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Abstract

The surge dynamics of an AlliedSignal LTS-101 gas producer were examined experi-
mentally. Tests were performed on the standard producer configuration and with modifica-
tions for control implementation. Diffuser throat air injection was employed as an actuator,
and the modified system dynamics were investigated with a mean level of injection. Steady
injection stabilized the system (in the sense of surge) to lower turbine corrected flow and cre-
ated a large, surge-free region of near zero characteristic slope at the speedline peak. This
region also included operating points with slightly positive compressor characteristic slope.

Low levels of unsteadiness below 100 Hz were observed prior to surge in the standard
configuration. The system including injection exhibited prominent 27 Hz mild surge and 68
Hz modal behavior with spectral power levels an order of magnitude greater than the un-
steadiness without injection. The modes were 1-D, with no evidence of rotating stall present.
Growth and decay of these peaks occurred in a random fashion, but their average magnitude
increased as the gas producer was throttled. Steady growth into deep surge was not ob-
served, but unsteady mass flow estimates indicated that large displacement mild surge oscilla-
tions preceded the event. Using a non-linear system simulation with empirically determined
speedlines, the existence of this dynamic instability was attributed to positive compressor
characteristic slope found in the mean injection case. A linear, lumped-parameter model at-
tributed the 68 Hz mode to influence of the injection plenum on the system dynamics.

Near surge, open-loop, forced-response experiments were conducted to determine si-
nusoidal transfer functions of injection command signals to engine pressures. An estimate of
the pole and zero locations, suitable for control law design, was formulated for the inlet static
pressure taps. Preliminary closed-loop experiments were executed with four linear control
laws. Although no significant stability enhancement was realized, actuator power was suffi-
cient to modify the damping and frequencies of the modal behavior. The identification of the
observed modes' physical mechanisms and the closed-loop results suggest future control
activity be limited to the 27 and 68 Hz modes.

Thesis Supervisor: Alan H. Epstein
Title: R. C. MacLaurin Professor of Aeronautics and Astronautics
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Chapter 1: Introduction

1.1 Background

The useful operating range of gas turbines is limited by the onset of surge and rotating

stall instabilities. Surge is a l-D (full annulus) fluctuation in pressure and mass flow through a

compression system. The term is usually associated with extremely violent oscillations char-

acterized by periods of reverse flow. Fluctuations occurring without flow reversal are labeled

"mild" surge. The consequences of this phenomena in aircraft engines range from costly un-

scheduled inspections to loss of airframes. Rotating stall, on the other hand, is characterized

by 2-D (circumferential) variations in compressor flow which travel around the annulus at a

characteristic speed. Some compressors may operate in rotating stall, but the diminished

pressure rise generally yields unacceptable performance. In many compressors, particularly

axial machines, rotating stall develops into the more serious surge event.

A compressor operating map (see Figure 1.1) is divided into stable and unstable op-

erating regimes by the surge line. Points to the left of the surge line are unstable. A gas gen-

erator's equilibrium operating line is the locus of steady-state operating points established by

the matching (mass flow, rotational speeds, and work) of the compressor, turbine, and other

downstream components. The placement of this line and the engine's control inputs (fuel and

variable geometry scheduling) must prevent the operating point from crossing into an unstable

region, even during transients. The proximity of an operating point to the surge line is ex-

pressed as surge margin. A simplistic definition of surge margin for the case of constant inlet

corrected flow is the difference between the pressure ratios at a stable point and the surge line

expressed as a percentage of the stable point's pressure ratio [1]. When peak compressor

adiabatic efficiency is found in regions near the surge line and Brayton cycle efficiency in-

creases with pressure ratio, this measure of safety margin also indicates the magnitude of

performance penalty exacted by the open-loop stability requirement.



ALc region of unstable
operation

attainable .

operatingsurge
linepoint

constant

equilibrium speedline

operating line

1corr

Figure 1.1: Compressor operating map indicating surge line, operating line, and
Aitc attainable used in the calculation of stall margin.

Utilizing the remaining increments of efficiency near the surge line is desirable, but

stability must not be compromised. Artificial stabilization techniques involving feedback con-

trol have proven successful in laboratory compressor rigs and low pressure ratio gas turbine

engines, essentially shifting the surge line to lower mass flows. The next logical step is dem-

onstrating this technology on high pressure ratio aircraft engine hardware. These techniques

rely upon one or several measured engine parameters which act as indicators of impending

instability. Therefore, a serious effort in surge control requires an understanding of the en-

gine's dynamics at operating conditions near instability onset. This goal is the basis for the

work presented in this thesis.

1.2 Previous Work

1.2.1 Instability Modeling and Inception

Because of its costly consequences, a great deal of work has focused on compression

system instability. A key to its understanding was the recognition of the system dynamic na-

ture of the phenomena. In 1955, Emmons [2] proposed a model in which the compression

system is treated similarly to a Helmholtz acoustic resonator, a plenum attached to an inlet



duct of smaller cross-sectional area. He investigated the linear stability of his system equa-

tions. Greitzer [3, 4] presented a different formulation of the equations; he examined the non-

linear system dynamics in numerical simulations which were compared to experimental results.

His contributions include establishing a non-dimensional parameter, B, which governs the

stalling behavior of a compression system.

B- U V _ UT (1.1)

2ap LCDAc 2 coHLCD

The parameter can be thought of as the measure of the ratio of a system's compliance (plenum

compressibility) to inertia (mass of fluid within compressor ducting). A high value of B is re-

quired for a system to exhibit surge, for the energy stored in the plenum must be sufficient to

overcome the compressor duct inertia and allow the blowdown of flow back through the

compressor. Low B axial compressors, such as that examined in his study, exhibit only rotat-

ing stall when mass flow is throttled. Greitzer also elucidated the differences between static

and dynamic compression system instabilities and the criteria which must be present for each.

Dynamic instability, the more limiting of the two cases, requires only a very small positive

slope in the constant speed compressor characteristic (speedline in Figure 1.1); thus, the surge

line is almost always located near the peaks of a compressor's speedlines. Moore and

Greitzer [5, 6] later formulated a first principle 2-D rotating stall propagation model which

illustrated the coupling between rotating stall and surge modes of instability. This tractable

framework led to advancements in the understanding of instability inception in axial machines.

Unlike axial machines, there is less broad agreement concerning the fluid dynamic phe-

nomena which contribute to instability inception in centrifugal machines. Complicating this

factor is the wide variety of centrifugal compression system designs. Consider the range of

behavior documented in the following studies for centrifugal compressors with vaned diffus-

ers. Toyama [7] and Dean [8] present time domain analyses of surge inception of several high

pressure ratio (>5) centrifugal stages with vaned diffusers. Both studies observe low fre-

quency, mild surge fluctuations at operating points near the surge line. During these oscilla-

tions, the operating point occasionally crosses the nominal surge line without initiating deep

stall. It was hypothesized that surge resulted when the instantaneous operating point was



pushed too far into the unstable regime to allow recovery. The studies differ slightly in their

interpretation of the deep surge triggering mechanism. Toyama cites a limit in the pressure

recovery from impeller tip to diffuser throat which causes a deterioration of the inlet flow,

while Dean feels that this occurrence is preceded by a breakdown in the flow within the vane

passages. Ribi [9] shows a low pressure ratio industrial compressor which also exhibits mild

surge oscillations. This study attributes the triggering of surge to a condition of inducer rotat-

ing stall, occurring at the low mass flow points of the mild surge fluctuations. In stark con-

trast, Oakes, et al. [10] describe a high-speed centrifugal compressor with Rc = 5.4 which

transitioned into surge after 9-lobed rotating stall within the vaned diffuser.

Several experimental projects at MIT have been performed on a pressure ratio of 2

centrifugal turbocharger with a vaneless diffuser. Fink [11] examined its surge dynamics to

find, among other things, growing mild-surge oscillations corresponding to the system's

Helmholtz frequency preceding deep surge. His identified surge triggering mechanism was a

stationary asymmetry at the inducer which was related to asymmetries in the volute. In order

to dynamically simulate his surge cycle oscillations, he added the influence of rotor speed

variation to the basic surge model. The next section describes two active control experiments

utilizing this compressor.

1.2.2 Control of Surge

Epstein, et al. [12] suggested that compression system instabilities could be controlled

with minimal power if they developed as growing oscillatory phenomena. These oscillations

could be arrested when the amplitudes were small, and thus easily manageable. Control ef-

forts were divided into two areas: 1-D control of surge and 2-D distributed control of rotat-

ing stall. Day [13], Paduano [14], Haynes [15], and Gysling [16] successfully demonstrated

rotating stall control using tip injection, independently moving IGV's, and aeromechanical

feedback.

The research more of interest to this project is that of surge control on centrifugal ma-

chines. Two stabilization schemes were applied to a low pressure ratio turbocharger rig in

order to extend its stable operating range. Pinsley [17] utilized unsteady plenum pressure as a



feedback variable to drive a fast acting throttle controller. Gysling [18] chose an aerome-

chanical feedback approach where plenum volume was adjusted by a movable wall responding

directly to pressure fluctuations. Both techniques were successful in reducing the surge point

mass flow approximately 25%.

The above success did not easily translate to gas turbine engine hardware. The in-

creased unsteadiness in the flow phenomena in the engine, due in a large part to combustion,

and the violent nature of surges adds a high degree of difficulty to the task. Ffwocs-Williams

tested two pairs of actuators and sensors on a 60 h.p. auxiliary power unit with a centrifugal

compressor of pressure ratio 3 [19, 20]. Unsteady plenum pressure sensing and plenum flow

injection enabled recovery from deep surge triggered by a fuel spike. Diffuser pressure sens-

ing and air injection into the impeller was utilized to realize a 2.6% extension in stable operat-

ing flow range. However, the conclusions of these experiments indicated that 2-D sensing and

actuation would be required to stabilize the engine further.

This thesis is part of an effort to demonstrate active control technology on one of two

helicopter engines in MIT's Gas Turbine Laboratory, both of which have high tip speed, high

pressure ratio centrifugal stages. The current work was performed on an AlliedSignal

(formerly Lycoming) LTS-101 gas generator which was initially installed and examined by

Bell [21]. Similar studies involving an Allison 250-C30 engine are presently in progress.

McNulty [22] performed sensor actuator studies similar to those of Simon [23] on a surge

model modified to be applicable to a high pressure ratio gas turbine engine. With a linearized

version of this model, McNulty studied several sensor/actuator pairs which could be imple-

mented on the engine. He determined diffuser throat air injection coupled with inlet total

pressure sensing would allow stabilization to the highest compressor characteristic slopes.

Borror [24] studied the surge dynamics of this engine and tested the actuation method sug-

gested by McNulty. Borror noted a slight increase in the spectral power level of pressure

output below 100 Hz before the engine surged, but detected no global or 2-D mass flow or

pressure oscillations. This apparent lack of precursor was explained by similar behavior in a

non-linear engine simulation subjected to random process noise. The levels of unsteadiness

which drove the simulation unstable were quantified and compared to experimental data.



1.3 Research Objectives

The goal of this continuing research is to explore the compression system dynamics of

and, if possible, demonstrate active stability control on the LTS-101 gas generator. Building

on lessons learned from Borror, most notably the requirement of greater control authority, this

thesis examines the prerequisites to and the initial implementation of linear surge control.

Linear control requires that actuation be available in both positive and negative directions

from a given operating point, so the majority of experimentation was performed with a mean

level of air injection. Thus, the gas generator including mean injection is the system to be

stabilized by feedback control. Experimentation determined that this modified system exhib-

ited markedly different dynamics near surge than the gas generator alone. The goal of this

thesis is to identify this behavior, both mathematically and qualitatively, to support the devel-

opment and testing of linear control laws.

The objectives of this research appear below in the order of appearance in this thesis:

* Quantify and explain the effects of steady-state, diffuser throat air injection

on the pressure ratio and mass flow performance of the engine.

* Examine the surge behavior of the engine with and without a mean level of

air injection.

* Perform open-loop, forced response testing to generate a linear system

identification near the surge point.

* Determine the optimal feedback parameter.

* Examine the experimental results of the implementation of linear control

law designs based upon the system identification.

* Adjust engine system modeling assumptions on the basis of the experimen-

tal observations.



Chapter 2: Experimental Facility and Test Procedures

2.1 Engine and Test Facility

The AlliedSignal (formerly Lycoming) LTS-101 is a 650 h.p. class helicopter engine.

It is used in the Aerospatiale HH-65 Dauphin, Eurocopter BK117, and certain Bell 222 heli-

copters. For the experimental work at the MIT Gas Turbine Laboratory, the free power tur-

bine and shaft are removed for testing of the gas producer alone. Figure 2.1 is a cross-sec-

tion of the engine in the MIT test configuration. The LTS-101 generates a peak pressure ratio

of approximately 8 through 1 axial and 1 centrifugal stage followed by a vaned diffuser. Air

exits the diffuser into a reverse flow annular combustor which then feeds a single-stage, gas

generator turbine. Flow rate is controlled by the experimental rig's variable-area nozzle,

which will be addressed in more detail.

Air Feed Plenum Vaned Diffuser
(13 taps) Combustor (1 tap)

Inlet Inlet Variable-Area Nozzle
Flow Housing

(4 taps)

Exhaust Duct ,

Engine Centerline

Axial Stage Centrifugal Impeller Gas Generator Turbine

Figure 2.1: Cross section of the AlliedSignal LTS-101 gas generator in the MIT
test stand configuration with the locations of high-frequency pressure taps shown

To facilitate surge testing in a safe and manageable manner, two components of the

gas generator hardware differ from their production counterparts. In order to insure that the

centrifugal stage limits the stable operating range of the engine, diffuser throat areas are



slightly enlarged. Also, turbine nozzle area has been reduced to raise the operating line, pro-

viding safe turbine inlet temperature margin during surge.

Figure 2.2 illustrates the test facility assembled by Bell, which is described in greater

detail in his S.M. thesis [21]. The test rig is mounted on a steel frame inside a large,

reinforced concrete test cell. The engine is operated by computer from a station outside of

this cell. Video cameras facilitate visual monitoring. To eliminate thermal inlet distortion

effects from the radiated heat of the engine, inlet air is collected from the roof of the

laboratory and ducted to the vertical bellmouth inlet. Rubber skirting on the 3 ft. diameter

ducting provides the interface between a flat wooden platform (not shown in the figure)

mounted near the bellmouth entrance. The skirting's flexibility allows the engine the freedom

of movement required for operation of the variable area nozzle while remaining connected to

the outside air ducting. The exhaust ducting contains acoustic absorbers and extends to a 40

ft. tower on the laboratory's roof for the attenuation of acoustic energy. The lack of a power

turbine results in high exhaust temperatures. Therefore, this ducting is evaporatively cooled

by water injection when the temperature exceeds a threshold level.

