulation scheme
produces signals similar to those for the vertical control system, then the closed-loop
control systems are identical in structure, and the transfer functions may be derived in
exactly the same way as Equations 5.43 and 5.44, with the large Qe assumption is used
again. These equations are repeated here with changes in the subscript labels to
emphasize that the degree of freedom now under consideration is 0:

2KTG2 OHCIPO
VI = 2KTG2Hc M (5.51)r + 2KTHCIPOG28
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2KTHcQoG2e
VQe = 2 KT MQO  (5.52)

S+2KTG2HcQo

As before, G 1 and G2 may be expressed as in Equations 5.36 and 5.37,

4Kso 2+ 2
Gl = -- 2 (5.53)

sdi- + + + ( d)
Qe (2Qe)

-2 + + 2 -2s+ + 9 0-d

G2 4K 1 Q (5.54)

S(e )d 2 + co + + (B - d)2

where Kse is the rotational sensing constant. Once again, G2 0 >> Gle for Qe >> 1.

Having derived the closed-loop transfer functions, the compensators HC can now be

designed, and a remodulation scheme is then developed to generate the required signals

with the correct magnitude and phase.

5.2.1 Compensation Design for Rotational Motion

Since the information about the quadrature and in-phase errors is desired, it is

sensible to use the same compensators designed for the vertical controller in order to

integrate the error and guarantee stability of the closed loop. By choosing HCIPO and

HCQO identical to HCIP and HCQ, the only remaining task is to find a method of equating

the partial block diagram of Figure 5.28 with that of Figure 5.29.

In Figure 5.28, the large unknown block emphasizes that, with a position-dependent

torquing coefficient, it is not possible to modulate the control voltages by the

corresponding clocks, as was done for the vertical control system. Here, the controller

must compensate for the oscillating torquing coefficient so that the two sinusoidal control

signals, of correct magnitude and phase, are generated. By exploiting the fact that the

torque is generated by applying independent voltages on the left and right control plates,

the design of this block may be determined by using different voltages on each plate.

This will result in a control system that is equivalent to the linear control system shown in

Figure 5.29. The configuration in this schematic is identical to that used in the vertical

control system.
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VRQ

T=KTVQX-pOS + KTVipxvel

Figure 5.28. Nonlinear Block Diagram for Generation of Control Torques

x_ pos

vol

VRP

Figure 5.29. Linear Block Diagram for Generation of Control Torques

In order to linearize the block of Figure 5.28, the net torque generated by the left and

right control plates may be expressed from Lagrange's energy method as

SCR(x) 2 1 dCL (x) 2(5.55)
2 dO 2 de

i.e., the partial derivatives of the outer control plate capacitances generate a torque about

the proof mass. The values used in deriving these capacitances are shown in Figure 5.30.
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Figure 5.30. Schematic of Proof Mass and Torque Control Plates

The next step is to determine the partial derivatives of the control plate capacitances

with respect to 0 for a laterally oscillating proof mass. In this case, the capacitance

depends on all three degrees of freedom of the center of mass. It can be shown that the

capacitances for each control plate are

CL  E OWcp ln[yO + y + (x'- x)tan ]L
tan 0 -(4)cos O+x

- Ocp In YO + y-(L + x)tan (5.56a)
tan 0 Y6 + y- 40 cos tan

CR = p In[y + y + (x'- x) tan 1]ILO cos e+x
tan 6

0 wcpln + y + LOcostan e (5.56b)
tan 0 y0 + y + (L - x) tan 0

where,

Wcp = the width of the control plate into the page

L = the distance from the center to the inner edge of a torque control plate, and

LO = the distance from the center to the end of the proof mass.

These equations may be differentiated with respect to 0 and then expanded to first

order in 0 and y by Taylor series to yield solutions that depend on x, y, and 0, as shown in

Equations 5.57a and 5.57b. The sign change between the left and right capacitor

derivatives makes sense because both plates exert attractive forces, and, since one plate is

on either side of the center of mass, the torques will be in opposite directions. The

coefficient for 6 has both a constant term and a cubic term in x, while the y-coefficient is

only quadratic in x.
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dCL (x + L- )(x +L+L) 1-2 Y

2o 2(2) 3  (5.57a)
24 2(x + L)
3yo 3yo

L(Y 3YO 3 y 0

If it is assumed that the vertical and rotational motions of the proof mass are being
controlled, i.e., the magnitudes of y and 6 are nearly zero, then the partial derivative

expansions of Equations 5.57a and 5.57b may be written as

dOL = -2y (x + L- Lo)(x + L + L) (5.58a)

dC - {(x - L - 4)(x + 4 - L)} (5.58b)

In these equations, the torquing coefficients depend only on the horizontal displacement

of the proof mass. This fact is significant for linearizing the position depending torquing
coefficient.

Next, the control voltages may be defined as

V0 = Asqr + Bcsqr + D (5.59)

The torque of Equation 5.55 may now be rewritten as

T= Wcp [(x-L-4o)(x+ -L)V 2R-(x+ +L)(x+ L-L)V 2 ] (5.60)
4 y2

where the subscripts L and R indicate the left and right control plates, respectively. By
substituting x = Axsin r and Equation 5.59 for both VL and VR into Equation 5.60 and by

then collecting like trigonometric terms, the DC offset, the quadrature, the in-phase, and
the harmonic multiple torques may be determined. In order to be an effective control, it
is desired to minimize the DC offset and set the in-phase and quadrature control torques 7

equal to the corresponding errors. The desired form of the torque is

7In these equations, the x motion is sin ', such that the quadrature term is defined as sin r, and the in-phase
term is defined as cos z. However, the results apply as well for x = cos T.

197



T = -KT(4 )2 VoDCV sinl - KT(4 - L)VD ,,Vp cos (5.61)

The result from the substitution into Equation 5.60 is then set equal to Equation 5.61, and

the first-order harmonic terms are set equal to each other. By choosing AL and BR equal

to zero, and DR and DL equal to VDC, the steady-state values for each control signal are

reduced to

-( - L2 )VDCVQ =
2 A Dx(5.62a)

LAxA 4 - L2 3 A VDCAR + AxLBL +2AxLVDC

-4 - VDCVPe = 4 - L VDCBL (5.62b)

Solving the in-phase torque for BL using Equation 5.62b yields

BL =- V -L2 ) (5.63)
44 -L2 - 2

Inserting this solution into Equation 5.62a and solving for AR gives the second voltage

2(AL2 2 A2
AR = - rA VDC

22 2 - A 2 V2DC - VDCV + 2 (A) 2  2 P (5.64)

_ -AL 16(AL2 6 Ax

where AL 2 = L0
2-L2, and VDC must be chosen so that AR is real for all possible values of

VQO and Vjp e. In order to permit AR to be less than the saturation voltage of the op-amps,

the summation term should be used. The choice of VDC is determined by finding a VDC

such that the characteristic equation of AR is positive for all VQO and VIpO Minimum

required values of VDC are determined by letting VQO and Vjpe be their largest values of

±10 Volts. The additional constraint that emerges here is that LO-L must be greater than

2.22 for VDC to be a real number. For the SEO, Lo - L = 3.33, such that the characteristic

equation is positive. A constant 5 Volt signal for VDC will guarantee that AR is always

real. The minimum DC value is 4.72 V, for typical resonator values. Unfortunately, the

electronic implementation of the summations and square root is complicated, and will
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drive up the cost of the control system, such that the decision to use rotational control

must trade off the effects of the rotation versus the added complexity.

The rotational control voltages are distributed on the left and right plates so that

VOL = BLx vel + VDC
VOR = ARX- pos + VDC

where AR and BL are defined in Equations 5.63 and 5.64. This choice of control voltages,
when inserted into Equation 5.60, yields a net control torque of

Te = Tip cos r + TQe sin z + C2 cos 2z + S2 sin 2r + DC (5.67)

where,

S- L2 1X 2 4
DC = 1 KT -2 AAxLVDCAR

22 

Typy= -) N )-LVDCV'p

T = 2 K - L )VDCVQ

C2 = K (A2 - B2 - 4ALVDC AR (5.68)

4 AxLVDCB
S2 = -KT 4ALVD BL

31

This control scheme will eliminate the rotational motion, but creates a DC rotation
offset of the proof mass and also introduces torques at higher-order frequencies. The first
harmonic forces are about 50 times greater than the second harmonic forces, so they do
not affect the motion of the proof mass.

5.2.2 Improved Compensation Design for Rotational Motion
A better control system would generate neither DC nor second harmonic torques.

Ideally, the square root term in AR would also be eliminated to simplify the controller
implementation. Because the proof mass oscillates, the moment arm will always be a
function of x.. If the control torque plates are moved so that they are completely under
the proof mass, not under the tines, then the torque coefficient will only be a first-order
function of x. However, moving the control plates will reduce the sense plate area,
decreasing the sensitivity of the system to vertical and rotational motion.
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In this case, the control plate capacitances are

CL = In[yo + y + (x' - x)tan O] L- L
tan 9 -L-lcp

EOOwcp n o + y -(L + x)tan 8 (5.69a)

tan 6 yo+y-(L+Icp+x)tan

CR = OWCP ln[yo + y +(x' - x) tan 9L+lcp
tan e L

EOcp Y+ + (L+ lcp - x)tanO (5.69b)- p In
tan 6 y + y + (L - x)tan O

where Icp is the width of the control plate, as shown in Figure 5.30. These capacitances

are then differentiated with respect to 0 and Taylor series expanded to first order in both y

and 8 to yield

dCL EOWcplcp cp y1 Y 2 l)(-.7a
x+L+ -2 + 2 x+L+ (5.70a)

dO y 2 y yo 2 12

°CR EOWcplcp ( cp 1 01 O(2 2d-' =  {1 x-L- 1-2 y  +( 2 x-L- + 0 (5.70b)

Once again, these torques are exerted in opposite directions. The constant term in

Equation 5.70b is negative for all x. As before, by substituting for x and collecting like

terms, the actual torque may be equated with the ideal torque of Equation 5.61. Then, by

letting DL = DR = VDC, AL = 0, and BR = O0, solutions for BL and AR are found from

-(4- L) VDCVQO =

( 4-L)[AxAR (L + L)VDcAR + AxB( + 2AxVDC] (5.71a)

- L)VDCVip = 4 4 - L)VDCBL (5.71 b)

In this case, the AC voltages AR and BL are
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2
AR= -(k +L)VDc

(5.72a)

2 (+L - VC(+L) c V P

BL = -VIP (5.72b)4

Here, the DC voltage is again chosen to be 5 Volts, which guarantees that AR will always

be real. However, the square root term in AR was not eliminated, and the compensation

method still requires complex electronics.

This model also generates a DC torque and second harmonics. For this design, the

terms of the net applied torque from Equation 5.67 are

DC L2 ( AR - B +-Ax(Lo - L)VDCAR
2 2 X

Tpe = - KT( - L)VDCVIPO

TQo =- K( - LVDCV

(5.73)
4Ax(L - L) VDC AR

C2 = KT AR
3 r

S2 = -KT 4Ax (4 - L)VDC BL
3z

The rebalance torques Tjpe and TQO are the same as those from Equation 5.68. The

constant torque and second harmonics are less than those in the previous section.

Therefore, by moving the control plates completely under the proof mass, the undesired

torques are reduced. If the varying moment arm could be compensated for, then the DC

and second harmonic torques would be equal to zero.

5.2.3 Simulation of Rotational Control System

For the rotational force rebalance system, the nominal x- and y-axis parameters from

Table 4.3 of Chapter 4 were used. In the first simulation, the vertical axis was left open,

and only the rotational control system was closed. In the second simulation, both the

vertical and rotational force rebalance loops were closed, so that all three degrees of

freedom were operating closed loop: the x-axis in a loop that sustained oscillations, and

the y- and 8-axes in loops that eliminated all motion.

201



5.2.3.1 Open-Loop Simulation of Three DOF Oscillator

The horizontal, vertical, and rotational motions from the Chapter 4 simulations are
shown in Figures 5.31 through 5.33 for open-loop y and 8 operation. In these plots, the

steady-state non-dimensional displacement of the x-axis is 1.0095; the y-axis, 0.0182; and
the 0-axis, 79.5 gradians. Most of the motion in the vertical and rotational axes is due to
coupling from the drive axis. The objective of the force rebalance loops is to drive the y
and 0 motions to zero and to obtain the magnitudes of the in-phase and quadrature signals
for both degrees of freedom.

1.5

1

0.5

0

-0.5

-1

-1.5
0.5 1 1.5 2

x105Non-dimensional Time

Figure 5.31. Horizontal Displacement of Open-Loop 3 DOF Simulation
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Figure 5.32. Vertical Displacement of Open-Loop 3 DOF Simulation
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Figure 5.33. Rotational Displacement of Open-Loop 3 DOF Simulation
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5.2.3.2 Closed Rotational Force Rebalance Loop Simulation

In the first simulation, the control loop for the 0 degree of freedom was closed. As

discussed above, the control voltages VQO and VIP have to be modified to generate the
proper control torques by using the voltages AR and BL of Equations 5.63 and 5.64.
These voltages were necessary because the torquing coefficient is no longer a constant,
but instead depends on the horizontal position of the proof mass. In Figures 5.34 through
5.40, the rotation of the proof mass and the necessary control voltages are plotted.

The controlled response of the rotational axis is shown in Figure 5.34, and the phase-
plane response is shown in Figure 5.35. The steady-state rotation angle of the proof mass
is 36.35 gradians, with a standard deviation of 3.45 gradians, which is seen clearly in the
phase-plane. With this control loop, the rotational motion has been reduced by a factor of
23. However, this is a factor of 47 above the noise floor determined in Chapter 4. This

additional error comes from two sources. First, the coupling between the in-phase and

quadrature channels, as in the vertical control, limits the performance of the control

system. In addition, the second harmonic torques will generate small forces that are

balanced by a control force. However, the reduction factor of 23 is substanial, since the

magnitude of the rotation has been reduced from 0.080 mradians to 3.5 gradians.

x10-5

6-

= 4

0 1 -

0

1
0 0.5 1 1.5 2

Non-dimensional Time x105

Figure 5.34. Rotational Displacement of 0 Closed-Loop 3 DOF Simulation
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Figure 5.35. Phase-Plane of Open and Closed-Loop Rotational Response

The quadrature and in-phase control voltages are shown in Figures 5.36 and 5.37,

respectively. The shapes of these responses are very similar to the vertical control

voltages, as expected, since the control system compensator designs are very similar. The

quadrature control voltage has a mean of -3.3513 Volts, with a standard deviation of

0.0053 Volts. For the in-phase channel, the control voltage is 0.3103+0.0242 Volts. The

in-phase signal is noiser because of the coupling from the quadrature control loop, as

discussed in Section 5.1.4.

The control voltages, AR and BL, are plotted in Figures 5.38 and 5.39, respectively.

