
I

Real-time Collision Avoidance for Autonomous Air Vehicles

by

Christopher P. Sanders

S.B., Aeronautics and Astronautics
MIT, 1996

Submitted to the Department of Aeronautics and Astronautics in
partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1998

© Massachusetts Institute of Technology, 1998. All Rights Reserved.

Author

Certified hv

Department of Aeronauticis and Astronautics
January 16, 1998

.. . . .°°°

Paul A. DeBitetto
Senior Member of Technical Staff, Charles Stark Draper Laboratory

I Thesis Supervisor

Certified by
Eric Feron

Professor of Aeronautics and Astronautics

IA Thesis Supervisor

Accepted by

S---Jaime Peraire
Associate Professor

Chairman, Department Graduate Committee
Department of Aeronautics and Astronautics

VV~~~ .IIU ~

Mtrrs; OQ13~

Real-time Collision Avoidance for Autonomous Air Vehicles

by

Christopher P. Sanders

Submitted to the Department of Aeronautics and Astronautics on
January 16, 1998, in partial fulfillment of the requirements for the

degree of Master of Science in Aeronautics and Astronautics

Abstract

This thesis describes the design and analysis of a collision avoidance system (CAS) for
autonomous air vehicles (AAVs). In the future, AAVs will operate in close proximity to
one another and cooperate to perform missions. In such environments, a real-time colli-
sion avoidance system for the AAVs is needed to ensure the safety of the vehicles and the
mission. The CAS development process described in this document represents a balanced
approach, concentrating on four key elements: algorithm design, multi-AAV simulation,
closed-loop analysis, and actual vehicle flight tests. The testbed for the future flight tests
of the CAS is the Draper Small Autonomous Air Vehicle, winner of the 1996 International
Aerial Robotics Competition. This balanced design approach yielded more insight into the
CAS behavior than if only one or two of the four elements had been used. Furthermore,
favoring a simple, functional design over a complex, optimal one allowed the system to be
developed quickly and analyzed easily.

Thesis Supervisor: Eric Feron
Title: Professor, MIT Department of Aeronautics and Astronautics

Thesis Supervisor: Paul DeBitetto
Title: Senior Member of Technical Staff, Charles Stark Draper Laboratory

Acknowledgments

This thesis was supported by The Charles Stark Draper Laboratory, Inc. Publication of
this thesis does not constitute approval by The Charles Stark Draper Laboratory, Inc., of
the findings or conclusions contained herein. It is published for the exchange and stimula-
tion of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory,
Inc., Cambridge, Massachusetts.

f '--- -- ----

Christopher P. Sanders

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc., to the
Massachusetts Institute of Technology to reproduce and distribute publicly paper and elec-
tronic copies of this thesis in whole or in part, and to grant others the right to do so.

I would first like to thank Paul DeBitetto, who always provides me with valuable guid-
ance and encouragement. I am especially appreciative to him for giving me the opportu-
nity to work on such a challenging and exciting project. I have learned a lot from him and
from the DSAAV project. I would also like to thank Professor Eric Feron for always keep-
ing me on track and helping me with the design and analysis of my collision avoidance
algorithms.

In addition, I would like the thank the other members of the DSAAV team for their
effort and enthusiasm toward the project. Long Phan, Christian Trott, Eric Johnson, Mike
Bosse, Chinsan Han, Paul Stukenborg, Bob Faiz, and Rusty Sammon have made the
project a success-and a lot of fun, too.

If it were not for Mario Santarelli hiring me to work in the Draper Simulation Labora-
tory back in 1994, I would have missed out on being a part of both the Simlab and the
DSAAV project. I am very grateful to him for giving me these opportunities.

Finally, I would like to thank my family. Their support and guidance have been inspi-
rational to me. I especially want to thank my wife, Marienne Moro Sanders, for her love
and support throughout my years at MIT. She has been the source of much patience,
understanding, and engineering wisdom.

Chris Sanders
January 1998

Table of Contents

1 Autonomous Air Vehicles..11
1.1 W hy A A V s? ... 11
1.2 A A V M issions 13
1.3 T ypes of A A V s 14
1.4 Multi-AAV Operations .. 15

1.4.1 Autonomous Control Architectures ... 15
1.4.2 Mission Planning 17
1.4.3 Collision Avoidance..18

2 Draper Small Autonomous Air Vehicle...................................... 21
2.1 B ackground 2 1
2.2 V ehicle Platform .. 22
2.3 Guidance, Navigation, and Control System................................ 22

2.3.1 Navigation System ... 23
2.3.2 Guidance System .. 26
2.3.3 Control System 27

2.4 C om m unication ... 27
2.5 V ision System 28
2.6 D SA A V T ools 28

2.6.1 Ground Station 28
2.6.2 Sim ulation 30

2.7 D S A A V 2 3 1
2.7.1 H ardw are Changes... 32
2.7.2 Cooperative A A V s .. 33

2 .8 F uture 34
2.8.1 Cooperative DSAAVs.. 34
2.8.2 Advanced Control Techniques............................... 34
2.8.3 Beyond Line-of-Sight Operations ... 35

3 Collision Avoidance System Definition 37
3.1 Centralized vs. Distributed Architecture.............................. 37
3.2 Algorithm Complexity 41
3.3 Interface to Higher Level .. 44
3.4 Existing Collision Avoidance Architectures 46
3.5 Separation Requirements 48
3.6 Dynamic Model ... 50

4 Collision Avoidance Algorithm Design............................... 55
4.1 C onflict Prediction ... 55

4.1.1 Vehicle Information .. 55
4.1.2 Trajectory Prediction 58

4.1.3 Conflict Thresholds... 61
4.2 Conflict Resolution 65

4.2.1 Maneuver Direction 65
4.2.2 Maneuver Commands 68
4.2.3 M ulti-A A V M aneuvers ... 71

4.3 DSAAV Algorithm Design 72
4.3.1 DSAAV Bang-Bang Algorithm ... 73
4.3.2 DSAAV Continuous Algorithm.............................. 78

4.4 Conclusions 98

5 Closed-loop Algorithm Analysis 101
5.1 System Stability and Performance .. 101

5.1.1 Linearized Dynamics 103
5.1.2 Equilibria Trajectories 108
5.1.3 Stability Analysis .. 110
5.1.4 R oot L ocus .. 116

5.2 Time Delay... 122
5.3 Unmodeled Dynamics.. 127

5.3.1 Dynamic Coupling .. 128
5.3.2 Other Nonlinearities 130

5.4 Conclusions ... 131

6 Conclusions ... 133
6.1 Autonomous Collision Avoidance....................................... 133

6.1.1 CAS Design and Analysis Methodology 133
6.1.2 Strive for Balance in Design and Analysis 133
6.1.3 Choose Functional Over Optimal .. 134
6.1.4 Communication is Important 134
6.1.5 Safety First.. 135

6.2 Suggestions for Future Research .. 135
6.2.1 Nonlinear Analysis............................. 135
6.2.2 Flexible Collision Avoidance System..................................135
6.2.3 Three or M ore AA V s .. 136
6.2.4. Flight Test the CAS 136

R eferen ces .. 138
Appendix A Collision Avoidance Code .. 141

A .1 V ariable D efinitions 141
A.2 Bang-Bang Collision Avoidance Algorithm............................ 142
A.3 Continuous Collision Avoidance Algorithm 147

Appendix B Closed-loop Stability Matlab Script 153
B .1 M atlab Script acas.m .. 153

List of Figures

1.1 Predator U A V 13

2.1 D SA A V in flight 21
2.2 DSAAV system 23
2.3 Ground station user interface 29
2.4 DSAAV simulation display ... 31
2.5 D SA A V 2 32
2.6 Cooperative DSAAV simulation 34

3.1 Communication links for centralized and distributed systems 39
3.2 Hybrid architecture 41
3.3 Cylindrical protected zone 49

4.1 Intent information prevents unnecessary collision avoidance maneuver 57
4.2 Deterministic conflict detection in the conflict and no conflict cases 62
4.3 Position error ellipses for the AAVs 63
4.4 Encounter geom etry .. 64
4.5 Encounter-specific maneuvers 68
4.6 Return m aneuvers 70
4.7 Simulation result: premature return switching............................. 70
4.8 "Rotary in the sky": multi-AAV collision avoidance 72
4.9 Start of bang-bang avoidance maneuver.............................. 75
4.10 Cooperative and noncooperative avoidance maneuvers 76
4.11 M aneuver direction criterion 77
4.12 Continuous controller avoidance command............................... 80
4.13 M aneuver options.. 83
4.14 Choosing the maneuver direction 84
4.15 N o solution for Vzr ... 86
4.16 Return m aneuver cffltf ia.. 87
4.17 CAS on/off switching .. 88
4.18 R elay and hysteresis... .. 89
4.19 CAS on/off criterion with relay and hysteresis 89
4.20 CAS on/off switching with hysteresis; d = 4 fee 90
4.21 Time delay = 0.0 seconds 91
4.22 Time delay = 2.0 seconds; uncompensated, compensated.......................... 92
4.23 Time delay = 4.0 seconds; uncompensated, compensated.......................... 92
4.24 Time delay = 6.0 seconds; uncompensated, compensated.......................... 93
4.25 Drifting vehicle altitudes.. 94
4.26 Drifting vehicle altitudes: tmin* = 6.0 95
4.27 Drifting vehicle altitudes: tmin* = 2.0 96

5.1 O pen-loop dynam ics .. 106
5.2 Closed-loop system ... 106
5.3 Headon m aneuver 109
5.4 Relative positions at t* .. 109
5.5 H eadon m aneuver .. 115
5.6 Kvs. xr ... 117
5.7 D ecoupled system 123
5.8 Decoupled system with time delay 124
5.9 Decoupled, closed-loop system 125
5.10 Tmax vs. xr.... 127
5.11 Coupled dynamics in response to step x-velocity command 128
5.12 Coupled dynamics in response to step y-velocity command 129
5.13 Coupled dynamics in response to step y-velocity command...................... 130

List of Tables

5.1 C A S root locus... .. 116
5.2 Shared-avoidance root locus... 120
5.3 Noncooperative CAS root locus .. 122

10

Chapter 1

Autonomous Air Vehicles

Over the last couple decades, talk of autonomous vehicles has gradually made its way into

discussions on the military and commercial aerospace industries. And while autonomous

ground and undersea vehicles have been in service for awhile, the age of the autonomous

air vehicle (AAV) is seemingly just dawning.

In reality, the aerospace industry has been moving towards autonomous vehicles for

decades. The increased automation in military and commercial aircraft allow flight com-

puters to perform most critical flight operations; and it is conceivable that aircraft pilots

will become virtually unnecessary in the not-too-distant future. However, the AAVs we

are speaking of are a different class of vehicles with unique missions specifications.

1.1 Why AAVs?

Some of the motivation behind AAVs may be understood by first considering the broader

class of unmanned aerial vehicles (UAVs). The UAV class includes AAVs; however,

UAVs may also be remotely piloted by a human on the ground (or in another vehicle for

that matter). In practice, even most AAV architectures do include a human in the loop, and

therefore are not entirely autonomous. However, in most cases this human merely exer-

cises supervisory monitoring and control of the vehicle.

Fully autonomous or not, all UAVs offer some advantages over conventional manned

aircraft. All one has to do is to look at the field of human factors engineering to realize

how much effort is made to design things for human operation. This is especially the case

in the aerospace industry, where the human operator is often at the helm of a highly capa-

ble and often dangerous vehicle. Books, reports, university courses, and thousands of

engineers have investigated how to make pilots and aircraft crews more comfortable and

effective in their respective vehicles. This research often translates into costly displays,

control input devices, and life-support systems. In many vehicles, life-support equipment

(including the cockpit or crew quarters) constitute much of the weight and size of the vehi-

cle.

Of course, having a human operator in a vehicle also automatically restricts the allow-

able performance of the vehicle. Fighter aircraft maneuverability is severely limited by the

G-levels tolerable by the human body. Furthermore, every time a manned air vehicle takes

flight, human lives are being put at risk. This is especially true in combat situations and

experimental test flights.

Remotely-piloted vehicles (RPVs) may remedy some of the above-mentioned compli-

cations and shortcomings of manned flight. Without a pilot on board, a fighter RPV could

perform hi-G maneuvers far surpassing those of manned fighters. Additionally, without a

cockpit and life support apparatus, the fighter UAV could be smaller, lighter, and cheaper

than its manned counterparts. The loss of an RPV would cost a fraction of that of a

manned fighter. Most importantly, the pilot would be unharmed.

Nevertheless, shifting pilot control to the ground introduces a new class of problems.

The pilot might be deprived of visual, aural, and motion cues which otherwise would act

to enhance his situational awareness. These issues are constantly being investigated and

addressed by virtual reality technology and computer-augmented controls. Also, it is no

secret that pilots, in general, are opposed to being taken out of the aircraft and put on the

ground at the controls of an RPV. However, after wars during which pilots' lives have been

lost, there has been noticeably increased support of taking combat pilots out of harm's

way.

In some cases, removing humans from the piloting loop altogether has its merits. First

of all, humans have finite reaction times. This reaction time includes the time it takes the

pilot to be aware of a "situation", as well as the actual physiological reaction time. Under

nominal conditions, a human pilot's reaction time is sufficient for safe operation. There

are, however, extreme scenarios in which only a computer could react quickly enough to

avoid disaster.

At times, human operators practice subjective and emotional decision making. Cer-

tainly there are instances in which such traits have proven to be valuable. However, these

same traits are quite often to blame for human error in air vehicles. Fatigue, which often

plagues overworked or overstressed pilots, is another potential source of human errors. A

shift toward supervisory human control or complete autonomy could help eliminate these

causes of error.

From a financial standpoint, one of the most expensive aspects of aircraft operation is

the number of human operators needed to perform particular missions. With AAVs, any

human operators should only be performing supervisory duties. It is reasonable to envi-

sion large fleets of AAV operated by as few as one or two people.

1.2 AAV Missions

Autonomous aerial vehicles potentially could perform a number of missions. AAV mis-

sions should capitalize on some of the aforementioned advantages AAVs have over

manned aircraft. Over the last thirty years, remotely-piloted UAVs have been used almost

exclusively in surveillance and reconnaissance missions. Such missions can get away with

not having a human on board more than tactical missions, such as air-to-air combat. Pred-

ator (Figure 1.1), made by General Atomics, is one of the most battle-proven surveillance

UAVs.

Figure 1.1: Predator UAV

Also, AAVs have a further advantage over even RPVs: they can perform missions

without concern for the mental or physical condition of a human pilot. In one unique long-

duration application, AAVs would form a hovering communications network for long-dis-

tance communication. Surveying hazardous radiation or waste areas with AAVs would

also keep human operators out of danger.

Without a human cargo, designers have more flexibility with AAV shapes and sizes.

The vehicles can be made to have extremely low radar cross-sections, allowing them to

operate stealthily. Smaller AAVs could perform surveillance in hard-to-reach areas such as

forests and even urban environments. Micro-AAVs, whose sizes may someday shrink

down to insect-size, could be deployed in large numbers by soldiers in the field for a look

over a ridge. Or a mission could take the micro-AAV inside of buildings, where it would

be the proverbial fly on the wall.

Further down the line, AAVs could be used in tactical missions, such as air-to-air and

air-to-ground assaults. Since real-time control often plays a part in tactical applications,

the communication delays associated with RPVs may make them inappropriate for these

missions. Instead, these missions will require advanced control techniques for AAVs, per-

haps even "intelligent control" methods which emulate a human operator. While fighter

pilots are not quite ready to step out of the aircraft and let a computer fly, as AAV technol-

ogy advances, these advanced missions will be seriously considered.

AAVs aren't limited to military missions. UAVs are already being used for environ-

mental imaging and data collection. Inevitably AAVs will be used similarly. AAVs even

offer something for the entertainment and news industries. Moviemakers will be able to

capture shots never before possible with camera-carrying AAVs. News organizations will

be able to capture video footage of hard-to-reach or dangerous scenes. And if AAVs prove

themselves reliable over time, we may even see passenger-carrying commercial autono-

mous transports.

1.3 Types of AAVs

Like manned aircraft, AAVs can come in a variety of styles. Everything from autonomous

airships to tail-sitters have been attempted. Most AAVs, however, can be described as

either a rotorcraft (helicopters and their kin) or a fixed-wing aircraft. Traditionally, RPVs

have been predominantly fixed-wing, as hovering a helicopter is a difficult task which

relies heavily on vision and motion cues which may be unavailable to the remote pilot.

AAVs, on the other hand, are not restricted by the limitations of remote piloting. In

fact, autonomous helicopters have some distinct advantages over fixed-wing AAVs. Heli-

copters have a unique range of motion, including hover and backward flight. This allows

them to perform accurate station-keeping, which is useful in surveillance and reconnais-

sance. They can more easily maneuver in limited spaces and at low altitudes. Many AAV

missions may require them to fly below treetop level or around buildings in cities. Lastly,

helicopters and other vertical take-off and landing (VTOL) AAVs do not require an air-

strip, and therefore can be operated out of almost anywhere.

1.4 Multi-AAV Operations

As people dream up more and more assignments for AAVs, many of them will involve

multiple vehicles working together. At times AAVs with different missions will be

required to interact in the same airspace. In other situations, cooperating AAVs will need

to safely practice formation flying. For these multi-AAV missions to take place, tech-

niques for safe and intelligent AAV cooperation will be necessary. Those techniques begin

which each vehicle's autonomous control system.

1.4.1 Autonomous Control Architectures

The complexity of an AAV's mission may demand that it be able to negotiate multi-

ple-and often conflicting--goals in real-time. The task of designing an autonomous con-

trol system which safely accounts for all perceivable scenarios is a formidable one.

Instead of trying to achieve the necessary behavior with a complex, optimal control

system, many have suggested using a combination of simple control behaviors. When acti-

vated in series or parallel, these simple behaviors may sum to produce much more

complicated behavior.

Many biological systems seem to demonstrate this superposition of simple behaviors.

In particular, the complex (even chaotic) behavior of swarming flies and mosquitoes has

been closely simulated by simple pursuer-evader equations of motion [1]. Similarly,

observations and simulations have shown very coordinated and purposeful behavior in ant

and bee colonies, where the individuals' behaviors are based on very simple environmen-

tal cues [2].

Rodney Brooks formalized this type of vehicle control in what he calls a subsumption

architecture. The subsumption architecture is a layered control system consisting of levels

of competence. Each "level of competence is an informal specification of a desired class of

behaviors" for the autonomous vehicle. "A higher level of competence implies a more spe-

cific desired class of behaviors." Lower levels continuously run with no knowledge of the

levels above them. Higher levels, however, can suppress the actions of the lower levels,

and inject their own actions instead. When this occurs, it is said that the higher level layers

subsume the lower levels [3].

A subsumption architecture may be simplified into just two control layers: one con-

cerned with global control and one with local control. This is a common distribution of

control in autonomous vehicles. Global control laws are those which utilize either global

goals or global information, or both [4]. Global goals describe the overall mission for the

vehicle or team of vehicles. Often, global goals are commanded by a centralized control-

ler, which can be either a computer or human operator. Global information is that informa-

tion which is used by the autonomous vehicle or team to pursue the global goals. This

information is obtained through communication among the vehicles and their centralized

controller.

Global goals and global information may not be updated very often. A mission sched-

ule may even be uploaded to the vehicles before the mission, with no means for revision

during the mission. Unexpected events can occur which disrupt the mission's global goals,

in which case it may be necessary to rely on a more reactive, local controller.

Local controllers command reactive behaviors, without considering the global goals.

And because they are to react in a timely manner, local control laws may not have time to

incorporate global information into their logic. A local controller may be suboptimal, but

it might also help the vehicle survive those unexpected disruptions.

Finding the appropriate balance between global and local control is difficult and

unique for every autonomous vehicle system. Achieving this balance is often a trade-off

between optimality and robustness. At times, global and local goals are in conflict, and we

need a way-like subsumption-to negotiate between them.

Conveniently, the multi-AAV cooperation task can also be broken up into global and

local control. The global control involves high-level mission planning, while the local con-

trol handles the low-level, reactive collision avoidance.

1.4.2 Mission Planning

Mission planning pertains to the strategic routing and scheduling of AAV activities. For

example, a mission planner might devise waypoints for the vehicle to follow. These way-

point commands would be taken by the AAV and translated into guidance and control

commands.

Robot motion planning has been a hot topic in the robotics, controls, and artificial

intelligence communities for years. Parallel efforts have also been made in the air traffic

control (ATC) community. Most of the research has focused on numerical optimization

methods and so-called intelligent control techniques. Often the line between the two

becomes blurred, as they are both based on many of the same principles.

Most of the optimization techniques fall under the classification of numerical pro-

gramming. In general, numerical programming optimizes a given quantity (e.g. fuel, time,

safety) while satisfying certain constraints. The field of operations research (OR) applies

these programming techniques to solve a number of real-life problems. While very effec-

tive, these methods become computationally intensive as the complexity and number of

degrees of freedom in a system increases.

Intelligent controls techniques are an attempt to assign human traits, such as learning

and language, to computer control systems. They include fuzzy control, adaptive control,

and neural control techniques. Fuzzy control moves away from exact numerical control

laws, toward linguistic or fuzzy laws that are used by human operators. For example, a

pilot, when asked to describe the landing task, will do so with vague references to "too

fast", "too shallow", "slight back pressure", etc. Fuzzy control assigns references like

these to numerical control ranges. The fuzzy control law then combines all fuzzy condi-

tions which apply in order to output a single control signal [5].

Adaptive control accounts for a changing environment, enabling the controller to

detect such changes and compensate for them. In the complex environment of multi-AAV

operations, such flexibility could prove very useful [5].

Lastly, neural control is based on the interconnection of "neural networks" in the

human nervous system. A particular combination of sensory stimuli result in an appropri-

ate control action. Often, the relationship between the sensory inputs and motor outputs is

a complex one. Therefore, the neural network actually must repeat a task a number of

times, each time slightly adjusting the connections until the mapping from input to output

is correct [5].

The mission planning task doesn't necessarily have to be performed by a computer

either. A human operator could be responsible for planning the mission route, either

before the mission, or on-the-fly during the mission. While this may fall short of a fully

autonomous mission, the remainder of the guidance, navigation, and control tasks could

remain under the computer's control. Such coordination of multiple AAVs would be com-

parable to the job of an air traffic controller.

1.4.3 Collision Avoidance

Ideally, the higher-level mission planner will handle any potential conflicts between

AAVs. In complex multi-AAV operations, however, a mission manager-human or com-

puter-might send errant commands that put two or more AAVs dangerously close to one

another. Or a failed communication link with the ground station could leave an AAV virtu-

ally blind to others in its vicinity. In these situations, a lower-level, reactive collision

avoidance system (CAS) would be necessary to avert an accident.

Like the Traffic alert and Collision Avoidance System (TCAS) in commercial aviation,

this CAS would issue commands that would take the involved AAVs out of danger. Unlike

TCAS, however, a collision avoidance system for AAVs wouldn't just be issuing warnings

to a human pilot; instead, it would basically take over the low-level control of the AAV.

Instead of relying on a pilot reacting quickly and taking the correct action, an autonomous

CAS can rely on the AAV's guaranteed preprogrammed performance.

As with the mission planning task, there is no obvious technique for collision avoid-

ance. The multi-AAV environment is complex and nonlinear, and many issues have to be

considered. The focus of this document is to address some of these issues for a representa-

tive autonomous vehicle system. A collision avoidance system for these AAVs is pre-

sented and analyzed in the subsequent chapters.

20

Chapter 2

Draper Small Autonomous Air Vehicle

2.1 Background

The Draper Small Autonomous Air Vehicle (DSAAV) is the testbed upon which our

collision avoidance system will be tested. The DSAAV (Figure 2.1) came about in 1995,

when an IR&D project was initiated at Draper Laboratory to develop a small autonomous

air vehicle. A team of Draper technical staff, Boston University students, and Massachu-

setts Institute of Technology students was assembled, and they chose the objective of the

project: submit an entry in the 1996 International Aerial Robotics Competition.

