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Abstract

A dynamic model of the extravehicular mobility unit (EMU) space suit was developed and
applied to the simulation of several extravehicular activity (EVA) tasks. The space suit
model was created from mass, inertia, and torque data to augment the unsuited 12-segment
human model used in previous studies. A modified Preisach model was introduced to
describe the hysteretic torque characteristics of joints in a pressurized space suit, and
implemented numerically based on observed suit parameters. Four computational
simulations were then performed to observe the effect of suit constraints on simulated
astronaut performance, involving manipulation of the Spartan astrophysics payload on
STS-63. It was found that the shoulder joint work required for a suited EVA crewmember
to move the Spartan payload while in an inefficient posture was a full order of magnitude
greater than the unsuited condition. Moving to a posture more accommodating to the suit's
neutral position, the simulated astronaut completed the task with an actual decrease in
shoulder work from the unsuited condition; to compensate for reduced upper-body
mobility, however, the ankle joint was forced to use its long lever arm to manipulate the
payload, resulting in ankle work 207% greater than in the unsuited condition. In this
situation, muscle fatigue would set in more quickly than expected, a problem for the long-
duration EVA missions expected on the International Space Station. The Spartan results
agree with anecdotal evidence of post-EVA ankle fatigue, and demonstrate the
effectiveness of both the space suit model and the simulation technique.

Thesis Supervisor: Dava J. Newman
Title: Assistant Professor of Aeronautics and Astronautics
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1. INTRODUCTION

Chapter One addresses the specific motivation for developing a space suit

dynamic model and the more general motivation behind the current research effort in

extravehicular activity (EVA) computer simulation. It discusses the place of a space suit model in

the overall simulation framework, and then details the specific objective and contribution of this

thesis.

1.1 Motivation

The extravehicular mobility unit (EMU) space suit presents a mechanically complex,

highly constrained working environment that limits astronaut motion considerably. As a result,

numerous studies have attempted to characterize the particular workspace to which a suited

astronaut is restricted [Reinhardt, 1989]; dimensions aid extravehicular activity planners in

describing feasible EVA tasks, assuring that the reach envelope required for a given task will not

exceed the reach envelope available to the astronaut. Computer-aided design facilities have

already incorporated similar data into EVA planning software [Price, 1994; Pardue, 1996].

Workspace definitions, however, do not take into account the appreciable dynamic effects that a

146 kg space suit with significant joint torques will have on astronaut strength and mobility

during an EVA task. Data is only beginning to appear with regard to available suited strength

[West, 1989; Dionne, 1991; Morgan, 1996], and thus make its way into the EVA design

process. Even if armed with this data, EVA designers will only be able to make rough estimates

of strength needed vs. strength available for a given task. These static measurements of

performance do not allow for the direct comparison of tasks that have been choreographed in a

particular way, or of the astronaut effort required to execute each task in terms of total work

performed, distribution of work among the various muscle groups, and issues involving the

gradual onset of fatigue.

Computer simulation of EVA tasks provides one solution to these questions, allowing

designers to observe how space suit effects may influence overall EVA performance. A

dynamic space suit model can record astronaut movement through a simulated EVA task and

apply appropriate inertial and suit-generated loads to crewmember limbs during the simulation.



The resulting time histories of position, velocity, and acceleration for various body segments then

allow for quantitative analysis of the work being performed. Problem areas can be identified, and

choreography refined to account for predicted complications.

This method also provides a six-degree-of-freedom arena in which the simulated EVA

crewmember can work, allowing for unrestrained multibody interactions in a microgravity

environment. Although physical simulators such as the Johnson Space Center's neutral

buoyancy facility are excellent for both astronaut training and developing EVA choreography,

these and other ground-based devices have inherent limitations; it has been shown that

quantitative pre-flight analysis of EVA tasks in six degrees of freedom can help to reveal the

sometimes quite subtle differences that accompany work in an EVA setting [Schaffner, 1997].

1.2 Objective and Contribution

The objective of this research effort is to accurately model and simulate astronauts during

the execution of an EVA task, providing a six-degree-of-freedom environment in which to

explore new EVA tools and techniques. This thesis specifically addresses the EMU space suit,

investigating possible models for the suit, developing computer code for model implementation,

and presenting results based on application of the space suit model to EVA task simulation.

Accurate modeling of the EMU space suit is essential to the realistic simulation of any

EVA task. The astronaut is unavoidably forced to work within the confines of the suit, and it

affects every movement he or she makes for hours on end. The EMU's heavy "backpack," the

primary life support system (PLSS), generates unfamiliar inertial loads, the structure of the suit

places hard limits on the available workspace, and, most importantly, the suit imposes restrictive

torques on astronaut motion. These effects combine with the unfamiliarity of working in a

microgravity environment to pose significant hazards to an EVA crewmember. The objectives

of this thesis are therefore to create a model of the space suit, and to explore its applicability to

EVA simulation.

To meet these goals, an original dynamic model of the EMU space suit is developed,

based on data obtained from NASA and Hamilton Standard (Windsor Locks, CT). The Preisach

model is introduced as a mathematical technique for modeling suit joint characteristics, and



implemented in computer code on an SGI Indigo2 workstation. Finally, the model is tested

during three simulations of astronaut motion during EVA.

1.3 Summary of Thesis

This introductory chapter presents the motivation and objectives of this thesis, followed

by chapters discussing the background, methods, results, discussion, and final conclusions of the

research. Chapter Two introduces extravehicular activity as a key enabling technology for

spaceflight, providing a brief history of past EVA missions and considering various options for

the simulation and training of EVA operations. It then touches on the history of the EMU space

suit, focusing on construction issues and critical technologies. A short summary of methods for

flexible fabric modeling is included, followed by arguments for empirically based, data-driven

models. Finally, several biomechanical models for describing the underlying human operator are

presented, with an emphasis on properly choosing the level of detail appropriate for this research.

Chapter Three discusses the methods used to create a dynamic model of the EMU,

representing the main contribution of this thesis. Basic inertial properties are examined, and a

modified Preisach model for hysteresis is introduced to allow accurate representation of imposed

space suit joint torques. The implementation of the hysteresis model is discussed in detail, and

described in terms of existing space suit data. Musculoskeletal models for the astronaut are then

addressed, considering several different lumped-parameter approaches. Finally, the multibody

dynamic simulation methodology is described along with several simulations created to test the

EMU model.

Chapter Four presents the results of a test simulation for the hysteresis model at the EMU

elbow joint, and two payload translation simulations involving the Spartan astrophysics payload.

Astronaut position during each simulation is displayed in terms of individual joint angles, and

sequential diagrams of crewmember position are included to facilitate interpretation of the

kinematics data. Torques at each joint are calculated, and total cumulative work is computed

from these torques and their corresponding joint velocities.

Chapter Five discusses the simulation results, highlighting interesting aspects of the data

and comparing the results to previous research. The elbow joint test simulation is discussed first,

followed by the rigid body payload translation and the compliant body payload translation tasks.



The EMU model is observed to have a dramatic effect on astronaut posture during simulated

EVA tasks, and to increase the workload of a suited crewmember in unexpected ways. Finally,

the work of this thesis is compared to existing research and similar investigations, highlighting

possible opportunities for collaboration and technology transfer.

Chapter Six reviews the main contributions of this research, and discusses potential

applications for the EMU model. It includes recommendations for experimental work that could

be performed to help refine the model, and discusses opportunities for future research in the areas

of space suit modeling and EVA simulation. A summary of this thesis is provided, emphasizing

the gap in existing simulation technology filled by this research. Future work in EVA computer

simulation based on this suit model will improve crewmember training and comfort, and will

work with other simulation methods to provide an integrated environment for EVA design and

analysis.

2. BACKGROUND

This chapter presents background information relevant to modeling the extravehicular

mobility unit space suit. It begins by familiarizing the reader with extravehicular activity in

general, providing a brief history of humans in space and then outlining ways in which computer

simulation can improve EVA preparation and effectiveness. The text first highlights several

milestones in EVA work throughout the space program, with emphasis on the importance of

EVA as a key enabling technology for space travel. Various methods of EVA preparation and

training are then discussed, indicating how computer simulation complements existing

technologies and provides added insight for EVA missions.

The second section traces space suit development over seven decades, illustrating how

early mobility problems were overcome by ingenuity in suit design and increased interest from

the space program. It chronicles the various improvements made on successive EVA suits,

which ultimately led to the design of the EMU in service today on the Space Shuttle; the current

EMU is then described in greater detail.

As a survey of possible models for the soft fabric construction of the EMU space suit,

the third section presents a brief history of fabric modeling. It explores connections between the

textile industry and computer graphics research, and documents ways in which these



communities have attempted to model woven material. Several finite-element approaches to

textile modeling are discussed, and shown to be impractical for the scale of the EMU model and

EVA simulation. Arguments are then presented for the empirically-based model chosen to

represent the space suit.

The final section touches on biomechanical models for the human operator inside the

space suit. The human model is an essential feature of any simulation analyzing or attempting to

predict human motion, and many levels of model complexity are available. Several models for

describing the musculoskeletal system are discussed, with an emphasis on properly choosing the

level of detail appropriate for this research.

2.1 Extravehicular Activity (EVA)

Extravehicular activity refers to work performed in space, outside the confines of a larger

vehicle. Astronauts wear protective space suits during EVA missions, and are generally attached

to the larger spacecraft by means of foot restraints, handholds, and tethers. Crewmembers

perform EVA tasks in a variety of situations, including planned repair or service missions to

orbiting spacecraft, contingency problem-solving missions under unusual or emergency

conditions, and EVA research tasks in preparation for greater challenges. Extravehicular

activities are often mission-critical, and frequently involve multiple crewmembers performing

delicate and complex tasks. Though daunting, these tasks are based on some prior experience in

the space environment -- astronauts have been walking in space for over thirty years.

2.1.1 Historical Perspective

The first spacewalk took place in 1965, when Soviet cosmonaut Alexei Leonov emerged

from his Voskhod space capsule to float free in space for over ten minutes, tethered to his

spacecraft by a 5 meter umbilical. This successful EVA demonstrated that a human being could

exist somewhat comfortably in space, protected only by a pressurized suit from the cold vacuum

outside. Leonov's pioneering excursion introduced a decade of rapid EVA progress for both

Soviet and American space programs, improving technology and technique with every mission

[Newman, 1997].



America's first experience in EVA was the Gemini program, which experimented with

various operational aspects of working in space, including the positioning of foot restraints,

handholds, and controlling crewmember exertion and fatigue. It was not until the Apollo

program, however, that an American space program utilized the full operational capability of the

EVA astronaut.

Apollo crewmembers accumulated 160 total hours of extravehicular activity time

exploring the lunar surface, and their ability to conduct experiments while suited illustrated the

great scientific value of EVA capability. Soil and rock samples were collected on a regular basis,

and short trips from the lander were executed flawlessly. The Apollo program led to swift

advances in suit design, and it demonstrated the feasibility of pressure suit use on a planetary

surface.

EVA continued to prove its value during the Skylab program, as early as the arrival of the

first crew. A damaged hull and missing solar panel created problems from the start, but an

impromptu EVA allowed the Skylab II crew to deploy a second solar panel and to bring the

station back to operational status. Problems during the space program showed that emergency

and other unplanned situations were well suited for EVA solutions, allowing a skilled astronaut

to bring human problem-solving abilities and operational flexibility directly to the worksite.

During the late Apollo and Skylab programs, the Russians experienced some difficulty

with EVA reliability, but they resumed operations in 1977 during the Salyut 6 program. Several

maintenance and repair EVA missions were successfully completed, paving the way for regular

EVA excursions during the Salyut 7 space station program. Russian cosmonauts carried out

multiple scientific experiments during EVA, and continued to maintain the capability to perform

contingency EVAs in emergency situations.

The United States began performing EVA missions under the new Space Transportation

System (STS), also known as the Space Shuttle, in 1983. EVAs were performed routinely

through 1985, giving American astronauts valuable experience working in space. Astronauts

performed both planned and contingency EVA missions, exploring the use of special EVA tools

and work techniques. Making history in February 1984, Bruce McCandless successfully

demonstrated the Manned Maneuvering Unit (MMU) as the first free-flying crew propulsion

device to be used in space.



More recently, two service missions for the Hubble Space Telescope (HST) dramatically

demonstrated the necessity for and effectiveness of the EVA crewmember. Following the

disastrous news that the multibillion-dollar space telescope was flawed, four EVA astronauts on

Hubble Space Telescope Service Mission 1 (HST SM-01) spent a record-setting five consecutive

days of EVA upgrading the damaged optics. Extensive pre-flight training helped the mission to

its spectacular success, which generated months of positive media exposure for NASA and the

entire space program. A key benefit of EVA programs, the human drama of astronauts doing

their work in space is a captivating scene with which to encourage interest in the space sciences

throughout the world.

The success of critical EVA missions like these depends greatly on NASA's

commitment to extensive pre-mission EVA preparation and training. Without the practice

afforded by endless hours of training, EVA missions would be far more hazardous and

unpredictable than the forgone successes that modern spacewalks have seemingly become. The

space environment is unforgiving, however, and ground-based training does not always provide

a complete picture of what is to come; new methods such as computational simulation are

currently being developed to complement and improve upon existing physical simulation

methods.

2.1.2 Extravehicular Activity Simulation

Extravehicular activity takes place in an environment utterly unfamiliar to human beings.

Minute forces can move massive objects with the greatest of ease, moving around is more an

issue of pointing in the right direction and controlling angular momentum than moving any one

part of your body, and all activities are performed inside the giant shell of a space suit. NASA

recognized some of the problems that might be encountered if astronauts were expected to adapt

instantaneously to the microgravity environment, and initiated an extensive EVA training and

mission preparation program to help acclimate crewmembers to differences they might

encounter.

NASA began with physical simulators, hoping to give astronauts work experience in a

setting that approximates microgravity. Large water tanks were constructed as neutral buoyancy

training facilities, e.g., the large facility at Johnson Space Center in Houston, and since then every



planned EVA mission has been rehearsed in the water. Immersion in water can provide a zero-

gravity "feel" by canceling the force of gravity with buoyancy, but it also adds the phantom

forces of hydrostatic drag and water displacement inertia to counteract astronaut motion. EVA

rehearsals taking place in the water can actually train astronauts to expect these false forces,

conditioning their neuromuscular system to anticipate water drag and pressure nonexistent in

space, and thereby hinder EVA performance. Additionally, astronauts have noted that the work

environment is not exactly the same: letting a tool drop in the water tank sends it to the bottom

within seconds, while the same tool in space would remain motionless in front of the astronaut.

Eliminating water's unwanted viscosity, air-bearing floors have also been used

extensively to train astronauts in two-dimensional translational motion. Small jets of air hold

astronauts and the objects they might interact with, such as satellites, away from the ground on a

frictionless cushion of air; this simulator has proven very useful for linear translation and mass-

handling tasks, helping astronauts to better judge the responses of massive yet weightless

objects. Unfortunately, the three degrees of freedom (including rotation) that this simulator

provides only reproduce 50% of the true environment, and attempting to include more degrees of

freedom via some mechanical apparatus only serves to introduce unwanted friction.

Additionally, the friction forces present in the floor itself and the small air drag encountered with

large objects can affect the realism of a simulated EVA condition.

Many of these problems are solved by using a specially modified aircraft to fly parabolic,

zero-gravity trajectories; NASA's KC-135 training aircraft was designed for just that purpose.

Passengers on this aircraft are provided with approximately 25 seconds of free-fall time, during

which they are free to move about the weightless environment in six degrees of freedom. The

unlimited range of motion creates a very realistic simulation, but the limited available space inside

the fuselage of the aircraft usually constrains astronauts to intravehicular activity (moving about

the interior of a spacecraft) simulations. Additionally, the limited duration of weightlessness

does not provide a very good approximation of a six or seven hour EVA. To make up for this

deficiency, pilots fly 40-50 repeated sequences of zero-g parabolas and 2-g pullouts, but this

usually serves only to induce motion sickness in the cabin. Vomiting inside a space suit would

be extremely dangerous, creating a real possibility of clogged air lines and choking; therefore,

EVA tasks are usually not simulated on KC-135 aircraft.



Each of these simulation methods has a specific type of task for which it is well-suited,

and the various simulators have been used in combination to provide adequate venues for

research and training certain aspects of EVA missions. They are all limited, however, by the

realities of a one-g field on earth. Combinations of various physical simulators will never exactly

reconstruct the conditions experienced on orbit, and may introduce difficulties during spaceflight

if astronauts learn to expect forces or torques that are merely artifacts of an imperfect simulator.

Additionally, physical simulators are extraordinarily expensive to operate for the amount of time

that complicated EVA missions require. The Hubble servicing mission, for example, spent

millions of dollars on operations training in the JSC neutral buoyancy facility alone. With the

severe demands of International Space Station EVA missions looming on the horizon (Figure

2.1), there is a clear need for more economical means of simulating EVA tasks that might help to

fill in the gaps left by physical simulators.
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Historical and Future NASA EVA Time [NASA, 1996].Figure 2.1



Computational dynamic simulation embraces this role well, skirting the limitations of

physical simulators by moving into the virtual computer world, while keeping time and expense

to a minimum. Quantitative analysis of EVA operations is possible without large-scale

experimental devices, and produces results important to the EVA community [Schaffner, 1995].

Problem areas can be identified, and EVA choreography refined to account for predicted

complications. This method also provides a full six-degree-of-freedom arena in which the

simulated EVA crewmember can work, allowing for unrestrained multibody interactions in a

microgravity environment. Computer simulation can tease out the subtle differences between

physical simulation and the actual operation, complementing existing simulation technologies and

ensuring that EVA will continue to enjoy the successes for which it is famous.

These simulations would be lacking an important characteristic, however, if they failed to

account for the dynamic effects of the EVA crewmember's space suit. The pressure suit has

been an integral part of the aerospace world since World War II, and deserves a special place in

space history.

2.2 The Space Suit

Space is, quite simply, the most hostile environment known to human life. None of

Earth's myriad life support mechanisms exist in the spaceflight environment, and new and

threatening elements such as space debris only compound the problem. Astronauts must

therefore replicate Earth's atmosphere in tightly sealed and protected spacecraft, bringing the

necessities of life with them into space.

From time to time it is necessary for astronauts to leave the confines of their vehicle and

address problems directly at the worksite. It is impossible to leave the spacecraft without some

form of environmental protection, and for this reason, a miniature spacecraft able to perform all

requisite life support functions was developed: the space suit.

2.2.1 Environmental and Physiological Concerns

As early as the nineteenth century, pioneering aviators had already discovered many of

the dangers presented by the unforgiving aerospace environment. High-altitude balloonists knew

that any flight above three or four thousand meters required warm clothing to protect against cold



temperatures and a special oxygen supply to keep the pilots from passing out. As these early

adventurers traveled to higher and higher altitudes, they quickly discovered that oxygen alone was

insufficient to keep them alive, and that a positive-pressure delivery system was necessary to

force oxygen into their lungs.

These balloon pilots had directly experienced the atmospheric changes that take place

during the transition from sea-level to spaceflight altitudes. At sea level, the atmosphere is

composed primarily of four gases at a total pressure of 101.3 kPa, but this relatively thick layer

disperses rapidly with altitude (Table 2.1).

Table 2.1 Atmospheric Composition at Sea Level and 5,500 m.

Gas Concentration Partial Pressure at Partial Pressure at
Sea Level (kPa) 5,500 m (kPa)

Nitrogen 78.08% 79.1 38.4

Oxygen 20.95% 21.2 10.3

Argon 0.93% 0.9 0.4

Carbon Dioxide 0.03% 0.03 0.01

The partial pressure of oxygen (ppO2), which is the net contribution of oxygen molecules

to the overall pressure, has decreased to 10.3 kPa by 5,500 m; humans cannot function to make

intelligent decisions at partial pressures of oxygen lower than 13 kPa. Therefore, all excursions

to high altitude require a special apparatus to provide the pilot with a minimum 13 kPa ppO 2.

This can be achieved by either increasing the concentration of oxygen relative to other

atmospheric gases, or by providing a higher total pressure of all gases and thus increasing the

ppO2 as well. In space, there is no atmospheric pressure -- a space suit must provide a minimum

13 kPa 100% 02 environment for astronauts to function normally.

In addition to the problem of atmospheric composition, there are a number of unique

aspects to the space environment that affect the ability of humans to do work. These include

thermal, radiation, and micrometeoroid hazards that must be met with some layer of protection

between the astronaut and the outside environment. At a typical Space Shuttle orbiting altitude

of 200 km, the EVA crewmember must face a temperature of 582' C, a total pressure of less

than 9x10-5 N/m 2, and multiple forms of dangerous radiation. Although the temperature is not a



direct measure of heat at this altitude, helpful effects such as convective cooling on Earth are not

present, and heat transfer must be addressed in special ways.

Electromagnetic radiation comes to low earth orbit (LEO) in 2 forms: solar cosmic

radiation (SCR) and galactic cosmic radiation (GCR). SCR comes from two types of ionizing

radiation emitted by the sun, both in the form of high-energy particles (protons, electrons, and

photons). First, the solar wind produces a stream of ionized particles (protons and electrons) at a

density of about 5 cm -3 that blows toward Earth, frequently becoming trapped in the Van Allen

belts at 300-1200 km altitude. In addition to this continual solar wind, solar flares produced by

storms in the solar magnetosphere generate high radiation doses in very short periods of time.

Galactic cosmic radiation, on the other hand, consists of high-energy particles and heavy

nuclei originating beyond the solar system. Low altitude orbits are largely shielded from GCR

radiation by the Earth's magnetic field; interplanetary or deep space travel, however, will be open

to the effects of GCR and man-made shielding must be provided.

Micrometeoroids and other forms of space debris are yet another hazard in the space

environment. The average flux of micrometeoroids through low earth orbit is poorly known, but

most particles have masses below 10-6g. Still, the relative velocities of these objects can cause

serious damage to spacecraft and space suits. Potentially an even greater danger are the more

than 40,000 bits of space debris larger than 1 cm currently floating in earth orbit, left by previous

operational or damaged spacecraft. Space suit design must take into account the possibility of

puncture by such an object; literally billions of smaller particles are assumed to exist in the same

orbital environment.

It is clear that designing a space suit to perform flawlessly under these harsh conditions is

no easy task. Still, the spirit and dreams of mankind have led us to step boldly into this new

frontier, and counter the environmental hazards as best we can. Beginning with the first pressure

suit for high altitude flight, space suit design work has progressed in both scientific

understanding and engineering acumen, and the current Space Shuttle EMU pays homage to

those advances with its effective design.



2.2.2 A History of the Extravehicular Mobility Unit (EMU)

The space suit performs three basic functions: maintenance and constraint of the

pressurized atmosphere necessary for life support, protection from environmental hazards, and

provision for enough mobility to perform useful work. The life support system must control suit

pressure, regulate the atmospheric mixture of gases, monitor and adjust temperature and

humidity, and supply all power, computer, and communications facilities for the astronaut; this

integrated system is enclosed in the portable life support system (PLSS) mounted on the back of

the EMU. The actual suit garment provides environmental protection, using a multi-layer

construction to absorb micrometeoroid strikes, reflect harmful radiation, circulate air and cooling

water, and contain the pressurized atmosphere. Finally, unique features are incorporated into suit

construction that allow for unusually high mobility in a garment that resembles a large balloon.

The complexities of such a design have intrigued engineers for nearly 70 years, and have yet to

be perfected.

2.2.2.1 Early Suit Designs

The first full pressure suits were manufactured by the B.F. Goodrich company in the late 1930s

as an attempt to overcome the hazards of high-altitude aviation. Company engineer Russell

Colley designed a series of pressure suits for the daredevil and adventurer Wiley Post, who was

determined to achieve high-speed stratospheric flight. These primitive suits were molded in the

shape of a seated pilot using liquid latex, and they held about 17 kPa when fully pressurized

(Figure 2.2, left). An outer layer of cotton was then added for thermal protection, and metal

rings were fitted about the knees to bunch the fabric, allowing for slight movement.

In the early 1940s, U.S. military aviation began to take an interest in pressure suit

research and began to fund various efforts across the country. This new generation of suits

maintained a pressure of 24 kPa, and they incorporated a new "tomato worm" design with

segmented rubber bellows at the joints, allowing the wearer to move without changing the joint

volume appreciably (Figure 2.2, center). Unfortunately, this was only true in the unpressurized

case, and the suits invariably ballooned up to become rigid and uncomfortable when pressurized.

Military aviators had no way of performing their assigned duties, e.g., sighting through and

manipulating a bomb sight, while wearing such a suit, so it remained a research project with no

operational status.



Figure 2.2 Early Pressure Suits.
The first full pressure suit (left), the tomato-worm design (center),
and the David Clark A/P22S-3 (right). (Kozloski, 1994)



Lack of mobility remained the number one problem in pressure suit design until 1956,

when the David Clark Company created the A/P22S-3 suit for the Air Force (figure 2.2, right).

The suit incorporated a soft nylon netting on the outside of the pressure bladder, which

constrained the pressurized suit to a predetermined shape and effectively prevented it from

ballooning out of control. The industry had been waiting for this critical breakthrough, and it

represented the turning point in pressurized suit design. The resulting suit was fairly mobile,

comfortable, and provided adequate thermal protection in its outer layers. B.F. Goodrich then

took a similar approach, and improved upon David Clark's Air Force design for the Navy, with

modifications including an automatic pressure control system, rotating joint bearings, and a

robust ventilation system.

2.2.2.2 Mercury

In 1959, a newly created NASA selected the B.F. Goodrich Company over ILC and

David Clark to produce the Mercury space suit. Their suit evolved during the course of the

various Mercury missions, but retained a general 4-layer construction throughout (Figure 2.3).

An outer layer of aluminized nylon provided flame and abrasion protection for the astronaut. Just

under that, neoprene-coated nylon enclosed the actual pressure vessel to provide insurance for

leakage protection. The pressure bladder was made of vulcanized, double-walled nylon, ventilated

along its inner wall for air circulation and cooling. Finally, the astronaut wore long-john

underwear with interwoven patches that circulated air for comfort and temperature control.

l _Aluminized Nylon

Neoprene-coated Nylon

Vulcanized, Double-walled Nylon

Long Underwear

Figure 2.3 Four-layer construction of the Mercury space suit.

Mobility was somewhat improved in the Mercury suits; Colley and the Goodrich

engineers addressed the constant-volume problem in a slightly different manner than the David

Clark Company. Instead of a whole-body "linknet," they sewed inelastic restraining cords along

the elbow and knee joints to prevent the pressurized suit from expanding (see section 2.2.3).

Combined with their rotating joint bearings, many of the initial mobility problems associated



with full-pressure suits had been solved.

2.2.2.3 Gemini

The Gemini program provided the first real test of American space suits: outer space.

For the first time, a space suited astronaut would attempt to work outside the protective

environment of the spacecraft. Additionally, the suit would have to be comfortable enough for

multi-day missions; the crew would wear different intravehicular activity (IVA) suits while

inside the capsule and don special extravehicular suits for EVA. Although many variants were

used over the course of the 2-year Gemini program, the standard Gemini space suit was the

David Clark Company's G4C (Figure 2.4).

The most significant change from the Mercury suit was the implementation of David

Clark's "linknet" restraint system, instead of the Goodrich restraining cords that were sewn on

the outer edges of knee and elbow joints. The linknet layer was similar in design to David

Clark's A/P22S-3 Air Force pressure suit: a loosely interconnected network of light but strong

fibers was woven throughout the suit, forming a fishnet-like layer to restrain suit volume. The

Gemini IVA suit, worn inside the spacecraft, consisted of five layers; the EVA suit added an

additional 17 layers for environmental protection during spacewalks.