Because of the manipulations performed on these signals, especially AR, the responses are

similar to, but not exactly the same, as those for VQO and VIpe. As shown in Figure 5.38,

the response of AR is very similar to that of VQO, except for a minus sign. Here, the value

starts at about -1.25 Volts, increases rapidly, and settles out to a steady-state value of

1.47+0.0057 Volts. Because of the small magnitude of VjIP, AR is nearly proportional to

the square root of VQO. The response of BL is directly proportional to -VIPe, so it has

much of the noise associated with Vjpe. The steady-state value of BL is -0.2438+0.0190

Volts, which is -0.786 times the in-phase voltage; the expected scale factor. These two

control voltages permit the sinusoidal rotational motion to be reduced by a factor of 23, a

small enough level such that the rotation does not adversely affect the dynamics of the

other two axes or the capacitances of the system.
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Figure 5.36. Quadrature Control Voltage of 0 Closed-Loop 3 DOF Simulation
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Figure 5.37. In-Phase Control Voltage of 0 Closed-Loop 3 DOF Simulation
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Figure 5.38. Right Square Wave Voltage, AR, for 6 Closed Loop
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Figure 5.39. Left Co-Square Wave Voltage, BL, for 0 Closed Loop
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In Figure 5.40, the torquing coefficient for the left control plate is shown for a small

time period. The behavior of this term is, to first order, sinusoidal with the horizontal

displacement, with a negligible contribution from the x2 term in Equations 5.58a and

5.58b. The DC offset of the coefficient is 5.095x10- 12 Volts-2 , with an oscillation

amplitude of 1.473x10- 12 Volts -2. The right control plate torquing coefficient is 1800 out

of phase with the left one, with identical DC offsets and oscillation amplitudes. The two

coefficients are in-phase at the second harmonic, a fact that is not observable in the plot.

x10-12
7

6.5 I-

5.5 k

5

4.5 -

3.51
1.7 1.75 1.8 1.85

Non-dimensional Time

Figure 5.40. Torquing Coefficient of 0 Closed-Loop

1.9

x105

3 DOF Simulation

From this simulation, it is clear that the 0 force rebalance loop is capable of reducing

rotational motion. In the closed loop, the rotation standard deviation is sufficiently small

that 6-coupling adverses affects neither the dynamics of x and y, nor the comb and

parallel plate capacitor values. Therefore, the simulated 0 force-rebalance loop may be

considered successful; it provides the quadrature and in-phase information for the

rotational dynamics and eliminates the undesired proof mass rotation.

5.2.3.3 Closed-Loop Control of All Three Degrees of Freedom

In the final simulation, both the vertical and rotational loops were closed, so that all

three degrees of freedom were operating closed loop. The magnitudes of the vertical and

rotational displacements are shown in Figures 5.41 and 5.42, respectively, and the phase-

plane are plotted for both y and 0 in Figures 5.43 and 5.44. The y-axis motion is reduced
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Figure 5.41. Proof Mass Vertical Displacement for Three-Closed-Loops Simulation

x10-5

! _

0.5 1.5

Non-dimensional Time x 105

Figure 5.42. Proof Mass Rotation for Three-Closed-Loops Simulation
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Figure 5.43. Phase-Plane of Vertical Response
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Figure 5.44. Phase-Plane for Proof Mass Rotation Response
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to a DC offset of -27.6 nm with a standard deviation of 2.18 nm. The 0 motion steady-

state tilt is 36.2 gradians with a variation of 2.05 gradians. Because the vertical motion

has also been reduced, the standard deviation of 0 is less than in the previous simulation,

since less control torque is necessary to counteract the vertical cross-coupling, and, as a

result, the second harmonic errors are not as large. The responses of both y and 0 are

very similar to those of Sections 5.1.4.1 and 5.2.3.2, respectively.

The control voltages for the vertical axis are shown in Figure 5.45. The quadrature

control voltage is -4.0722±0.0093 Volts; the in-phase control voltage is -0.0643±0.0068

Volts. The responses of the control signals are similar to those of Section 5.1.4; the

addition of the O-control does not adversely affect the performance of the vertical force

rebalance loop.

0 -- .. In-Phase

-2
>1
,o-3-

o t Quakature
-4

-6
0 0.5 1 1.5 2

Non-dimensional Time x105

Figure 5.45. Vertical Control Voltages for 3 Controlled DOF

The corresponding quadrature and in-phase control voltages for rotation are shown in

Figure 5.46. Here, both signals behave as expected; the introduction of the vertical

control does not adversely affect the performance of the rotational force rebalance loop.

The steady-state voltage for the quadrature is -3.3043±0.0061 Volts; the in-phase is

0.3056+0.0209 Volts. In Figure 5.47, the applied, nonlinear, control voltages, AR and BL,

are shown. The steady-state value of AR is 1.4334+0.0082 Volts; BL is -0.2400-0.0163

Volts. The shapes of these two signals are similar to those in the previous section.
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Figure 5.46. Rotational Control Voltages for 3 Controlled DOF
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Figure 5.47. Applied Rotational Control Voltages for 3 Controlled DOF
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Because VIP6 is small, AR is nearly proportional to VQe; however, a linearization of

AR as a function of the quadrature control voltage is not possible, because it cannot be

safely assumed that the in-phase control voltage will always be small. Large VIPO will

greatly affect the response of AR. In this case, BL is nearly identical to VIP8 , and AR is

proportional to VQO. From these results, it is clear that both vertical and rotational control

may be run simultaneously.

5.3 Force Rebalance Loop Conclusions
A comparison of the closed vertical loop of Section 5.1.4.1, the closed rotational loop

of Section 5.2.3.2, and the three closed loops of Section 5.2.3.3 are shown in Table 5.4.

In this table, the open-loop (OL) magnitudes for both y and 0 from Chapter 4 are given.

For the closed-loop (CL) responses, the following values are given: the DC offsets and

standard deviations for y and 6, the reduction factor (RF) for each DOF, the magnitudes

and standard deviations of the in-phase and quadrature control voltages for each loop, and

the nonlinear rotational control voltages and standard deviations.

Table 5.4. Summary of Force Rebalance for Vertical and Rotational Motion

y-Control 6-Control y and 0 Control

OL y 0.182 gm 0.182 gm 0.182 gm

OL 0 79.5 grad 79.5 grad 79.5 grad

CL DCv -27.386 nm - -27.6 nm

CL oy 2.0323 nm - 2.18 nm

CL DC0 - 36.35 grad 36.2 grad

CL oe - 3.45 grad 2.05 grad

RFv 88.57 - 83.49

RFe - 23.04 38.78

Vv -4.100-0.0054 V - -4.0722+0.0093 V

Vtpy -0.0646+0.0064 V - -0.0643+0.0068 V

Voe - -3.3513+0.0053 V -3.3043+0.0061 V

VIPe - 0.3103+0.0242 V 0.3056+0.0209 V

AR - 1.47+0.0057 V 1.4334+0.0082 V

BL - -0.2438+0.0190 V -0.2400-0.0163 V

As can be seen in this table, there are minor reductions

rotational control signals when both modes are driven to zero.

in both the vertical and

However, the signals are
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essentially the same, verifying that the controls for both degrees of freedom operate

independently, and that simultaneously closing both force rebalance loops will not
adversely affect the system. In fact, closing the vertical loop improves the 0 force

rebalance loop performance, defined as the reduction factor, by 68%. Therefore, with the
self-excitation control loop on the x-axis, this simulation demonstrates simultaneous
control of three degrees of freedom for a micromechanical oscillator.

In this chapter, force rebalance loops were designed both to eliminate and to measure
vertical and rotational motion. For each degree of freedom, both in-phase and quadrature
components of the motion were determined through demodulation and used for
rebalancing the proof mass. Linearization of the demodulator and remodulator permitted
stability analysis to design a PI compensation scheme. The simulations verified the
independent performance of both the y and 0 control systems, and the simultaneous

operation of both loops. In Chapter 6, the vertical force rebalance loop is implemented
on a laterally oscillating proof mass.
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Chapter 6

Measurements and Experiments
on Micromechanical Resonators

6.0 Introduction
Several experiments were designed, built, and implemented to confirm both the three

degree of freedom state-space model developed in Chapter 4 and the control systems

designed in Chapter 5. The first battery of tests characterized the static and dynamic

parameters of the SEO and yielded estimates not only of the physical dimensions, but

also of the spring, forcing, and sensing constants. With these parameters, more extensive

experiments were conducted to determine the magnitude of both the on-axis parameters

and the cross-coupling between the degrees of freedom. Once the SEO was completely

characterized, the vertical control system of Chapter 5 was implemented successfully on a

micromechanical resonator.

6.1 Static Parameter Characterization for the SEO
Before dynamic SEO testing, it was necessary to measure the physical characteristics

of the system in order to determine its performance limits. The static parameters of the

SEO include the capacitors, from the motor axis stator combs to the sense and control

force plates; and the forcing and sensing constants of each degree of freedom. Some of

the values, such as the mass and moment of inertia of the SEO, are best determined

analytically, while others, such as the resonant frequencies, can be estimated through

direct measurements.

6.1.1 Analytic Determination of the Mass and Moment of Inertia

The most straightforward way of determining both the mass and the moment of

inertia of the proof mass is through analytic models based on the design of the device.

The proof mass may be considered to have three elements: the plate, the holes in the

proof mass, and the comb fingers. The effects of each of these components on both the
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mass and moment of inertia may be examined separately and then incorporated into the

final model. The plate and fingers will increase the mass and moment of inertia, while

the holes will decrease both quantities.

6.1.1.1 Calculation of the Rotor Mass

The mass is simply the density of silicon times the volume of the entire proof mass.

The volume of the proof mass may be calculated as the volume of a solid plate plus the

total volume of the comb fingers and minus the total volume of the holes in the proof

mass. For the SEO, the width, length, height, and the total number of each component

are given in Table 6.1. The height was determined experimentally, as discussed as

Section 6.1.2.1.

Table 6.1. Design Dimensions of SEO Proof Mass

Width Length Height Number Volume

(_tm) (4m) (m) (m3)

Plate 400 450 19 1 3.42x106

Holes 5 5 19 36x32 0.547x106

Fingers 5 50 19 28x2 0.266x106

For a silicon density of 2260 kg/m3 , the mass of the SEO proof mass is approximately

7.1x10 -9 kg. This value will be used in Section 6.2.2 to determine the spring constants

based on the resonant frequency measurements. The holes reduce the total mass to 84%

of the value of a solid proof mass.

6.1.1.2 Calculation of the Rotor Moment of Inertia

Calculating the moment of inertia about the z-axis requires significantly more analysis

of the layout of the proof mass than for the mass calculation. Not only the mass of each

component, but also its horizontal distance from the center line of the rotor is needed.

Once again, the rotor may be divided into three components, and the total moment of

inertia may be determined by combining the effects of each. The moment of inertia is a

volume integral, so the contribution of the holes may simply be subtracted from that of

the entire proof mass. It can be shown that the moment of inertia of the holes is

2 nt/2

[holes  phm 3(2k - 1)n)2 + m2) (6.1)

k=l
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where,

nw = number of holes in one column of the proof mass = 32

nl = number of holes in one row of the proof mass = 36

p = the density of silicon = 2260 kg/m 3

h = thickness of proof mass = 19 gm

m = length of side of square hole = 5 gm, and

n = distance between centers of two adjacent holes = 10 gm.

A similar analysis leads to a moment of inertia for the tines

Itines = 2 ntinesphltwt lolt +2 (6.2)3 4 2

where,

ntines = number of tines along one side of proof mass = 28

It = length of a tine = 50 gm

wt = width of a tine = 5 gm, and

10 = length of proof mass without tines = 450 gm.

The moment of inertia of the entire proof mass may then be expressed as

rotor 12 + Itines - Iholes (6.3)
12

Table 6.2 shows the contribution of each part to the total moment of inertia of the proof

mass about the z-axis.

Table 6.2. Moment of Inertia for SEO Proof Mass

Quantity Moment of Inertia

Plate 0.13043 g-gm2

Holes -0.04004 g-gm2

Tines 0.03770 g-gm2

Total 0.12809 g-gm2

The largest contribution to the moment of inertia comes from the proof mass plate

(without fingers or holes). For the SEO, the moment of inertia of the proof mass about

the z-axis is 0.12809 g-gm2. Using the mass calculated above, this yields a radius of

gyration, R, of 134.316 gm. These values will be used later to determine spring constants
from measured resonant frequencies.
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6.1.2 Measurement of SEO Static Parameters

Micromechanical resonators have both static and dynamic parameters that can be

measured experimentally. The static characteristics include the physical dimensions of

the resonator and the values of the capacitors in the device. The nominal forcing and

torquing constants for all three degrees of freedom may then be determined from the

capacitor estimates. These measurements, made from straightforward techniques,

provide a wealth of information on the resonator and its performance.

6.1.2.1 Physical Characterization of SEO

In order to determine the thickness and sense gap of the SEO, a WYCO® profilometer

was used to measure the height of the proof mass above the substrate [5]. During

fabrication, some rotors stick down to the substratel. From these stuck devices, the gap

between the proof mass and the sense plate and the thickness of the proof mass can be

accurately estimated with a profilometer. For the SEO, the measured thickness of the

proof mass was 18.98 gm, with a sense gap of 3 gm. These values are used throughout

this chapter to determine various resonator characteristics.

6.1.2.2 Capacitor Measurements for SEO

The capacitors of interest are shown in Figure 6.1 (a repeat of Figure 2.33 from

Chapter 2). By applying an AC signal to each capacitor of an SEO, an output voltage

may be measured on the vertical axis preamplifier. This voltage is proportional to the

ratio of the actual capacitance to the feedback capacitance, as shown in Equation 6.4

Ce = n Cb (6.4)

where,

ilVouty_ 1 = RMS value of vertical axis preamplifier output voltage

IIVinll = RMS value of input voltage

Ce = estimated value of capacitor under study, and

Cfb = feedback capacitance of preamplifier = 2 pF.

It is essential to choose the AC frequency near the resonant frequency since the

electronics are designed to pass and filter signals based on a certain expected frequency

range. If the SEO is at atmospheric pressure and the voltage applied is of sufficiently low

amplitude so as to not excite the proof mass, then the unknown capacitances may be

accurately measured. In this figure, the charge injected onto the proof mass may be

1Due to irregularities in fabrication and the snapdown effects discussed in Chapter 2.
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measured at Vout,y-, which yields both the vertical and rotational motion, and the charge

injected on to the motor sense comb may be measured at Vout,x, which gives the

horizontal motion of the proof mass.

Cf b

proof

motor cap.

plate

left sense
cap.

Fig

nass

center
control
plate

ure 6.1.

Cfb

Vout,x

L cap.

T ght control7 plate

right sense
cap.

Capacitor Model for SEO

Based on the design parameters it is possible to estimate the capacitances, either

analytically or by finite element analysis. The analytic approach is a straightforward

application of parallel plate capacitor theory, as discussed in Chapter 2. However, this

method does not include fringing, which limits its usefulness. Finite element analysis

does consider the effects of the fringing fields, so its predictions are more useful. These

predictions are not shown here because the actual vertical gap between the proof mass

and substrate is 20% larger than that used in the finite element analysis of Chapters 2 and

4. However, the fringing coefficients determined in Chapter 2 are used in this chapter as

reasonable approximations to the actual fringing coefficients of the capacitances. The

measured capacitor values are presented in Table 6.3.
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Table 6.3. Measured Capacitor Values for SEO

Capacitor Measured (fF)

motor drive 103.7

motor sense 104.8

left sense plate 150.4

right sense plate 151.8

left control plate 65.72

right control plate 76.36

center control plate 87.4

The large discrepancy between the measured values of the left and right control plates
is most likely due to misalignment between the combs and the control plates. If the proof
mass is situated such that there is more rotor comb overlap on the right control plate than
on the left control plate, then the right capacitance will be larger than the left capacitance.
During fabrication, the silicon is aligned with and then anodically bonded to the glass.
Misalignment during this process can create these imbalances. Both sense plates and the
center control plate are not affected by this misalignment because they are completely
under the proof mass.

6.1.3 Forcing and Sensing Constant Estimates from Capacitors
From these capacitor measurements, it is possible to determine the various constants

used to generate and to measure the motions of the SEO. As shown in Chapters 2 and 4,
these constants depend on both the physical dimensions and the capacitor sizes of the
SEO. The relationships between these estimates are very useful for SEO characterization.