The rig is equipped with a variable-area nozzle for controlling mass flow. The flow

area of a downstream throttle, such as a power turbine, defines the operating line of a gas

generator. As the throttle area decreases, mass flow reduces, and the operating point ap-

proaches the surge line. The LTS-101 mounts on a steel sled supported by linear bearings.

These bearings allow 1-D movement in the direction of the machines rotational axis. The

nozzle design consists of segments of two concentric cones (see cross section in Figure 2.1).

When the outer-radius nozzle section, which is attached to the gas producer, moves with re-

spect to the inner-radius section, attached to the stationary exhaust diffuser, exhaust area

changes. The position of the gas generator, and thus nozzle area, is adjusted by a linear actua-

tor and electronic position controller. The thrust produced by the gas generator requires a

compensating weight and pulley system to insure loading levels remain within the operating

limits of the actuator.
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Figure 2.2: LTS-101 gas generator test stand (figure from [21])

Basic engine operation and data recording is accomplished through Genesis, a PC-

based process control software package. Genesis interfaces with A/D and D/A boards for the

recording (1 Hz sample rate) of temperatures, pressures, shaft speed, etc., and the control of

valves, switches, power lever angle, and nozzle position, respectively. Genesis is also con-

figured to monitor engine operational and safety limits and initiate corrective action when nec-

essary. Examples of safety-related measures include automatic power chops to idle or fuel

flow interruption. Shaft speed, cooling water flow, fuel flow, and exit gas temperature (EGT)

are also monitored on external panel meters near the operator. Alarm circuitry within these

meters is used to interrupt fuel flow when extreme values are encountered. Manual fuel and

power switches located on this panel may also be utilized for emergency shutdowns.



2.2 Instrumentation

The purpose of this section is to describe the sensors used for measurements in this

thesis, both for steady-state performance and dynamic behavior. Sensors not specifically used

in this study, such as instrumentation for monitoring the condition of the rig and engine, are

omitted but can be found in [21].

Steady-state performance measurements are recorded at 1 Hz sampling rate by the

Genesis package and are used to determine the gas generator's operating point. Referred

mass flow (flow corrected to sea-level standard conditions) is calculated from an AlliedSignal

provided calibration to static pressure depression at the inlet bellmouth entrance. At this lo-

cation, four taps are connected to a common pressure line, physically averaging the sensed

pressures. It is measured by a Setra Model 239 pressure transducer with an operating range

of 0-15 in. H20 psid. Atmospheric pressure is measured inside the test cell with a digital Setra

Model 370 transducer with a range of 8.70-15.95 psia. Inlet temperature is measured with 4

type K thermocouples mounted in a FOD screen over the mouth of the inlet, one of which is

used for correcting gas generator shaft speed. Shaft mechanical speed is measured by an

AlliedSignal supplied tachometer, converted into % N1 by a panel mounted frequency counter,

and then transmitted digitally to Genesis for recording.

Compressor discharge pressure, P3, is used in conjunction with atmospheric pressure

for the computation of gas generator pressure ratio. It is measured by a Setra Model 204

transducer with an operating range of 0-250 psid. Compressor discharge temperature, Tt,3 is

measured by a type K thermocouple.

Fuel flow is measured by a flowmeter which outputs a TTL signal to a frequency

counter for conversion to engineering units. The converted measurement is transmitted digi-

tally to Genesis. Tt,41, turbine rotor inlet temperature, is calculated from inlet mass flow, Tt,3,

and measured fuel flow. During tests near the surge line, the engine approaches the Tt,4 1 limit-

ing value because of the lower level of air flow passing through the engine. When injection is

employed, the calculation must be corrected for the added mass flow. For a 2% mdes level of



injection, the corrected Tt,4 1 value is approximately 250 R lower than the Genesis calculated

value, the reading observed by the engine operator.

Prior to and following each run, the Setra pressure transducers measuring P 1, P3, and

P5 are calibrated versus the digital Setra pressure transducers over their expected operating

ranges. The digital pressure gauge used in the measurement of atmospheric pressure is used

to calibrate P1. P3 and P5 are calibrated with a digital Setra Model 370 with a range of 0-100

psia. The calibration is automated using a separate Genesis code, and calibration constants

are checked for consistency before proceeding with the run plan. Cell temperature changes

during the run were shown to cause a shift in the pressure transducer calibrations. Jinwoo

Bae, a member of the project team, installed a cooling air feed system with the goal of main-

taining constant transducer temperature to minimize this source of error.

Table 2.1 shows accuracy estimates for the steady-state instrumentation. Accuracy

estimates for calculated performance parameters are obtained by propagating the values in

Table 2.1 through the appropriate equations (see Table 2.2). These estimates also require

mean parameter values at experimental conditions, which were obtained from data. It is

important to note that these values reflect only instrumentation accuracy and not the added

uncertainty of operating point fluctuations and other system noise related scatter.

Parameter Sensor Range Accuracy

Pambient Setra 370 (digital) 8.70-15.95 psia ±0.0070 psia (+0.097% F.S.)

P1  Setra 239 0-15 in. H20 ±0.034 in. H20 (±0.22% F.S.)

P3  Setra 204D 0-250 psig ±0.96 psig (+0.38% F.S.)

Tinetr, Tt,3 Type K TC ±4.00 R

Table 2.1: Accuracy estimates for steady-state, performance instrumentation

Calculated Parameter Accuracy

TC +0.82% nc

nln,corr ±0. 16% mdes

Tt,41 +110 R

*Fuel flow accuracy estimated to be ±1%

Table 2.2: Accuracy estimates for calculated parameters



Of particular importance in this research are the unsteady pressure measurements at

various locations throughout the engine. Measurements were made with Kulite XCQ-062 (50

and 250 psid range) and XCS-062 (5 and 15 psid range), high-frequency response, silicon dia-

phragm pressure gauges. The transducers feature thermal compensation circuitry and an ac-

curacy specification of ±0.5% full scale output. Pacific Scientific 8650 bridge completion

amplifiers provided excitation and signal conditioning for the transducers. Each Kulite has a

reference pressure port which is connected to either a vacuum for absolute readings or left

open to atmosphere to measure gauge pressure. Both gauge and absolute measurements were

made with the choice depending upon the expected pressure values at each location and trans-

ducer physical limitations and resolution requirements. The pressure transducers were in-

stalled in a protective housing which provided strain relief for the leads, water-jacket cooling

near the transducer, and a female AN fitting for attachment to the engine.

All taps were constructed of 0.072 in. I.D., annealed stainless steel tubing. In previous

testing, male AN fittings were brazed directly to tap tubing, providing a connection to the

transducer assembly. However, it was noted that a small volume existed in the tap connection

at the interface of the male and female AN fittings, an undesirable characteristic from a fre-

quency response standpoint. Therefore, the connection was modified with a brass insert to fill

this volume and provide uniform tap geometry from engine to sensor. This insert was brazed

directly to the tap tubing and fit freely into a machined cavity in the male fitting. This design

had the added benefit of allowing free rotation of the male fitting around the insert, which re-

duced strain on the tubing and Kulite cables during sensor installation and removal. Leakage

was prevented by squeezing an o-ring between the base of the insert and male fitting.

Figure 2.3 illustrates the cross-sectional location of the 4 high-frequency, inlet static

pressure taps. The four taps are approximately 11 in. long and located 90' apart, between the

struts in the inlet assembly. The purpose of these taps was to replace the long, small diameter

taps located in the axial stage stators which Borror [24] found to have poor frequency

response characteristics. The vaned diffuser has 13 taps distributed between three different

flowpath locations as shown in Figure 2.4. Throat taps are approximately 8 in. long and

located near the entrance to the diffuser vane passages. There is some uncertainty as to the



location of these taps within the passage, but [24] suggests that these taps are nearer the

entrance of the diffuser than the throat, defined by a perpendicular line from the leading edge

of the vane suction side. The utility of this tap location appears to be diminished by its

proximity to the centrifugal rotor and its associated high-speed, highly unsteady flow field.

The data is characterized by high-levels of broadband noise with little coherent structure. The

6 in. vane plenum taps were installed to examine performance and the circumferential

uniformity of injection. Diffuser exit taps are approximately 4.5 in. long and are located in

three passages, 120' apart. In addition to providing information regarding pre-surge

oscillations at this location, they can also help quantify diffuser performance under the

influence of injection. Table 2.3 shows the typical tap and transducer setup for the

experiments in this thesis.

Inlet Flow
Inlet Taps
(4 at 90 deg.

V spacing)

Axial Compressor
Stage

Figure 2.3: Inlet cross-section showing location of high-frequency taps



o Throat Tap

* Vane PlenumTap
a Vane Exit Tap

Figure 2.4: Vaned diffuser detail showing location of high frequency pressure taps

Tap Location Vane or Tap # Transducer Range
inlet 1 5 psig
inlet 2 5 psig
inlet 3 5 psig
inlet 4 5 psig

diffuser throat 5 50 psig
diffuser throat 13 50 psig
diffuser throat 21 50 psig
vane plenum 13 250 psia
vane plenum 21 250 psia
diffuser exit 5 250 psia
diffuser exit 13 250 psia
diffuser exit 21 250 psia
combustor N/A 250 psia

Table 2.3: Typical high-frequency pressure tap instrumentation list



The amplified output of the pressure transducers is filtered by an On-Site Instruments

TF-16-04 programmable filter board powered by a dedicated PC. The 8-pole, Cauer (elliptic)

anti-aliasing filters have a rolloff of 75 Db/octave above the cutoff frequency, which was set at

600 Hz for all runs. Therefore, the influence of rotor revolution frequency, -760 Hz, was

eliminated. Unsteady pressures and the actuator command and position are recorded on a

dedicated data acquisition PC running two 8-channel, 12-bit, Adtek AD-380 A/D cards. The

sampling rate used was 4 kHz, satisfying the Nyquist sampling criterion for frequencies below

600 Hz.

Real time monitoring of signals in both the time and frequency domains was accom-

plished using several oscilloscopes and a Hewlett Packard 35665A spectrum analyzer, respec-

tively. Typically the frequency content of an inlet pressure transducer was monitored by the

spectrum analyzer. Near surge (in cases with injection only) a broadband peak centered

around 27 Hz would appear, and its magnitude provided an indication of the proximity of

surge. The analyzer was also used in the experimental tuning of controller gains.

2.3 Actuation System

McNulty's linearized stability studies concluded that the best actuator for active surge

control on the LTS-101, based upon the criteria of maximum attainable positive compressor

slope, was diffuser throat air injection [22]. This section describes the air-injection system

utilized on the LTS-101.

The actuation system is shown schematically in Figure 2.5. 100 psig, oil-free air is

produced by a Sullair industrial air compressor and an associated dryer system. The air is fil-

tered for particulate and flows through an adjustable pressure regulator. Flowrate is then

measured by a Fisher Porter rotameter with a calibrated range of 123.8 scfm. For measure-

ment of mass flow, rotameter output is corrected by pressure and temperature readings from a

Wallace Tiernan 300 psig dial pressure gauge and type-K thermocouple, respectively. Flow

then passes through a remotely-operated, pneumatically-actuated ball valve, the primary

on/off control for the injection system. As a safety precaution, this valve is configured to fail

in a closed position during a power interruption. Air then passes into the primary element of



the actuation system, the high-frequency response valve, which is described in the following

paragraph. The output of this valve enters the annular feed plenum within the impeller cover

of the engine (see Figure 2.1). 24 angled slots around this annulus connect the feed plenum to

openings directly over the vane plenums (see Figure 2.4). In previous experiments, this con-

nection was thought to be a large source of pressure loss within the system, so the slots were

machined to be approximately 7-times the area of the original orifices. Air is injected perpen-

dicular to the primary gas path through slots in the vane walls.

Fischer-Porter rotameter (flowmeter)
pressure and temperature

correction instrumentation shown

Lengths Not to Scale

Figure 2.5: Schematic of air injection feed system

Parameter Sensor Range Accuracy
Injected Flow Fisher-PorterRotameter 0-123.8 scfm ±2.5 scfm (±2% F.S.)

Pm, Wallace-Tiernan Gauge 0-300 psig ±0.3 psig (+0.1% F.S.)
Tinj Type K TC - ±4.00 R

Calculation

min, - - I 0.17% mdes

Table 2.4: Acuracy estimates for flow injection measurements



The high-frequency response control valve is the prototype of the actuator designed by

Berndt for use in distributed control of rotating stall. Details of this valve may be found in

[25]. The valve has a bandwidth of 300 Hz, a leakage flow of 1% mdes, and a maximum flow

of 4% mdes. The primary element of the valve is a linear actuator produced by the MOOG

corporation. It positions a closing slider over slots for the passage of air which are machined

in a cylindrical body. A -10-10 V input signal is processed by a control unit which adjusts the

motor's coil currents to position the slider in the requested position. The frequency response

of the slider's position to command is provided in Figure 2.6, as well as the poles of the

transfer function fit in Table 2.5.

Amplitude

102
Frequency, Hz

Phase

( -100

D -200
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2

Frequency, Hz
Coherence

102
Frequency, Hz

Figure 2.6: Frequency response of valve position vs. valve command, solid line is
experiment, dashed is transfer function fit.

Poles

-535.911 + 2588.57i
-1496.37

21
Frequency, Hz

411.98
Damping Ratio, q

0.2027

Table 2.5: Valve command to valve position transfer function poles

I



Since the overall pressure ratio of the injection system is insufficient to choke the valve

slots, the smallest area in the injection path, flow is a non-linear function of valve position (or

valve command, equivalently). Figure 2.7 illustrates the flow versus valve command at the

back pressure of a typical operating point. Although, the relationship is non-linear, for small

perturbations around a mean injection value, such as used in forced response and control

testing, the relationship can be approximated as linear.