Like the Mercury suit, astronauts wore long underwear as a base layer, connected to

biomedical sensors attached to the body. The next two "comfort" layers of the basic Gemini

suit were oxford nylon layers of different weights that helped to distribute ventilation gas over the

entire body and to separate the astronaut from the subsequent pressure bladder. The bladder itself

was fabricated from neoprene-coated ripstop nylon, and the restraint layer directly above was the

innovative linknet. IVA suits then added a covering layer of Nomex, called Dupont HT-1 (High

Temperature), which protected the suit against snags from spacecraft instrumentation and sharp

objects.

The EVA suit retained the same pressure bladder and restraint layer configuration, but

replaced the IVA suit's single Nomex layer with a thick, protective covering fabricated from

multiple layers. Two inner HT-1 neoprene-coated Nomex layers served as micrometeoroid

protection, and they were covered by 14 layers of alternating aluminized Mylar and

superinsulating unwoven Dacron for thermal and radiation protection. Finally, the suit was

covered with a third Nomex layer to give abrasion and further micrometeoroid protection.
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Figure 2.4 Gemini (left) and Apollo (right) space suits. (Kozloski, 1994)



Gemini astronauts performed both stand-up (in which the astronaut merely stands in the

open hatch area and never leaves the vehicle) and complete EVA missions, proving the feasibility

of doing useful work in space. Complications developed during several EVAs, but provided

good experience for future missions. For example, Gemini 9-A astronaut Gene Cernan

experienced problems keeping his body within his EVA work area, increasing his workload

while attempting to complete several tasks. Simply maintaining body position required so much

energy that he overheated and suffered early fatigue, cutting the mission short. Important lessons

were learned about EVA restraints and astronaut placement, contributing to future Apollo

improvements.

2.2.2.4 Apollo

The Apollo program saw several key changes in space suit design. The primary suit was

manufactured by the International Latex Corporation (Dover, Delaware) under a contract from

Hamilton Standard, the overall life support integrator. It included advances in joint design, using

a flexible convolute design rather than the block-and-tackle mechanism used to physically size the

suit, and waist and neck flexion joints were added to provide sitting capability and greater

comfort during long-duration EVAs (Figure 2.4). All together, the Apollo Lunar EVA suit was

composed of 25 separate layers. The suit also replaced umbilical life support lines with a

portable life support system (PLSS) designed for remote operation on the lunar surface. The

complete suit system, including the PLSS, was designated the extravehicular mobility unit

(EMU).

Problems with overheating on the Gemini missions were taken seriously during Apollo

suit design. Anticipating much greater workloads during lunar EVAs than zero-gravity Gemini

missions, improvements had to be made on Gemini's air-cooled suit. The long underwear worn

by Gemini astronauts was replaced in the Apollo suit by a three-layer liquid cooling garment

(LCG), comprised of a lower nylon layer, a vinyl tubing layer which circulated cooling liquid,

and an upper nylon spandex layer to restrain the tubing. The circulating water could transfer heat

away from the astronaut by direct conduction, and virtually eliminate perspiration.

The pressure garment assembly (PGA) was similar to the Gemini design, with some

modifications. ILC engineers retained the general linknet design to restrain each joint, adding a



cable/block-and-tackle assembly to further restrain the shoulders and knees. The outer EVA

covering was also similar to Gemini, incorporating the alternating Mylar and Dacron layers, but it

added a Kapton layer for fire and thermal radiation protection as well as Teflon outer coverings

for abrasion and flame resistance.

Apollo astronauts tested the EMU thoroughly during operations on the lunar surface. It

was found that some joints, especially lower-body regions, were extremely stiff during extended

periods of walking on the surface; similarly, problems in the thigh area of the suit created balance

instabilities, and the lunar gravity caused the astronauts to lean forward while upright. Apollo 17

astronaut Eugene Cernan reported great difficulty operating a rock drill while encumbered by a

pressurized suit, and noted a rise in his heart rate. Still, surface EVAs were extraordinarily

successful and produced groundbreaking scientific experiments, proving yet again the necessity

for EVA capability.

2.2.2.5 Shuttle

The current operational space suit for the Space Shuttle program is the EMU

manufactured by Hamilton Standard (PLSS) and ILC (fabric suit). The EMU is a direct

descendant of the Apollo suit, designed with many of the same features as the 1970 version. The

space suit is constructed from two pieces: a hard upper torso (HUT) and a soft-shell pressure

garment surrounding the limbs. The HUT is the main structural member for the suit, to which

all other pieces are mounted. It is connected via bearings to the soft fabric arms and the lower

torso assembly (LTA), also made of fabric. The PLSS is mounted to the rear of the HUT; this is

a key dynamic aspect of the suit, for it moves the suited astronaut's center of mass to the rear of

its usual location.

The astronaut still wears a liquid cooling and ventilation garment (LCVG), made from

nylon and spandex with a tricot lining. Instead of Apollo's separate cooling tube layer, ethylene-

vinyl-acetate tubes are woven throughout the spandex layer. The soft-shell pressure garment is

fabricated from urethane coated nylon, covered by a woven Dacron restraint layer. As with the

Apollo EVA suits, outer environmental protection is provided by a thermal and micrometeoroid

protection garment (TMG). The TMG liner is neoprene-coated ripstop nylon, shielded by five

layers of aluminized Mylar with a Dacron backing for thermal and radiation protection . Finally, a



Teflon-coated blend of Kevlar and

and tear protection (Figure 2.5).

Nomex synthetic fibers covers the suit for puncture, abrasion,

Ortho-fabric (Teflon-coated Kevlar/Nomex blend)

Aluminized Mylar backed with Dacron insulation

Neoprene-coated Nylon

Dacron with interwoven axial restraint lines

Polyurethane-coated Nylon (pressure bladder)

Nylon/spandex blend with interwoven cooling tube

Nylon acetate comfort layer

Space Shuttle EMU multi-layer soft shell construction.

The multi-layer construction is somewhat bulky, and restricts motion largely to the central

workspace in front of the astronaut. The space suit and life support system weigh a combined

146 kg when fully charged with consumables for EVA operation; the added mass makes it

critical to move with slower, determined motions to prevent needless energy expenditure while

moving the mass of the suit.

The enclosed suit is also pressurized to 29.6 kPa, substantially lower than Shuttle cabin

pressure but high enough to prevent decompression sickness during the transition from cabin to

suit pressure, following a brief 1-3 hour prebreathe. Higher pressure suits would allow for a

shorter or eliminated prebreathe stage before EVA operations, but soft-shell high pressure suits

would encounter more substantial forces due to changing volume within the suit. Pressure and

volume issues contribute substantially to the suit forces imposed on an astronaut, and are a

continual challenge to EVA designers.

2.2.3 The Constant Volume Challenge

Changing the volume of an enclosed space, like the Shuttle EMU, requires work. If the

EMU elbow joint is represented by a simple cylinder, then the enclosed volume is r D 2L, where
4D is the cylinder diameter and L is the length [Newman, 1997]. If the cylinder is now bent, the

D is the cylinder diameter and L is the length [Newman, 1997]. If the cylinder is now bent, the

Figure 2.5
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inside edge collapses while the outside edge remains extended, and the enclosed volume is

reduced (Figure 2.6).

V = D2L44

Figure 2.6 Volume change during joint flexion.

Assuming a pressure-regulated environment like the EMU, the reduction in volume

under constant pressure requires work:

W = PdV P( VINITIA L - VFNAL ). (2.1)

Under these conditions, the elbow joint would require over 230 Newtons of force to

move. This is a clear impossibility for astronauts who would like to do useful work in space

over long periods of time. Fortunately, ingenious solutions such as the David Clark Company's

"linknet" restraint system have addressed this problem with great success, and advanced

development hard-shell suits have come close to eliminating the difficulty altogether. The current

Space Shuttle EMU uses axial restraint lines to hold back the excess fabric in joints, providing

room for the joint to expand on one side and contract on the other, thus maintaining a nearly

constant volume (Figure 2.7).

Axial Restraint Lines

V =-4-D2L V = D2L+

Nearly constant-volume space suit joint.
Nearly constant-volume space suit joint.Figure 2.7
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In practice, however, the suit joint does not bend so that its centerline is exactly circular;

unbalanced forces cause it to shift to the outside. Also, axial restraint lines are offset slightly

from the centerline to ensure balance and stability at the joint. During motion, the axial restraints

will provide close to constant volume, but over- and under-shoot by small amounts, especially

near the edges of the range of motion at extreme angles of flexion and extension. Therefore the

astronaut must ultimately do small amounts of work moving the joint from position to position.

Additionally, bunching and expanding the actual fabric construction of the joint requires some

degree of work.

Finding ways to maintain constant volume in a pressurized suit while providing adequate

mobility for the suited individual is a problem that has challenged engineers for decades. Still, the

current soft-shell suits must ultimately give way to changing volume at certain areas of a joint's

workspace, and demand that mathematical models of suit dynamics take this property into

account. Modeling methods for flexible fabric shells must also be explored, and used to design a

model that closely approximates EMU parameters.

2.3 Flexible Fabric Modeling

Computer modeling of woven fabrics has gained great popularity in the last ten years,

generating interest in both the textile industry and the computer graphics community [Breen,

1996]. Textile engineers are working to understand the mechanical properties of woven fabrics,

including stress-strain relationships, thread interaction, and bending moments in order to design

new fabrics and improve clothing performance. Most work has focused on experimental testing

of various fabrics [Kawabata, 1980], but scientists have recently become more interested in

apparel modeling as an aid to computer-aided manufacturing. Automated manufacturing in the

clothing industry has traditionally been limited by the inability of robots to manipulate flimsy,

flexible garments in deterministic ways; with an accurate model of fabric dynamics, however,

machines on assembly lines could be programmed to pick clothes up, analyze them for defects,

and pack them for shipping.

Computer graphics research, on the other hand, has continually been questing to produce

more realistic "virtual actors" for computer animation and entertainment. The search has created

great interest in ways to "clothe" actors in realistic garments, and to simulate objects like drapery



and tablecloths. What started out as a set of simple geometric tools for drawing realistic fabric

has rapidly expanded into a plethora of detailed physical models describing fabric behavior, and

computer science is now looking to the textile industry for detailed descriptions of material

properties. Most of the realistic models presented in the literature are finite element types, and

they are explored first as a possibility for EMU fabric modeling.

2.3.1 Finite Element Methods

Finite element techniques represent cloth models as discrete triangular or rectangular grids

with small masses at each intersection node (Figure 2.8).

Figure 2.8 Finite element representation of a swatch of cloth.

Forces between nodes are calculated as simple or complex differential equations based on

Newton's Law, for example:

d2 r - F +F + Fvlo + Fpastc),  (2.1)
dt2  m external pring isco. astic

where r is the position of a node in 3-space and the forces are external, position-dependent,

velocity-dependent, and plastic, respectively [Sakaguchi, 1991]. To obtain solutions for position

and velocity of the nodes, equation 2.1 is discretized by a finite-difference method, resulting in a

set of simultaneous ordinary differential equations. These equations are then numerically

integrated over time to produce trajectories for each node.

This type of general model allows scientists to simulate practically any situation by

modifying the underlying forces F to model arbitrarily complex dynamic systems. For example,

a simulation of fabric falling through a medium such as air or water might incorporate a full

numerical implementation of the Navier-Stokes equations to develop aerodynamic forces for



inclusion in Fexternal above. Similarly, mechanical properties of the fabric can be lumped together

in position-dependent and velocity-dependent categories to create visco-elastic forces within the

material. These forces can be described at an even lower level by attempting to model the

behavior of individual threads in a woven textile environment, though the cost in processing time

for such an effort becomes prohibitive [Keefe, 1994].

One important property that can be included in Fext is fabric interaction with itself and

with other objects. Collision detection for rigid bodies is a well-explored subject [Moore, 1988],

but it becomes more complex when dealing with a flexible cloth. Several investigators have

explored algorithms for performing these computations [Lafleur, 1991; Yang, 1993], and, while

successful, they suffer from excessive overhead computing node-to-node distances between the

fabric nodes and underlying nodes representing the human shape. Most techniques therefore

utilize a form of "windowing," which only computes collision algorithms for nodes known to be

in proximity to one another. This solution would not be sufficient for the EMU case, though, if

the model were attempting to simulate the various layers of the EMU garment. Multiple layers

interacting at a large number of sites would pose a serious computational challenge to such an

implementation.

The central drawback to physically-based modeling approaches is the sheer number of

computations that must be performed to adequately simulate large sections of fabric. For

example, [Eberhardt, 1996] presents an excellent particle-based model for cloth deformation that

shows great promise for application to EMU suit modeling efforts. His model is based on

empirical cloth data from tension, shearing, and bending experiments, and accounts for important

features such as anisotropy and hysteresis in the fabric data. Such an approach seems perfect for

mimicking EMU suit performance, until the computation overhead is analyzed (Table 2.2).

Even though this model is considerably faster than most finite-element methods, its processing

times remain in the realm of frame-by-frame rendering, unsuitable for on-the-fly, real time

simulation.



Table 2.2 Computation Time for Particle-Based Draping Simulation.
Computation times in seconds for a single timestep (40 ms) during simulation of a cloth
draping over the indicated objects, on a Silicon Graphics R8000 workstation with additional

R8010 fpu [Eberhardt, 1996].

30 x 30 Grid 52 x 52 Grid

900 Particles 2,704 Particles

Example min. (s) max. (s) mean (s) min. (s) max. (s) mean (s)

Table 0.3 7 5 7 67 21

Round 3 8 6 10 94 24
Table

Sphere 1 9 6 4 50 27

A relatively small grid (52 x 52) of 2,704 particles requires almost 30 seconds to

compute a single frame of animation for the relatively simple task of draping cloth over a sphere,

which is a mathematically well-described object. The human, on the other hand, is much more

geometrically complex, and likely to be in contact with several sections of the EMU inner lining

simultaneously. It is no wonder that many physically-based models are restricted to running on

SGI Power or Cray supercomputers.

Finite element methods have been extremely successful in replicating the observed

behavior of flexible objects in a limited number of situations. Unfortunately, the current

benchmark for such simulations is the "draping problem," in which a computer simulates a large

section of fabric falling through a medium (air, water, oil) and coming to rest draped over an

object such as a rod, sphere, or human. Though clearly beneficial to both the apparel industry

and computer animation, these simulations have been optimized for specific conditions that

would hinder performance in the more general EVA environment. Even if finite element

calculations were practicable, an EVA suit model would still need to perform volume

calculations on the enclosed inner surfaces of the suit to recover the pressure forces generated as

the suit volume changes while the astronaut moves about.

Combining these volume calculations with the already astronomical processor time

required to simulate soft fabric on the scale of a full EMU space suit by finite element means, it

is therefore impractical to use such an approach to model and simulate the suit during EVA



simulation. Considering the complexity and processing time required (up to 6 hours) to perform

basic unsuited multibody dynamic simulations [Schaffner, 1997], discrete node-based methods

are simply too costly in terms of simulation efficiency.

The rapid growth of textile simulation and constant improvement in available processing

power, however, show that finite element techniques may be an excellent way to model the EMU

soft-shell construction in the future. Preliminary studies assessing the applicability of node-based

approaches to the simulations of a multi-layer shell, such as the space suit, are encouraged.

These studies may show that finite element methods should be strongly considered for the next

generation of suit models.

2.3.2 Empirical Methods

Although finite element and other physically-based methods choose parameters (stress,

strain, damping, shearing, etc.) empirically, they must ultimately break their system down into

thousands of individual points or complex systems of equations, wasting valuable processor

time. Fully empirical methods, on the other hand, simply find an input-output relationship

between two parameters and apply the result directly. Though the resulting model is not derived

from first principles and not nearly as elegant, the end result is identical as long as the data on

which the model is based covers all possible areas of the operational state space.

For the EMU, this requires data for each joint throughout its entire range of motion. All

observed suit effects on the crewmember should be taken into account, including static loading,

dynamic or velocity-related resistance, and increased angular inertia. The model then becomes a

recording of observed effects in every possible condition, and simulation is just a matter of

recalling the appropriate data and applying it at the proper time, as suggested in Figure 2.9.
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This data-driven model is extremely fast (on the order of milliseconds), provided that the

lookup database of observed outputs is organized in an efficient manner. If the output database

is, in fact, complete, then the model will also be an exact model of the system f(x, u, t) and the

system will be fully identified. In practice, however, it is usually impossible to obtain a full set of

input-output data. This is not a problem with linear systems, where matching a few key

parameters to the data achieves complete system identification and easily extends the model

throughout state space. For nonlinear systems, however, the form of the system may be entirely

unknown. Therefore the model must be constructed from a few well-chosen test inputs, and

interpolation used to extend the model into a continuous set of values. This paradigm is used in
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Figure 2.9



the next chapter to create a nonlinear, data-driven model of the extravehicular mobility unit space
suit.

2.4 Musculoskeletal Modeling

Before creating a complete simulation of astronauts at work, however, one additional
element of the system must be specified: a model of the human being inside the space suit. The
underlying goal of this research effort is to examine the human performance detriments and
benefits that arise from various and dynamic environmental parameters during EVA, including
effects from the space suit. In order to better understand how these issues influence the human
body, it is necessary to include a model of the human operator in the simulation framework.
This model facilitates the representation of simulation data in familiar terms, such as the angular
positions of the various human joints and the muscular work required to execute a given task.

A musculoskeletal model is a simple representation of the human body's biomechanical
structure as a system of mathematically related elements. It includes a model for the skeletal
structure of the human (passive) as well as a model for the muscular system (active) that serves
to control the position of the skeleton. All skeletal muscles act as levers, converting linear muscle
contraction to joint torque, rotation, and movement of the skeleton; the most common type is the
third class lever shown in Figure 2.10.

Origin

Tendons

Muscle body

insertion

Figure 2.10 The human elbow joint is a third class lever.
[Thibodeau, 1996]



Skeletal models can be geometrically complex, but they are generally well described by

experimental observation. Most models use a multi-segment approach that constructs a human

figure from limb segments, such as the upper arm, lower arm, and hand (Figure 2.11).

mass, inertia

lx

joint

,II joint

Skeletal arm Three-segment model

Figure 2.11 Three-segment model of a human arm.

Levels of detail are selected specifically for the task at hand; for example, a

musculoskeletal model created to investigate a new EMU glove design would necessarily

incorporate individual segments for each bone of the hand. Larger-scale simulations, however,

might treat the hand as a rigid body articulated only at the wrist for computational simplicity. If

unusually high or low forces are observed at the hand using this latter model, a more detailed

model might later be implemented to investigate the region more thoroughly.

Muscle tissue is strikingly similar in design across all known animal kingdoms

[McMahon, 1984]. Muscles are universally composed of thick bundles containing muscle

"fibers;" these fibers are bioelectrically stimulated by the nervous system to contract in specific

patterns and sequences, generating movement at skeletal joints. Muscles in the human body



usually act in opposing agonist-antagonist pairs, such as the bicep and tricep muscles, to actuate

limb motion in either direction. Additionally, each muscle is frequently composed of several

synergistic heads (e.g., the 3 heads of the tricep), which act in a coordinated manner to stabilize

and fine-tune the specific direction of motion. In addition to different parts of the same muscle

generating similar forces, whole muscles can act in the same direction to assist in a single

movement. The countless possibilities for musculoskeletal structure and function demand

efficient models that can be implemented without undue complexity.

Many ground-breaking research efforts involving muscle models can be traced directly to

the work of A.V. Hill [Hill, 1938], who first proposed a simplified, lumped-parameter model for

muscle based on laboratory observations. This model introduces a contractile element (CE) in

parallel with a lightly-damped elastic tissue element (PE) and in series with a second elastic

element (SE) as shown in Figure 2.12.

0.7 09 11 13
PE (CE) Length (normalized) SE Extension (normahzed)

Figure 2.12 Hill-type muscle model [Winters, 1995].
Nonlinear force-length relationships for the CE, PE, and SE elements. The CE is
shown at several levels of activation (FL).

The SE and PE elements can be represented as nonlinear springs, and the CE force-

generating element contracts with a force that is both velocity and length dependent. Many

implementations of this model assume maximally fast movements, or maximal contraction of
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muscle. Movements can then be represented as sequential maximal contractions of agonist and

antagonist muscles. Everyday movements, however, usually involve lower speeds and

submaximal activation; maximal exertion models may not be as accurate or applicable to such

tasks. With these caveats in mind, models have been developed that better approximate the wide

range of muscle performance, including provisions for both intrafusal and extrafusal muscle

[Winters, 1995].

It is possible to implement the Hill model without specifying either PE dynamics or a

force-length relationship for the CE [Happee, 1992], greatly simplifying the analysis, but such

models are only applicable for small changes in muscle length and for joint angles close to the

center of the normal range of motion. Nevertheless, such models have generated useful data

within their limited regions of applicability [Happee, 1995], and the results are highly correlated

to experimental findings. The central drawback to the Happee implementation (1992, 1994,

1995), however, is the resulting complexity of the overall system. The relatively simple task of

shoulder flexion and extension within a limited (100) range of motion was simulated using no

less than 20 muscles divided into 95 individual "muscle elements." An even more detailed

model of myodynamic processes can be found in [Hatze, 1981 ], exploring muscle activation at

the cellular level.

The question of how detailed to make a muscle model is well addressed by Winters

(1995), and the answer is largely task-specific. For the simulation of human muscle, large limb

motions yield high muscular forces acting through moment arms that are often quite small and

act in several different planes of motion. The resulting system is often highly sensitive to initial

conditions, and must be modeled with great care. The more detailed the model, the higher the

probability that results will be highly sensitive to variations in one or more of the model

parameters.

Winters suggests that for each task under investigation, only a subset of a highly detailed

model's parameters will typically be of significance for the specific movement being analyzed. It

is therefore prudent to utilize models that capture the essential features of a specific motion, but

do not over- or under-simplify the musculoskeletal system for that specific task. As an example

of this philosophy, Greene and McMahon (1979) represent the lower body anti-gravity

musculature under normal and hypergravity conditions with a damped mass-spring system.



Their simple lumped-parameter analysis represents the opposite end of the spectrum from

Happee's 95-element shoulder model, above. For Greene and McMahon, all musculoskeletal

parameters have been lumped into two basic measurements: overall system stiffness and a

damping ratio.

Considering the high costs of computation for more complex models [Pandy, 1992],

simplified lumped-parameter models are far more efficient for analyzing large movements with

limited resources. These larger movements may not require the detailed muscle-by-muscle

analysis that a physiologist might need for anatomically accurate movement investigations.

Lumped-parameter models help to identify key modes of system operation, and they can

estimate larger measures of task performance where per-muscle data is not required. It is

important, however, not to haphazardly group muscles together and thereby oversimplify the

problem, leading to inaccurate conclusions based on models that neglect key effects. This places

more pressure on the accurate characterization and grouping of various musculoskeletal

parameters, but lumped-parameter models have been explored to some degree [Winters, 1985].

For the purposes of this research, lumped-parameter models have several desirable

characteristics. They maintain computational simplicity (relative to individual muscle models)

while including an appropriate level of detail, and produce substantial biomechanical insight

without excessive physiological modeling. Specific muscle models that address these issues will

be considered in greater detail in Chapter Three.

3. METHODS

A dynamic model for the EMU is developed in section one of this chapter, representing

the main contribution of this thesis. Basic inertial properties are examined, and the hysteresis

model introduced in section 3.3 is shown to allow accurate representation of imposed space suit

joint torques. The human model constructed for trial simulations is discussed in section two, and

the final section describes the simulations that test the EMU model.



3.1 EMU Space Suit Model

Three key characteristics of space suit dynamics are used to create the EMU model:

mass, inertia, and suit-imposed torques. An empirically-based model is developed and

implemented numerically based on observed suit parameters, utilizing a modified Preisach model

to describe the hysteretic torque characteristics at space suit joints.

3.1.1 Inertial Properties

The most basic properties of the EMU that can be modeled are its mass and various

moments of inertia. Mass properties were obtained from Hamilton Standard (Windsor Locks,

CT), and are summarized in Table 3.1.

Table 3.1 EMU Mass Properties

EMU Element Mass (kg)

[includes consumables]

Primary Life Support System 44.73

Secondary Oxygen Pack 10.19

Avionics and Battery 16.97

Hard Upper Torso 12.29

Arm Assemblies 7.87

Lower Torso Assembly 20.72

Helmet and Visor 8.23

Gloves 2.31

LCVG 2.94

Total EMU Mass 146.40

The mass characteristics are included in the system description file used by the SD/FAST

software package to generate the equations of motion for the EMU model that are used for

simulation (Appendix E). Moments of inertia were then calculated for the suit elements based on

suit dimensions from the NASA STD-3000 Man-Systems Integration Standards; these

moments are also included in the system description file.



3.1.2 Suit-imposed Torques

The most profound effect of the EMU on astronaut performance involves the imposed

torques, or "springback forces," in the joints; these forces are generated when the suit fails to

maintain a constant volume during movement, and the astronaut does work to change suit

volume and position. Also, the multi-layer soft shell construction of the suit behaves much like a

giant winter coat: as the limbs move back and forth between joint limits, the suit fabric tends to

bunch up, and eventually the sheer quantity of material compressed into a small volume creates a

firm limit on the maximum flexibility of a joint.

Space suit design engineers, of course, attempt to minimize these effects in order to

maximize suit flexibility and astronaut mobility[Klaus, 1989; Menendez, 1993]. For the most

part, suit designers have succeeded; joint restraints are quite effective in maintaining a nearly

constant joint volume through the most frequently used areas of an astronaut's workspace, and

innovative designs such as flat-patterned mobility joints allow easy flexing of joints without

substantial twisting, bunching, or stretching of thermal micrometeoroid garment (TMG) material.

The effects being modeled, then, are not the major suit forces associated with early space

suit designs which lacked these improvements [Kozloski, 1994]. Rather, the attempt is to model

the EMU's deviation from a "perfect" suit, one which would exert no forces to counteract

astronaut movement. In practice, subtle changes in the orientation of joint restraints during a

particular motion can lead to minute variations in the restraint forces applied to EMU joints.

Additionally, TMG fabric will be thick and bulky regardless of joint design innovation, and it will

contribute some small countertorque to astronaut movement. These variations lead to slightly

varying joint volumes during particular sequences of arm and leg motion, and increasing fabric

bunching toward the joint limits; the result is the characteristic joint angle vs. suit torque curve

shown in Figure 3.1, obtained from torque measurements of a pressurized suit elbow over its

range of motion [West, 1989].
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Figure 3.1 Hysteresis nonlinearity observed at the elbow joint of the EMU.

This modeling effort has focused on developing a dynamic model of the EMU from

existing suit data, which presumably represents some combination of the effects that various suit

imperfections have on suit performance. Although mass and inertial properties complete the

model, these springback torques represent the critical element for assessing detriments to human

performance in the EMU.

The torque vs. range-of-motion curve for a suit joint reveals a significant degree of

hysteresis, and must be modeled as such. Hysteresis represents a form of "memory" in the

space suit joint; countertorques generated by the suit are uniquely dependent on a specific

previous history of joint motions which have been somehow "stored" in the structure of the suit.

In order to effectively represent this property in a simulation framework, it is necessary to create

a mathematical model of the phenomenon.