Figure 2.1: DSAAV in flight

This annual competition is sponsored by the Association for Unmanned Vehicle Sys-

tems, International (AUVSI), and features AAVs designed and built by university and

industry teams all over the world. The contest missions change from year to year, but in

1996, it required the vehicles to locate (within one meter accuracy) five barrels scattered

throughout a 60 foot by 120 foot field. The AAVs also had to identify each barrel, based

on either a radiation label or biohazard label located on each. In addition, one of the drums

had a small disk, which was to be retrieved by the AAV and returned to the starting posi-

tion. The entire mission, including take-off and landing, was to be performed completely

autonomously.

The Draper team won the contest, having the only vehicle which successfully per-

formed a fully autonomous mission, from take-off to landing. In fact, in the allotted hour,

DSAAV completed seven fully autonomous flights. From these flights, the locations of all

five barrels were determined, and two of the barrel labels were successfully identified.

2.2 Vehicle Platform

For a mapping mission in a small area like the contest field, the DSAAV needed to be

maneuverable in tight spaces. This requirement naturally pointed to the hover capabilities

of helicopters. After assessing payload weight budgets and project cost budgets, TSK's

off-the-shelf Black Star remote-control helicopter was selected. Its 2-HP engine and six

foot main rotor diameter provided just enough lifting power to hover with an eight to ten

pound payload.

2.3 Guidance, Navigation, and Control System

Figure 2.2 is a schematic of the DSAAV system. The heart of this system is its guidance,

navigation, and control (GNC) system. Although manned air vehicles have GNC systems

as well, AAVs rely on them to take the place of the pilot. Each of the following three sub-

sections looks at one of the elements that make up GNC: navigation, guidance, and con-

trol.

I l l I
RFmodem link UHF link

I I I I

Figure 2.2: DSAAV system

2.3.1 Navigation System

Before the DSAAV can autonomously locate barrels in a field, it has to first be able to

determine its own position relative to a frame of interest. To do so, it relies on a suite of

navigation sensor hardware as well as navigation software which runs on board the vehi-

cle.

Differential Global Positioning System

The global positioning system (GPS) is ubiquitous in today's world. Everyone from avia-

tors to geologists to hikers use this accessible, worldwide navigation system. GPS relies

on a constellation of 24 satellites which orbit the earth. A GPS receiver measures its dis-

tance to as many satellites as are in view above the horizon. If four or more satellites are in

view, the receiver can triangulate its position.

I

With differential GPS (DGPS), the receiver compares its measured position to the

location of another receiver at a known, surveyed position. This comparison allows the

receiver to compensate for clock errors, atmospheric delay, ephemeris errors, multipath

errors. The result is a highly accurate, low-bandwidth navigation system.

DSAAV uses the Novatel RT-20 system, which delivers 20 centimeter position accu-

racy. Note that the ground station GPS receiver is not placed at a known geographic loca-

tion. For the contest, we were not interested in position information relative to an earth or

inertial frame. It was important, however, to accurately know the vehicle's position rela-

tive to the field. So, the DGPS system provides accurate position information of the vehi-

cle relative to the ground station receiver, which was placed in a known location relative to

the contest field.

As accurate as the GPS system is, it does have its limitations. Most its shortcomings

stem from its reliance on continuous line-of-sight tracking of the GPS satellites. Although

plenty of satellites are usually visible in the sky anywhere on earth, there are a number of

factors which can nevertheless degrade the system. First, obstructions can block satellites

from view of the GPS antenna. In urban areas, buildings are the obvious culprits. In rural

areas, trees are often to blame. In most conventional aerospace applications of GPS navi-

gation, the operation altitudes are above the buildings or the trees. However, as discussed

earlier, many of the potential applications for small AAVs involve low-altitude operations,

where buildings or trees could interfere with the GPS.

Another GPS problem comes from multipath interference. The ranging signals trans-

mitted from the GPS satellites to the receivers can reflect off of surfaces (such as the

ground or buildings) and arrive at the receiver at several distinct times. Each of these arriv-

als will result in a different computed range to the satellite, essentially confusing the

receiver as to what the correct range is. The result is decreased position accuracy.

Inertial Navigation System

Since the helicopter is a unstable dynamic system with relatively fast time constants, the

low-bandwidth of the GPS system is insufficient to adequately control the helicopter. Fur-

thermore, with only one GPS antenna on-board, there is no way to sense the rotational

motion of the helicopter from GPS. Inertial navigation is a good method of sensing the

high-bandwidth and rotational motion of the vehicle.

A typical inertial navigation system (INS) consists of three gyroscopes and three

accelerometers. The gyroscopes measure the rotational velocities around three orthogonal

axes. The accelerometers measure the vehicle's acceleration along the same three axes.

These rates can be fed directly into the navigation and control system, or they can inte-

grated to obtain positions and attitudes which can be used by the navigation and control

systems. One of the most important advantages to INS is its self-contained nature. It

requires no external communications and works in most any environment.

Like GPS, INS is not without its disadvantages. Angular rates and linear accelerations

must be integrated once and twice respectively to obtain attitude and position. Any errors,

even small ones, in the rates and accelerations will accumulate as they are integrated. The

result is growing errors in attitude and position. Therefore, INS alone is not a reliable sen-

sor for measuring position. However, INS and the accurate, low-bandwidth position mea-

surements of GPS can combine to provide accurate low- and high-bandwidth navigation

information. It is the responsibility of the navigation software to sensibly combine the

measurements of these two sensors.

The INS system in DSAAV is the Systron Donner Motion Pak, which uses three quartz

rate gyros and three quartz flexure accelerometers. Without GPS updates, this inertial

measurement unit (IMU) will drift to a 4.5 foot position error in approximately nine sec-

onds.

Sonar Altimeter

Since DSAAV makes autonomous landings, it must very accurately know its position

above the ground. Since the GPS/INS navigation provides vertical position relative to an

Earth-centered, Earth-fixed reference frame (ECEF), an additional sensor is required to

detect the location of the ground below the vehicle. DSAAV uses a sonar altimeter, which

consists of a Polaroid sonar ranging module and the necessary electronics to translate the

echoes it receives into a range measurement.

Compass

So far, the inaccuracies in the INS position measurements have been accounted for by

GPS and the altimeter. But we also have the angular rates, as measured by the INS gyros,

which are also integrated to obtain the vehicle's attitude, expressed in the Euler angles, 14

(yaw), 0 (pitch), and 0 (roll). The integration errors for the attitude also could benefit from

a correction.

The pitch and roll angles can actually be corrected by the INS accelerometers. The

three accelerometers measure, among other vehicle accelerations, the direction of the

gravity vector. This direction, relative to the vehicle axes, determines the pitch and roll of

the vehicle. That leaves only the heading error uncompensated. The navigation system

does compensate for heading drift with a digital compass, which delivers heading mea-

surements with two degree accuracy and a 5 Hz update rate.

Navigation Software

The function of combining the navigation sensor outputs into one single estimate of the

vehicle state (which includes linear and angular positions and velocities) is performed in

on-board software by the navigation filter. The filter makes this estimate of the state based

on all previous sensor measurements; but it is recursive, meaning it does not have to store

all the previous measurements in order to compute the present estimate. The trick is to find

the optimal recursive filter, which minimizes the root mean square (RMS) error in the state

estimate. If the measurement and model noises are gaussian, this turns out to be the Kal-

man filter. We will discuss the Kalman filter further in Section 4.1.2.

2.3.2 Guidance System

If the navigation system tells the AAV where it is, then the guidance system tells it where

it should go. The input to the guidance system are waypoints that the user defines. The

waypoints have a position and heading associated with them. Furthermore, at each way-

point, the DSAAV either goes continues on, stops for a certain amount of time, or lands.

The guidance algorithm runs on the ground station (although it is moving on board in

the future). To get the DSAAV from waypoint to waypoint, the guidance algorithm outputs

position, heading, and velocity commands which are uplinked to the vehicle. These com-

mands are designed to conform with the nominal velocities and accelerations of the

DSAAV, and then they are interpreted by the control system, as we will see in Section

2.3.3.

2.3.3 Control System

Given the navigation state estimate and the guidance commands, it is up to the DSAAV

control system to get the vehicle to where it is going. It does so by adjusting the helicop-

ter's five control effectors: pitch cyclic, roll cyclic, collective pitch, tail rotor pitch, and

throttle. The control algorithm itself treats the DSAAV's dynamics as four decoupled

loops: pitch, roll, yaw, and altitude. Just because these loops are decoupled, however, does

not mean that all of the effectors are not used in controlling each of the loops.

The control algorithm is a simple PID controller, and it has the ability to adjust the

helicopter control surface trim positions in order to reduce steady-state error in the system.

Another nice feature of the controller is that it is tunable in mid-flight. The ground station

operator can change key control system gains during test flights. And if the vehicle should

go out of control, a safety pilot can quickly flip a switch and take control.

2.4 Communication

Two-way communication between the helicopter and the ground station serve a number of

purposes. First, the GPS receivers on the helicopter and on the ground station need com-

munication in order to subtract out errors and provide DGPS capability. Secondly, com-

munication provides health monitoring information to the ground operator of the AAV.

Lastly, the ground operator can uplink guidance and control commands to the AAV.

For the DGPS communication, the on-board and ground GPS receivers are linked via a

spread spectrum radio modem with a 1000 foot range. Due the functionality of the GPS

receiver, the telemetry downlink and command uplink also pass through this modem.

ASCII-formatted data passed to the GPS receivers by the computers (either on-board or

ground station) are transmitted to the other computer via the radio modem and the other

GPS receiver.

2.5 Vision System

The DSAAV vision system consisted of three main components: the on-board camera, the

UHF downlink, and the off-board image processor. The camera is a small, lightweight,

black and white CCD camera, which outputs a standard NTSC video signal. A UHF trans-

mitter with a 500 to 3000 foot range transmits the live video signal down to the ground.

On the ground, SGI Indy processes the video, using standard image processing filters

to extract the locations and classifications of the barrels in the contest arena.

2.6 DSAAV Tools

Developing the fully-autonomous DSAAV was a challenging endeavor, but a couple of

tools were developed to aid in the development.

2.6.1 Ground Station

In general, the ground station refers to any of the DSAAV hardware that doesn't actually

fly on the vehicle. This includes the reference station GPS antenna and receiver, the

ground power supply, the image processing workstation, the radio modem, and the opera-

tor interface.

The ground station operator interface consists of a laptop computer running the ground

station software. The software generates a graphical user interface (GUI) which allows the

ground station operator to monitor the health of the DSAAV and to uplink commands to

the vehicle.

The operator may select to view one of four system "pages" at a time. The four pages

are dedicated to GPS, the navigation system, the control system, the waypoint guidance

system. The GPS page allows the operator to assign the location of the reference station

antenna and monitor vital GPS figures of merit, such as number of satellites being tracked

and position error standard deviations. The navigation page permits the user to reinitialize

the navigation filter, as well as view raw navigation data from the altimeter and compass.

On the control page, control loops can be opened and closed, and their respective closed-

loop gains may be adjusted. Finally, on the waypoint guidance page, the waypoints which

describe the vehicle's mission may be loaded or entered manually into the guidance sys-

tem.

Annunciator Attitude
Panel Direction

Indicator

Figure 2.3: Ground station user interface

In addition to the four specific pages, the ground station interface always displays the

most vital system information. An annunciator panel provides a brief way to verify that

particular systems are functioning properly. Blocks representing the GPS fix, the commu-

nications system, sonar, battery voltage, guidance system, navigation filter, control sys-

tem, and the telemetry recording system are colored red, yellow, or green, depending on

their status.

The interface also displays a horizontal situation indicator (HSI) , which shows the

horizontal position of the vehicle relative to the contest field. Finally, an attitude direction

indicator (ADI), pictorially shows the roll, pitch, and yaw angles of the vehicle. In the

same display, those angles, along with the battery voltage and the vehicle position and

velocity are numerically represented.

The ground station has proven to be vital in safe, efficient testing of the DSAAV. Most

problems which can afflict one of the DSAAV's subsystems can be detected by the ground

System
Pages

[P gs iznael

Horizontal
Situation
Indicator

station operator before it can cause a loss of vehicle. The ground station also allows the

DSAAV to be somewhat adaptable when it flies a mission. As mentioned earlier, the way-

points in the guidance system can be changed on the fly by the ground station operator.

Additionally, the control system gains can actually be changed and tested in flight, all

from the ground station. Most importantly, during a nominal autonomous flight, the

ground station operator's hands never touch the ground station, and thus keeping the sys-

tem truly autonomous.

2.6.2 Simulation

To speed up the development of the DSAAV, and especially its control system, a high-

fidelity, real-time simulation of the vehicle was built to run on a Silicon Graphics worksta-

tion in Draper's Simulation Laboratory. Not only does the simulation accurately model the

vehicle dynamics, it also models the vehicle's navigation and control subsystems. Naviga-

tion and control algorithms can be quickly altered to see how they affect the vehicle's per-

formance. Dozens of parameters, from number of satellites being tracked by GPS to

individual control gains may be altered on the fly, during a simulation run. In this way, the

response of the vehicle to component failure or degradation may be investigated. For con-

venient analysis, the simulation also renders a 3-D animation of the DSAAV and its sur-

roundings, as seen in Figure 2.4 below. Also, any parameter or states of the vehicle system

may be recorded and plotted for analysis.

Figure 2.4: DSAAV simulation display

The DSAAV simulation was used extensively in the design and analysis of the

DSAAV mission manager, control system, and collision avoidance system, which is

described in Chapter 4. The ability to quickly change and retest these systems in simula-

tion cut many hours off of the DSAAV development time.

Additionally, the simulation is able to communicate with the ground station, effec-

tively tricking the ground station into believing that it's receiving data from the actual heli-

copter. Therefore, the ground station was able to be developed and tested with the

simulation, eliminating the need for hours of flight testing with the actual vehicle. Lastly,

the simulation is able to receive the same servo commands from the safety pilot as the

actual vehicle does and inputs them to the vehicle dynamics. With this capability, the sim-

ulation can be used to train DSAAV safety pilots.

2.7 DSAAV 2

Following the victory at the aerial robotics competition, the DSAAV development team

was tasked to build an improved, follow-on vehicle: DSAAV 2 (see Figure 2.5). The moti-

vation for developing the second vehicle was to demonstrate three things: hardware

improvements, cooperation between autonomous vehicles, and a vision navigation system.

Figure 2.5: DSAAV 2

2.7.1 Hardware Changes

Experiences with DSAAV 1 led to a number of hardware design changes for the sequel.

New Helicopter Platform

For DSAAV 2, we opted to replace the TSK helicopter used for DSAAV 1 with the Bergen

industrial helicopter platform. The new vehicle, which has reduced vibration and double

the payload capacity of the TSK, should be able to accommodate many of the project's

future goals.

Sensor Processing Unit

For DSAAV 2, the functions of sampling the inertial measurement unit and sampling the

sonar/compass system have been combined and performed by a single PC board, called

the Sensor Processing Unit (SPU). The SPU is designed to send IMU/sonar/compass data

packets to the computer at a rate of 50 Hz, although that rate has not yet been achieved in

practice [6].

Packaging

As seen in Figure 2.1, DSAAV 1 had hardware strewn around its chassis. For DSAAV 2,

one vibration-isolated avionics box contains much of the hardware, including the GPS

card, IMU, main computer, and the SPU. This design has reduced the amount of wire and

connectors between the subsystems, while providing a more marketable look to DSAAV

2. Because the design is not very modular, however, repairs to the components inside the

box have been somewhat inconvenient.

2.7.2 Cooperative AAVs

One of the primary objectives in building DSAAV 2 was to demonstrate both vehicles

working, cooperating, and avoiding each other in a multi-AAV environment. A demonstra-

tion like this has never been attempted and presents many challenges, some of which are

discussed in this document. At the time of this writing, the cooperative demo has not yet

been performed, but is tentatively expected to happen in the course of the next year. The

cooperative DSAAV mission has, however, been extensively analyzed and simulated. Fig-

ure 2.6 shows the 3-D output of a simulation run.

Figure 2.6: Cooperative DSAAV simulation

2.8 Future

The DSAAV program at Draper continues to make progress and set ambitious goals for its

future. The following are some of the potential future directions for the project.

2.8.1 Cooperative DSAAVs

We continue to work toward demonstrating multiple AAVs performing a mission coopera-

tively. Algorithms, including the ones presented here, have been designed and await their

chance to control DSAAV 1 and 2 in their cooperative mission.

2.8.2 Advanced Control Techniques

Currently, the DSAAV control system has very conservative velocity limits (5 feet/sec in

forward flight) and a simple controller. Our vehicle platforms, on the other hand, are capa-

ble of very maneuverable and high-speed flight. In the future, advanced control algorithms

will be designed and tested which allow DSAAV to utilize much more of the vehicles'

flight envelopes.

2.8.3 Beyond Line-of-sight Operation

To make DSAAV a more marketable technology, it should someday be able to autono-

mously fly beyond line-of-sight (LOS) of the operator. To do so will require that the com-

munication links between the vehicle and ground station be robustified and their ranges

extended. LOS operation will also require a more capable user interface than the current

DSAAV ground station.

36

Chapter 3

Collision Avoidance System Definition

The first step in developing our autonomous collision avoidance system is defining the

multi-AAV system, then determining how this system definition will affect the actual col-

lision avoidance algorithm. A number of factors influence the functional requirements of

the CAS; six of them are discussed in this chapter: centralized vs. distributed architecture,

algorithm complexity, interface to higher level planners, existing collision avoidance

architecture, separation requirements, and vehicle models.

3.1 Centralized vs. Distributed Architecture

One of the most fundamental decisions in defining a collision avoidance system is

determining where the processing for the collision avoidance algorithm should occur. This

is critical to the processor selection and the design of the algorithm. Generally, a process-

ing architecture may be described as either centralized or distributed.

In a centralized architecture, all of the processing for each vehicle to avoid collision

occurs at one, central location. The appropriate commands are then communicated to the

AAVs, which implement the commands at the appropriate times. Such an architecture is

analogous to the aviation air traffic control system, where, in general, the paths of many

aircraft are coordinated at one location. This one location can be either on the ground, as is

the case with ATC, or in the air, like with the AWACS system. One can envision a fleet of

AAVs being deployed, with one AAV acting as the mission controller for the others.

In a distributed architecture, each AAV is responsible for computing its own collision

avoidance trajectories. This architecture is more along the lines of the free flight policy

that the FAA is investigating. In free flight, some of the control over the aircraft's flight

path is shifted from the ATC centers to the individual aircraft and their pilots. Aircraft will

fly without ATC intervention, as long as no other aircraft violate the Alert Zone around the

aircraft. The Alert Zone is an imaginary cylinder that surrounds the aircraft. If the Alert

Zone is violated, ATC will direct the aircraft's' trajectories in order to decrease the risk of

the aircraft violating one another's Protected Airspace Zone. The Protected Zone is a

smaller cylindrical region surrounding the aircraft [7]. The Traffic Alert and Collision

Avoidance System (TCAS) is the distributed CAS that is supposed to aid the transition to

free flight TCAS and will be discussed further in Section 3.4.

In the free flight concept, it is not obvious when to shift control over to the ATC or

back to the individual aircraft. Similarly, deciding between a distributed and a centralized

autonomous CAS is not necessarily easy. A number of factors must first be considered;

among them are fault-tolerance, communication, autonomy, and processing power.

Fault-tolerance

One concern for a centralized collision avoidance architecture-whether the central con-

troller is on the ground or on one of the AAVs-is that a failure in the CAS could result in

a failed mission or loss of vehicle for all the AAVs in the system. In a distributed architec-

ture, on the other hand, a failed CAS on an AAV should only endanger that AAV and per-

haps any in its immediate area. Still, redundancy and other advances in fault-tolerant

systems can keep centralized systems reliable.

Communication

Communication is another consideration in choosing between a centralized and distrib-

uted collision avoidance architecture. In a centralized system, the controller must have

knowledge of the AAVs' states in order to generate collision avoidance commands. This

knowledge could either come from active sensing (i.e. radar) of the vehicles' positions or

by receiving state information from a transponder on the individual vehicles.

Likewise, in a distributed architecture, each vehicle could sense others in its proximity

via radar, or it could communicate with the other AAVs via data transponders. It appears

that neither the centralized nor the distributed architecture requires drastically more com-

munication capability than the other. If there is a slight difference, it would be that com-

munication is simpler in the centralized architecture; each vehicle only has to

communicate with the central controller, and not with all the other vehicles. The commu-

nication links in a centralized and a distributed architecture are shown in Figure 3.1.

Figure 3.1: Communication links for a) centralized and b) distributed systems

Communication time delay is another matter, however. In the centralized system, the

controller must wait for each vehicle's state information, compute the recommended

maneuvers, then transmit them to each AAV. Therefore, the centralized architecture's time

delay will always be greater than or equal to the time delay of the distributed system (by

the triangle inequality). If the distance between two vehicles is small relative to their dis-

tance from the central controller, this time delay is approximately twice that of the distrib-

uted system.

Autonomy

The notion of autonomy, which is independence from a central controller, is somewhat

violated by having a centralized collision avoidance architecture. A distributed system, on

the other hand, consists of completely self-contained vehicles that only rely on sensing or

receiving the other vehicles' states to perform collision avoidance. In reality, however, this

distinction might be outweighed by other practical benefits of a centralized system.

Processing Power

Limited processing power on-board the AAVs may force the collision-avoidance system to

reside in a central location. The converse case, where the central processor is incapable of

computing collision-avoidance solution, is possible but less likely. This decision is closely

related to the complexity of the collision-avoidance algorithm, as discussed in the next

section.

DSAAV Collision Avoidance Architecture

The DSAAV collision avoidance system is partly distributed and partly centralized. For

the sake of increased autonomy and fault tolerance, the collision avoidance algorithm will

be processed on board each vehicle. The communication architecture is centralized, how-

ever, relying on the ground station as a communication hub. The ground station relays

* state data from one vehicle to the other, and vice-versa. In the future, we expect this cen-

tralized communication architecture to be replaced by a distributed one with inter-vehicle

communication. A diagram of the hybrid distributed-centralized architecture is shown in

Figure 3.2.

Figure 3.2: Hybrid architecture

3.2 Algorithm Complexity

Computational issues in control systems are easily overlooked during design and analysis,

but play a critical role in the ultimate implementation of the system. As computer process-

ing speeds and capacities continue to increase, computational requirements may seem less

critical. And in all likelihood, today's computational limitations are not as stringent as

navigating to the moon on a 64K computer was thirty years ago. However, that does not

mean that the edge of the computational envelope is not being stretched today.

One inevitable consequence of increasingly powerful computers is an increase in the

complexity of the problems to be solved. Many computational problems that were well out

of reach of computers' capabilities in the past are successfully solved today. As more and

more of these are solved, more and more difficult problems are introduced to take their

place.

The nature of the autonomous collision avoidance problem presents some computa-

tional challenges. First, the highly dynamic nature of the multi-AAV system places some

bounds on the processing time of the collision avoidance algorithm. The algorithm needs

to run fast enough to provide safe commands to the interacting AAVs with their rapidly

changing behavior. In a heuristic sense, the speed of the algorithm helps determine the

optimality of the avoidance maneuvers. A slowly updating algorithm has to safeguard

against drastic changes in the system between updates by not allowing the vehicles to pass

very near to one another. A faster algorithm can react more quickly to these unexpected

changes and can bring the vehicles closer together.

Perhaps even more important is that the algorithm run in a bounded, known amount of

time. In most cases, the vehicles are going to continue their motion, regardless of whether

the collision avoidance system has finished computing the appropriate command. This

may result in a violation of the separation requirements for the AAVs.

The autonomous CAS problem places other limitations on computation. In the case of

DSAAV and other small and micro-AAVs, the size (and hence, capacity) of the on-board

computer is severely restricted by the size of the vehicle. In addition, many AAV applica-

tions involve fleets of AAVs that are considered almost expendable. In these cases, expen-

sive and powerful computers will be passed up for cheaper, less capable processors.

Ultimately, the complexity of the collision-avoidance algorithm determines the perfor-

mance of the CAS. The spectrum of algorithm complexity can range from very simple to

very complicated. At the simpler end, an algorithm might merely send the vehicles in

opposite directions if they get too close to each other. A complex algorithm might calcu-

late the optimal trajectories for all the vehicles, minimizing the combined amount of fuel

burnt and guaranteeing the aircraft do not violate their minimum separation criteria.