-2 0 2
Valve Position Command, V

Figure 2.7: Injection flow vs. valve command relationship measured at a typical
test operating point

2.4 Control Law Implementation Equipment

A detailed schematic of the control and high-speed data acquisition setup is shown in

Figure 2.8. Signals utilized in control law implementation are indicated by evenly dashed

lines. These signals are recorded by the high-frequency data acquisition system described

previously but are split to be utilized as feedback and/or real-time monitoring parameters. The

PC dedicated to performing the control algorithm calculations receives the feedback signals

through a Data Translations DT2801 12-bit A/D card. This card has a total maximum sam-

pling rate of 13700 Hz while using DMA transfer. This sampling rate is split between 7 input



signals (the maximum number anticipated for future control testing) which may be utilized by

a control algorithm, 6 control parameters and a termination signal for control law execution.

The control algorithm is coded in a FORTRAN program originally written by Dr.

Chris Van Schalkwyk. It implements a discrete, state-space control law design. In order to

provide robustness to steady-state shifts in measured pressures triggered by nozzle move-

ments and/or speed corrections, input parameters are digitally high-pass filtered at 5 Hz within

the control algorithm. During execution, feedback parameters as well as output of the control

law are continuously written to a circular buffer in the memory of the computer. When a kill

control law execution command is detected, this data may be saved to disk for the short

period of time preceding the termination command.

The calculated valve command is sent to a Burr Brown PCI-20093W-1 12-bit D/A

board which outputs a ±5 V signal. The desired input range of the valve control circuitry is

+10 V, so the signal is amplified by a Pacific Scientific 8650 configured as an instrumentation

amplifier. The valve command and resulting position are recorded by the high-frequency data

system, and the position is monitored for fault detection on an oscilloscope.

2.5 Experimental Procedures

This section addresses the general operating procedures common to the engine ex-

periments and specific techniques used in forced-response and controller experimentation.

A typical test team consists of four people. The test director plans the experiment and

coordinates all members of the team in achieving its objectives. The director also performs

high-speed data acquisition duties during the engine run. The engine operator controls and

monitors the behavior of the engine. A controls/actuation operator focuses on the operation

of the actuation system in both open and closed loop operation. This person monitors signal

frequency content with the spectrum analyzer to determine proximity to surge and the effec-

tiveness of actuation. During closed-loop testing, this individual is responsible for control law

execution and tuning. An additional member serves as safety officer for the experiment. As

the other members of the team may become engrossed in experimental details, the safety offi-



cer is responsible for monitoring test safety and parameters which may adversely affect engine

health..

Cntrl. Algorithm PC
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A/D Card Frequency Valve
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Feedback i LTS-101 Gas
,I - - - - Control SignalsS- -Generator

HP 3665 Spectrum Analyzer . i Valve Command Miscellaneous Signals
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Figure 2.8: Schematic of signal flow for control applications

Before an experiment, both steady-state and high-frequency response pressure trans-

ducers are calibrated by separate processes. If the calibration is satisfactory, the cell is cleared

of personnel and the engine started. The engine is allowed to warm up at idle for 3 minutes.

It is then slowly accelerated to 95% Nl,corr, the speed chosen for experimentation (selected

such that the flow fence, a part-speed stability enhancing device, is fully retracted from the

flow path). The variable-area nozzle is slowly closed until the desired operating point is

reached. This transition takes several minutes and is sufficient for engine warm-up at high

power settings. As will be discussed in the following chapter, diffuser throat air injection

allows the nozzle to be closed to a lower inlet flow operating point than without injection.

Therefore, mean injection must be added before nearing the typical surge point to allow the

operating point to be reduced further in flow. Nozzle movements and shaft speed corrections

near the surge line are recorded with the high-frequency data acquisition system in case surge



is triggered. After testing is complete, the engine is allowed to cool down at idle for 3

minutes before shutdown. A post-run calibration is then performed on the pressure

transducers to determine if any shifts in the calibration constants occurred during operation

which would affect the collected data.

As nozzle area is decreased, exhaust temperature and turbine inlet temperature in-

crease accordingly. Water injection is employed to limit exhaust duct temperatures, and Tt,4 1

is monitored to insure it remains in a safe operating range.

Once the desired operating point is established, testing can begin. High speed data

acquisition is initiated by the test director at desired points. The engine operator marks

steady-state data at the same time such that engine performance can be later correlated to un-

steady measurements. If a surge occurs, the operator commands the engine to idle, via a

panic button, and closes the remote, pneumatically-actuated valve in the injection feed system.

Exhaust duct cooling water is automatically stopped to prevent flooding.

Frequency-response identification runs are accomplished by forcing the engine with

sinusoidal air-injection. Two methods of spanning the desired frequency range were at-

tempted. Frequency range sweeps resulted in low coherence of the transfer function esti-

mates, so 15 s intervals of discrete frequency forcing was utilized. A programmable function

generator allowed 3 of these intervals to be performed in succession and recorded conven-

iently on a 45 s data set. System identification was performed near surge, so forcing frequen-

cies and amplitude had to be chosen carefully to avoid triggering instability.

For control experiments, the control law was tuned at a stable operating point near

surge with mean injection. The impact of gain adjustments, which could be performed with

type-in parameters in the control algorithm software, were monitored on the spectrum ana-

lyzer. With the controller's parameters selected, the operating point was moved toward surge

in small increments, recording unsteady data during all transients. Testing generally continued

until the engine surged.

Although not addressed in this thesis, closed-loop frequency response testing was ac-

complished by feeding a forcing function from a waveform generator to an open channel on



the control algorithm PC's A/D board. The control law output and forcing function were

summed and sent as input to the valve controller via the D/A card. The forcing function was

recorded on the high-frequency data acquisition system with unsteady pressures for evaluation

of transfer functions.



Chapter 3: Steady-State Injection Response

In order to facilitate control applications, diffuser throat air injection must be capable

of modulation in increased and decreased flow directions. This requirement mandates per-

forming experiments with a mean level of injection. Injection modifies the compressor charac-

teristic, the surge point, and the pre-surge behavior of the engine. The purpose of this chapter

is to quantify the effects of injection which define this "new" machine and offer physical ex-

planations for the observed behavior.

3.1 Characteristics and Surge Point

For a given nozzle position, diffuser throat air injection induces two effects on the gas

generator: pressure ratio loss and a decrease in inlet mass flow. Figure 3.1 illustrates the ef-

fect of injection at two downstream nozzle positions and a shaft speed of 95% N1,co,. As a

reference, operating points without injection are shown as "o" on the plot. It is important to

note that corresponding "+" marks of the two data sets do not represent equal amounts of in-

jected air flow. However, the two nozzle positions can be compared by linear fits of the in-

jection effects. Note that nozzle position B, nearest the peak of the speedline, exhibits higher

pressure ratio loss per reduction of inlet mass flow. Data from Borror [24] indicate the same

trend over several operating points but at lower injection levels.

The two effects discussed above are not independent. The amount of displaced inlet

flow is greater than the injected flow. This discrepancy can be attributed to the constant inlet

corrected mass flow of the gas generator turbine. A choked, downstream nozzle of given area

enforces a matching condition of constant turbine inlet corrected flow, m4,corr [25]. Corrected

mass flow is expressed as follows:

Pt = f(y,M) (3.1)
pt A



Figure 3.2 shows the constant values of m4,corr at two nozzle positions. m4,cor,, which includes

both inlet and injected flow, is converted to an equivalent mni,cor (the conversion entails mul-

tiplication by a constant at each nozzle position, leaving the qualitative nature of the m4,corr

data unchanged) such that the operating point with zero-injection is identified relative to the

95% NI,corr speedline. From Figure 3.2 and equation 3.1, it is evident that changes in pt and Tt

from injection are connected with a readjustment in the amount of inlet mass flow for a given

amount of injection. For example, the tc, loss attributed to injection (see Figure 3.3) drops

pt,4, requiring a reduction in total mass flow. Although not addressed in detail, injection also

changes Tt,4 by modifying compressor-turbine work matching and lowering Tt,3 by the mixing

of cooler injection air with the primary gas path.

McNulty [22] proposed that the pt loss effects of injection were composed of two

parts: (1) a mixing loss due to the injection of air perpendicular to the gas path and (2) the

creation of a "boundary-layer" type blockage at the diffuser throat, linked in literature to pres-

sure recovery performance degradation [26]. Experimental evidence from the current work

and Borror [24] indicate that McNulty's estimate over predicts pt loss. For a physical expla-

nation of this effect, split the compressor pressure ratio, rc, into the pressure ratios of the im-

peller and vaned diffuser, 7imp and 7tvd.

Tc = inlmpTvd (3.2)

limp = f(ml,corr, Nl,corr) and nvd = f(mmnl,corr, min, NI,corr) (3.3)

tvd is decreased due to mixing of the injection stream with the gas path flow. The penetration

of injection into a free stream flow has been shown to correlate with momentum ratio.

plnjU ij (3.4)
PfsU

A value near 1 is necessary for significant penetration and the creation of blockage [22]. At

an injection level of 4% mdes, the momentum ratio of injected flow versus gas path flow is ap-

proximately 0.023, essentially non-penetrating. Therefore, the blockage loss described by

McNulty appears negligible. However, injection reduces mnnl. At constant speed, the axial



stage and impeller deliver greater turning to the flow; hence, l,,mp must increase. Thus, Ttvd and

l7imp compete, limiting the pt loss effect of injection.

This argument provides a plausible explanation for the slope difference in fits of injec-

tion effect between operating points. Operating points on steep, negatively sloped regions of

the speedline, such as nozzle position A, exhibit less pt loss than points on flatter sloped por-

tions of the characteristic for the same amount of injection. Although, a characteristic was not

available for the impeller only, its shape can be assumed to be similar to the complete charac-

teristic, only shifted upward. Inherent is the assumption that diffuser pt loss varies only

slightly between operating points. With this assumption, a given negative Arin,corr created by

injection creates a greater positive A nimp at A than B. The greater Atimp offsets more of the

diffuser's mixing loss and yields a lower net pt loss for the entire compressor. Therefore, in-

jection will have the greatest effect on tcc at points near the peak of the characteristic, the re-

gion of greatest importance in compressor stability research.
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Figure 3.1: Effects of diffuser throat air injection on gas generator operating point
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The previous paragraph suggests that a compressor characteristic would exhibit a

change in shape when injection is introduced, not a constant valued shift in tc and m ni,cor.

Figure 3.4 illustrates experimentally determined 95% NI,,or speedlines near peak pressure rise

both with and without a mean injection level of 2.14% mdes. This level was associated with

the baseline valve position about which forced response and control law experiments were

performed. Only data corresponding to Nl,con = 95 ± 0.03% were utilized in the fits. Process

noise fluctuations of ±0.1% Ni,co, are not uncommon, suggesting scaling the data points ac-

cording to 7t oc Ni,corr2 . This method was not utilized, however, due to poor correlation be-

tween tc and NI,cor fluctuations. From visual inspection, the near-peak speedline data of the

baseline zero-injection and mean-injection cases are well approximated by cubic and quadratic

polynomials, respectively. Table 3.1 shows the calculated coefficients.
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Speedline Low m High m m3  m2  m constant
No Injection 0.905 0.952 186.960 -534.020 507.390 -159.454

2.14% Injection 0.860 0.905 N/A -7.849 13.769 -5.116

Table 3.1: Speedline fit parameters

There are two features to point out concerning the speedline shift. The first is the

shape difference of the characteristics near the peak. The baseline characteristic has a nega-

tively-sloped stable region which flattens to a peak over a short range of mnl,corr. The mean

injection characteristic exhibits a gradual transition from negative slope to a region of mild

positive slope, thus forming a large region of near zero slope at the peak. As will be seen later

in the chapter, the flattening of the characteristic peak allows a dynamic instability, mild surge,

to develop. The second feature is the stabilization (in the sense of surge) to lower minl,corr and

m4,corr. The lower surge value of mnl,coff is apparent. Figure 3.4 also shows that if the slope of

an injection effect curve near the surge point of the baseline case (approximated as the slope

determined for nozzle position B in Figure 3.1) is extended to the mean injection characteris-

tic, the surge points do not match. This line is an estimate of constant turbine corrected flow.

This line shifts to lower flows as the variable area nozzle is closed, such that the zero-injectio n

case is no longer stable. Therefore, mean injection stabilizes the gas generator to a lower tui-

bine corrected flow operating point.

Figure 3.4 illustrates an important point. mnl,corr represents the flow through the axizd

stage and centrifugal impeller of the compressor. Since these components are stable (in the

sense of surge) at lower corrected flow than the surge flow of the entire compressor, it can be

concluded that surge inception is associated with diffuser behavior. This observation is con-

sistent with the modifications described in Chapter 2, which were made to insure the diffuser

would be the stability limiting element in the compressor. However, when injected flow is

added to the inlet flow, the diffuser continues to operate below typical surge m4,corr. This irr -

plies that a local fluid dynamic effect of the injection may be extending the flow range of the

diffuser, not merely a 1-D effect of mass addition. One hypothesis in the literature surveyed in

Chapter 1 suggests surge inception is triggered by a breakdown or separation of flow within

min,corr/ mdes Limits Speedline Fit Coefficients



the vane passages [8]. At low mni,corr, diffuser inlet flow is highly tangential and may separate

near the vane tip. Air injection may enhance surge stability by adding momentum to the re-

gion which is normally affected by inlet separation.

Operating points in this thesis are expressed in terms of min,cor and indicate the pres-

ence or absence of a mean level of injection. Since there was no means of monitoring injec-

tion at at each experimental time step, it was held at a constant mean value (typically 2.14%

mdes) with error bounds of ±0.10% mdes. Therefore, significant operating point changes were

recorded by monitoring minl,cor. Table 3.2 shows the surge points and rms fluctuations of

mnl,corr for the experimental data. It is important to note that the values shown are averages of

fluctuations exhibited by the last stable operating point prior to surge. Although further ex-

perimentation was not practical to determine repeatability, the author estimates similarly ob-

tained surge points to fall in a range of ±1.5% minl,corr/mdes from the tabulated values. Note

the larger rms fluctuations in mini,corr for the mean injection system, a fact which will be ad-

dressed in the next section.