3.1.3 Hysteresis Model

This section develops a mathematical model for hysteresis based on decades of hysteresis

modeling, and discusses the specific implementation required for EMU applications. A brief

introduction to hysteresis is provided in the first section, followed by a summary of the Preisach

model, used across many scientific disciplines to describe hysteretic systems. A conversion

process to move observed data into the EMU model is presented, and finally numerical methods

for efficient computation are discussed.

3.1.3.1 Introduction to Hysteresis

Systems that involve hysteresis in one form or another are common throughout science,

and their abundance has led to a number of quantitative investigations of the phenomenon. The

most famous description was developed by F. Preisach in 1935, who took an intuitive approach

to modeling the hysteresis observed in magnetic systems. His model was later given

mathematical rigor by the Russian mathematician M. Krasnoselskii [1983], and generalized to an

abstract form that encouraged widespread application. For a thorough discussion of the Preisach

model and its later modifications, Mayergoyz [1991] is an excellent reference, and his geometric

interpretation of the Preisach model will be discussed below.

The first step is a definition of hysteresis. As seen in Figure 3.2, the hysteretic system

element can be characterized by its input-output relationship.

u(t) hysteresis f(t)

transducer

Figure 3.2 Hysteresis transducer.

A hysteresis transducer is a system element with input u(t) and outputf(t) that creates a

multibranch nonlinearity for which branch-to-branch transitions occur after input extrema (Figure

3.3). The nonlinearity shown has three changes of direction; a new branch of the nonlinearity is

created after each input extremum.
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Figure 3.3 Input-output time history for a hysteresis transducer.

The classical Preisach model is static, meaning that future output values depend only on

past extrema and not the speed of transition between these extrema. It does not account for the

dynamic, or rate-dependent properties that may be present in hysteresis nonlinearities. For slow

input variations, however, the static model performs well; it is assumed herein that time effects

are negligible and a static model applies. This assumption is made based on empirical evidence

from EVA video footage, during which suited crewmembers universally move with small,

deliberate motions that are slow and controlled.

Another assumption is that the hysteresis nonlinearities observed with the EMU are of

the "nonlocal memory" type (Figure 3.5): a particular sequence of past extremum values of input

u(t), t<to, is required to specify a unique path in thef-u plane. "Local memory" hysteresis

transducers, on the other hand, definef(t) for all future u(t), t!t 0, based entirely on the current

state (Figure 3.4) without regard for previous values.
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f(to )

Hysteresis transducer with local memory.
Givenf(to) and u(t>to),f(t>to) is deterministic andf(t1) is unique.

one history of past extrema, t< to
another history of past extrema, t< to

f(to )

Hysteresis transducer with nonlocal memory.
Starting fromf(to), identical input histories u(t>to) can produce different
trajectories in thef-u plane and specify different pointsf(tl) if u(t<to) and u'(t<to)
specify different past histories of input extrema.

Hysteresis transducers with local memories are therefore Markovian, insofar as future

states of the system will be determined precisely by the current state and future inputs. Here the

Figure 3.4

Figure 3.5



intuitive argument is made that the instantaneous state of a space suit is uniquely dependent on

the particular arrangement of fibers and restraints in the suit at a specific instant in time. This

arrangement is decidedly non-Markovian, that is, the fibers in a space suit TMG are highly

unlikely to revisit identical positions throughout the suit at the same instant in the future. Space

suit states are therefore instantaneously unique and poorly described as a Markov process.

Additionally, experimental studies have shown that hysteresis transducers with nonlocal

memories are the more likely candidate for most applications [Mayergoyz, 1991]. A complete

mathematical description of this nonlocal type is provided by the Preisach model for hysteresis.

3.1.3.2 The Preisach Model

The building blocks for the Preisach model are hysteresis operators ap , defined by their

switching values of input ax and P, shown in Figure 3.6.

A Uf d e

-1

a b c

Figure 3.6 A simple hysteresis operator yap.

For monotonically increasing input starting below /, output follows the ascending branch abcde

and saturates at 1 (the "up" position). Similarly, the jap operator traces the descending curve

edfba for monotonically decreasing values of input, saturating at -1 (the "down" position). For

input values on the open interval (-oo, +oo), the hysteresis operator ap thus produces only two

values of output, 1 and -1. Now consider a complete set of operators ap whose switching



values blanket the entire range of input, and also allow for an arbitrary weight function y(a,f3) to

scale operator outputs individually. Then the Preisach model for hysteresis can be defined as

(3.1)f(t) = If (a, /)f'apu(t)dad .

The input u(t) is applied to each simple hysteresis operator in succession, appropriately weighted,

and then summed over the set of all operators to produce the total outputf(t) (see Figure 3.7).

Figure 3.7 Hysteresis decomposition into simplest hysteresis operators Ya,.

Operators are triggered to change state as u(t) crosses their unique switching values (a,3), and

thus affect the total output incrementally through the integral described in equation 3.1. The

geometric interpretation of this result presented below will clarify the way in which such a

system retains a "memory" of past events.

3.1.3.3 A Geometric Interpretation

Each simple hysteresis operator is associated with a unique set of up and down switching

values a and 3, and there exists an infinite set of operators on the a - 3 plane so that they are

continuously distributed. These operators are represented on the half-plane a 2 3, where each

point (a, 3) corresponds to its respective hysteresis operator (see Figure 3.8). This diagram



assumes that the "up" switching threshold a is greater than the "down" threshold 3, which will

be amended later for application to the EMU. Triangle T represents the hysteretic workspace,

bounded above by the upper limit of system saturation to and to the left by the lower limit of

saturation PO.

(r43 P)

Figure 3.8. The o _cp half-plane.

Assume that input u(t) is initially below Po, and all hysteresis operators are in the "down"

position. Then each operator has a value of -1, and the output f(to) is equal to the negative

saturation value for the system, f-. Now let the input increase monotonically to a maximum

value u, at some time t, (Figure 3.9).

(a0, P)
S(t 1)

Triangle T at time tj.
Input u(t) has increased through the workspace to switch on all operators in region
S'(t1). The interface between the two regions is the line a = ao = u1 .

Figure 3.9
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As the input is increased, each operator f with an "up" switching value less than u(t) is turned

on, weighted by its appropriate y(a,3), and added to equation 3.1 to compose the currentf(t).

This process subdivides triangle T into two regions: S+(t) where all operators are in the +1 or

"up" position, and S-(t) where all operators remain in the -1 or "down" position. As u(t)

increases, the two regions are separated by a horizontal link moving slowly up the a axis.

Let input u(t), after increasing to u,, change direction and monotonically decrease to u2 at

time t2 . As the input decreases, all operators whose "down" switching value is greater than u(t)

will switch back to the "down" state, as shown in Figure 3.10.

Region S (t2), bounded by the lines a = u1 and P = u2.

Decreasing input results in the formation of a new vertical link on the

= u1 and moving to the left along the 3 axis.

diagram, starting at a = P

If this process continues for a while, and input extrema continue to decrease in absolute

value, the interface I(t) between the regions S'(t) and S(t) will become a complex staircase whose

vertices represent a complete history of all past input extrema (Figure 3.11).

Figure 3.10



(C0, P.)

Staircase interface I(t) -,

Figure 3.11 The staircase interface I(t).
The interface is formed by vertices representing the past extrema of input u(t).

If at any point u(t) increases to a value greater than recent upper extrema, several of the

vertices may be eliminated from the interface; for example, if u(t) were to increase to a value

greater than u1, all vertices would be eliminated and the interface would once again resemble the

straight line of Figure 3.9. This is the "wiping out" property characteristic of most hysteretic

systems, allowing large input swings to effectively reset the system.

The above figures illustrate the way in which the Preisach model maintains a record of

past events in the system, creating a detailed history of input extrema; additionally, it simplifies

the calculation of transducer outputf(t). From the geometry of Figure 3.11, it is clear that

equation 3.1 can be split into two parts, representing the two regions S+(t) and S-(t) :

f(t) = f l(a, P)aflu(t)dadfl = ffy(a, P)(+ )dadpY+ I J (a(, p)(-1)dadfl (3.2)
a>p S' (t) S- (t)

Evaluation of these two integrals depends on 1) the unique shape of the regions S+(t) and

S (t), which is stored in the extrema coordinates of the interface I(t), and 2) experimental

specification of the weighting function u(a,3), which will determine the shape of our overall

hysteresis nonlinearity.

To accurately represent the EMU hysteresis environment, some modifications must be

made to the general model. The Preisach model has been developed under the assumption that

input u(t) moves on the unbounded interval (-o,+oo) while output is restricted to the bounded



interval [f ,f]. Any input values over some upper threshold um = a 0 result in a positively

saturated outputf(t) = f, and input values below some lower threshold u,,,n = fo lead to a

negatively saturated outputf(t) = f .

The corresponding situation for an EMU joint begins with joint torque input z(t) on the

unbounded interval (-oo,+oo) and produces an output joint angle (t) on the bounded interval

[n n, emax]. It is more useful in the simulation framework, however, to calculate an imposed

joint torque r(t) based on input joint angle (t). This allows the space suit to be represented as a

simple dynamic constraint on astronaut motion, rather than a complex constraint on forward-

dynamic control algorithms. Although iterative approaches might provide a feasible

implementation of the torque-input system, the angle-input simplification is easily achieved by

borrowing heavily from the mathematics of the Preisach model, if not the spirit. The hysteresis

operator decomposition described in equation 3.1 applies to any set of hysteresis curves, and can

be used for calculating r(t) or 0(t) without difficulty.

The positive and negative saturation values of output at each joint are therefore

represented simply by the maximum and minimum reported torque values as seen in Figure

3.12.

Imax

Figure 3.12 Angle versus torque curve for a space suit joint, with saturation limits.

Additionally, the direction of travel (clockwise) is opposite from that of the traditional

hysteresis model (recall Figure 3.6). Thus the "up" switching threshold oa is less than the



"down" switching threshold 3 for all operators ap, and the triangle T lies on the half-plane (a

P as shown in Figure 3.13.

Figure 3.13 EMU-modified half-plane (a P3.

Having explored the Preisach model defined by equation 3.1, the only remaining unknown is

how to obtain the Preisach weighting function u(a,) for numerical implementation.

3.1.3.4 The Preisach Function

The Preisach weighting function u(a,f) is an essential part of equation 3.2, and must be

defined by experimental hysteresis data. It has been shown [Mayergoyz, 1991] that the set of

first-order transition curves for a hysteresis nonlinearity, shown in Figure 3.14, is sufficient to

define the weighting function; these are the curves formed by the first reversal of input direction

after a monotonic increase from below the negative saturation point.
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Figure 3.14 First-order transition curves.
First order transition curves are formed as the first branch of a hysteresis
nonlinearity following monotonic increase of the input.

These first-order transition curves are converted to weights for g(a,,3) by comparing

their incremental changes to the changes taking place on the ta- diagram, as shown in Figure

3.15.

f

T(', 1')

T' ['-f)

Figure 3.15 Thef-u plane (left) and cxa- plane (right) during a first-order reversal.

As the input increases from the negative saturation limit, a single vertical link moving

from left to right is formed on the a- diagram, creating a region S+(t) in which the operators

Ya have been switched to the "up" position. When the input changes direction at u = /' and



creates the first-order transition branch shown on the left of Figure 3.15, the vertical link on the

xa-3 diagram stops moving and a new horizontal link is created at a = P = P', moving down

along the a axis. Switching operators to their "down" states as it moves, the horizontal link

sweeps through triangle T(a', /') until it reaches the current time at u = a'. During this last

segment, outputf(t) has decreased fromfo, tofO,~, while triangle T(a', /') was subtracted from

S'(t) and added to S(t). Using equation 3.2, the difference in area between the triangles becomes

fla - fpl = fJ(a, )dadfl- Iflu(a,P)dadp -r ff(a, P)dadp - J u(a, 1)docdp

S
+ 

(t 2 ) S (t 2 ) S
+ 

(t) S- (t) )

(3.3)
=-2 ff I(a, /)dadp

T(a',#')

and using the definition

F(a', fl') = (f, - f,a,), (3.4)

then

F(a', P') = If I(a, /)dadp. (3.5)
T(a',P')

Thus the integral of y(a,p) is known within the triangle T(a',/'), corresponding to a

simple difference in experimentally measured outputf(t) along a first-order transition curve. A

finite number of first-order reversal curves will define a finite set of triangles T(a', ') whose

integral area is known, and interpolation between triangles will then facilitate integration over an

arbitrary area S+(t) , shown below.

Region S+(t) is first subdivided into multiple trapezoids (Figure 3.16) whose integral area

is easily obtained by differences of the smaller triangles T(a', P').
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Figure 3.16 Subdivision of S (t) into multiple trapezoids.

If there are n trapezoids designated Qk, then the integral over S+(t) becomes

n(t)

J p(a, P)dadf3 I (a,P)dadf, (3.6)
S+(t) k=-1 Q(t)

where n and Qk will change with time as the interface I(t) changes with input variations.

Letting Mk and mk represent the k maxima and minima, respectively, which appear on the a-f

diagram, each vertex of the interface I(t) can be assigned coordinates in terms of these input

extrema (Figure 3.11). Trapezoid integrals then become

JI l(a, /)dcadp = fJ (a, f)dcadp - Jj f(a, #)dadf, (3.7)
Qk (t) T(M,,m-_l) T(Mk,mk )

and from (3.5), each triangle integral is related to a simple difference along a first-order transition

curve:

ff !(a, f)dad/ = F(Mk ,mk-). (3.8)
T(M,,m,_1)

To accumulatef(t), add and subtract the integral S+(t) from (3.2) to obtain

f(t) = -J p(a, f)dadf + 2 ff p(a, P)dadfl, (3.9)
T S (t)



where the leftmost integral is simply the outer loop hysteresis curve, represented by F(a o, f).

Then the total output at any time t is calculated by inserting the piecewise integration (3.6) into

(3.9):

f (t) = -F(ao , Po)
n(t)- (3.10)

+2 I[F(Mk ,mk_-) - F(Mk ,mk)] + 2[F(M,, m,_l ) - F(M,, u(t))]
k=1

where the final term is simply the most recent trapezoid, defined on top by the line a=u(t).

Equation (3.10) assumes that the current input is decreasing, and that the final link on the Xa-3

diagram is horizontal. For increasing input, the last link on the a- diagram will be vertical and

the final term should be replaced by 2F(u(t),m,_¢), to account for the final triangle-shaped region

in S+(t).

3.1.3.5 Numerical Implementation of the Hysteresis Model

Exact implementation of (3.10) demands that a value of F(a, ) be available for every

point in T, so that any combination F(Mk,mk-) can be represented. As Figure 3.13 and equation

(3.4) illustrate, however, each small triangle in T and its corresponding F(a,) are derived from a

specific difference along a first-order transition curve. For complete coverage, an infinite set of

first-order transition curves would have to be obtained experimentally. This is clearly a practical

impossibility, so the continuous region T is instead discretized using data from a few

experimentally measured first-order transition curves, creating a mesh of nodes between which

values of F(a,f) can be interpolated (Figure 3.17).
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Figure 3.17 The discretized region T.

The experimental observations on which the EMU model is based, however, consist of a

single major hysteresis loop (refer to Figure 3.1) for each joint. The single descending branch is

considered a first-order transition curve, but a complete family of curves is necessary to properly

discretize the region and generate a reasonable model.

To estimate the full set of transition curves necessary for the EMU model, the following

property of the Preisach model is invoked (cf. Figure 3.18):

(a', ') (a',') (3.11)
2 da'

The angle 0(a',P') is formed between the horizontal and a tangent at u = a' to the first-order

reversal curve originating at P3'. From equation 3.11, the Preisach function ut(a',P') is positive,

and therefore valid, if tan O(a',P') is a monotonically increasing function of a' for a fixed P/'.

Looking at a set of first-order transition curves evaluated at the same point u = a', the curves'

first-order derivatives should increase with P', their starting location. In general, this means that

their slopes should increase from the bottom (major-loop) transition curve upwards to the upper

major-loop branch.
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Figure 3.18 The angle O(a',fl').

Using the constraint that (3.11) places on transition curve derivatives, an algorithm was

developed to create a set of k first-order transition curves based on the available EMU data, i.e.,

the shape of the outermost descending branch:

dx k- + g, (3.12)
da' da'

where curve x0 (at k = 0) is simply the major descending curve, and g is the "grouping" factor,

representing the relative distance between curves. Figure 3.19 shows the family of curves created

by a MATLAB script (Appendix A) which implements this algorithm. It should be emphasized

that these curves are educated guesses for the form of the EMU hysteresis nonlinearity, based

solely on common patterns observed throughout a variety of hysteretic systems. A complete

model would require a full set of first-order transition curves to be experimentally measured.

Having obtained a full set of first-order transition curves, a surface T is constructed for

the evaluation off(t) by (3.10). Each curve is first discretized into nodes separated by 2 degree

intervals, and each node is assigned its value offafi ('ro for the EMU model). The nodes are

used to create a mesh of cells over triangle T, where each vertex is associated with a specific

value offa . Over the course of the simulation, a history of extrema {Mk,mk } are collected,

defining the interface I(t).
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Figure 3.19
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The complete set of first-order transition curves for the elbow joint.



To calculate (3.10), each point (Mk,mk) and (Mk,mk-) is dropped through a search tree to

determine the cell in T to which it belongs. The value of F(Mk,mk) is then computed by

interpolating between the four (or three) vertices of the cell (Figure 3.20).

Cell with three

Cell with

Figure 3.20 Cells bounded by either three or four vertices.

For a four-sided cell, the interpolation used is

f,, = A + Ba + Cf + Dao, (3.13)

and a three-sided, triangular cell uses

fp = A + Ba + Cfl. (3.14)

In order to expedite computation of (3.13) and (3.14), coefficients A, B, C and D can be

precomputed as the solution to the linear system

f = Xk, (3.15)

with
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because the vertices (ck,f k) and their values fa are known. Coefficients A-D are computed for

each cell and stored along with the cell location, obviating actual storage of the valuesfa.

3.2 Human model

This section introduces the human model that was used as a base to simulate the

astronaut. The skeletal model is discussed first, followed by a brief survey of potential muscle

models.

3.2.1 Skeletal Model

The human skeletal model used for these simulations is a 12-segment, 28 degree of

freedom (d.o.f) system (Figure 3.21).

ball

ball

Figure 3.21 Human skeletal model.



The ankle, hip, wrist, and shoulder joints are modeled with 3 d.o.f. ball joints, and the knee and

elbow joints are modeled using 1 d.o.f. pin joints. The neck is welded to the upper torso (no

relative motion is allowed), and the entire system is assumed to be fixed at the ankle joint to an

inertial reference frame (the foot restraint). For these simulations, the EMU joint torque is only

applied in a sagittal plane of motion (z-axis torque), and therefore the ball joints will be restricted

to a single degree of rotational freedom. Inertial properties for the skeletal segments are from a

program written by K. Jackson, based on a 50th percentile man.

3.2.2 Muscle Models

An extremely simple muscle model was chosen to provide human joint dynamics for the

astronaut model. Each joint is modeled as a pure torque generator, actuating the limb directly

over a fixed range of motion. This model has been used to observe macro-level effects [Benati,

1980; Crowninshield, 1981], but it is not assumed to represent muscle dynamic parameters in a

true sense. A basic viscoelastic model is added for passive joint control in Section 3.3, below,

which adds joint stiffness and damping to the musculoskeletal model but neglects key muscle

parameters such as the length-velocity-tension relationship at the contractile element (cf. Chapter

Two). Several muscle models are discussed below, however, for reference and for future

implementation.

Selecting a muscle model suitable for the simulation framework depends largely on the

required output, and is necessarily task-specific, as discussed in Chapter Two. The system can

be simplified to widely varying levels of detail, according to the required physiological accuracy

of the investigation. For example, forward dynamic simulation of muscle reflex activity would

demand provisions for a complete neural control feedback model and neural excitation dynamics,

in addition to the basic Hill muscle parameters. Inverse dynamic simulation of a larger-scale

system, on the other hand, might be interested only in the basic workload levels associated with a

particular task; in this case, the neural control model might add excess complexity not required

for the system under consideration. This thesis is concerned more with the latter condition, in

which neural control patterns are interesting but unnecessary for the stated objectives.

The muscle model used in these inverse-dynamic simulations should trace the

neuromusculoskeletal system back to the muscle forces or joint torques required to generate



movement, but it should not be overly concerned with control aspects on a neural level. Two

models that meet this criterion will be discussed briefly, below. Although the simulations

presented in this thesis do not include an explicit implementation of one of the following muscle

models, future work should address these issues more thoroughly.

3.2.2.1 Torsional Equivalent

The torsional equivalent muscle model is possibly the most basic approach to muscle

modeling on a joint-by-joint basis. Although simpler models exist for larger, lumped

subsystems (cf. the two-parameter lower-body model in [Jackson, 1997]), EMU data has been

obtained on a per-joint basis, encouraging a similar structure for the underlying human model.

The simplest torsional model is the pure torque generator, as implemented in this thesis.

For larger-scale systems, the somewhat questionable assumption can be made that inertial

properties dominate, and viscoelastic influences are either negligible or linear [Crowninshield,

1981]. Then muscles can be approximated as pure torque generators, operating directly on the

limbs of interest. Though simple and easily implemented, the nonlinear filtering properties of

muscle are ignored [Winters, 1985], and model parameters must be modified for each specific

task. Two lumped-parameter, torsional muscle equivalents that improve slightly upon the pure

torque generator are shown in Figure 3.22.

'C E TCE - K PEA0ref - B Orel

KAe + BO KSE(eref

Figure 3.22 Torsional equivalent muscle models.



The model on the left is a simple two-parameter model that provides a torque-generating

element in series with a damped elastic element. For convenience, the stiffness and damping

constants have been indicated as linear parameters, although it would be equally suitable to have

K(O, ) or B(8, ). The right-hand model differentiates the SE and PE components of the

classic Hill model, while maintaining a torque-based approach. These models approximate the

stiffness and damping properties of a joint, but fail to include the geometric and dynamic

asymmetries characteristic of antagonist-pair muscle models.

3.2.2.2 Lumped Muscle Models

More complex than the torsional model, yet a computationally efficient alternative to

representing muscles individually is the lumped-muscle model, in which synergistic muscles are

grouped together. This type of model has been used extensively throughout the biomechanical

community, and produces interesting results without undue complexity [Winters, 1985].

The simplest form is shown in Figure 3.23, where all flexors have been lumped into a

single "equivalent flexor," or agonist, and all extensors have been lumped into a corresponding

"equivalent extensor," or antagonist. There are now only two muscles to simulate at this joint,

replacing what could be more than 10 synergistic and stabilizing muscles at a true physiological

joint.

Agonist

Antagonist

Figure 3.23 Agonist-antagonist lumped-muscle model.

Cocontraction of the extensor and flexor muscles sets a specific joint stiffness, and differential

contraction produces a net joint torque. Each of these two muscles can then be represented in the



Hill form (cf. Figure 2.4) as a linear or nonlinear combination of CE, PE, and SE elements

(Figure 3.24). The lumped-muscle parameters KsE, KPE, and B may be linear or nonlinear, and

they are constructed from experimental observation, effectively combining the characteristics of

several synergistic muscles.

KSE

KPE

LP L SE

Figure 3.24 Schematic representation of a Hill muscle model.

This model does not account for the precise contribution from each muscle, however, and

can suffer if applied to precise movements under close scrutiny. Developing models for the

neural excitation of synergistic muscle groups, for example, is not possible with a lumped-

muscle model. In this case, a separate muscle model for each synergist [Happee, 1995] would

be required to explore interactions between cocontracting muscles.

3.3 Simulation Method

The suit model was demonstrated as a constraint on the existing 12-segment human

model, which was created during preliminary simulation work by G. Schaffner (1995). The

system allows a given EVA task to be described in terms of hand trajectories, which are

translated by the SD/FAST inverse kinematic solver into a history of joint rotations required to

perform the task. Inverse dynamics routines then determine the torque required at each joint to

produce the necessary joint rotations. The resulting time history of joint torques is used to

compute the work done at each joint during the execution of a specific task.



3.3.1 SD/FAST Framework

The equations of motion for a 12-segment linked mass model are highly complex, and

are ill-suited for analytical derivation; therefore, the SD/FAST dynamics package from Symbolic

Dynamics (CA) was used to derive the system equations of motion using Kane's formulation

[Kane, 1985]. The simulation procedure is shown in Figure 3.25.

Hand Joint Joint
Position Inverse Positions Inverse Torques

Kinematics Dynamics

Figure 3.25 Simulation flow diagram.

Hand position, velocity, and acceleration are prescribed in Cartesian coordinates; inverse

kinematics routines then solve for joint trajectories that are compatible with the given Cartesian

motion. The resulting time history of joint positions (in joint coordinates) is then delivered to an

inverse dynamics routine, solving for the joint torques required to produce the observed

kinematic data. This framework was used to execute the payload translation task described

below, and the simulation code is included in Appendix E.

3.3.2 Payload Translation Task

Two simulations of an astronaut manipulating the 1,200 kg Spartan astronomy payload

were performed; each simulation was performed under two separate conditions: unsuited, to

determine the baseline work level required to move the payload, and suited, incorporating the

EMU suit model.

Both simulations involve an astronaut pulling the Spartan payload directly forward, after

grasping it in the far range of his workspace (Figure 3.25) This task is easily extensible to other

similar operations, such as extracting a module from the Hubble Space Telescope.
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Figure 3.26 Spartan payload translation task.

The center of mass (CM) of each hand is connected to the edge of the payload by a weld

joint; this ensures that the payload follows the hand, remaining attached to the hand segment.

The wrist is given a much greater range of motion than in previous simulations (±70); this

simulates the effect of extending and flexing different fingers to rotate the astronaut's grip while

maintaining a relatively constant wrist angle. A highly flexible wrist joint is essential because the

musculoskeletal model does not include fingers. The feet are anchored to an inertially fixed foot

restraint; movement of the foot restraint such as might be experienced on the end of the remote

manipulator arm, is not included. Vibrational effects from the arm would clearly be important,

however, and should be addressed in future, more detailed simulations.

The astronaut was required to move the Spartan payload 25 cm along a linear trajectory

at 00 with respect to inertial space over a time interval of 10 seconds. To create interesting

acceleration and torque profiles, as well as to generate a smooth motion of the payload, the CM

of each hand was prescribed to move along this trajectory with a sinusoidal velocity profile. The

equations used to generate the movement were:

(AT (2r
X=At+ I Isin -t+ I

X =A+ A cos -2t + Ir (3.16)

27A )sin( 21rt rD
T T



where A = 0.025 m/s and T = 10.0 s. The crewmember's initial lower-body posture coincides

roughly with human zero-gravity neutral posture [NASA, 1991], and the upper-body position is

well within the astronaut's predicted workspace envelope [Reinhardt, 1989].

3.3.2.1 Rigid Lower Body

For the first simulation, the astronaut's lower body and torso were locked in a rigid

position, forcing the task to be executed by arm movement alone. Only the shoulder, elbow and

wrist joints were allowed complete freedom of movement in three, one, and three degrees of

freedom, respectively. Passive dynamic control was introduced at the shoulder, elbow, and

wrist joints to simulate damped control and relative muscle strength using the relation

rjoint = -krot (qjoint - qblas) - bdamplngqjoint, (3.16)

allowing for joint stiffness k and neutral position qbas. Bias positions for joints are the angle

between the axis of the proximal segment and the neutral position at which the distal segment

will rest motionless in zero gravity (Figure 3.26), and joint stiffnesses k are based on Winters

and Stark (1985).

qbias

Figure 3.27 Bias position qbias for the elbow joint.