6.1.3.1 Horizontal Forcing and Sensing Constants

In Chapter 2, it was shown that the horizontal forcing and sensing schemes depend on
the partial derivative of the stator capacitances with respect to x. Since the SEO was at
rest when these measurements were made, it may be assumed that there is 25 p.m of
overlap between the tines. The values for the motor drive and motor sense capacitance
may therefore be divided by 25 pm to yield a first-order estimate of the partial derivative
with respect to x. This leads to estimates of the horizontal forcing and sensing constants2

2 See Chapter 2 for a detailed analysis of horizontal forcing and sensing.
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KF,x = x

Cms (6.5)
V dC

KS,x = gl1 Cb ax

where,

gl = preamplifier gain = 10

Vms = DC bias on motor sense comb = 5 V, and

Cf, = the feedback capacitor about the motor sense preamplifier = 2 pF.

For these values, KF,x is equal to 4.15 nN/V 2, and Ks,x is equal to 105 mV/pLm. These

constants agree with other resonators of similar design. Assuming a fringing coefficient

of 1.07 and a tine gap of 2 p.m yields analytic estimates of KF,x = 4.69 nN/V 2 and Ks,x =

117.25 mV/pm. These are very close to the measured values, and provide two

conclusions: the tine gap is less than 2 plm, and the measured values are accurate. The

maximum lateral comb force, assuming VAC,max equals 10 Volts and VDC is 5 Volts, is

0.208 pgN.

6.1.3.2 Vertical Forcing and Sensing Constants

The static values that may be determined for the vertical axis dynamics include the

sense plate constants and the vertical force plate constant. Other parameters, such as the

forcing and sensing due to the stator combs, cannot be extracted from these capacitor

measurements. Finite element analysis is the best way to determine these values, as

shown in Chapter 2. As discussed in Chapter 2, the vertical forcing and sensing constants

are

K Cf0KF,y =
Y sO 

(6.6)

KS,y = 2gs so Vs
YoCfb

where Co and Cso are the nominal vertical force and sense plate3 capacitances,

respectively; and gs is the vertical axis gain, which is equal to 10 in these experiments. If

the DC component of Vout is ignored (it is removed by a blocking capacitor), and if the

sense gap measured by the profilometer is used for yo, then the constant KF,y is equal to

29.133 nN/V 2 ; Ks,y is equal to 2.506 V/pLm. The maximum vertical control force, with

the same voltage assumptions as above, is 1.457 gN.
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6.1.3.3 Rotational Torquing and Sensing Constants

The rotational constants are the most difficult to estimate, because they depend not

only on the capacitors, but also on the dimensions of the proof mass. Here, the ideal

torquing and sensing models discussed in Chapter 4 will be used. The control plate

torquing constant and the rotation sensing constant are

Lo - Wcp Ccpo

2 yO
(6.7)

Ks, = gs Cso Vs (L- w)
Cfb yo

where,

Ccpo = the nominal torque plate capacitance

yo = gap between proof mass and substrate

LO = distance between the outer edges of the control torque plates

Wcp = width of control torque plate

L = distance between outer edges of sense plates, and

w = width of sense plate.

For the values shown in Table 4.2, the torquing constant KT,0 is equal to 6.28 pN-m/V2

and the sensing constant KS, 0 is equal to 661.2 V/radian. For 100 gradians, the output

voltage is 66 mV, a small but measurable quantity. If both torque plates are used, the

maximum possible control torque is 314 pN-m.

6.2 Dynamic Parameter Characterization for the SEO
While the static parameters describe the construction of the SEO, the dynamic

parameters characterize its behavior. These values include the resonant frequency,

quality factor, and spring non-linearities for each of the three modes, as well as the cross-

coupling of the restoring, damping, and applied forces. In these experiments, external

forces are applied to generate lateral, vertical, and rotational motions, and these motions

are then measured on each axis.

On-axis dynamic parameters are determined by observing the motion on the same

axis the force is applied on, e.g., drive axis parameters may be measured by applying a

force along the drive axis and measuring the motion at the motor sense comb. The cross-

axis parameters are determined by applying a force on one axis and observing the

motions induced by it in the other two degrees of freedom.

222



6.2.1 Snapdown Voltage for Vertical Axis

The first dynamic measurement performed on the SEO was the snapdown test. In this

test, a voltage is applied to both sense plates, and the potential is slowly increased until

the proof mass snaps down and contacts the sense plate, creating a short circuit. The

details of the snapdown voltage are discussed in Section 2.2.4.1, and the governing

equation is

Vsnap 27Cy0  (6.8)

where,

ky = spring constant of vertical axis, and

Cyo = sum of left and right sense plate capacitances.

This measurement may then be used to estimate the spring constant of the vertical axis.

For the SEO, the snapdown voltage was measured at 38 Volts, which results in a vertical

axis spring constant of 163.6413 N/m by using the sense gap and capacitance measured in

Section 6.1. Using the mass calculated in Section 6.1.1 yields a vertical resonant

frequency of 24.162 kHz.

6.2.2 Open-Loop Frequency Response Measurements
Frequency response techniques are very useful for determining the dynamic

characteristics of an open-loop resonator. The basic method for this test is to combine a

swept sinusoid voltage at increasing frequencies with a DC bias and then to apply this

signal to an actuator on the SEO, which, in turn, generates a force that is at the same

frequency as the swept sine signal. This force induces motion in the SEO proof mass

which may be measured by any of the three motion detection capacitors on the SEO.

That output signal is then compared with the AC voltage to determine the magnitude and

phase of the SEO response along that axis with respect to the swept sine voltage.

By applying forces and measuring the motions both on- and off-axis, the spring,
damping, and forcing terms may be calculated for all axes. Table 6.4 summarizes the

degree of freedom along which the force is applied, and the degree of freedom whose

motion is measured, and the parameters that may be measured from that test. For

example, if a force is applied along the horizontal axis, and the motion is detected along

the vertical axis, then the cross-coupling parameters between x and y may be determined.

In some cases, one or more tests must be run in a given configuration to separate the force

coupling from the mechanical coupling, since the force coupling will depend on the

voltage squared and the mechanical coupling is directly proportional to the lateral motion.
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Table 6.4. On- and Off-Axis Open-Loop Frequency Response Experiments

Forced DOF Sensed DOF Parameters Measured

Horizontal Horizontal kx, kx3, Qx

Horizontal Vertical kxy, Qy , fix

Horizontal Rotational kxe, Qxe, Yx

Vertical Horizontal kxy, Qxy, ay

Vertical Vertical ky, kv3, Qy

Vertical Rotational kye, Qye, y

Rotational Horizontal kxo, Qxe, ae

Rotational Vertical kye, Qye, Pe

Rotational Rotational ke, k03, Qe

In these experiments, the coupling of horizontal motion and force into the vertical and

rotation dynamics is the significant issue. The coupling of vertical and rotational motions

into the drive axis will be very small with respect to the other horizontal axis forces, and,

as a result, difficult to observe accurately in the lateral dynamics. Therefore, the cross-

coupling terms should be measured by inducing motion along the drive axis and

examining its effects on the other two degrees of freedom. Likewise, the coupling

between the vertical and rotational modes is not a significant parameter. The remaining

dynamic parameters to be measured are the on-axis spring terms and damping, as well as

the coupling between the horizontal motion and the other two modes. The reduced model

parameters that were measured are listed in Table 6.5. These values can be used to

develop a three degree of freedom system that adequately models the behavior of the

resonator.

Table 6.5. Reduced Model Parameter Measurements

Forced DOF Sensed DOF Parameters Measured

Horizontal Horizontal kx, kx3, Qx

Horizontal Vertical kxy, fix

Horizontal Rotational kxO, 7x

Vertical Vertical ky, kv3, Qv

Rotational Rotational ke, k03, Qo
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For the frequency responses, the SEO is placed in an airtight package, and a hose is

connected to pull a vacuum inside the container. Since the Q measurements, both on-axis

and coupled, will simply be an estimate of the pressure at the SEO, the pressure gauge

attached to the system will be used to verify that a sufficiently low pressure exists at the

SEO. The three Q measurements are performed to determine the relationships of the

damping between the three degrees of freedom. Typical pressures have been on the order

of 11 mTorr, which is more than adequate for open-loop characterization of this device.

If the SEO had been vacuum sealed, then the Q measurements would be more significant,

since they would then be the only means of determining the pressure in the package.

6.2.2.1 Drive Axis Dynamic Parameters

The frequency response approach was used to measure the drive axis parameters. For

a nonlinear hard spring, the expected shark fin response is shown in Section 2.1.3. The

actual drive axis frequency response of the SEO is shown in Figure 6.24. For this

response, the magnitude of the swept sine voltage was 0.25 Volts, and the DC voltage

was 5 Volts. In the magnitude response plot, the spring hardening is clearly seen as the

SEO amplitude increases over a range of 12.525 Hz. This system was driven sufficiently

hard that the nonlinear effects of the cubic spring dominate the behavior of the resonator.

In Figure 6.3, the swept sine voltage was reduced to 100 mV to generate a smaller

response. In this figure, the peak value has a larger dB value, but the displacement is less

than the large amplitude response. Since the system is nonlinear, the displacement of the

small amplitude response is less than the large amplitude response, but the ratio of the

outputs to the inputs is greater for the small amplitude. These plots represent the ratio of

the sensed output voltage to the applied input voltage, so the displacement amplitude

must be computed explicitly to examine the behavior of the system.

The value of the cubic spring coefficient, k3 , may be determined using the

information from both the large and small amplitude responses. From both Chapters 2

and 3, the dimensional, nonlinear resonant frequency at the peak amplitude is

Oni = d(1+ 3 k3A2 (6.9)

4In the frequency response plots, the values shown along the frequency, magnitude, and phase axes
correspond to the maximum and minimum values along that axis. The vertical axis have five values. To
find the tick mark increment, subtract the minimum from the maximum and divide by 4. The frequency
axis has 11 tick marks. To find the tick mark increment, subtract the minimum from the maximum and
divide by 10.
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Figure 6.3. Small Amplitude Horizontal Axis Frequency Response
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where,

A = the non-dimensional amplitude of the oscillation
(Od = horizontal, linear resonant frequency

ri = measured nonlinear resonant frequency, and

k3 = non-dimensional cubic spring constant.

The peak magnitude of the oscillation of the large amplitude shark fin response occurred

at a frequency of 10.35853 kHz, and was measured as 0.4186 Volts. Using the drive axis

sensing constant from Equation 6.5, this value is equivalent to 3.987 gm, which is equal

to a non-dimensional amplitude 5 of 0.3987. For the low amplitude response, the

displacement is 1.8669 jim with a resonant frequency of 10.34943 kHz. In both of these

responses, when the phase reaches -90', the amplitude response jumps to a smaller value,

as predicted by the analysis in Chapter 2.

The two peak amplitude measurements may be used for a least squares estimate of

Equation 6.9. From this fit, the linear resonant frequency is 10.34687 kHz, which, given

the mass from Section 6.1.1, yields a drive-axis linear spring constant of 30.008 N/m.

The non-dimensional cubic spring constant is 0.0189, which, from Equation 2.11, gives a

cubic spring constant of 5.672 nN/gm3.

For the final drive axis open-loop test, an AC excitation of 5 mV was applied to

generate linear oscillator behavior. From this response, both the linear resonant
frequency and the quality factor of the system may be determined. For the horizontal
axis, ox is 10.34664 kHz, and Qx is 63,800. This frequency is within 0.03% of the

frequency calculated by fitting the large and small amplitude responses to Equation 6.9.

6.2.2.2 Vertical Axis On-Axis Dynamic Parameters

To determine the linear and cubic springs, as well as the quality factor, of the vertical

axis, open-loop frequency responses were performed by first applying the voltage to the
vertical control force plate and then sensing the motion using the difference of the
integrated charge outputs from the oppositely biased sense plates. Vertical responses are
shown in Figures 6.46 and 6.5. In Figure 6.4, a 250 mV sine wave is swept both up
(dashed line) and down (solid line) in frequency. The hysteresis of the soft cubic spring
and the jump phenomenon is clearly seen, since the upsweep response peaks at a higher
frequency than the downsweep response, as expected from Section 2.1.3.1. In Figure 6.5,
the vertical axis response of the SEO to a 100 mV downswept sine excitation is plotted.

5 Using a nominal displacement of 10 gm.
6 For this section only, the sensing constant from Section 6.1.3.2 must be scaled by an additional factor of
20 because of an electronics modification.
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Figure 6.4. Large Amplitude Vertical Axis Frequency Response
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Figure 6.5. Small Amplitude Vertical Axis Frequency Response
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From the two downsweep responses, the linear and cubic spring terms may be

determined. In Figure 6.4, the peak is equivalent to a vertical displacement of 0.234 jtm

at 24.59925 kHz. The maximum displacement in Figure 6.5 occurs at 24.60863 kHz, and

it is equal to 0.0895 Lm. Solving Equation 6.9 by fitting these two measurements yields a

vertical axis linear resonant frequency of 24.61024 kHz; the vertical spring constant is

169.77 N/m. The non-dimensional cubic spring constant is -2.173, which is equivalent to

-0.652 gN/im3 . One conclusion that may be drawn here is that the snapdown experiment

of Section 6.2.1 yielded an estimate of the vertical resonant frequency that was within 2%

of the actual value; the snapdown test provides an accurate estimate of wy with much less

effort. In addition, it has been shown here that the vertical axis does indeed have spring

softening, as discussed in Chapter 2.

In the final test, a 5 mV swept sine amplitude was used again for a linear frequency

response. Here, Oy was measured at 24.608225 kHz, a difference of less than 0.1% from

the value calculated from the least squares fit of the large and small amplitude responses.

The quality factor was estimated at 13,450; about one-fifth the value of Qx.

6.2.2.3 Vertical Axis Coupled Dynamic Parameters

To determine the cross-coupling between the x-axis and y-axis, two sets of frequency

responses were collected. By applying a force at the horizontal drive combs and

detecting the resulting vertical motion from the sense plates, both the spring cross-

coupling, kxy, and the force coupling, f3x, may be determined. In the first experiment, the

region of interest was near the vertical resonant frequency. At coy, there is little to no x-

axis motion, so that the dynamic coupling into the vertical axis comes from the force

coupling term, fix. Once this constant had been determined, the excitation was applied

near wx in the second experiment to generate horizontal motion, which couples into the y-

axis through kxy.

Since these tests are run open loop, the force coupling is in-phase with the spring

cross-coupling. In closed-loop operation, these two error forces are 900 out of phase.

The resulting vertical motion may be expressed as

IH k=  2 - 2xd) 2 sin or - cosW t (6.10)
2 _s 2 'y Q y01e
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where,

6 = applied sinusoidal frequency
Cy = vertical axis resonant frequency, and

Fd = normalized x-axis force.

If the frequency is applied near the vertical resonance, then the cosine term will
dominate; otherwise, the sine term will be the only observable term. Additionally, at the
vertical resonant frequency, the lateral displacement is minimal, and may be neglected.

The frequency response plots are not shown here because they do not provide visual
insight into the SEO behavior; the data are summarized for the parameter estimates.
From the first set of frequency responses, for an applied AC voltage of 100 mV, the peak
vertical displacement was 0.0227 gim; for 250 mV, 0.0553 gm. The applied forces were
not large enough to generate nonlinear responses; both of the peaks occurred at a
frequency of 24.6146 kHz. From these two measurements, the estimate of fix is 0.1351.