Speedline avg. % minlcorr/ mdes % rms fluctuation
No Injection 90.76% 0.27%

2.14% Injection 86.38% 0.80%

Table 3.2: Experimentally determined surge points and rms mass flow fluctuations

3.2 Signal Frequency Content

An investigation of the surge inception process must examine the frequencies of natu-

rally excited pressure disturbances encountered during operation. Of primary importance is

the existence and frequency of any oscillatory, precursor behavior prior to surge. For in-

stance, the turbocharger rig of Fink [ 11] exhibited 1-D, oscillatory behavior in mass flow and

pressure rise at the system Helmholtz frequency. This behavior grew in amplitude until it de-

veloped into deep surge. Rotating stall may develop in the rotor or diffuser of a centrifugal

system, or naturally excited acoustic disturbances may couple with surge dynamics. This sec-

tion examines the dominant frequencies of engine operation near surge.



Borror [24] examined the surge behavior of the LTS-101 without flow injection. Hs

conclusions were as follows:

* No linearly growing disturbances preceded surge.

* Frequency content below 100 Hz at throat, combustor, and inlet increased

simultaneously around 250 ms prior to surge.

* Rotating stall was not present in the vaned diffuser based on measurements

at the throat.

To examine the observations of Borror and to provide a baseline for comparison with

mean injection experiments, the spectral content of engine taps with no injection was exam-

ined. Experimental data for this study was filtered with analog, 8-pole, Caur (elliptic), ant. -

aliasing filters set at a cutoff frequency of 600 Hz and digitally sampled at 4 kHz. Engine rc-

tor frequency is -760 Hz, so integral rotor revolution disturbances were eliminated from data

sets. 2-pole, digital notch filters were employed to remove 60 Hz (and odd-numbered har-

monics) electrical noise. These filters were implemented with the filtfilt.m MATLAB com-

mand. This algorithm eliminates the normally associated phase shift and effectively doubles

the order of the filter. The power spectral density (PSD) of the averaged, or zeroth mode, of

the taps at each axial location are plotted. PSDs show frequency distribution of signal power,

such that the integral over a frequency range yields the power contained in that band. The

(psi a)2units of the PSD are PSD calculations were performed by the MATLAB spec-
Hz

1
trum.m function (scaled by ). Hanning windows of 16384 points for the discrete fast

fsamphng

Fourier transform were chosen on the basis of desired frequency resolution, which is

determined by the following formula:

fresolution sampling (3.5)
# of DFFT points

fresolution = 0.244 Hz for these calculations. A window overlap region of 12288 points provides

smoothing for the spectral estimate of the overall data set.



The taps include: 3-inlet, 3-diffuser throat, 2-vane plenum, 3-diffuser exit, and 1-

combustor (the typical setup described in Section 2.2 Instrumentation). Figures 3.5-9 are the

PSD's of these taps at two operating points near surge, mln,corr/mldes = 0.910 and 0.908 (the

last stable operating point before surge).
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Figure 3.5: PSD of zeroth mode of inlet static pressure, zero-injection, at operat-
ing points mmnl,corr/mdes: (a) 0.910, (b) 0.908 (max. f = 700 Hz)
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Figure 3.6: PSD of zeroth mode of diffuser throat static pressure, zero-injection, at
operating points mnlcor,/mdes: (a) 0.910, (b) 0.908 (max. f = 700 Hz)
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Figure 3.7: PSD of zeroth mode of vane plenum static pressure, zero-injection, at
operating points m,nl,co/drndes: (a) 0.910, (b) 0.908 (max. f = 700 Hz)

x10
3

2

1

0
100 101 102

f, Hz

3

2

a

x 10
- 3

100 101 102
f, Hz
(b)

Figure 3.8: PSD of zeroth mode of diffuser exit static pressure, zero-injection, at
operating points m,,corm,mdes: (a) 0.910, (b) 0.908 (max. f = 700 Hz)
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Figure 3.9: PSD of combustor static pressure, zero-injection, at operating points
mmn,corr/mdes: (a) 0.910, (b) 0.908 (max. f = 700 Hz)
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Except for the throat, all taps exhibit slight growth in the spectral content below 100

Hz as the gas generator is throttled. The most prominent feature of these spectra is the sharp,

22 Hz peak appearing in all taps other than the diffuser throat at miin,corr/res = 0.908. It also

exhibits a third harmonic near 65 Hz (frequencies are rounded to the nearest Hz). Other

peaks appear but do not grow as the operating point moves closer to surge, suggesting that

they may have little to do with instability inception. A summary of the observations, separated

into categories of growing and invariant, appears in Table 3.3.

Frequency Peaks, Hz

Tap Location (# averaged) Growing Invariant
axial stage inlet (3) 22 252
diffuser throat (3) none none
vane plenum (2) 10, 22, 44, 65 555
diffuser exit (3) 22, 65 611

combustor (1, no avg.) 22, 65 106

Table 3.3: Dominant frequency peaks near surge for zero-injection case

Figures 3.10-14 examine frequency of pressures when the gas generator is subjected to

2.14 ± 0.10% md,,es steady air injection. The operating points shown are ninl,corr/mdes = 0.873

and 0.852 (the last stable point before surge).
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Figure 3.10: PSD of zeroth mode inlet static pressure, 2.14% mean-injection, at
operating points m,nI,conr/mdes: (a) 0.873, (b) 0.852 (max. f = 700 Hz)
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Figure 3.11: PSD of zeroth mode throat static pressure, 2.14% mean-injection, at
operating points mm,,codnmdes: (a) 0.873, (b) 0.852 (max. f = 700 Hz)
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Figure 3.12: PSD of zeroth mode vane plenum pressure, 2.14% mean-injection, at
operating points mm,,codlmdes: (a) 0.873, (b) 0.852 (max. freq. shown 700 Hz)
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Figure 3.13: PSD of zeroth mode diffuser exit static pressure, 2.14% mean-injec-
tion, at operating points minIcodmdes: (a) 0.873, (b) 0.852 (max. f = 700 Hz)
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Figure 3.14: PSD of combustor static pressure, 2.14% mean-injection, at operating
points minl,con/mdes: (a) 0.873, (b) 0.852 (max. f = 700 Hz)

The dominant feature of the injection case is the appearance of clear, growing peaks at 27-28

and 66-69 Hz (throughout the thesis, these frequencies will be referred to as 27 Hz and 68

Hz). In comparing the magnitude of these peaks to the zero-injection case, note the different

scaling of the y-axis values. For example, the 27 Hz peak observed at the inlet is approxi-

mately 17 times the magnitude of the 22 Hz peak seen without injection. Sharply defined sta-

tionary peaks not seen in the zero-injection case appear at 52 Hz and this frequency's odd

harmonics. Table 3.4 summarizes the frequencies observed from this case.

Frequency Peaks, Hz

Tap Location (# averaged) Growing Invariant
axial stage inlet (3) 27, 67 250
diffuser throat (3) 28, 69 52 (har.)
vane plenum (2) 27, 67 52 (har.), 528
diffuser exit (3) 27, 71 52 (har.), 589

combustor (1, no avg.) 27, 68 52 (har.)

Table 3.4: Dominant frequency peaks near surge for 2.14% mean injection case

In order to assess the behavior of these frequencies immediately prior to surge, a wa-

terfall plot showing the time variation of PSD is utilized. In this case, PSD values are calcu-

lated over 1024 points (0.256 s), then the time point is marched by 64 points (0.016 s). To

allow comparison between injection and zero-injection cases, the surge point was arbitrarily

defined by a sustained slope criteria (Apsi/Atime) on the pressure loss in the combustor during

X 10
- 3

X 10
- 3



the beginning of the surge blowdown. Figure 3.15 indicates the surge point selection

corresponding to the zero-injection case.

27.03 27.04 27.05 27.06 27.07 27.08
Time, seconds

27.09 27.1 27.11 27.12

Figure 3.15: Surge point, identified by asterisk, on plot of combustor pressure

Figures 3.16-18 show waterfall plots of zeroth-mode inlet tap behavior for both cases

(3.16 and 18 are plotted on the same z-axis scale for easy comparison). The plots are limited

to frequencies of 0-100 Hz, the primary range of interest. Note that the zero-injection case

shows virtually no dominant frequency activity prior to surge, even when the z-axis is scaled

for better contrast, the frequency content is broadband. On the other hand, the 27 Hz mode is

clearly visible with mean injection. However, this peak does not "grow" into the surge insta-

bility.

To assess the spatial structure of pre-surge activity for both zero and mean-injection

cases, the spatial Fourier decomposition technique was utilized. At compressor inlet and dif-

fuser exit, signals from the three corresponding taps are decomposed into their zeroth (1-D,

surge-type oscillations) and first mode (1-lobe, circumferentially non-uniform) activity. With

only three taps at each axial station, a spatial Nyquist criterion limits the decomposition to

these modes. The pressure signals are normalized by their respective rms noise levels before
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the modal decomposition. Figures 3.19-26 show the magnitude of the zeroth mode and the

magnitude and phase of the first spatial mode for cases with and without mean injection.
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Figure 3.16: Frequency content of the zeroth mode of inlet static pressures during
transition into surge (t=O), zero-injection case
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Figure 3.17: Enhanced view of frequency content of the zeroth mode of inlet
static pressures during transition into surge (t=O), zero-injection case
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Figure 3.18: Frequency content of the zeroth mode of inlet static pressures during

transition into surge (t=O), 2.14% mean-injection case
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Figure 3.19: Magnitude of 0-mode spatial Fourier coefficient at inlet before surge,
zero-injection case



0.1

0.08

- 0.06

60.04

0.02

0
-0.1 -0.05 0

Time, s
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before surge, zero-injection case
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Figure 3.21: Magnitude of 0-mode spatial Fourier coefficient
fore surge, zero-injection case
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Figure 3.22: Magnitude and phase of 1-mode spatial Fourier coefficient at exit of
diffuser before surge, zero-injection case
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Figure 3.23: Magnitude of 0-mode spatial Fourier coefficient at inlet before surge,
2.14% mean injection case
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Figure 3.26: Magnitude and phase of 1-mode spatial Fourier coefficient at diffuser
exit before surge, 2.14% mean injection case

No significant pre-surge growth is evident for the zero-injection cases shown (Figures

19-22). Zeroth-mode disturbances at the inlet for the mean injection case exhibit steady

growth at 0.05 s before surge in Figure 3.23. The first-mode disturbance amplitude (Figure

3.24) seems to grow in a similar fashion to the 1-D amplitude, but the phase indicates that the

disturbance is fixed in its spatial orientation, or not rotating. The magnitude is misleading

because the first-spatial mode coefficient captures non-uniformities in the inlet flow which can

be exaggerated by the 1-D axial flow phenomena. Figures 3.25 and 26 indicate zeroth-mode

growth at the diffuser exit occurring only 0.01 s prior to surge and no evidence of first-mode

growth. In summary, rotating stall does not appear during instability inception, but the mean

injection case exhibits energy growth in the axial mode of unsteadiness 0.05 s prior to surge.

It remains to correlate this frequency content with physical behavior of the engine.

The primary spectral peak of interest is 27 Hz, noted as the engine approaches surge. Un-

steady mass flow fluctuation is estimated using a calibration with the high-frequency inlet taps

and an approximate correction to minimize response to inertial effects (refer to Appendix A

for a description). Pressure ratio fluctuations are derived directly from unsteady combustor

pressure measurement and the value of atmospheric pressure. Figure 3.27 illustrates a growth

of the counterclockwise cycles associated with the prominent peak of 27 Hz energy at 1.5 s

prior to surge in Figure 3.18. Such fluctuations are a dynamic instability known as mild surge,

and have been observed in several documented studies of high pressure ratio centrifugal



systems. For the LTS-101, these cycles grow and decay in no apparent pattern, and as

mentioned earlier, do not linearly grow into deep surge. However, the average cycle

amplitude increases as the nozzle area is closed. The next section examines the development

of these oscillations.

Figures 3.28 and 3.29 show transition into surge for points with and without injection.

Figure 3.28 shows that although the 27 Hz cycles do not grow linearly into surge, this surge is

preceded by two large magnitude oscillations similar to those observed in Figure 3.27. Figure

3.29 shows no apparent pre-surge cycle, only random operating point fluctuations. It is hy-

pothesized that surge results from mild surge cycles and/or system noise generating operating

point excursions into unstable regimes. It is important to draw the distinction between unsta-

ble operating points and the surge line, since excursions may occasionally cross the nominal

surge line without precipitating the instability. The surge line is generally a conservative

estimate to compressor stability which takes into consideration normal unsteady operating

point fluctuations. Unstable operating points, in this context, represent conditions where

surge is inevitable.

The 68 Hz peak is less understood. The first attempt to identify the origin of these

oscillations was to create time plots at each axial sensor location. Figure 3.30 shows data

which was bandpass filtered in the range of 60-75 Hz, isolating the 68 Hz behavior. For the

throat, vane plenum, and diffuser exit sensor locations, the same vane passage was chosen to

eliminate misleading data from possible circumferential non-uniformities. Combustor pressure

waves lead the other sensors in phase, suggesting that the disturbance originates at this loca-

tion. The oscillations consistently attained their largest magnitudes when the phase relation-

ship between axial locations was near that observed in the last time steps of Figure 3.30. The

oscillations decayed as this phase relationship deteriorated. This behavior suggested that the

68 Hz phenomena was system related as opposed to being isolated to a single component. A

phase mismatch was often seen to develop near the throat and vane plenum taps, indicating

interaction between the injection feed plenum and compression system dynamics.
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Figure 3.27: Evolution of 27 Hz mild surge oscillations during 2.14% md,, injec-
tion in 0.04 s increments. Operating point traces begin at '*' and end at 'o'.
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Figure 3.28: Evolution of 2.14% mean injection case into surge in 0.02 s incre-
ments. Operating point traces begin at '*' and end at 'o'.
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Figure 3.29: Evolution of zero-injection case into surge in 0.02 s increments. Op-
erating point traces begin at '*' and end at 'o'.
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Figure 3.30: Pressure traces of inlet (i02), diffuser throat (t21), vane plenum
(v21), diffuser exit (e21), and combustor (com) during 68 Hz oscillations. Band
pass filtered between 60-75 Hz.
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Since it appears combustor oscillations supply the energy to the observed oscillations,

it was of interest to examine the frequency response of other sensors to the "forcing". Figure

3.31 shows the frequency response estimate between combustor and inlet tap pressures.