The rigid lower body simulation was performed under two conditions: first, with passive

musculoskeletal dynamics alone in an "unsuited" condition, and second, in a "suited" condition

to demonstrate the effect of the suit on astronaut workload. The task was identical for both

conditions, but the second condition added the dynamic properties developed above for the EMU

space suit: mass, inertia, and imposed torques at the shoulder, elbow, and knee joints. The ankle

joint was provided with a first-order torque, simply a linear extension of the average torque given



in the NASA STD-3000, as ankle joint suit data was unavailable.

3.3.2.2 Compliant Lower Body

The second simulation then introduced a compliant lower body, allowing full motion in

all joints. Passive dynamic control according to (3.16) was included at the hip, knee, and ankle

joints, and suit effects at the knee were implemented. The task was identical to the first

simulation, prescribing the hand CM to move along the same linear trajectory, but the astronaut

was allowed to "choose" the posture from which to perform the task by introducing a compliant

lower body. Again, the simulation was performed twice, under "suited" and "unsuited"

conditions that differed only by the application of space suit dynamics.

4. RESULTS

This chapter presents the results of the hysteresis model test simulation and two payload

translation simulations. Astronaut position during each simulation is displayed in terms of

individual joint angles, and sequential diagrams of crewmember position are included to facilitate

interpretation of the angle data. Torques at each joint are reported, and total cumulative work is

calculated from these torques and their corresponding joint velocities.

4.1 Hysteresis Model Test

Results of a test simulation for the hysteresis model at the suit elbow joint are shown in

Figure 4.1. The upper trace plots elbow joint angle as a function of time, starting at 35 degrees

away from full extension and flexing through 74 degrees, before returning to greater extension.

The lower plot represents suit elbow torque over this period, plotting torque versus angle for the

duration of the motion. Note the characteristic pattern of hysteresis observed as the elbow is

flexed and then extended. Figure 4.2 illustrates how equation 3.1 is used to determine the space

suit elbow torque during this test; the interface I(t) is shown plotted on the surfacef f(a3), with

the shaded area representing the area S'(t) and the lighter area S (t). The large arrow indicates the

motion of the current input, increasing along the a axis. If the input increases past the previous

maximum at 740, the previous vertices of I(t) will be eliminated (the "wiping-out" property) and

the interface will be the single line a= u(t).
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4.2 Payload Translation Task

The following two sections present results for the payload translation task simulations,

including both rigid and compliant architectures for the lower body. Each simulation is carried

out under two conditions: unsuited, without space suit forces and torques, and suited, adding the

EMU dynamic model to the simulation.

4.2.1 Rigid Lower Body

The sequence of position diagrams shown in Figure 4.3 qualitatively illustrates overall

astronaut motion during the payload translation task with a rigid lower body, at 2 second

intervals; position is identical for both the suited and unsuited conditions. Figure 4.4 then plots

astronaut joint positions during the task. As anticipated, the ankle, knee, and hip joints remain

motionless during the simulation, because they were prescribed to maintain a constant joint angle.

The hands gradually pull the mass inward, causing rotation in the shoulder and elbow joints. The

wrist rotates from an initial position in line with the forearm to 550 downward tilt; it is important

to keep in mind that this 550 rotation includes both wrist position and the grip position of the

fingers.

I O I 0 I  I I
I I

0 sec. 2 sec. 4 sec. 6 sec. 8 sec. 10 sec.

Figure 4.3 Sequential astronaut position during payload translation task, rigid lower
body.
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Inverse dynamic computation was then applied to the motions illustrated in Figures 4.3-

4.4, recovering the joint torques required to produce the observed movement. These joint torques

are shown in Figure 4.5, for both suited and unsuited conditions.

The ankle, knee and hip joints exhibit sinusoidal torque behavior throughout the motion.

The wrist joint exerts no torque at all, but the shoulder and elbow joints exert small torques

during this simulation. The unsuited shoulder joint produces an extremely small torque, varying

between -0.25 Nm and 0.25 Nm, while the suited shoulder joint produces a much larger range of

torques from -1.5 Nm to 8.7 Nm. Similarly, the unsuited elbow joint gives torque values

ranging from -2.1 Nm to 0.9 Nm, while the suited elbow joint varies between -7.1 Nm and

4.9 Nm.

The torque values were then converted to instantaneous power using the relation

P = TO), (4.1)

where the instantaneous power P at a joint is equal to the product of its current angular velocity o

and the torque it is producing. Power values were used to calculate the work performed at each

joint by integrating, using

W = f Pdt. (4.2)

Here the step size of integration is equal to the simulation step size, 0.05 seconds. Work at each

joint is shown in Figure 4.6 as cumulative work, where the cumulative work at time t is

represented by equation 4.2, evaluated over the interval [0.0, t ].

The ankle, knee, hip, and wrist joints exhibit no net work performed, while the more

active shoulder and elbow joints do appreciable work moving the payload (Table 4.1).



Table 4.1 Shoulder and elbow work, with rigid lower body.

Joint Unsuited Suited Difference (N-m) Suited

Total Work (N-m) Total Work (N-m) Premium

Shoulder 0.16 4.40 4.25 2740 %

Elbow 1.37 4.25 2.88 210 %

Total 1.53 8.65 7.12 467 %

The suited astronaut with a rigid lower body does a 2740 % premium of work at the shoulder

joint and 210 % more work at the elbow joint to produce motion identical to that of the unsuited

astronaut. Overall, the crewmember performs almost 4.7 times more work in the suited

condition than in the unsuited condition.
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4.2.2 Compliant Lower Body

In the real world, however, the astronaut would not be required to maintain a rigid lower

body. The second simulation was therefore performed with a slight modification from the first:

ankle, knee, and hip joints were allowed to move, and passive lower-body control was introduced

in the form of joint stiffness and damping. Figure 4.7 shows two sequences of astronaut

positions for the payload translation task with a compliant lower body, illustrating the difference

in movement between suited and unsuited conditions; individual joint angle time histories are

then given in Figure 4.8.

The knee and hip joints maintain relatively constant position throughout the task, the

suited and unsuited conditions differing by less than 20. The suited astronaut's ankle joint,

however, finishes the task in plantar flexion, a full 120 greater than the unsuited ankle joint. The

suited elbow and shoulder joints, on the other hand, finish in 80 and 40 degrees less flexion,

respectively. The suited astronaut's wrist completes the task at 150 extension, compared to the

unsuited astronaut's -55' extension; again, the wrist rotations allow for finger orientation and grip

changes, giving a greater range of motion than the wrist joint alone.
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Inverse dynamic analysis recovers the joint torques required to perform the translation

task with a compliant lower body; these torques are shown in Figure 4.9. Ankle, knee, and hip

joints all show sinusoidal torque patterns, with the suited values being universally larger than

their unsuited counterparts. Shoulder joint torque is slightly larger in the suited condition, and

elbow joint torque is the only value larger in the unsuited condition.

Peak torque differential between the unsuited and suited conditions occurs during the

payload deceleration phase at t = 8.05 sec; these values are tabulated in Table 4.2.

Table 4.2 Maximum torque differential between suited and unsuited values.

Joint Larger Torque Differential

Ankle Suited 10.0 %

Knee Suited 10.1%

Hip Suited 20.1%

Shoulder Suited 308 %

Elbow Unsuited 189 %

Wrist Neither --

These torques were then used to calculate total work performed during the task using equations

4.1 and 4.2. Cumulative work time histories at individual joints are shown in Figure 4.10, and

total work is presented in Table 4.3.

Table 4.3 Total work during payload translation task, compliant lower body.

Joint Unsuited Suited Difference Premium

Total Work (N-m) Total Work (N-m) (larger condition)

Ankle 0.56 1.71 1.15 (suited) 207 %

Knee 0.24 0.11 0.13 (unsuited) 110 %

Hip 0.10 0.11 0.01 (suited) 9%

Shoulder 0.12 0.02 0.10 (unsuited) 490 %

Elbow 1.53 0.06 1.47 (unsuited) 264 %

Wrist 0.0 0.0 -- --

Total 2.55 2.01 0.54 (unsuited) 27 %



The two joints with significantly higher work levels, a full order of magnitude larger than the rest

of the joints (see Figure 4.10), are the ankle joint in the suited condition (1.7 Nm) and the elbow

joint in the unsuited condition (1.5 Nm). The hip joint performs almost identical work, at a low

level, for both conditions. The knee, shoulder, and elbow all perform greater work in the

unsuited condition, while the ankle stands out as the high workload joint in the suited condition.
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Although peak torques varied from joint to joint, the velocities in the ankle joint (suited

condition) and the elbow joint (unsuited condition) led to increased work at both joints. Figure

4.11 clearly shows that most of the work came from the ankle and elbow joints, with a marked

increase at the elbow in the unsuited condition and at the ankle in the unsuited condition. These

results will be discussed in Chapter Five, below.

5. DISCUSSION

This chapter interprets the results presented above, and attempts to explain anomalous or

suspect data from the simulations. The elbow joint test simulation is discussed first, followed by

the rigid body payload translation and the compliant body payload translation tasks.

5.1 Hysteresis Model Test

The elbow joint test demonstrates the functionality of both the hysteresis model and its

implementation in computer code (Appendix B). The elbow angle versus imposed torque plot

(Figure 4.1) shows nicely the hysteresis nonlinearity produced by the EMU model, creating new

branches at the appropriate maximum (740) and minimum (450). The discontinuities visible in

the first derivative of the elbow angle versus imposed torque plot near 600, where the imposed

torque seems to turn sharply to a new slope, are "edges" in the mesh of Figure 4.2, representing

the resolution of the hysteresis grid. These discontinuities appear because of the interpolation

performed between data points. If the interpolation used spline fits instead of linear + hyperbolic

interpolation, the first derivative would be with continuous slopes.

For the current implementation, the concern is to accurately represent the general character

of the hysteresis nonlinearities and not necessarily to be concerned with torque differences on the

order of 0.01-0.05 Nm. Additionally, the first-order transition curves used to create the model

were crude estimates, probably valid within 10-30% of the true values. The errors in estimating

these curves are therefore on the order of 0.1-0.2 Nm, a full order of magnitude higher than the

estimated interpolation error; interpolation considerations can be neglected safely. If a precise



simulation were required, finer data would have to be used and spline fits would become

considerably more attractive.

5.2 Payload Translation Task -- Rigid Lower Body

The translation task performed with a rigid lower body effectively illustrates what would

happen if a suited astronaut attempted to perform a task exactly as he would in a shirtsleeve

environment. During greater and greater flexion of the elbow and shoulder joints, EMU suit

forces begin to increase appreciably and affect the astronaut's workload. The workspace

limitations placed on the astronaut by the space suit mean that he must use different motions to

perform simple tasks than those he might be familiar with in a shirtsleeve environment, or pay a

severe penalty in energy expenditure (2740% at the shoulder, 210% at the elbow) for excursions

into unfavorable joint positions.

During this simulation, the ankle, knee, and hip joints exert the reaction torques necessary

to maintain a motionless lower body position; therefore, they mimic the sinusoidal velocity and

acceleration profiles of the overall motion, visible in Figure 4.5. The suited astronaut's shoulder

and elbow joints continue to build greater torques throughout the simulation, as they flex into

regions of the workspace with high EMU torque penalties; again, an astronaut would not

normally move into these areas of the workspace, and the high torque values observed here

illustrate the reasons for his caution. Wrist torque remains nonexistent due to the conditions

imposed by the simulation: the astronaut is charged with pulling the Spartan payload directly

toward himself, and does not need to exert a direct torque on the payload. The wrist is acting as a

frictionless joint, allowing the elbow and shoulder to bear the full load of the work required to

move the mass. The range of motion of the wrist has been extended considerably (±70) to

allow for joint positions to reflect orientations of the wrist joint and the grip of the fingers; the

"lumped" wrist joint never reaches the edge of its workspace, even at -55' , so the torque remains

zero.

The cumulative shoulder joint work required to perform this task is shown in Figure 4.6.

Relative to the unsuited condition, the suited astronaut does an order of magnitude more work at

the shoulder and twice as much work at the elbow to produce the same result. Almost all of the

excess shoulder work is produced as a consequence of the simulation constraints. Unable to use



his lower body, the astronaut moves his arms into inefficient areas of the suit workspace (near

the joint limits) to complete the linear trajectory. At these extreme joint angles, he must exert a

great deal of energy to maintain a smaller joint volume through certain portions of the task (see

equation 2.1).

5.3 Payload Translation Task -- Compliant Lower Body

The second simulation is more realistic, providing the astronaut with a flexible lower

body controlled by simple joint stiffnesses. The posture that the astronaut assumes while

performing the translation task with a compliant lower body is strikingly different for the suited

and unsuited conditions (see Figures 4.7 and 4.8). Although knee and hip joints maintain a

similar orientation for both suited and unsuited conditions, the shoulder and elbow joints flex a

great deal more (400 and 80', respectively) in the unsuited condition while the ankle joint flexes

more (120) in the suited condition. To achieve the mandated translation of the payload in the

previous simulation, with a rigid lower body, the suited astronaut was required to pull his upper

and lower arms in close to his side. The suited, compliant astronaut in this simulation is able to

manipulate the payload from a more suit-neutral posture, his arms floating easily in front of his

body.

The torques necessary to complete the task (Figure 4.9) support this idea: the unsuited

astronaut exerts greater torque at his elbow joint, while the suited astronaut exerts greater torque

at the ankle, knee, and shoulder joints. The unsuited astronaut uses mostly elbow work to

complete the task (see Table 4.2), while the suited astronaut uses a combination of elements.

Although the shoulder torque has the greatest apparent difference between suited and unsuited

conditions, its relative magnitude is not as great as the other torques. The cumulative work in

Figure 4.10 reveals that the ankle joint performs most of the work for the suited condition, while

the elbow joint performs most of the work in the unsuited condition.

It should be noted at this point that the full reaction torques observed at the ankle, knee,

and hip joints for this task are not converted directly into work values. Work is calculated as the

time integral of torque x angular velocity, and the hip and knee joints, for example, have only

very slight velocities though they support significant torques. This is isometric torque, and it is

not included in the traditional definition of work (work requires motion). Work does take place



inside the muscle during these periods of isometric exertion, however, and is a critical issue for

future studies involving more detailed muscle models. For the purposes of this simulation,

though, it is the differential work performed between suited and unsuited conditions that is of

interest. The unsuited and suited reaction torques are identical due to the identical motion of the

payload mass, and they cancel each other out in any differences; if work values could be

computed for the isometric periods, the reaction torques would become a normalizing factor, and

would be removed from the suited-unsuited difference regardless. The exclusion of isometric

torque production is thus an inherent normalization for the data, and presents no problems with

respect to the work calculations.

Allowing for a compliant lower body substantially reduces the work done at the shoulder

and elbow joints (compare Figures 4.6 and 4.9). In fact, the work performed in the suited and

unsuited conditions with a compliant lower body is almost identical throughout the duration of

the task, and total work for the suited condition is actually 26.7 % lower than the unsuited

condition. Taking advantage of the long lever arm from shoulder to foot restraint, the suited

astronaut uses his ankles to move the payload through the same distance as the unsuited subject

while doing minimal work. Total work for the suited condition is less than the unsuited

condition because the efficiency of using the long shoulder-to-ankle lever arm is higher than

elbow and shoulder contraction, given the imposed passive dynamic control at the various joints.

The lower body joints were set to have greater stiffness than the shoulder and elbow joints;

therefore, the unsuited astronaut chose to perform the motion with his upper body. The suited

astronaut, although forced to use his ankles instead of his upper body, performed less net work

because the ankle joint was able to achieve the same linear movement at the payload without a

large angular displacement at the joint. The control torques were related to displacement and the

work was related to angular velocity, so the ankle did not have to perform as much work to move

the payload the same linear distance. The particular geometry of this task lent itself well to using

small ankle motion, as opposed to larger upper body movements, to achieve the task objective.

The suited results for the compliant lower body simulation also compare well with the

rigid body simulation. Working with the suit close to a zero-energy neutral posture, more of the

work performed actually translates to payload motion; in the rigid lower body simulation, most

of the work done was excess work allocated to changing space suit volume at the shoulder and



elbow joints. The total work required to complete the suited task with a compliant lower body is

a full 77% lower than the rigid condition.

Although this solution appears optimal from an energy standpoint, it comes with serious

drawbacks. The shoulder and elbow joints work to move the payload under the rigid-body and

unsuited compliant-body conditions, but they are supplied with muscles conditioned for heavier

work on Earth. The small musculature about the ankle joint, however, has been trained on Earth

to supply the minor corrections necessary for balance during quiet standing. These muscles are

not generally used to move massive payloads about in space; when called upon to do so, they

may fatigue quickly under unfamiliar loads. These findings agree with anecdotal evidence

provided by astronauts subsequent to certain EVA missions which have generated complaints of

sore ankles, especially following the use of a foot restraint.

The astronaut's posture in the portable foot restraint (both feet together) leads to increased

reaction torques at the ankle joint (Figure 4.9), which agree with the findings of Schaffner (1997).

This study produced similar results, but emphasizes the postural configuration imposed by the

EMU space suit. The addition of a space suit aggravates an already poor situation, increasing

torque levels at the ankle joint beyond the already high reaction torque values required to maintain

an upright posture. These results do not include a full dynamic model for the EMU ankle joint,

however; data for the ankle has not yet been obtained, and may alter simulation findings. As

noted by Schaffner, experimental testing would help to resolve modeling errors similar to this.

The work presented in this thesis complements the studies of skill in EVA mass handling

by McDonald et al. (1997), who are investigating aspects of postural control and human-

environment interactions as they apply to EVA task definition and worksite design. Their studies

characterize the ability of astronauts to successfully manipulate objects in microgravity, from a

variety of orientations and postures. One of the factors they identify as affecting an astronaut's

choice of motion is the mechanical constraint imposed by the EMU space suit on joint ranges of

motion. The EMU model developed herein is a tool that can be applied to models of postural

configuration and control as an environmental constraint, and enhance the predictive ability of

models to quantify workload and skill in EVA operations. Additionally, results from the

experiments performed by McDonald et al. would provide interesting data to examine for the

effects of suit dynamic properties on astronaut motion. Simulations of the experimental tasks



could be performed and compared with their data to assess the accuracy of the EMU space suit

model.

This space suit model also contributes to the work performed at NASA facilities by

Morgan et al. (1996), who examined available suited strength during EVA operations. Their

paradigm involves developing a predictive model for the maximum effort available to astronauts

while in the space suit, but does not address the representation of the imposed suit torques

mathematically. The hysteresis modeling approach taken in Chapter Three provides a good

mathematical foundation for construction of a model from the NASA data, and it extends the

trends observed in their discrete suit data to a continuous function throughout the astronaut's

workspace. The NASA group has proposed detailed dynamic simulations of suited astronauts,

and the model created here proves the feasibility of that goal. Additionally, the EMU torque data

will undoubtedly be instrumental in developing future implementations of a space suit model

with greater precision.

Although computer representations of the EMU have been used for EVA design and

analysis [Price, 1994; Pardue, 1996], none of these studies have incorporated suit dynamical

effects. Previous work has focused primarily on the logistical aspects of EVA timelining and

choreography, using computer graphics techniques to ensure that an astronaut will be able to

complete a task without exceeding the boundaries of the constraining reach envelope. Therefore,

most of the research in the literature characterizes the workspace of an astronaut in terms of areas

that are "possible to reach" and "not possible to reach;" this thesis enables an augmented form

of analysis in which the workspace is a continuous volume of joint locations with varying

penalties of energy expenditure. The previously geometric analyses will now be able to

incorporate a dynamic suit model and optimize tasks for both energy and geometric

considerations.

The empirical, data-driven space suit model chosen for this thesis represents a different

approach than the model of space suit glove construction developed by Main et al. (1995).

Focusing on the physical basis for fabric modeling in a bending pressurized cylinder (see

sections 2.2.3 and 2.3), their simulation work has centered around glove design and fabric

selection. Empirical models are inherently faster, performing relatively few computations to

derive suit forces, but lack the theoretical foundation of Main's physically-based models. The



scale of the multibody dynamics simulations presented herein requires a relatively simple

(computationally speaking) space suit model, especially in light of the goal to develop real-time

interactive simulations for training purposes. If the Main model is shown to effectively reproduce

space suit joint forces and provide fast enough algorithms, however, it could be a useful and

more elegant replacement for the empirical model. The integrated approach presented in this

thesis for physiological, space suit, and environmental interaction modeling is a macroscopic

framework on which individual models such as the Main pressurized fabric model can be placed

in the future.

Tests performed by Pantaleano and Lacey (1992) involving loads imparted to the suit as a

result of handling massive objects during EVA show that maximum axial restraint loads are a

key design parameter for space suits; these studies would benefit dynamic simulation, possibly

incorporating the fabric modeling techniques discussed in Chapter Two or those of Main et al.,

above. Ideally, fabric properties of the suit could be combined with the EMU model presented in

this thesis to create a complete human/suit model that could answer both human factors and

space suit construction questions. An integrated model would also allow space suit joint

designers to benefit from computer-based rapid prototyping, facilitating quantitative analysis

during the conceptual phase of design and helping to mitigate the expensive process of prototype

construction and evaluation.

It should be emphasized that the results presented here are highly sensitive to the specific

torques imposed by the hysteresis model for suit dynamics. As noted in Chapter Three, the

hysteresis model is only as accurate as the data from which it is constructed; currently only data

for the major hysteresis curves, and not a complete family of first-order transition curves, has

been obtained. Suit torque data from the central ranges of motion, and from actual EVA

operations, would be invaluable in constructing a more accurate joint model.

6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Although these simulated EVA missions would most likely be successful regardless of

the specific way that they were performed, they highlight important human factors issues that

should be taken into account during EVA design. For example, the postures suggested by the

Spartan payload simulations indicate that ankle support may be a necessary part of future EVA



foot restraints; alternative boot designs could be incorporated into the model for rapid-prototype

analysis. The Spartan simulation also aids in task definition, restricting the available workspace

by identifying regions of increased work and decreased task efficiency. These simulations can be

used to develop a more comfortable working environment for the EVA astronaut, and help to

identify specific EVA tasks that might lead to unanticipated problems.

The EMU suit model was successfully implemented, and served to enhance the realism

and validity of the EVA task simulations. The space suit model contributes new ideas about

energy conservation and expenditure in the context of optimal trajectory generation for astronaut

motions; future forward-dynamic simulations could include optimal control methods to more

accurately describe the ways in which humans might use their instinctive knowledge of

"restrictive" or "highly mobile" areas of the suit workspace to choose energy-optimal joint

trajectories. A forward dynamics simulation approach would also remove the strict task

definitions imposed by the current method of task prescription and subsequent inverse dynamics

computation.

Experimental verification of results from the EMU space suit model is a clear priority for

any research involving pure simulation, and it is possibly even more important when the model

is based on a sparse data set like the EMU space suit data. Unfortunately, direct measurement of

joint torques during Shuttle EVA missions is a difficult proposition; there are several good

alternatives, however. If the speed of movement is maintained at a suitably low level, data from

neutral buoyancy facilities could be used in lieu of actual on-orbit data to confirm simulation

results. Torque or joint angle measurements would be a great deal more feasible in water tanks

on Earth than in space, and would be an excellent first step towards correlating simulation results

with EMU data.

Similarly, the EMU model would benefit greatly from detailed dynamometer sessions

with a pressurized space suit. In particular, first order transition curves at the joints (where each

joint is flexed from full extension to a certain maximum flexion and then back again, extending

the maximum flexion angle with each subsequent trial) throughout the ranges of motion would

be extremely helpful in piecing together an accurate hysteresis model. Additionally, dynamic

parameters like EMU suit joint damping are currently poorly known; although these values



would extend the model's capability, it is unlikely that astronauts would move with great enough

velocities to encounter a velocity-dependent torque in the suit.

Future EVA models should also incorporate greater physiological realism, and address

issues related to the intelligent control of astronaut movement. Musculoskeletal models allow the

transformation of joint torque values into muscle activation energies, which in turn will provide

data relating to the work performed by specific muscle groups. Muscle models also help to

quantify isometric work performed during the course of a simulation. Additionally,

implementation of an astronaut movement control model will allow for forward dynamics

solutions, driven by goal-oriented EVA tasks rather than rigidly defined limb motions.

Although these simulations produced an interesting result, the major contribution of this

thesis is more than the task-specific conclusions drawn in the Discussion, above. These

simulations only represent a sample of the quantitative analysis possible with the specification of

a dynamic EMU space suit model. It is a tool that can be used to explore a wide range of issues

in EVA preparation, planning, and training; future experimental and analytical work can both

improve this model and benefit from its use.

The objectives of this thesis were to develop a dynamic model for the EMU space suit,

and to illustrate key properties of the model through several simulations. To achieve this, an

original dynamic model of the EMU space suit was developed, based on data obtained from

NASA and Hamilton Standard; three key characteristics of space suit dynamics were used to

create the EMU model: mass, inertia, and suit-imposed torques. Mass and inertial properties

were included through the SD/FAST software package for multibody dynamics, and an

empirically-based, data-driven model for the torques imposed by space suit joints was developed

and implemented numerically based on observed suit parameters.

The model for imposed suit torque focused on existing suit data, which presumably

represents some combination of the effects that various suit imperfections, such as volume

variability and fabric stiffness, have on suit performance. An empirical model based on this data

was chosen rather than a ground-up, physically based model for reasons of computational

efficiency, and for the expectation that experimental data would better represent the true

characteristics of space suit joints until fabric dynamics are better understood. EMU joint torque



measurements reveal a significant degree of hysteresis, and were therefore modeled using a

modified Preisach model for hysteresis.

The Preisach model provides an effective framework for representing hysteretic systems

mathematically, and it was shown that the model can represent suit torque as a function of joint

angle, even though the theory traditionally produces joint angle as a function of joint torque. To

convert the basic space suit data to a more comprehensive database for application throughout the

workspace of each joint, families of hysteresis curves were constructed based on Preisach model

parameters. The hysteresis model was then implemented numerically, tested at each joint, and

specific results were presented for a test simulation at the elbow joint. The simulated elbow joint

was flexed and extended in sequence while recording the torque output provided by the model;

results reproduce the observed hysteretic properties of the EMU elbow joint.

A human musculoskeletal model was constructed to provide the underlying framework

and reference point for work and energy measurements, utilizing basic biomechanical modeling

techniques. The skeletal system of the human body was represented as a thirteen-segment model

connected by pin and ball joints, and muscles were represented as simple passive elements with

stiffness and damping characteristics. Several active-state muscle models were explored for

possible future implementation, but eliminated from the current study due to the increase in

complexity required by these models. The space suit and human models were subsequently

combined, and used in two simulations as a demonstration of the overall EMU model's

capability; each simulation was repeated under both suited and unsuited conditions to observe the

effect of space suit dynamics on task performance.

The first simulated EVA task described an astronaut pulling the Spartan astrophysics

payload forward while maintaining a rigid lower body posture, and illustrated what would

happen if a suited astronaut attempted to perform a task exactly as he would in a shirtsleeve

environment. During greater and greater flexion of the elbow and shoulder joints, EMU suit

forces began to increase appreciably and affect the astronaut's workload. Severe penalties in

energy expenditure (2740% at the shoulder, 210% at the elbow) were observed for excursions

into unfavorable joint positions; under normal circumstances, an EVA astronaut would never

venture into these energy-intensive regions of the workspace, but the simulation is a good

example of how strength constraints are placed on the astronaut. The next simulation built on



this result, and revealed an interesting effect that space suit constraints have on EVA

performance.