In the second set of frequency responses, the large (250 mV) and small (100 mV) vertical
amplitudes are 0.0229 gim at 10.35853 kHz and 0.00926 jim at 10.34943 kHz,
respectively. The horizontal peak displacements here are 3.987 jlm and 1.8669 jLm. The
non-dimensional spring cross-coupling estimate is -0.00826, which is equivalent to
-0.2479 N/m. The cross-damping term, Qxy, was not determined, because it is small
compared to these other forces.

6.2.2.4 Rotational Axis On-Axis Dynamic Parameters

The left and right torque control plates were used to generate rotational motion. The
0-axis downsweep frequency responses are plotted in Figures 6.6 and 6.7. As discussed

in Chapter 4, the same DC voltage and equal and opposite AC voltages are applied to the
control plates. This generates a torque with no DC component and no vertical force. In
Figure 6.6, a 50 mV swept sine is applied to both torque plates, and, in Figure 6.7, a 25
mV swept sine is used. In both of these plots, the magnitude responses exhibit jump
phenomenon at the nonlinear resonant peak when the phase reaches 90'. There is an
additional 1800 of phase shift in the electronics that moves the expected -90' phase to the
observed +900.

From these two measurements, the cubic spring softening constant and the rotational
linear resonant frequency, ooe, may be calculated. In the first response, the rotational

amplitude peak is 1.0 mrad (0.0570) at 18.20975 kHz. For the second response, the peak
of 0.489 mrad (0.0280) occurs at 18.21825 kHz. Fitting these two measurements to
Equation 6.9 yields a linear rotational resonant frequency of 18.2209 kHz; the
corresponding rotational spring constant is 1.678 jN-m. The non-dimensional cubic
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spring constant is -1634.94, which is equivalent to -0.885 mN-m. As expected, the cubic
spring for 6 is soft.

A linear resonant response was generated by applying a 5 mV swept sine to the
control plates. From this measurement, both we and Qo were determined. The linear

resonant frequency was measured at 18.220348 kHz, an error of less than 0.005% from
the calculated we. The rotational quality factor, Qe, was estimated at 16,000. This value

is about one-fourth of the horizontal quality factor.

6.2.2.5 Rotational Axis Coupled Dynamic Parameters

To examine cross-coupling between horizontal and rotational motion, a voltage was

applied to the motor comb to generate a vertical force that, because it is applied at the end

of the proof mass, creates a torque. The motion was observed through the summation of
the sense plate integrated charge outputs. Three frequency responses at we are shown in

Figures 6.8 and 6.9. In the first plot, upsweep (dashed line) and downsweep (solid line)

responses at 250 mV are shown on the same axes. Similar to the vertical axis, it is clear

that the rotational axis has spring softening and exhibits jump phenomenon, since the

upsweep peak of 634 grad (0.03630) at 18.249817 kHz occurs at a higher frequency than

the downsweep peak of 913 grad (0.05230) at 18.246067 kHz. The hysteresis of the

jump phenomenon is clearly seen in both the magnitude and phase of the response. In

Figure 6.9, a 100 mV sine wave is swept down to generate a small amplitude response

with a resonant peak of 367.47 grad (0.0210) at 18.250567 kHz. Using Equation 6.10,

modified for the rotational axis, the force coupling may be calculated from the two

downsweep measurements. Here, y, is 0.0103, which includes the coupling of both the

horizontal and vertical forces due to the comb finger interaction with the torque control

plates. This result may then be used to determine the dynamic cross-coupling between x

and 0 by exciting rotational motion at the horizontal resonant frequency.

In these experiments, for a sine voltage of 175 mV, the peak rotational displacement

of 171 grad (0.009800) occurs at 10.35515 kHz, and corresponds with an x-displacement

of 3.789 gim. For an applied voltage of 250 mV, the peak is 186.139 grad (0.01070) at

10.361675 kHz with an x-displacement of 5.085 gm. With yx from above, the non-

dimensional spring cross-coupling estimate is -0.00133, which is equivalent to -0.400 gtN.

The magnitudes of the 6 displacements due to cross-coupling at cwx are sufficiently

small (0.01070) that rotational control is not required. Because these rotations will not

adversely affect the oscillator performance, the increase in cost and complexity of this

control system is not warranted. The deflection of the fingers at the end of the proof mass

due to rotation on the order of 0.010 is about 50 nm.
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Figure 6.8. Large Amplitude Drive-Rotational Cross-Axis Frequency Response
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6.2.3 Summary of SEO Dynamic Parameters

From the tests performed above, the parameters of the SEO are shown in Table 6.6. It
is expected that these values are typical for the SEO family constructed in this process

run. Preliminary tests on other SEOs, not presented here, confirmed that the mode order
is the same and the resonant frequencies have similar values. From this table, a reduced-

order, three degree of freedom model may be constructed. The couplings between y and
0 have been neglected because their effects are negligible when compared with the

coupling of the lateral motion into the vertical and rotational degrees of freedom.

Table 6.6. Summary of SEO Dynamic Parameters

Parameter Value

kx 30.008 N/m

kx3 5.672 nN/lm 3

kv  169.77 N/m

k3 -0.652 tN/tm3

ko 1.678 tN/m/rad

k03 -0.885 mN-m/rad3

kxy -0.2479 N/m

kxO -0.400 tN

Qx 63,800

Qv 13,450

Qe 16,000

Ox 0.1351

Lx 0.0103

In the SEO design, the resonant frequency separations were much greater than

assumed in Chapters 2 through 5. The vertical resonant frequency was 2.38 times the
lateral resonant frequency, and the rotational resonant frequency was 1.76 times cw. The

SEO was fabricated at a greater thickness than the design specification, and the proof

mass support beams came out thinner than expected, due to manufacturing irregularities.
These two changes would increase wy much more than cox; hence the large separation.

The significant conclusions from these open-loop experiments are that cubic spring

behavior exists on all three degrees of freedom: spring hardening for the x-axis and
spring softening for the y- and 0-axes. In addition, cross-coupling exists between the

lateral motion and the other two degrees of freedom. The rotation due to lateral coupling
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is negligible; a force rebalance loop is not necessary. The motion induced into the

vertical axis is sufficiently large that a force rebalance loop should be designed for the
vertical axis. The large Q assumptions used earlier to develop models and control systems
are valid. The resonant mode order is horizontal, rotational, and vertical.

6.3 Closed-Loop Control of the Vertical Axis
Once the open-loop testing was completed, the vertical axis control system designed

in Chapter 5 was constructed and implemented on a micromechanical tuning fork
gyroscope. This device is very similar to the SEO with respect to the dynamics of the
system and size of the proof mass, but is different in a very fundamental way. This
gyroscope is a two proof mass design, which means that the sense plate under one proof
mass must be grounded so that its motion is not observed. In this way, the only motion
observed will be that of the controlled proof mass. The control system is a force
rebalance loop, which means that, in addition to minimizing the vertical motion, the
control signals are used to provide information on the magnitude and variation in both the
quadrature and in-phase signals.

Potentiometers were used in both the in-phase and quadrature loops for the value of
R 1 in Figure 5.5 to permit tuning of the gain of the compensator to optimize the
performance of each control loop. The nominal values of R 1 are 3.3 kM on the in-phase
loop and 6.7 kQ for the quadrature loop. These resistances were determined from the
simulations run in Chapter 5. The electronics were configured so that the vertical control
loop could be opened and closed independently of the drive axis closed loop.

6.3.1 Physical Characterization of Closed-Loop Resonator
With this resonator, the critical static parameters, such as the forcing and sensing

constants, had to be determined. The capacitor measurement techniques discussed in
Section 6.1.2.2 were used to measure the motor drive, motor sense, vertical sense, and
vertical force capacitors. These values, and the corresponding constants, are shown in
Table 6.7. In these electronics, the gains for the horizontal and vertical sensing constants
are very large. However, this does not adversely affect the performance of the closed
loop. The maximum lateral and vertical forces are 0.108 gN and 0.2426 gN,
respectively.
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Table 6.7. Static Parameters for Closed-Loop Resonator

Parameter Value

Cm 54.19 fF

Cms 54.19 fF

Cyf 24.26 fF

Cvs 600 fF

KF,x 2.1677 nN/V 2

Ks,x (gain of 50) 0.2710 V/pm

KF, 4.852 nN/V 2

Ks, (gain of 1000) 700 V/gm

After completing the open-loop characterization of the device, the resonator was

started with the vertical control loop open and the drive loop closed. Once the resonator

was in steady-state lateral oscillations, its parameters were measured, and are shown in

Table 6.8, where, as before, in-phase and quadrature vertical motions are defined with

respect to the proof mass horizontal velocity.

Table 6.8. Laterally Oscillating Resonator Parameters with O en Vertical Axis

Parameter Value

Drive Axis Frequency 23.595 kHz

Vertical Axis Frequency 25.35 kHz

Drive Amplitude 8 Rm

Amplitude Control Voltage 1.059 V

In-phase Amplitude -0.269 V

Quadrature Amplitude 6.969 V

The in-phase and quadrature voltages represent a vertical displacement amplitude of

9.963 nm, with 9.956 nm from the quadrature signal and 3.84 A from the in-phase signal.

With the open vertical loop, both of the control signals are saturated at the supply

voltages of the op-amps. From the amplitude control voltage, the quality factor of the

horizontal axis, Qx, may be approximated as 78,340; a value similar to that of the open-

loop experiments. Since this resonator was in a sealed container, this measurement

verified that the package is still holding a vacuum.
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6.3.2 Vertical Axis Closed-Loop Performance of Micromechanical Resonator

Once the horizontal motion reached closed-loop, steady-state operation, the vertical

axis loop was then closed, and the vertical amplitude was reduced dramatically to less

than an Angstrom. The pots were trimmed to optimize the performance of the control

system. The results are shown in Table 6.9, where the open-loop, vertical axis

amplitudes are compared with the closed-loop vertical axis amplitudes, and the control

voltages are given.

Table 6.9. Comparison of Vertical Axis Open and Closed-Loop Operation

Quantity Open Loop Closed Loop

(Volts) (Volts)

In-Phase Amplitude -0.269 0.005

Quadrature Amplitude 6.969 0.04

In-Phase Control N/A -1.27

Quadrature Control N/A -7.5

From this table, it is clear that the vertical axis force rebalance loop is very effective. The

vertical motion has been reduced by a factor of 173 to an amplitude of 0.57 A. The in-

phase motion is reduced by a factor of 54 to 0.0714 A, and the quadrature motion is
reduced by a factor of 174 to 0.5714 A. The values for R1 used in this case are 1.143 kW
on the in-phase loop and 0.906 k2 on the quadrature loop, compared to the Chapter 5

simulation values of 3.3 k.Q and 6.73 kW, respectively. In addition, the large value of the

quadrature control signal suggests that quadrature over 8 Volts probably cannot be

eliminated, but most certainly can be reduced by about 7 Volts. In such a situation, the

resulting quadrature signal would be on the order of 1 Volt, instead of nearly 10 Volts. In

this case, the quadrature loop does not close because of saturation of the control voltage.

By tightening the manufacturing tolerances, the as-built quadrature may be reduced so

that the control loop can close. Or, the force plate area can be enlarged to increase the

maximum control force.

6.3.3 Force Rebalance Loop Response to Sinusoidal Disturbance
Once it was determined that the closed loop was indeed functional, the resonator was

placed on a rate table to investigate the behavior of the control system to a sinusoidal
disturbance. By applying a rate about the z-axis of the resonator, a Coriolis force is
created, which will increase the in-phase component of the vertical motion. The rate

237



table was oscillated with a sine wave of 2 rad/sec amplitude at a frequency of 0.5 Hz. If
the vertical force rebalance loop is operating correctly, then the in-phase control signal
varies proportionally to the applied sinusoidal rate.

The open-loop vertical motion components were 0.1183 Volts for the in-phase, and
4.695 Volts for quadrature. When the vertical control loop was closed, the in-phase
component was reduced to 0.0067 Volts, and the quadrature, 0.380 Volts. In this case,
the quadrature loop saturated, and was only able to reduce the quadrature motion by a
factor of 10. Feedthrough and other error sources most likely contributed to this
degradation in performance from the previous section. Because the quadrature
disturbance was larger than the maximum quadrature control force, the quadrature
rebalance loop was able to counteract most, but not all of the quadrature disturbance. The
control voltages were -2.63 Volts for the in-phase channel and -9.87 Volts for the
quadrature channel. When the rate was applied to the table, the in-phase component of
vertical motion remained at 6.7 mV, while the quadrature component moved slightly in
response to the input rate, because the control loop was not closed about the quadrature
component. The in-phase control signal, however, varied between +4 and -6 Volts to
compensate for the sinusoidal disturbance. The scale factor between the applied rate and
the in-phase control signal for this resonator is about 2.5 V/rad/sec.

6.4 Experimental Conclusions
In this chapter, the physical and dynamic parameters of the SEO are determined. It is

shown that the rotation magnitudes are on the order of 0.010 for a lateral motion of 5 Lm,
and may therefore be neglected in most models; however, the rotor-sense plate capacitor
model should still include the 6-effects for measuring both vertical and rotational motion.

It was verified that both the vertical and rotational degrees of freedom have soft cubic
spring constants. The reduced-order model ignores coupling between vertical and
rotational motion, as well as the cross-damping terms of all degrees of freedom. The
state-space model from Equation 4.5 may be used to derive the reduced-order state-space
model by using the parameters listed in Table 6.5 and by setting all other terms equal to
zero.

The force rebalance loop for vertical motion was successfully closed about both the
in-phase and quadrature paths. The amplitude of the vertical motion was reduced by a
factor of 200, from 10 nm to 0.57 A. This performance is 350 times more precise than
static vertical positioning of a non-oscillating proof mass [9, 10]. In addition, it was
demonstrated that the control system is robust to sinusoidal disturbances, and that the
components of vertical displacement can be held at zero while the control signal varies to
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counteract the effects of the disturbance and give information on the disturbance forces.

The saturation of the quadrature rebalance loop in this experiment should not be

considered a failure. As the manufacturing processes improve, the as-built quadrature

(initial quadrature of the device) will be reduced, and the quadrature force rebalance loop

will work successfully. The fact that the quadrature loop was closed during the

preliminary closed-loop tests demonstrates that both rebalance loops work. With less as-

built quadrature, both the in-phase and quadrature force rebalance loops can be closed

successfully.
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Chapter 7

Conclusions and
Recommendations for Future Work

7.0 Introduction
In this thesis, a micromechanical single element oscillator was investigated. The

behavior of a three degree of freedom dynamic and electrostatic model was studied in

both open-loop and closed-loop configurations. Experiments were conducted to validate

both the three degree of freedom model and the vertical and rotational force rebalance

loops. In this chapter, the work performed in the thesis is summarized, and conclusions

from this work are presented. The contributions to the development of micromechanical

oscillators are listed, and suggestions for future work are made.

7.1 Thesis Summary
The existence and stability of a limit cycle at the lateral resonant frequency was

demonstrated. A rotational degree of freedom was added to the dynamic model, and new
capacitor models were derived to include proof mass rotation. The dynamic parameters
of the SEO were measured for the three degree of freedom model. Force rebalance loops
were designed for both the vertical and rotational degrees of freedom, and both performed
successfully in simulation. The three degree of freedom dynamic parameters of the SEO
were measured, and the vertical force rebalance loop was successfully implemented on a
micromechanical gyroscope.

7.1.1 Sustained Lateral Oscillations of Proof Mass

Lateral oscillations are sustained with a self-excitation loop and an amplitude
regulator. The self-excitation loop consists of the plant, an integrator, and a relay
feedback element. The amplitude regulator loop contains the plant, an absolute value
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function, a low-pass filter, and a PI controller. These two loops were analyzed to

investigate the stability and behavior of the oscillator.