Treating the natural combustor oscillations as the forcing function, the computational method

described for forced response testing in Chapter 4 was utilized for this estimate. Note the 4

dB amplitude increase and the phase change between 60-70 Hz. At standard atmospheric

conditions, not accounting for the elevated speed of sound in high temperature regions of the

compressor ducting, the 140' phase lag at 68 Hz corresponds to a wave traveling 6.5 ft.

Since this is significantly longer than the flow path length between the two sensors, a purely

acoustic phenomena was dismissed as an explanation for this behavior. An acoustic phenom-

ena would exhibit a much smaller phase lag between the sensors.
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Figure 3.31: Frequency response estimate of inlet pressures to natural combustor
pressure forcing

Because this phenomena appeared to be system related and linked to phase behavior

near the injection slots, a lumped parameter model was created to examine the interaction of

the injection plenum with the gas generator. The model was based upon the dynamic model



presented in [22] and is described in Appendix B. The key element is the addition of a volume

to the downstream compressor ducting immediately following the actuator disk representing

the compressor's total pressure rise. Assuming that the feed system inertia was negligible,

flow into and out of the volume was modeled as a quasi-steady throttle relation driven by the

static pressure difference between the feed plenum and vane passage. This lumped parameter

model was unsuccessful in duplicating the frequencies of mild surge and the 68 Hz oscillation,

even with liberal adjustments in the geometric parameters. However, the modeled phase rela-

tionships between sensors was similar to experimental observations.

Transfer functions of inlet mass flow, inlet static pressure (just upstream of the com-

pressor actuator disk), and combustor pressure under forcing by combustor pressure noise

(additive to the basic combustor pressure term) are shown in Figure 3.32. The frequencies are

non-dimensionalized by the resulting mild surge frequency of the model. As mentioned above,

the correct frequencies are not captured by the lumped parameter model, nor is the correct

ratio between the mild surge and second calculated resonant peak, appearing at 5.3 fsurge.

However, the phase relationships are consistent with observed behavior. Note the phase rela-

tionship between ps,2 and mini varies from 1800 at low frequencies, where Bernoulli's equation

predicts static pressure to be opposite in phase to velocity changes, to 270' at high frequen-

cies, where the unsteady effects addressed in Appendix A add additional lag. Also note that

mnl leads pb by 90' at the mild surge frequency, consistent with a Helmholtz oscillation. The

best evidence that the model captures the probable cause of the 68 Hz phenomena is Figure

3.33 when compared to the results of Figure 3.31. A frequency response of pin, to the result-

ing Pb (not pb,noise) was created from the results of Figure 3.32. The amplitude peak appears at

the second resonance frequency, and the phase behavior is qualitatively similar, slowly rising

to near the resonant peak and then falling off. The phase similarity of this model to the ex-

perimental behavior leads to the conclusion that the feed plenum volume interacts with the

compression system to introduce the 68 Hz system mode.
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Several invariant peaks, appearing clearly at all operating points, are tap acoustic reso-

nances. These signals appear prominently, such as in the vane plenum spectrums, and may

exhibit slight frequency variation between taps at the same axial location. The signals do not

pertain to engine dynamics and, therefore, corrupt accurate measurements. Borror

experimentally determined that 6.75 in. taps of similar geometry exhibited a 420 Hz resonance

at room temperature [24]. Equation 3.5 shows the proportionality of tap resonance frequency

to temperature and tap length. Based upon this relationship and Borror's experimental

results, Table 3.5 shows estimated versus actual tap resonance frequencies.

Ltap tapf~ Ltp Ltap (3.5)

Location Length, in. Ttap, OR fpredicted, Hz factual, Hz

Borror's Rig 6.75 -530 N/A 420
Inlet 11 520 255 250

Diffuser Exit 4.5 700-1000 (est.) 724-865 610
Vane Plenum 6 700-1000 (est.) 543-649 555

Table 3.5: Estimated versus actual probe resonance frequencies

A range of Ttap values for the diffuser exit and vane plenum taps were chosen due to

uncertainty in these parameters. The taps are exposed to the high compressor exit tempera-

ture but are cooled near the Kulite transducer by a water jacket. The agreement at diffuser

exit is poor, but its spectral characteristics are similar to those of the other taps. Slight leak-

age or difference in geometry could account for the discrepancy. Therefore, the author still

attributes this frequency to a probe resonance.

3.3 Non-linear Model Comparison

It was hypothesized that the existence of large, mild surge oscillations could be attrib-

uted to the change in characteristic shape created by injection. In assessing this hypothesis, a

non-linear simulation developed by Dr. Laurence Didierjean and utilizing the system equations

derived by McNulty [22] was utilized. Inherent in the equations is the assumption of



isentropic plenum processes. The system equations and non-dimensionalization are provided

below.

dW c  (I + )
S (pI ) - Pb ) (3.6)

1 V

=J Ac(Lu +Ld)

LU

Li (3.9)
Ld

in rinj l,turb, or nj RTmb(3.10)
Wml, turb, or (3.10)

Tb* Tb (3.12)
Tamb

Ir = COt (3.13)

The purpose of this simulation was to examine qualitative differences in behavior

driven by two different compressor characteristic shapes. The work of McNulty [22] and the

efforts with the linear, lumped parameter model found in Appendix B indicate the difficulty in

using the physical dimensions of the LTS-101 in mathematical simulations to match

experimental results. Therefore, engine parameters were chosen to exhibit natural oscillations

near 30 Hz to approximate the behavior observed in experiment.

= 1.5 (3.14)

11 = 4 (3.15)



o~o = 76 Hz

Process unsteadiness was simulated by injecting normally distributed pB noise into the

system equations. A small time step Euler integration scheme was utilized to evaluate the

system response. Qualitatively, operating point fluctuations were insensitive to the level of

noise and time step chosen. However, the magnitudes were influenced by these parameters.

Figure 3.34 illustrates the compressor characteristics used in the simulations. Each

characteristic was a combination of curve fits found in Table 3.1 and a steep, positively sloped

region to the left of the surge point. The operating points are indicated by asterisks and la-

beled with letters. Initial condition 'b', was selected as the highest flow rate (to 0.1% mdes)

which resulted in surge. A stable initial condition at 1.0% mdes higher flow, 'a', was selected

for comparison.
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Figure 3.34: Compressor characteristic speedlines used in simulation with operat-
ing points identified by stars and letter labels.

(3.16)



x 10
- 3

c:

-

C 0

¢0

r"
n 1t-i

.)

cj,
o 0
o

rn-1
13_

-2
-0.02 -0.01 0 0.01 0.02

M fluct./Design M

(a)

-21
-0.02 -0.01 0 0.01

M fluct./Design M

(b)

0.02

Figure 3.35: Zero injection operating points shown on Figure 3.29. ml,corr/mdes:

(a) 0.920, (b) 0.910.

x 10- 3

2 r-

-21
-0.02 -0.01 0 0.01

M fluct./Design M

(a)

2

cc:
n 1
f-
C,
u,
o 0

0

Cr - 1

I3

0.02

x 10 - 3

-2'
-0.02 -0.01 0 0.01

M fluct./Design M

(b)
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Simulated operating point excursions in the zero-injection case are small when com-

pared to the mean-injection case. There is clear oscillatory phenomena in both, but the surge

inception process appears different. Without injection, Figure 3.35, surge occurs with

minimal growth in the oscillation cycles, so the influence of system noise seems directly

responsible for pushing the operating point into a region of instability. The simulated mean

injection case, Figure 3.36, exhibits slow growth in the oscillations around the operating point

0.02

X 10
- 3



until this point crosses into an unstable regime. It is indicative behavior of a growing

oscillation.

The general trends of the simulation agree with experimental behavior. Without injec-

tion, the engine appears to transition into surge without warning. Perhaps any oscillations

present are dominated by process noise. The mean injection case, however, exhibits large

scale oscillations as the surge line is approached. This simulation supports the hypothesis that

the appearance of large scale oscillations is determined by the characteristic shape. What is

not modeled is the damping of these oscillations. The experimentally observed oscillations do

not grow steadily in amplitude before surge. Referring back to the experimentally observed

oscillations shown in Figure 3.27. The oscillation appears approximately 1.5 s before surge

and decays. The surge event which followed, shown in Figure 3.28, resulted from a small

scale oscillation cycle growing suddenly into a larger one. The same growth and decay

behavior was noted by Tryfonidis [27] in axial compressors as system damping decreased.

Furthermore, the simulation predicts that points near the peak of the characteristic continue to

grow into surge events. The damping of these oscillations in the gas generator allows

operating points to exist in positively-sloped regions without surging. In engine operation, the

average oscillation amplitude increases as the operating point is throttled toward surge, but

sustained growth is not observed.

3.4 Summary

Steady air injection at the diffuser throat was shown to change steady and unsteady

behavior of the AlliedSignal LTS-101 gas generator, especially near surge. Effects of

injection, including pressure loss, cycle temperature changes, and a large displacement of inlet

mass flow, are interrelated by the requirement to maintain constant turbine inlet corrected

flow. This requirement is dictated by matching the gas generator to a downstream choked

nozzle of given area. Injection allows this area to be reduced, extending the gas generator's

operating range to lower turbine corrected flow than attainable without injection. It is

hypothesized that fluid dynamic effect of injection stabilizes the vaned diffuser, the



destabilizing element of the compression system, allowing surge-free operation at these

reduced flows.

95% NI,co, speedlines near peak pressure rise were experimentally generated both with

and without injection. Mean injection creates a large region of approximately zero slope near

the peak of the characteristic. Through experiment and simulation, this change in characteris-

tic shape allows the formation of mass flow and pressure ratio oscillations near 27 Hz known

as mild surge. These oscillations play a role in surge initiation for the mean injection case, but

they do not steadily increase in amplitude as predicted by simulation. Process noise appears to

control surge inception for cases without injection, and the instability appears with negligible

pre-surge warning. A 68 Hz mode, appearing with mean injection, was attributed to the

interaction of actuator plumbing with the overall compression system dynamics. A linear,

lumped parameter model, including a feed system volume, closely matched the phase behavior

between combustor and inlet pressure sensors observed experimentally and lead to this

conclusion. All of the oscillatory behavior observed in the engine was 1-D in nature, with no

evidence of a first-mode circumferential component.
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Chapter 4: Forced Response and Control Experimentation

The previous chapter investigated the naturally excited dynamics of the LTS-101 gas

producer. This chapter examines the system's forced response to modulated diffuser throat

air injection, particularly at frequencies near naturally occurring resonant peaks. The fre-

quency response estimates are used to assess injection's effectiveness and determine a viable

feedback sensor for use in closed loop operation. A transfer function is estimated from forced

response data for use in control law design, and preliminary closed loop experiments are pre-

sented.

4.1 Forced Response System Identification

The block diagram for forced response testing is shown in Figure 4.1. The objective is

to estimate the engine dynamics from a known input, valve command, and measurements of

the output, average pressure signals at a given axial location.

Process Noise

N(jo)

U(j) G(jo) -Y(j m)
Valve Command Measured Pressure

Input Output

Engine dynamics block
including valve, tap, and

anti-aliasing filter dyanmics

Figure 4.1: Block diagram for forced response testing

The engine dynamics block may be divided into the separate frequency response char-

acteristics of its components: valve, tap, and anti-aliasing filter dynamics. However, this

testing was intended to be an expedient, intermediate step to control law design and evalua-

tion. Therefore, these items are combined in the overall plant dynamics. Each axial location

of sensors yields a G(jo) estimate of the pressure response dynamics. As mass flow is re-



duced, system modes may become lightly damped, causing resonant peaks of engine pressure

and flow oscillation to appear. The frequencies which appeared under natural excitation were

of particular interest in the forced response experiments.

Forced response estimates can be derived from power spectral density calculations. If

the noise (see Figure 4.1) is uncorrelated to input forcing, an estimate is calculated using the

equation below [28].

G(o) -) - (4.1)
S un(0)

Estimate quality is described by the coherence function, Yuy(O), which yields values from 0 to

1. At a particular frequency, values near 1 indicate that there is a causal relationship between

the forcing and output signal and that the output is not contaminated by process noise [28].

ISuy (12
uy (0 ) = ( ))(S y ()) (4.2)

A frequency response estimate near the surge line was desired, posing a difficult ex-

perimental problem. A minimum level of modulated injection is required to overcome the

noise floor of the engine's natural unsteadiness and elicit a coherent output response. Unfor-

tunately, high levels of forcing at lightly damped operating points can precipitate surge. A

viable combination of operating point and forcing magnitude was chosen by trial and error,

utilizing a spectrum analyzer to monitor the magnitude of modal activity as an indication of

proximity to surge. For the frequency response data which follows, the operating point (with

2.14% md,,es mean injection) is 0.851 ninl,corr/mdes, and the amplitude of valve command modu-

lation is +1 V, corresponding to injection fluctuations of ±0.15% mdes during low frequency

forcing.

Two methods of forcing the engine were attempted. First, 0-400 Hz linear frequency

sweeps of constant amplitude sine waves were applied as the valve command signal. Several

sweep durations were attempted, and multiple sweeps were collected on a 45 s high-frequency

data set. Coherence was poor over the entire range of frequencies, regardless of forcing am-



plitude. It was apparent that discrete frequency forcing would be required to yield coherence

levels near 1. A programmable function generator supplied a succession of 3, 15 s sine wave

sets of specified frequency to the valve controller. Again, data was collected in a 45 s data

set. 21 whole number frequencies were chosen to span the desired range, 15-375 Hz, and to

focus in regions of particular interest, near 27 and 68 Hz. After experimentation, it was real-

ized that a coherence improvement could have been realized by choosing forcing frequencies

which exactly matched values utilized in the spectral decomposition algorithm. Future ex-

perimentation should utilize these frequencies, which occur at increments of fresolunon (defined

by equation 3.5) in the range of 0 Hz to the Nyquist frequency of data sampling.

Figures 4.2-6 are the experimental, open-loop, frequency response estimates for out-

put from each of the five axial pressure tap locations. The middle 13 s of each 15 s sample

(chosen to avoid frequency transition regions in the data sets) was processed by MATLAB's

spectrum.m function. Using the valve command voltage as the input and the average of each

axial location's pressure taps as the output, spectrum.m performed power spectral density

computations and the calculations described in equations 4.1 and 4.2. Hanning windows of

16384 data points (4.096 s) with an overlap of 8192 (2.048 s) were used for the FFT evalua-

tions within the algorithms. Forcing and response data at each frequency were combined to

generate a plot over the desired frequency range. For each axial location, a threshold level of

coherence (shown as the lower y-axis scale in the (c) plots of Figures 4.2-6) was selected to

delineate acceptable points. The values reflect a compromise between coverage of the desired

frequency range and confidence in the response data. Local dynamics and signal to noise ra-

tios differ between axial stations, altering attainable coherence levels.