Global vs. Local Solutions

Tightly coupled with the central vs. distributed question is whether our CAS generates

globally or locally optimal solutions. The more global a collision avoidance solution is,

the larger number of system variables it considers. A global CAS might try to optimize the

trajectories of all the vehicles in a region. As one tries to optimize over an increasingly

global system, the complexity and computation time of the problem generally will

increase. As they do, it may become less and less feasible to perform these computations

on board the AAVs; power and size limitations may make them unsuitable platforms for

complex computations. A ground-based processor would likely have fewer such restric-

tions. Furthermore, as mentioned before, a ground processor is a logical hub in a central-

ized architecture; it would receive all the information from the vehicles, allowing it to

make global decisions.

Collision avoidance solutions that are global in time have one additional possible

drawback. In nondeterministic systems, which most AAV systems would most definitely

be, uncertainty in the state of the system increases the further into the future the algorithm

tries to predict. So our AAV CAS could calculate safe vehicle trajectories for the next five

minutes, but a disturbance to the system could nullify that solution after only five seconds.

If the global CAS could recalculate solutions fast enough (in some bounded time), then it

should be able to sustain some (bounded) disturbances. In general, however, there is a

trade-off between optimal, global solutions and suboptimal, local solutions that can be

computed in real time.

Local collision avoidance, as the name suggests, occurs in a limited region, usually

centered around a vehicle of interest. Given this, it seems a waste of time and effort to

compute the solution to the local collision-avoidance problem on a platform outside of the

region of concern. Performing the computations on one or more of the vehicles in this

region is a natural configuration.

Real-time Performance

Algorithm complexity is also driven by how quickly the CAS should react to a dangerous

situation. A more complex algorithm will take more processor time to compute. Any algo-

rithm which is to run near real-time will need, at the very least, to consist of a known and

bounded number of operations. The performance requirement of the CAS is determined

by examining the multi-vehicle system. It is especially important to consider the velocities

and other dynamic behavior of the vehicles, how close to one another they operate, and

how costly are vehicle collisions. For example, very slow-moving AAVs may not need as

reactive a CAS as faster-moving vehicles do.

Number of Vehicles

Multi-AAV environments can contain more than two AAVs. An autonomous CAS can

handle this in one of two ways. The first way is for each AAV's CAS to only consider one

of the other vehicles at a time. Some selection criterion should be used to determine which

other AAV is most critical at the moment. This approach would add little computation to

the two-vehicle conflict resolution. Nevertheless, without considering all of the other vehi-

cles, it would be only a local solution.

The second and more global approach is to consider all of the vehicles when comput-

ing a collision avoidance maneuver. This approach, however, tends to require a more com-

plex algorithm and create more of a computational burden. However, as computer

processors become faster and faster, multi-vehicle collision avoidance will become more

and more real-time implementable.

Since the DSAAV is a very agile vehicle, a conflict situation between DSAAV 1 and 2

could arise relatively quickly. Therefore, we decided that we needed our collision avoid-

ance algorithm to run in real time. That means that the algorithm must be simple enough

to run-in addition to the other on-board software-on our 486 (586 on DSAAV 2), 50

MHz processor. Since only two DSAAVs currently exist, our algorithm only needs to han-

dle two-vehicle conflicts.

3.3 Interface to Higher Level

In all likelihood, an autonomous collision avoidance system will not be the only controller

issuing commands to the AAV. As discussed in Chapter 1, the CAS might act as a safety

mechanism which overrides a mission-level planner. If the CAS does act independently of

a higher-level planner, it may alter the state of the vehicle such that the mission planner

becomes confused or needs to replan from the new state. In such instances, the plan-

ner-whether human or computer-would benefit from feedback from the CAS.

In the case where a vehicle is not behaving fully autonomously, there may be a human

controller issuing flight commands to the vehicle. These commands can range from high-

level, waypoint commands to actual closed-loop, real-time flight control. A feedback

mechanism telling the operator that the CAS is active serves several purposes. First, with-

out notification of a collision avoidance maneuver, deviations from the intended path

could give the human operator the incorrect idea that the vehicle is malfunctioning. Such a

false alarm might result in unnecessary effort from the operator to confirm that the vehicle

is behaving properly. This extra work decreases both the efficiency and the autonomy of

the system. In a worse-case situation, the false-alarm could result in more drastic action,

such as a mission or vehicle abort.

Alerting the operator to a collision avoidance maneuver also gives him/her the chance

to replan the vehicles' paths based on their altered trajectories. Generally, a CAS will

command the AAV to deviate from its intended flight profile with changes in flight direc-

tion or velocity. If these deviations are large enough, the original flight profile may no

longer be suitable or optimal for the vehicle. In order to create a modified flight profile, the

operator must be alerted to the deviation.

Lastly, feedback is useful when the vehicle is manually telepiloted by the operator and

also equipped with an autonomous CAS. Generally, the pilot receives feedback on the

state of the vehicle through a visual display. This display may include live video from a

camera on the vehicle and/or a computer-generated representation of the vehicle dynam-

ics. If the CAS does not somehow alert the operator when it is active, a confusing discrep-

ancy between control input and display output might be created. When the vehicle is

making an avoidance maneuver, the motion of the vehicle as depicted in the teleoperator's

display will not correspond with his/her stick movements. This is both disorienting and

frustrating to the operator.

Depending on the level of autonomy of the system, the human operator may or may

not be actively monitoring the vehicle. This should be considered when designing the

operator feedback for the CAS. An operator who is frequently monitoring a visual display

for the vehicle or telepiloting the vehicle can probably be notified of a collision avoidance

maneuver with a message or graphic on their primary display(s). However, in a system of

high autonomy, or when the operator is in charge of monitoring multiple vehicles, it may

be necessary to first get his/her attention. Audible signals are an effective way to do this. A

simple buzzer, bell, or beep can attract the operator's attention to the display, were a more

detailed explanation of the collision avoidance maneuver can be found.

3.4 Existing Collision Avoidance Architectures

As AAVs become more advanced and reliable, they will undoubtedly become more inte-

grated into established air traffic systems. With this in mind, it would be advantageous for

the AAV's collision avoidance system to be compatible with any existing collision avoid-

ance architectures. By far the most established and widely used is the Traffic Alert and

Collision Avoidance System (TCAS), which has three different versions: TCAS I, TCAS

II, and TCAS III. Since 1989, TCAS I has been required on aircraft that can accommodate

10 to 30 passengers. TCAS II is required on aircraft with more than 30 passengers [8].

All of the versions have two interfaces to the pilot, one auditory and one visual. The

visual display is a moving-map display centered on the aircraft. It shows the relative posi-

tions of nearby aircraft, and uses symbology to indicate how much of a threat of conflict

each aircraft poses. When a collision is imminent, the auditory interface notifies the pilot.

Alarm sounds are proceeded by a commanded action for the pilot to take to prevent colli-

sion.

TCAS I

The most basic of the TCAS versions, TCAS I reports to the pilot the range and bearing of

any aircraft within a 4 nautical mile radius. TCAS I also reports the relative altitude of any

aircraft equipped with a Mode-C transponder. In addition, TCAS I issues Traffic Adviso-

ries (TA) to draw the pilot's attention to a potentially hazardous encounter with another

aircraft. When a TA is issued, the pilot will see the symbology of the intruder aircraft

change on the TCAS display and will hear an audible "Traffic" alert. It is important to note

that TCAS I only issues TAs; it does not issue any conflict resolution commands.

The criteria for issuing a TA are based on range to the other aircraft (r), the range rate

(r), the relative altitude between the aircraft (h), and the relative altitude rate (h). The first

test is a range test, which also relies on two threshold parameters, rTA and DMODTA.

TCAS issues a TA if the range to an intruder aircraft is less than distance DMODTA any-

time in the next tTA seconds. If the range to an aircraft is already less than DMODTA, then

a TA is issued if the two aircraft are not moving away from each other fast enough. Both

DMODTA and ~TA depend on the aircraft altitudes.

For a TA, ITA can range from 48 seconds above FL300 to 20 seconds at altitudes below

1000 feet above ground level (AGL). DMODTA is 3.0 nmi above FL300 and reaches its

minimum of 1.0 nmi between 1000 and 2350 feet AGL.

TCAS uses a similar test in the vertical direction using the parameters ZTHR and ,v.

TCAS issues a TA if the current relative altitude and the relative altitude at the time of

closest approach are both less than ZTHR. A TA can also be issued when the relative alti-

tude is greater than ZTHR, as long as the time to coaltitude (tv) is small. This happens

when the relative altitude at closest approach is less than ZTHR or the relative velocity

passes through zero before the point of closest approach [9].

For an autonomous collision avoidance system to be compatible with an existing sys-

tem like TCAS, there must be both hardware and algorithm compatibility. The only hard-

ware needed for compatibility with TCAS I (and the U.S. ATC system) is a transponder

(preferably a Mode-C transponder). On smaller AAVs, finding the space, power, and pay-

load capacity for the transponder may be an issue. Nonetheless, compatibility with TCAS

might be a critical consideration when determining the size and function of an AAV.

TCAS I only issues Traffic Advisories, which require the pilot to make visual contact

with the other aircraft before executing any collision avoidance maneuver. Since the

pilot-and not TCAS--determines this maneuver, there is no easy way to coordinate the

collision avoidance maneuvers of the aircraft and AAV. Therefore, the autonomous CAS

algorithm only needs to be compatible with TCAS's conflict prediction algorithm.

So, what constitutes algorithm compatibility in TCAS I? First, the autonomous CAS

needs to rely only on the information which it receives through the TCAS I system. In

addition, the autonomous algorithm should balance safety and efficiency, while minimiz-

ing the number of false alarms on the other aircraft's TCAS.

TCAS II

TCAS II has all of the previously-mentioned capabilities that TCAS I does, and also issues

collision avoidance commands known as Resolution Advisories (RA). With TCAS II, all

RAs are vertical commands, either to climb or descend. The alerting criteria for an RA are

the same as those of a TA, with the parameters ITA and DMODTA being replaced by r and

DMOD. In other words, if a TA is not resolved and the aircraft continue to close in on each

other, the TA can escalate into an RA. The value of t is generally about fifteen seconds

less than ITA.

Unlike TAs, which require visual contact before a maneuver is initiated, RAs require

immediate action. In the event of an RA, TCAS issues an audible resolution command to

the pilot. The ten possible RAs are as follows: climb or descend (at 1500 fpm), don't

descend or don't climb, and limit descent or climb (to 500,1000, or 2000 fpm). The TCAS

logic selects the resolution advisory which minimizes the aircraft's deviation from its cur-

rent trajectory while still satisfying the minimum separation requirement. The logic also

assumes that the resolution maneuver starts 5 seconds after the RA is issued and the verti-

cal acceleration during the maneuver is 0.25 g.

Like with TCAS I, we need to address the compatibility of our autonomous collision

avoidance system with TCAS II. The hardware compatibility is the same as with TCAS I,

except Mode-C is now required. The autonomous CAS algorithm needs to be compatible

with TCAS II in both conflict prediction and resolution. At the very least, this should

include the compatibilities mentioned with TCAS I. In addition, we might want to coordi-

nate the resolution directions of the vehicles. If the autonomous collision avoidance sys-

tem has a choice of maneuvers, it should choose the one which best complements the

maneuver chosen by the other aircraft's TCAS.

TCAS III

TCAS III has all the capabilities of TCAS II plus a selection of horizontal resolution

maneuvers. Additionally, TCAS III can take advantage of advanced datalink technology

between aircraft in order to coordinate the resolution maneuvers. An autonomous collision

avoidance system might want to complement TCAS III by also allowing horizontal

maneuvers. And like TCAS III, the AAV's CAS could use datalink to negotiate avoidance

maneuvers.

3.5 Separation Requirements

Before we can design a collision avoidance algorithm, the separation requirements of the

CAS must first be considered. The separation requirements describe the protected zone

around the vehicle into which no other vehicle is to enter. The protected zone should

reflect how close we never want our AAVs to get to one another. It defines when a colli-

sion occurs. In other words, if the protected zone is violated, a collision has occurred, even

if the vehicles did not actually come into contact with each other. The two key characteris-

tics of this protected zone are its size and its shape.

Much of the aircraft and robot collision avoidance literature has looked only at hori-

zontal resolution maneuvers and speed changes, thus reducing the problem to two dimen-

sions [10,11,12,13]. In 2-D, the protected zone is often represented as a circle centered on

the vehicle. A circular protected zone makes sense logically and is generally mathemati-

cally easy to work with. As we move into three dimensions, the circle is no longer a valid

protected zone, and we must look for a new one. In aviation, cylindrical airspaces are often

considered. TCAS is designed to enforce a cylindrical protected zone around each aircraft,

as shown in Figure 3.3. This is reasonable, since the shape of an aircraft can be approxi-

mated with a cylinder.

Figure 3.3: Cylindrical protected zone

For the protected zone around DSAAV, we could find a cylinder or other shape which

best approximates the shape of the vehicle. As we will see in Chapter 5, however, a sphere

centered on the vehicle mathematically proves to be a good choice of protected zone. We

note that this choice is dependent on our actual collision avoidance algorithm, and other

shapes may be more compatible with other algorithms.

The actual size of the protected zone depends on what we consider a "collision" to be.

One definition of a collision (the literal one) would be when the two vehicles actually con-

tact one another. In passenger aircraft, passing within one hundred feet of another plane

might reflect poorly-at least in the eyes of the passengers-on the airline and the aviation

industry. In that case, the protected zone would need to be somewhat larger than the air-

craft itself in order to encompass some of those near-miss scenarios.

In the case of the DSAAV, we consider the effect of one vehicle's downwash on the

other vehicle. As the AAVs pass over one another, the downwash of the upper vehicle

might disturb the lower one. This effect is as of yet unmodeled, so we choose our pro-

tected zone so that this downwash interaction is minimal.Currently, our protected zone is a

sphere of radius 12 feet that is centered on the DSAAV. Flight tests will show whether the

downwash effect is more or less severe than we are estimating it to be.

Note that defining the protected zone does not take into account the dynamics of the

vehicles or any uncertainty associated with their motion. It is tempting to compensate for

navigation errors, pilot error, or wind gusts by simply expanding the protected zone. We

could even try to justify changing the shape of an aircraft's protected zone. Since the

majority of an aircraft's motion is generally in the horizontal plane, two planes should be

able to pass closer to each other in the vertical direction than in the horizontal. Does that

mean we should intentionally flatten the protected zone? No, the above mentioned factors

should and will be considered in the actual algorithm design, not in the protected zone

specification. This will be discussed further in Chapter 5.

3.6 Dynamic Model

Before designing a CAS, the multi-vehicle dynamic model that the system must satisfy

should first be defined. In the case of the DSAAV collision avoidance system, only one-

on-one vehicle encounters are considered and solved. Each vehicle considers its motion

relative to the other AAV. This generates a relative frame of motion for the two-vehicle

system.

First, however, we consider each vehicle's position and velocity relative to a north-

east-down frame. The north, east, and down axes of the frame are referred to as the x, y,

and z axes.

v1 = YV x 11
V xl

V L =Vzd

x2
X2 = Y2

Z2

V 2 = Vy2
V Z2

Subtracting the state of vehicle two from that of vehicle one gives us the relative state of

the vehicle:

XI -X2 xr

Xr = Xl-X 2 = l- Y2 = Yr

[Z1 - Z2 zr

Vx - V x2 Vx

Vr = V 1 - V =I V2 - V2= V yr

zl Vz2 L rz

(3.3)

(3.4)

We will only considering avoidance maneuvers in the vertical direction, so only Vz

will be time-varying. The horizontal trajectories of the AAVs are assumed to be straight

lines, so Vx and Vy are constant. The closed-loop dynamics in the vertical direction are

approximated by a first-order system with time constant, rv:

dVx dVy
S- = 0

dt dt

dV z (Vzcomm - Vz)dV _ Vcomm
tv

(3.1)

1 (3.2)

(3.5)

So, the two-vehicle system is as follows:

Xi 0 1000 0 00000 x 0

Vx 1 0000 0 0 0000 0 V 0
0

yl 00010 0 00000 0 yl 0
V 00000 0 00000 0 0y 1

00000 1 00000 0
Zl 1 z Vz1

00000-- 00000 0 comm

d V Vz
d VzV V 1 + (3.6)
dtx 00000 0 01000 0 X 0

Vx 0 000 0 00000 0 V 0

00000 0 00010 0 0

Y1 00000 0 00000 0 0
VY2 00000 0 00000 1 Vy2 0

ZI 00000 0 00000 - 1 Z Z2 Comm

V 0 0 0 V
Z 2 -T -V 2 T V

The dynamic model of the system should also include any limits on velocity or accel-

eration. Although the DSAAV has a wide dynamic envelope, its vertical velocities are lim-

ited to values between 1 ft/sec (down) and -2 ft/sec (up).

53

54

Chapter 4

Collision Avoidance Algorithm Design

Once the requirements of the collision avoidance algorithm have been specified, it is time

to actually design the algorithm. Sections 4.1 and 4.2 provide a generic outline for design-

ing a collision avoidance system. Then Section 4.3 describes the design of the DSAAV

collision avoidance system

Although the design of a collision avoidance algorithm can be gone about in a number

of ways, it is convenient to break up the collision avoidance task into two tasks: conflict

prediction and conflict resolution.

4.1 Conflict Prediction

In conflict prediction, the collision avoidance system tries to determine whether any vehi-

cle's protected zone will be violated by any other vehicles. Depending on how close the

CAS thinks the vehicles will pass by one another, it may or may not issue a conflict resolu-

tion command. How does it make this decision? The CAS considers three elements in

making this decision: vehicle information, a trajectory prediction, and conflict thresholds.

4.1.1 Vehicle Information

Before a collision avoidance system can even begin to detect a conflict, it needs informa-

tion about the vehicles involved. As discussed in Section 3.1, some of this information

may be actively sensed (via radar or other ranging instrument), while other information

can be transmitted from the vehicles. In a distributed system, each vehicle's collision

avoidance algorithm also will poll its own vehicle's flight control system for information.

Some the most useful information might be vehicle position, velocity, intent, health, and

dynamic model.

The importance of knowing the AAVs' positions is obvious. More important is the rel-

ative positions of the vehicles. If we are using a radar-type instrument on board an AAV,

relative position is what it will give us. If we are using transmitted position data, the vehi-

cles' absolute positions will have to be subtracted from one another to get their relative

positions. In this case, each vehicle needs adequate navigation instruments (such as GPS

and/or inertial navigation) to ascertain its own position.

As important as position information is to know where the vehicles are, velocity infor-

mation is to know where they are going. In fact, in many collision avoidance algorithms,

positions and velocity data is the only information that is used for conflict prediction

[7,10,11,12,13]. Usually velocity data will be transmitted among the vehicles, although it

also can be estimated from successive position updates using filtering techniques dis-

cussed in Section 4.1.2.

Intent information describes the future path of the AAVs. Velocity is actually first-

order intent information, but we will speak here of other types of intent information.

Higher-order state derivatives, such as vehicle acceleration, provide insight into the future

trajectories of the vehicles.

Also, intent information can be in the form of knowledge about the future actions of

the vehicles. For example, if the AAVs are following a prescribed set of waypoints, knowl-

edge of these waypoints may be used by the CAS. The vehicle velocities and accelerations

may indicate a collision is imminent, but the waypoint information might show that one of

the vehicles is scheduled to make a drastic change of course that will eliminate the poten-

tial conflict. This is illustrated in Figure 4.1.

Protected Zone

Velocity Vector

Waypoint

- - - - Intended path

Figure 4.1: Intent information prevents unnecessary collision avoidance maneuver

As will be explained later, both the vehicles' health and dynamic models are useful in

predicting the AAVs' motions. Vehicle health pertains to whether or not the AAVs are

functioning properly. The dynamic models of the vehicles describe the maneuverability

and flight envelope of the AAVs. These two elements may not be as fundamental as posi-

tion, velocity, and intent, but they can assist the collision avoidance algorithm with more

accurate conflict prediction.

Ideally, we want our collision avoidance system to have as much information as possi-

ble. Realistically, the amount of information available for conflict prediction depends on

the available communication bandwidth and the radar/rangefinding capabilities of the

AAVs. Even if we have very complete and accurate information about all the AAVs, our

algorithm may be too simple to properly utilize this data. In any case, if we are limited to

what information our CAS can use, we must prioritize and use the most critical data. In

many cases, position and velocity data are considered to be the most essential. Neverthe-

less, that can vary and must be evaluated for each specific system

I AAV 2/
/

/
/

4.1.2 Trajectory Prediction

Once the collision avoidance system has information about the vehicles, it takes its next

step toward conflict prediction. The CAS must predict the future trajectory of the AAVs,

given their state data. This is where the vehicle dynamic models are useful. We assume we

know something about how the vehicle moves, and that allows us to predict its motion.

The simplest model assumes the vehicle follows a constant-velocity trajectory:

d X(t)
dt

d x (t)
dt [v(t)j - FO iFx,

10 1 xM(t)0 0 v(t)
(4.1)

So, given the vehicle position and velocity at time to , we can calculate its position and
A(t- to)

velocity and any later time, t. To do so, we must find the state transition matrix, e

where

X(t) = eA(t - to)X(to) (4.2)

Given our state-space model in Equation (4.1), we see that

(D(s) = (sI- A)- =_ s -1] = [s s21
1

-2

0s

s

-0 S.

(4.3)

and taking the inverse Laplace transform,

A(t - to)
= L- {((s)} = (t - to)

I1
(4.4)

which gives us the future trajectory of the vehicle:

X(t) - (t)
v(t)

= (t-to) X (t o)
0 1

[x(t o) + v(

v(
to)(t - to)

o)
(4.5)

After extrapolating all of the AAV's trajectories, they can be subtracted to predict the rela-

t

tive motion of the vehicles.

We could do a similar trajectory prediction if given vehicle accelerations. Many

maneuvers, such as turns and leveling off at an altitude, can be closely approximated by

constant-acceleration dynamics:

d X (t) 0 1 0 x (t)

dt (t) v() = 00 i v(t) (4.6)

a (t)] LO0 0a (t)J

Calculating the state transition matrix and assuming to = 0 yields the familiar

12 1t 2

(t 1 t t x(to) + v(to)t + a(t0)t
X(t) = v(t) = 1 t X(to) = (to) +a(to)t (4.7)

a (t)J 0 1 a (to)

which allows us to propagate the vehicle motion forward in time. Once again, subtracting

the AAV's trajectories will give us their predicted relative motion.

The above examples use very simple dynamic models. More accurate models that

reflect the maneuverability of the AAVs could also be used. Unfortunately, linearized

state-space models, which are useful here and will be in the next section, usually require

that the vehicle's nonlinear dynamics be linearized about a specific operating state. While

the linearization itself is not difficult, storing the linearized dynamics for the vehicle's dif-

ferent flight regimes may become unwieldy. Furthermore, the CAS needs to be able to cor-

rectly identify which flight regime the vehicles are currently in.

If the vehicle velocities or accelerations were in fact constant, and we could actually

measure them exactly, then the above trajectory predictions would be adequate. But we

know this is not the case. First of all, it is highly unlikely that the state measurements from

which the trajectory is extrapolated are exact. Looking at Equation (4.7), we see that

velocity and acceleration errors will cause the position error to grow linearly and quadrat-

ically in time respectively. Also, it seems wasteful to repeatedly update our model with

new state measurements while just throwing out the old estimates. Instead, a weighted

average of the measurements might produce a more accurate estimate and slow the growth

of the errors.

Secondly, the vehicles' velocities and accelerations will not be constant most of the

time. And like the measurement errors, such modeling errors will yield position errors that

grow with time. Unfortunately, it is impossible to eliminate all modeling errors. It would

be helpful, however, to have some metric for the accuracy of our trajectory prediction as

we extrapolate it forward in time.

Lastly, we face the situation where no state derivative measurements are available,

only vehicle position. A single position measurement will tell nothing about the future tra-

jectory of the vehicle. However, if we have a series of position measurements, we should

be able to somehow average them to generate an estimate of velocity and acceleration.