Both the existence and stability of the self-excitation loop limit cycle was proven

using describing function analysis. The stability criterion was shown to be independent

of pressure; the system is stable, as long as the restoring force of the horizontal motion is

either a linear or hard spring. Therefore, the resonator may be operated closed loop at

very low pressures without instabilities. Since this control system is analog, there is no

concern of unstable limit cycles at low pressure; a phenomenon that has been observed in

digital control systems [9, 10].

The amplitude regulator loop, which is a nonlinear control system, was linearized by

assuming that the amplitude and phase are slowly varying with respect to the frequency

of the oscillation. The amplitude behavior predicted by this simplified model closely

matched that of the simulation, which is a more accurate representation of the oscillator.

The simplified model demonstrated the three distinct regions of amplitude growth during

oscillator self-excitation. During startup, this regulator varies between a first-order and

second-order system to drive the oscillator to its steady-state amplitude in about 1 second.

7.1.2 Three Degree of Freedom Dynamic and Electrostatic Models

Once the behavior of the drive axis loop was modeled and analyzed, the rotational

degree of freedom was added to the dynamics of the system. With finite element

analysis, it was shown that, for rotations on the order of 0.010, the comb drive capacitor

model may neglect the effects of rotation. A new parallel plate capacitor model was then

developed to include the effects of proof mass rotation, and two sensing schemes were

introduced to measure vertical and rotational motions simultaneously, both of which exist

at the resonant frequency of the drive axis. By splitting the sense plate into two halves

and applying equal and opposite potentials to each, both motions may be observed. In the

open-loop frequency response experiments of Section 6.2, the charges injected onto each

sense plate by the vertical and angular motions of the proof mass were integrated, and the

resulting voltages were added and subtracted to yield both the rotational and vertical

motions, respectively. This successfully demonstrated that the split sense plate design

can be used to measure both rotation and vertical translation of the proof mass.

7.1.3 Vertical and Rotational Force Rebalance Loops

Finally, force rebalance loops were designed for both the vertical and angular

motions. Through linearization of the nonlinear demodulators and remodulators in the

control paths, a baseband model was developed and used to design PI compensators that
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guaranteed stability. In addition, by closing the loop, the vertical axis bandwidth was

increased from about 2000 Hz to 5770 Hz. These simple, low cost, and effective

controllers met both goals of the force rebalance loop: to eliminate all of the motion and

to provide information on the magnitudes of the in-phase and quadrature components of

the forces. Simulations were performed to demonstrate the operation of the

micromechanical oscillator when all three degrees of freedom were operated closed loop:
the horizontal loop sustained limit cycle oscillations at the drive resonant frequency, and
the vertical and rotational force rebalance loops eliminated almost all motion while
providing information on the in-phase and quadrature magnitudes of both motions.

7.1.4 Measurements and Experimental Results for SEO
Parameter characterization tests were performed on the SEO to determine the forcing

and sensing constants. Frequency response experiments were then performed to
determine both the on-axis and cross-coupling constants. The on-axis, open-loop
experiments showed that the mode order, in terms of increasing frequency, is horizontal,
rotational, and vertical. The vertical axis Q is about one-fifth of the horizontal quality
factor, and the rotational Q is about one-fourth Qx. The x-y cross-coupling produced
vertical displacements on the order of 22 nm for a 4 gim horizontal displacement. The x-6

cross-coupled rotations were on the order of 137 gradians, also for a 4 gtm horizontal
displacement. Since these angular displacements are on the order of 0.010, the effects of
rotation on the drive axis may be ignored; the rotational effects on the sense plate
capacitance were retained.

The vertical force rebalance loop was implemented on a micromechanical gyroscope.
Once the motor excitation loop and amplitude regulator reached steady-state, lateral,
proof mass oscillations, the vertical force rebalance loop was closed. The performance of
this control system was dramatic: the vertical motion was reduced from an amplitude of
10 nm to 0.57 A, a factor of 173 improvement. The in-phase component was reduced
from 3.84 A to 0.07 A, and the quadrature component was reduced from 9.956 nm to 0.57
A.

A 2 rad/sec amplitude sinusoidal disturbance at 0.5 Hz was then applied about the z-
axis of the oscillator to generate a Coriolis force. The in-phase control signal varied to
compensate for this disturbance, while the in-phase component of the proof mass vertical
displacement was unchanged. In this experiment, the quadrature loop saturated and did
not close because the quadrature error force was greater than the maximum possible
vertical control force. The force rebalance tests demonstrated that the force rebalance

243



loop minimizes the vertical motion while providing information on the disturbances

through the control voltage levels.

7.2 Conclusions
This thesis investigated several areas of micromechanical resonators. The behaviors

of the self-excitation and amplitude regulator loops for sustained lateral oscillations were

examined in detail. A three degree of freedom model was used to determine advanced

capacitor models and cross-coupling among the modes. Finally, force rebalance loops

were designed and simulated for both vertical and rotational motions.

In Chapter 3, it was proven that the self-excitation loop sustains a unique limit cycle

at the lateral resonant frequency and the desired amplitude. The limit cycle stability

criterion was also derived. The limit cycle is stable for linear and hard springs; the

criterion is pressure-independent. Transient responses of the limit cycle were shown to

be stable, with a time constant of 2Q. Also in Chapter 3, the amplitude regulator was

modeled, and its behavior was broken into three regions: two areas of first-order

behavior, and one of second-order behavior.

In Chapter 4, the three degree of freedom model was used to develop both a dynamic

model and capacitor models as functions of x, y, and 0. With these models, two schemes

for simultaneous detection of vertical and rotational motion were presented. In Chapter

6, the DC bias with two pre-amplifiers approach was used to measure successfully both y

and 6. It was also shown in Chapter 4, that, for rotations on the order of 0.010, the comb

drive capacitor model may be considered independent of 9.

Force rebalance loops were designed for both vertical and rotational motion in

Chapter 5. Simulations confirmed that both rebalance loops reduce unwanted vertical

and vertical motions and provide information on the in-phase and quadrature components

of each motion. With the present control torque plate configuration, the torquing

coefficients are functions of the lateral position of the proof mass; a redesign of the

control plate shape is necessary to eliminate this dependence.

In Chapter 6, open-loop frequency responses on the SEO confirmed that cross-

coupling exists between the lateral motion and both the vertical and rotational motions.

In addition, the cubic spring behavior of all three degrees of freedom was verified. The

vertical force rebalance loop was successfully implemented on the laterally oscillating

proof mass of a micromechanical gyroscope. This accomplishment represents a

significant advancement in the development of micromechanical resonators. Previous

vertical control systems had been implemented on stationary proof masses, and often

exhibited high-frequency limit cycles at low pressure due to the digital control system

244



design. The digital control system also limited control accuracy to 25 nm [9, 10]. In this

thesis, the motion is controlled to 0.57 A, a factor of 400 improvement over earlier

attempts [9, 10], and the high-frequency limit cycles have been eliminated with analog

control system design.

7.3 Contributions to Micromechanical Oscillators
In this thesis, several contributions have been made to the field of micromechanical

oscillators. The analytic proof of the existence and stability of a unique limit cycle for a

self-excitation loop demonstrated that the nature of the cubic spring determines stability.

The simplified model of the amplitude regulator may be used to optimize the startup

behavior of an oscillator. These contributions may be used to improve the self-excitation

control system.

Adding rotation to the dynamic and capacitor models increased understanding of

micromechanical resonators. The sensor and actuator capacitor models included lateral,

vertical, and rotational motion. From these models, a method was presented to observe

vertical and rotational motions simultaneously. Typical rotations were measured on the

order of 0.010. This is an important contribution because it is the first time that lateral,
vertical, and rotational motions have been measured on a lateral micromechanical

resonator. Cross-coupling between the degrees of freedom was also characterized, as was

the cubic spring behavior of all three degrees of freedom.

Force rebalance loops have been designed for both vertical and rotational motion.

Simulations validated the performance of these loops. The vertical force rebalance loop

was implemented on a micromechanical gyroscope with great success. In the first test,
both the in-phase and quadrature loops were closed, and the vertical motion of the

laterally oscillating proof mass was reduced by a factor of 175. In the second test, the in-

phase rebalance loop counteracted the Coriolis force from an applied rate, and the loop

provided accurate information on the magnitude of the rate. These two tests are a

significant contribution to the development of micromechanical resonators, because it is

the first time that the vertical axis rebalance loop has been closed on a laterally oscillating

device.

7.4 Recommendations for Future Work
While some important advances were made in this thesis, several topics remain to be

addressed. First, the split sense plate design can be used on other micromechanical

resonators to determine the magnitude of the angular displacement for other proof mass

designs. For a two proof mass oscillator, this system would require four charge
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integrators; clearly this is best done on a prototype basis, and conclusions may then be
drawn for a family of resonators. Specifically, it would be interesting to examine how
different anchoring designs affect the rotation of the proof mass.

For the force rebalance loop, the next step is to control independently both proof
masses in a dual proof mass resonator, such as a tuning fork gyroscope. Accomplishing
this task would require four control paths, one for the in-phase and quadrature
components of each of the two proof masses. Since it is necessary to estimate the vertical
motion of each proof mass independently, the net common mode and differential mode
information could be determined from the in-phase and quadrature signals by summing
and differencing these voltages. This approach would provide insight for improving the
design of the resonator. In addition, since the vertical motion has a negative cubic spring
term, the stability criterion for a soft cubic spring limit cycle should be examined in more
detail to determine the value that makes the limit cycle unstable.

Another interesting area of investigation would be a metallization pattern for linear
torquing coefficients, as mentioned in Chapter 5. As the proof mass oscillates, the
moment arm for the torque control plate varies, resulting in a nonlinear torquing
coefficient. Moving the control plate completely under the proof mass does not solve the
problem. Perhaps changing the shape of the control plate as a function of x would allow
the product of the area and the moment arm to yield a constant value, such that the
rotational in-phase and quadrature control voltages can be fedback directly, without
having to combine and manipulate the values, as was done in Section 5.2. By simplifying
the rotational control system electronics, implementation of rotational force rebalance
may prove to be cost effective.

Nonetheless, it is clear that closed-loop control of all three degrees of freedom is both
possible and effective. By using a force rebalance approach, the bandwidth and
sensitivity of the device to external disturbances are increased. The successful
implementation of the vertical force rebalance loop and the observation of rotational
motion are two significant contributions to the field of micromechanical resonators.

246



Appendix A

Square Wave Relationships and
Trigonometric Identities

A.1 Square Wave Relationships
The hard limiter in the closed loop design generates square wave signals based on the

sinusoidal inputs. Further manipulations of these waveforms produce some interesting
results. Here, some basic relationships of square waves are given.

The function sqr is in-phase with a sine wave, and is defined as

4. 4 4 4sqr a= -sin a + sin3a + sin 5a+...+ sin(2n + 1)a (A.1)
7r 3r 5r (2 n + 1)7r

The function csqr is in-phase with a cosine wave, and is defined as

4 4 4 4csqr a = -cosa + -cos 3a + -cos5a+...+ cos(2n + 1)a (A.2)
r 3r 57r (2n + 1)7r

From here, some basic identities are

sqr 2 a = 1

csqr2 a=

sqr a csqr a = sqr 2a (A.3)
sqra sqr2a = csqr a

csqr a sqr 2a = sqr a

The function csqr 2 a was not used in this thesis, so identities for this function are not
included. It is sufficient to say that the csqr 2a function does not have straightforward
relationships.

The significant identities here are that the square of either sqr a or csqr a is 1; this
permitted forces to be generated at DC and the resonant frequency. The next harmonic

247



was at 3 times the resonant frequency, which is sufficiently attenuated by the high-Q

resonator.

A.2 Trigonometric Identities
Some essential trigonometric relationships used in this thesis are provided to

eliminate multiple trips to mathematical references. Chapters 2 and 3 have extensive

trigonometric manipulations that make full use of the equations given here.

sin(a + 0)

cos(a + p)
sin 2a

= sin acosp + cos asin

= cos a cos p - sin a sinp

= 2sinacosa

cos2a = cos2 a - sin 2 a

sin3a = 3sin a -4sin 3 a

cos3a

2sinasinf

2cosacosf

2sinacosp

= 4cos3 a - 3cos a

= cos(a - P)- cos(a +p)

= cos(a - )+ cos(a + )

= sin(a + P) + sin(a- p)

sin a + sin = 2sin[ (a + P)] cos[ (a- )]

sin a - sin3 = 2cos[ (a + )]sin[ (a - /)]

cos a + cosp = 2cos[ (a + ) cos[(- )]

cosa - cos P = -2 sin[ I(a + P)] sin[ 1(a - )]

2sin 2 a = 1 - cos2a

2cos2 a = 1 + cos2a
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Appendix B

Finite Element Analysis of
Electrostatic Fields and Forces

B.1 Determination of Force Given Electric Field Density
The Lorentz force on a charge q in an electric field E is [38]

f =qE (B.1)

The force density may then be defined as the force exerted over an incremental volume of

the total structure

F = pfE

where p is the charge density (C/m 3). Using the constituent relation

D= eE

in Gauss's law yields the force density

F = (V eE)E

In an electric field, V x E = 0, which allows Equation B.4 to be rewritten as

F = (V. eE)E + (V x E) x eE

From here, the vector identity

1
(V x A) x A = (A -V)A - V(A A)

2

may be used to express Equation B.5 as

F = (V -eE)E + e(E- V)E - - eV(E. E)

With index notation, it is possible to rewrite the mth term of F as [38]
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Fm= (EmEn -I SmnEkEk

(B.7)
dTmn

dxn

where Smn is the Kronecker delta, and Tmn is a term of the Maxwell stress tensor. The

Maxwell stress tensor is an ordered array of nine functions of space and time that may be

written as

Tll(r,t) T12 (r,t) T13 (r,t)

Tmn(r,t) = T2(r,t) T22 (r,t) T23 (r,t) (B.8)

T31(r,t) T32 (r,t) T33 (r,t)-

This tensor is symmetric, so that Tmn = Tnm. The units of Tmn are force per unit area,
and may be used to define the traction, t, which is a vector with components

m = Tmnn n = Tmln + Tm2n2 + Tm3n3 (B.9)

where nn is the nth component of the outward-directed unit vector n which is normal to

the surface of the volume V. From here, "the component Tmn of the stress tensor can be

physically interpreted as the mth component of the traction applied to a surface with a

normal vector in the n-direction" [38].

Having derived the Maxwell stress tensor, the force density is readily derived. In this

case, the rotor tine, stator tines and control plate are assumed to be perfect conductors,

which means that the electric field is perpendicular to the surface. This analysis has been

performed for a volume. However, in two dimensional finite analysis, the third axis may

be ignored, such that the stress tensor components are only

T = 2 (B.10)T1 1 =-E
2

T12 =0 (B.11)

E
T22 = E2  (B.12)

2

Since there is no tangential electric field on the surface, the cross tensor terms, such

as T12, are equal to zero. The total force exerted on the conductor may be expressed as

fm = FmdV = mn dV (B.13)
V tV dx,

If a vector A is defined to have the components
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A= A2 [ T m2 (B.14)

A3 Tm3]

then Equation B.13 may be rewritten as

fm =f dV = (V -A)dV (B.15)

The divergence theorem may then be used to change the volume integral into a

surface integral

fm = nda = Annnda (B.16)

where n is the outward-directed unit vector normal to the surface S which encloses the
volume V. If Equation B. 14 is substituted into Equation B.16, then the mth component of
the force becomes

fm= Tmnnnda (B.17)
S

from this equation it is possible to determine the total electric force on a volume by
knowing only the fields on the surface of the volume.
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Appendix C

MATLAB and FORTRAN Code
for Oscillator Simulations

C.1 MATLAB Code For Parameter Definitions
For these simulations, a MATLAB file, seojk.m, was used to define the all of the

parameters of a particular run. This m-file was executed in MATLAB, and the
parameters were saved to an ASCII file that was read by the FORTRAN simulation code.
In the attached code, the parameters are provided for the complete three degree of
freedom, all loops closed, oscillator model. Simpler incarnations of the simulation would
require fewer parameters.