The inlet taps of Figure 4.2 exhibit the most favorable combination of visible engine

dynamics and coherence out of the 5 axial locations. Since the dominant effect of injection is

the displacement of inlet mass flow, this result is not surprising. Clear peaks near 30 and 70

Hz represent the engine's response to forcing near the mild surge and injection plenum inter-

action frequencies examined in Chapter 3. Peaks near 250 Hz and 310 Hz represent an inlet

tap resonance and the natural frequency of the valve dynamics, respectively.



All other axial locations indicate 30 Hz forcing with a high level of coherence. How-

ever, each location has limitations. Figure 4.3 indicates diffuser throat sensors lose coherence

near 70 Hz and high frequency magnitudes are poorly resolved. Figure 4.4 shows the excel-

lent coherence of the vane plenum taps, but this response is more associated with their being

closely-coupled with the actuator as opposed to indicating an engine system response. Take,

for example, its clear resolution of the 310 Hz resonant peak associated with the valve dynam-

ics. Figures 4.5-6 show the diffuser exit and combustor taps, which exhibit nearly identical

response estimates due to their proximity to one another. Injection appears to have little, if

any, coherent influence beyond 40 Hz. It is believed that the forcing magnitude is too small to

elicit a response of suitable signal to noise ratio near the combustor. The phase lead which

appears at low frequencies in these estimates is misleading as to the speed of response of

combustor pressure to injection. Recall that injection causes a loss in total pressure ratio.

The 1300 phase lead at low frequencies is associated with a pressure peak in the combustor,

so the pressure trough, the actual effect of injection, lags the valve command by 50'.
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The inlet taps' resonant response to forcing at the system modes (27 and 68 Hz) indi-

cates that the air-injection actuator has control influence at these modal frequencies. Since

sensors at the remaining locations do not indicate other prominent system modes, it can be

concluded that the inlet taps exhibit good observability of the dominant system dynamics.

Therefore, inlet taps were chosen to be the regulated variable for linear control system design.

This choice agrees with the conclusions of McNulty [22] and Simon [23] that sensing within

the upstream duct is optimal.

For control design purposes, a pole-zero expression of the forced response estimate

was needed. MATLAB's invfreqs.m routine was utilized to generate a transfer function fit to

the forced response data. Weighting of experimental values (an option of the infreqs.m rou-

tine) was utilized for optimizing the fit. The lowest order system which generated an accept-

able fit of magnitude and phase included 10 poles and 4 zeros. Table 4.1 gives the location of

each pole and its damping ratio. Figure 4.7 shows the transfer function fit along with the

highest coherence data point at each forcing frequency. This fit is slightly different from the

system identification used in control law design activities. However, the primary difference,

an increase in damping of the 219 Hz pole, was negligible with respect to the root loci for the

various controllers. The stability of this pole was of little concern, so controller dynamics

never interacted strongly with it. In the next section, predicted control law effectiveness is

examined with regard to the fit described below.

POLES Frequency, Hz Damping Ratio, ; Description

-29.6054 + 178.1544i 28.354 0.1639 Mild Surge

-50.2294 ± 420.7048i 66.957 0.1186 Inj. Plen. Influence
-1010.4099 ± 1379.9890i 219.632 0.5908 Unknown

-137.5689 + 1531.9563i 243.818 0.0894 Tap Resonance

-63.5187 ± 2060.2318i 327.896 0.0308 Valve Resonance

ZEROS Frequency, Hz Damping Ratio, S Description

-93.2847 + 336.6721i 53.583 0.2670

1057.4037 ± 535.0010i 85.148 -0.8923 -

Table 4.1: Pole and zero locations for transfer function fit to frequency response
data, valve command voltage to average inlet static pressure
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This single operating point system identification cannot provide information concern-

ing pole migration toward instability. Experimental results indicate that both the mild surge

and injection plenum interaction poles exhibit a decrease in damping as the engine is throttled.

The model described in Appendix B exhibits this behavior as both the mild surge and injection

plenum interaction poles migrate toward instability as mass flow decreases (see Figure 4.8).

The surge poles approach instability more rapidly, but movement in the plenum interaction

poles suggests that their influence should be addressed in control schemes. This mode may

have precipitated a surge during a closed-loop forced response test. 64 Hz forcing was ac-

companied by large oscillations in its subharmonic at 32 Hz (see Figure 4.9). Although not

appearing to go unstable itself, a possible explanation is that the amplitudes present were suf-

ficient to trigger mild surge, which is capable of developing into deep surge.



injection plenum interaction poles

mild surge poles

X x x x x x x x X

X x x x x x x x x

~0OQOO000O00

x X Xx x X

-100 -80 -60 -40 -20 0 20
Real Axis

Figure 4.8: Pole-zero migration with throttle closure
jection plenum system interaction

x 10 -4

1.2-,

0.8.
a.

o 0.6.

*6 0.4-
o

n 0.2-

0)
0

40 60 80 100

for simulation including in-

100 -1
Frequency, Hz

Figure 4.9: Surge during closed-loop forced response testing at 64 Hz valve
modulation.

81

2

..

2n-N
E0Z

a)-2
Ca
E

DI r I I I I I I I .

L I

• , , S I J

X X X X X

h

A

J!M
~iii '"./ ,..



4.2 Control Algorithm Testing

This section documents the preliminary evaluation of several linear control law de-

signs. It presents the control algorithms and the results of their experimental implementation.

It is not the intent of this section to delve deeply into the design process of each algorithm, but

merely evaluate their effects on the dynamics of the engine. Credit is owed to three individu-

als for the design work: Professor James Paduano for the classical bode-designed compensa-

tor, Dr. Harold Wiegl for the H, compensator, and Dr. Laurence Didierjean for the lead-lag

compensator and assistance in coding the various control laws.

The control problem was formulated as a regulator design, as shown schematically in

Figure 4.10, and was based upon a system identification similar to that discussed in the previ-

ous section. The goal was to utilize modulated diffuser throat air injection to maintain a stable

output response of the inlet static pressure taps. Inlet pressures were averaged and processed

by a FORTRAN code executing on a dedicated control law computer (details of the experi-

mental setup may be found in Chapter 2). The experimental procedure was to close the vari-

able-area nozzle in small increments, moving the operating point toward the surge line, while

the system was under closed-loop operation. Since it was necessary for the control algorithm

to remain insensitive to shifts in the mean value of inlet pressure, the average pressure signal

was filtered by a digital, 5 Hz, high-pass filter whose bode plot is shown in Figure 4.11. The

resulting signal was then processed by the discrete, state space control algorithm and multi-

plied by a gain. This output, a valve position request, was converted to a command voltage

by a D/A board and then sent to the valve controller. Control law gain values could be

changed by interrupting control law operation, entering a new gain, and restarting closed-loop

operation. This tuning operation was performed at operating points which were stable with

constant, mean-injection but near enough to the surge line to exhibit free-response modal ac-

tivity at 27 and 68 Hz. The frequency content of an inlet probe was constantly monitored on a

spectrum analyzer. Control law gain adjustments were made to decrease system modal ampli-

tudes observed on this monitored tap. Gains yielding maximum modal attenuation were cho-

sen as optimal. In order to preclude surges during gain adjustments, the valve command de-

faulted to a mean-flow, neutral command position.
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Figure 4.10: Control law block diagram

Amplitude

100 101 102

Frequency, Hz
Phase

100 101 102

Frequency, Hz

Figure 4.11: 5 Hz, digital high-pass filter bode plot
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The gain of the bode plots for all four controllers are normalized to 0 dB at 10 Hz and plotted

using the same scale to facilitate comparison. These plots include the influence of the high-

pass filter dynamics. When the interaction of controller and system poles with the filter dy-

namics on the closed-loop root locus is small (not affecting its qualitative characteristics), fil-

ter poles and zeros are omitted to avoid unnecessary clutter.

Due to the difficult and time-consuming nature of performing closed-loop forced re-

sponse testing, control scheme effectiveness was assessed by comparing the PSD's of average

inlet pressure, both with and without control, at the same operating point. Attenuation and/or

stabilizing modifications of the 27 and 68 Hz system modes is the figure of merit by which the

control laws are evaluated, in addition to any measured flow range extension. Actuation fre-

quency and amplitude are also examined with the premise that low energy actuation is prefer-

ential with regard to actuator life.

The first control algorithm tested was simple proportional control. The output of the

high-pass filter was multiplied by a constant gain to generate the valve command signal. The

open-loop transfer function bode plot is shown in Figure 4.12, and the root locus is shown in

Figure 4.13, on which poles of recognized physical phenomena are labeled. The root locus

indicates that although the control should damp the 27 Hz mild surge pole, it excites the 68

Hz injection plenum interaction mode and pressure tap resonance. PSD plots comparing fre-

quency content of the inlet static pressure taps during open and closed-loop operation indicate

that the 68 Hz and tap resonance modes were excited. However, the mild surge mode was

not noticeably damped nor shifted in frequency (see Figure 4.14). These spectra were gener-

ated at identical nozzle position and mean injection air flow, but unfortunately, the operating

point conditions are unknown due to a loss of data.
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Figure 4.14: Comparison of inlet pressure signal spectrums for (a) no control and
(b) proportional control, K = 1.2. minl,cornmde, is unknown (max. f = 700 Hz)

Figure 4.15 shows the frequency content and a representative time trace of the control

valve command. Valve command reflects the inlet pressure spectrum except for low fre-

quency filtered data as expected. However, the valve exhibits high frequency and high ampli-

tude position requests which might limit actuator life.
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Figure 4.15: (a) Valve command PSD (max. f = 700 Hz) and (b) time trace of
typical valve command for proportional control, K = 1.2. m,ncorr/mdes is unknown

A lead-lag compensator was used in the feedback loop to improve gain and phase

margin characteristics of the system [29]. The bode plot of the open loop transfer function

can be seen in Figure 4.16, and the lower frequency portion of the root locus diagram is

shown in Figure 4.17 (the higher frequency region is identical to Figure 4.13). Values for the

controller poles and zeros are provided in Table 4.2. The goal of this controller was to stabi-

, . ,m j



lize mild surge and damp the injection plenum interaction oscillations. Figure 4.18 shows the

spectral comparison both with and without control. The controller damps the mild surge peak

slightly, but excites the probe resonance and the interaction mode. The large peak near 10 Hz

is unexplained, but its sharpness indicates that it might have been an isolated, short-duration

event (not modal) during the 15 s data set. When these spectrums are examined with Figure

4.19, the valve command activity, it is apparent that the controller is reacting only to the

higher frequency modes. The high frequency, nearly peak to peak chatter of the valve com-

mand signal is, again, undesirable for actuator durability. Despite the large excitement of the

higher frequency modes, the mild surge mode was still found responsible for the transition into

surge (see Figure 19).

With the controller operating at K = 3, surge occurred at mtnl,corr/mdes = 0.846, the low-

est surge-free mass flow recorded during experimentation. Recall that the error bounds on

this measurement are mlnl,coff/mdes = + 0.0016. During periods of control law evaluation, sta-

ble, mean-injection operating points (without control) were demonstrated to at least

Tmln,corr/lmdes = 0.861, a value less than the surge point quoted in Chapter 2. However, since the

actual flow range with mean-injection was not determined, it is difficult to claim a significant

improvement.
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Figure 4.16: Bode plot of open loop transfer function for lead-lag controller
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Figure 4.17: Lead-lag controller low frequency root locus. Control poles and ze-
ros noted with a 'C

POLES Frequency, Hz Damping Ratio,

-299.9887 ± 600.0002i 95.493 0.4472

ZEROS Frequency, Hz Damping Ratio,
-100.1397 ± 100.0000i 15.915 0.7076

Table 4.2: Poles and zeros for lead-lag controller
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Figure 4.18: Comparison of inlet pressure signal spectrums for (a) no control,

minl,co/mdes = 0.864 and (b) lead/lag compensator control, K = 3, minI,cordes =
0.860 (max f = 700 Hz)

E

E
E
0
0

(r)

lO

0-
100 10 102

f, Hz
(a)

0.05
t, s

Figure 4.19: (a) Valve command PSD (max. f = 700 Hz) and (b) time trace of
typical valve command spectrum for lead/lag compensator control, K = 3
min,comdes = 0.860
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Figure 4.20: Waterfall plot showing transition into surge for engine system under

lead-lag control, K = 3, minl,corl/mdes = 0.846

A control law which shows promise in damping mild surge is a classical, bode design

compensator. Its open loop transfer function bode plot is shown in Figure 4.21 and its root

locus in Figure 4.22. It consisted of three pole and three zero pairs whose locations are

shown in Table 4.3. From its root locus the control law attempts to stabilize all of the identi-

fied system modes, allowing only valve and compensator dynamics to go unstable. This con-

trol law was only briefly evaluated, but its effect on the spectral content was encouraging. At

approximately the same rnl,corr/rnde as shown in the lead/lag compensator case, the influence

of the mild surge peak is virtually eliminated. The injection plenum interaction mode, how-

ever, appears at a slightly amplified level, despite the fact that the controller employs a pole-

zero cancellation at that location. At higher frequencies, the inlet tap resonance appears in

addition to a slightly excited valve resonance. If the mild surge mode is the primary precursor

of surge, the damping effect of this control may result in an extension of stable flow range.