Kalman Filter

All of the above limitations can at least partially be overcome with one tool: the Kal-

man filter. The Kalman filter is an optimal estimator, which is described by Gelb [14] to be

"a computational algorithm that processes measurements to
deduce a minimum error estimate of the state of a system by
utilizing: knowledge of system and measurement dynamics,
assumed statistics of system noises and measurement errors,
and initial condition information."

So each time a new measurement is received, the Kalman filter filters the data and pro-

duces an optimal (in a least-squares sense) estimate of the state. In between measure-

ments, it acts as a predictor of the state, propagating the linear model forward in time.

The Kalman filter is recursive, which means that all previous measurements influence

the state estimate, but none of them need to be stored in memory. Furthermore, the Kal-

man filter keeps track of the accuracy of the state estimates in a state covariance matrix.

Like the state estimates, the covariance gets updated with each new measurement and gets

propagated in between measurements. Lastly, the filter can estimate vehicle velocities and

accelerations based only on vehicle position measurements [14].

Vehicle health information can be used to update the assumed accuracies of the mea-

surements and the models. These accuracies are important parameters in the Kalman filter.

For example, suppose the collision avoidance system learns that one of the AAV's GPS

receiver goes from tracking six satellites to only tracking four. The CAS should then

increase the noise in position measurements of that vehicle. The end result will be that the

CAS Kalman filter will trust the position updates from that vehicle less.

Similarly, the CAS could discover that an AAV has had a mechanical or control system

breakdown, and is behaving unpredictably. In that case, the vehicle process noise should

be made large to reflect the malfunction. Due to this increased uncertainty, the vehicle's

state covariances will grow faster in between measurement updates.

Also, the Kalman filter can act as an all-purpose trajectory predictor in a collision

avoidance system. The filter can take in whatever data it can get (radar returns, accurate

state data via a transponder, laser rangefinder measurements) about the vehicles, and pro-

duce an optimal estimate for their future trajectories. Most AAVs probably already use a

Kalman filter to track their own states. These existing filters can just be modified for colli-

sion prediction by adding states for the other vehicles.

4.1.3 Conflict Thresholds

Once a conflict prediction algorithm has some idea of where the AAVs are going to be in

the future, it faces one last question: will there be a conflict? In other words, should we ini-

tiate a conflict resolution maneuver at some point? Given the uncertainty in the vehicles'

motion in the future, this is a difficult question to answer with much certainty.

Nonetheless, there are a number of possible approaches to this problem. The first

assumes the future trajectories of the vehicles are deterministic and known. The second

tries to place lower bounds on how close the vehicles can come to one another. Finally, the

last methods seek to establish conflict probabilities for the AAVs.

If we assume that the vehicle trajectories are exactly those found by the trajectory pre-

dictor, it is simple to determine if any of the AAVs' protected zones will be violated. This

will be done in Section 4.3 for DSAAV's collision avoidance system. As we will see, find-

ing the time and distance of closest approach for constant velocity trajectories requires the

solution of a linear equation (a quadratic equation in the constant acceleration case). If the

predicted separation distance at closest approach is less than the minimum allowed separa-

tion, a conflict is predicted (see Figure 4.2).

a) Constant velocity
trajectory . -

Velocity vector

b)

Protected zone

Figure 4.2: Deterministic conflict detection in the a)conflict and b)no conflict cases

In either case, as the AAVs stray further and further from these assumed trajectories,

the chance of incorrect conflict prediction increases. Depending on which direction they

deviate from the assumed trajectory, the result will either be a missed detection or a false

alarm. A missed detection occurs when the algorithm incorrectly decides that no collision

will occur. In a false alarm, the algorithm incorrectly believes a collision will occur, per-

haps even issuing a resolution maneuver.

In [10], a methodology is introduced that computes a guaranteed lower bound for the

closest approach distance of two vehicles, given bounded uncertainties in their motion.

For example, one scenario has two vehicles flying on perpendicular trajectories. For a

given uncertainty in their along-track accelerations, a lower bound on their miss distance

can be computed by checking the feasibility of linear matrix inequalities [10]. Other

examples include uncertain velocities, headings, and switch times, as well as a three-

dimensional conflict. The algorithm is not prohibitively complex, running in predictable,

polynomial time. And while the analysis does not necessarily determine if a conflict will

occur, it is very useful in that it does determine if a conflict definitely will not occur.

Lastly, [15,16] introduce various probabilistic methods for determining the likelihood

of a collision. In [15], Monte Carlo simulation is used to generate a look-up table of con-

flict probabilities. Given the relative locations, velocities, and headings of two vehicles,

one can determine the probability that their protected zones will be violated. This method

requires extensive Monte Carlo simulation, and each set of Monte Carlo runs is only valid

for a to a particular probabilistic model. If any parameters are changed, a new battery of

Monte Carlo runs have to be made. This approach does, however, provide a quick and sim-

ple means of predicting conflict.

In [16], an analytic solution to conflict probability estimation is presented. First, the

position errors of each AAV are assumed to be represented by a gaussian probability den-

sity distribution. The root mean square (RMS) error in x- and y-position form the axes of a

position error ellipse for each vehicle (see Figure 4.3). The two ellipses are then combined

into one combined error ellipse, which is assigned to one vehicle. This ellipse depicts the

RMS errors in the vehicles' relative position, also described by a gaussian distribution.

The volume under this distribution is, of course, unity.

I /AAV1 1

- -I

Position error ellipses I AAV 2

Figure 4.3: Position error ellipses for the AAVs

Each vehicle's protected zone consists of a circle; the two protected zones are com-

bined into one, and it is assigned to the other vehicle and moves relative to the combined

error ellipse as the vehicles move relative to each other. The region formed by the moving

protected zone is the extended conflict zone. The conflict probability at any instant is the

volume under the probability density distribution that intersects the protected zone. The

conflict probability over all time is the volume underneath the gaussian distribution that

intersects the extended conflict zone. See Figure 4.4.

I U

Combined error ellipse - "%-,
N,

I
I

I
I /

1
I

I
I Extended conflict

zone

1

I I
Figure 4.4: Encounter geometry (adapted from [16])

To simplify the integration of the probability density, the combined error ellipse is

transformed into the unit circle, and the circular protected zone is transformed into an

ellipse. After the transformation, the volume under the portion of the probability density

surface that intersects the extended conflict zone can be found analytically. This is the total

conflict probability. The analysis is validated via Monte Carlo simulation, and is extended

into three dimensions.

Y

Note that the above two methods only result in a conflict probability. A decision still

needs to be made, however, about whether a collision avoidance maneuver is necessary.

Since the position probability distribution is gaussian, the conflict probability is never

exactly equal to zero. Therefore, we theoretically cannot completely eliminate the possi-

bility of a collision. We can, however, choose how high the conflict probability should be

before we deem it a conflict situation. This cutoff probability is known as the alerting

threshold.

Determining the location of the alerting threshold consists of finding a balance

between safety and efficiency. If we set the value of the threshold too high, we may allow

the AAVs too close to one another, increasing the probability of a missed detection. Set-

ting the threshold very low results in a safer system, but probably one that is unnecessarily

inefficient. By not letting the vehicles anywhere near each other, a low threshold disrupts

the vehicles' intended paths and increases the probability of false alarms. The value of the

alerting threshold should reflect the desired level of safety in the conflict prediction. Some

approaches to setting thresholds are presented in [9].

4.2 Conflict Resolution

Once a conflict is predicted, a collision avoidance system should command a maneuver

that attempts to prevent a collision. There are many potential ways to do this, but key deci-

sions must be made for each design.

4.2.1 Maneuver Direction

Many of the collision avoidance algorithms in the literature seem to choose a maneuver

direction with little thought or justification. As we will see, however, this decision can

depend on many factors. Collision avoidance maneuvers usually fall into one of four cate-

gories: horizontal maneuvers, vertical maneuvers, speed changes, and combination

maneuvers.

Horizontal Maneuvers

Most algorithms in the collision avoidance literature seem to use horizontal resolution

maneuvers. One reason is that they allow three-dimensional environments to be simplified

to two dimensions. These planar conflicts are usually simpler to analyze than their 3-D rel-

atives. Furthermore, horizontal conflict resolution techniques for air vehicles can be

extended to and borrowed from robots, cars, people, and anything else that operates in a

two dimensional environment.

Horizontal maneuvers do have one significant drawback, however. They require vehi-

cles to deviate from their intended trajectories. In the U.S. airspace, for example, the min-

imum aircraft separation is approximately 15 times greater in the horizontal plane than in

the vertical direction. This could lead to inefficient deviations if only horizontal maneu-

vers are used [16].

Speed Changes

Using along-track speed changes to avoid collision eliminates the need to deviate from the

desired trajectory. Furthermore, speed changes are useful in resolving conflicts between

vehicles moving with parallel trajectories, where other maneuver directions can keep the

vehicles maneuvering back and forth as they try to avoid one another while also maintain-

ing their intended path. Lastly, speed changes also tend to be simpler to analyze and

implement.

Speed changes do have their share of limitations, however. First, air vehicles do not

usually have a wide range of operating velocities. Therefore, speed changes alone may not

be sufficient to resolve some conflict situations. Furthermore, in large aircraft, speed

changes tend to take a long time. This, too, reduces their effectiveness in collision avoid-

ance [7]. Lastly, as the relative heading of the two vehicles approaches 180' (head-on con-

flict), speed changes become less and less effective. In fact when the relative heading is

1800, no speed change--except both vehicles stopping---can prevent an imminent colli-

sion.

Vertical Maneuvers

Unlike speed change maneuvers, vertical avoidance maneuvers are equally effective,

regardless of the relative headings of the vehicles. In addition, they do not require horizon-

tal trajectory deviations like horizontal maneuvers do. This is especially important when

the ground track of the AAV is significant, like in a mapping or surveillance mission.

As we mentioned in the horizontal maneuver section, minimum separation require-

ments in some airspaces make vertical maneuvers much more efficient than horizontal

maneuvers [16]. This is one of the reasons that TCAS uses vertical resolution maneuvers.

[16] also mentions that vertical maneuvers might have an advantage in conflicts involving

more than two vehicles. In those scenarios, assigning the vehicles to separate altitudes

might be the simplest way to prevent conflict. Vertical maneuvers are limited, however,

when operating AAVs near the ground, as they are limited in how far they can descend.

Combination Maneuvers

Any maneuver that combines two or more of the above maneuvers can be called a combi-

nation maneuver. Combination maneuvers are advantageous in that they can reap the indi-

vidual benefits from each of the maneuvers. They are generally more complex and hence

more difficult to solve and implement

A variation on combination maneuvering is a collision avoidance system that com-

mands horizontal, speed, and vertical maneuvers, but not at the same time. Such a system

should apply the resolution trajectory that best suits the specific encounter. For example,

depending on the shape of the protected zone and the relative position of the vehicles at

closest approach, it would choose a vertical or horizontal maneuver, respectively. For

example, in Figure 4.5a, we can see that a vertical maneuver would be more efficient than

a horizontal one. But the encounter in Figure 4.5b would require little horizontal deviation

to avoid collision.

I

Figure 4.5: Encounter-specific maneuvers

4.2.2 Maneuver Commands

The key component of a conflict resolution maneuver is the actual command that is sent

from the collision avoidance system. For convenience, we will place these maneuvers in

only two groups: bang-bang and continuous maneuvers.

Bang-Bang Maneuvers

We refer to bang-bang maneuvers as those which generally consist of a one-time avoid

command and a one-time return command. The return command brings the AAV back to

its original trajectory after the conflict has been eliminated. The avoid and return com-

mands may have one or more preset magnitudes and directions. And generally, the maneu-

ver is open-loop; once it begins, it does not recalculate or readjust unless a new potential

conflict has been created. TCAS resolution commands could be considered bang-bang

maneuvers; once a command is given, the pilot follows it until the conflict passes.

Because of the open-loop nature of bang-bang maneuvers, it is especially important to

start the avoid and return at the right times. Remember that the further in the future the

potential conflict is, the less certain we can be that it will actually occur. Hence, maneuver-

ing too early can result in unnecessary maneuvering; sometimes, if let be, the conflicts will

b)a)

resolve themselves naturally. On the other hand, if we wait until too near to the time of the

conflict, it may prove to be too late. In [9], a hypothesis testing methodology is presented

for determining the best time to initiate the avoidance maneuver.

The timing of the return maneuver is equally critical, and can be looked at using the

same techniques found in [9]. It does, however, have some peculiarities that make it differ-

ent than the avoidance maneuver. The most critical of these is the tendency to start the

return too early, thus creating a conflict situation again. This can occur if the return crite-

rion is that the projected return trajectory will not cause a foreseeable conflict. Normally,

this will bring the AAVs back to their original path after the conflict passes (see Figure

4.6a). However, if the AAVs are still relatively far away and have just begun an avoidance

maneuver, the projected return trajectory also might not cause a conflict. In that case, the

trajectory falls in front of the protected zone, but fools the system into thinking the conflict

is in the past (see Figure 4.6b).

Since the vehicles do not reach their return velocity instantaneously, their return trajec-

tory does not take them back as quickly as the system thinks, and collision once again

becomes imminent. The avoidance maneuver is initiated once again. This can repeat itself,

producing an unwanted, although not necessarily harmful, on/off switching. This switch-

ing is shown for a simulated head-on conflict encounter in Figure 4.7. This phenomenon

might be partly eliminated by making the return trajectory more gradual, at least early on

the avoidance maneuver.

Figure 4.6: Return maneuvers

32 34

Simulation
36 38 40

time (seconds)

Figure 4.7: Simulation result: premature return switching

70

0

0

1

.2

0
28

................
..

ff

.................

.................

.................

....................................

..............

................. 1.................

.................

.................

.....................................

................. ,...................

.........."..................

........... .i. ...

.

.. --.................. -

..

.
.

.. - i............ i...........-----------.

.

Continuous Maneuvers

Continuous maneuvers, unlike the bang-bang maneuvers, are closed-loop, reevaluating the

avoidance command at each time step. Because these avoidance commands are constantly

being recalculated, when they begin and end is not as important as with the bang-bang

maneuvers. There are endless possibilities for continuous conflict resolution maneuvers,

but most seem to have one thing in common: generating optimized trajectories.

Ideally, continuous collision avoidance controllers would generate globally optimal

trajectories in real-time. That generally is not computationally feasible at this point. It is

conceivable that such techniques will become feasible in the future, however. Until then,

some have used such optimization techniques such as game theory [13] and potential and

vortex field motion planning [12] to produce optimal trajectories off-line. Their idea is to

then approximate the trajectories with line segments and circular arcs. An on-line control-

ler could then follow these approximate paths.

At Seagull Technology, they have solved for optimal collision avoidance maneuvers

and generated extensive maneuver charts to be stored and used on-line [7]. Given the rela-

tive trajectories of the vehicles, an optimal heading or speed change can be found quickly .

The difficulty with this method is generating and storing the maneuver charts. New charts

must be made for each specific flight condition, which depends on varying parameters like

relative heading and relative velocity. But with the increasing storage capacity of today's

computer hardware, more and more charts will be able to fit in the AAV's collision avoid-

ance system.

Finally, collision avoidance controllers can command simpler, locally-optimal maneu-

vers. One example is the DSAAV collision avoidance controller, described in Section 4.3.

4.2.3 Multi-AAV Maneuvers

Multi-AAV environments can contain more than two AAVs. An autonomous CAS can

handle this in one of two ways. The first way is for each AAVs CAS to only consider one

of the other vehicles at a time. Some selection criterion should be used to determine which

other AAV is most critical at the moment. This criterion will probably be a function of

time of closest approach and closest approach distance. One such criterion is suggested

and studied in [17].

The problem with only resolving conflicts involving pairs of vehicles is that the avoid-

ance maneuver does not consider the other AAVs; the avoiding AAV may end up in a more

severe conflict than the one it just resolved. Nonetheless, [17] shows that a large number of

vehicles can interact safely by considering only pairwise conflicts.

The second and more global approach is to consider all of the vehicles when comput-

ing a collision avoidance maneuver. In [11], positive semidefinite programming is used to

generate resolution trajectories for multiple vehicles. Examples with four to 6 vehicles are

solved. The computation time for these solutions is on the order of minutes. Therefore, it

probably could not be implemented in real-time with the current processing technology,

but probably will someday soon.

There are other, perhaps simpler, avoidance maneuvers for more than two vehicles.

[16] suggests distributing all of the vehicles at different altitudes. [13] develops a maneu-

ver protocol similar to the rotaries found on many New England roads (Figure 4.7).

Figure 4.8: "Rotary in the sky": multi-AAV collision avoidance

4.3 DSAAV Algorithm Design

Two collision avoidance algorithms--one bang-bang and one continuous--have been

designed for DSAAV. First, we will briefly describe the bang-bang controller. Then the

continuous controller, which will probably be used in the flight tests, will be described.

4.3.1 DSAAV Bang-Bang Algorithm

The bang-bang controller was designed as a first cut at a simple collision avoidance

system for pairs of autonomous helicopters. The algorithm is distributed, and would be

run on each vehicle. It was designed and tested using the DSAAV simulation

Conflict Prediction

The CAS uses state data from both vehicles to prediction collision. In the simulation, this

data, which includes the position, velocity, and attitude of the intruder vehicle, is easily

passed into the collision avoidance algorithm. In actual flights, this data would be trans-

mitted from vehicle to vehicle, either directly or through a communications hub.

The algorithm assumes a constant velocity trajectory extrapolation for predicting con-

flict. So for the relative position of the vehicles at time, t, is

Xr(t) = xro + Vrt (4.8)

and the vehicle separation, IXr , is given by

IXr2 = Xr = X ro + 2XT Vrt + VTVrt 2 (4.9)

Now, to find the time of closest approach, t*, differentiate the vehicle separation with

respect to time:

d 21= 2x TVr + 2tVTV = 0 (4.10)
dt o r rr

xT V

t* r (4.11)
VVSubstituting this back into Equation (4.9), we find the separation distance at closest

Substituting this back into Equation (4.9), we find the separation distance at closest

approach:

(XT Vr)
2

(d*)2 XTro VT r (4.12)(d*) = x x (4.12)
VTVr

We do not consider future uncertainty in the vehicle trajectories. The condition for a

future conflict is as follows:

d* > d = No collision occurs
(4.13)

d* < d = Collision occurs

The value of d used in the DSAAV simulations is twelve feet. The actual value used in

flight tests might be larger on smaller as deemed necessary.

Avoidance Maneuver

The DSAAV CAS commands vertical avoidance maneuver to the vehicle. Some of the

benefits of vertical maneuvering are discussed in Section 4.2. We will add one other to that

list: the DSAAV vehicles respond more quickly to commands in the vertical direction than

in the horizontal direction.

In order to minimize the amount of time spent avoiding collision, the bang-bang algo-

rithm will command the vehicles to maneuver at their maximum allowable vertical veloci-

ties. Currently, these maximums are two feet per second in the up direction and one foot

per second in the down direction. Furthermore, it tries to do so at the last possible moment

that conflict can still be avoided with the maneuver.

If a future collision is indeed imminent, the CAS investigates the effect of initiating the

avoidance maneuver at that moment. It does not assume an instantaneous velocity change;

instead it propagates its current trajectory for another 4, v seconds, then inserts an instan-

taneous velocity change. r, is the time constant of a vertical velocity command. After four

time constants, the vertical velocity should be at

1-e 4 = 0.9817 = 98.17% (4.14)

of its commanded value. From the projected position after four time constants, the vertical

velocity is changed to the avoidance velocity, and the time and distance of closest

approach are calculated for that new trajectory.

If this distance at closest approach is greater than the minimum allowable separation,

then no maneuver is initiated. When the projected distance of closest approach is finally

approximately equally to the minimum allowed separation, d, the CAS takes over control

of the vehicle and the avoidance maneuver is initiated (see Figure 4.9).

Start time of avoid -
maneuver

Figure 4.9: Start of bang-bang avoidance maneuver

One of the limitations of the algorithm is its need to know whether the other vehicle is

running the same collision avoidance logic. This greatly affects the time of maneuver. If

both vehicles are cooperating and maneuvering in opposite directions, they can wait

longer to maneuver and still achieve the necessary separation. When only one is maneu-

vering, it must maneuver earlier to achieve the same minimum separation, d. This is

shown in Figure 4.10.

a) Cooperative collision avoidance

----- 04-.

b) Noncooperative collision avoidance

Figure 4.10: Cooperative and noncooperative avoidance maneuvers

It is especially important for each vehicle's CAS to know whether the other vehicles

are cooperating with them in collision avoidance. If a vehicle maneuvers while incorrectly

assuming the other is doing the same, the avoidance will be initiated too late and the sepa-

ration minimums will be violated. In the converse situation, a vehicle maneuvers to avoid

a vehicle that is incorrectly assumed to not be maneuvering. In this case, the avoid maneu-

vers will start early, and will have a added margin of safety. The return maneuvers, as we

will see later, can create some difficulty however.

Maneuver Directions

Since the AAVs always have two possible maneuver directions, up and down, the collision

avoidance algorithm must set some criterion to choose between the two. So, each vehicle's

CAS predicts (constant-velocity extrapolation, again) where its vehicle will be relative to

the other at the time of closest approach. If its altitude is higher at that point, then it will

1

= BoOI I I I

choose to maneuver up. If it is lower, than it maneuvers down. This criterion is illustrated

in Figure 4.11.

t = t*

AAV 1
a) AAV 1 maneuvers up

t = t*

AAV 1
AAV 2

b) AAV 1 maneuvers down

Figure 4.11: Maneuver direction criterion

Return Maneuver

The return trajectory of the bang-bang collision avoidance controller begins when the con-

stant-velocity extrapolation of the AAVs' return velocities will not result in a minimum

separation violation. Each vehicle finds its own return velocity by polling the guidance

system to find the velocity it wants to command to return to the original path. The AAVs

assume that the other vehicle's return velocity is its maximum velocity in the return direc-

tion (once again, two feet per second up, one foot per second down).

At the beginning of the avoid maneuver, the predicted return trajectories may take the
vehicles right into one another. But at some point in time, they will be sufficiently past one
another that the predicted trajectories will be safe, as shown in Figure 4.6a. The return
maneuver begins at this point; and actually it consists of shutting the CAS off and letting
the guidance algorithms bring the AAV back to its original trajectory.

Earlier we alluded to a problem in the return maneuver when the AAVs mistakenly

believe that they each are the only one executing an avoidance maneuver. As the vehicles

are avoiding one another, they wait until the time that they can safely return to their origi-

nal trajectory. When this happens, they begin the return maneuver, only to unexpectedly

find that the other AAV has also begun a return maneuver. Since they had not planned on

this, the vehicles are now lined up for a conflict again, and they avoid once again. The

result is that they follow an unnecessary "M"-shaped trajectory. So again, we emphasize

the importance of knowing whether the other AAV is cooperating in collision avoidance.

The bang-bang collision avoidance algorithm showed that a simple collision avoidance

algorithm could be developed and implemented relatively quickly. It did have its limita-

tions, however. In addition to the ones listed above, it had one other problem which hin-

dered its performance. When deciding to maneuver up or down, each AAV's CAS based

the decision on the state of the other vehicle. If this state data was inaccurate, both vehicles

could decide to maneuver in the same direction. Sometimes the collision avoidance sys-

tems switch on and off and eventually get the vehicles moving in separate, directions. But

at other times, the result was a direct collision. If the state data for the other vehicle was

transmitted by the other vehicle, then communication time delays could make it inaccu-

rate.

One remedy to this problem would be to implement some means for maneuver direc-

tion acknowledgment between the vehicles. Unfortunately, the time delays associated with

that might also create new problems or just slow the system down too much. It's these lim-

itations which sparked the design for the continuous DSAAV collision avoidance control-

ler, described next.

4.3.2 DSAAV Continuous Algorithm

The continuous controller was designed to be an improvement over the bang-bang col-

lision avoidance system. Specifically, we wanted to eliminate the shortcomings of the

open-loop controller, especially the all-or-nothing behavior which gets it into trouble

sometimes. Like the bang-bang controller, the algorithm is distributed and would be run

on each vehicle.