The second demonstration task was identical to the first, with the exception that the

astronaut's lower body was now allowed to move, and "choose" a posture from which to

perform the task using a compliant lower body musculoskeletal model. Basic muscle stiffnesses

were included to provide simple postural control in the lower body, and the simulation was again

performed in both suited and unsuited conditions. There was a dramatic difference between the

posture that the astronaut assumed while performing the task in suited and unsuited conditions:

the shoulder and elbow joints flexed a great deal more (40 and 800, respectively) in the unsuited

condition, while the ankle joint flexed more (120) in the suited condition. The unsuited astronaut

primarily used arm movements to complete the task, while the suited astronaut manipulated the

payload with extended arms to assure that all EMU joints remained in optimal low-energy

positions; this resulted in a significant difference in work distribution between the suited and

unsuited conditions.

The suited astronaut, with extended arms, performed most of the work with movement

of the ankle joint (85%), while the unsuited astronaut used more upper-body strength (60% at the

elbow, 22% at the ankle). Taking advantage of the long lever arm from shoulder to foot restraint,

the suited astronaut used his ankles to move the payload through the same distance as the

unsuited subject while doing minimal work; the ankle joint was able to achieve the same linear

movement at the payload without a large angular displacement at the joint. Total work performed

at the shoulder and elbow joints for the suited condition also decreased dramatically (77%) from

the suited, rigid lower body simulation that forced the astronaut into unfavorable postures. These

results illustrate the important role that the space suit plays in defining astronaut posture during

EVA, and the implications that specific postural configurations have in determining work

distribution and energy expenditure.

In summary, this thesis has developed and implemented a dynamic model of the Space

Shuttle EMU, and applied the model to several key simulations of EVA tasks. The model

addresses a key deficit of current computerized space suit models, adding the dynamic effects of

suit inertia and torque to geometrically-based models. The suit fills an important gap in the

existing multibody dynamics simulation system for EVA task analysis, and helps to define the



restricted workspace that confines astronauts in space. Future work in EVA computer

simulation based on this suit model will enhance astronaut training, efficiency, and comfort, and

complement existing physical simulators to ensure a new millennium of humans working

successfully in space.
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Appendix A: Transition Curve and Mesh Construction Code

This appendix contains the MATLAB code used to construct the family of transition curves
required for the hysteresis model, and process that data into a mesh suitable for using in the
simulations. The file shown processes elbow data, but can be used equivalently at any joint.

true = 1;
false = 0;
data = false;

% The order for the polynomial fit to hysteresis data

order = 9;

clg;
hold on;
clear curveset;

% If we want to plot the data first
if data == true
plot(elbow(:,l),elbow(:,2), 'g');
plot(elbow(:,1),elbow(:,3), 'r');

end

% Do an nth-order polynomial fit to the major ascending and descending
curves
[elbowfit2,A] = polyfit(elbow(:,l),elbow(:,2),order);
[elbowfit3,A] = polyfit(elbow(:,l),elbow(:,3),order);

% Evaluate these fits at 0.5 degree intervals and plot.
theta = 0:.5:115;
ascending = polyval(elbowfit2,theta);
descending = polyval(elbowfit3,theta);
plot(theta,ascending, 'r--');
plot(theta,descending,'g--');

100



% Find a family of curves, given the number of curves,

% "bunching" and "risetime."
% Bunching represents how tightly packed the curves are to the lower,

% descending branch. Risetime dictates how quickly the first order

% transition curves "rise" to hit the major, ascending curve.

curves = 8;

bunching = 2;
risetime = 1.25;

% Set merge point, where all curves meet at the neg. sat. point

for cnum = O:curves-1
curveset(l,(2*cnum+l):(2*cnum+2)) = [0 polyval(elbowfit3,0)];

end

start = 0;

finish = 115;

% To terminate the family
breakout = (finish-start)/(curves+l);
breakcurve = curves;
breakpoint = 0;
breaking = 0;

% Construct curves, enforcing the derivative rule (eqn. 3.11)

for i = 1:(finish-start)

slope_min = polyval(elbowfit3,start+i)-polyval(elbowfit3,start+i-l);
slope_max = polyval(elbowfit2,start+i)-polyval(elbowfit2,start+i-l);
slopeinc = (slope_max-slope_min)/(curves+l)/bunching;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To break curves off

if fix(rem(i,breakout)) == 0
breaking = 1;

end

if breaking == 1

slope(breakcurve) = risetime*slope(breakcurve);
breakpoint = curveset(i,2*(breakcurve-l)+2)+slope(breakcurve);
curveset(i+l,(2*(breakcurve-l)+l):(2*(breakcurve-l)+2)) = [start+i

breakpoint];

% cut it off and find the proper intersection point if outside of major

loop
if breakpoint > polyval(elbowfit2,start+i)
mp = polyval(elbowfit2,start+i)-polyval(elbowfit2,start+i-l);
bp = polyval(elbowfit2,start+i)-mp*(start+i);
mb = breakpoint - curveset(i,2*(breakcurve-1l)+2);
bb = breakpoint - mb*(start+i);

newpoint = [-mp l;-mb 1]\([bp bb]');
curveset(i+l,(2*(breakcurve-l)+l):(2*(breakcurve-l)+2)) = newpoint' ;

breaking = 0;

breakcurve = breakcurve -1
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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if breakcurve == 0
break
end
if breaking == 0
for cnum = l:breakcurve
slope(cnum) = slope_min+slope_inc*cnum;
curveset(i+l,(2*(cnum-l)+l):(2*(cnum-l)+ 2 ))

[start+i curveset(i,2*(cnum-l)+2)+slope(cnum)];
end

else
for cnum = 1:(breakcurve-l)
slope(cnum) = slope_min+slopeinc*cnum;
curveset(i+l,(2*(cnum-l)+l):(2*(cnum-l)+ 2 )) =

[start+i curveset(i,2*(cnum-l)+2)+slope(cnum)];
end

end

end

% Create an array that holds each curve's last point

for cnum = l:curves-1
lastpoint(cnum) = 1;
while -(curveset(lastpoint(cnum) ,2*cnum+2) == 0)

lastpoint(cnum) = lastpoint(cnum) + 1;
end
lastpoint(cnum) = lastpoint(cnum) -1;

plot(curveset(l:lastpoint(cnum),2*cnum+l),curveset(l:lastpoint(cnum),2*cnum+
2), 'y');
end

plot(curveset(:,l),curveset(:,2), 'y');

%shift the lastpoints over 1 to make room for the first curve's lastpoint

lastpoint(3:curves+l) = lastpoint(l:curves-l);
[lastpoint(2),temp] = size(curveset);

% Add the major loop descending branch as the first curve,

[temp,elements] = size(theta);
for i = 1:(elements+l)/2;
theta(i) = theta(2*i-l);
ascending(i) = ascending(2*i-l);
descending(i) = descending(2*i-l);

end
theta = theta(l:i);
ascending = ascending(l:i);
descending = descending(l:i);
lastpoint(l) = i;

curve = zeros(lastpoint(l),curves*2+2);
curve(:,l) = theta';
curve(:,2) = descending';
curve(l:lastpoint(2),3:(2+curves*2)) = curveset(:,:);

curves = curves+l;
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% reduce the grid size to 10 x 10

for i = 1:curves
gridpoint(i) = curve(lastpoint(curves+l-i), 2*(curves+l-i)-l);

end

clear newgrid;
for curveindex = l:curves-i

newgrid(l, 2*curveindex-l) = curve(l, 2*curveindex-l);
newgrid(l, 2*curveindex) = curve(l, 2*curveindex);

for pointindex = 2:curves-curveindex+1
target = gridpoint(pointindex-1);

huntindex = 1;
while -( ((target > curve(huntindex,

curve(huntindex+l, 2*curveindex-l))))
huntindex = huntindex + 1;

end

2*curveindex-l1)) & (target <

fnew = (curve(huntindex+l, 2*curveindex) - curve(huntindex,

2*curveindex)) * (target - curve(huntindex, 2*curveindex-l)) /

(curve(huntindex+l, 2*curveindex-l) - curve(huntindex, 2*curveindex-l)) +

curve(huntindex, 2*curveindex);

newgrid(pointindex, 2*curveindex-l) = target;

newgrid(pointindex, 2*curveindex) = fnew;

end

% tack on the last point

newgrid(pointindex+l, 2*curveindex-l) = gridpoint(pointindex);
newgrid(pointindex+l, 2*curveindex) =

curve(lastpoint(curveindex),2*curveindex);

end

newgrid(l, 2*curves-l) = curve(l, 2*curves-l);
newgrid(l, 2*curves) = curve(l, 2*curves);
newgrid(2, 2*curves-l) = curve(lastpoint(curves), 2*curves-1);

newgrid(2, 2*curves) = curve(lastpoint(curves), 2*curves);

newgrid(l, 2*(curves+l)-l) = curve(l,l);
newgrid(l, 2*(curves+l)) = curve(l,2);

for i = l:curves
lastpoint(i) = curves+2-i;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Compute C's for interpolating f(alpha, beta) in all cells, by row

rows = curves;

% Open a file to record the mesh

fid = fopen('elbow2.mesh','w');

for row = l:rows

thetaindex = 2*row-l;
findex = 2*row;

alphamax(row) = newgrid(lastpoint(row), thetaindex);
if row == rows

alphamin(row) = theta(l);
else
alphamin(row) = newgrid(lastpoint(row+l), thetaindex+2);

end

fprintf(fid, '%f\t%f\t',alphamin(row),

betamin(row)
betamax(row)

alphamax(row));

= theta(1);
= alphamax(row);

% Cell = [betamin betamax cl c2 c3 c4]

clear cells;

if -(row == rows)

for cell = 1:(lastpoint(row+l)-1)

cells(cell, 1)
cells(cell,2)

= newgrid(cell, thetaindex);
= newgrid(cell+l, thetaindex);

bmin = cells(cell,l);
bmax = cells(cell,2);

fab(l, 1)
fab(2, 1)
fab(3, 1)
fab(4, 1)

= newgrid(cell,
= newgrid(cell+l,

= newgrid(cell,

= newgrid(cell+l,

M = [1 alphamax(row)
1 alphamax(row)
1 alphamin(row)
1 alphamin(row)

bmin
bmax
bmin
bmax

findex);
findex);
findex+2);
findex+2);

(alphamax(row))*bmin ;
(alphamax(row))*bmax ;
(alphamin(row))*bmin ;
(alphamin(row))*bmax];

% solve fab = Mc

c = inv(M)*fab;
cells(cell,3:6) = c';

end
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cell = cell + 1;

% Do the triangle

clear fab;
cells(cell,l) = newgrid(cell, thetaindex);
cells(cell,2) = newgrid(cell+l, thetaindex);
fab(l,l) = newgrid(cell, findex);
fab(2,1) = newgrid(cell+l, findex);
fab(3,1) = newgrid(cell, findex+2);

bmin = cells(cell,l);
bmax = cells(cell,2);

M = [1 alphamax(row) bmin ;
1 alphamax(row) bmax ;
1 alphamin(row) bmin ];

% solve fab = Mc
c = inv(M)*fab;
cells(cell,3:5) = c';

end

if (row == rows)

clear fab;
cells(l,l) = newgrid(l, thetaindex);
cells(l,2) = newgrid(2, thetaindex);
fab(1,l) = newgrid(l, findex);
fab(2,1) = newgrid(2, findex);
fab(3,1) = newgrid(l, findex+2);

bmin = cells(l,l);
bmax = cells(l,2);

M = [1 alphamax(row) bmin ;
1 alphamax(row) bmax ;
1 alphamin(row) bmin ];

% solve fab = Mc
c = inv(M)*fab;
cells(1,3:5) = c';
cells(l,6) = 0.0;

end
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% Print the mesh

[length,width] = size(cells);
fprintf(fid,'%d\n',length);
for index = l:length

fprintf(fid, '%f\tf\t%f\t%f\t%f\t%f\t%f\n',cells(index,),cells(index,2),cells(i
ndex,3),cells(index,4),cells(index,5),cells(index,

6 ));

end
fprintf(fid, '\n');

end

fclose(fid);
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Appendix B: Test Function for f(x, ) Mesh

This appendix contains a test function written in C, implementing a simple test procedure that
calculates f(a,b) at set intervals and writes the values to a file. The resulting mesh of values is
processed and visualized by the code in Appendix C.

#include <stdio.h>
#include <stdlib.h>

/* Each cell is in a row bounded by alphamin and alphamax.

The cells have bounds betamin and betamax, and four

coefficients for interpolating f(a,b) within.

A mesh is made up of rows, and each row is made up of cells;

rows and cells are allocated dynamically.
*/

typedef struct cell_struct {
double betamin;
double betamax;
double cl;
double c2;
double c3;
double c4;

} Cell;

typedef struct row_struct {
double alphamin;
double alphamax;
int numcells;
Cell *cells;

) Row;

typedef struct mesh_struct {
int numrows;
Row *rows;

} Mesh;
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void
main(void)
{
FILE *fid;
void loadmesh(char *filename, Mesh *mesh);

double calc_fab(Mesh mesh,double i,double j);

Mesh elbowmesh;
double i,j;
double start_b, end_b, starta, end_a;

loadmesh("elbow2.mesh", &elbowmesh);

start b = elbowmesh.rows[0].cells[0].betamin;
start_a = elbowmesh.rows[elbowmesh.numrows-l].alphamin;
end_a = elbowmesh.rows[0].alphamax;

fprintf(stderr,"%lf\n",end_b);

if((fid = fopen("elbowtest2.dat", "w")) == NULL) {

fprintf(stderr, "Can't open dat file to write\n");
exit(-1);

}

/* Go through and calculate f(a,b) at 5 degree intervals */

i = start_a+0.5;
while( i < end_a ) {

j = start_b+0.5;
while( j < i) {

fprintf(fid,"%lf %if %if\n", i, j, calc_fab(elbowmesh,i,j));

j+=5;

i+=5;

close(fid);

}

108



/* Interpolates f(a,b), given a mesh and coordinates (a,b)*/

double
calc_fab(Mesh mesh, double a, double b)

{
int i,j;
int triangle = 0;

for(i=0; mesh.rows[i].alphamin > a ; i++)

for(j=0; mesh.rows[i].cells[j].betamax < b; j++)

if( j == mesh.rows[il.numcells-l)
triangle = 1;

if( !triangle )
return(mesh.rows[i].cells[j].cl +

mesh.rows[i].cells[j].c2*a +

mesh.rows[i].cells[j].c3*b +

mesh.rows[i].cells[j].c4*a*b);
else

return(mesh.rows[i].cells[j].cl +
mesh.rows[i].cells[j].c2*a +

mesh.rows[i].cells[j].c3*b);

/* Loads a mesh into a large structure from a data file */

void
loadmesh(char *filename, Mesh *mesh)
{

FILE *fp;
int items_read, ncells, i;
double amin, amax;
Row *current_row;
Cell *current_cell;

if((fp = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Can't open mesh file\n");
exit(-1);

}

mesh->numrows = 0;
mesh->rows = NULL;

while((items_read = fscanf(fp,"%lf%lf%d",&amin,&amax,&ncells)) == 3) {

mesh->numrows++;
mesh->rows = realloc(mesh->rows, mesh->numrows*sizeof(Row));

current_row = &((mesh->rows)[mesh->numrows-l]);

current_row->alphamin = amin;

current_row->alphamax = amax;
current_row->numcells = ncells;
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currentrow->cells = malloc(ncells*sizeof(Cell));

for(i=O; i < ncells ; i++) {
fscanf(fp,"%lf%lf%lf%if%lf%lf"

&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((currentrow->cells)[i]
&((current_row->cells)[i]

}

.betamin),

.betamax),

.cl),

.c2),

.c3),

.c4));
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Appendix C: Visualization Processing for Mesh Test

This appendix contains the function "process_test," used to create a 3-dimensional surface from
the surface data produced in Appendix A. The surface can be quickly scanned for continuity and
accuracy.

function [] = process_test(data)

clear X ;
clear Y;
clear Z;
clear xindex;
clear ymax;
tolerance = 0.001;

xindex = 1;
ymax = 1;
found_aj = 0;

X(xindex) = data(l,l)
Y(ymax) = data(l,2) ;

[rows cols] = size(data);

for i = l:rows

if abs(data(i,l) - X(xindex)) > tolerance

xindex = xindex + 1 ;

X(xindex) = data(i,l)

end

for j = l:ymax

if abs(data(i,2) - Y(j)) < tolerance

found_a_j = 1;

break;

end

end

if found_a j == 0
ymax = ymax + 1

Y(ymax) = data(i,2)

j = j+1;
end

Z(j,xindex) = data(i,3);
foundaj = 0;

end

[rows cols] = size(Z);
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for i = l:rows
for j = l:cols
if abs(Z(i,j)) < 0.0001
Z(i,j) = NaN;

end
end
end

hold off
clg
surf (X,Y, Z)
view(20,30)
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Appendix D: Elbow Joint Test

This appendix contains code to test the elbow joint hysteresis model. An input datafile is read,
which contains a sequence of elbow joint positions and a velocity indication (the model needs to
know if the input is increasing or decreasing). The compose_force() function then creates the
hysteresis torque for the elbow joint, based on a stored history of extrema (the M[] and m[]
arrays in mesh_struct). Output is written to a file. Note the difference between the mesh_struct
here that must maintain a full input history, and the simplified struct in Appendix B.

#include <stdio.h>
#include <stdlib.h>

#define UP 0
#define DOWN 1

typedef struct cell_struct {
double betamin;
double betamax;
double cl;
double c2;
double c3;
double c4;

} Cell;

typedef struct row_struct {
double alphamin;
double alphamax;
int numcells;
Cell *cells;

} Row;

typedef struct mesh_struct {
int last_direction;
double last_angle;
int num_trapezoids;
double M[100];
double m[100];
double max_saturation;
int numrows;
Row *rows;

} Mesh;
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void
main (void)

void loadmesh(char *filename, Mesh *mesh);

void initialize_mesh(Mesh *mesh, double angle);

double calc_fab(Mesh mesh,double i,double j);

double compose_force(Mesh *mesh, double theta, int direction);

Mesh elbowmesh;
FILE *fid, *outfid;
int i;
double input_data[60];
int input_dir[60];

loadmesh("elbow3.mesh", &elbowmesh);

initialize mesh(&elbowmesh, 35.0);

if((fid = fopen("testinput.txt", "r"))
fprintf(stderr, "Can't open dat file

exit(-1);

for (i=0;i<60;i++)
fscanf(fid, "%lf",&(input_data[i]));
fscanf(fid, "%d",&(input_dir[i]));

}
close(fid);

if((outfid = fopen("testout.dat",
fprintf(stderr, "Can't open dat

exit(-1);

== NULL) {
to read\n");

"w")) == NULL) {
file to write\n");

for (i=0;i<60;i++) {
fprintf(outfid, "%lf %if\n",

inputdata[i],
compose_force(&elbowmesh, inputdata[i], input_dir[i]));

}
close(outfid);
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void
initialize_mesh(Mesh *mesh, double angle)

{
int i;

mesh->num_trapezoids = 1;

mesh->last direction = UP;
mesh->last_angle = angle;
for (i=0; i<100 ; i++)
mesh->M[i] = 0.0;
mesh->m[i] = 0.0;

}

/* Compose_force is the central function for the hysteresis model.

It maintains a history of input extrema (the interface I(t))

and implements the wiping-out property when previous extrema

are surpassed; it also calculates and returns the net

hysteresis function value f(t) based on equation (3.10).

Each mesh keeps its own interface record, so the function

remains generic for all meshes.

*/

double
compose_force(Mesh *mesh, double theta, int direction)

{
double calc_fab(Mesh mesh, double a, double b);

double sum = 0.0;
int k;

/* fprintf(stderr,"%d " ,mesh->num_trapezoids);

fprintf(stderr,"%lf %if %if %if %if %If " ,mesh->M[0],mesh->m[0],mesh-

>M[1],
mesh->m[l],mesh->M[2], mesh->m[2]);
*/

if (direction == UP) {

/* If we're going up, check to see if we just changed direction */
if (mesh->last_direction == DOWN) {
mesh->m[mesh->num_trapezoids] = mesh->last_angle;
mesh->num_trapezoids += 1;

mesh->lastdirection = UP;
}
mesh->last_angle = theta;

/* Check for wiping-out property */
if (mesh->num_trapezoids > 1) {

if (theta > mesh->M[mesh->num_trapezoids-l1) {

mesh->M[mesh->num_trapezoids-l] = 0;

mesh->m[mesh->num_trapezoids-l] = 0;

mesh->num_trapezoids -= 1;
}

}

115



/* Compute the sum */
for (k=1l; k <= mesh->num_trapezoids-1; k++)

sum += calcfab(*mesh, mesh->M[k], mesh->m[k])
- calc_fab(*mesh, mesh->M[k], mesh->m[k-1]);

return (- mesh->max_saturation
+ sum

+ calcfab(*mesh, theta, theta)

- calc_fab(*mesh, theta, mesh->m[mesh->num_trapezoids-11));

else if (direction == DOWN) {

/* If we're going down, check to see if we just changed direction */

if (mesh->last_direction == UP) {
mesh->M[mesh->num_trapezoids] = mesh->last_angle;
mesh->lastdirection = DOWN;

}
mesh->last_angle = theta;

/* Check for wiping-out property */
if (mesh->num_trapezoids > 1) {

if (theta < mesh->m[mesh->num_trapezoids-1]) {

mesh->M[mesh->num_trapezoids] = 0;

mesh->m[mesh->num_trapezoids-l] = 0;

mesh->num_trapezoids -= 1;

}
}
/* Compute the sum */
for (k=l; k <= mesh->num_trapezoids-1; k++)

sum += calc_fab(*mesh, mesh->M[k],
mesh->m[k]) - calc_fab(*mesh, mesh->M[k], mesh->m[k-1]);

return (- mesh->max_saturation

+ sum

+ calc_fab(*mesh, mesh->M[mesh->num_trapezoids], theta)

- calc_fab(*mesh,
mesh->M[mesh->num_trapezoids],
mesh->m[mesh->num_trapezoids-1]));

double
calc fab(Mesh mesh, double a, double b)
{

int i,j;
int triangle = 0;

for(i=O; mesh.rows[i].alphamin > a ; i++)

for(j=0; mesh.rows[i].cells[j].betamax < b ; j++)

if( j == mesh.rows[i].numcells-l)

triangle = 1;
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if( !triangle )
return(mesh.rows[i].cells[j].cl

mesh.rows[i].cells[j].c2*a
mesh.rows[i].cells[j].c3*b
mesh.rows[i] .cells[j].c4*a*b)

else
return(mesh.rows[i].cells[j].cl

mesh.rows[il .cells[j].c2*a
mesh.rows[i] .cells[j].c3*b);

void
loadmesh(char *filename, Mesh *mesh)

{

FILE *fp;
int items_read, ncells,
double amin, amax;
Row *current_row;
Cell *current cell;

if((fp = fopen(filename,
fprintf(stderr, "Can't
exit(-1);

}

mesh->numrows = 0;

mesh->rows = NULL;

"r")) == NULL) {

open mesh file\n");

fscanf(fp, "%lf",&(mesh->max_saturation));
while((items_read = fscanf(fp,"%lf%lf%d",&amin,&amax,&ncells)) == 3)

mesh->numrows++;
mesh->rows = realloc(mesh->rows, mesh->numrows*sizeof(Row));

currentrow = &((mesh->rows)[mesh->numrows-1]);

current_row->alphamin = amin;
current_row->alphamax = amax;
current_row->numcells = ncells;

currentrow->cells = malloc(ncells*sizeof(Cell));

for(i=0; i < ncells ; i++) {
fscanf(fp,"%lf%lf%lf%if%lf%lf"

&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[il
&((current_row->cells)[i]

.betamin),

.betamax),

.cl),

.c2),

.c3),

.c4));
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Appendix E: Simulation Code

This appendix containts the C code that runs the SD/FAST simulation (compliant lower body).
The other simulation cases are simplified versions of this code; unsuited conditions remove the
suit constraints and the rigid body simulation prescribes the lower body to be still. For complete
code of the other simulations, contact the EVA Dynamics Research Section of the Man-Vehicle
Laboratory , MIT Rm. 37-219.

/*****************************************************************

With *extreme* gratitude to the programming efforts of:

Original author of simulation framework: Grant Schaffner, May 1995

Modified by Grant Schaffner Nov. 1996.