Unfortunately, experimental difficulties did not allow the testing of this engine to surge.
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Figure 4.21: Open loop transfer function bode plot for classically designed
controller
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Figure 4.22: Classically-designed controller root locus. Control poles and zeros
noted with a 'C'
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POLES Frequency, Hz Damping Ratio, q

-376.99 ± 1256.64i 200.00 0.2873
-301.59 + 226.19i 36.00 0.8000
-267.03 ± 267.03i 42.50 0.7071

ZEROS Frequency, Hz Damping Ratio, ;

-31.41 ± 1570.79i 250.00 0.0200
-37.69 ± 75.39i 12.00 0.4472

-62.83 ± 420.97i 67.00 0.1476

Table 4.3: Poles and zeros for classically designed controller
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Figure 4.23: Comparison of inlet pressure signal spectrums for (a) no control,
m,n,co/ndes = 0.861 and (b) classically designed compensator control, K = 3,
minI,co mdes = 0.860 (max. f = 700 Hz)
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Figure 4.24: (a) Valve command PSD (max. f = 700 Hz) and (b) time trace of
typical valve command spectrum for classically designed compensator control, K =
2.5 minl,corr/mdes = 0.860
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The final controller tested was an H. design. This controller was designed (and im-

plemented) in state space format, but using Matlab's conversion tools from discrete to con-

tinuous time and from state space formulation to a transfer function representation, we can

examine the control law in the same fashion as earlier in the chapter. The controller was de-

signed to stabilize the mild surge poles within a region of uncertainty of their location. Figure

4.25 is the bode plot of the H. open-loop transfer function. Figure 4.26 indicates that the

mild surge poles would be driven towards lower frequency and higher damping by the pres-

ence of nearby controller poles. Figure 4.27 indicates that this frequency shift is occurring,

but that there is no associated increase in damping. The mild surge mode is shifted to ap-

proximately 18 Hz and an additional mode near 40 Hz appears, possibly associated with con-

troller poles seen in the root locus diagram. Looking ahead to Figure 4.28, it is this reduced

frequency mild surge mode which increases in amplitude and precipitates surge.

The lack of damping of this mild surge mode may be explained when the high-pass fil-

ter dynamics are included in a root locus plot. As can be seen in Figure 4.29, the filter dynam-

ics interact with the mild surge mode to decrease its damping and drive the pole into the right

half plane. Unfortunately, it appears that control law design may have neglected the influence

of the filter, and forced the system into instability.

POLES Frequency, Hz Damping Ratio, g

-90.3636 + 197.0664i 31.364 0.4168

ZEROS Frequency, Hz Damping Ratio,
1110.477

Table 4.4: Poles and zeros for H, controller
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Figure 4.27: Comparison of inlet pressure signal spectrums for (a) no control,
minl,conmdes = 0.861 and (b) H. compensator control, K = 0.01, min,conmdes =
0.860 (max. f = 700 Hz)
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Figure 4.28: Waterfall plot showing transition into surge for engine system under
H, control, K = 0.01, minl,cormdes = 0.856
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Figure 4.29: H. controller root locus. Control poles and zeros noted with a 'C'
and 5-Hz high-pass filter poles and zeros designated by 'F'

Figure 4.30 illustrates that actuation is primarily low frequency and low amplitude at

the selected gain. Controller poles roll off the compensator's response to the higher frequency

modes. Note that the high frequency modes are not excited by the controller and their natural

amplitude remains small. This represents a much more desirable control scheme from the

point of view of actuator activity. Therefore, a similar design which takes the high-pass filter

dynamics into consideration should be considered for future efforts.
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Figure 4.30: (a) Valve command PSD (max. f = 700 Hz) and (b) time trace of
typical valve command spectrum for H_ compensator control, K = 0.01
minl,conjmdes = 0.860

Several points should be made concerning the control law experimentation. At the

time of testing, several of the poles in the system identification were not linked with physical

phenomena, in particular the injection plenum interaction mode and inlet tap resonance.

Therefore, control law design had to take into consideration higher frequency modes which

had uncertain influence on the surge dynamics. Since the origin of these modes is now un-

derstood, the obvious conclusion is that a control law design should roll-off the influence of

(at least) the tap and valve resonant modes. Unless excited by injection, these modes do not

play a roll in the engine system dynamics. Inherent in the design of the H. controller was a

attenuation of the higher frequency signals. Note that neither of these modes increased in

magnitude as the engine was throttled. Rolling off the influence of the 68 Hz mode might also

be a valid approach. Although the model of Appendix B suggests that this mode migrates to-

ward instability, none of the control laws demonstrated were successful in damping it. It also

does not exhibit high magnitude behavior at operating points near the onset of deep surge.

Therefore, some degree of flow range extension may be achieved by only controlling the mild

surge mode. Such an approach has the added benefit of low frequency actuation require-

ments.



4.3 Summary and Conclusions

Forced response estimates between averaged axial station pressures and the valve

command signal were generated for the helicopter gas producer. Discrete frequency sine

waves were employed to generate an estimate with reasonable coherence. The frequency as-

sociated with the mild surge oscillations of the natural engine dynamics appeared as a complex

pole pair in the results for each sensor. Evidence of the injection plenum interaction mode

appeared at the inlet, diffuser throat, and vane plenum taps. This frequency did not appear in

the diffuser exit or combustor taps. Since it had previously been detected at these sensors in

the naturally excited dynamics, it was thought the forced response was beneath the noise level

of the system, indicating a lack of controllability. Other documented peaks were associated

with tap and valve dynamics.

The inlet static pressure taps in conjunction with the diffuser throat air injection were

chosen for use in control because of this scheme's observability of and apparent control

authority over the naturally excited resonant modes. A transfer function representation con-

sisting of 5 complex pole pairs and 2 zero pairs was fit to the frequency response estimation,

and the estimate was utilized for control design.

Four control laws were examined: proportional gain, lead-lag compensator, a classical

bode design, and an Ho control law. These control laws were tuned experimentally by observ-

ing inlet pressure modal activity on a spectrum analyzer as an indicator of decreased damping

and likelihood of surge. Their effectiveness was evaluated in much the same manner. A

common characteristic of the first three control laws was high amplitude, high frequency valve

activity. Although none yielded a significant extension in stable operating flow range, the ac-

tuator and sensor combination successfully demonstrated the capability of modifying system

dynamics. Only the classical bode design increased the damping of the mild surge mode,

which is thought to be responsible for inducing surge through large excursions in mass flow

and pressure. The H.o control shifted this large amplitude to a lower frequency, which ap-

peared to precede surge in this case. However, it appears that the system dynamics were en-

tangled with those of the high-pass filter.



Since the physical mechanisms of the prominent modes appearing in the forced re-

sponse experiments are now known, it is apparent that future control designs can roll off the

influence of (at least) the tap acoustic resonance and valve dynamics. In addition to simplify-

ing the control problem, this action would reduce the high frequency oscillation, and thus

wear, on the valve actuation system.
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Chapter 5: Contributions and Future Work

5.1 Contributions

This thesis describes the near surge behavior of the AlliedSignal LTS-101 gas pro-

ducer and presents the results from several attempts at active surge control using diffuser

throat air injection. It is hoped that the results summarized in this section will be useful in fu-

ture active control efforts on this engine. The contributions of the research may be summa-

rized as follows:

* Diffuser throat air injection generates two effects: a displacement of inlet mass flow and

a slight loss in achievable pressure ratio. The total of injected and inlet flow, when cor-

rected to turbine inlet conditions, remains constant for a given downstream nozzle posi-

tion. Therefore, inlet mass flow is displaced to satisfy the downstream choking relation.

The pressure ratio loss due to injection is lower than predicted by estimates of McNulty

[22]. Mixing losses within the diffuser are offset by a slightly elevated pressure ratio exit-

ing the impeller because of reduced flow through this component.

* Injection modifies the peak of the 95% N,co,, speedline characteristic. The speedline with

injection exhibits a large region of near zero slope at the peak and also includes a small

region of surge-free operation with positive slope. Experimental fits of the characteristic

peaks, both with and without injection, are presented.

* Air injection extends surge-free operation to lower corrected turbine inlet flow. The axial

stage and centrifugal rotor remain stable at compressor inlet flows where surge normally

occurs in the engine without injection. The stable operation of the rotating components

indicates the diffuser limits the stability of the system. The fluid dynamic effect of injec-

tion stabilizes this component in some manner, possible delaying flow breakdown within

individual vane passages.

* Mean injection modifies the pre-surge behavior of the gas producer. Zero-injection cases

exhibit virtually no coherent frequency growth prior to surge. With mean injection, fre-
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quency growth is noted near 27 Hz and 68 Hz, and the average amplitude of these modes

increases as mass flow is throttled. Additional observed frequencies are acoustic reso-

nances associated with instrumentation taps.

* The 27 Hz mode of pressure oscillation is evident at all unsteady pressure taps. An un-

steady mass flow estimation technique enables the operating point oscillation cycles to be

plotted on a compressor map. The resulting counter-clockwise motion indicates mild

surge, a dynamic instability of fluctuating mass flow and pressure ratio. Large amplitude

mild surge was found to precede deep surge, but the oscillations do not grow steadily

from small displacement disturbances. The mode grows and decays in a random fashion

as compressor mass flow is throttled, exhibiting typical behavior of a lightly-damped

mode.

* A non-linear simulation of compression system dynamics attributes mild surge to the re-

gion of surge-free positive compressor characteristic slope. Simulation cycles grow

steadily into surge, however, and do not exhibit the random growth and decay observed in

experiment.

* A linear, lumped parameter model attributes the 68 Hz mode to the interaction of the in-

jection plenum upon the compression system dynamics. Although the model is incapable

of matching either the mild surge or injection plenum interaction frequencies, it closely

matches the phase relationship between compressor inlet static and combustor pressure

fluctuations at each mode.

* Open-loop forced response testing was performed at near surge mass flows on the engine,

and sensors at all axial locations were examined for coherent responses to forcing. Not

surprisingly, since inlet flow displacement is the primary effect of injection, the inlet static

pressure taps exhibit the greatest response to actuation and excellent visibility of excited

system modes. Therefore, inlet static pressure was chosen to be the regulated variable in

linear surge control law design.
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* A 10-pole and 4-zero transfer function was fit to the frequency response results of valve

command forcing to average inlet static pressure. This identification was utilized by team

members for linear control law development.

* Proportional, lead-lag, H., and classical bode controller designs were tested on the engine

plus mean-injection system. The lead-lag controller resulted in the lowest Tnl,cor recorded

during testing. However, it is questionable if the result was a significant flow extension

because the engine was not throttled to surge at similar conditions. The Ho control law

was unsuccessful because of an apparent interaction between controller dynamics and a

digital high-pass filter, which processes the pressure feedback variables. The classical

bode design exhibited the greatest promise of successful closed-loop operation, for it

added substantial damping to the mild surge mode. However, engine damage prevented

testing the system to surge.

* The capability of a linear controller to modify the engine's system dynamics was demon-

strated. The pressure signal spectrums exhibited damping and shifts in the 27 Hz mild

surge mode. However, much control effort was focused at controlling high frequency

modes. After testing was completed, it was realized that these modes pertained only to

tap acoustics.

5.2 Suggestions for Future Work

The following items are suggestions for future efforts toward understanding the LTS-

101's system dynamics and demonstrating active surge control:

* The previous section indicates that sufficient control authority exists to modify the engine

system dynamics. The classical bode design should be further investigated, as well as

other linear control laws designed to roll-off response to modes above 68 Hz. Since the

linear, lumped-parameter model suggests that the 68 Hz mode goes unstable at lower flow

than mild surge, a successful closed-loop demonstration may depend only upon damping

27 Hz oscillations.
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* One of the shortcomings of control law testing was an inadequate method of comparing

operating points between experiments. Injection inlet conditions and mass flow varied

only slightly during experiments, but gas path pressure and temperature at the point of in-

jection could vary widely depending upon ambient conditions. The variation in conditions

leverages the effect of equivalent amounts of injection. Since the diffuser is the stability

limiting device in this gas generator, compressor exit corrected flow is a more appropriate

measure of its operating point with respect to the surge line. Time-resolved measurements

of injection flow should be made to facilitate this calculation.

* Tuning the unsteady calibration of inlet pressure to mass flow could be accomplished by

comparing mass flow fluctuation estimates to hot wire measurements. The results of this

correction would provide an experimental estimate of upstream inertia, a side benefit for

system modeling.

* Historically, modeling has inadequately predicted the modal frequencies and behavior of

this engine. Experiments which might shed light upon modeling issues should be at-

tempted, particularly efforts which might elucidate the behavior and origin of the 68 Hz

mode. For example, if the 27 Hz mode could be damped by a control law, it would be

useful to see if the 68 Hz migrates toward instability.
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Appendix A: Estimate of Unsteady Compressor Mass Flow

A method for estimating unsteady compressor mass flow on the LTS-101 gas genera-

tor was devised for examining 1-D flow oscillations and use in future non-linear control laws.

High-frequency pressure signals are filtered to attenuate response to fluid inertial effects, ac-

celerations and decelerations of the flow. The filtered output then serves as input into a

steady-state mass flow calibration.

Four high-frequency response pressure taps, located upstream of the axial rotor (refer

to Chapter 2 for further details), were calibrated to referred mass flow. Referred mass flow

was determined by an inlet bellmouth calibrated to steady, inlet static pressure depression. 10

15-second mass flow averages were fit with 6th-order polynomials of static pressure depres-

sion at the high-frequency taps. Differences in tap geometry and suspected flow asymmetry

near these locations mandated that a separate curve, such as shown in Figure A-1, be gener-

ated for each tap. Differences between the 5 psig Kulite transducers attached to the taps was

eliminated as a source of variation by examining several transducer/tap combinations.
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Figure A-i: Example inlet pressure tap calibration to referred compressor mass
flow. "x" and "o" bound ± l1( pressure scatter at calibration points.
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The basis of the steady-state calibration is the steady, incompressible Bernoulli rela-

tionship. However, its validity in capturing unsteady mass flow fluctuations had to be exam-

ined. In other words, in the frequency range of interest (generally < 100 Hz), does the steady-

state tap calibration accurately predict the magnitude of unsteady fluctuations, and is the

phase difference between pressure signals and actual mass flow negligible? Figure A-2 is a

schematic of the geometry analyzed.

Station 2:
High Frequency
Pressure Taps

Station 1: Station C:
Bellmouth Inlet Compressor

Pt,i = Pamb : Face
\ compressor flow

Schematic of
Compressor Inlet Ducting

Figure A-2: Schematic of compressor inlet and flow stations

Equation A. 1 is the unsteady, incompressible Bernoulli equation for flow with constant

pt at the bellmouth inlet. This formulation assumes negligible unsteady effects between the

large diameter inlet ducting and bellmouth entrance. The variable of integration, x is meas-

ured along a streamline.