Conflict Prediction

Conflict prediction for the continuous collision avoidance algorithm is the same as it is

for the bang-bang system. The distance at closest approach, d*, is calculated and the col-

lision criterion is

d* > d =- No collision occurs
(4.15)

d* < d = Collision occurs

Avoidance Maneuver

The collision avoidance maneuver of the continuous controller differs quite a bit from the

bang-bang version. In the bang-bang controller, the vehicles played a game of AAV

chicken by not maneuvering until the last instant, then maneuvering at full velocity. If an

error occurred (e.g. the AAVs accidentally maneuver in the wrong direction), the nature of

the nature of the algorithm almost ensures that it will not be corrected in time.

The continuous controller, on the other hand, strives to send the vehicles on smooth,

gradual trajectories. Any disturbances or errors should generally have time to correct

themselves before a conflict occurs. Like the bang-bang algorithm, this one only com-

mands vertical velocities for collision avoidance.

The closed-loop controller on each vehicle aims to have the AAVs right at the allow-

able miss distance at their point of closest approach. This is equivalent to each AAV aim-

ing its velocity vector tangent to a sphere of radius d centered on the other vehicle. This is

visualized in Figure 4.12. Since the algorithm runs continuously in real-time, it is con-

stantly reevaluating and adjusting the commanded velocity to be tangent to this sphere.

Figure 4.12: Continuous controller avoidance command

Equation (4.12) gives us an expression for the vehicle separation at the point of closest

approach. Setting the value of separation to the minimum allowable separation, d, and then

solving for Vzr gives the needed relative vertical velocity to achieve this minimum allowed

separation:

- Zr(VxrXr + Vyr) A2[(Z2 A2)(V2 + V 2) + (Vxr + V r) 2

Vzcomm (4.16)
rcomm (Z -A 2)

where

A2 = 12 - d2 = x2 + y2 + z2 - d2 (4.17)

Vzr is the relative velocity needed for the AAVs to pass within d of one another at
comm

their point of closest approach. The sign of the ± reflects the choice of which vehicle is to

pass over top of the other one. This will be discussed in more detail later.

Note that Vzrcomm, is a relative velocity between the vehicles. However, the DSAAV
comm

control system requires absolute velocity commands. So, when the collision avoidance

algorithms solve for Vzr , that does not necessarily tell them what maneuver they need
Comm

to execute. VZr must be distributed between the two vehicles somehow. We call this
COmm

maneuver allocation.

Suppose one of the AAVs is following its original constant-velocity trajectory, and

therefore is not attempting any conflict resolution. In this scenario, it is up to the vehicle

that is running collision avoidance (let's call it AAV 1) to make sure the commanded rela-

tive velocity, Vzr , is achieved. Remember that
comm

Vz, = VZI- VZ2 (4.18)

So the collision avoidance system on AAV 1 should be commanding the following vertical

velocity:

VZc = Vz, + VZ2 (4.19)
comm comm

This will result in a velocity vector aimed to be tangent to the sphere of radius d centered

on AAV 2.

If both vehicles are making evasive avoidance maneuvers, one of two things may

occur. One is that both vehicles command a vertical velocity for themselves as if the other

AAV is not avoiding conflict. From Equation (4.18), we find that the vertical velocity com-

mands are

V omm Vr + VZ2 V = -Vr + Vz (4.20)
comm comm comm comm

At first glance, this appears to be collision avoidance overkill. If conflict can be

avoided by only one AAV commanding Vzr , surely having both vehicles command it

is unnecessary. In fact, it might seem that this could even result in a minimum miss dis-

tance that is twice as large as the minimum allowable separation. This does not occur; and

having both vehicles try to maintain the full separation has an important advantage.

The collision avoidance controllers are closed-loop, and they will always try to com-

mand a relative velocity of Vzr . As long as the controllers are stable and the relative
comm

velocities get closer and closer to Vzr , the collision avoidance controllers will have to

command less and less of a velocity change (error signal is going to zero). So, theoreti-

cally, the vehicles will eventually achieve Vzr and the collision avoidance systems will
comm

no longer need to issue commands. In this situation, it no longer matters that we are com-

manding twice the relative velocity that we need.

In reality, however, the AAVs will be perturbed from these perfect Vzr trajectories,
comm

and the controllers will try to bring them back. As we will see in Chapter 5, it is in these

situations when the extra velocity commanding comes in and affects the stability and

response of the system.

The benefit of each AAV commanding the full Vzrcomm comes when one of the vehi-

cle's CAS is shut off but the other is not aware of it. In this scenario, if the avoiding vehi-

cle commanded anything less than the full Vzrcomm, a collision would occur. We saw a

similar result with the bang-bang controller, when an AAV mistakenly believes the other is

maneuvering.

In an alternative configuration, the two vehicles could divide Vzr between them-

selves. The most logical choice would be for each vehicle to command one-half of

VZrcomm . We will investigate the stability of this approach in Chapter 5. Of course, as we
comm

mentioned before this approach relies on the assumption that the other vehicle is cooperat-

ing in collision avoidance. If this assumption proves to be wrong, a conflict will undoubt-

edly occur.

Maneuver Direction

Next we should choose which sign the ± should take. Because the AAV's CAS is aim-

ing to be tangent to a "sphere of separation" which is centered on the other vehicle, it has

two options: maneuver to the top of the sphere or maneuver to the bottom. This is illus-

trated in Figure 4.13.

Figure 4.13: Maneuver options

We would like to choose the maneuver which minimizes the AAVs' deviations from

their current trajectories. This amounts to the same criterion we used in the bang-bang

maneuver. So if an AAV predicts that its altitude will be greater than the other AAV's at

the point of closest approach, it should maneuver to the top of the "sphere of separation"

which surrounds the other vehicle. Conversely, if its altitude is less, it should aim toward

the bottom of the sphere.

In other words, if AAV 1 is higher than AAV 2 at the point of closest approach, then

Zr(t*) < 0 (remember: the positive z direction is down in the NED frame). In that case,

AAV 1 would want to pass over AAV 2, which means that Vco should be the lowest it

can be. Since VZ2 is considered constant, then Vzr should be the lowest it can. Let's
comm

look at Vrcomm to see which sign of ± the that equates to.

First, look at the denominator of the expression for Vzr
comm

2 2 2 2 2
zr - A =d -Xr, -yr (4.21)

I

I

The value of this expression is negative when xr + Yr2 > d2 . This corresponds to times

during which AAV 1 is outside a cylinder that has radius d and is centered on AAV 2.

Since the denominator is negative, choosing the ± to be positive will yield the lowest

Vz
r
comm

Something strange, however, happens when AAV 1 is inside the cylinder described by
2 2 2

Xr + Yr > d . In this situation, the denominator is positive, and choosing the minus sign

will produce the lowest Vzr . But, if we look closely, it turns out we do not want the

lowest Vzr anymore.
comm

Figure 4.14: Choosing the maneuver direction

Looking at Figure 4.14a, it is plain to see the minimum (i.e. most "upward") Vzrcomm is

best for AAV 1 when it is outside of the cylinder. However, as AAV 1 moves into the cyl-

inder, the downward tangent trajectories passes through vertical and starts to point upward

(Figure 4.14b). This is a tangent trajectory to the sphere, but it had its point of closest

approach in the past (t < 0). Furthermore, it actually is a more upward velocity than the

proper one. So inside the cylinder, we now want the maximum (most "downward") veloc-

ity. Since the denominator is now positive, make the ± to be positive will once again result

in the correct maneuver.

To summarize, the criterion for choosing the sign of ± is as follows:

Zr(t*)> 0 - +
(4.22)

Zr(t*) < 0 - -

Unlike with the bang-bang system, the two avoidance maneuvers may not necessarily be

in opposite directions. This depends on the initial relative positions and velocities of the

vehicles. In Figure 4.13, both possible avoidance maneuvers are in the down direction.

It is also possible for Vrcomm to have no solution. This happens when the expression

under the radical in (4.16) is negative. This can happen in two instances. In the first, the

A2 term is negative:

A 2 = X2 r + 2 r + 2 r - d 2 <0 (4.23)

When this occurs, the separation of the AAVs is already less the minimum allowable sepa-

ration. In that case, there is no velocity that would result in a separation of d at closest

approach. It is too late for that. The vehicles are already inside the sphere of separation,

and there is no constant-velocity trajectory from that initial point that is tangent to the

sphere.

The second scenario in which there is no solution for Vzr is when the rest of the

expression under the radical (i.e. not A 2) is negative: omm

(Z2 - A2)(V2 + V 2) + (VxXr + VyrYr)2 < 0 (4.24)

which can be shown to be equivalent to

X 2 r + 2 rt = t* > d 2 (4.25)

In other words, if the horizontal separation at the time of closest approach is projected to

be greater than d, then there is no Vco that will result in a separation of d at t*. Hori-

zontal velocity commands would be necessary to alter the horizontal trajectories of the

AAVs. The diagram below depicts the AAVs predicted relative positions at t*.

Figure 4.15: No solution for Vzr
comm

Return Maneuver

In one regard, the return maneuver is the same as with the bang-bang controller. That is,
the CAS shuts off, and the guidance algorithm returns the AAV to its original path. The

criteria for switching the CAS off, however, is different.

As soon as a conflict is predicted in the future, the continuous collision avoidance

algorithm begins the avoidance maneuver. Now in the bang-bang controller, the CAS shut

off when it was predicted that the return maneuver would not cause a conflict. As we dis-

cussed, however, that can cause a lot of rapid switching early on in the maneuver. So to

prevent that, only let the system switch off after the conflict has passed, we also require

there to be no conflict along the avoidance maneuver trajectory either.

Figure 4.16: Return maneuver criteria

This criterion would have been dangerous in the bang-bang controller. Had each vehi-

cle started maneuvering in the same direction by accident, it is likely that the above crite-

rion would have kept them maneuvering in the same direction, eventually causing a

conflict.

The continuous controller, though, starts earlier and allows different velocities to be
commanded. That helps it generate a smooth, continuous avoidance trajectory. Once the

87

vehicles pass each other, their collision avoidance systems will see that there lies no con-

flicts along neither the maneuver trajectory nor the return trajectory (Figure 4.16c).

Sometimes the continuous collision avoidance algorithm does create some rapid

switching during the maneuver. This occurs early in the maneuver, when the return trajec-

tory does not yet intersect the protected zone. If the initial trajectory violates the protected

zone, the controller begins a maneuver. The maneuver may overshoot or get disturbed in

such a way that the maneuver trajectory ends up outside of the protected zone. Since the

return trajectory does not intersect it either, the controller shuts off. As the AAV tries to

return to the original path, its trajectory passes through the sphere of separation, and the

system turns on again. This process may be repeated a number of times, as shown in the

simulation results below (Figure 4.17).

MD

"0

o
C.cDCD
CD

09"CDCD

0

0.

0

15 25 35

20 25 30 35

Simulation time (seconds)

45 50

45 50

Figure 4.17: CAS on/off switching

One common way to remedy such rapid switching like we are seeing is to replace the

switch (or relay) that is causing the cycling with a relay with hysteresis. Whereas a simple

relay has one threshold the determines the value of the output, hysteresis considers also

the history of the input signal (i.e. what have the values of the input been in the recent

past?). Looking at the relay and hysteresis curves in Figure 4.18, we see that the output of

the hysteresis curve depends on the direction in which the curve is traversed, as depicted

with the arrows. Hysteresis is used in many control applications, including thermostats

and spacecraft reaction control systems [18,19].

output output

input input

Figure 4.18: a) Relay and b) hysteresis

To reduce the on/off switching of the CAS algorithm, we apply a hysteresis loop to our

on/off switching criterion. Before, the criterion was to switch on if the projected distance

at the point of closest approach, d*, is lower than the minimum allowed separation, d. If it

was not lower, then the collision avoidance would be switched off. This is illustrated in

Figure 4.19a.

Figure 4.19: CAS on/off criterion with a) relay and b)hysteresis

To add hysteresis to the relay, we make whether the system is on or off at d* = d depen-

dent on the direction in which d* is moving. Said another way, if the CAS is already off,

the value of d* must drop 8 below d before the system switches on. Likewise, if the sys-

tem is already on, d* must surpass d by the amount 8 before it switches back off. This is

shown in Figure 4.19b. The result is less switching at the beginning of the maneuver.

Notice that not all of this switching is eliminated, however. We can try increasing the

value of 6, but we may run into the problem that the switching-on criterion requires d* to

be too low, and the system does not switch on in time.

Figure 4.20 shows the system in the same maneuver (DSAAVs moving head-on at one

another) as Figure 4.18, with 8 = 4 feet. We can see from the simulation plot that adding

the hysteresis has reduced the early switching, while not compromising vehicle separa-

tion.

30 Io.............. ------- ----- ... --- -- -------2 4 -. . .------.
- -- -- -..................... -...... .. .- ...

-- --........ ------ - ---- --------.--- ---I---.---------------- L

......
.. .. I ---- i -, ------ I -- --- ------- ----

i------------ -- l- -- --- --- ----- -----i i

......... --------- - ------I -- -..-- ±

............. --- - i - -- -- - ---- ------- ----- ------- -- --- --- ----CD I .. I " I
--- -- -- 3 o- 3... -- 40 45 .. ---

. e. - -- - I ------ - i K. B -

0. II : , i

30 35

Simulation time (seconds)

40 45 50C

Figure 4.20: CAS on/off switching with hysteresis; 8 = 4 feet

Time Delay

As we have mentioned before, communication time delay may hinder the performance of

the collision avoidance system. This is equivalent to the destabilizing affect of adding time

delay to a closed-loop control system, which is what our CAS is. The affect of time delay

on the stability of the DSAAV collision avoidance system is discussed in Chapter 5.

In the DSAAV simulation, a communications buffer is established which delays the

information being transmitted between DSAAV 1 and 2. The collision avoidance algo-

rithm can, given an estimate of the time delay, attempt to compensate for this time delay. It

estimates the current position of the other vehicle by propagating its constant-velocity tra-

jectory for an additional amount of time equal to the estimated time delay. Figures 4.21

through 4.24 show the performance of the algorithm with and without this time delay

compensation.

I 'A I1

.. -t. ..." :4................
... "' -- -- -- -. 4 I..- - - --

.....S.............
::::::::::1::/:::: 11111""...............

• i
i i ,- i -.... ---- ----

--- i ----- --- -- - ~ ---- i-- I

.......... ;

-.... _ ----- -............ . .
S.....
........... ---------- --- ----- --- - --- -il - -- -- ------ '--- -"-

..- -- .-- .-- i l -t

i t

.. - - -
.............. - 1 ---- + -. I . .-

34 36 38 40
34 38 40

II... 1I.. T t

..!..........--- ------ - i-- -- -............ - .----

.............. --. I
..

.... 1................

!.:z -- --

.. i. !..........
.. w1. J 1

.. --.. .

.
ff.........t..............t Tt t t

..,!

42 44 46 48 50

Simulation time (seconds)