Modified for EMU model and new task: David Rahn, 1996-1997

This simulation is modeled on the Spartan 204 mass manipulation

EVA performed on STS-63.
**#include <s**************************dio.**********h>**

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <jointcontrol.h>

#define UP 0
#define DOWN 1

/* Structure definitions for hysteresis model */
typedef struct cell_struct {

double betamin;
double betamax;
double cl;
double c2;
double c3;
double c4;

} Cell;

typedef struct row_struct {
double alphamin;
double alphamax;
int numcells;
Cell *cells;

} Row;

typedef struct mesh_struct {
int last_direction;
int num_trapezoids;
double last_angle;
double M[100];
double m[100];
double max_saturation;
int numrows;
Row *rows;

} Mesh;
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/* Global meshes for hysteresis */

Mesh elbowmesh, shouldermesh, kneemesh;

/* Bodies (Frames) */
#define GND -1
#define LLEGR 0
#define ULEGR 1
#define LLEGL 2
#define ULEGL 3
#define PELVR 4
#define PELVL 5

#define TRUNK 6
#define HEAD 7
#define UARMR 8
#define FARMR 9
#define HANDR 10
#define UARML 11
#define FARML 12
#define HANDL 13
#define HNDRG 14
#define HNDLG 15
#define PLSS 16
#define SPARTAN 17

/* Loop Joint Body Numbers */
#define LPELVR 18
#define LHANDR 19
#define LHANDL 20

/* State Variables */

#define NQ 54
#define NU 43
#define NEQ (NQ+NU)
#define NJNT 21

/* Constraints */
#define NC 61
#define NLC 18

/* Integration Parameters */
#define DT .05
#define TOL le-7
#define CTOL le-5

/* Simulation Parameters */
#define MAX_VELOCITY 0.025
#define MOTIONTIME 10.0
#define NSTEP 200

/* Simple Linear fit for suit ankle */

#define ANKLE_A (-.068)

/* Declare external variable types */
int step, motionphase;
double xstart, ystart, pi, dtr, theta;

double ystore[NSTEP][NEQ], accel[NSTEP][NQ];

double time,state[NEQ];
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/* Joint kinematics files */

char rank[30]="spart.rank",rkne[30]="spart.rkne",rhip[30]="spart.rhip",\
lank[30]="spart.lank",lkne[30]="spart.lkne",lhip[30]="spart.lhip",\
lumb[30]="spart.lumb",rshl[30]="spart.rshl",relb[30]="spart.relb",\
rwrs[30]="spart.rwrs",lshl[30]="spart.lshl",lelb[30]="spart.lelb",\
lwrs[30]="spart.lwrs";

FILE *rank_ptr,*rkne_ptr,*rhip_ptr,*lank_ptr, *kne_ptr, *lhip_ptr, *lumb_ptr, \
*rshl_ptr, *relb_ptr, *rwrs_ptr, *lshl_ptr,*lelb_ptr,*lwrs_ptr;

/* Joint torque files */
char
rankt[30]="spart.rankt",rknet[30]="spart.rknet",rhipt[30]="spart.rhipt",\

lankt[30]="spart.lankt",lknet[30]="spart.lknet",lhipt[30]="spart.lhipt",\

lumbt[30]="spart.lumbt",rshlt[30]="spart.rshlt",relbt[30]="spart.relbt",\

rwrst[30]="spart.rwrst" , ishlt[30]="spart.lshlt" , lelbt[30]="spart.lelbt" ,\

lwrst[30]="spart.lwrst";
FILE
*rankt_ptr, *rknet_ptr, *rhipt_ptr, *lankt_ptr, *lknet_ptr, *lhipt_ptr, *lumbt_ptr

*rshlt_ptr, *relbt_ptr, *rwrst_ptr, *shlt_ptr, *lelbt_ptr, *lwrst_ptr;

char *body[12] =
("llegl","ulegl","llegr","ulegr","pelvis","trunk","uarml","farml",

"handl","uarmr", "farmr","handr"};

void printvals(int nval, double array[]);

void
main (void)
{
void loadmesh(char *filename, Mesh *mesh);

void initialize_mesh(Mesh *mesh, double angle);

double compose_force(Mesh *mesh, double theta, int direction);

extern double xstart, ystart;
extern double pi, dtr, theta;

int i, lock[NU], fcnt, err, counter;
int j, flag;
double t, y[NEQ], yinit[NEQ], dy[NEQ], qd[NQ], ud[NU];

double com[3], pos[3], vel[3];
double perrs[NC], verrs[NC];
double ql,q2,q3,q4,q5,q6;

loadmesh("elbow2.mesh", &elbowmesh);

initializemesh(&elbowmesh, 10.0);

loadmesh("shoulder2.mesh", &shouldermesh);

initialize_mesh(&shouldermesh, 0.0);

loadmesh("knee2.mesh", &kneemesh);

initializemesh(&kneemesh, 47.0);
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pi = acos(-l.0);
dtr = pi/180.0;

openfiles(); /* For writing data */
sdinit(); /* SD/FAST init. */

/* Initial Configuration */

/* Find xstart, ystart */

ql = 90.0*dtr; /* ankle */ /* angle wrt RHS horizontal */
q2 = 47.0*dtr; /* knee */
q3 = -52.0*dtr; /* hip
q4 = 270.0*dtr; /* shoulder */
q5 = 5.0*dtr; /* elbow */
q6 = 0.0*dtr; /* wrist */

xstart = 0.43*cos(ql)+0.43*cos(ql+q2)+0.575*cos(ql+q2+q
3 )

+0.300*cos(ql+q2+q3+q4)+0.28*cos(ql+q2+q3+q4+q5)
+0.05515*cos(ql+q2+q3+q4+q5+q6);

ystart = 0.43*sin(ql)+0.43*sin(ql+q2)+0.575*sin(ql+q2+q3)
+0.300*sin(ql+q2+q3+q4)+0.28*sin(ql+q2+q3+q4+q5)
+0.05515*sin(ql+q2+q3+q4+q5+q6)-0.79985;

initconds(t,y); /* For astronaut */

preshandson(); /* Prescribed motion for assembly phase */

motionphase = 1; /* Assembly/inverse kinematics */

lockjoints(lock); /* locks all joints except arms */
printf("done.\n"); /* end of initial conditions */

t = 0.0;
step = 0;

/* Do position and velocity analysis */

printf("Assembly and Velocity Analysis ...... ");

/* This function returns compatible position values in the state vector. */

/* Note: sdassemble calls sdumotion to obtain the prescribed motions. */

sdassemble(t, y, lock, CTOL, 5000, &fcnt, &err);
if (err != 0){

printf("\a\n Assembly failed! Error no.: %d\n",err);
exit(-1);

}

/* This function returns compatible velocity values in the state vector. */

/* Note: sdinitvel calls sdumotion to obtain the prescribed motions. */

for (i = 0 ; i < NU ; i++) lock[i] = 0;

sdinitvel(t, y, lock, CTOL, 5000, &fcnt, &err);

if (err != 0) printf("\a\n Velocity analysis failed! Error no.:

%d\n",err);

#ifdef DEBUG
printf("\nPosition errors for the NC constraints (ctol=%f):\n",CTOL);

printvals(NC,perrs);
printf("\nVelocity errors for the NC constraints (ctol=%f):\n",CTOL);
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printvals(NC,verrs);
#endif

printf("done.\n"); /* end of assembly & velocity analysis */

/* Kinematic Analysis. Loop calls sdmotion during each time step and stores

the state vector in an array (neq x nsteps) until the desired duration

has been achieved. sdmotion integrates the state vector over dt. */

printf("Kinematics Analysis ................. ");

for (i = 0 ; i < NEQ ;
for (i = 0 ; i < NEQ ;

i++) ystore[0] [i] = y[i];
i++) dy[i] = 0.0;

flag = 0;

/* Kinematics loop */

for(step = 1 ; step < NSTEP ; step++)

for (i = 0 ;
for (i = 0

i < NEQ ; i++) ystore[step] [i] = y[i];

i < NU ; i++) accel[step][i] = dy[NQ+i];

printkinem(t,y,dy);

/* Perform motion integration. */

sdmotion(&t,y,dy,DT,CTOL,TOL,&flag,&err);
if(err != 0){
printf("\a\n Problem with integrator! Error no.: %d\n",err);

exit();
}

printf("done.\n"); /* end of kinematics analysis */

/* Inverse Dynamics Analysis */

printf("Inverse Dynamics .................... ");

/* Calculation of joint torques from prescribed kinematics. */

t=0.0;

/* Turn prescribed motion ON for internal body joints. */

presbodyon();
motionphase = 2; /* indicates inverse dynamics phase for sdumotion */

for(step = 0 ; step < NSTEP ; step++){

for (i = 0 ; i < NEQ ; i++) y[i] = ystore[step][i];

for(i = 0 ; i < NQ ;
for(i = 0 ; i < NU ;

i++) q[i]=y[i];
i++) u[i]=y[NQ+i];
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sdstate(t,&y[] ,&y[NQ]);

sduforce(t,q,u);
sdumotion(t,q,u);

sdderiv(dy,&dy[NQ]);

/* Obtain joint torque values and print to data files */

torqvals(t);

t=t+DT;

}
fprintf(stderr,"done.\n\n\a\a\a"); /* end of inverse dynamics */

/*--------------------------------------------------------------------------

/* Functions

*/

/* Opens all the joint kinematics and torque data files.
(G. Schaffner)

*/
openfiles()

/* Joint kinematics data files
rank_ptr = fopen(rank,"w");
if(rank_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
rkne_ptr = fopen(rkne,"w");
if(rkneptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
rhip_ptr = fopen(rhip,"w");
if(rhip_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
lank_ptr = fopen(lank,"w");
if(lank_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
ikne_ptr = fopen(lkne,"w");
if(lkne_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
lhipptr = fopen(lhip,"w");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");
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if(lhipptr == NULL) {
printf("Oops. Unable to open
exit(-1);

lumb_ptr = fopen(lumb,"w");
if(lumb_ptr == NULL) {

printf("Oops. Unable to open file.
exit(-1);

}
rshl_ptr = fopen(rshl,"w");
if(rshl_ptr == NULL) {

printf("Oops. Unable to open file.

exit(-1);

relb_ptr = fopen(relb,"w");
if(relbptr == NULL) {
printf("Oops. Unable to open

exit(-l);

}
rwrs_ptr = fopen(rwrs,"w");
if(rwrs_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
ishl_ptr = fopen(lshl,"w");
if(lshl_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
lelb_ptr = fopen(lelb,"w");
if(lelb_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
lwrs_ptr = fopen(lwrs,"w");
if(lwrs_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}

/* Joint torque data files */

rankt_ptr = fopen(rankt,"w");
if(rankt_ptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
rknet_ptr = fopen(rknet,"w");
if(rknet_ptr == NULL) {

printf("Oops. Unable to open

exit(-1);
}
rhiptptr = fopen(rhipt,"w");
if(rhipt_ptr == NULL) {

printf("Oops. Unable to open
exit(-l);

}
lanktptr = fopen(lankt,"w");

file. Exiting.. .\n");

Exiting.. \n");

Exiting.. \n");

Exiting... \n");file.

file. Exiting...\n");

file. Exiting...\n");

file. Exiting... \n");

file. Exiting...\n");

file.

file.

file.

Exiting.. .\n");

Exiting.. .\n");

Exiting...\n");
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if(lanktptr == NULL) {
printf("Oops. Unable to open
exit(-1);

}
iknet_ptr = fopen(lknet,"w");
if(lknet_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
lhipt_ptr = fopen(lhipt,"w");
if(lhipt_ptr == NULL) {

printf("Oops. Unable to open

exit(-1);
}
lumbt_ptr = fopen(lumbt, "w");
if(lumbt_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
rshlt_ptr = fopen(rshlt,"w");
if(rshlt_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
relbt_ptr = fopen(relbt,"w");
if(relbtptr == NULL) {

printf("Oops. Unable to open
exit(-i);

}
rwrst_ptr = fopen(rwrst,"w");
if(rwrst_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
ishlt_ptr = fopen(lshlt,"w");
if(lshlt_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

lelbt_ptr = fopen(lelbt,"w");
if(lelbt_ptr == NULL) {

printf("Oops. Unable to open
exit(-1);

}
lwrst_ptr = fopen(lwrst,"w");
if(lwrst_ptr == NULL) {

printf("Oops. Unable to open
exit(-i);

file. Exiting...\n");

file.

file.

Exiting .. \n");

Exiting.. \n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting...\n");

file. Exiting..

/*************************************************
Print the first line (headers) of each output data file.

(G. Schaffner)
printhd*******rs***********************************************rs

printhdrs()
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/* Kinematics headers */

fprintf(rank_ptr,"Time\t\tRankRolP\tRankYawP\tRankPchP\tRankRolV\tRankYawV\t

RankPchV\tRankRolA\tRankYawA\tRankPchA\n");

fprintf(rkne_ptr,"Time\t\tRknePchP\tRknePchV\tRknePchA\n");

fprintf(rhip_ptr,"Time\t\tRhipRolP\tRhipYawP\tRhipPchP\tRhipRolV\tRhipYawV\t

RhipPchV\tRhipRolA\tRhipYawA\tRhipPchA\n");

fprintf(lank_ptr,"Time\t\tLankRolP\tLankYawP\tLankPchP\tLankRolV\tLankYawV\t

LankPchV\tLankRolA\tLankYawA\tLankPchA\n");

fprintf(lkne_ptr,"Time\t\tLknePchP\tLknePchV\tLknePchA\n");

fprintf(lhip_ptr,"Time\t\tLhipRolP\tLhipYawP\tLhipPchP\tLhipRolV\tLhipYawV\t

LhipPchV\tLhipRolA\tLhipYawA\tLhipPchA\n");

fprintf(lumb_ptr,"Time\t\tlumbRolP\tlumbYawP\tlumbPchP\tlumbRolV\tlumbYawV\t

lumbPchV\tlumbRolA\tlumbYawA\tlumbPchA\n");

fprintf(rshl_ptr,"Time\t\tRshlRolP\tRshlYawP\tRshlPchP\tRshlRolV\
RshlPchV\tRshlRolA\tRshlYawA\tRshlPchA\n");

fprintf(relb_ptr,"Time\t\tRelbPchP\tRelbPchV\tRelbPchA\n");

fprintf(rwrs_ptr,"Time\t\tRwrsRolP\tRwrsYawP\tRwrsPchP\tRwrsRolV\
RwrsPchV\tRwrsRolA\tRwrsYawA\tRwrsPchA\n");

fprintf(lshl_ptr,"Time\t\tLshlRolP\tLshlYawP\tLshlPchP\tLshlRolV\
LshlPchV\tLshlRolA\tLshlYawA\tLshlPchA\n");

fprintf(lelb_ptr,"Time\t \tLelbPch V\tLelb PchA\n");

fprintf(lwrs_ptr,"Time\t\tLwrsRolP\tLwrsYawP\tLwrsPchP\tLwrsRolV\
LwrsPchV\tLwrsRolA\tLwrsYawA\tLwrsPchA\n");

tRshlYawV\t

tRwrsYawV\t

tLshlYawV\t

tLwrsYawV\t

/* Torque headers */

fprintf(rankt_ptr,"Time\t\tRankRolT\tRankYawT\tRankPchT\n");
fprintf(rknet_ptr,"Time\t\tRknePchT\n");
fprintf(rhiptptr,"Time\t\tRhipRolT\tRhipYawT\tRhipPchT\n");
fprintf(lankt_ptr,"Time\t\tLankRolT\tLankYawT\tLankPchT\n");
fprintf(lknet_ptr,"Time\t\tLknePchT\n");
fprintf(lhipt_ptr,"Time\t\tLhipRolT\tLhipYawT\tLhipPchT\n");
fprintf(lumbt_ptr,"Time\t\tlumbRolT\tlumbYawT\tlumbPchT\n");
fprintf(rshlt_ptr,"Time\t\tRshlRolT\tRshlYawT\tRshlPchT\n");
fprintf(relbtptr,"Time\t\tRelbPchT\n");
fprintf(rwrst_ptr,"Time\t\tRwrsRolT\tRwrsYawT\tRwrsPchT\n");
fprintf(lshlt_ptr,"Time\t\tLshlRolT\tLshlYawT\tLshlPchT\n");
fprintf(lelbtptr,"Time\t\tLelbPchT\n");
fprintf(lwrstptr,"Time\t\tLwrsRolT\tLwrsYawT\tLwrsPchT\n");

/************************************

Print the position, velocity, and acceleration values of

joint degrees of freedom to joint data files. (G. Schaffner)
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printkinem(tydy)

double ty[ldy[];

sdst2ang(yqang); /* ok to use y[1, rest of state variable is ignored

fprintf(rankptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(LLEGR,0)1,qang[sdindx(LLEGR,1)1,qang[sdindx(LLEGR,2)],\

y[NQ+sdindx(LLEGRO)],y[NQ+sdindx(LLEGRI)],y[NQ+sdindx(LLEGR,2)],\

dy[NQ+sdindx(LLEGR,0)1,dy[NQ+sdindx(LLEGRI)],dy[NQ+sdindx(LLEGR,2)]);

fprintf(rkneptr,"%f\tf\tf\tf\n",t,\

y[sdindx(ULEGR,0)1,y[NQ+sdindx(ULEGRO)],dy[NQ+sdindx(ULEGR,0)1);

fprintf(rhip-ptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(PELVRO)],qang[sdindx(PELVR,1)1,qang[sdindx(PELVR,2)],\

y[NQ+sdindx(PELVRO)],y[NQ+sdindx(PELVR,1)1,y[NQ+sdindx(PELVR,2)],\

dy[NQ+sdindx(PELVRO)],dy[NQ+sdindx(PELVR,1)1,dy[NQ+sdindx(PELVR,2)]);

fprintf(lankptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(LLEGLO)],qang[sdindx(LLEGL,1)1,qang[sdindx(LLEGL,2)1,\

y[NQ+sdindx(LLEGLO)],y[NQ+sdindx(LLEGL,1)1,y[NQ+sdindx(LLEGL,2)1,\

dy[NQ+sdindx(LLEGLO)],dy[NQ+sdindx(LLEGL,1)1,dy[NQ+sdindx(LLEGL,2)]);

fprintf(lkneptr,"%f\tf\tf\tf\n",t,\

y[sdindx(ULEGLO)],y[NQ+sdindx(ULEGLO)],dy[NQ+sdindx(ULEGLO)]);

fprintf(lhipptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(PELVLO)],qang[sdindx(PELVLI)],qang[sdindx(PELVL,2)],\

y[NQ+sdindx(PELVLO)],y[NQ+sdindx(PELVL,1)],y[NQ+sdindx(PELVL,2)],\

dy[NQ+sdindx(PELVLO)],dy[NQ+sdindx(PELVL,1)1,dy[NQ+sdindx(PELVL,2)]);

fprintf(lumbptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(TRUNKO)],qang[sdindx(TRUNK,1)1,qang[sdindx(TRUNK,2)],\

y[NQ+sdindx(TRUNKO)],y[NQ+sdindx(TRUNK,1)],y[NQ+sdindx(TRUNK,2)],\

dy[NQ+sdindx(TRUNKO)],dy[NQ+sdindx(TRUNK,1)1,dy[NQ+sdindx(TRUNK,2)1);

fprintf(rshlptr,"%f\tf\tf\tf\tf\tf\tf\tf\tf\tf\n",t,\

qang[sdindx(UARMRO)],q-ang[sdindx(UARMR,1)],qang[sdindx(UARMR,2)1,\

y[NQ+sdindx(UARMR,0)1,y[NQ+sdindx(UARMR,1)],y[NQ+sdindx(UARMR,2)1,\

dy[NQ+sdindx(UARMRO)],dy[NQ+sdindx(UARMR,1)1,dy[NQ+sdindx(UARMR,2)]);

fprintf(relbptr,"%f\tf\tf\tf\n",t,\

qang[sdindx(FARMRO)],y[NQ+sdindx(FARMR,0)1,dy[NQ+sdindx(FARMR,0)1);
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fprintf(rwrs_ptr,"%f\t%f\t%f\tf\t%f\t% f\t%f\t%f\t%f\t%f\n",t,\

qang[sdindx(HANDR, 0) ] , qang [sdindx(HANDR,1) ] , q_ang[sdindx(HANDR, 2 ) ] , \

y[NQ+sdindx(HANDR, 0)],y[NQ+sdindx(HANDR,1)],y[NQ+sdindx(HANDR,2)],\

dy [NQ+sdindx(HANDR,0)], dy[NQ+sdindx(HANDR, 1)], dy[NQ+sdindx(HANDR,2)]);

fprintf(lshl_ptr,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\ n",t,\

q_ang[sdindx(UARML,0)] ,q_ang [sdindx (UARML,1)] , q_ang[sdindx(UARML,2) ], \
y[NQ+sdindx(UARML,0)],y[NQ+sdindx(UARML,1 )],y[NQ+sdindx(UARML,2)],\

dy[NQ+sdindx(UARML,0)],dy[NQ+sdindx(UARML, 1)],dy[NQ+sdindx(UARML,2) ]);

fprintf(lelb_ptr, "%f\t%f\t%f\t%f\n",t,\

q_ang[sdindx(FARML, 0)],y[NQ+sdindx(FARML, 0)], dy[NQ+sdindx(FARML, 0)]);

fprintf(lwrs_ptr,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",t,\

q_ang[sdindx(HANDL,)], ang[sdindx(HANDL,1)], q_ang [sdindx(HANDL, 2 )],\

y[NQ+sdindx(HANDL,0)],y[NQ+sdindx(HANDL,1)] ,y[NQ+sdindx(HANDL,2)],\

dy[NQ+sdindx(HANDL,0)], dy[NQ+sdindx(HANDL,1)], dy[NQ+sdindx(HANDL,2)]);

}

/**********************************************************************
*

Extract the joint torque values (using sdgetht()) and prints

these to the joint torque data files. (G. Schaffner)

**/

torqvals(t)
double t;
{
double trq_rank[3] ,trq_rkne, trqrhip[3] ,trqank[3] ,trqkne, trqhip[3],\

trq_lumb[3],trq_rshl[3],trq_relb,trq_rwrs[3],trqishl[31,\
trq_lelb,trq_lwrs[3];

/* double tmn[NQ], tmx[NQ]; */

sdgetht(LLEGR,0,&trq_rank[0]);
sdgetht(LLEGR,1,&trq_rank[ll]);
sdgetht(LLEGR,2,&trq_rank[2]);

sdgetht(ULEGR,0,&trq_rkne);

sdgetht(PELVR,0,&trq_rhip[0]);
sdgetht(PELVR,1,&trq_rhip[l]);
sdgetht(PELVR,2,&trqrhip[2]);

sdgetht(LLEGL,0,&trqlank[0]);
sdgetht(LLEGL,1,&trq_lank[l]);
sdgetht(LLEGL,2,&trqlank[2]);
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sdgetht(ULEGL,0,&trq_1kne);

sdgetht(PELVL,0,&trq_hip [0]
sdgetht(PELVL, 1,&trq_hip [1]
sdgetht(PELVL,2,&trq_hip [2]

sdgetht(TRUNK,0,&trq_lumb [0]
sdgetht(TRUNK,1,&trqlumb[l]
sdgetht(TRUNK,2,&trq_lumb[2]

sdgetht(UARMR, 0,&trq_rshl [0]

sdgetht(UARMR,1,&trq_rshl [1]

sdgetht(UARMR,2,&trq_rshl[2]

sdgetht(FARMR,2,&trqrelb);

sdgetht(HANDR,0,&trqrwrs[O]
sdgetht(HANDR,1,&trq_rwrs [l]
sdgetht(HANDR,2,&trq_rwrs[2]

sdgetht(UARML,0,&trq_ishl[0]
sdgetht(UARML,1,&trq_ishl [1]
sdgetht(UARML,2,&trq_lshl[2]

sdgetht(FARML,2,&trqlelb);

sdgetht(HANDL,0,&trq_lwrs[0]
sdgetht(HANDL,1,&trq_lwrs [1]
sdgetht(HANDL,2,&trqlwrs[2]

fprintf(ranktptr,"%f\t%f\t%f\t%f\n",t,trqrank[0O
fprintf(rknet_ptr,"%f\t%f\n",t,trq_rkne);

fprintf(rhipt_ptr,"%f\t%f\t%f\t%f\n",t,trq_rhip[O]

fprintf(lankt_ptr,"%f\t%f\t%f\t%f\n",t,trq_lank[0]
fprintf(lknet_ptr,"%f\t%f\n",t,trq_1kne);

fprintf(lhiptptr,"%f\t%f\t%f\t%f\n",t,trq_lhip[0]

fprintf(lumbt_ptr,"%f\t%f\t%f\t%f\n",t,trq_lumb[0]

fprintf(rshlt_ptr,"%f\t%f\t%f\t%f\n",t,trq_rshl[0]
fprintf(relbt_ptr,"%f\t%f\n",t,trq_relb);

fprintf(rwrst_ptr,"%f\t%f\t%f\t%f\n",t,trq_rwrs[0]

fprintf(lshlt_ptr,"%f\t%f\t%f\t%f\n",t,trq_lshl[0]

fprintf(lelbtptr,"%f\t%f\n",t,trq_lelb);

fprintf(lwrst_ptr,"%f\t%f\t%f\t%f\n",t,trq_lwrs[0]
}

,trq_rank[1],trq_rank[2]);

,trq_rhip [1]

,trq_lank [1]

,trq_lhip [11

,trq_ lumb [1]

,trqrshl [1]

,trqrwrs [1]

,trq_ishl [1]

trq_rhip

trq_lank

trq_lhip

trq_lumb

trqrshl

,trq_rwrs[2])

,trq_1shl[2])

,trq_lwrs [] , trq_lwrs[2]);

/Turns prescribed motion O*************************************N for 6-dof joints connecting

Turns prescribed motion ON for 6-dof joints connecting
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hands to ground, and OFF for internal body joints.

(G. Schaffner)
***************************************************************

preshandson()

{

/* hand 6-dof joints ON */

sdpres(HNDRG,O,ON);
sdpres(HNDRG,3,ON);

sdpres(HNDLG,O,ON);
sdpres(HNDLG, 3,ON);

sdpres(HNDRG,1,ON);
sdpres(HNDRG,4,0N);

sdpres(HNDRG,2,ON);
sdpres(HNDRG,5,ON);

sdpres(HNDLG,1,ON); sdpres(HNDLG,2,ON);
sdpres(HNDLG,4,ON); sdpres(HNDLG,5,ON);

sdpres(HNDRG,O,OFF); sdpres(HNDRG,1,OFF); sdpres(HNDRG,2,OFF);

sdpres(HNDRG,3,OFF); sdpres(HNDRG,4,OFF); sdpres(HNDRG,5,OFF);

sdpres(HNDLG,O,OFF); sdpres(HNDLG,1,OFF); sdpres(HNDLG,2,OFF);

sdpres(HNDLG,3,OFF); sdpres(HNDLG,4,OFF); sdpres(HNDLG,5,OFF);

/* internal body joints OFF
/* internal body joints OFF */

sdpres(LLEGR,O,OFF);
sdpres(ULEGR,O,OFF);
sdpres(LLEGL,0,OFF);
sdpres(ULEGL,O,OFF);
sdpres(PELVR,O,OFF);
sdpres(PELVL,O,OFF);
sdpres(TRUNK,0,OFF);
sdpres(UARMR,0,OFF);
sdpres(FARMR,0,OFF);
sdpres(HANDR,0,OFF);
sdpres(UARML,0,OFF);
sdpres(FARML,0,OFF);
sdpres(HANDL,0,OFF);

sdpres(LLEGR,1,OFF);

sdpres(LLEGL, i,OFF);

sdpres (PELVR, 1,
sdpres(PELVL,1,
sdpres(TRUNK,1,
sdpres(UARMR,1,

OFF)

OFF)
OFF)
OFF)

sdpres(HANDR,1,OFF);
sdpres(UARML,1,OFF);

sdpres(LLEGR,2,OFF);

sdpres(LLEGL,2,OFF);

sdpres(PELVR,2,OFF);
sdpres(PELVL,2,OFF);
sdpres(TRUNK,2,OFF);
sdpres(UARMR,2,OFF);

sdpres(HANDR,2,OFF);
sdpres(UARML,2,OFF);

sdpres(HANDL,I,OFF); sdpres(HANDL,2,OFF);

/***************************************************************************

Turns prescribed motion ON for internal body joints,

and OFF for joints connecting hands to ground.

(G. Schaffner)
***************************************************************************

*/

presbodyon()

{

/* internal body joints ON */
sdpres(LLEGR,0,ON); sdpres(LLEGR,1,ON);
sdpres(ULEGR,0,ON);
sdpres(LLEGL,O,ON); sdpres(LLEGL,1,ON);

sdpres(ULEGL,O,ON);
sdpres(PELVR,O,ON); sdpres(PELVR,1,ON);
sdpres(PELVL,0,ON); sdpres(PELVL,l,ON);

sdpres(TRUNK,0,ON); sdpres(TRUNK,1,ON);

sdpres(UARMR,0,ON); sdpres(UARMR,1,ON);

sdpres(LLEGR,2,ON);

sdpres(LLEGL,2,ON);

sdpres(PELVR,
sdpres(PELVL,
sdpres(TRUNK,
sdpres(UARMR,

2,ON)
2,ON)
2,ON)
2,ON)
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sdpres(FARMR,O,ON);
sdpres(HANDR,O,ON); sdpres(HANDR,1,ON); sdpres(HANDR,2,ON);

sdpres(UARML,O,ON); sdpres(UARML,1,ON); sdpres(UARML,2,ON);
sdpres(FARML,0,ON);
sdpres(HANDL,O,ON); sdpres(HANDL,1,ON); sdpres(HANDL,2,ON);

/* hand 6-dof joints OFF (loop joints) */

sdpres(HNDRG,0,OFF); sdpres(HNDRG,1,OFF); sdpres(HNDRG,2,OFF);

sdpres(HNDRG,3,OFF); sdpres(HNDRG,4,OFF); sdpres(HNDRG,5,OFF);

sdpres(HNDLG,0,OFF); sdpres(HNDLG,1,OFF); sdpres(HNDLG,2,OFF);

sdpres(HNDLG,3,OFF); sdpres(HNDLG,4,OFF); sdpres(HNDLG,5,OFF);

/***************************************************************************

sduforce

This routine computes and applies the forces acting in the system. It

must
always be included, when the Simplified Analysis Routines are used,

because
they will make calls to sduforce. This is the case even if the sdforce

function is unused (empty).