C.2 FORTRAN Code For Oscillator Simulation
The FORTRAN code listed the first-order differential equations that defined the

particular system under study, from the two degree of freedom lateral self-excitation loop
to the three closed loop model. The integration was done with a fourth-order Runge-
Kutta method. The FORTRAN file was named seojksim.for, and it called the ASCII file
generated by MATLAB to define the parameters of the system. The code shown here
includes the three degree of freedom, all loops closed, oscillator model. Both files were
cleaned up to remove many comment lines, so the seojk.dat data matrix and some of the
READ routines may refer to variables that are not defined. This was done to make the
code easier for the reader to examine; both programs functioned during the simulation
studies of this thesis.
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%SEOJK.M
%ANALYZE SINGLE ELEMENT OSCILLATOR OPERATION FOR 3 DOF, 3 LOOPS CLOSED
%GENERATE THE INPUT FOR SEOJKSIM.FOR WHICH INCLUDES CROSS-COUPLING
%AND NON LINEAR TERMS
%INITIALLY CODED 1/29/95 by Marc S. Weinberg
%LATEST REVISION 7/9/97 by Jonathan Kossuth
%LATEST RUN 7/9/97
%clear,
format short e, format compact, diary tfgdf.dia, i=sqrt(-l);
% FIRST LETTER D INDICATES QUANTITY WITH DIMENSIONS
dwn = 2e4*2*pi %RAD/S SMALL AMPLITUDE DRIVE RESONANT FREQUENCY
dm = 2.73e-9 %KG, MASS OF ONE PROOF MASS TFG 13
dx =le-5 %NOMINAL DRIVE MAGNITUDE (0 TO PEAK)
%INPUT SEO DRIVE AXIS PARAMETERS
q=1.5e5 %X AXIS QUALITY FACTOR
xk3=0.025 %CUBIC TERM
kx=43; %DIMENSIONAL SPRING CONSTANT
% READ IN VARIABLES ASSOCIATED WITH VERTICAL MOTION
q2 = q/5 %VERTICAL AXIS QUALITY FACTOR
wn2=1+0.09 %RESONANCE OF VERTICAL AXIS
xm2=1 %ALLOWS FOR THETA MODES (IF ONLY X AND THETA)
xkxy= 0.003 %THE X-Y SPRING CROSS-COUPLING
bxy=.03/q %X-Y CROSS-DAMPING
Vs=5; %SENSE PLATE BIAS VOLTAGE
Cy0=le-12; %NOMINAL SENSE CAPACITANCE
y0=2.5e-6; %NOMINAL SENSE GAP
yk2=3/2*Cy0*Vs^2*dx/kx/y0^3; %QUADRATIC Y-AXIS SPRING TERM
yk3=-2*Cy0*Vs^2*dx^2/kx/y0^4; %CUBIC Y-AXIS SPRING TERM
W=1/dwn; %INPUT RATE (RAD/SEC)

%ROTATIONAL MODE PARAMETERS
wt=1+0.25; %RESONANCE OF THETA AXIS
Qt=30000; %QUALITY FACTOR OF ROTATIONAL MOTION
kxt=.005; %X-THETA SPRING CROSS-COUPLING
kyt=0.001; %Y-THETA SPRING CROSS-COUPLING
bxt=0.0005; %X-THETA CROSS-DAMPING
byt=0*0.005/q2; %Y-THETA CROSS-DAMPING
Rt2=117; %NON-DIMENSIONAL RADIUS OF GYRATION SQUARED

% READ IN THE SECOND ORDER FILTER FOR PHASE AND MAGNITUDE (ALIASING)
wf=0.01 %FREQUENCY OF FILTER
qf=2 %QUALITY FACTOR OF FILTER

% READ IN VARIABLES ASSOCIATED WITH DRIVE FORCE
vsat=5 %SATURATION VOLTAGE
vhiagcs=10 %VERTICAL/ROTATIONAL AXIS HIGH SIDE AGC VOLTAGE
vhiagc=0 %HIGH SIDE OF AGC BAND FOR DRIVE
vloagc=-10 %LOW SIDE OF AGC FOR ALL CLOSED LOOPS
vc=vsat %COMB DRIVE AMPLITUDE

ktg=2.3e-9 %FORCING CONSTANT FOR DRIVE AXIS
fl=0.5*ktg/(dm*dn^2*d x) %NON-DIMENSIONAL FORCING CONSTANT
f12=0.5 %DIRECT COUPLING OF FORCE INTO VERTICAL MODE
sxy=0.7 %COUPLING OF Y MOTION INTO SENSED X MOTION

%PREAMPLIFIER, MOTOR SENSE, AND GAIN
vdnom = pi/(4*vc*q*fl) %NOMINAL DRIVE VOLTAGE
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ksg=ktg
vbs=5
cfb = 2e-12
rfb=200e6
cn=4e-12
nf=l+cn/cfb
gl=10
gpre=ksg*dx*vbs/cfb
wpre=l/(rfb*cfb*dwn)

%SENSING CONSTANT FOR DRIVE AXIS
%BIAS VOLTAGE ON MOTOR SENSE COMB

%F, FEEDBACK CAPACITOR
%OHM, FEEDBACK CAPACITOR
%NOISE CAPACITANCE
%PREAMP V NOISE GAIN FACTOR
%DRIVE AXIS GAIN
%PRE-AMP GAIN
%LOW-PASS FREQUENCY OF PRE-AMP

% LOW PASS FILTER AFTER PEAK DETECTOR
wpl=6000, wpl=wpl/dwn %NON-DIMENSIONAL LOW-PASS FREQUENCY

%DRIVE AXIS AGC INTEGRAL COMPENSATOR
dgagc=50 %V/V-s, DRIVE AXIS AGC GAIN
wp2=45, wp2=wp2/dwn %NON-DIMENSIONAL LOW-PASS FREQUENCY IN AGC
wz=l, wz=wz/dwn %N-D ZERO LOCATION IN AGC PI COMPENSATION
gagc=dgagc*wp2/(dwn*wz) %N-D AGC GAIN

%MISC. ELECTRONICS PARAMETERS
vhard=0.006 %DEAD
phiv=le-16*dwn %WHIT
dseed=1317 %SEED

ZONE FOR HARD LIMITER
'E NOISE PSD (SINGLE SIDED IN V^2/HZ)
FOR RANDOM NUMBER GENERATION

% INITIAL CONDITIONS OF START VARIABLES
xinit=[0.0, 0, zeros(1,60)]
dt=2*pi/80 %DT=TIME STEP
t=0
tf=t+.4e5 %FINAL TIME

%PRINT EVERY IPRIN'TH POINT
iprin=1500

%CALCULATE NUMBER OF LOOP INCREMENTS
n=ceil((tf-t)/dt)

%NYQUIST FREQUENCY OF STORED DATA
walcalc=1+0.375*xk3 %FREQUENCY FOR WHICH ALIASING IS CALCULATED
fny2=0.5/(dt*iprin)
fn2=0.5*walcalc/pi
nny=fix(fn2/fny2)
if rem(nny,2)==0, falias=fn2-nny*fny2, else falias=(nny+l)*fny2-fn2, end

%90 DEGREE PHASE SHIFTER, AS RESISTOR AND CAPACITOR VALUES
c51=680e-12 %THE INTEGRATOR
rv8=1000 %INPUT RESISTOR
r7=1000 %THE BRIDGE ON THE PLUS INPUT
r5=le4
ail=[0]
bil=[-l r7/(r5+r7)]/(c51*rv8*dwn)
cil=[11
dil=[0 r7/(r5+r7)]
c6=le-7
c7=le-7
r9=1000
r19=430
numi2=-[c7*r9*dwn 1]/r19
deni2=[c6*c7*r9*dwn c6+c7 0]*dwn
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[ai2,bi2,ci2,di2]=tf2ss(numi2,deni2)

%DERIVE THE CLOSED LOOP PHASE SHIFTER
[ai,bi,ci,di]=append(ail,bil,cil,dil,ai2,bi2,ci2,di2);
xk=[0 0;0 1; 1 0]
xout=[l 0]
xin=[1l 0 0]'

%CHANGE SIGNS AND MAGNITUDE OF LOOP
[ap,bp,cp,dp]=combine(ai,bi,ci,di,xin,xout,xk)
[zp,ppp,kp]=ss2zp(ap,bp,cp,dp,l)

%REFERENCE VOLTAGE FOR AGC LOOP
[mm,pp]=bode(ap,bp,cp,dp,l,walcalc)
vref=gpre*gl*(2/pi)*mm

%GAINS FOR CLOSED LOOP ANALYSIS
k=[0.1 0.5 1 2 4];
[num,den]=ss2tf(a,b,c(3,:),d(3,:),1);

roots(num);
xroot=rlocus(num,den,k);
outroot=[k; xroot']

%OPEN LOOP OF GAIN CONTROL LOOP
%GAIN OF ABSOLUTE VALUE IS 2/PI AND
ag=[-0.5/q 0 0 0;

gpre*gl -wpl 0 0;
0 1 0 0;

0 TO 1 SWITCH REMOVES A FACTOR OF 2.

0 gagc/pi gagc/pi*wz -wp2];
bg=[(4/pi)*fl*vc 0 0 0 ]';
cg=[0 0 0 1];
dg=[0];
[numg,deng]=ss2tf(ag,bg,cg,dg);
numgroots=roots(numg);
dengroots=roots(deng);

%GAINS FOR CLOSED LOOP ANALYSIS
kg=[0.1 0.5 1 2 4];
xrootg=rlocus(numg,deng,kg);
outrootg=[kg; xrootg'];
%PARAMETERS FOR THIRD ORDER PHASE LOCK LOOP
%CROSSOVER FREQUENCY (DIMENSIONLESS ANGULAR FREQ.)
wc=wf;
wcen=walcalc; %CENTER FREQUENCY OF PHASE LOCKED LOOP

%COMPENSATOR ZERO-POLE SEPARATION
rtal=sqrt(6);

%LINEAR PORTION GAIN (ADDITIONAL GAIN FROM INPUT AMPLITUDE FIRST
%HARMONIC AND 0.5 FROM PHASE DETECTOR)
%AMPLIFIER SATURATION VOLTAGE
%AMPLITUDE OF INPUT SINUSOID
xamp=l
kc=2*wc*wc*rtal/xamp
apll=[0 0 0; 1 -wc*rtal 0; 0 1 0];
bpll=[kc*wc/rtal kc 01';
cpll=[0 0 1];
dpll=[0];
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xin=[1) ;
xk=xamp* [-11/2;
xout=-xk;
[ac,bc,cc,dcl=combine(apll,bpll,cpll,dpll,xin,xout,xk)
eig(ac)
[nc,ddc)=ss2tf(ac,bc,cc,dc,l);
w=logspace(-4,-l);
[mc,pc)=bode(nc,ddc,w);
clg, subplot(211)
loglog(w,mc),ylabel('PLL OUT'), title('PHASE LOCKED LOOP'),grid
semilogx(w,pc), xlabel('ANGULAR FREQUENCY'),grid, ylabel('PHASE (DEG)')
%pause
zerospll=roots(nc)

%VERTICAL AXIS CLOSED LOOP PARAMETERS
Vs=5; %SENSE PLATE BIAS
e0=8.854e-12; %DIELECTRIC CONSTANT
Ae=2.88e-7; %EFFECTIVE AREA OF PROOF MASS
Ri=499e3; %IN-PHASE TIME CONSTANT RESISTOR
Ci=33e-12; %IN-PHASE TIME CONSTANT CAPACITOR
Rq=162e3; %QUADRATURE TIME CONSTANT RESISTOR
Cq=99e-12; %QUADRATURE TIME CONSTANT CAPACITOR
gs=ll; %SENSE AXIS GAIN
gip=5; %IN-PHASE BIAS GAIN
gq=1.6; %QUADRATURE GAIN
wip=1/(Ri*Ci)/dwn; %IN-PHASE LOWPASS FILTER FREQUENCY (RAD/SEC)
wq=1/(Rq*Cq)/dwn; %QUADRATURE LOWPASS FILTER FREQUENCY (RAD/SEC)
Ae2=2*20*424*1e-12; %AREA OF VERTICAL FORCE PLATE
Cyc=-eO*Ae2/(dm*dwn^2*dx*y0^2); %VERTICAL FORCE CONTROL PLATE CAP.
Cys=CyO/cfb; %RATIO OF SENSE TO FEEDBACK CAPACITANCE
Kc=e0*400e-6/cfb;
1=225e-6/dx; %N-D WIDTH OF ROTOR, WITHOUT COMB FINGERS
ls=510e-6/dx; %N-D DISTANCE BETWEEN INSIDE OF TORQUE PLATES
wlp=2.5; %DIMENSIONLESS FREQUENCY FOR VERTICAL LOW-PASS
wbb=.01; %DIMENSIONLESS BASEBAND FREQUENCY

% ENTER PARAMETERS FOR MEMORY ELEMENTS OF HYSTERETIC RELAY
% LAST3 IS MEMORY FOR HARD LIMIT AFTER PHASE SHIFTER (IP SIGNAL)
% LAST4 IS THE SQUARE WAVE QUADRATURE SIGNAL

last3=0
last4=0;
ic = 0
nout=-1

%AGC GAINS FOR VERTICAL FORCE REBALANCE LOOP
gagcip=6*gagc; %IN-PHASE AGC GAIN
gagcq=3*gagc; %QUADRATURE AGC GAIN
gls=gl; %VERTIAL AXIS GAIN

lsp=200e-6;
Lsp=440e-6;
Wsp=440e-6;

%WIDTH OF ONE SENSE PLATE
%LENGTH OF ONE SENSE PLATE
%WIDTH OF PROOF MASS

%SENSING PARAMETERS FOR DUAL SENSE PLATE SCHEME
skl=2*e0*Wsp*lsp/y0/cfb;
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sk2=(3*Lsp^2-6*1sp*Lsp+4*sp^2)/(12*y0^2);
sk3=e0*lsp*Wsp*(Lsp-lsp)/y0^2/cfb;