Figure 4.21: Time delay = 0.0 seconds

I II

-....
------------ ---

- ----- ----

............................... 1 _.L I t.

~~~~~~~~~................ I ................[. .. ......[ ........

........... -- -r ................
... ... .. ---- --- -- t--: ..........,................ I...............



..................... .. ................ . .. -.... .................................... . ................... ... ... . ......... . ...... ................ .. ........---:::::::::::: --- ------ :..................i ........ ... .........I
........................ ........... .......... ...... - -....... ...... ... .. . ..... -- -- --

---- -- -- ------------- ......... ........ ............ ................. ..... ...............

8 .. .. . :::: :: = = ===========================================================:::::::::::::::::I : ' :: :::::::::: : : :::i :................ ... ..------ --- ............... ......... ..... ::::::::::::::::::: ::
.. ...... ........ ...... - ..... .. .... :j - .i .... .. .. ....... .. .. .. ... .. .. .. ... ..t .. ............ .............. ". .......... ....i- ........... -.. ....... -..... ...... ............::: :: :: : :2:::: -:: -- :: ---- ------- ......... ... ........ .......: :::

6~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~:: iiiiiiiiiil:iiii:iii iiiiiiiii:iiiiiiiiiiiiiiiiiii!!!iiiii!i:ii :::::::::::
------. --. ------........ ....... ................ ........... ..... ....... ...... ....... ..... ..... . ..:.:: :

34 36 38 40 42 44 46 48 5

a) Simulation time (seconds)

00! __ i i I I:

.. ............. ... ........... ::::::: :: ::::

I 1' -., , ...............i i i i- --i i-t- ---------i i ... ..... .... ..... ............ ... ................................................................ .......: : : ..

' 34 36 38 40 42 44 46 48 50

a) Simulation time (seconds)[ ::2 4 Ii ...........

3 0 . . . . . ... . ........ .... . ... . ... ........... .. ...... . ... ... . .....S.......... 

-----------------------

0.) 12::::::

I1 1 I I i iI i.. .--..- I.. ...-................... .......... ..... ........... ......... ..... . . ....... .. .

. . I ................ ................ ... .. .... . .... . ... ....

b) Simulation time (seconds)

Figure 4.23: Time delay 4 20 seconds; a)uncompensated, b)compensated1 .. . ........ .. .............. . ........ .............. .. ...... ... ......... .. .......... ..r ... ...... ........... ... .............. .... .. .. .. .. .. .. .. .. .. .. .. .. .... ...... ...

. - ...... ........--------i- ... ......... : .........

9- - . .. .... .. .. .. .. ' .... ... ... .
................ ............... ---------- ................ ..... .......------ ..............

0. ...... ........ .. . ... ... .. . . . . . . . . . . . . . . . . . . .... ... ......... .... ... .. .... ........ .. .... .. .. . ...... ..... .. .... ........ .... ............. ... ... ......... ..... ....... ...

.. ........ ....... .... .. ......... ......... ....... ...

..- ....... ........ .... .. ........... .... ....... ....... ... ......... - ------- ........... . . ....... -- -. -................. .............. ................. ................ ........... ... ..... ......... ....... .......... .............. ............ ..- .............. . ............... .........t................. ....... .. .° 4 --- --- -.......'. .......6 .... ....... ......... ....... .. .. ................................... ................ .. ..... ......... ................ ................ .. .... ................... ..... ... .. ...... ...... .. ........ ... ... ........................... ---------- --- ---------- ............... .............. ..............

24 3 42- 444<5 4S 50

b) Simulation time (seconds)

::::: ::: : ::::: ::::: ::::: ::::: :::: ::::: ::::: :::::::::: ::::::::: ::: t i I 1 : :: ::::: ::: : :::: :(D....... ..... ...... .................-. ......... ........:. .:

.............................................. ... --- ---....... ........... i .. ... .. .. .=r .. ............ ................ .. ............ ------- ------ -- ------- '-1111'-1--1--11:U -- ~ ~ ~ ~ ~ ~ -- ---- ---- ---------.. ...... ......... .... ............................ ! ! ! ! ! ! ! i ! ! ! ............ ...... ......... ...................... ... ... ...... ....- ............. .......... '. ....... ..... ...............................

.. ..... .. .... ... ..... . ....... .. ...... .. .. .. ..... *.. . .. - i . . ... ...... .... .. .

J ] t i . ...r .............. -I > <..... ... . ............ .. ..... ... ...... -- --................ .... .j .. ...........-- -------...... ..... .. ... ..... ..... .... ... ... .. .. .. ..... ... .. ....... ...... ..... ...... . ........ ........ ....... ...... ........... ..... .. .... ... ...-..... .

34 36 38 40 42 44 46 48 50

b) Simulation time (seconds)

....r 4.23: Time delay =....... .....0. seconds; ......db c m.. ......... ------ ----- ---

............. ..... ..... .... . . . ..... ..... .. ----- ...............
0 ............. ............. .............. . ---- - ... .......... ......... -----

....... .. . . . .. . .. . .. ..... . --l~ l l~ ll t l: 1 1 1 1 - -------- - i --- ---........f .............. ---------- ......... ------------- -....... ......----- ----------................................................:: : : : : '
..... .. ------- J .... ....... .. ........... . ... . ... . . .. .. . . . . . ;. . . . . . ... . . ,.......... ------ - ... ........:tI:Ii~ illi

---- ---- i - --- - ---- ----------... I --- - ---------- - -

(D ............ .... .......... -- ----------- ...... ......... ...... .... ------ -..

a) Simulation time (seconds)

Figue 4.3: ime ela = 40 seond, a~ncopenstedb~cmpMWate

?C)



a) Simulation time (seconds)
D ............ ... ...........

b) Simulation time (seconds)

Figure 4.24: Time delay = 6.0 seconds; a)uncompensated, b)compensated

As can be seen from the above simulation results, the time delay does worsen the sys-

tem's performance, but not as much as might be expected. Oddly enough, in this scenario,

the CAS performed better with the six second time delay than with the two second delay.

This probably will not be the case in general however.

Also notice that the system performance is as bad or worse when time delay compen-

sation is used. As the time delay increases, the intruder velocities received by the DSAAVs

statistically will be farther and farther from the actual intruder velocity and thus less accu-

rate for extrapolating the intruder position. Filtering these measurements might improve

this problem.

Variable Conflict Threshold

Notice that our collision avoidance system does not account for any uncertainty in the

DSAAVs' positions and future trajectories. In the early development of the system, this

may not be critical. But before the CAS algorithm is to be test flown on board the vehicles,ED _______..... ...... .................... .________ ..._______ ...................... .._______ _______ _ .................._ ............__
.......... ......0....... . . .. ............ ......

.....D.... ....... ....... ... .... -- -_ ---- ---......... I.._ ...: .......

a) Siuato time. (seconds)..

Figure..... 4.. 24 Time....... delay...... .... 6.0 ........ seconds a..ncom ensa .ed ........mpensa. ed..........

As can.. be seen from........ the... abv.smltinrsutth.ie.ea.de.ore.hess
tem's performance,. but.... not.. as..... much. as.mght.e.execte .ddly enuh in ths.cearo

the CA pefome bete wit th six------ seon time...... delay than- wit.te.wosecnddeay
This........ probably wil not .... be -- th case... in.enra. hweer

Also** notice..... that th system performance- is-s-ad-r-ors-wen-im -deaycomen
sation~~~ is...... used... As.. th-iedla-nrae,-h-nrde-eoiis-eevdbyteDA

statisticall will .be-arhe-ad-arherfrm-heacua-in-uerveoctyandths-es-acu
rate for........ ex ra o atn the........ intruder..... position--- ---------.. Fitrn these- measurements might-- ---- ----------- --------- .......improve.............

th is------------ . ............pro b le m ................ ..........................

Variable.. Coflc Threhol
Notice.... that... our........ collisio avoidance..... system....... doe.nt.ccontfo.an. ucetaityinth

DSAA~~~~~~~~~~~~~-s' ----- poiin.n. utr.rjcoie.I.h al dvlpeto tesseti
ma not, be*1\'-' critcal But before:: -- the CA alorth is. to be. test flw on.. boar th vehicles



some consideration would have to be made for the potential inaccuracies and uncertainties

in the system. For example, the methods introduced in Section 4.1.3 might be used to set

the maneuver thresholds.

Other Limitations

There is one other limitation of the DSAAV continuous collision avoidance system. Since

the algorithm is only concerned about relative vertical velocities, the absolute vertical

velocities of the vehicles do not always keep them near their original altitudes. For exam-

ple, if both DSAAVs have no vertical velocities, then their avoidance maneuvers should

take them in opposite vertical directions. However, if one of their avoidance velocities is

perturbed, the other's collision avoidance algorithm will perturb its velocity as well. This

can continue until both vehicles are moving in the same direction vertically, moving fur-

ther away from their original altitudes. This phenomenon can be seen in the simulation

plot in Figure 4.25.



40 45

5535 40 4.

Simulation time (seconds)

Figure 4.25: Drifting vehicle altitudes

The detriment of this behavior depends on how long the vehicles are avoiding one

another and the importance of the vehicles' absolute altitude. If the vehicles' collision

avoidance systems are only active for a short time, they may not have time to drift too far

from their original altitudes. And for low-altitude operations, this drifting altitude phe-

nomenon could drive the DSAAVs into the ground.

........... ............ .. - ----- -------------- i................ . ...... i............................. ......... ...

-. i.---.. ....------------- ------.
-... ............... ............. i ........... .................... ............. ..................... ..................... .... ... .- - - ....................

.. ...................... .................. ...... ....... .. ............................ .... ... ......... ......................

S..................... ..................... I ..................... . .................... ------- ......................
--------- ...------ -------' .................. ... ....... -- --- ...................... ......... ..................................................... ... ..... .

.....--- ................ ............

................. .......................................... ....... ............... ........
............. .......................

T iE

.... .. . .... 4 ..................

........... ......... ..................

. ......... ........... .................
..................... ..... ................ .. ............... ... .. . . .. .............. .. . .. ..... .- -- -- ---..................... -.... ... ... ... ........................ .. . ................. ........... .. .

----- -------- - -. . .i . . . . . . -------- I

. iI.. I........ 4 4i
I 4

01

0.8

0.o 0.4

0.2

............ .. ................

------ -- ------- ..........-'--'-- 1 --------

I ~ ~ ~~~ i n

I,,-.,.



One approach to limiting this behavior is to try to reduce the duration of the avoidance

maneuver. The best way to do this is by starting the maneuver closer to the time of closest

approach, t*. In Figures 4.26 and 4.27, we see the result of imposing a minimum time to

closest approach, tmin*, before the vehicles may avoid one another. The results show that

imposing tmin* = 6 seconds greatly improves the drifting altitudes while not compromis-

ing vehicle separation too much. However, lowering tmin* to 2 seconds creates a violation

of the protected zone. Nevertheless, setting a tmin* appears to be an effective method for

restricting this unwanted occurrence.



..... r -r ---; --- --------i T

... -- - ------------- -- ---- ----....

Vehicles' z-positions (ft)i I/ !

...- - i --- /) .a

Vehiles : : ;

i: iii0

!!!!!!!
.... -r -r - ,'- - -2. .... -- - - : - ..

0 : 0 v: 0 ' ', 0 :
- ei! ! i !

i i i :: i i : i ! ! i

Veicles z-o ition (ft)i

0 0 Itrco\o

Vehicle separation (feet) CAS avoid (onloff)

-- i--- i----

...........

.... ...... ........ i ....... - --.. .... .. --- i .... ........... .. ...
.----- -- ... . . . ----------I . . .... . .

. . . . . . . . . .. ; - ; - ; ---

.0

0(

0
d

O
\d

I I

JA
Et,
Ek

9,

U
y

y
o,

St

N

j=
r3..

1
PJDr(
C4

Vehicle separation (feet) CAS avoid (on/off)



30

1 i ..1 .. .. --

O '--'- -- T---- ---- -- -- - ------- ----- ------

-15 s ...... .------ ..-- ........ - ..----- -- ........ .. . . . .. . . . .

---- --------- 
-- 

--- --- ..... t -- -------- -

............ ................. ...... ............. . .. .. i i

0
25 30 35 40 45 50 55

0

.................. ........... ---------- ....... -----
.......... ........ ------ - --- ----- ---------- -- -- --------- ---------- ----...Co

-1 o .................. ..- - - - - - - ---................................. ............................................. - - - - - - - -..................... .............--........................ ............- ..................... ......................

............... - - - - - - -- - - - - ----------- ....... .......... - -- - ...... ... ....

I N -

-.............. - - - - - - - - -......... ............ . .......... ......................-2 5 .................. .............. .. -------- -. ..... .. ...... . ...... .. . . . ...... ........ - -....... ......

.... .... --- ------

-------- _. ... .. ... .. ... .. . . ..... ......... -...... ... . I - ------- ------ ...... ..

-30
25 30 35 40 45 50 55

0 . .. .----------- - --.....--.--..- - .............................................------..... .. ..--.------ ----- -- -
>- ..... .... .. . ....... . . ...................... . ................ .. ........ ...... -............ .........

0 .8 .---- ... ... .. ... ... .- . .------ ............. ............. .... ..... ........... . ...... ...........

0. . .. .. . . . . . .. .. . .. . . .. . . . . . . . . . . . . . . . . .................... ............ ..................................-- -.............................................---........ ...... ......
, 0 .6 ..................... ................... .-- - - - -................. ----------------- ----. ............. -- ---........... .......----- ...................... ...................... ...................... ..... ........ ...... ......

0.

25 30 35 40 45 50 55

Simulation time (seconds)

Figure 4.27: Drifting vehicle altitudes: tmin* = 2.0

4.4 Conclusions

This chapter began with a general outline for designing an autonomous collision avoid-

ance system. Some common approaches to conflict prediction and resolution were intro-

duced, and we discussed some of the issues involved in designing such a system.



The latter half of the chapter described our collision avoidance algorithms and the

design processes that led to them. Our algorithm represents a simple but functional CAS,

which can run in real-time aboard the DSAAV. The methods used to design the DSAAV

CAS can be extended to other collision avoidance systems, and the pitfalls we encountered

can serve as lessons to future CAS designers. In Chapter 5, we provide a framework for

analyzing a collision avoidance system like the one we have just designed.



100



Chapter 5

Closed-loop Algorithm Analysis

Now that we have decided on a collision avoidance algorithm that appears to satisfy the

system requirements, we should analytically characterize its closed-loop behavior-espe-

cially its stability. The dynamics of the system, as we have shown, include the actual vehi-

cle dynamic models and the collision-avoidance feedback controller. The dynamic model

is linear; the collision-avoidance controller is nonlinear, and will be analyzed with linear-

ized perturbation analysis. These will be looked at in Section 5.1.

In Section 5.2, we will also analyze the affect of communication time delay in the sys-

tem. Finally, Section 5.3 briefly discusses some of the unmodeled dynamics-including

nonlinearities such as relays and saturatior-in the collision avoidance system.

5.1 System Stability and Performance

Once again, the model of the two-vehicle system (from section 3.7) is the following:



x 1

VxI

vy
VY

Zl

VzI

x 2

V x 2

Y2

Vy
2

Z2

V Z2

0

0

0

0

1

1
,v

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

1

1
'cv

x 1

Vx
1

Y1

VyJ

Zl

Vz
1

x 2

V X2

Y2

Vy
2

Z2

Vz2

0

0

0

0

T,

0

0

0

0

0

VZ2
comm

Tv

As developed in Section 4.3, the CAS-generated velocity commands are

V = VZr V
comm comm

V = -Vzr + V
comm comm

an

-Zr(Vxr + Vyr) A2[( 2 _ A2)(V + V 2 ) +(VxrXr +V yr) 2 ]
V

rcomm (z2 A 2 )

d

A2= ix 2 _-d 2 = x 2 + y2 + Z2 - d 2

(5.3)

(5.4)

Remember, Vzr is the relative vertical velocity needed for the DSAAVs to pass
comm

within distance d of one another at their point of closest approach. Since we want the

dynamics to be continuous, we are assuming that the system does not switch on and off

and is always trying to maneuver the vehicles within d of each other--even if the avoid-

ance maneuver is not necessary.

102

= f(x) (5.1)

where

(5.2)



The ± determines which DSAAV passes over the other one. In the actual collision

avoidance system, a criteria selects whether the ± is plus or minus. As we saw in Section

4.3, our CAS chooses the sign which minimizes the vehicles' deviations from their

intended paths. However, to simplify the analysis, we are forcing the ± to be plus. In other

words, we are forcing DSAAV 1 to pass over DSAAV 2. So, the vertical velocity com-

mands are those found in Equation (5.2) where

- Zr(Vxr + Vyr) +A2[( 2 -  2)(V2 + V2) + (VxX r + V yr) 2 ]
V = (5.5)

comm (Z2 _ A2)

5.1.1 Linearized Dynamics

The vehicle dynamics in the vertical direction are nonlinear. So in order to do stability

analysis, we apply linearized perturbation analysis techniques [20]. Perturbation analysis

assumes that for small deviations about an equilibrium point, the dynamics are approxi-

mately linear.

Intuitively, the equilibrium points of our CAS should consist of DSAAV states that

will result in a miss distance exactly equal to d. Along these trajectories, no collision

avoidance maneuver is needed to keep the vehicles safely separated. And so VZr must

equal Vzr in these equilibrium states.
comm

In general, however, equilibrium points are states of the system for which the state

derivatives are equal to zero. Looking at the Equation (5.1), we can determine the equilib-

rium points; they satisfy

dx f(xe) = 0 (5.6)
X = Xe

First of all, we see that for any equilibrium point, the following must be true:

Vx, = Vx2 = V = Vy2 = Vz = VZ2 = 0 (5.7)

So, unlike our intuitive definition of equilibrium above, Equation (5.7) prohibits nonzero

velocities in any direction. This means that there are equilibrium states for our collision

103



avoidance controller that are not equilibrium states of the overall system. Nevertheless,

our "intuitive" equilibrium points are the ones about which we are going to linearize; thus,

we will allow the velocities to take nonzero values.

Again, for the collision avoidance equilibrium points, VZr will equal Vzr This
comm

will result in

d Vzl V 2  Vzr Vzr Vz rdt l Z2 rcomm Vcomm

(5.8)

Vz V Vz V Vz
d Z2 + V "a" rcomm _ r rcomm

(V) + - 0dt Z2I v  v  Iv  Irv  ,v

which means the CAS does not need to command a new vertical velocity. We will hold off

on discuss specific equilibrium points, but there are certainly a few obvious ones.

Next, we linearize the system around these equilibrium points. Remember that the sys-

tem is described by the state derivatives, f(x), from Equation (5.1). To generate the linear-

ized system matrix, differentiate f(x) by the state, x. The result is a first-order, linear

approximation to the system around the equilibrium point:

df= -x(e)8x (5.9)

So, for our system

104



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

I L J M

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 00100 7 2

0000O
0001O
0000O
0000O
ILJMO

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

K 1 I L J M K 1
Irv Tv TV TV TV TV TV TV

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

I L J M K 1 I L J M K 1
Irv rv T TV TV TV v Iv T v TV v

aVzr av z
I comm _ comm

ax 1  ax 2

aVzr aVzr
L comm comm

avl - avx2

aVzr aVzr
K comm comm

aZ 1 aZ2

(5.11)

(5.12)

(5.13)

Since the dynamics are the same in the x and y directions (i.e. constant velocity), J and M

can be found from (5.11) and (5.12) by simply switching xr with Yr and Vx, with V yin

those equations.

105

df
T(xe)=dx (5.10)

where



Figure 5.1: Open-loop dynamics

d BY

B (S) xG

Figure 5.2: Closed-loop system

Note that our linearized system, J, can be thought of simply as a linear regulator, like

the one shown in Figure 5.2, where

. = A. + Bu + Ld

(5.14)y = Cx

u = -Gx

We can see that J is simply the system matrix for the closed-loop system:

106



i = (A - BG)x + Ld

J = A-BG

From this, we can find the feedback matrix, BG:

BG = A-J =

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 00

I L JM K L J M K 0
Iv Iv TV Iv Iv Iv v Iv Irv T V

0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00

IL M 0 I L JM K 0
TV TV TV TV rv Tv Tv Tv TV TV

u= [ comm
VZ2
Bcomm

T

00000-000000

B = v

00000000000
Tv

then we find that

107

(5.15)

(5.16)

So, if

and

(5.17)

(5.18)



G = -I -L-J-M -KO I L J M K 0 (5.19)
I L J M K 0 -I -L -J -M -K 0

Now that we have a linear system, we can apply traditional linear stability analysis by

looking at the eigenvalues and eigenvectors of the system. Due to the large size of our sys-

tem, we will do this numerically rather than analytically. But before we can proceed with

the analysis, remember that we must find some equilibria trajectories for the vehicles.

5.1.2 Equilibria Trajectories

As explained before, an equilibrium state is one that requires no collision avoidance com-

mand. In other words, it is when the vehicles' constant-velocity trajectories will bring

them within a distance, d, of each other at the point of closest approach.

The perhaps the simplest equilibrium trajectory is what we will call the head-on

maneuver. As the name suggests, it occurs when the two vehicles are moving at one

another head-on. We will assume that both DSAAVs are moving along the x-axis. To fur-

ther simplify the situation, the vehicles in our headon manuever will have zero vertical and

lateral velocities (Vz1 = Vz2 = Vy, = Vy 2 = 0); in other words, their trajectories will

be parallel. This is depicted below in Figure 5.3.

108



Figure 5.3: Headon manuever

In the diagram, the vehicles maintain a constant vertical separation of d. The separa-

tion need not be completely in the vertical direction, however. When the longitudinal sep-

aration (IXrI) is zero-the point of closest approach-the DSAAVs only need to lie on

opposite sides of a circle of diameter, d, in the y-z plane (see Figure 5.4).

Figure 5.4: Relative positions at t*

Then, at that point of closest approach (Yr = Yr* ,Zr = Zr*), the following is true:

109



(Zr*) 2 + (Yr*)2 = d 2  (5.20)

And, since VZr = Vy r = O, the equilibrium condition for the head-on maneuver is as fol-

lows:

VY
r  VZr = 0

z2 + y 2 = d 2  (5.21)

5.1.3 Stability Analysis

The Matlab script, acas.m, discretizes the state-space and searches it for equilibrium states

of the headon maneuver, then computes the eigenvalues and eigenvectors of the matrix J at

those states. In doing so, it reveals a simplification we can make to the system. That sim-

plification more or less eliminates the need to numerically solve for the eigenvalues of the

system.

Decoupled Dynamics

We find that of the system's twelve eigenvalues, two of them are associated with the colli-

sion-avoidance dynamics, while the other ten are associated with the constant-velocity

dynamics. Those ten eigenvalues are zero, and account for the constant velocities of the

vehicles.

Furthermore, the vertical dynamics (z-direction) of the two-vehicle system are com-

pletely decoupled from the lateral dynamics (x- and y-directions). Knowing this, we can

reduce our twelve-state system to a four-state system, containing only the vertical states.

We now proceed to analytically evaluate the four-state system:

110



010
0 1 0

v

0001
0001

If we linearize the system, we get the following:

J= dfx(e)Ax

0100

1 1
K - K -

T Tv "v

0 0 0 1

1 1
-K - K

Tv TV

where, as before,

SVzr

K comm

az1

(Vxr + VyYr)

z 2 A2 r

V 2r + V2 ) +(Vxrr +

(Z2 - A2) 2rc YY

Dynamic Modes

First, let's find the eigenvalues and eigenvectors of the linearized closed-loop system.

To find the eigenvalues,

Ixi- JI = 0

Vz1

v z

Z2

V_

0

0
Z1

Vz1
Z2

Vz
1
comm

T v

0

VZ
2comm

= f(x) (5.22)

(5.23)

avZ
rVzrcomm

az2

V yr) 2
(5.24)

V(Z2 - A2)(

(5.25)



det

X -1 0 0

-K 1+ )

0

1

v

-K

-1

(+i-
V

=0

(5.26)

(2 2 + 2 2K = 0

So the eigenvalues of the system are

k = 0, 0, - -+ 2K
T Fr

Next we look at the modes corresponding to the eigenvalue k = 0. Calculating the

eigenvector, e, we get

Je = e -= (kI-J)e = 0 > Je = 0 (5.28)

So, if we assume that