*************************************************************************

*/

sduforce (t, q, u)
double t,q[NQ],u[NU];
{

double compose_force(Mesh *mesh, double theta, int direction);

double qang[NU];
double trqrank[3],trq_rkne,trq_rhip[3] , trqrshl[3] , trqrelb,trq_rwrs[3;
double trq_lumb[3];
double trqlank[3],trq_1kne,trq_lhip[3] ,trqshl[3] ,trqelb,trq_lwrs[3];

double suit_elbow_torque,suit_elbow damping;

double suit_shoulder_torque,suit_shoulder_damping;
double suit_knee_torque, suit_knee_damping;
double uarm_pos,farm_pos,uleg_pos,ankle_pos;
double suit_ankle_torque;

sdst2ang(q,qang);

/* Assume symmetric for now */

farm_pos = qang[sdindx(FARMR,0)]*180.0/M_PI ;

uarm_pos = (qang[sdindx(UARMR,2)]*180.0/M_PI)-90.0 ;

uleg_pos = qangsdindx(ULEGR,0)]*180.0/M_PI ;
ankle_pos = qang[sdindx(LLEGR,2)]*180.0/M_PI ;

/* Control of Lower Body Joints */
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/* ANKLE */

/* The passive ankle torques include a lower joint stop, a nominal range,

and an upper joint stop. */

/* X-axis */

if(qang[sdindx(LLEGR,0)] < ANK_X_MIN*dtr)
trqrank[0] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,0)]-(ANKXMIN)*dtr);

if(qang[sdindx(LLEGR,0)] > ANK X MIN*dtr && qang[sdindx(LLEGR,0)1 <
ANK_X_MAX*dtr)

trqrank[0] = -KROT_ANK*(qang[sdindx(LLEGR,0)]-(BIAS_RANK_X))
-BDAMP_ANK*u[sdindx(LLEGR,0)1;

if(qang[sdindx(LLEGR,0)] > ANK_X_MAX*dtr)

trq_rank[0] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,0)]-(ANK XMAX)*dtr);

if(qang[sdindx(LLEGL,0)] < ANK_X_MIN*dtr)
trq_lank[0] = -KROTANK_STOP*(qang[sdindx(LLEGL,0)]-(ANKX MIN)*dtr);

if(qang[sdindx(LLEGL,0)] > ANK X MIN*dtr && qang[sdindx(LLEGL,0)] <
ANK X MAX*dtr)

trqlank[0] = -KROT_ANK*(qang[sdindx(LLEGL,0)]-(BIAS_LANKX))
-BDAMP_ANK*u[sdindx(LLEGL,0)1;

if(qang[sdindx(LLEGL,0)] > ANK X_MAX*dtr)
trq_lank[0] = -KROT_ANK_STOP*(qang[sdindx(LLEGL,0)]-(ANKXMAX)*dtr);

sdhinget(LLEGR,0,trq_rank[0]);
sdhinget(LLEGL,0,trq_lank[0]);

/* Y-axis */

if(qang[sdindx(LLEGR,l)] < ANK_Y_MIN*dtr)
trq_rank[l] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,1)]-(ANK Y MIN)*dtr);

if(qang[sdindx(LLEGR,l)] > ANK Y MIN*dtr && qang[sdindx(LLEGR,1)1 <
ANK_Y_MAX*dtr)

trq_rank[l] = -KROT_ANK*(qang[sdindx(LLEGR,1)]-(BIAS_RANKY))
-BDAMP_ANK*u[sdindx(LLEGR,1)];

if(qang[sdindx(LLEGR,1)] > ANK_Y_MAX*dtr)
trq_rank[l] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,1)]-(ANKYMAX)*dtr);

if(qang[sdindx(LLEGL,l)] < ANK_Y_MIN*dtr)
trq_lank[l] = -KROT_ANK_STOP*(qang[sdindx(LLEGL,1)]-(ANK Y MIN)*dtr);

if(qang[sdindx(LLEGL,l)] > ANK Y MIN*dtr && qang[sdindx(LLEGL,1)] <
ANK_Y_MAX*dtr)

trq_lank[l] = -KROT_ANK*(qang[sdindx(LLEGL,1)]-(BIAS_LANKY))
-BDAMP_ANK*u[sdindx(LLEGL,1)];

if(qang[sdindx(LLEGL,l)] > ANK_Y_MAX*dtr)
trq_lank[l] = -KROT_ANK_STOP*(qang[sdindx(LLEGL,) ]-(ANKYMAX)*dtr);

sdhinget(LLEGR,l,trq_rank[ll);
sdhinget(LLEGL,l,trq_lank[1]);

/* Z-axis */

if(qang[sdindx(LLEGR,2)] < ANK_Z_MIN*dtr)
trq_rank[2] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,2)]-(ANKZ MIN)*dtr);

if(qang[sdindx(LLEGR,2)] > ANK Z MIN*dtr && qang[sdindx(LLEGR,2)] <

ANKZ MAX*dtr)
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trq_rank[2] = -KROTANK*(qang[sdindx(LLEGR,2)] - (BIAS_RANK_Z))
-BDAMP_ANK*u[sdindx(LLEGR,2)1;

if(qang[sdindx(LLEGR,2)] > ANK_Z MAX*dtr)
trq_rank[2] = -KROT_ANK_STOP*(qang[sdindx(LLEGR,2)]-(ANK_Z_MAX)*dtr);

if(qang[sdindx(LLEGL,2)] < ANK_Z_MIN*dtr)

trq_lank[2] = -KROT_ANK_STOP*(qang[sdindx(LLEGL,2)]-(ANK ZMIN)*dtr);
if(qang[sdindx(LLEGL,2)] > ANK Z MIN*dtr && qang[sdindx(LLEGL,2)] <

ANKZ MAX*dtr)
trq_lank[2] = -KROT_ANK*(qang[sdindx(LLEGL,2)]- (BIAS_LANK_Z))

-BDAMP_ANK*u[sdindx(LLEGL,2)1;
if(qang[sdindx(LLEGL,2)] > ANK_Z_MAX*dtr)

trq_lank[2] = -KROT_ANK_STOP*(qang[sdindx(LLEGL,2)]-(ANKZMAX)*dtr);

sdhinget(LLEGR,2,trq_rank[21);
sdhinget(LLEGL,2,trqlank[21);

#ifdef DEBUG
printf("\nt=%f\tR Ankle Trq = %f\tL Ankle Trq =

%f",t,trq_rank[2],trq_lank[2]); */
#endif

/* KNEE */

/* The passive knee torques include a lower joint stop, a nominal range,

and an upper joint stop. */

if(qang[sdindx(ULEGR,0)] < KNEEMIN*dtr)
trq_rkne = -KROT_KNE_STOP*(qang[sdindx(ULEGR,0)]-(KNEEMIN)*dtr);

if(qang[sdindx(ULEGR,0)] > KNEEMIN*dtr && qang[sdindx(ULEGR,0)] <
KNEEMAX*dtr)

trq_rkne = -KROT_KNE*(qang[sdindx(ULEGR,0)]-(BIAS_RKNE))
-BDAMP_KNE*u[sdindx(ULEGR,0)];

if(qang[sdindx(ULEGR,0)] > KNEEMAX*dtr)
trq_rkne = -KROT_KNE_STOP*(qang[sdindx(ULEGR,0)]-(KNEEMAX)*dtr);

if(qang[sdindx(ULEGL,0)] < KNEEMIN*dtr)
trq_1kne = -KROT_KNE_STOP*(qang[sdindx(ULEGL,0)]-(KNEEMIN)*dtr);

if(qang[sdindx(ULEGL,0)] > KNEEMIN*dtr && qang[sdindx(ULEGL, 0) <
KNEEMAX*dtr)

trq_1kne = -KROT_KNE*(qang[sdindx(ULEGL,0)]-(BIAS_LKNE))
-BDAMP_KNE*u[sdindx(ULEGL,0)];

if(qang[sdindx(ULEGL,0)] > KNEEMAX*dtr)
trq_1kne = -KROT_KNE_STOP*(qang[sdindx(ULEGL,0)]-(KNEEMAX)*dtr);

sdhinget(ULEGR,0,trq_rkne);
sdhinget(ULEGL,0,trq_kne);

#ifdef DEBUG
printf("\nt=%f\tR Knee Trq = %f\tL Knee Trq = %f",t,trq_rkne,trq_1kne);

*/
#endif

/* HIP */

/* The passive hip torques include a lower joint stop, a nominal range,

and an upper joint stop. */

/* X-axis */
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if(qang[sdindx(PELVRO)l < HIP-X-MIN*dtr)

trq-rhip[Ol = -KROT-HIP-STOP*(qang[sdindx(PELVRO)]-(HIPX-MIN)*dtr);

if(qang[sdindx(PELVRO)) > HIP-X-MIN*dtr && qang[sdindx(PELVRO)] <

HIP-X-MAX*dtr)

trqrhip[O] = -KROT-HIP*(qang[sdindx(PELVRO)]-(BIASRHIP-X))

-BDAMPHIP*u[sdindx(PELVRO)];

if(qang[sdindx(PELVRO)] > HIP-X-MAX*dtr)

trqrhip[O] = -KROT-HIP-STOP*(qang[sdindx(PELVRO)]-(HIPX-MAX)*dtr);

if(qang[sdindx(PELVLO)] < HIP-X-MIN*dtr)

trqlhip[O] = -KROT-HIP-STOP*(qang[sdindx(PELVL,0)1-(HIP-X-MIN)*dtr);

if(qang[sdindx(PELVLO)) > HIP-X-MIN*dtr && qang[sdindx(PELVLO)l <

HIP-X-MAX*dtr)

trqlhip[O] = -KROT-HIP*(qang[sdindx(PELVLO)]-(BIASLHIP-X))

-BDAMP-HIP*u[sdindx(PELVL,0)1;

if(qang[sdindx(PELVLO)] > HIP-X-MAX*dtr)

trqlhip[O] = -KROT-HIP-STOP*(qang[sdindx(PELVL,0)1-(HIP-X-MAX)*dtr);

sdhinget(PELVROtrqrhip[O]);

sdhinget(PELVLOtrqlhip[O]);

/* Y-axis */

if(qang[sdindx(PELVR,1)] < HIP-Y-MIN*dtr)

trqrhip[l] = -KROT-HIP-STOP*(qang[sdindx(PELVR,1)]-(HIPYMIN)*dtr);

if(qang[sdindx(PELVRl)] > HIP-Y-MIN*dtr && qang[sdindx(PELVRI)l <

HIP-Y-MAX*dtr)

trqrhip[l] = -KROT-HIP*(qang[sdindx(PELVRI)]-(BIASRHIPY))

-BDAMPHIP*u[sdindx(PELVR,1)];

if(qang[sdindx(PELVR,1)] > HIP-Y-MAX*dtr)

trqrhip[l] = -KROT-HIP-STOP*(qang[sdindx(PELVR,1)]-(HIPY-MAX)*dtr);

if(qang[sdindx(PELVLl)] < HIP-Y-MIN*dtr)

trqlhip[l] = -KROT-HIP-STOP*(qang[sdindx(PELVL,1)1-(HIP-Y-MIN)*dtr);

if(qang[sdindx(PELVLl)] > HIP-Y-MIN*dtr && qang[sdindx(PELVL,1)] <

HIP-Y-MAX*dtr)

trqlhip[l] = -KROT-HIP*(qang[sdindx(PELVL,1)1-(BIASLHIPY))

-BDAMPHIP*u[sdindx(PELVL,1)];

if(qang[sdindx(PELVL,1)] > HIP-Y-MAX*dtr)

trq-lhip[l] = -KROT-HIP-STOP*(qang[sdindx(PELVL,1)]-(HIPY-MAX)*dtr);

sdhinget(PELVRltrqrhip[ll);

sdhinget(PELVLltrqlhip[ll);

/* Z-axis */

if(qang[sdindx(PELVR,2)] < HIP-Z-MIN*dtr)

trqrhip[2] = -KROT-HIP-STOP*(qang[sdindx(PELVR,2)]-(HIPZ-MIN)*dtr);

if(qang[sdindx(PELVR,2)] > HIP-Z-MIN*dtr && qang[sdindx(PELVR,2)] <

HIP-Z-MAX*dtr)

trqrhip[2] = -KROT-HIP*(qang[sdindx(PELVR,2)]-(BIASRHIPZ))

-BDAMPHIP*u[sdindx(PELVR,2)];

if(qang[sdindx(PELVR,2)] > HIP-Z-MAX*dtr)

trqrhip[2] = -KROT-HIP-STOP*(qang[sdindx(PELVR,2)]-(HIPZ-MAX)*dtr);

if(qang[sdindx(PELVL,2)] < HIP-Z-MIN*dtr)

trqlhip[2] = -KROT-HIP-STOP*(qang[sdindx(PELVL,2)]-(HIPZ-MIN)*dtr);
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if(qang[sdindx(PELVL,2)] > HIP Z MIN*dtr && qang[sdindx(PELVL,2)] <
HIPZMAX*dtr)

trq_lhip[2] = -KROT_HIP*(qang[sdindx(PELVL,2)]-(BIAS_LHIP_Z))
-BDAMP_HIP*u[sdindx(PELVL,2)];

if(qang[sdindx(PELVL,2)] > HIP_Z_MAX*dtr)
trqlhip[2] = -KROT_HIP_STOP*(qang[sdindx(PELVL,2)]-(HIPZMAX)*dtr);

sdhinget(PELVR,2,trq_rhip[2]);
sdhinget(PELVL,2,trq_lhip[2]);

#ifdef DEBUG
printf("\nt=%f\tR Hip Trq = %f\tL Hip Trq

%f",t,trq_rhip[2],trq_lhip[2]); */
#endif

/* LUMBAR */

/* The passive lumbar torques include a lower joint stop, a nominal range,

and an upper joint stop. */

/* X-axis */

if(qang[sdindx(TRUNK,0)] < LUM_X_MIN*dtr)
trq_lumb[0] = -KROT_LUM_STOP*(qang[sdindx(TRUNK,0)]-(LUMXMIN)*dtr);

if(qang[sdindx(TRUNK,0)] > LUM X MIN*dtr && qang[sdindx(TRUNK,0)] <
LUM_X_MAX*dtr)

trqlumb[0] = -KROTLUM*(qang[sdindx(TRUNK,0)]-(BIAS_LUM_X))
-BDAMP_LUM*u[sdindx(TRUNK,O)];

if(qang[sdindx(TRUNK,0)] > LUM_X_MAX*dtr)
trq_lumb[0] = -KROT_LUM_STOP*(qang[sdindx(TRUNK, 0)]-(LUMXMAX)*dtr);

sdhinget(TRUNK,0,trq_lumb[0]);

/* Y-axis */

if(qang[sdindx(TRUNK,l)] < LUM_Y_MIN*dtr)
trq_lumb[l] = -KROT_LUM_STOP*(qang[sdindx(TRUNK,1)]-(LUM Y MIN)*dtr);

if(qang[sdindx(TRUNK,l)] > LUM Y MIN*dtr && qang[sdindx(TRUNK,1)1 <
LUM_Y_MAX*dtr)

trqlumb[l] = -KROT_LUM*(qang[sdindx(TRUNK,1)]-(BIAS_LUM_Y))
-BDAMP_LUM*u[sdindx(TRUNK,1)];

if(qang[sdindx(TRUNK,l)] > LUM_Y_MAX*dtr)
trq_lumb[l] = -KROT_LUM_STOP*(qang[sdindx(TRUNK, 1)]-(LUMYMAX)*dtr);

sdhinget(TRUNK,l,trq_lumb[l]);

/* Z-axis */

if(qang[sdindx(TRUNK,2)] < LUM_Z_MIN*dtr)
trq_lumb[2] = -KROT_LUM_STOP*(qang[sdindx(TRUNK,2)]-(LUMZMIN)*dtr);

if(qang[sdindx(TRUNK,2)] > LUM Z MIN*dtr && qang[sdindx(TRUNK,2)] <

LUM_Z_MAX*dtr)
trq_lumb[2] = -KROTLUM*(qang[sdindx(TRUNK,2)]-(BIAS_LUM_Z))

-BDAMP_LUM*u[sdindx(TRUNK,2)];
if(qang[sdindx(TRUNK,2)] > LUM_Z_MAX*dtr)

trqlumb[2] = -KROT_LUM_STOP*(qang[sdindx(TRUNK,2)]-(LUMZMAX)*dtr);

sdhinget(TRUNK,2,trq_lumb[2]);
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/* printf("\nt=%f\tLumbar Z Trq = %f",t,trq_lumb[2]); */

/* Control of Arm Joints */

/* SHOULDER */

/* The passive elbow torques include a lower joint stop, a nominal range,

and an upper joint stop. */

if(qang[sdindx(UARMR,0)] < RSHL_X_MIN*dtr)
trqrshl[0] = -KROT_SHL_STOP*(qang[sdindx(UARMR, 0)]-(RSHLXMIN)*dtr);

if(qang[sdindx(UARMR,0)] > RSHL X MIN*dtr && qang[sdindx(UARMR,O)] <
RSHL_XMAX*dtr)

trq_rshl[0] = -KROTSHL*(qang[sdindx(UARMR,0)]-(BIAS_RSHLX))
-BDAMP_SHL*u[sdindx(UARMR,0)];

if(qang[sdindx(UARMR,0)] > RSHL_X_MAX*dtr)
trq_rshl[0] = -KROT_SHL_STOP*(qang[sdindx(UARMR,0) ]-(RSHLXMAX)*dtr);

if(qang[sdindx(UARML,0)] < LSHL_X_MIN*dtr)
trq_ishl[0] = -KROT_SHL_STOP*(qang[sdindx(UARML,0) ]-(LSHLXMIN)*dtr);

if(qang[sdindx(UARML,0)] > LSHL X MIN*dtr && qang[sdindx(UARML,0)] <
LSHL_X_MAX*dtr)

trqishl [0] = -KROT_SHL*(qang[sdindx(UARML,0)]-(BIAS_LSHLX))
-BDAMP_SHL*u[sdindx(UARML,0)1;

if(qang[sdindx(UARML,0)] > LSHL_X_MAX*dtr)
trq_ishl[0] = -KROT_SHL_STOP*(qang[sdindx(UARML,0)]-(LSHLX MAX)*dtr);

if(qang[sdindx(UARMR,l)] < RSHL_Y_MIN*dtr)
trq_rshl[l] = -KROT_SHL_STOP*(qang[sdindx(UARMR,1)]-(RSHL Y MIN)*dtr);

if(qang[sdindx(UARMR,l)] > RSHL Y MIN*dtr && qang[sdindx(UARMR,1)] <
RSHL_Y_MAX*dtr)

trq_rshl[l] = -KROTSHL*(qang[sdindx(UARMR,1)]-(BIAS_RSHL_Y))
-BDAMP_SHL*u[sdindx(UARMR,1)];

if(qang[sdindx(UARMR,l)] > RSHL_Y_MAX*dtr)
trq_rshl[l] = -KROT_SHL_STOP*(qang[sdindx(UARMR,1)]-(RSHLY MAX)*dtr);

if(qang[sdindx(UARML,1)] < LSHL_Y_MIN*dtr)
trq_ishl[l] = -KROT_SHL_STOP*(qang[sdindx(UARML,l) ]-(LSHLY MIN)*dtr);

if(qang[sdindx(UARML,1)] > LSHL Y MIN*dtr && qang[sdindx(UARML,l)] <
LSHL_Y_MAX*dtr)

trqlshl [1] = -KROT_SHL*(qang[sdindx(UARML,1)]- (BIAS_LSHLY))
-BDAMP_SHL*u[sdindx(UARML,1)];

if(qang[sdindx(UARML,l)] > LSHL_Y_MAX*dtr)
trq_lshl[l] = -KROT_SHL_STOP*(qang[sdindx(UARML,l) ]-(LSHLY MAX)*dtr);

sdhinget(UARMR,O,trq_rshl[O0);
sdhinget(UARMR,l,trq_rshl[l]);
sdhinget(UARML,0,trq_shl[O]);
sdhinget(UARML,l,trq_ishl[l]);

/* ELBOW */

/* The passive elbow torques include a lower joint stop, a nominal range,

and an upper joint stop. */

if(qang[sdindx(FARMR,0)] < ELBOWMIN*dtr)
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trq_relb = -KROT_ELB_STOP*(qang[sdindx(FARMR,0)]- (ELBOWMIN)*dtr);
if(qang[sdindx(FARMR,0)] > ELBOWMIN*dtr && qang[sdindx(FARMR,0)] <

ELBOWMAX*dtr)
trq_relb = -KROT_ELB*(qang[sdindx(FARMR,0)]-(BIAS_RELB))

-BDAMP_ELB*u[sdindx(FARMR,0)];
if(qang[sdindx(FARMR,0)] > ELBOWMAX*dtr)

trq relb = -KROT_ELB_STOP*(qang[sdindx(FARMR,0)]-(ELBOWMAX)*dtr);

if(qang[sdindx(FARML,0)] < ELBOWMIN*dtr)
trq_lelb = -KROT_ELBSTOP*(qang[sdindx(FARML,0)]-(ELBOWMIN)*dtr);

if(qang[sdindx(FARML,0)] > ELBOWMIN*dtr && qang[sdindx(FARML,0)] <
ELBOWMAX*dtr)

trqlelb = -KROT_ELB*(qang[sdindx(FARML, 0)] - (BIASLELB))
-BDAMP_ELB*u[sdindx(FARML,0)];

if(qang[sdindx(FARML,0)] > ELBOWMAX*dtr)
trq_lelb = -KROT_ELB_STOP*(qang[sdindx(FARML,0)]-(ELBOWMAX)*dtr);

sdhinget(FARMR,0,trq_relb);
sdhinget(FARML,0,trqlelb);

#ifdef DEBUG
fprintf(stderr,"\nt=%f\tR Elbow Trq = %f\tL Elbow Trq

%f",t,trqrelb,trqlelb); */
#endif

/* WRIST */

/* The passive wrist torques include a lower joint stop, a nominal range,

and an upper joint stop. */

if(qang[sdindx(HANDR,0)1 < RWRS_X_MIN*dtr)
trqrwrs[0] = -KROT_WRS_STOP*(qang[sdindx(HANDR, 0)]-(RWRSXMIN)*dtr);

if(qang[sdindx(HANDR,0)] > RWRS X MIN*dtr && qang[sdindx(HANDR,0)] <

RWRS_X_MAX*dtr)
trq_rwrs[0] = -KROT_WRS*(qang[sdindx(HANDR,0)]-(BIAS_RWRSX))

-BDAMPWRS*u[sdindx(HANDR,0)];
if(qang[sdindx(HANDR,0)] > RWRS_X MAX*dtr)

trq_rwrs[0] = -KROT_WRS_STOP*(qang[sdindx(HANDR,0)]-(RWRSXMAX)*dtr);

if(qang[sdindx(HANDL,0)] < LWRS_XMIN*dtr)
trq_lwrs[0] = -KROT_WRS_STOP*(qang[sdindx(HANDL,0)]-(LWRSXMIN)*dtr);

if(qang[sdindx(HANDL,0)] > LWRS X MIN*dtr && qang[sdindx(HANDL,0)] <
LWRS XMAX*dtr)

trq_lwrs[0] = -KROT_WRS*(qang[sdindx(HANDL,0)]-(BIAS_LWRSX))
-BDAMP_WRS*u[sdindx(HANDL,0)];

if(qang[sdindx(HANDL,0)] > LWRS X MAX*dtr)
trq_lwrs[0] = -KROT_WRS_STOP*(qang[sdindx(HANDL,0)]-(LWRSX MAX)*dtr);

if(qang[sdindx(HANDR,l)] < RWRSY_MIN*dtr)
trq_rwrs[l] = -KROT_WRS_STOP*(qang[sdindx(HANDR,1)]-(RWRSYMIN)*dtr);

if(qang[sdindx(HANDR,l)] > RWRS Y MIN*dtr && qang[sdindx(HANDR,1)] <

RWRS_Y_MAX*dtr)
trq_rwrs [] = -KROT_WRS*(qang[sdindx(HANDR,1)]-(BIAS_RWRSY))

-BDAMP_WRS*u[sdindx(HANDR,1)];

if(qang[sdindx(HANDR,l)] > RWRS_Y_MAX*dtr)

trq_rwrs [] = -KROT_WRS_STOP*(qang[sdindx(HANDR,1)]-(RWRS YMAX)*dtr);

if(qang[sdindx(HANDL,l)] < LWRS Y MIN*dtr)
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trqlwrs [1] = -KROT_WRS_STOP*(qang[sdindx(HANDL,1)]-(LWRS_Y_MIN)*dtr);
if(qang[sdindx(HANDL,l)] > LWRSY MIN*dtr && qang[sdindx(HANDL,1)] <

LWRSY_MAX*dtr)
trql wrs[l] = -KROT_WRS*(qang[sdindx(HANDL,1)]-(BIAS_LWRSY))

-BDAMP_WRS*u[sdindx(HANDL, 1);
if(qang[sdindx(HANDL,l)] > LWRS_Y_MAX*dtr)

trq_lwrs[l] = -KROT_WRS_STOP*(qang[sdindx(HANDL,1) ]-(LWRSYMAX)*dtr);

sdhinget(HANDR,0,trq_rwrs[0]);
sdhinget(HANDR,1,trq_rwrs [1]);

sdhinget(HANDL,0,trq_lwrs[0]);
sdhinget(HANDL,l,trq_lwrs [1]);

#ifdef DEBUG
printf("\nt=%f\tR Wrist Trq = %f\tL Wrist Trq

%f",t,trq_rwrs[0],trq_lwrs[0]);
#endif

}

/* SUIT -- assume symmetric */

/* ELBOW */
suit_elbow_damping = 10.0; /* To ensure smooth motion */

if(u[sdindx(FARMR,0)] > 0)
suit_elbow_torque = compose_force(&elbowmesh,

farm_pos,
UP);

else
suit_elbow_torque = compose_force(&elbowmesh,

farm_pos,
DOWN);

/* Apply the torque */
sdhinget(FARMR,0,

-suit_elbow_torque
-suit_elbow_damping*u[sdindx(FARMR,0)]);

sdhinget(FARML,0,
-suit_elbow_torque
-suit_elbow_damping*u[sdindx(FARML, 0)]);

/* SHOULDER */
suit_shoulder_damping = 10.0;
if(u[sdindx(UARMR,2)] > 0)

suit_shoulder_torque = compose_force(&shouldermesh,
uarm_pos,
UP);

else
suit_shoulder_torque = compose_force(&shouldermesh,

uarm_pos,
DOWN);

/* Apply the torque */
sdhinget(UARMR,2,

-suit_shoulder_torque
-suit_shoulder_damping*u[sdindx(UARMR,2)]);

sdhinget(UARML,2,
-suit_shouldertorque
-suit_shoulder_damping*u[sdindx(UARML,2)]);
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/* KNEE */

suit_knee_damping = 10.0;

if(u[sdindx(ULEG,0)] > 0)
suit_knee_torque = compose_force(&kneemesh,

ulegpos,
UP);

else
suit_knee_torque = compose_force(&kneemesh,

uleg_pos,
DOWN);

#ifdef DEBUG
fprintf(stderr,"\t%lf %lf\n\n",

uleg_pos,-suit_knee_torque);
#endif

sdhinget(ULEGR,0,-suit_knee_torque-
suit_knee_damping*u[sdindx(ULEGR,0)]);

sdhinget(ULEGL, 0,-suit_knee_torque-
suit_knee_damping*u[sdindx(ULEGL,0)1);

/* Compute 1st order approximation to suit ankle torque */
suit_ankle_torque = ANKLEA*anklepos;
sdhinget(LLEGR,2,-suit_ankle_torque);
sdhinget(LLEGL,2,-suit ankle_torque);

#ifdef DEBUG
fprintf(stderr,"theta: %f\tTorque: %f\n",ankle_pos,suit_ankle_torque);

#endif

}

/***************************************************************************

sdumotion

If enabled, this function prescribes the motion of the hand.