2 dv(x) pv 2
2

Pt,i = Pamb = dx + +P2 (A.1)
I dt 2
1

Expressing velocities in terms of compressor face conditions (subscript c), assuming incom-

pressible continuity, and rearranging, A. 1 becomes:

dv 2 d pVc2 / A. 2
Pamb - P2 = -Pdep = pAc dt x I - Pv (A.2)

Sdt A(x) 2 A2

Linearizing this equation and expressing it in the Laplace domain yields:
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2 dx
-Pdep = pAcs v, +PveV V

A(x) A2

The definition of referred mass flow yields:

mref

t pA e i

Substituting A.4 into A.3 and solving for the resulting transfer function yields:

Mref (s)ifi (

dep (S)

1

2dx

A(x)
ref 1

S+ 2 A22

2 dx

A(x)

(A.3)

(A.4)

(A.5)

A.5 describes the magnitude and phase relationship between mref and Pdep in terms of the un-

steady Bernoulli relation. However, for zero frequency (steady-state, s = 0), the magnitude of

the relationship is defined at each tap by its calibration curve, which does not necessarily agree

with the magnitude predicted by A.5. A solution to this problem is to process Pdep values

through a filter with identical frequency response characteristics as A.5 but unit magnitude

when s = 0. The output of this filter would then be multiplied by ref at the given operating
dp ,,,

point, the derivative of the calibration curve for the appropriate high-frequency tap. This

approach is justified by the small amplitude (< 5% mdes) of mass flow oscillations, so is
dpi,,t

nearly constant at a given mean operating point.

Pfilt (s) di-ref

Pdep (s) dpflt operatin
m g

liref (s)

Pdep (S)

Pf1it (s)

Pdep (S)

mref (s)

Pfilt (s)
(A.6)
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Where:

pfilt (s) iref (S) ImefI, 1
2 (A.7)

Pdep(S) Pdep(S) P A2

The geometric inputs into the filter relation are shown below. Validation of these pa-

rameters should be performed by correlating mass flow estimates from hot-wire anemometry

and the algorithm discussed above. However, it is believed that the unsteady correction is

qualitatively accurate. rnref, p, 8, and 0 are determined by operating point and atmospheric

conditions.

Sdx= 8.8643 (A.8)
fA(x) ft

A 2 = 0.1444 ft2  (A.9)

Figure A-3 shows the frequency response characteristics of the pressure/mass flow

filter. With a corner frequency of approximately 45 Hz, within the range of interest, it is ap-

parent that the influence of inertial effects corrupts an estimate of unsteady mass flow based

solely on a steady-state calibration. Therefore, the filter shown in Figure A-3 must be in-

cluded in the estimation algorithm.

For implementation, the filter relationship was converted to its discrete time equivalent

using Matlab utilities. Discrete, filtered pressures were input into the appropriate steady-state

mass flow calibration, and the output mass flows were averaged. This method avoids the

computation of derivatives at each operating point for each tap, and can be justified, again, by

the small magnitude of the mass flow fluctuations present. Unsteady mass flow estimates in

this thesis were averages of 3 individual tap calculated values.

Figures A-4 and A-5 compare unfiltered and filtered mass flow estimates in plots of

mild surge oscillations. For the filtered case, mass flow fluctuations are reduced slightly and

lag pressure ratio oscillations, creating a slight tilt in the phase trajectory. The filtered traces

also appear smoother because of high frequency signal attenuation.
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Figure A-3: Bode plot of filter for pressure signals used in unsteady mass flow
calculations
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Figure A-4: Progression of mild surge cycle in 0.04 s increments with mass flow
estimate not corrected for unsteadiness. "*" represents beginning of segments and
"o" represents end.
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Figure A-5: Progression of mild surge cycle in 0.04 s increments with mass flow
estimate corrected for unsteadiness. "*" represents beginning of segments and "o"
represents end.
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Appendix B: Gas Turbine System Model With Injection Plenum

A challenge in analyzing the LTS-101 stability experiments was determining the origin

of 68 Hz oscillations which appeared near surge with mean injection. Initially thought to be

acoustic, attempts to estimate frequencies of equivalent duct geometry and resonator volumes

were not conclusive. Correcting engine-off forced response results to "hot" engine conditions

was also attempted. It was noted in Chapter 3 that the 68 Hz signal was amplified when a

certain phase relationship was established between the inlet, diffuser throat, vane plenum, dif-

fuser exit, and combustor taps. When this phase relationship deteriorated, the amplitude de-

creased. A discontinuity between oscillations at the compressor inlet and diffuser exit ap-

peared at the throat of the diffuser, the location of air injection. Therefore, the 68 Hz oscilla-

tions were hypothesized to be interaction of the injection feed plenum with the engine's dy-

namics. This appendix develops a linearized, lumped-parameter surge model based upon

McNulty's work [22] but modified to include an injection plenum. Several relationships in the

model are simplified during the mathematical development to make the level of effort consis-

tent with the objective of explaining the 68 Hz mode's origin. The goal is not to produce a

high-fidelity tool for engine simulation.

Figure 5-1 shows a schematic of the model, identical to McNulty's except for the in-

jection plenum and throttle. Mass flow from the high-frequency valve, mvave, enters the injec-

tion plenum where it feeds into the downstream compressor ducting. The downstream duct-

ing and injection throttle represent the vaned diffuser and the slots in the vane walls, respec-

tively. The throttle is modeled as an orifice with an equivalent CdA. The two methods of

"forcing" the model for frequency response computations, mvalve and pb,noise, are shown in the

location of their influence. The mathematical development of the model follows.
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injection plenum,

Vfp

injection
throttle, CdA >
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turbine,
choked

flow

sta.
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Figure B-1: Schematic of compression system with injection plenum

Upstream compressor duct momentum equation (in total pressure form, McNulty [22]):

dri = A (pamb  Pt,2
dt LU

Pamb = constant (B.1)

Compressor actuator disk (note all computations assume constant Ni,corr):

Pt,3 = c (iu,corr N ,corr ) Pt,2 N1 ,corr = constant and riucorr =i Tamb Pstd

u "Pamb

Downstream compressor duct momentum equation including combustor pressure noise:

drhd - A c ( (Pb + P b,noise

dt Ld

Combustor plenum continuity equation, isentropic plenum assumption:

dp a 2
d= b (r ddt Vb

- rh 4)
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Turbine constant corrected flow condition (choked NGVs):

T std (Pb + Pb,noise) std
4 = corr r4,corr = constant (B.5)

Pb std Pstd

Injection feed plenum continuity equation, isentropic plenum assumption:

dpfp a- (hivalve - min) (B.6)
dt Vfp

Injection throttle orifice relation:

in= CdA - 2p fp (pfp - ps,3); p = constant (B.7)

In order to simplify the mathematics of the model, this throttle relation is linearized and as-

sumed valid for flow into and out of the feed plenum. It is also assumed to be quasi-steady

because of the small inertia in the diffuser vane injection slots it represents. The throttle slope

is expressed as follows:

dlnj PfP
dm = CdA f (B.8)
dAp s  2 -RTfPp fp - Ps,3

So:

in= din (pf - Ps,3) (B.9)

Note from B.7 and B.9 that the static pressure difference between the feed plenum and station

3 drives the flow across the throttle. Since total pressures are used in the duct momentum

equations, pressure at station 3 must be converted to static pressure. Given the flow area,

mass flow, total pressure, and total temperature, the throat Mach number is computed. Static

pressure is then be computed by compressibility relations. The model assumes that for small

perturbations of inlet mass flow, Mach number does not change at the throat. This simplifica-

tion eliminates the need to compute a new total to static pressure relation for each flow and

compressor exit condition.
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ps,3 Pt,3 f(M th,)= Pt,3  
1 + i M2

In order to reduce the system to functions of variables appearing in time derivatives (state

variables), an additional algebraic relation is required. This equation represents the continuity

of mass flow in the downstream compressor duct. It utilizes the previously developed throttle

characteristic slope, and is used to eliminate pt,3 and pt,2 from the state equations.

dii - f th
Ind = r h + inj = h u + _Pfp -fMt

dAps

drinj
P t,3dp

1mu -r d + p fp

Pt,3 dri i
f(M , ) drh

dAps

driiini
dAp

P t,2 drinj

f(MydAps

(B.11)

(B.12)

(B.13)

So, the state equations become:

dri Pamb -

dt L amb

drid _ A c  U -m

dt Ld rf

drin,
rhu - Mrd + PfpdAps

drin
7 cf(th ,Y) As

dps

- (Pb + Pb,noise

dt - (hVp - d mvave
VfP

116

(B.14)

(B.15)

(B.16)

(B.10)



dpb ab

dt Vb

- l4,corr
jtd -7(P b +Pbnoise)/

Tb" P std

Equations B.14-17 were left in dimensional form and linearized to form a state-space system

of the following form:

x = AK + Bii

y = CK + Dii

-- mvalve

P b,noise

(B.18)

(B.19)

(B.20)

Pb

P fp

Ps,2
m

The outputs, y, were chosen for comparison to engine data. The elements of the state-space

matrices are shown below:

A(1,1)

A(2,1)
A =

A(3,1)

0

A(1,2) A(1,3) 0

A(2,2) A(2,3) A(2,4)

A(3,2) 0 0

A(4,2) 0 A(4,4)

Sdt )
A(1,1) =

arhu

Ac

Lu .c f(M,y)Lu - (M drh,,j
c1 f( Y)dAps

u m_ d d7rc am Pstd

dminj dthinj " dmu,corr std Pamb
dAps dAps
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(B.21)

(B.22)

u

I = m~d

S,
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a(drlidt
A(1,2) =

arid

A(1,3)

A(2,1)

- -c (B.23)
L o -f (M,y)dAPs

d~p

<drhu
dt

apfp

< d )d
dt

(B.24)

(B.25)
rhu Ld f(Mth,) dinj

dt )
A(2,2) -

rind
(B.26)

A

Ld f th,) dhnj
S 1) dAps

j dihd
adt) A

A(2,3) =

~Pfp Ld f(Mth,)

adt) A
A(2,4) d

apb Ld

dpi,

A(3,1) aIfi,
2

VfpVfp

adpfp

A(3,2) f
Iid Vfp
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(B.30)

Ac

Lu , - f(Mt,y)

Ac



(B.31)
Odt a 2

A(4,2) =
arihd Vb

A(4,4)= P t l 4 corr

aPb Vb 4,orr s t. td

The B matrix can be expressed with coefficients of the A matrix.

0 A(1,4)

0 A(2,4)
-1- A(3,2) 0

0 A(4,4)

0

0
C=

C(3,1)

1

(B.32)

(B.33)

(B.34)

(B.35)

0 0 1

0 1 0

C(3,2) C(3,3) 0

0 0

Static pressure at station 2 is defined by the following equation:

rh2

Ps ,2 P t,2pA

Combining B. 13 and B.35 and linearizing yields:

md
+ d-in

dAps

Jdt c Pstd

Pamb

drhinj pA
c f(Mth ) dAps

(B.36)
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sp,2 1
C(3,2) s,2 (B.37)

d 7C f(Mth) d in,
dAps

aPs,2 C(3,3) = s (B.38)

0 1

D = 0 0 (B.39)

Note that in the linearization, certain functional relationships were omitted for simplic-

ity, particularly relationships dependent upon temperature variations. Tb fluctuations were

assumed to be of longer time scale than plenum pressure disturbances, so they were neglected.

Tt,3 variation with operating point was also omitted. Evaluating its effect on Tb would require

a model of plenum heat release, a level of detail deemed unnecessary for this study.

The linear model examines state variable perturbations around an engine operating

point. After an inlet mass flow is chosen, mean engine performance, pressures, and tempera-

tures are evaluated for use in the partial derivatives of the state-space matrices. A compressor

speedline is used to determine 7c and the characteristic slope for a given mass flow. For

calculations in this thesis, the fit of the 95% Nl,O speedline with 2.14% mdes injection was

utilized. Empirically-based compressor efficiency is then used to determine Tt,3 . Using an ef-

fective turbine area from experimental data, Pb, and total mass flow, Tt,4 is determined from

the constant corrected flow relationship of the choked NGVs. pfp is calculated from the injec-

tion throttle CdA, mean injection flow, and the diffuser throat static pressure. These parame-

ters, in addition to several intermediate values, are used to generate the state-space matrices

defined above. Frequency response and system eigenvalue information is then evaluated

utilizing the linear system functions of Matlab.

Attempts to use engine geometric parameters in the model were unsuccessful in

matching the frequency behavior of the engine. Liberally modifying LI/Ac, Ld/Ac, Vb, Vfp, and
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CdA could not match the observed frequencies nor the correct ratio between the two. How-

ever, it was decided to tune the computational "geometry" such that the model poles qualita-

tively resembled the poles of the forced response experimentation in Chapter 4: a lightly

damped mild surge pair and a highly damped pair representing the 68 Hz mode. Figure B-2

shows the pole and zero locations for the computational system at the operating point shown

in B-3. Note the slightly positive compressor characteristic slope and the nearly unstable mild

surge poles. Table B-i shows a comparison of actual engine geometry and the empirical

throttle CdA to the parameters chosen for the computation. Despite its misses in frequency,

the model was capable of examining phase relationships between the various outputs.

-14 -12 -10 -8 -6
Real Axis

-4 -2 0

Figure B-2: Pole-zero plot of system with chosen geometric parameters at operat-
ing point in Figure B-3
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Figure B-3: Operating point used in calculations for Figures 3.32 and 3.33 shown
on the 95% NI,co, compressor characteristic fit with 2.14% mdes mean injection

Parameter Geo. or Empirical Simulation

Lu/Ac 0.544 i/in 1.360 I/in
Ld/Ac 1.245 1/in 3.113 1/in

Vfp 18.317 in 3  183.17 in3

Vb 616 in 3  1540 in3

CdA 0.346 in 2  3.46 in 2

Table B-1: Comparison of engine geometry and chosen calculation parameters

The results shown in Figures 3.32 and 3.33 were computed at the operating point

indicated in Figure B-3. These results were generated using the transfer functions of output

variables to pb,noise forcing. Since the 68 Hz mode was observed in the natural response of the

engine, it was hypothesized that the energy supply for the oscillations may originate in the

combustion process. mvalve forcing was not investigated in this thesis.

The coefficients of the state-space matrices change with operating point. Therefore,

the migration of system poles and zeros can be tracked for changes in operating condition.
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The results shown in Figure 4.8 show the migration of the poles toward instability as the mass

flow decreases along the characteristic in Figure B-3.
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