Vz VZ2 =0z1 Z (5.29)

then we find

1

e =0

0l
(5.30)

In this mode, if either DSAAV's vertical velocity is perturbed from zero, its vertical

position will begin to change linearly with time. In order to maintain proper separation,

the other DSAAV's CAS will perturb its vertical velocity by the same amount in order to

establish a new equilibrium. The result is that both zl and z2 change linearly with time in

the same direction, and both vehicles stray from their initial altitudes.

112

(5.27)



If the vertical velocities are perturbed from their new equilibrium value, the rate at

which zl and z2 are changing will be altered. This drifting altitude phenomenon is dis-

cussed in Section 4.3, where it is confirmed with simulation. We again emphasize that the

vehicles' relative vertical velocity does not change, and their new trajectories are also

equilibria trajectories.

Now, for CAS stability, we need

1 1
I=--+ -+2K<O

F {2
(5.31)

1 11 > -+2K => K<O

So, K must be less than zero for the closed-loop CAS to be stable.

Like we did with the twelve-state system, let's begin by looking at the simple-yet

important-head-on maneuver, where

zr = -d
V r  V Yr = 0  (5.32)
Vr = Vr =y =

For K < 0 we need

Vx r  (d2-x2)V2 +(Vxxr) 2

K= -d <0
d2 - (d2 - X2) J2

Vx d 2d2 (5.33)

Vr d 2
K= <0

d2 - X2 (d2 2 2d Xr (d Xr) Xr

222First, if d > x ,

-d x2 d
VxXr > r (5.34)

If Vxr and xr are the same sign,

113



-Vxd 2
VXr d

VxXr > - (5.35)
Xr

Also, a multiplication by Vxr and a division by xr won't change the direction of the ine-

quality, so the stability condition is

2 > -(d2) (5.36)

This will always be true. But if Vxr and xr have opposite signs, we discover that

x 2 < d2  (5.37)

is the necessary condition for stability. That is the same as our beginning assumption. So
2 2

for d2 > x,, the system is always stable.
2 2

When d < xr, we find that the system is stable only when Vx and x, have opposite

signs. Now we see that the system stability depends only the relative vehicle motion in the

longitudinal (x) direction. Specifically, as long as the vehicles are moving toward one

another along that axis, the system is stable.

So, the CAS is stable in the head-on scenario as long as the DSAAVs are moving
2 2

toward each other along the x-axis or xr < d . Remember, however, that this is a very sim-

ple equilibrium trajectory. What happens when yr, Vyr and Vzr are not zero?
2 2 2

First of all, if Yr # 0, then we know that zr = d - Yr (See Equation 5.20). With

V = 0 and VZr = 0, this is still an equilibrium trajectory; the DSAAVs are still moving

toward each other, but one is no longer directly above the other.

Solving K < 0 with these values will result in the slightly different condition as above.

The system is still stable when the vehicles are moving toward each other. However,
2

instead of the system always being stable for x 2 < d2 , the range of values of xr for which
2

the system is stable decreases as the value of Yr increases. So, we have a stable system as

long as

114



xr  2 2
-<0, Xr >Z rXr

or

2 2 2
xr <(d -yr )

(5.38)

Figure 5.5: Headon manuever

In summary, the system is stable as long as there is a vertical velocity which brings

each DSAAV tangent to a sphere of radius d centered on the other vehicle. When

Vxr/xr < O0, these velocities are constant, and the vehicles' trajectories are both straight

lines tangent to the spheres. This is the case in the first segment of the DSAAV's trajectory

in Figure 5.5.

While xr < (d2 -yr) and Vxr/xr < 0, the collision avoidance velocities will have

the DSAAVs continuously move tangent to the spheres-they will trace the surface of the

spheres, as seen in the curved segment of the DSAAV's path in Figure 5.5. The greater

their lateral separation at crossing, the less of the surface of the spheres they will trace.

As the vehicles continue to move away from one another, they move off the spheres,

and after that no vertical velocity can result in a tangential trajectory. That is where the

115

V
z



unstable region (Vxr/x r > O, xr- > Zr-) begins. In Figure 5.5, this unstable region is rep-

resented by the straight segment of the vehicle's trajectory coming off of the back of the

sphere.

For the Vyr 0 case, we come to an observation that is fundamental to the analysis of

our system: every Vy r  0 case can be transformed into the Vyr = 0 case with a simple

rotation of the reference frame. If we rotate our coordinate system around the z-axis, even-

tually all of the vehicles' horizontal motion will be in the x-direction. The transformed

system is now just our simple head-on case.

Also notice that Vzr # 0 does not affect the value of K, and therefore does not affect

stability. So the generalized stability condition for all encounters is that the horizontal dis-

tance (i.e. in the x-y plane) between the two vehicles must be decreasing when
2 2 2

Xr +Yr >d

5.1.4 Root Locus

Now we will characterize the dependency of the roots of the system on the relative posi-

tion and velocity of the vehicles. From Equation 5.27, we know that the roots of the sys-

tem depend only on T, and K. Table 5.1 summarizes that dependency.

Value of K Position of poles, k

K> 0 1 stable, 1 unstable

2

1 1 1

1 1
K < _= -- + io(K)

2T2  TVv

Table 5.1: CAS root locus

So the system is stable for all K < 0, but becomes more oscillatory as K becomes more

and more negative. The question now becomes, what is the relationship between K and the

116



relative positions and velocities of the vehicles? A plot of K vs. xr for the head-on case

tells us something.

Xr

Figure 5.6: K vs. xr

Figure 5.6 is a plot of K vs. xr for three head-on trajectories in which Vxr = -1. In the

first, zr = -d, so the two DSAAVs are passing directly over one another. In the second

case, zr = -d/2. In the final trajectory, the vehicles are passing side-by-side one another

(zr = 0).

117

Zr = -d

.. z.. Zr = -d/2

K o.

-I

-20 .

-40 ...........

-6 0 .................................................

-80
-20 -15 -10 -5

........................

Zr = ................. .............

. . . . . . . . . . .

............. ................ ..............



We can see that K is small and negative throughout most of the region.

Nevertheless, as the DSAAVs approach the xr = 0 point (point of closest approach), K

approaches -oo. Thus the system becomes very oscillatory in this region.

The same is true immediately after passing through the xr = 0 point, where the vehi-

cles begin to follow the surface of the sphere. K becomes small and negative again as they
2 2 2

follow the sphere, until they run out of sphere to follow (xr = d - yr ). As they approach

that point, K again approaches -oo, and the system becomes more oscillatory. After pass-

ing through that point, K is positive and the system is unstable.

So, as long as the time spent in these highly oscillatory regions is small, they should

not present a problem. Fortunately, as Figure 5.6 shows, these regions are narrow. In a true

head-on encounter, the vehicles should not be in these regions very long. Unfortunately,

when the vehicles are nearly side-by-side, they may be in this region for a longer period of

time. Sometime, however, disturbances can knock them out of this region of the state

space, or the collision avoidance system shuts off anyway.

Shared-Avoidance CAS

The collision-avoidance system we have just analyzed only uses the current position and

velocity information from the other vehicle to generate a collision-avoidance maneuver.

Furthermore, it assumes the other vehicle's velocity is constant-that it is not maneuver-

ing to avoid collision. In our stem, however, the other DSAAV is avoiding the collision,

and is doing so with the same algorithm. The result is what might appear to be twice as

much maneuvering as is necessary. As we have shown, the closed-loop nature continu-

ously corrects for the over-maneuvering and achieves the proper separation between the

vehicles. Nonetheless, it might be worthwhile to find out if the stability of the system

improves with an algorithm which does not over-maneuver.

To do so, we look at the shared-avoidance system briefly mentioned in Section 4.3, in

which half of the relative avoidance velocity is assigned to each vehicle. So our closed-

loop system is as follows:

118



-0
- 0100

Z 1 Z Vzz
0- 0 0 Zcomm

dV 1 - TV VZ + (5.39)
dt z 2  0 0 0 1 Z2  0

VZ2 0 0 1 V2 VZ2omm
v z v

where

Vzr
Zrcomm

Vzr (5.40)
-V,

V = comm + VVZ2 2 Zlcomm

So, we end up with

0100

K 1 K1

J = 2 T (5.41)
0001

K 1 K 1

2 T, 2 Tv

which has eigenvalues

S= O,-- +K (5.42)

119



So we see that for stability, K--the same K as before-again must be negative. But a

more detailed root locus (Table 5.2) shows the differences between the original CAS and

the shared-avoidance system.

Value of K Position of poles, X

K> 0 1 stable, 1 unstable

K=O =o0,
IvTV

1 1 1
2 v' 'v

Zv

1 1
K < - X = - + io(K)

Table 5.2: Shared-avoidance root locus

Notice that in the shared-avoidance system, the range of values of K for which the sys-

tem is stable and not oscillatory is twice as large as in the original system. So, it would

appear that the shared-avoidance system is a slight improvement on the original system.

However, as discussed in Section 4.3, the drawback to this algorithm is that it relies on the

assumption that the other vehicle operates under the same collision-avoidance system.

Depending on the multi-AAV system, this assumption may or not be a safe one.The origi-

nal algorithm, however, will succeed even if the other vehicle is not avoiding collision. In

fact, we will look next at the performance of our original CAS when one vehicle is nonco-

operative.

Noncooperative Collision Avoidance

We mentioned in Section 4.3 that the shared-avoidance system fails to meet the system

requirement when one vehicle is not cooperating. We also said, on the other hand, that

original system succeeds in this noncooperative scenario. Let's now take a look at the sta-

bility of the original system in the noncooperative collision-avoidance case.

120



The closed-loop system becomes

Z1

V z

Z2

VZ
2

010
01 0

T V

000

0

0

1

0 0 1

Z2

VZ
2

0

VZ1
comm

TV

0

0

and once again

VZl = Vz, + VZ2
COmm COMm

0 1 0 0

1 1K -K -
J = Irv

0 0 0 1

0 0 0 - 1
01v

The eigenvalues of the noncooperative system are as follows:

det

k -1 0 0

-K (+ I K
(k TV

1
t
IV

0 0 x -1

0 0 0 (k

(k2 + x )

1
=0, ,

v 
T

1
+ 

I)T

=0

(5.46)

2 +v- K = 0

1 + 112, -+K
2T 41 2

V

121

(5.43)

(5.44)

(5.45)



So, once again, K < 0, is the condition for stability. As we did with the original system

and the shared-avoidance system, we look at the detailed root locus of the noncooperative

system (Table 5.3).

Value of K Position of poles, X

K> 0 1 stable, 1 unstable

K=O k=10, -1

1 1 1K -
4V' 2-c' 2V

1 1K < - + io(K)
4, 2 22,

Table 5.3: Noncooperative CAS root locus

In the noncooperative system, we find no change in the stability criterion, but we do

see a change in the root locus. We see, perhaps surprisingly, that the region of K values

which results in a stable, nonoscillating response is half as large as in the original CAS.

Furthermore, the oscillations are damped out only half as fast as in the original system. So

it seems that any near-instability that was found in the excessive maneuvers of the original

system do not improve when one vehicle is noncooperative. We do note, however, that the

"drifting altitudes" phenomenon which was seen in the original system does not exist in

this system.

5.2 Time Delay

As mentioned in Section 4.3, the communication time delay between the vehicles may

limit the performance of the DSAAV collision avoidance system. This section attempts to

characterize the affect of the time delay

Before introducing time delay into our two-vehicle model, we must first acknowledge

that this delay only affects state information passing between the two vehicles. Each vehi-

cle receives its own state in real-time. With this in mind, it might be worthwhile to sepa-



rate the system dynamics between the two vehicles. The closed-loop dynamics described

by Equation (5.15) can be separated as follows:

= (A - BG)x
[A1 0 x, B 0 ]G l G1  x]

0 A2 2 0 B2 G21 G22 J2

This is visualized in the block diagram in Figure 5.7.

Figure 5.7: Decoupled system

F1
.t2j

(5.47)

I



Next, we can add time delays to the outputs that are being sent from each DSAAV to

the other. Our system now looks like the one in Figure 5.8.

I

Figure 5.8: Decoupled system with time delay

Redrawing the block diagram in Figure 5.8 gives us a clearer visualization of the entire

closed-loop system:



U2

Figure 5.9: Decoupled, closed-loop system

To insert a time delay into a state space system, we use a Pade approximation for the

time delay of T seconds [21]:

125



T
-sT 1 - y(s y(s)s(s)

1+-s -sT (s) A(S)A(s)
2

I(s) 1 2 2 (5.48)
UA(s) + T sT T

2

yA(s) TA(s) = 1- s = Y = 2 A- U
SA(s) 2

From Equation (5.48), we see that the state-space representation of Pade approximation is

T= TA (5.49)

YA = 2 A- U.

Now, the outputs of the vehicle dynamics are the inputs to the time delay, and vice-versa.

The result is a closed-loop system which consists of four distinct subsystems: DSAAV 1

dynamics, time delay between DSAAV 1 and 2, DSAAV 2 dynamics, and the time delay

between DSAAV 2 and 1.

In the Matlab script, acas.m, these four subsystems are linked in a closed-loop manner.

The eigenvalues of the resulting system are then computed at several points along a head-

on trajectory. The trajectory is repeated for different values of time delay in order to find

the maximum time delay, Tmax, before the system becomes unstable.

First, in Figure 5.10, we plot Tmax vs. xr The relationship is linear, and depends on

Vxr. From the plot we find that the value of Tmax is dependent only on IVxr/Xrl . Specifi-

cally, for the system to be stable, the time delay must satisfy the following inequality:

x<
T<2 - (5.50)Vxr

126



F/
4.5- V = -0.5

4

Vx = -1
3.5

3

-'1 Vx = -32.5

2

Vx = -5
1.5

1

0.5

0
0 1 2 3 4 5 6

Xr

Figure 5.10: Ta x vs. xr

Now, we point out that for our head-on maneuver, the expression IXr/Vxr is actually

the time to closest approach, t*. So our stability criterion becomes

T < 2t* (5.51)

So, for a finite T, the CAS will in fact become unstable in some region around the point of

closest approach.

5.3 Unmodeled Dynamics

Our model of the DSAAV collision avoidance system does not incorporate all of the

dynamics of the actual system. And while our model does closely approximate the actual

dynamics, it is worth mentioning a couple of the elements it neglects: dynamic coupling

127



between the axes of motion and nonlinearities.

5.3.1 Dynamic Coupling

Our model of the vehicle motion assumes that the dynamics in the x-, y-, and z-direc-

tions are completely decoupled. This assumption is tested in the DSAAV simulation,

where a more complex and accurate vehicle model is used. The results are shown in Fig-

ures 5.11 through 5.13, where the effects of step velocity inputs on the various axes are

shown.

We can see that there is indeed some coupling among the axes. This coupling is very

small when x- and y-velocities are commanded. When the 2 ft/sec Vz step is commanded,

however, there is a substantial resultant Vy (0.2 ft/sec peak). This coupling could very well

alter the system response.

1.

Vx

-0.
1.

Vy

-0.
0.

5

A .. ... .............. ----- ----............. ......... .......... .. ......... ............... ........ ...... ................ ............. ......- ---..... .... ............... ..................................................

5
5

5

Vz

I I I I I I I I I I I I

58 60 6 6 64 66 68 70

Simulation time (seconds)

128

S72 S 74

Figure 5.11: Coupled dynamics in response to step x-velocity command

5

I ! I i II I I I I I I I I I

5

--- ---- --- .. ..... ....... ... .. ... .... .. ... .. ... .. .. ... . ... ..... ..
-- ----------- ------- -------------- -

............... .............. ..............

I I I I I



1.5

Vx

-0.5
1.5

Vy

-0.5
0.

.. ... .... ... .... .... ... .... .I .... .... ... .... ... .... .... ...... ... ... ...... ....... ...... ... .... .. ..... ... ... .... .....---- --- ---.... ... .... ..

... ... ........ .... .. .. ..... .. .... ..... . ... ... .... .... ..... ..... .... ... ..... .... ........ .. .. .... .. ... .. ..... .... ... ..... ..
v.-. ---

.. .. ... .. ... .... .. ... .. ... .... ... .. ... .. ... .. .... ... ... .... .. ... .. ... .... .. ... ... .. . ... ... .. ... .... .. ... ... .. .-- -- --- -- --- -- -... ... ... .. ... ... .. .. ... .. ... .

I I I I I I I I I I I I I I I I I I _

58 60 62 64 66 68 70 72 74 58 60 58

Simulation time (seconds)

Figure 5.12: Coupled dynamics in response to step y-velocity command

129

51

..... ...... ......... ............. ............... ............ ...................... .......... ... .... ............. .. ... .....................
................. ................... .................. ................... ...... ....... ............ ...... ....... ............ ...........

I I I I I I I I I I I I I I I !



1.5

vX

-0.
I.

VY

0.

V,

5
5

5 ................ ............... ..... ......... ... ........ ............. ------ -- ...... .....................................

5

I
............... ............ ..... i .............................. ................. .............. .............. ........................ .................. .......................... .... ......... ...................... ............................ ........ .. ............. ..... .. ............ .. .. " .... ............ ....... .. ..... ............................................ . ........... .......... . . ................ ........................ ............ ............ ........................ i........................ .. .... .... ................ .. ...... .. ......... .. ...... ....
....................... ----- .......... .. .... ..... .......................i i I -, , - ~ i ..... -.....£ - L ~ .............. i................ ... -- -------

58 60 62 64 66 68 70 72 74 70 72 74

Simulation time (seconds)

Figure 5.13: Coupled dynamics in response to step z-velocity command

5.3.2 Other Nonlinearities

Our CAS model also neglects a number of nonlinearities which are introduced by the col-

lision avoidance algorithm or the vehicle control system. Three of these nonlinearities are

collision avoidance relays, which can instantaneously switched between two possible val-

ues. The fourth nonlinearity is a saturation.

The first switch determines whether the vehicle is avoiding to the top or bottom of the

sphere of separation centered on the other DSAAV. The second switch occurs when the

system passes into one of the no-solution situations, as described in Section 4.3.2. Lastly,

the collision avoidance system switches completely on and off depending if avoidance

maneuvering is needed. The saturation nonlinearity is a limit placed on the vehicle veloci-

ties by the control system.

One of the most useful methods for analyzing the above nonlinearities is describing

function analysis, which is described in [18]. Describing functions approximate the

130



dynamics of the nonlinearity in response to a sinusoidal input function. Using describing

functions and traditional frequency domain techniques, the existence of limit cycles and

the stability of the system can be determined.

5.4 Conclusions

In this chapter, we have examined the stability and performance of our collision avoidance

algorithm. We first took our algorithm and framed it in the context of a feedback control

system, allowing us to utilize the many techniques associated those systems. We charac-

terized the stability of the system, and verified that it agreed with our intuition. We found

that our two-vehicle CAS is in fact stable for most operating regimes, with a few excep-

tions,

Next, we attempted to analyze what could be one of the more severe limitations facing

real-time, distributed collision avoidance systems: time delay. Most importantly, we again

found a way to insert communication time delay in our CAS, while still analyzing it like a

traditional control system. Lastly, we mentioned the parts of our system which did not get

analyzed here, but should still be considered in the design and analysis of a CAS.



132



Chapter 6

Conclusions

Autonomous air vehicles will undoubtedly become more and more capable in the coming

years. As they do, people will put them to use in greater numbers; everyone from military

generals to movie directors are going to want AAVs to go to work for them. Eventually,

AAVs are going to find themselves interacting with other AAVs, either cooperatively or in

intruder scenarios. The AAVs that safely complete their missions will be those equipped

with collision avoidance systems.

6.1 Autonomous Collision Avoidance

6.1.1 CAS Design and Analysis Methodology

First and foremost this document is to be a somewhat comprehensive reference to those

investigating multi-AAV operations-especially collision avoidance. Hopefully, by docu-

menting the design and analysis of our autonomous CAS, we have provided a checklist of

sorts for future designers of collision avoidance systems. This checklist is by no means

complete, but it should at least prevent the omission of some obvious design consider-

ations and allow others to learn from our mistakes.

6.1.2 Strive for Balance in Design and Analysis

The collision avoidance algorithm found in Appendix A bears little resemblance to the one

first created with crude sketches nearly a year ago. At first, that simple collision avoidance

algorithm probably seemed flawless. And had it stayed on paper, it would have been.

However, part of engineering is transferring ideas from paper sketches and simple

models to functioning systems. Since the DSAAV vehicles are not easy to replace in the

case of a collision, we have been fortunate to have a high-fidelity vehicle simulation to test

133



our designs on. The DSAAV simulation has pointed out countless scenarios in which the

algorithm would have caused very undesirable performance. Yet, for every such scenario

found through simulation, we wonder how many others still lurk out there.

That fear leads to more rigorous analysis techniques to find those algorithm flaws that

just do not show up on paper or in simulation. For a CAS that has a lot of switching

between finite states, it is especially important to understand what states can lead to poor

performance. In our bang-bang controller, we occasionally encountered a situation in sim-

ulation in which the AAVs maneuvered the same direction and had a direct collision. A

finite state analysis of our controller might have revealed that potential hazard.

On the other hand, sometimes the thorough analysis reveals something positive about

the system. We faced this in Chapter 5, when we discovered that having both vehicles

maneuver as if the other wasn't is more stable than the shared-avoidance case.

So, one key to designing and analyzing a CAS is to maintain a balance between com-

mon sense, simulation results, and mathematical analysis.

6.1.3 Choose Functional Over Optimal

Much of the collision avoidance literature is focused on optimal conflict resolution maneu-

vers, while ignoring practical issues such as computational complexity, time delays, and

system disturbances. This may be fine for advancing collision avoidance theory, but it does

not always aid in the actual design of a CAS.

When designing a collision avoidance system, it is best to start very simple and only

make the system as complex as it needs to be. Following this principle, the DSAAV CAS

was designed and tested in a relatively short amount of time.

6.1.4 Communication is Important

In general, the more information a CAS has about the other vehicles, the better chance the

AAV has of avoiding conflict. Conversely, anything that inhibits the communication

among the AAVs will also hinder the performance of the collision avoidance systems. We

saw that this was the case with time delay and trajectory uncertainty.



Ideally, AAVs should use advanced communication, such as intent sharing and maneu-

ver coordination, in their collision avoidance systems. Such systems would certainly be

more reliable than the basic constant-velocity trajectory extrapolation we are using. Nev-

ertheless, in the absence of these more advanced communication capabilities, its important

that the CAS does the best with the information it has.

6.1.5 Safety First

The bottom line with autonomous collision avoidance is that people are not going to trust

their vehicles to an unsafe CAS. That means that collision avoidance systems need to have

an :idea of their expected performance. This is what makes the separation lower bounds in

[10] so important. Alternatively, the probabilistic methods found in [9] and [16] can also

give a metric of CAS performance.

6.2 Suggestions for Future Research

The investigation of autonomous collision avoidance should not and will not end with this

thesis. Plenty of work remains to be done, and some of it will be implemented in actual

flight tests.

6.2.1 Nonlinear Analysis