This function moves the endpoint of the arm along a desired trajectory (a

linear trajectory with a sinusoidal velocity profile) by means of

prescribed motion in each of the two slider joints attached between the

hand and ground. In addition, the hand is maintained in a horizontal

orientation, by prescribing the angle of hslide wrt the slider to be 0.

**/

sdumotion (t, q, u)
double t,q[NQ],u[NU];
{
double xe, xde, xdde, ye, yde, ydde;
double pathlength,pathvelocity,pathaccel;
double pharm, vharm, aharm, qd[NQI, ud[NU];

int i;
double theta;
extern double xstart, ystart;

/* Kinematics */
theta = 0.0;
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pathlength = MAX_VELOCITY*t
+ (MAX_VELOCITY*MOTION_TIME/(2*pi)) * sin((2*pi/MOTION_TIME)*t+pi);

pathvelocity = MAX_VELOCITY
+ MAX_VELOCITY * cos((2*pi/MOTIONTIME)*t+pi);

pathaccel = (-2*pi*MAX_VELOCITY/MOTIONTIME)
* sin((2*pi/MOTION_TIME)*t+pi);

/* position */

xe = xstart - pathlength * cos(theta);

ye = ystart - pathlength * sin(theta);

/* velocity */

xde = - pathvelocity * cos(theta);

yde = - pathvelocity * sin(theta);

/* acceleration */

xdde = -pathaccel * cos(theta);

ydde = -pathaccel * sin(theta);

/* Prescribed motion for inverse kinematics phase. */

if (motionphase = 1){

/* prescribe hand accelerations */

sdpresacc(HNDRG,0,xdde);
sdpresacc(HNDRG, l,ydde);
sdpresacc(HNDRG,2,0.0);
sdpresacc(HNDRG,3,0.0);
sdpresacc(HNDRG,4,0.0);
sdpresacc(HNDRG,5,0.0);
sdpresacc(HNDLG,0,xdde);
sdpresacc(HNDLG,l,ydde);
sdpresacc(HNDLG,2,0.0);
sdpresacc(HNDLG,3,0.0);
sdpresacc(HNDLG,4,0.0);
sdpresacc(HNDLG,5,0.0);

/* prescribe hand velocities */
/* Note: in order to utilize these, sdstab() must be set */

sdpresvel(HNDRG,0,xde);
sdpresvel(HNDRG,l,yde);
sdpresvel(HNDRG,2,0.0);
sdpresvel(HNDRG,3,0.0);
sdpresvel(HNDRG,4,0.0);
sdpresvel(HNDRG,5,0.0);
sdpresvel(HNDLG,0,xde);
sdpresvel(HNDLG,l,yde);
sdpresvel(HNDLG,2,0.0);
sdpresvel(HNDLG,3,0.0);
sdpresvel(HNDLG,4,0.0);
sdpresvel(HNDLG,5,0.0);
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/* prescribe hand positions
/* NOTE 1: in order to utilize these, sdstab() must be set */

/* NOTE 2: sdprespos() IS NOT ALLOWED FOR BALL JOINTS

Thus, only the translational position values of the

6dof joints are set. */

sdprespos(HNDRG,O,xe);
sdprespos(HNDRG, l,ye);
sdprespos(HNDRG,2,ZRIGHT);

sdprespos(HNDLG,O,xe);
sdprespos(HNDLG,l,ye);
sdprespos(HNDLG,2,ZLEFT);

/* Prescribed motion for inverse dynamics phase.

if (motionphase = 2){

/* Prescribe accelerations for all body joints. */

sdpresacc(LLEGR,0,accel[step]
sdpresacc(LLEGR,l,accel[step]
sdpresacc(LLEGR,2,accel[step]

[sdindx(LLEGR, 0)
[sdindx(LLEGR, 1)
[sdindx(LLEGR,2)

sdpresacc(ULEGR,O,accel[step][sdindx(ULEGR,0)]);

sdpresacc(PELVR,0,accel[step]
sdpresacc(PELVR,1,accel[step]
sdpresacc(PELVR,2,accel[step]

sdpresacc(LLEGL,0,accel
sdpresacc(LLEGL,1,accel
sdpresacc(LLEGL,2,accel

[step]
[step]
[step]

[sdindx(PELVR,
[sdindx(PELVR,
[sdindx (PELVR,

[sdindx(LLEGL,
[sdindx(LLEGL,
[sdindx(LLEGL,

sdpresacc(ULEGL,0,accel[step][sdindx(ULEGL,0)]);

sdpresacc(PELVL,0,accel
sdpresacc(PELVL,l,accel
sdpresacc(PELVL,2,accel

sdpresacc(TRUNK,0,
sdpresacc(TRUNK,1,
sdpresacc(TRUNK,2,

accel
accel
accel

[step]
[step]
[step]

[step]
[step]
[step]

sdpresacc(UARMR,0,accel[step]
sdpresacc(UARMR,l,accel[step]
sdpresacc(UARMR,2,accel[step]

[sdindx(PELVL,0)
[sdindx(PELVL,1)
[sdindx(PELVL,2)

[sdindx(TRUNK, 0)
[sdindx(TRUNK, 1)
[sdindx (TRUNK, 2)

[sdindx(UARMR, 0)
[sdindx(UARMR, 1)
[sdindx(UARMR, 2)

sdpresacc(FARMR,0,accel[step] [sdindx(FARMR,0)]);

sdpresacc(HANDR,0,accel[step]
sdpresacc(HANDR,l,accel[step]
sdpresacc(HANDR,2,accel[step]

[sdindx(HANDR, 0)
[sdindx(HANDR,1)
[sdindx(HANDR, 2)

sdpresacc(UARML,0,accel[step][sdindx(UARML,0)]);
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sdpresacc(UARML,l,accel[step] [sdindx(UARML,1)]);
sdpresacc(UARML,2,accel[step] [sdindx(UARML,2)]);

sdpresacc(FARML,0,accel[step] [sdindx(FARML,0)]);

sdpresacc(HANDL,O,accel[step][sdindx(HANDL,0)]);
sdpresacc(HANDL,l,accel[step][sdindx(HANDL,1)]);
sdpresacc(HANDL,2,accel[step][sdindx(HANDL,2)]);

}

/***************************************************************************

This function sets up the initial conditions. The hand position is set to

xstart, ystart values. This is referenced to the original position of the

hand, with the arm hanging straight down. The x and y velocities of the

hand are also set according to the value of pathvelocity value. Pass

in y with an initial guess to control the assembly solution and improve

convergence. On return, y should be a fully compatible state vector,
unless

an error is received.
(G. Schaffner)

**************************************************************************

**/

initconds(t,y)
double t, y[];
{
int i;
double qinit[NQ];

/* Setup initial conditions - body positions and velocities */

printf("\nInitial Conditions .................. ");

/* Initial Configuration */

for (i = 0 ; i < NU ; i++) q_ang[i] = 0.0;

/* Assign initial angles to joint degrees of freedom in terms of Euler
angles. Last step is to convert to Euler parameters (quaternions).
Note: Angles are measured as rotation of the segment coord. system
relative to the inboard segment's coord. system. Also, these values
get the body close to the desired configuration, and then sdassemble
completes the job by varying the arm joint angles until the desired
hand positions and orientations are obtained. */

/* start out with simple init config, REFINE ANGLES LATER */

q_ang[sdindx(LLEGR,0)] = 0.0*dtr; /* r-ankle X rot */

q_ang[sdindx(LLEGR,1)] = 0.0*dtr; /* r-ankle Y rot */

q_ang[sdindx(LLEGR,2)] = 0.0*dtr; /* r-ankle Z rot */

q_ang[sdindx(ULEGR,0)] = 47.0*dtr; /* r-knee Z rot */

q_ang[sdindx(PELVR,0)] = 0.0*dtr; /* r-hip X rot */
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qang[sdindx(PELVR, 1)1]

qang[sdindx(PELVR,2)]

q_ang[sdindx(LLEGL,0)]
q_ang[sdindx(LLEGL, 1)]
q_ang [sdindx(LLEGL, 2)]

q_ang[sdindx(ULEGL, 0)]

q_ang[sdindx(PELVL, 0)]
q_ang[sdindx(PELVL, 1)]
q_ang[sdindx(PELVL, 2)]

q_ang[sdindx(TRUNK, 0)]
q_ang[sdindx(TRUNK, 1)]
qang [sdindx(TRUNK, 2)]

q_ang[sdindx(UARMR,0)]
q_ang[sdindx(UARMR,1)]
q_ang[sdindx(UARMR,2) ]

q_ang[sdindx(FARMR, 0)]

qang[sdindx(HANDR,0)]
q_ang[sdindx(HANDR,1)]
q_ang[sdindx(HANDR,2)]

q_ang[sdindx(UARML, 0)]
q_ang[sdindx(UARML, 1)]
q_ang[sdindx(UARML,2) ]

q_ang[sdindx(FARML, 0)]

qang[sdindx(HANDL, 0)]
q_ang[sdindx(HANDL, 1)]
q_ang[ sdindx (HANDL, 2)]

q_ang[sdindx(HNDRG, 0)]
q_ang[sdindx(HNDRG, 1)]
qang [sdindx(HNDRG, 2)]
q_ang [sdindx(HNDRG, 3)]
q_ang[sdindx(HNDRG, 4)]
q_ang[sdindx(HNDRG, 5)]

q_ang[sdindx(HNDLG, 0)]
q_ang[sdindx(HNDLG, 1)]
q_ang [sdindx(HNDLG,2)]
q_ang[sdindx(HNDLG, 3)]
q_ang [sdindx(HNDLG,4)]
q_ang[sdindx(HNDLG, 5)]

= 0.0*dtr;
= -52.0*dtr;

0.0*dtr;
0.0*dtr;
0.0*dtr;

/* r-hip Y rot */
/* r-hip Z rot */

* 1-ankle X rot */
* 1-ankle Y rot */
* 1-ankle Z rot */

= 47.0*dtr; /* 1-knee Z rot */

0.0*dtr;
0.0*dtr;

-52.0*dtr;

0.0*dtr;
0.0*dtr;
0.0*dtr;

0.0*dtr;
0.0*dtr;

90.0*dtr;

/* 1-hip
/* 1-hip
/* 1-hip

/* lumbar
/* lumbar
/* lumbar

rot */
rot */
rot */

X rot
Y rot
Z rot

r-shoulder X
r-shoulder Y
r-shoulder Z

rot */
rot */
rot */

= 5.0*dtr; /* r-elbow Z rot */

0.0*dtr;
0.0*dtr;
0.0*dtr;

0.0*dtr;
0.0*dtr;

90.0*dtr;

r-wrist X rot */
r-wrist Y rot */
r-wrist Z rot */

1-shoulder X rot
1-shoulder Y rot
1-shoulder Z rot

= 5.0*dtr; /* 1-elbow Z rot */

0.0*dtr
0.0*dtr
0.0*dtr

xstart;
ystart;
0.0; /*
0.0*dtr;
0.0*dtr;
0.0*dtr;

1-wrist
1-wrist
1-wrist

X rot
Y rot
Z rot

/* r-hand X pos
/* r-hand Y pos
r-hand Z pos */
/* r-hand X rot
/* r-hand Y rot
/* r-hand Z rot

xstart; /* 1-hand X pos
ystart; /* 1-hand Y pos

0.0; /* 1-hand Z pos */

0.0*dtr; /* 1-hand X rot
0.0*dtr; /* 1-hand Y rot
0.0*dtr; /* 1-hand Z rot

/* convert Euler angles to quaternions and assign vals to state array. */

sdang2st(q_ang,q_init);

for (i = 0 ; i < NQ ; i++)
state */

y[i] = qinit[i]; /* assign position vals to
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for (i = 0 ; i < NU ; i++) y[NQ+i] = 0.0; /* assign velocity vals to state

printf("done.\n"); /* end of initial conditions */

/************************************** **********************

This function sets the lock array so that only the arm joints
are allowed to move during the sdassemble routine.
(G. Schaffner)

************k*****************************************************

void
lockjoints(int lock[])
{

int i;

for (i=0 ; i < NU ; i++) lock[i] = ON; /* First, lock ALL joints. */

/* Next, unlock the arm joints so that they can move. */

lock[sdindx(UARMR,0)] = OFF;
lock[sdindx(UARMR,1)] = OFF;
lock[sdindx(UARMR,2)] = OFF;

lock[sdindx(FARMR,0)] = OFF;

lock[sdindx(HANDR,0)] = OFF;
lock[sdindx(HANDR,1)1 = OFF;
lock[sdindx(HANDR,2)] = OFF;

lock[sdindx(UARML,0)] = OFF;
lock[sdindx(UARML,1)] = OFF;
lock[sdindx(UARML,2)] = OFF;

lock[sdindx(FARML,0) = OFF;

lock[sdindx(HANDL,0)] = OFF;
lock[sdindx(HANDL,1)] = OFF;
lock[sdindx(HANDL,2)] = OFF;

/* Finally, unlock the hand-to-ground joints so that they can achieve
the prescribed motions. */

/*
lock[sdindx(HNDRG,0)] = OFF;
lock[sdindx(HNDRG,1)] = OFF;
lock[sdindx(HNDRG,2)] = OFF;
lock[sdindx(HNDRG,3)] = OFF;
lock[sdindx(HNDRG,4)] = OFF;

lock[sdindx(HNDRG,5)] = OFF;

lock[sdindx(HNDLG,0) = OFF;
lock[sdindx(HNDLG,1)] = OFF;
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lock[sdindx(HNDLG,2)] = OFF;
lock[sdindx(HNDLG,3)] = OFF;
lock[sdindx(HNDLG,4)] = OFF;
lock[sdindx(HNDLG,5)] = OFF;
*/

/* Print function */
void
printvals(int nval, double array[])

{
int i;
for (i = 0 ; i< nval ; i++) printf("%f\t", array[il);

printf("\n");
}

/***************************************/

/* Functions for hysteresis model */
/****************************************/

void
initializemesh(Mesh *mesh, double angle)

{
int i;

mesh->num_trapezoids = 1;
mesh->last_direction = UP;
mesh->last_angle = angle;
for (i=0; i<100 ; i++)
mesh->M[il = 0.0;

mesh->m[i] = 0.0;
}
mesh->m[0] = ((mesh->rows[0]).cells[0]).betamin;

double
compose_force(Mesh *mesh, double theta, int direction)
{
double calc_fab(Mesh mesh, double a, double b);

double sum = 0.0;

int k;

#ifdef DEBUG
/* Print out the current Interface I(t), at vertices M[k],m[k] */

fprintf(stderr,"%lf ",theta);
fprintf(stderr,"%d " ,mesh->num_trapezoids);
for (k=l; k < mesh->num_trapezoids+1; k++)

fprintf(stderr,"%lf %If\t",mesh->M[k],mesh->m[k]);

#endif

if (direction == UP) {

145



/* If we're going up, check to see if we just changed direction */

if (mesh->last_direction == DOWN) {
mesh->m[mesh->numtrapezoids] = mesh->last_angle;
mesh->num_trapezoids += 1;

mesh->lastdirection = UP;

}
mesh->last_angle = theta;

/* Check for wiping-out property */
if (mesh->num_trapezoids > 1) {

if (theta > mesh->M[mesh->num_trapezoids-1]) {
mesh->M[mesh->numtrapezoids-1] = 0;

mesh->m[mesh->num_trapezoids-l] = 0;

mesh->num_trapezoids -= 1;

}
}

/* Compute the sum */
for (k=l; k <= mesh->num_trapezoids-1; k++)

sum += calc_fab(*mesh, mesh->M[k], mesh->m[k])

- calc_fab(*mesh, mesh->M[k], mesh->m[k-l]);

return (- mesh->max_saturation
+ sum

+ calc_fab(*mesh, theta, theta)
- calc_fab(*mesh, theta, mesh->m[mesh->num_trapezoids-11));

else if (direction == DOWN) {

/* If we're going down, check to see if we just changed direction */

if (mesh->last_direction == UP) {

mesh->M[mesh->num_trapezoids] = mesh->last_angle;

mesh->lastdirection = DOWN;

}
mesh->last_angle = theta;

/* Check for wiping-out property */

if (mesh->num_trapezoids > 1) {
if (theta < mesh->m[mesh->num_trapezoids-1]) {

mesh->M[mesh->num_trapezoids] = 0;

mesh->m[mesh->num_trapezoids-l] = 0;

mesh->num_trapezoids -= 1;

}

/* Compute the sum */
for (k=l; k <= mesh->num_trapezoids-1; k++)

sum += calc_fab(*mesh, mesh->M[k],
mesh->m[k]) - calc_fab(*mesh, mesh->M[k], mesh->m[k-1]);

return (- mesh->max_saturation
+ sum

+ calcfab(*mesh, mesh->M[mesh->num_trapezoids], theta)

- calcfab(*mesh,
mesh->M[mesh->num_trapezoids],
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mesh->m[mesh->num_trapezoids-l1));

double
calc_fab(Mesh mesh, double a, double b)

{
int i,j;
int triangle = 0;

for(i=0; mesh.rows[i].alphamin > a ; i++)

for(j=O; mesh.rows[i].cells[j].betamax < b ; j++)

if( j == mesh.rows[i].numcells-l)
triangle = 1;

if( !triangle )
return(mesh.rows[i] .cells[jl.cl +

mesh.rows[i].cells[j].c2*a +
mesh.rows[i] .cells[j].c3*b +
mesh.rows[i].cells[j].c4*a*b);

else
return(mesh.rows[i].cells[j].cl +

mesh.rows[i].cells[j].c2*a +
mesh.rows[i].cells[j].c3*b);

void
loadmesh(char *filename, Mesh *mesh)
{

FILE *fp;
int items_read, ncells, i;
double amin, amax;
Row *current_row;
Cell *current cell;

if((fp = fopen(filename, "r")) == NULL) {
fprintf(stderr, "Can't open mesh file %s\n",filename);

exit(-l);

mesh->numrows = 0;

mesh->rows = NULL;

fscanf(fp, "%lf",&(mesh->max_saturation));
while((items_read = fscanf(fp,"%lf%lf%d",&amin,&amax,&ncells)) == 3) {

mesh->numrows++;
mesh->rows = realloc(mesh->rows, mesh->numrows*sizeof(Row));

current_row = &((mesh->rows)[mesh->numrows-l1);
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current_row->alphamin = amin;
current_row->alphamax = amax;
current_row->numcells = ncells;

currentrow->cells = malloc(ncells*sizeof(Cell));

for(i=0O; i < ncells ; i++) {
fscanf(fp,"%lf%lf%lf%if%lf%lf"

&((current_row->cells)[i]
&((currentrow->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]
&((current_row->cells)[i]

.betamin),

.betamax),

.cl),

.c2),

.c3),

.c4));
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Appendix F: Processing for Simulation Results

This appendix contains the code used to process the simulation results in MATLAB. The input

files were umatpos.dat, umatvel.dat, and umattrq.dat for the unsuited joint position, velocity, and

torque data files; the corresponding suited data files were smatpos.dat, smatvel.dat, and

smattrq.dat. This file contains plot axes appropriate for the compliant lower body simulation, but

can be used on any data set. The axes may have to be reformatted.

clear

load umatpos.dat -ascii
load umatvel.dat -ascii
load umattrq.dat -ascii

load smatpos.dat -ascii
load smatvel.dat -ascii
load smattrq.dat -ascii

% Shorten the names of the data files,

% from radians to degrees

:,2:7) = umatpos(:,2:7)
:,l) = umatpos(:,l);
= size(umatvel); uvel
= size(umattrq); utrq
:,2:7) = smatpos(:,2:7)
:,l) = smatpos(:,l);

= size(smatvel); svel
= size(smattrq); strq

and convert angles

.*180.0/pi;

= umatvel(l:(L-1),:);
= umattrq(2:L,:);
.*180.0/pi;

= smatvel(l:(L-l),:);
= smattrq(2:L,:);

% Plot the joint angles as a function of time

figure(l);
clg;
hold on;

subplot(3,2,1);hold on;
plot(upos(:,l),upos(:, 2 ),'w-');
plot(spos(:,l),spos(:,2),'w--');
title('Ankle Joint Position');
xlabel('Time (sec)');
ylabel('Joint Angle (deg)');
legend('Unsuited', 'Suited');

subplot(3,2,2);hold on;
plot(upos(:,l),upos(:,3),'w-');
plot(spos(:,l),spos(:,3),'w--');
title('Knee Joint Position');

xlabel('Time (sec)');
ylabel('Joint Angle (deg)');

legend('Unsuited', 'Suited');

subplot(3,2
plot(upos(:
plot (spos(:

,3)
,1)
,1)

;hold on;
,upos(:,4),'w-');
,spos(:,4),'w--');

upos(
upos(
[L,w]
[L,w]
spos(
spos(
[L,w]
[L,w]
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title('Hip Joint Position');
xlabel('Time (sec)');
ylabel('Joint Angle (deg)');
legend('Unsuited', 'Suited');

subplot(3,2,4);hold on;
plot(upos(:,1),upos(:,5),'w-');
plot(spos(:,l),spos(:,5),'w--');

title('Shoulder Joint Position');
xlabel('Time (sec)');
ylabel('Joint Angle (deg)');
legend('Unsuited', 'Suited');

subplot(3,2,5);hold on;
plot(upos(:,l),upos(:,6),'w-');

plot(spos(:,l),spos(:,6),'w--');

title('Elbow Joint Position');
xlabel('Time (sec)');
ylabel('Joint Angle (deg)');
legend('Unsuited', 'Suited');

subplot(3,2,6);hold on;
plot(upos(:,l),upos(:,7),'w-');
plot(spos(:,l),spos(:,7),'w--');
title('Wrist Joint Position');
xlabel('Time (sec)');
ylabel('Joint Angle (deg)');
legend('Unsuited', 'Suited');

% Plot the joint torques as a function of time

figure(2);
clg;
hold on;

subplot(3,2,1);hold on;
plot(utrq(: , 1),utrq(:,2) , 'w-');
plot(strq(:,l),strq(:,2),'w--');

title('Ankle Joint Torque');
axis([0 10 -15 15]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');

subplot(3,2,2);hold on;
plot(utrq(:,l),utrq(:,3),'w-');
plot(strq(:,l),strq(:,3),'w--');
title('Knee Joint Torque');
axis([0 10 -15 15]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');

subplot(3,2,3);hold on;
plot(utrq(:,l),utrq(:,4), 'w-');
plot(strq(:,l),strq(:,4), 'w--');
title('Hip Joint Torque');
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axis([0 10 -15 15]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');

subplot(3,2,4);hold on;
plot(utrq(:,l),utrq(:,5),'w-');
plot(strq(:,l),strq(:,5),'w--');

title('Shoulder Joint Torque');
axis([0 10 -5 5]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');

subplot(3,2,5);hold on;
plot(utrq(:,l),utrq(:,6), 'w-');
plot(strq(:,l),strq(:,6),'w--');

title('Elbow Joint Torque');
axis([0 10 -5 5]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');

subplot(3,2,6);hold on;
plot(utrq(:,l),utrq(:,7),'w-');
plot(strq(:,l),strq(:,7),'w--');
title('Wrist Joint Torque');
axis([0 10 -5 5]);
xlabel('Time (sec)');
ylabel('Joint Torque (N-m)');
legend('Unsuited', 'Suited');
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% Calculate joint power

upwr(:,2:7) = abs(uvel(:,2:7).*utrq(:,2:7));
upwr(:,l) = uvel(:,l);

spwr(:,2:7) = abs(svel(:,2:7).*strq(:,2:7));
spwr(:,l) = svel(:,l);

% Integrate over the timestep (0.05 sec) to get work

uwrk(:,2:7) = upwr(:,2:7).*0.05;
swrk(:,2:7) = spwr(:,2:7).*0.05;

[L,w] = size(uwrk);
ucumwrk = zeros(L,w);
scumwrk = zeros(L,w);
ucumwrk(1,2:7) = uwrk(1,2:7);
scumwrk(l,2:7) = swrk(1,2:7);

% Create cumulative work by accumulating work
for i = 2:L

for j = 2:7
ucumwrk(i,j) = uwrk(i,j)+ucumwrk(i-l,j);

scumwrk(i,j) = swrk(i,j)+scumwrk(i-l,j);
end

end

ucumwrk(:,l) = uvel(:,l);
scumwrk(:,l) = uvel(:,l);

% Plot the cumulative work

figure(3);
clg;
hold on;

subplot(3,2,1);hold on;
plot(ucumwrk(:,l),ucumwrk(:,2), 'w-');
plot(scumwrk(:,l),scumwrk(:,2),'w--');
axis([0 10 0 2]);
title('Cumulative Work at the Ankle Joint');
ylabel('Cumulative Work (Joules)');
xlabel('Time (sec)');
legend('Unsuited', 'Suited');

subplot(3,2,2);hold on;
plot(ucumwrk(:,l),ucumwrk(:,3),'w-');
plot(scumwrk(:,l),scumwrk(:,3),'w--');
axis([0 10 0 2]);
title('Cumulative Work at the Knee Joint');
ylabel('Cumulative Work (Joules)');
xlabel('Time (sec)');
legend('Unsuited', 'Suited');

subplot(3,2,3);hold on;
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plot(ucumwrk(:,l),ucumwrk(:,4), 'w-');
plot(scumwrk(:,l),scumwrk(:,4), 'w--');
axis([0 10 0 2]);
title('Cumulative Work at the Hip Joint');
ylabel('Cumulative Work (Joules)');
xlabel('Time (sec)');
legend('Unsuited','Suited');

subplot(3,2,4);hold on;
plot(ucumwrk(:,l),ucumwrk(:,5), 'w-');

plot(scumwrk(:,l),scumwrk(:,5),'w--');
axis([0 10 0 2]);
title('Cumulative Work at the Shoulder Joint');
ylabel('Cumulative Work (Joules)');
xlabel('Time (sec)');
legend('Unsuited', 'Suited');

subplot(3,2,5);hold on;
plot(ucumwrk(:,l),ucumwrk(:,6),'w-');
plot(scumwrk(:,l),scumwrk(:,6),'w--');
axis([0 10 0 2]);
title('Cumulative Work at the Elbow Joint');
ylabel('Cumulative Work (Joules)');
xlabel('Time (sec)');
legend('Unsuited','Suited');

subplot(3,2,6);hold on;
plot(ucumwrk(:,l),ucumwrk(:,7),'w-');
plot(scumwrk(:,l),scumwrk(:,7),'w--');
title('Cumulative Work at the Wrist Joint');
xlabel('Time (sec)');
ylabel('Cumulative Work (Joules)');
legend('Unsuited', 'Suited');
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