%NON-DIMENSIONAL PARTIAL DERIVATIVES OF COMB CAPACITORS
frpx=19.5e-12*57/(dm*dwn^2*dx);
fspx=(-6.5e-12)*57/(dm*dwn^2*dx);
frpy=44.5e-12*57/(dm*dwn^2*dx);
fspy=(-412e-12)*57/(dm*dwn^2*dx);
frsy=29.5e-12*57/(dm*dwn^2*dx);

tc=.5*44*e0*2/.25^2*dx

seojk= [q,xk2,xk3,0
q2,wn2,xm2,xkxy
yk2,yk3,W,bxy
fl,fl2,sxy,sl
frpx,fspx,frpy,fspy
frsy,Cyc,Cys,0
wt,Qt, kxt,kyt
bxt,byt,Rt2,0
f2,km,0,0
gpre,wpre,nf,gl
skl,sk2,sk3,0
phiv,dseed,vref,delc
wpl,wp2, wz,gagc
vb,vsat,vhard,vw8
nw8, vhiagc, vloagc,vhiagcs
wf,qf,wcen,0
apll,zeros(3,1)
bpll,zeros(3,3)
xinit(1:4)
xinit(5:8)
xinit(9:12)
xinit(13:16)
xinit(17:20)
xinit (21:24)
xinit(25:28)
xinit(29:32)
xinit(33:36)
xinit(37:40)
iprin, dt, t, tf
lastl,last2,last3,last4
nout,ic,0,0
gagcip,gagcq,gls,tc
Kc,yO/dx, 1,ls
wlp,wbb,wmd,gq
ap,zeros(3,1)
bp,zeros(3,3)
cp,0];

save /sim/seojk.dat seojk /ascii /double;
note='/sim/seojk.dat saved'
diary off
%END OF INPUT
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implicit real*8(a-h,o-z)
C SEOJKSIM.FOR
C EXAMINATION OF SENSE AXIS CLOSED LOOP CONTROL
C INCLUDES ROTATIONAL DEGREE OF FREEDOM FOR ADVANCED MODELING
C INTEGRATE CLOSED LOOP SEO MOTOR AND AGC LOOPS
C BY FOURTH ORDER RUNGE KUTTA
C INCLUDES CROSS-COUPLING AND CUBIC STIFFNESS
C INCLUDES VERTICAL AXIS CHAIN, TORSIONAL MODE, SPLIT SENSE PLATE, ETC.
C FOR J. KOSSUTH PHD THESIS
C WRITTEN BY M. WEINBERG 1/27/95
C LATEST REVISION 8/6/97 by J. Kossuth

common /model/ q,xk2,xk3,xk4,xk5,xbr,b2,yk,xkxy,xkxy2,bxy,
1 fl0,fl2m,sxy,yk2,yk3,Wa,wt,qt,bt,tk,tkxt,tkyt,bxt,byt,f2,gk,
2 frpx,fspx,frpy,fspy,frsy,Cyc,Cys,gagcip,gagcq,gls,vhigcs,Rt2
common /filter/ dfl,df2,apll(3,3),bpll(3,1),wcen
common /elect/ vb,vsat,vnoise,vnois2,vnoisSL,vnois3L,lastl,last2,

1 last3,1ast4,nout,ic,g,Dg,delc,wpre,gpre0,gl,gs,gagc,sl,wz,wpl,
2 wp2,wmd,pm,vref,vhard,vw8,nw8,vhiagc,vloagc,vnoisSR,vnois3R,
3 sKc,y0,sl,slt,wlp,wbb,skl,sk2,sk3,1asty,tc,wip,wq,gip,gq
common /shift/ ap(3,3), bp(3,1), cp(1,3)
real*8 x(60), dx(60)
real*4 gasdev

C C:\SIM\SEOJK2.DAT IS THE INPUT DATA
C C:\SIM\SEOOUT.DAT REPEATS THE INPUT DATA AND PRINTS OUTPUT
C \MLAB\BIN\RESTIME.DAT IS OUTPUT DATA THAT IS LOADED DIRECTLY INTO
C AND PLOTTED BY \MLAB\MW\PLOTTFG5.M (SIMILAR TO PLOTPIER.M)
C
C FILE 1 IS INPUT
C FILES 3 AND 4 ARE OUTPUT

open(unit=l,file='c:\sim\seojk.dat',recl=80,status='old')
open(unit=3,file='c:\sim\seoout.dat',status='unknown')
open(unit=4,file='c:\mlab\bin\seorun.dat',status='unknown')

C READ IN CONSTANTS OF OSCILLATOR EQUATION
220 read(1,10,end=210) q,xk2,xk3,xk4,xk5,xbr
10 format(4d23.0)

write(*,ll) q,xk2,xk3,xk4,xk5,xbr
write(3,11) q,xk2,xk3,xk4,xk5,xbr

11 format(/lx,'q = ',lpdl2.4,' xk2 = ',lpdl2.4,' xk3 = ',lpd12.4,
1' xk4 = ',lpdl2.4/' xk5 = ',lpdl2.4,' xbr = ',lpdl2.4)

C READ IN VARIABLES ASSOCIATED WITH OUT OF PLANE MOTION
read(1,10) q2,wn2,xm2,xkxy
write(*,14) q2,wn2,xm2,xkxy
write(3,14) q2,wn2,xm2,xkxy

14 format(/' q2 = ',lpdl2.4,' wn2 = ',lpdl2.4,' xm2 = ',lpdl2.4,
1' xkxy = ',lpdl2.4)
read(1,10) yk2,yk3,Wa,bxy
write(*,15) yk2,yk3,Wa
write(3,15) yk2,yk3,Wa

15 format(/' yk2 = ',lpdl2.4,' yk3 = ',lpd12.4,' W = ',1pd12.4)

C READ IN VARIABLES ASSOCIATED WITH DRIVE FORCE
read(1,10) fl0,f12,sxy
write(*,13) f10,f12,sxy
write(3,13) f10,f12,sxy

13 format(/' f10 = ',ipdl2.4,' f12 = ',1pd12.4,' sxy = ',Ipdl2.4)
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read(1,10) frpx,fspx,frpy,fspy,frsy,Cyc,Cys

C SCALE PARAMETERS FOR SECOND MODE
C wn2=1.5*wn2/1.2

b2=wn2/q2
yk=wn2*wn2
xkxy2=xkxy/xm2
fl2m = fl2/xm2

C TORSIONAL MODE PARAMETERS
read(1,10) wt,qt,tkxt,tkyt,bxt,byt,Rt2
read(1,10) f2,gk
write(*,31) wt,qt,tkxt,tkyt,bxt,byt,f2,gk
write(3,31) wt,qt,tkxt,tkyt,bxt,byt,f2,gk

31 format(/' wt = ',1pd12.4,' qt = ',lpdl2.4,' kxt = ',ipd12.4,
1' kyt = ',lpdl2.4,' bxt = ',lpdl2.4,' byt = ',lpdl2.4,
2' f2 = ',1pd12.4,' mk = ',1pd12.4)
bt=wt/qt
tk=wt*wt

read(1,10) gpre0, wpre, xnf,gl
write(*,25) gpre0, wpre, xnf,gl
write(3,25) gpre0, wpre, xnf,gl

25 format(/' gpre0 = ',1pd12.4,' wpre = ',1pd12.4, ' xnf = ',1pd12.4,
1' gl = ',lpdl2.4)

C VERTICAL MOTION DETECTION GAINS
read(1,10) skl,sk2,sk3
read(1,10) phiv,dseed,vref,delc
write(*,26) phiv,dseed,vref,delc
write(3,26) phiv,dseed,vref,delc

C AGC FILTER
26 format(' phiv = ',1pd12.4, ' dseed = ',lpdl2.4,' vref = ',1pd12.4/
1' delc = ',lpdl2.4)
read(1,10) wpl,wp2,wz,gagc
write(*,27) wpl,wp2,wz,gagc
write(3,27) wpl,wp2,wz,gagc

27 format(' wpl = ',ipdl2.4,' wp2 = ',1pd12.4,' wz = ',1pd12.4,
1 ' gagc = ',ipd12.4)
read(1,10) vb,vsat,vhard,vw8
read(1,10) xnw8,vhiagc,vloagc,vhigcs
write(*,28) vb,vsat,vhiagc,vloagc,vhard,vw8,xnw8
write(3,28) vb,vsat,vhiagc,vloagc,vhard,vw8,xnw8

28 format(/' vb = ',lpdl2.4,' vsat = ',1pd12.4,' vhiagc = ', lpdl2.4,
1 ' vloagc = ',lpdl2.4/ ' vhard = ',1pd12.4,
1 ' vw8 = ',1pd12.4,' xnw8 = ',1pd12.4)
nw8=idint(xnw8/2.d0)

C READ IN THE SECOND ORDER FILTER FOR PHASE AND MAGNITUDE
C WCEN = VCO CENTER FREQUENCY (NON DIM ANGULAR FREQ.)

read(1,10) wf,qf,wcen
write(*,3) wf,qf,wcen
write(3,3) wf,qf,wcen

3 format(/lx,'wf = ',lpdl2.4,' qf = ',lpdl2.4,' wcen = ',1pd12.4)

C CALCULATE THE CONSTANTS FOR SECOND ORDER FILTER
df2=wf*wf

260



dfl=wf/qf

C READ IN A MATRIX OF PHASE LOCK LOOP
write(3,40)
write(*,40)

40 format(/lx,'APLL Matrix')
do 41 i =1,3
read(1,10) (apll(i,j), j=1,3)

41 write(3,42) (apll(i,j), j=1,3)
42 format(lx,lp6dl5.6)

C READ IN B MATRIX OF PHASE LOCK LOOP
write(3,43)
write(*,43)

43 format(/1x,'BPLL Matrix')
read(1,44) bpll(1,1), bpll(2,1),bpll(3,1)

44 format(d23.0/d23.0/d23.0)
write(3,45) bpll(1,1), bpll(2,1),bpll(3,1)

45 format(lx,lpdl5.6)

C READ IN INITIAL CONDITIONS
write (3,17)
write(*,17)

17 format(/lx,'INITIAL CONDITIONS')
read(1,10) (x(i), i =1,39)
write(*,12) (x(i), i =1,39)
write(3,12) (x(i), i =1,39)

12 format(lx,lp5dl5.6)

C IPRIN = PRINT EVERY IPRIN'TH TIME STEP
C DT = TIME STEP
C T = INITIAL TIME (IMPORTANT BECAUSE OF REFERENCE COS IN DRIVE VOLTAGE)
C TF = FINAL TIME
C NUMBER OF STEP PRINTED = ((TF-TO)/DT+1)/IPRIN

read(1,10) xprin,dt,t,tf
iprin=idint(xprin)
ns=idint(((tf-t)/dt+l)/iprin)
write(*,18) iprin,ns,dt,t,tf
write(3,18) iprin,ns,dt,t,tf

18 format(/' iprin = 'i5,' ns = ',i6,/' dt = ',lpdl2.5,' t = ',d15.6,
1 ' tf = ',d15.6)

iseed=idint(dseed)
write(3,22) iseed

22 format(' iseed = ',il0)

C ENTER PARAMETERS FOR MEMORY ELEMENTS
C LAST3 IS MEMORY FOR HARD LIMIT AFTER PHASE SHIFTER
c last4 is hard limiter for quadrature demodulation

read(1,10) xlast3,xlast4
last3=idint(xlast3)
last4=idint(xlast4)
write(*,46) last3,last4
write(3,46) last3,last4

46 format(/' last3 = ',i2,' last4 =',i2//)

C ENTER PARAMETERS FOR SENSE AXIS CHAIN
read(l,10) gagcip,gagcq,gls,tc
read(1,10) sKc,y0,sl,slt,wip,wq,gip,gq
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write(*,52) sKc,y0,sl,slt,wip,wq,gip
write(3,52) sKc,y0,sl,slt,wip,wq,gip

52 format(/' sKc = ',lpdl2.4,' yO = ',lpdl2.4,' 1 = ',pdl2.4,
1' is = ',lpdl2.4,' wlp = ',lpdl2.4,' wbb = ',lpdl2.4,
2' wmd = ',ipdl2.4,' km = ',lpdl2.4)

C ENTER THE PRECISION PHASE SHIFTER
C READ IN A MATRIX OF PRECISION PHASE SHIFTER

write(3,47)
write(*,47)

47 format(/lx,'AP Matrix')
do 48 i =1,3
read(1,10) (ap(i,j), j=1,3)

48 write(3,42) (ap(i,j), j=1,3)

C READ IN B MATRIX OF PRECISION PHASE SHIFTER
write(3,49)
write(*,49)

49 format(/lx,'BP Matrix')
read(1,44) bp(1,1), bp(2,1),bp(3,1)
write(3,42) bp(l,l), bp(2,1),bp(3,1)

C READ IN C MATRIX OF PRECISION PHASE SHIFTER
write(3,50)
write(*,50)

50 format(/lx,'CP Matrix')
read(1,10) (cp(1,j), j=1,3)
write(3,42) (cp(l,j), j=1,3)

C MULTIPLIERS FOR RMS NOISE GIVEN WHITE SINGLE SIDED SPECTRUM AND DT
C SCALE THE WHITE NOISE TO CORRECT STANDARD DEVIATION AND ACCOUNT FOR
C VOLTAGE NOISE GAIN

fny=.5d0/dt
rmsv=dsqrt(phiv*fny)*xnf
rmsvS=dsqrt(phiv/10*fny)*xnf
xnf2= (1 .dO/xnf-l.d0)

C N = NUMBER OF STATES
n=41

C IP = NUMBER OF VARIABLES IN VECTOR TO BE PRINTED
ip=60

C INITIALIZE VARIABLES THAT CONTROL PRINTING IN SUB. OUTPUT
jprin = 0
icalc = 0

200 if(t.gt.tf) go to 100
call output(x,t,ip,jprin,icalc,iprin)

C DETERMINE NOISES FOR THE MOTION DETECTION PREAMPLIFIERS
vnoise=rmsv*gasdev (iseed)
vnois2=vnoise*xnf2
vnoisSL=rmsvS*gasdev (iseed)
vnois3L=vnoisSL*xnf2
vnoisSR=rmsvS*gasdev (iseed)
vnois3R=vnoisSR*xnf2
call rungejk(t,dt,x,dx,n)
t = t + dt
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go to 200
100 tfinal = t

write(3,33) tfinal
33 format(' final time = ',1pd20.12)

write(3,34) (x(i),i=1,21)
34 format(4d20.12)

write(3,46) lastl,last2,last3,nout,ic
go to 220

210 stop
end

SUBROUTINE DIFFUN(N,T,X,DX)
implicit real*8(a-h,o-z)
common /model/ q,xk2,xk3,xk4,xk5,xbr,b2,yk,xkxy,xkxy2,bxy,
1 fl0,fl2m,sxy,yk2,yk3,Wa,wt,qt,bt,tk,tkxt,tkyt,bxt,byt,f2,gk,
2 frpx,fspx,frpy,fspy,frsy,Cyc,Cys,gagcip,gagcq,gls,vhigcs,Rt2
common /filter/ dfl,df2,apll(3,3),bpll(3,1),wcen
common /elect/ vb,vsat,vnoise,vnois2,vnoisSL,vnois3L,lastl,last2,
1 last3,1ast4,nout,ic,g,Dg,delc,wpre,gpre0,gl,gs,gagc,sl,wz,wpl,
2 wp2,wmd,pm,vref,vhard,vw8,nw8,vhiagc,vloagc,vnoisSR,vnois3R,
3 sKc,y0,sl,slt,wlp,wbb,skl,sk2,sk3,1asty,tc,wip,wq,gip,gq
common /shift/ ap(3,3), bp(3,1), cp(1,3)
real*8 x(60), dx(60)
data twopi/6.28318530717958647692d0/