The closed-loop analysis begun in Chapter 5 should be expanded to include the nonlinear-

ities mentioned in Section 5.3.2. These nonlinearities may cause degraded system perfor-

mance, and should be analyzed and understood. Since the collision avoidance system is a

mixture of continuous dynamics and discrete states, it is a hybrid system. The interactions

between the continuous and the discrete can be complex and difficult to analyze. Never-

theless, understanding them is important in the design of an autonomous CAS.

6.2.2 Flexible Collision Avoidance System

Future collision avoidance algorithms should be flexible in how much and what kind of

information they need. Ultimately, vehicle state estimates are used in the collision avoid-

ance algorithm; it should not matter what information was used to generate those esti-

135



mates.

Using a Kalman filter, measurements could come from a number of sources, and an

optimal estimate would be produced. Depending on the accuracy of the measurements, the

CAS should adapt its conflict thresholds and avoidance maneuvers to reflect its lack of

certainty in the vehicle trajectories. So an AAV receiving only intruder position updates

could run the same CAS as one which also receives intent information over a high-band-

width data link. Because of uncertainty, however, it will not let itself get as close to the

intruder.

6.2.3 Three or More AAVs

AAV conflict encounters will not be limited to two vehicles. And while the two-vehicle

collision avoidance problem is more fundamental, conflicts involving three or more AAVs

should still be investigated.

6.2.4 Flight Test the CAS

Finally, as autonomous CAS designs advance, they need to move away from block dia-

grams and simulations and move on board actual AAVs. Flight tests of CASs will reveal

things that simulation and analytical analysis cannot.

The DSAAV vehicles should be running their collision avoidance systems in flight

tests in the coming year. Such a test will be an important demonstration and, as far as we

know, the first of its kind.

136



137



References

[1] Poggio, M., and Poggio, T. Cooperative physics of fly swarms: an emergent behavior.
MIT Artificial Intelligence Laboratory Memo #1512, Cambridge, MA, December
1994.

[2] Gage, Douglas W. Command control for many-robot systems. Proceedings ofAUVS-
92, Huntsville, AL, 1992.

[3] Brooks, Rodney A. A robust layered control system for a mobile robot. MIT Artifi-
cial Intelligence Laboratory Memo #864, Cambridge, MA, 1985.

[4] Parker, Lynne E. Local vs. global control laws for cooperative agent teams. MIT Arti-
ficial Intelligence Laboratory Memo #1357, Cambridge, MA, March 1992.

[5] White, David A., and Sofge, Donald A., eds. Handbook of intelligent control : neural,
fuzzy, and adaptive. Van Nostrand Reinhold, New York, 1992.

[6] Trott, Christian A. Electronics design for an autonomous helicopter. SB/SM Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, June 1997.

[7] Krozel, J., Mueller, T., and Hunter, G. Free flight conflict detection and resolution
analysis. Proceedings of the AIAA Guidance, Navigation, and Control Conference,
San Diego, CA, July 1996.

[8] Federal Aviation Administration. U.S. Federal Aviation Regulations, Part 125. Wash-
ington, D.C., 1997.

[9] Kuchar, James K. A unified methodology for the evaluation of hazard alerting sys-
tems. Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Insti-
tute of Technology, Cambridge, MA, January 1995.

[10] Shewchun, J. Marc, and Feron, Eric. Linear matrix inequalitites for analysis of free
flight conflict problems. Paper submitted to IEEE Conference on Decision and Con-
trol, 1997.

[11] Oh, Jae-Hyuk, and Feron, Eric. Primal-dual quadratic programming approach to mul-
tiple conflict resolution. Paper submitted to American Control Conference, 1998.

[12] Kosecka, J., Tomlin, C., Pappas, G., and Sastry, S. Generation of conflict resolution
maneuvers for air traffic management. Submitted for the International Conference on
Robotics and Intelligent Systems, Sept. 1997.

138



[13] Tomlin, C., Pappas, G., and Sastry, S. Conflict resolution for air traffic management: a
case study in multi-agent hybrid systems. Technical report, University of California at
Berkeley, 1996.

[14] Gelb, Arthur, ed. Applied optimal estimation. MIT Press, Cambridge, MA, 1974.

[15] Yang, L. and Kuchar, J. Prototype conflict alerting logic for free flight. Paper AIAA-
97-0220, 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6-
10, 1997.

[16] Paielli, Russel A., and Erzberger, H. Conflict probability estimation for free flight.
Paper AIAA-97-0001, 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NV, January 6-10, 1997.

[17] Hall, William. Air transportation system model under free flight. Presentation to MIT
Operations Research Center, May 1996.

[18] Gelb, Arthur, and Vander Velde, Wallace E. Multiple-input describing functions and
nonlinear system design. McGraw-Hill, New York, 1986.

[19] Appleby, Brent D. Reducing shuttle-payload dynamic interaction with notch filters.
SM thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA, February 1987.

[20] Mohler, Ronald R. Nonlinear systems, volume 1: dynamics and control. Prentice-
Hall, Englewood Cliffs, NJ, 1991.

[21] Stevens, Brian L., and Lewis, Frank L. Aircraft control and simulation. John Wiley
and Sons, New York, 1992.

139



140



Appendix A

Collision Avoidance Code

Section A.2 contains the C functions that are called from the DSAAV's control software to

generate a collision avoidance command. But first, Section A. 1 contains an excerpt from

the on_board.spech file, which defines and initializes the variables and parameters of the

CAS.

A.1 Variable Definitions (from on_board.spech)

%Dir aavhcas_ref {

lenum heliID id sw
enum Switch waycomm sw
enum Switch on sw

enum Switch coop sw
enum Switch forceAvoid sw
enum Switch delayComp sw

HELI_A :helicopter id;

ON :helicopters sharing waypoint info;

OFF :engage collision avoidance system;

ON :cooperative collision avoidance;
OFF :force collision avoidance;
ON :compensate for time delay;

separation ft

minsep ft 12
minAvoidAlt ft -4
mandir na
manmax ft/s -2
manmin ft/s 1
retmax ft/s -2
retmin ft/s 1
delayBuff[DELAYBUFF_SIZE][18]

tdComm
diffInd
tdEst
trmax
tau

o_pos [3]
ou
ov
ow
ophi
o_theta
opsi
o_tBL[3][3]

sec
na
sec
sec
sec

ft
ft/s
ft/s
ft/s
rad
rad
rad
na

0
.04
7
.4

:estimated separation distance;
:min. separation distance allowed;
:minimum avoidance maneuver alt;
:O=manuever down, l=maneuver up;
:maximum vertical maneuver velocity;
:minimum vertical maneuver velocity;
:maximum vertical return velocity;

:minimum vertical return velocity;
na
:communication delay buffer;
:communication time delay;
:number time steps of comm delay;
:communication time delay estimate;

:max. time-to-collision after manvr;
:vertical velocity time constant;

:position of other heli;
:body axis velocity of other heli;
:body axis velocity of other heli;

:body axis velocity of other heli;
:attitude of other heli;
:attitude of other heli;
:attitude of other heli;
:transform from body to local frame;

:relative x-positions of the AAVs;
:relative y-positions of the AAVs;
:relative z-positions of the AAVs;
:relative x-velocities of the AAVs;

float
float
float
int
float
float
float
float
Float

float
int
float
float
float

float
float
float
float
float
float
float
Float

Ifloat xr
Ifloat yr
Ifloat zr
Ifloat Vxr



float
float
float
float
float
float
float
float
float
float
float
float
float

Vyr
Vzr
Vxrc

Vyrc
Vzrc
D2
xrtrue
yrtrue
zrtrue
Vxrtrue
Vyrtrue
Vzrtrue
tstartrue

double
float
float
float
float
float
float

lenum Switch
float
float
float
float

float
float
float
float
float
float
float

float
float
float

lenum Switch
};

ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
sec

zrstar
sep0
tsep0
sep0c
tsep0c
sepm

tsepm
avoid
Vzrcomml
Vzrcomm2
Vzrcomm
w_avoid

w_avoidl
w_avoid2
dstar
tstar
dstarc
tstarc
tstarmin

ft;
ft
sec
ft
sec

ft
sec

sw OFF

ft/s
ft/s
ft/s
ft/s

ft/s
ft/s
ft
sec
ft
sec
sec

K na

lambdal[2] na
lambda2[2] na
safeStop sw

:relative y-velocities of the AAVs;
:relative z-velocities of the AAVs;
:rel. x-velocities after gdc command;
:rel. y-velocities after gdc command;
:rel. z-velocities after gdc command;
:distance - minsep;

:relative x-positions of the AAVs;
:relative y-positions of the AAVs;
:relative z-positions of the AAVs;
:relative x-velocities of the AAVs;
:relative y-velocities of the AAVs;
:relative z-velocities of the AAVs;
:time until minimum separation;

:min. projected separation distance;
:time until minimum separation;
:min. projected sep. dist. (comm);
:time until min. sep. (commanded);
:min. sep. distance during maneuver;
:time til min. sep. during maneuver;
:execute avoidance maneuver;
:commanded rel. vertical vel. (up);
:commanded rel. vertical vel. (down);
:commanded rel. vertical vel.;
:avoidance maneuver z-axis
:body velocity (+ down);
:vel. command (up);
:vel. command (down);
:min. projected separation distance;
:time until minimum separation;
:min. projected sep. dist. (comm);
:time until min. sep. (commanded);
:min. time to closest approach
:before avoiding;
:collison avoidance variable;
:eigenvalue of CAS;
:eigenvalue of CAS;

OFF

A.2 Bang-Bang Collision Avoidance Algorithm (from on_board_hcas.c)

void HCASUpdatel( struct aavnavigation_ref *n,
struct aavhcas_ref *hcas,
struct aavon_board_con_ref *c) {

float xrm,yrm,zrm,z_err,Vxl,Vx2,Vxc,Vyl,Vy2,Vyc,Vzl,Vz2,Vzc,
wcoml,wcom2,wcom3,manave,tm,sepm,tsepm,xrr,yrr,zrr,tr,sepr,
sep,xSep,ySep,zSep;
int coop, mandir;

142



GetOtherAAVState( hcas );

/* Convert body velocities (u,v,w) to local frame (Vn,Ve,Vd) */

Vx1 = n->tBL[O][0]*n->u + n->tBL[O][l]*n->v + n->tBL[0][2]*n->w;
Vyl = n->tBL[1l[0]*n->u + n->tBL[l][1l]*n->v + n->tBL[l][2]*n->w;
Vzl = n->tBL[2][0]*n->u + n->tBL[2][l]*n->v + n->tBL[2][2]*n->w;

hcas->o_tBL[0][0 *hcas->o_u +
hcas->o_tBL[0] [2]*hcas->o_w;
hcas->o_tBL[l][0] *hcas->o_u +
hcas->o_tBL[1][2] *hcas->o_w;
hcas->o_tBL[2] [0]*hcas->o_u +
hcas->o_tBL[2][2] *hcas->o_w;

hcas->o_tBL[0] []*hcas->o_v

hcas->o_tBL[l] [l]*hcas->o_v

hcas->o_tBL[2][1]*hcas->o_v

/* Compute position and velocity relative to other helicopter */

if(!(hcas->delayComp))
hcas->xr = n->pos[0]
hcas->yr = n->pos[l]
hcas->zr = n->pos[2]

else {
hcas->xr
hcas->yr
hcas->zr

n->pos [0]
n->pos [1]
n->pos [2]

hcas->o_pos[0];
hcas->o_pos [];
hcas->o_pos[2];

(hcas->o_pos [0]
(hcas->o_pos [1]
(hcas->o_pos[2]

+ Vx2*hcas->tdEst);
+ Vy2*hcas->tdEst);
+ Vz2*hcas->tdEst);

hcas->Vxr = Vxl - Vx2;

hcas->Vyr = Vyl - Vy2;

hcas->Vzr = Vzl - Vz2;

/* Compute current estimated separation distance */
hcas->separation = sqrt(hcas->xr*hcas->xr + hcas->yr*hcas->yr

+ hcas->zr*hcas->zr);

/* Assume other helicopter is non-cooperative if cooperative

switch has been shut off or if other helicopter is
below minimum avoidance altitude */

if(!hcas->coop II hcas->o_pos[2] > hcas->minAvoidAlt)
coop = 0;

else
coop = 1;

/* Calculate time and distance of closest approach */

if(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr*hcas->Vzr != 0) {

hcas->tstar = -(hcas->xr*hcas->Vxr + hcas->yr*hcas->Vyr
+ hcas->zr*hcas->Vzr)/

(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr*hcas->Vzr);

143

Vx2 =
+

Vy2 =
+2

Vz2 =
+



hcas->tstar = MAX(O,hcas->tstar);
hcas->dstar = ComputeHelSep(hcas->tstar,hcas->xr,hcas->yr,

hcas->zr,hcas->Vxr,hcas->Vyr,hcas->Vzr);
}
else {

/* Helicopters not moving-- */
hcas->dstar = sqrt(hcas->xr*hcas->xr + hcas->yr*hcas->yr

+ hcas->zr*hcas->zr);
}

if(hcas->avoid == OFF) {

if(hcas->dstar <= hcas->minsep) {

/* Calculate relative position after rise time
of vertical velocity command */

xrm = hcas->Vxr*4*hcas->tau + hcas->xr;
yrm = hcas->Vyr*4*hcas->tau + hcas->yr;
zrm = hcas->Vzr*4*hcas->tau + hcas->zr;

/* Determine direction of avoidance maneuver */

if(zrm < 0 1 (!hcas->coop && n->pos[2] > hcas->minAvoidAlt)){
/* Maneuver up */
wcoml = hcas->manmax;
if(coop)
wcom2 = hcas->manmin;

else
wcom2 = hcas->o_w;

mandir = 1;

}
else if(zrm > 0) {

/* Maneuver down */
wcoml = hcas->manmin;
if(coop)
wcom2 = hcas->manmax;

else
wcom2 = hcas->o_w;

mandir = 0;

else if(zrm == 0) {

if(hcas->zr < 0) {

/* Maneuver up */
wcoml = hcas->manmax;
if(coop)
wcom2 = hcas->manmin;

else
wcom2 = hcas->o_w;

mandir = 1;
}
else if(hcas->zr > 0){

/* Maneuver down */
wcoml = hcas->manmin;
if(coop)
wcom2 = hcas->manmax;

else
wcom2 = hcas->o_w;

mandir = 0;

144



else if(hcas->zr == 0) {

if(hcas->id == HELI_A) {

/* Maneuver up */

wcoml = hcas->manmax;
if(coop)
wcom2 = hcas->manmin;

else
wcom2 = hcas->o_w;

mandir = 1;

}
else if(hcas->id == HELIB) {

/* Maneuver down */

wcoml = hcas->manmin;
if(coop)
wcom2 = hcas->manmax;

else
wcom2 = hcas->o_w;

mandir = 0;

}
}

/* Convert commanded body velocity to local frame */

Vxl = n->tBL[0][0]*n->u + n->tBL[0][l]*n->v + n->tBL[0][2]*wcoml;
Vyl = n->tBL[1][0]*n->u + n->tBL[l][1]*n->v + n->tBL[l][2]*wcoml;
Vzl = n->tBL[2][0]*n->u + n->tBL[2][1]*n->v + n->tBL[2][2]*wcoml;

Vx2 = hcas->o_tBL[0][0]*hcas->o_u + hcas->o_tBL[0][1]*hcas->o_v
+ hcas->o_tBL[0][2]*wcom2;
Vy2 = hcas->o_tBL[l][0]*hcas->o_u + hcas->otBL[l][l]*hcas->o_v
+ hcas->o_tBL[] [2]*wcom2;
Vz2 = hcas->o_tBL[2][0]*hcas->o_u + hcas->o_tBL[2][l]*hcas->o_v
+ hcas->o_tBL(21[2]*wcom2;

/* Compute velocity relative to other helicopter */

hcas->Vxr = Vxl - Vx2;

hcas->Vyr = Vyl - Vy2;

hcas->Vzr = Vzl - Vz2;

/* Calculate time and distance of closest

approach during maneuver */

if(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr*hcas->Vzr != 0) {

tsepm = -(xrm*hcas->Vxr + yrm*hcas->Vyr + zrm*hcas->Vzr)/

(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr* hcas->Vzr);

tsepm = MAX(0,tsepm);
sepm = ComputeHelSep(tsepm,xrm,yrm,zrm,hcas->Vxr,

hcas->Vyr,hcas->Vzr);
}
else {
/* Helicopters not moving-- */
sepm = sqrt(xrm*xrm + yrm*yrm + zrm*zrm);

}

145



if(sepm <= hcas->minsep)

if(mandir == 1) {

/* Maneuver up */
hcas->avoid = ON;

hcas->w_avoid = hcas->manmax;

else if(mandir == 0 && n->pos[21 < hcas->minAvoidAlt) (
/* Maneuver down */
hcas->avoid = ON;

hcas->w_avoid = hcas->manmin;
}

else
hcas->avoid = OFF;

else if(hcas->avoid == ON){

xrr = hcas->Vxr*0*hcas->tau + hcas->xr;
yrr = hcas->Vyr*0*hcas->tau + hcas->yr;
zrr = hcas->Vzr*0*hcas->tau + hcas->zr;

/* Calculate desired return velocity--Guidance system */

z_err = c->x_cmd[2] - n->pos[2];

wcoml = LIMIT(c->z2w*z_err, hcas->retmax, hcas->retmin );

/* Determine other helicopter's return velocity */

if(mandir == 0) {
wcom2 = hcas->retmin;

else if(mandir == 1) {
wcom2 = hcas->retmax;

if(!coop)
wcom2 = hcas->o_w;

/* Convert commanded body velocity to local frame */

Vxl = n->tBL[0][0]*n->u + n->tBL[0][1l]*n->v + n->tBL[0][2]*wcoml;
Vyl = n->tBL[l][0]*n->u + n->tBL[l][l]*n->v + n->tBL[1][2]*wcoml;
Vzl = n->tBL[21[0]*n->u + n->tBL[2][1]*n->v + n->tBL[21[2]*wcoml;

Vx2 = hcas->o_tBL[0][0*hcas->o_u + hcas->o_tBL[0][]*hcas->o_v
+ hcas->o_tBL[0] [2]*wcom2;

Vy2 = hcas->o_tBL[11[0]*hcas->o_u + hcas->o_tBL[l] [1]*hcas->o_v
+ hcas->o_tBL[l][2]*wcom2;

Vz2 = hcas->o_tBL[21[0]*hcas->o_u + hcas->o_tBL[2][1]*hcas->o_v
+ hcas->o_tBL[2][2]*wcom2;

/* Compute velocity relative to other helicopter */

hcas->Vxr = Vxl - Vx2;

hcas->Vyr = Vyl - Vy2;

hcas->Vzr = Vzl - Vz2;

146



if(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr*hcas->Vzr != 0) {

tr = - (xrr*hcas->Vxr + yrr*hcas->Vyr + zrr*hcas->Vzr)/

(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr
+ hcas->Vzr*hcas->Vzr);

tr = MAX(0,tr);

sepr = ComputeHelSep(tr,xrr,yrr,zrr,hcas->Vxr,hcas->Vyr,
hcas->Vzr);

}
else {

/* Helicopters not moving-- */

sepr = sqrt(xrr*xrr + yrr*yrr + zrr*zrr);

}

if( sepr >= hcas->minsep j tr >= hcas->trmax
1 ((n->pos[2] > hcas->minAvoidAlt) && (wcoml > 0))

hcas->avoid = OFF;
}

A.3 Continuous Collision Avoidance Algorithm (from on_board_hcas.c)

void HCASUpdate2( struct aavnavigation_ref *n,
struct aavhcas_ref *hcas,
struct aavon_boardcon_ref *c) {

float Vxl,Vx2,Vxc,Vyl,Vy2,Vyc,Vzl,Vz2,Vzc,z_err,wcoml,qa,qb,qc;
int coop;

GetOtherAAVState( hcas );

/* Convert body velocities (u,v,w) to local frame (Vx,Vy,Vz) */

Vxl =
Vyl =
Vzl =

Vx2 =
+

Vy2 =
+

Vz2 =
+

n->tBL[0][0]*n->u + n->tBL[0][l]*n->v + n->tBL[0][2]*n->w;
n->tBL[1l][0]*n->u + n->tBL[1][1l*n->v + n->tBL[11[2]*n->w;
n->tBL[2][0]*n->u + n->tBL[2][1]*n->v + n->tBL[2][2]*n->w;

hcas->o_tBL[0][0]*hcas->o_u +
hcas->o_tBL[0] [2]*hcas->o_w;
hcas->o_tBL[l][0]*hcas->o_u +
hcas->o_tBL[l] [2]*hcas->o_w;
hcas->o_tBL[2][0]*hcas->o_u +
hcas->otBL[21[21 *hcas->o_w;

hcas->o_tBL[0] []*hcas->o_v

hcas->o_tBL[1] []*hcas->o_v

hcas->o_tBL[2][1]*hcas->o_v

/* Calculate intended velocity--Guidance system */

z_err = c->x_cmd[2] - n->pos[2];

wcoml = LIMIT(c->z2w*z_err, hcas->retmax, hcas->retmin );

/* Convert intended body velocity to local frame */

147



Vxc = n->tBL[0][0]*n->u + n->tBL[0][1]*n->v + n->tBL[0][2]*wcoml;
Vyc = n->tBL[l][0]*n->u + n->tBL[l][1]*n->v + n->tBL[l][2]*wcoml;
Vzc = n->tBL[2][0]*n->u + n->tBL[2][1]*n->v + n->tBL[2][2]*wcoml;

/* Compute position and velocity relative to other helicopter */

if( !(hcas->delayComp) ) {
hcas->xr = n->pos[0] - hcas->o_pos[0];

hcas->yr = n->pos[l] - hcas->o_pos[l];
hcas->zr = n->pos[2] - hcas->o_pos[2];

}
else {

/* Compensate for communication time delay */
hcas->xr = n->pos[0] - (hcas->o_pos[O] + Vx2*hcas->tdEst);
hcas->yr = n->pos[l] - (hcas->o_pos[l] + Vy2*hcas->tdEst);
hcas->zr = n->pos[2] - (hcas->o_pos[2] + Vz2*hcas->tdEst);

}

hcas->Vxr = Vxl - Vx2;
hcas->Vyr = Vyl - Vy2;
hcas->Vzr = Vzl - Vz2;

hcas->Vxrc = Vxc - Vx2;
hcas->Vyrc = Vyc - Vy2;
hcas->Vzrc = Vzc - Vz2;

/* Compute current estimated separation distance */
hcas->separation = sqrt(hcas->xr*hcas->xr + hcas->yr*hcas->yr

+ hcas->zr*hcas->zr);

/* Calculate time and distance of closest approach -- Current trajectory*/

if(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr + hcas->Vzr*hcas->Vzr != 0)
hcas->tstar = -(hcas->xr*hcas->Vxr + hcas->yr*hcas->Vyr

+ hcas->zr*hcas->Vzr)/
(hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr + hcas->Vzr*hcas->Vzr);

hcas->tstar = MAX(0,hcas->tstar);
hcas->dstar = ComputeHelSep(hcas->tstar,hcas->xr,hcas->yr,hcas->zr,

hcas->Vxr,hcas->Vyr,hcas->Vzr);

}
else {

/* Helicopters not moving-- */
hcas->dstar = hcas->separation;

}

/* Calculate time and distance of closest approach -- Guidance trajectory*/

if(hcas->Vxrc*hcas->Vxrc + hcas->Vyrc*hcas->Vyrc
+ hcas->Vzrc*hcas->Vzrc != 0) {

hcas->tstarc = -(hcas->xr*hcas->Vxrc + hcas->yr*hcas->Vyrc
+ hcas->zr*hcas->Vzrc)/

(hcas->Vxrc*hcas->Vxrc + hcas->Vyrc*hcas->Vyrc + hcas-
>Vzrc*hcas->Vzrc);

hcas->tstarc = MAX(0,hcas->tstarc);

148



hcas->dstarc = ComputeHelSep(hcas->tstarc,hcas->xr,hcas->yr,hcas->zr,
hcas->Vxrc,hcas->Vyrc,hcas->Vzrc);

else {
/* Helicopters not moving-- */

hcas->dstarc = hcas->separation;

}

/* If current trajectory or intended trajectory will cause

a collision, compute collision-avoidance maneuver */

if((hcas->dstarc <= hcas->minsep && hcas->tstarc > 0

&& hcas->tstarc < hcas->tstarmin)

S(hcas->dstar <= hcas->minsep - hcas->hystWidth
&& hcas->tstar > 0 && hcas->tstar < hcas->tstarmin)

I (hcas->dstar <= hcas->minsep + hcas->hystWidth
&& hcas->dstar >= hcas->minsep - hcas->hystWidth

&& hcas->avoid && hcas->tstar > 0

&& hcas->tstar < hcas->tstarmin) (hcas->forceAvoid))

/* Relative vertical positions at time of closest approach */

hcas->zrstar = hcas->Vzr*((hcas->tstar > 0) ? hcas->tstar :
hcas->tstarc) + hcas->zr;

hcas->D2 = hcas->xr*hcas->xr + hcas->yr*hcas->yr + hcas->zr*hcas->zr

- hcas->minsep*hcas->minsep;
qa = hcas->zr*hcas->zr - hcas->D2;

qb = hcas->Vxr*hcas->xr + hcas->Vyr*hcas->yr;
qc = hcas->Vxr*hcas->Vxr + hcas->Vyr*hcas->Vyr;

/* Compute collision avoidance maneuever */

if( hcas->D2*(qa*qc + qb*qb) > 0 ) {

hcas->Vzrcomml = (-hcas->zr*qb + sqrt(hcas->D2*(qa*qc + qb*qb)))/qa;

hcas->Vzrcomm2 = (-hcas->zr*qb - sqrt(hcas->D2*(qa*qc + qb*qb)))/qa;

if(coop) {
hcas->w_avoidl = 0.5*hcas->Vzrcomml + Vz2;

hcas->w_avoid2 = 0.5*hcas->Vzrcomm2 + Vz2;

else {
hcas->w_avoidl = hcas->Vzrcomml + Vz2;

hcas->w_avoid2 = hcas->Vzrcomm2 + Vz2;

if(hcas->zrstar < 0) {
hcas->K = -qb/qa + (hcas->zr*sqrt(qa*qc + qb*qb))/

(qa*sqrt(hcas->D2));
hcas->Vzrcomm = hcas->Vzrcomml;
hcas->w_avoid = hcas->w_avoidl;
hcas->avoid = ON;

}
else if( hcas->zrstar > 0) {

149



hcas->K = -qb/qa - (hcas->zr*sqrt(qa*qc + qb*qb))/
(qa*sqrt(hcas->D2));

hcas->Vzrcomm = hcas->Vzrcomm2;
hcas->w_avoid = hcas->w_avoid2;
hcas->avoid = ON;

}
else {

hcas->avoid = OFF;
hcas->w_avoid = 0.0;

/*if(hcas->id == HELI_ A) {
hcas->Vzrcomm = hcas->w_avoidl - Vz2;
hcas->w_avoid = hcas->w_avoidl;
hcas->avoid = ON;

}
else {

hcas->Vzrcomm = hcas->w_avoid2 - Vz2;
hcas->w_avoid = hcas->w_avoid2;
hcas->avoid = ON;

}*/

/* Compute eigenvalues of CAS */
if(hcas->tau != 0) {

if((l/(hcas->tau*hcas->tau) + 2*hcas->K) >= 0) {
hcas->lambdal[0] = -1/hcas->tau + sqrt(1/(hcas->tau*hcas->tau)

+ 2*hcas->K);

hcas->lambdal[l] = 0;
hcas->lambda2[0] = -1/hcas->tau - sqrt(l/(hcas->tau*hcas->tau)

+ 2*hcas->K);

hcas->lambda2[l] = 0;

else {
hcas->lambdal[0] = -1/hcas->tau;
hcas->lambdal[l] = sqrt(-1/(hcas->tau*hcas->tau) - 2*hcas->K);
hcas->lambda2[0] = -1/hcas->tau;
hcas->lambda2[1] = -sqrt(-l/(hcas->tau*hcas->tau) - 2*hcas->K);

else {
if(hcas->D2 < 0) {

/* Helicopters have already violated minimum separation */
/* (they're inside the sphere of separation) */

if(hcas->zrstar < 0) {
hcas->Vzrcomm = hcas->manmax - Vz2;
hcas->w_avoid = hcas->manmax;
hcas->avoid = ON;

else if(hcas->zrstar > 0) {
hcas->Vzrcomm = hcas->manmin - Vz2;
hcas->w_avoid = hcas->manmin;
hcas->avoid = ON;

else {
hcas->avoid = OFF;

hcas->w_avoid = 0.0;

150



151



152



Appendix B

Closed-loop Stability Matlab Script

When it was not possible to use analytical methods to find the eigevalues of the closed-

loop system, the Matlab script acas.m performed the stability analysis over a discretized

state space.

B.1 Matlab Script acas.m

% acas.m

% Chris Sanders

% Draper Laboratory
% 20 December 1997

clear all
%close all

% Control system time

tv = 0.4;

constants

% Minimum allowed separation distance

d = 12;

% All state variables are in relative coordinates

% (AAV #2 relative to AAV #1)
Vx = -2;

Vy = 0;

Vz = 1;

inc = 0.1;

param = 'T';

y = d;

for i = 1:21

x = 0.00005 + (i-1)*.25;

for j = 1:51
if param == 'y'

y = -d+0.0005 + (j-1)*inc;

elseif param == 'T'

T = (j-1l)*inc;

else
x = 0.00005 + (j-l)*inc;

end

153



z = -sqrt(d^2 - y^2);

if (x^2 == z^2) I (x == 0)

x = x + 0.0001;
end

tcp = -(Vx*x+Vy*y+Vz*z)/(Vx^2+Vy^2+Vz^2);
dO = sqrt(x^2+y^2+z^2+tcp^2*(Vx^2+Vy^2+Vz^2)+2*tcp*(Vx*x+y*y+z*z));

if (abs(dO) - abs(d)) > 0.0001
dO = dO

end

Dsq = x^2 + y^2 + z^2 - d^2;

Esq = z^2 - Dsq;

Qsq = Esq*(Vx^2 + Vy^2) + (Vx*x + Vy*y)^2;

% Partial derivatives relative to x-direction
I = (-Vx*z*Esq - 2*x*z*(Vx*x + Vy*y))/Esq^2 + x*Qsq/(Esq*sqrt(Dsq*Qsq)) +
Dsq*(Vx*Vy*y - Vy^2*x)/(Esq*sqrt(Dsq*Qsq)) + 2*x*sqrt(Dsq*Qsq)/Esq^2;
L = (1/Esq)*(-x*z + Dsq*(Vx*Esq + Vx*x^2 + Vy*x*y)/(sqrt(Dsq*Qsq)));

% Partial derivatives relative to y-direction

J = (-Vy*z*Esq - 2*y*z*(Vx*x + Vy*y))/Esq^2 + y*Qsq/(Esq*sqrt(Dsq*Qsq)) +
Dsq*(Vx*Vy*x - Vx^2*y)/(Esq*sqrt(Dsq*Qsq)) + 2*y*sqrt(Dsq*Qsq)/Esq^2;
M = (1/Esq)*(-y*z + Dsq*(Vy*Esq + Vy*y^2 + Vx*x*y)/(sqrt(Dsq*Qsq)));

% Partial derivatives relative to z-direction
K = -(Vx*x + Vy*y)/Esq + z*sqrt(Qsq)/(Esq*sqrt(Dsq));
if K > 0.000001

K

end

N = -1;

% Assemble Jacobian matrix

Acl = zeros(12);

Acl(1,2) = 1;
Acl(3,4) = 1;
Acl(5,6) = 1;
Acl(7,8) = 1;

Acl(9,10) = 1;

Acl(11,12) = 1;

Acl(6,1) = I/tv;
Acl(6,2) = L/tv;

Acl(6,3) = J/tv;
Acl(6,4) = M/tv;

Acl(6,5) = K/tv;
Acl(6,6) = N/tv;

Acl(6,7) = -I/tv;
Acl(6,8) = -L/tv;
Acl(6,9) = -J/tv;

Acl(6,10) = -M/tv;
Acl(6,11) = -K/tv;
Acl(6,12) = -N/tv;

Acl(12,1) = -I/tv;
Acl(12,2) = -L/tv;
Acl(12,3) = -J/tv;

Acl(12,4) = -M/tv;
Acl(12,5) = -K/tv;
Acl(12,6) = -N/tv;

154



Acl(12,7) = I/tv;

Acl(12,8) = L/tv;

Acl(12,9) = J/tv;

Acl(12,10) = M/tv;

Acl(12,11) = K/tv;

Acl(12,12) = N/tv;

% Assemble system matrices

A = [0 10 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 1 0 0 0 0 0 0;

0 0 0 0 0 -1/tv 0 0 0 0 0 0;

0 0 0 0 0 0 0 1 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 1 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 1;
0 0 0 0 0 0 0 0 0 0 0 -1/tv];

BG = A - Acl;

B = [0 0 0 0 0 1/tv 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 1/tv]';
% Calculate feedback gain matrix

G = B\BG;

% Develop subsystem 1 model

Al = A(1:6,1:6);

B1 = B(1:6,1);

G11 = G(1,1:6);
G12 = G(1,7:12);
C1 = eye(6);

D1 = zeros(6);

% Add time delay 1

[alpha bravo charlie delta] = pade(T,1);
Ad = alpha*eye(6);
Bd = bravo*eye(6);

Cd = charlie*eye(6);
Dd = delta*eye(6);
[Alc,Blc,Clc,Dlc] = series(Al-Bl*G11,-Bl*Gl2,Cl,Dl,Ad,Bd,Cd,Dd);

% Develop subsystem 2 model

A2 = A(7:12,7:12);
B2 = B(7:12,2);
G21 = G(2,1:6);
G22 = G(2,7:12);
C2 = eye(6);

D2 = zeros(6);

% Add time delay 2
[A2c,B2c,C2c,D2c] = series(A2-B2*G22,-B2*G21,C2,D2,Ad,Bd,Cd,Dd);

[At,Bt,Ct,Dt] = feedback(Alc,Blc,Clc,Dlc,A2c,B2c,C2c,D2c,l);
[Atest,Btest,Ctest,Dtest] = feedback(Al-Bl*G11,-Bl*Gl2,Cl,Dl,A2-B2*G22,-
B2*G21,C2,D2,1);
Eig(j) = max(real(eig(At)));

155



end
Tp = 0:inc/12:22*inc/12;
Ind = find(Eig < 0.000001);

Ts(i) = (max(Ind)-l)*inc;
X(i) = abs(x/Vx);

%plot (Tp, Eig)
%hold on
%axis([0 2 0 1])
%pause

end
plot (X,Ts)

156