C THE STATES ARE DEFINED
C
C X1 = DERIVATIVE OF GAP
C X2 = DIMENSIONLESS GAP
C X3 = DERIVATIVE OF VERTICAL (OUT OF PLANE) POSITION
C X4 = VERTICAL POSITION
C X5 = MOTOR SENSE PREAMPLIFIER OUTPUT
C X6 = 90 DEGREE PHASE SHIFTER (INTEGRATOR)
c X7 = FILTER ABSOLUTE VALUE OF PREAMP OUTPUT
C X8 = AGC INTEGRATOR OUTPUT
C X9 = AGC OUTPUT, THE MAGNITUDE OF THE CARRIER VOLTAGE
C X10 = FILTERED LATERAL MAGNITUDE SQUARED DERIVATIVE
C X11 = FILTERED SQUARED MAGNITUDE DIVIDED BY 2 (M^2/2)
C X12 = PHASE LOCK LOOP INTERNAL STATE FOR LATERAL AXIS
C X13 = PHASE LOCK LOOP TIME DERIVATIVE OF VCO PHASE
C X14 = PHASE LOCK LOOP VCO PHASE
C X15 = PRECISION SHIFTER FEEDBACK STATES
C X16 = PRECISION SHIFTER FEEDBACK STATES
C x17 = ROTATIONAL VELOCITY
C X18 = ROTATIONAL POSITION
C X19 = LEFT SENSE PLATE PREAMPLIFIER OUTPUT
C X20 = RIGHT SENSE PLATE PREAMPLIFIER OUTPUT
C X21 = LOW-PASS FILTER OF THETA IN-PHASE OUTPUT
C X22 = LOW-PASS FILTER OF THETA QUADRATURE OUTPUT
C X23 = SECOND LOW-PASS FILTER OF THETA IN-PHASE (NOT USED)
C X24 = SECOND LOW-PASS FILTER OF THETA QUADRATURE (NOT USED)
C X25 = LOW-PASS FILTER OF VERTICAL IN-PHASE OUTPUT
C X26 = LOW-PASS FILTER OF VERTICAL QUADRATURE OUTPUT
C X27 = OBSOLETE STATE (NOT USED)
C X28 = VERTICAL IN-PHASE AGC LOW-PASS FILTER TO DETERMINE ERROR
C X29 = VERTICAL IN-PHASE AGC INTEGRATOR OUTPUT
C X30 = VERTICAL IN-PHASE AGC OUTPUT, MAGNITUDE OF IN-PHASE ERROR
C X31 = VERTICAL QUADRATURE AGC LOW-PASS FILTER TO DETERMINE ERROR
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C X32 = VERTICAL QUADRATURE AGC INTEGRATOR OUTPUT
C X33 = VERTICAL QUADRATURE AGC OUTPUT, MAGNITUDE OF IN-PHASE ERROR
C X34 = ROTATIONAL IN-PHASE AGC LOW-PASS FILTER TO DETERMINE ERROR
C X35 = ROTATIONAL IN-PHASE AGC INTEGRATOR OUTPUT
C X36 = ROTATIONAL IN-PHASE AGC OUTPUT, MAGNITUDE OF IN-PHASE ERROR
C X37 = ROTATIONAL QUADRATURE AGC LOW-PASS FILTER TO DETERMINE ERROR
C X38 = ROTATIONAL QUADRATURE AGC INTEGRATOR OUTPUT
C X39 = ROTATIONAL QUADRATURE AGC OUTPUT, MAGNITUDE OF IN-PHASE ERROR

C X40 = FILTERED VERTICAL MAGNITUDE SQUARED DERIVATIVE

C X41 = FILTERED SQUARED MAGNITUDE DIVIDED BY 2 (M^2/2)

C STORED VARIABLES OF INTEREST, NOT STATE VARIABLES

C X42 = LATERAL DRIVE VOLTAGE

C X43 = LATERAL DRIVE FORCE

C X44 = VERTICAL CONTROL FORCE

C X45 = VERTICAL QUADRATURE CONTROL VOLTAGE

C X46 = VERTICAL IN-PHASE CONTROL VOLTAGE

C X47 = LATERAL AGC VOLTAGE

C X48 = RIGHT SENSE PLATE OUTPUT VOLTAGE

C X49 = RIGHT TORQUE CONTROL PLATE VOLTAGE

C X50 = LEFT TORQUE CONTROL PLATE VOLTAGE

C X51 = OBSOLETE STATE

C X52 = LEFT SENSE PLATE OUTPUT VOLTAGE

C X53 = ROTATIONAL QUADRATURE CONTROL VOLTAGE

C X54 = ROTATIONAL IN-PHASE CONTROL VOLTAGE

C X55 = ROTATIONAL CONTROL TORQUE

C X56 = TOTAL RIGHT TORQUE CONTROL PLATE VOLTAGE (INCLUDES DC OFFSET)

C X57 = TOTAL LEFT TORQUE CONTROL PLATE VOLTAGE (INCLUDES DC OFFSET)

C LOW AMPLITUDE NATURAL FREQUENCY IS ONE

C

C Fl = AMPLITUDE OF DRIVE FORCE

C THE INPUTS ARE DEFINED

C Q = QUALITY FACTOR OF DRIVE

fl=flO

gpre=gpre0

C GENERATE THE MOTOR DRIVE FORCE

C VD = OUTPUT OF HARD LIMITER AND IS PLUS/MINUS ONE

C LAST3 IS THE OUTPUT OF HARD LIMITER WITH AMPLITUDE +/- ONE

C PHASE SHIFTER OUTPUT VOLTAGE

vps=x(6)+cp(1,2)*x(15)+cp(1,3)*x(16)

call limit(vps,last3,vhard)

C MOTOR AXIS PREAMPLIFIER OUTPUT

vpre=gl*(vnoise+x(5)-vdrive*delc)

call limit(dfloat(last3),lastl,vw8)

call limit(vpre,last4,vhard)

C HARD LIMIT AFTER 90 DEG. PHASE SHIFTER

C OUTPUT OF SATURATION AT AGC

vagc = sat(x(9),vhiagc,vloagc)

C VERTICAL AXIS CONTROL VOLTAGE SIGNALS

Vq=sat(x(33),vhigcs,-vhigcs)

Vip=sat(x(30),vhigcs,-vhigcs)

C ROTATIONAL AXIS CONTROL VOLTAGE SIGNALS
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Vqt=sat(x(39),vhigcs,-vhigcs)
Vipt=sat(x(36),vhigcs,-vhigcs)

C CONSTRUCT CONTROL VOLTAGES FOR ALL THREE AXES
Vdc=2*Vsat
vcon=nout*(Vdc+Vq*last4+Vip*last3+0*x(27)
1 -0*Vq*Vip/(Vdc)*last4*last3)
BL=twopi/8/(3.3)/Vsat*Vipt
AR=-2* (3.3) *2/twopi*Vsat+
1 sqrt(2*(2*(3.3/(twopi/2))**2-1)*Vsat**2-Vqt-
2 ((twopi/2)/(4*(3.3)*Vsat)*Vipt)**2)
vctr=nout*(Vsat+AR*last4)
vctl=nout*(Vsat+BL*last3)
vdrive=(0.5d0*vagc+last3*vsat)
forc2=0*.5*(frpx*x(27)**2+fspx*(vdrive-x(27))**2)
force=fl*(vdrive**2)*(l.d0+xk5*x(2))
forc2y=0*.5*(frpy*x(27)**2+fspy*(vdrive-x(27))**2+frsy*vdrive**2)
if (t.lt.1e3) then
forccy=0
forcct=0

else
forccy=.5*Cyc/(x(4)/y0+1)**2*(vcon**2)
forcct=(.0000102)*(Vipt*last3+Vqt*last4+

1 (3.3/2*(AR**2-BL**2)+8/twopi*Vsat*AR))
endif
if (t.gt.0) then
Wa=1/(20000*twopi)

endif

C SUBROUTINE TO TURN ON/OFF CROSS-COUPLING FOR CHAPTER 5 SIMULATIONS
xkxy0=xkxy
tkxt0=tkxt
tkyt0=tkyt
if (t.gt.le6) then
xkxy0=1.25*xkxy
tkxt0=1.25*tkxt
tkyt0=1.25*tkyt

endif

C INTEGRATE THE MECHANICAL TERMS
C THE DRIVE AXIS

dx(1)=-x(1)/q-x(2) * (l1+xk2*x(2)+xk3*x(2) **2)+force-xkxy0*x(4)
1+0*forc2+2*Wa*x(3)-0*tkxt*x(18)-0*bxt*x(17)-0*bxy*x(3)
dx(2)=x(l)

C THE COUPLED AXIS
dx(3)=-b2*x(3)-x(4) * (yk+yk2*x(4)+yk3*x(4)**2)-bxy*x (1)
1 -xkxy0*x(2)+0*forc2y+2*Wa*x(1)+0*forccy+fl2m*force
2 -0*tkyt0*x(18)-0*byt*x(17)
dx(4)=x(3)

C THE MOTOR SENSE PREAMPLIFIER WITH COUPLING TO OUT-OF-PLANE
x ( 5 ) = (x ( 1 ) +sxy*x ( 3 ) ) *gpre+(vnois2-x ( 5 ) +vdrive*delc)*wpre

C THE 90 DEGREE PHASE SHIFTER
dx(6)=bp(1,1)*vpre+ap(1, 2)*x(15)+ap(1,3)*x(16)

c vhard = half width of rectangular dead zone
dx(7) = (dabs(vps)-x(7))*wpl
dx(8) = x(7)-vref
dx(9) = gagc*(x(7)-vref+wz*x(8))-wp2*x(9)

C OBTAIN THE MAGNITUDE SQUARED OF MOTION BY SQUARING AND PASSING THROUGH
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C SECOND ORDER FILTER
dx (10)=-x (10)*dfl-x (11) *df2+df2*x(2)*x(2)
dx(l1)=x(10)

C OBTAIN THE PHASE OF THE POSITION X(2) WITH RESPECT TO WCEN
C MODEL VCO

phase=dmod((wcen*t+x(14)),twopi)
vcoout=dcos(phase)

C MODEL PHASE DETECTOR
pherr=x(2)*vcoout

C INTEGRATE TYPE 2, THIRD ORDER PHASE LOCK LOOP
dx(12) = bpll(l,1)*pherr
dx(13) = x(12)+apll(2,2)*x(13)+bpll(2,1)*pherr
dx(14) = x(13)
dx(15)=x(6)+ap(2,2) *x(15)+ap(2,3)*x(16)
dx(16)=x(15)

C TORSIONAL MODE
dx(17) =-bt*x (17) -tk*x(18) -tkxtO/Rt2*x(2) -tkytO/Rt2*x(4)

1 -bxt/Rt2*x(1)-byt/Rt2*x(3)-0*forcct
dx(18)=x(17)

C LEFT AND RIGHT SENSE PLATE PREAMPLIFIER OUTPUT
dx(19)=-Vsat*skl/2*(-x(3)/yO+(47.4-20.95)/2/yO*x(17))

1 +wpre*(vnois3L-x(19))
dx(20)=Vsat*skl/2*(-x(3)/yO-(47.4-20.95)/2/yO*x(17))

1 +wpre*(vnois3R-x(20))
VoutL=-gls*(x(19)+vnoisSL)
VoutR=-gls*(x(20)+vnoisSR)

C BASEBAND DEMODULATION WITH DRIVE POSITION AND VELOCITY
vthet=VoutL+VoutR
vy=VoutR-VoutL
Vti=last3*Vthet
Vtq=last4*Vthet
Vyi=last3*Vy
Vyq=last4*Vy

C FINAL LOW PASS OF IN-PHASE AND QUADRATURE SIGNALS TO OBTAIN
C BASEBAND ROTATION AND SENSE AXIS MOTIONS

dx(21) =wpl* (Vti-x(21))
dx(22)=wpl* (Vtq-x(22))
dx(23)=wpl* (x(21) -x(23))
dx (24) =wpl* (x (2 2) -x (24))
dx(25)=wpl* (Vyi-x(25))
dx(26)=wpl* (Vyq-x(26))
dx(27)=Vout-. 001*x(27)

C IN-PHASE AGC FOR SENSE AXIS
dx (28) =wpl* (x (25) -x (28))
dx(29)=x(28)-0
dx(30)=gagcip*(x(28)-0O+wz*x(29) ) -wp2*x(30)

C QUAD AGC FOR SENSE AXIS
dx (31)=wpl* (x(26)-x(31) )
dx(32)=x(31) -0
dx(33) =gagcq* (x(31)-0O+wz*x(32) ) -wp2*x (33)

C IN-PHASE AGC FOR TORSIONAL MODE
dx(34)=wpl*(x(21)-x(34))
dx(35)=x(34)-0
dx(36)=65*gagcip*(x(34)-0O+wz*x(35))-wp2*x(36)

C QUAD AGC FOR TORSIONAL MODE
dx(37)=wpl* (x(22)-x(37))
dx(38)=x(37)-0
dx(39)=65*gagcq*(x(37) -0+wz*x(38))-wp2*x(39)
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dx(40)=-x (40) *dfl-x(41) *df2+df2*x(4) *x(4)
dx(41) =x(40)

C STORE VARIABLES OF INTEREST
X(42)=vdrive
X(43)=force
X(44)=forccy
X (45)=Vq
X(46)=Vip
X(47)=vagc
X(48)=VoutR
X(49)=last3
X(50)=last4
X(51)=dQs
X(52)=VoutL
X(53)=Vqt
X(54)=Vipt
X(55)=forcct
X(56)=AR
X(57)=BL
RETURN
END

C DEFINE FUNCTIONS USED THROUGHOUT SIMULATIONS
C SATURATION OF OP-AMP OUTPUTS

FUNCTION SAT(XIN,VSATHI,VSATLO)
implicit real*8(a-h,o-z)

C MODEL AMPLIFIER SATURATION WITH LINEAR AND CORNERS
sat=xin
if(xin.ge.vsathi) sat=vsathi
if(xin.le.vsatlo) sat=vsatlo
return
end
SUBROUTINE LIMIT(XIN,LAST,DEL)
implicit real*8(a-h,o-z)

C HARD LIMITER WITH HYSTERESIS
C AFTER INITIAL START UP LAST IS -1
C LAST NOT EQUAL TO 0 PERMITTED AT
C SWITCHING THRESHOLD AT +/- DEL

if(abs(last).ne.l) go to 10
if(last.eq.-l) go to 20

C LAST OUTPUT WAS ON UPPER LIMIT
if(xin.le.-del) last=-l
return

C LAST OUTPUT WAS ON LOWER LIMIT
20 if(xin.ge.del) last =1

return
C LAST = 0, A POSSIBLE INITIAL STATE

10 last=0
if (xin.ge.del) last=l
if (xin.le.-del) last=-l
return
end

OR +1
START UP UNTIL THRESHOLD REACHED

C GENERATE RANDOM NOISE ON PRE-AMP OUTPUTS
FUNCTION GASDEV(IDUM)
data iset /0/
if (iset.eq.0) then

1 vl=2.*ranl(idum)-l
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v2=2.*ranl(idum) -
r=vl *vl+v2*v2
if(r.ge.1) go to 1
fac=sqrt(-2*log(r)/r)
gset=vl*fac
gasdev=v2* fac
iset=1

else
gasdev=gset
iset=0

endif
return
end
FUNCTION RAN1 (IDUM)
DIMENSION R(97)
PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6)
PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)
PARAMETER (M3=243000,IA3=4561,IC3=51349)
DATA IFF /0/
IF (IDUM.LT.O.OR.IFF.EQ.0) THEN

IFF=1
IX1=MOD (IC- IDUM, M1)
IX1=MOD (IA1*IX1+IC1, M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD(IX1,M3)
DO 11 J=1,97

IX1=MOD ( IA1*IX1+ICI, M1)
IX2=MOD (IA2*IX2+IC2, M2)
R(J) = (FLOAT(IX1) +FLOAT (IX2) *RM2) *RM1

11 CONTINUE
IDUM=1

ENDIF
IX1=MOD ( IA1*IX1+IC1, M1)
IX2=MOD (IA2*IX2+IC2, M2)
IX3=MOD (IA3*IX3+IC3, M3)
J=1+(97*IX3)/M3
IF(J.GT.97.OR.J.LT.1)PAUSE
RANI=R(J)
R(J) = (FLOAT(IX1) +FLOAT (IX2) *RM2) *RM1
RETURN
END
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